-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathsieveOfAtkin.java
60 lines (50 loc) · 1.9 KB
/
sieveOfAtkin.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import java.util.ArrayList;
import java.util.stream.IntStream;
/**
* The Sieve of Atkin is a modern algorithm for finding all prime
* numbers up to a specified integer. Compared with the ancient
* sieve of Eratosthenes, which marks off multiples of primes, the
* sieve of Atkin does some preliminary work and then marks off
* multiples of squares of primes, thus achieving a better theoretical
* asymptotic complexity. It was created in 2003 by A. O. L. Atkin
* and Daniel J. Bernstein.
*
* Google it if you don't know about it.
*
* @author Ricardo Prins
* @since 3-7-2020
*/
public class sieveOfAtkin {
public static ArrayList<Integer> sieve(int lowerLimit, int upperLimit) {
ArrayList<Integer> result = new ArrayList<>();
if (upperLimit > 2) {
result.add(2);
};
if (upperLimit > 3) {
result.add(3);
};
boolean[] sieve = new boolean[upperLimit];
IntStream.range(0, upperLimit)
.forEach(i -> sieve[i] = false);
for (int x = 1; x * x < upperLimit; x++) {
for (int y = 1; y * y < upperLimit; y++) {
int n = (4 * x * x) + (y * y);
if (n <= upperLimit && (n % 12 == 1 || n % 12 == 5)) sieve[n] ^= true;
n = (3 * x * x) + (y * y);
if (n <= upperLimit && n % 12 == 7) sieve[n] ^= true;
n = (3 * x * x) - (y * y);
if (x > y && n <= upperLimit && n % 12 == 11) sieve[n] ^= true;
}
}
IntStream.iterate(5, r -> r * r < upperLimit, r -> r + 1)
.filter(r -> sieve[r])
.flatMap(r -> IntStream.iterate(r * r, i -> i < upperLimit, i -> i + r * r))
.forEach(i -> sieve[i] = false);
for (int a = lowerLimit; a < upperLimit; a++) {
if (sieve[a]) {
result.add(a);
}
}
return result;
}
}