-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathprefix_sum.java
64 lines (52 loc) · 1.37 KB
/
prefix_sum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/*
Given an array of N elements , find it's prefix sum array.
In Competitive Programming, many times we need to calculate prefix sum array to solve our problem.
*/
import java.util.Scanner;
import java.lang.*;
public class PrefixSum
{
// this function will give us prefix sum of the array
static void prefix_sum_array(int ar[], int N)
{
int pref_ar[] = new int[N];
pref_ar[0] = ar[0];
/* we will add the current element of ar[] array
and previous element of pref_ar [] array */
for(int i = 1; i < N; i++)
{
pref_ar[i] = ar[i] + pref_ar[i - 1];
}
System.out.println("The New Prefix sum array is \n");
for (int i = 0; i < N; i++)
{
System.out.print(pref_ar[i] + " ");
}
System.out.println('\n');
}
public static void main(String args[])
{
Scanner scan = new Scanner(System.in);
System.out.print("Enter the size of array \n");
int number = scan.nextInt();
int[] ar = new int[number];
System.out.println("Enter array elements \n");
for(int i = 0; i < number; i++)
{
ar[i] = scan.nextInt();
}
scan.close();
prefix_sum_array(ar,number);
}
}
/*
Standard Input and Output
Enter the size of array
7
Enter array elements
10 4 16 34 23 5 90
The New Prefix sum array is
10 14 30 64 87 92 182
Time Complexity : O(N)
Space Complexity : O(N)
*/