-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathmin_ins_del.cpp
59 lines (54 loc) · 1.49 KB
/
min_ins_del.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/** CONCEPT
This code computes the number of insertions and deletions required to convert one string to another
*Calculate the length of the longest common subsequence
*Characters not present in the string X but present in string Y need to be inserted
*Characters not present in the string Y but present in string X need to be deleted
**/
#include <bits/stdc++.h>
using namespace std;
void minInsertDel(string x, string y, int n, int m)
{
int dp[n + 1][m + 1];
/*Base conditions
For calculating the longest common subsequence
If the length of any one of the string is zero, then the length of common subsequence will be zero
*/
for (int i = 0; i < n + 1; i++)
{
for (int j = 0; j < m + 1; j++)
{
if (i == 0 || j == 0)
dp[i][j] = 0;
}
}
for (int i = 1; i < n + 1; i++)
{
for (int j = 1; j < m + 1; j++)
{
if (x[i - 1] == y[j - 1])
dp[i][j] = 1 + dp[i - 1][j - 1];
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
//Displaying the minimum number of insertions and deletions
cout << "Minimum insertions=" << m - dp[n][m] << "\nMinimum deletions=" << n - dp[n][m] << "\n";
}
//Driver Code
int main()
{
string x, y;
cin >> x >> y;
int n = x.length();
int m = y.length();
minInsertDel(x, y, n, m);
}
/*
*TIME COMPLEXITY- O(n^2)
*INPUT:
X= abcdef
Y= abcdg
OUTPUT:
Minimum insertions=1
Minimum deletions=2
*/