-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathMax_MatrixChain_Multiplication.cpp
72 lines (60 loc) · 1.64 KB
/
Max_MatrixChain_Multiplication.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
Given a chain of matrices A1, A2, A3,.....An, you have to figure out the most efficient
way to multiply these matrices. In other words, determine where to place parentheses to
minimize the number of multiplications.
*/
#include <bits/stdc++.h>
using namespace std;
int matrixChainMultiplication(int arr, int n){
/
For simplicity of the program, one extra row and one
extra column are allocated in dp[][]. Oth row and oth
column of dp[][] are not used
/
n += 1;
/
dp[i,j] = Minimum number of scalar multiplications needed
to compute the matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is arr[i-1] x arr[i]
*/
vector<vector<int>> dp(n, vector <int>(n));
//Cost is zero when multiplying one matrix
for(int i=1; i<n; i++){
dp[i][i]=0;
}
//L is chain length
for(int L=2; L<n; L++){
for(int i=1; i<n-L+1; i++){
int j = i+L-1;
dp[i][j] = INT_MAX;
for(int k=i; k<=j-1; k++){
int q = dp[i][k] + dp[k+1][j] + (arr[i-1] * arr[k] * arr[j]);
if(q<dp[i][j])
dp[i][j]=q;
}
}
}
return dp[1][n-1];
}
int main() {
int size;
cout<<"Enter the size of the array:";
cin >> size;
int* arr = new int[size];
cout<<"Enter the array elements:"
for (int i = 0; i <= size; i++) {
cin >> arr[i];
}
cout << matrixChainMultiplication(arr, size);
delete[] arr;
}
/*
Time Complexity: O(N^3);
Space Complexity: O(N^2)
where N is the number of matrices to multiply
Sample Input:
5
2 4 6 12 11 21
Sample Output:
918
*/