-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathCount_subset_given_difference.cpp
67 lines (61 loc) · 1.85 KB
/
Count_subset_given_difference.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
This problem is solved using dp.In this problem we will have array and difference.
We have to divide array into two subsets in such a way that difference of both subsets
will become equal to given difference.If equal then we will increase count by 1.
and if there is no such subset then will return 0 else will return count.
*/
#include <bits/stdc++.h>
using namespace std;
// This function is for checking whther the subset of array sum is equal to value or not
int minDiff(int arr[], int n, int sum){
// We will create matrix t of size (n+1)*(sum+1)
int t[n+1][sum+1];
/* if j is 0 i.e. sum is 0 and i i.e. arr has whatever values it will always return true
because if sum is 0 then we don't need to find if subset of array is equal to sum or not */
for(int i=0;i<n+1;i++){
t[i][0] = 1;
}
/* But if i is 0 i.e array has no value and sum has some value then we can nver make
subset of array value equal to sum so it will always give false */
for(int i=1;i<sum+1;i++){
t[0][i] = 0;
}
for(int i=1;i<n+1;i++){
for(int j=1;j<sum+1;j++){
// if subset sum value grater than sum then we will proceed further
if(arr[i-1] <= j){
t[i][j] = t[i-1][j-arr[i-1]] + t[i-1][j];
}
// if subset sum value less than sum then we will proceed further and we add value to it
else{
t[i][j] = t[i-1][j];
}
}
}
// return total count
return t[n][sum];
}
//driver code
int main() {
int n,diff;
cin>>n>>diff;
int arr[n+1];
for(int i=0;i<n;i++){
cin>>arr[i];
}
int total = 0;
for(int i=0;i<n;i++){
total += arr[i];
}
int sum = (total + diff)/2;
cout<<minDiff(arr,n,sum);
return 0;
}
/*
Input -
4 1
1 1 2 3
Output - 3
Time Complexity - O(n*sum)
Space Complexity - O(n*sum)
*/