-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathCombination_Sum.cpp
86 lines (80 loc) · 2.06 KB
/
Combination_Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/* C++ Code for Combination Sum Problem.
Problem Statement:
Given an array of integers and a target value, the unique combination of values in array should sum up to the target value.
The same number can be chosen multiple times.
For Example:
Input: array = [4,2,8,6], target = 8
Output: [2,2,2,2], [4,4], [2,6], [8], [2,2,4]
Constraints:
1. The array should have distinct elements.
2. 1 <= target <= 500
3. 1 <= arr.size() <= 50
4. 1 <= arr[i] <= 200
*/
#include<bits/stdc++.h>
using namespace std;
void combinationSum(vector<int> &arr, int target, vector<vector<int>> &ans, vector<int> &combn, int beg)
{
if(!target) {
ans.push_back(combn);
return;
}
for(int i=beg; i!=arr.size() && target >= arr[i]; ++i) {
combn.push_back(arr[i]);
combinationSum(arr, target-arr[i], ans, combn, i);
combn.pop_back();
}
}
int main() {
int n;
cout << "\nEnter Array Size: "; cin >> n;
vector<int> arr (n);
cout << "\nEnter Array Elements: ";
for(int i=0; i<n; ++i)
cin >> arr[i];
int target;
cout << "\nEnter Target Sum: "; cin >> target;
//Sorting the array
sort(arr.begin(), arr.end());
vector<vector<int> > ans;
vector<int> combination;
combinationSum(arr, target, ans, combination, 0);
for(int i=0; i<ans.size(); ++i) {
if(ans[i].size() > 0) {
cout << "\n[";
for(int j=0; j<ans[i].size(); ++j)
if(j == ans[i].size() - 1) cout << ans[i][j];
else cout << ans[i][j] << ", ";
cout << "]";
}
}
return 0;
}
/* Sample Input
Enter Array Size: 4
Enter Array Elements: 1 2 3 4
Enter Target Sum: 10
Output:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 2]
[1, 1, 1, 1, 1, 1, 1, 3]
[1, 1, 1, 1, 1, 1, 2, 2]
[1, 1, 1, 1, 1, 1, 4]
[1, 1, 1, 1, 1, 2, 3]
[1, 1, 1, 1, 2, 2, 2]
[1, 1, 1, 1, 2, 4]
[1, 1, 1, 1, 3, 3]
[1, 1, 1, 2, 2, 3]
[1, 1, 1, 3, 4]
[1, 1, 2, 2, 2, 2]
[1, 1, 2, 2, 4]
[1, 1, 2, 3, 3]
[1, 2, 2, 2, 3]
[1, 2, 3, 4]
[1, 3, 3, 3]
[2, 2, 2, 2, 2]
[2, 2, 2, 4]
[2, 2, 3, 3]
[2, 4, 4]
[3, 3, 4]
*/