-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathtrain_SSR_main.py
224 lines (181 loc) · 12.7 KB
/
train_SSR_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import yaml
import os
import argparse
from SSR.datasets.replica import replica_datasets
from SSR.datasets.scannet import scannet_datasets
from SSR.datasets.replica_nyu import replica_nyu_cnn_datasets
from SSR.datasets.scannet import scannet_datasets
from SSR.training import trainer
from tqdm import trange
import time
def train():
parser = argparse.ArgumentParser()
# parser.add_argument('--config_file', type=str, default="/home/shuaifeng/Documents/PhD_Research/CodeRelease/SemanticSceneRepresentations/SSR/configs/SSR_room2_config_release.yaml",
# help='config file name.')
parser.add_argument('--config_file', type=str, default="/home/shuaifeng/Documents/PhD_Research/CodeRelease/SemanticSceneRepresentations/SSR/configs/SSR_room0_config_test.yaml",
help='config file name.')
parser.add_argument('--dataset_type', type=str, default="replica", choices= ["replica", "replica_nyu_cnn", "scannet"],
help='the dataset to be used,')
### working mode and specific options
# sparse-views
parser.add_argument("--sparse_views", action='store_true',
help='Use labels from a sparse set of frames')
parser.add_argument("--sparse_ratio", type=float, default=0,
help='The portion of dropped labelling frames during training, which can be used along with all working modes.')
parser.add_argument("--label_map_ids", nargs='*', type=int, default=[],
help='In sparse view mode, use selected frame ids from sequences as supervision.')
parser.add_argument("--random_sample", action='store_true', help='Whether to randomly/evenly sample frames from the sequence.')
# denoising---pixel-wsie
parser.add_argument("--pixel_denoising", action='store_true',
help='Whether to work in pixel-denoising tasks.')
parser.add_argument("--pixel_noise_ratio", type=float, default=0,
help='In sparse view mode, if pixel_noise_ratio > 0, the percentage of pixels to be perturbed in each sampled frame for pixel-wise denoising task..')
# denoising---region-wsie
parser.add_argument("--region_denoising", action='store_true',
help='Whether to work in region-denoising tasks by flipping class labels of chair instances in Replica Room_2')
parser.add_argument("--region_noise_ratio", type=float, default=0,
help='In region-wise denoising task, region_noise_ratio is the percentage of chair instances to be perturbed in each sampled frame for region-wise denoising task.')
parser.add_argument("--uniform_flip", action='store_true',
help='In region-wise denoising task, whether to change chair labels uniformly or not, i.e., by ascending area ratios. This corresponds to two set-ups mentioned in the paper.')
parser.add_argument("--instance_id", nargs='*', type=int, default=[3, 6, 7, 9, 11, 12, 13, 48],
help='In region-wise denoising task, the chair instance ids in Replica Room_2 to be randomly perturbed. The ids of all 8 chairs are [3, 6, 7, 9, 11, 12, 13, 48]')
# super-resolution
parser.add_argument("--super_resolution", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
parser.add_argument('--dense_sr', action='store_true', help='Whether to use dense or sparse labels for SR instead of dense labels.')
parser.add_argument('--sr_factor', type=int, default=8, help='Scaling factor of super-resolution.')
# label propagation
parser.add_argument("--label_propagation", action='store_true',
help='Label propagation using partial seed regions.')
parser.add_argument("--partial_perc", type=float, default=0,
help='0: single-click propagation; 1: using 1-percent sub-regions for label propagation, 5: using 5-percent sub-regions for label propagation')
# misc.
parser.add_argument('--visualise_save', action='store_true', help='whether to save the noisy labels into harddrive for later usage')
parser.add_argument('--load_saved', action='store_true', help='use trained noisy labels for training to ensure consistency betwwen experiments')
parser.add_argument('--gpu', type=str, default="", help='GPU IDs.')
args = parser.parse_args()
# Read YAML file
with open(args.config_file, 'r') as f:
config = yaml.safe_load(f)
if len(args.gpu)>0:
config["experiment"]["gpu"] = args.gpu
print("Experiment GPU is {}.".format(config["experiment"]["gpu"]))
trainer.select_gpus(config["experiment"]["gpu"])
config["experiment"].update(vars(args))
# Cast intrinsics to right types
ssr_trainer = trainer.SSRTrainer(config)
if args.dataset_type == "replica":
print("----- Replica Dataset -----")
total_num = 900
step = 5
train_ids = list(range(0, total_num, step))
test_ids = [x+step//2 for x in train_ids]
#add ids to config for later saving.
config["experiment"]["train_ids"] = train_ids
config["experiment"]["test_ids"] = test_ids
# Todo: like nerf, creating sprial/test poses. Make training and test poses/ids interleaved
replica_data_loader = replica_datasets.ReplicaDatasetCache(data_dir=config["experiment"]["dataset_dir"],
train_ids=train_ids, test_ids=test_ids,
img_h=config["experiment"]["height"],
img_w=config["experiment"]["width"])
print("--------------------")
if args.super_resolution:
print("Super Resolution Mode! Dense Label Flag is {}, SR Factor is {}".format(args.dense_sr,args.sr_factor))
replica_data_loader.super_resolve_label(down_scale_factor=args.sr_factor, dense_supervision=args.dense_sr)
elif args.label_propagation:
print("Label Propagation Mode! Partial labelling percentage is: {} ".format(args.partial_perc))
replica_data_loader.simulate_user_click_partial(perc=args.partial_perc, load_saved=args.load_saved, visualise_save=args.visualise_save)
if args.sparse_views: # add view-point sampling to partial sampling
print("Sparse Viewing Labels Mode under ***Patial Labelling***! Sparse Ratio is ", args.sparse_ratio)
replica_data_loader.sample_label_maps(sparse_ratio=args.sparse_ratio, random_sample=args.random_sample, load_saved=args.load_saved)
elif args.pixel_denoising:
print("Pixel-Denoising Mode! Noise Ratio is ", args.pixel_noise_ratio)
replica_data_loader.add_pixel_wise_noise_label(sparse_views=args.sparse_views,
sparse_ratio=args.sparse_ratio,
random_sample=args.random_sample,
noise_ratio=args.pixel_noise_ratio,
visualise_save=args.visualise_save,
load_saved=args.load_saved)
elif args.region_denoising:
print("Chair Label Flipping for Region-wise Denoising, Flip ratio is {}, Uniform Sampling is {}".format( args.region_noise_ratio, args.uniform_flip))
replica_data_loader.add_instance_wise_noise_label(sparse_views=args.sparse_views, sparse_ratio=args.sparse_ratio, random_sample=args.random_sample,
flip_ratio=args.region_noise_ratio, uniform_flip=args.uniform_flip, instance_id= args.instance_id,
load_saved=args.load_saved, visualise_save=args.visualise_save,)
elif args.sparse_views:
if len(args.label_map_ids)>0:
print("Use label maps only for selected frames, ", args.label_map_ids)
replica_data_loader.sample_specific_labels(args.label_map_ids, train_ids)
else:
print("Sparse Labels Mode! Sparsity Ratio is ", args.sparse_ratio)
replica_data_loader.sample_label_maps(sparse_ratio=args.sparse_ratio, random_sample=args.random_sample, load_saved=args.load_saved)
else:
print("Standard setup with full dense supervision.")
ssr_trainer.set_params_replica()
ssr_trainer.prepare_data_replica(replica_data_loader)
elif args.dataset_type == "replica_nyu_cnn":
print("----- Replica Dataset with NYUv2-13 CNN Predictions -----")
print("Replica_nyu_cnn mode using labels from trained CNNs: {}".format(config["experiment"]["nyu_mode"]))
total_num = 900
step = 5
train_ids = list(range(0, total_num, step))
test_ids = [x+step//2 for x in train_ids]
#add ids to config for later saving.
config["experiment"]["train_ids"] = train_ids
config["experiment"]["test_ids"] = test_ids
replica_nyu_cnn_data_loader = replica_nyu_cnn_datasets.Replica_CNN_NYU(data_dir=config["experiment"]["dataset_dir"],
train_ids=train_ids, test_ids=test_ids,
img_h=config["experiment"]["height"],
img_w=config["experiment"]["width"],
nyu_mode = config["experiment"]["nyu_mode"],
load_softmax=config["experiment"]["load_softmax"])
ssr_trainer.set_params_replica() # we still call params of replica here since the image sources are from Replica still
ssr_trainer.prepare_data_replica_nyu_cnn(replica_nyu_cnn_data_loader)
elif args.dataset_type == "scannet":
print("----- ScanNet Dataset with NYUv2-40 Conventions-----")
print("processing ScanNet scene: ", os.path.basename(config["experiment"]["dataset_dir"]))
# Todo: like nerf, creating sprial/test poses. Make training and test poses/ids interleaved
scannet_data_loader = scannet_datasets.ScanNet_Dataset( scene_dir=config["experiment"]["dataset_dir"],
img_h=config["experiment"]["height"],
img_w=config["experiment"]["width"],
sample_step=config["experiment"]["sample_step"],
save_dir=config["experiment"]["dataset_dir"])
print("--------------------")
if args.super_resolution:
print("Super Resolution Mode! Dense Label Flag is {}, SR Factor is {}".format(args.dense_sr,args.sr_factor))
scannet_data_loader.super_resolve_label(down_scale_factor=args.sr_factor, dense_supervision=args.dense_sr)
elif args.label_propagation:
print("Partial Segmentation Mode! Partial percentage is: {} ", args.partial_perc)
scannet_data_loader.simulate_user_click_partial(perc=args.partial_perc, load_saved=args.load_saved, visualise_save=args.visualise_save)
elif args.pixel_denoising:
print("Pixel-Denoising Mode! Noise Ratio is ", args.pixel_noise_ratio)
scannet_data_loader.add_pixel_wise_noise_label(sparse_views=args.sparse_views,
sparse_ratio=args.sparse_ratio,
random_sample=args.random_sample,
noise_ratio=args.pixel_noise_ratio,
visualise_save=args.visualise_save,
load_saved=args.load_saved)
elif args.sparse_views:
print("Sparse Viewing Labels Mode! Sparse Ratio is ", args.sparse_ratio)
scannet_data_loader.sample_label_maps(sparse_ratio=args.sparse_ratio, random_sample=args.random_sample, load_saved=args.load_saved)
ssr_trainer.set_params_scannet(scannet_data_loader)
ssr_trainer.prepare_data_scannet(scannet_data_loader)
# Create nerf model, init optimizer
ssr_trainer.create_ssr()
# Create rays in world coordinates
ssr_trainer.init_rays()
start = 0
N_iters = int(float(config["train"]["N_iters"])) + 1
global_step = start
##########################
print('Begin')
##### Training loop #####
for i in trange(start, N_iters):
time0 = time.time()
ssr_trainer.step(global_step)
dt = time.time()-time0
print()
print("Time per step is :", dt)
global_step += 1
print('done')
if __name__=='__main__':
train()