forked from fsoft-ailab/Data-Competition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
executable file
·304 lines (247 loc) · 11.9 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import sys
import argparse
from pathlib import Path
from threading import Thread
import torch
import numpy as np
from tqdm import tqdm
from utils.callbacks import Callbacks
from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.plots import plot_images, output_to_target
from utils.metrics import ap_per_class, ConfusionMatrix
from utils.torch_utils import select_device, time_sync
from utils.general import check_dataset, check_img_size, check_suffix, check_yaml, box_iou,\
non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
FILE = Path(__file__).resolve()
sys.path.append(FILE.parents[0].as_posix())
def save_one_txt(normed_pred, save_conf, shape, file):
# Save one txt result
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain wh x wh
for *xyxy, conf, cls in normed_pred.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized x y w h
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
def process_batch(detections, labels, iou_thresholds):
"""
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
iou_thresholds: list iou thresholds from 0.5 -> 0.95
Returns:
correct (Array[N, 10]), for 10 IoU levels
"""
correct = torch.zeros(detections.shape[0], iou_thresholds.shape[0], dtype=torch.bool, device=iou_thresholds.device)
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where((iou >= iou_thresholds[0]) & (labels[:, 0:1] == detections[:, 5]))
if x[0].shape[0]:
# [label, detection, iou]
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.Tensor(matches).to(iou_thresholds.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iou_thresholds
return correct
def cal_weighted_ap(ap50):
return 0.2 * ap50[1] + 0.3 * ap50[0] + 0.5 * ap50[2]
@torch.no_grad()
def run(data,
weights=None, # model.pt path(s)
batch_size=32, # batch size
img_size=640, # inference size (pixels)
conf_threshold=0.001, # confidence threshold
iou_threshold=0.6, # NMS IoU threshold
task='val', # train, val, test, speed or study
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
project='results/val', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
model=None,
dataloader=None,
save_dir=Path(''),
plots=True,
callbacks=Callbacks(),
compute_loss=None,
):
# Initialize/load model and set device
is_loaded_model = model is not None
grid_size = None
if is_loaded_model:
device = next(model.parameters()).device
else:
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
# Load model
check_suffix(weights, '.pt')
model = attempt_load(weights, map_location=device)
grid_size = max(int(model.stride.max()), 32)
img_size = check_img_size(img_size, s=grid_size)
# Data
data = check_dataset(data)
# Half
half &= device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()
# Configure
model.eval()
num_class = int(data['num_class'])
iou_thresholds = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95
num_thresholds = iou_thresholds.numel()
# Dataloader
if not is_loaded_model:
if device.type != 'cpu':
model(torch.zeros(1, 3, img_size, img_size).to(device).type_as(next(model.parameters())))
task = task if task in ('train', 'val', 'test') else 'val'
dataloader = create_dataloader(data[task], img_size, batch_size, grid_size, pad=0.5, rect=True,
prefix=colorstr(f'{task}: '))[0]
seen = 0
num_per_class = [0] * num_class
confusion_matrix = ConfusionMatrix(nc=num_class)
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
s = ('%20s' + '%11s' * 8) % ('Class', 'Images', 'Labels', 'Boxes', 'P', 'R', '[email protected]', '[email protected]', '[email protected]:.95')
dt, p, r, f1, mp, mr, map50, map, wap50 = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
loss = torch.zeros(3, device=device)
stats, ap, ap_class = [], [], []
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
t1 = time_sync()
# Preprocess
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0
for i in range(num_class):
num_per_class[i] += len(np.where(targets[:, 1] == i)[0])
targets = targets.to(device)
batch_size, _, height, width = img.shape # batch size, channels, height, width
t2 = time_sync()
dt[0] += t2 - t1
# Run model
out, train_out = model(img, augment=augment) # inference and training outputs
dt[1] += time_sync() - t2
# Compute loss
if compute_loss:
# box, obj, cls
loss += compute_loss([x.float() for x in train_out], targets)[1]
# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(batch_size)] if save_hybrid else []
t3 = time_sync()
# Note depth 8 -> 6
out = non_max_suppression(out, conf_threshold, iou_threshold, labels=lb, multi_label=True)
dt[2] += time_sync() - t3
# Statistics per image
for si, pred in enumerate(out):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
target_class = labels[:, 0].tolist() if nl else [] # target class
path, shape = Path(paths[si]), shapes[si][0]
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, num_thresholds, dtype=torch.bool),
torch.Tensor(), torch.Tensor(), target_class))
continue
normed_pred = pred.clone()
scale_coords(img[si].shape[1:], normed_pred[:, :4], shape, shapes[si][1]) # native-space pred
# Evaluate
if nl:
target_boxes = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_coords(img[si].shape[1:], target_boxes, shape, shapes[si][1]) # native-space labels
labels_per_img = torch.cat((labels[:, 0:1], target_boxes), 1) # native-space labels
correct = process_batch(normed_pred, labels_per_img, iou_thresholds)
if plots:
confusion_matrix.process_batch(normed_pred, labels_per_img)
else:
correct = torch.zeros(pred.shape[0], num_thresholds, dtype=torch.bool)
# correct, confidence, pred_label, target_label
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), target_class))
# Save/log
if save_txt:
save_one_txt(normed_pred, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
callbacks.run('on_val_image_end', pred, normed_pred, path, names, img[si])
# Plot images
if plots and batch_i < 3:
f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)]
# Count detected boxes per class
boxes_per_class = np.bincount(stats[2].astype(np.int64), minlength=num_class)
ap50 = None
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, wap50, map50, map = p.mean(), r.mean(), cal_weighted_ap(ap50), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=num_class) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
print_format = '%20s' + '%11i' * 3 + '%11.3g' * 5 # print format
print(print_format % ('all', seen, nt.sum(), sum(boxes_per_class), mp, mr, wap50, map50, map))
# Print results per class
if (verbose or (num_class < 50 and not is_loaded_model)) and num_class > 1 and len(stats):
for i, c in enumerate(ap_class):
print(print_format % (names[c], num_per_class[i], nt[c],
boxes_per_class[i], p[i], r[i], ap50[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1E3 for x in dt)
if not is_loaded_model:
shape = (batch_size, 3, img_size, img_size)
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
callbacks.run('on_val_end')
# Return results
model.float()
if not is_loaded_model:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {colorstr('bold', save_dir)}{s}")
maps = np.zeros(num_class) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, wap50, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def parser():
args = argparse.ArgumentParser(prog='val.py')
args.add_argument('--data', type=str, default='config/data_cfg.yaml', help='dataset.yaml path')
args.add_argument('--weights', type=str, help='specify your weight path', required=True)
args.add_argument('--task', help='train, val, test', required=True)
args.add_argument('--name', help='save to project/name', required=True)
args.add_argument('--batch-size', type=int, default=64, help='batch size')
args.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
args = args.parse_args()
args.img_size = 640
args.conf_threshold = 0.001
args.iou_threshold = 0.6
args.augment = False
args.exist_ok = False
args.half = False
args.project = 'results/evaluate/' + args.task
args.save_conf = False
args.save_hybrid = False
args.save_txt = False
args.verbose = False
args.plots = True
args.save_txt |= args.save_hybrid
args.data = check_yaml(args.data)
return args
def main(args):
set_logging()
print(colorstr('val: ') + ', '.join(f'{k}={v}' for k, v in vars(args).items()))
if args.task in ('train', 'val', 'test'): # run normally
run(**vars(args))
if __name__ == "__main__":
main(parser())