forked from fsoft-ailab/Data-Competition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
186 lines (155 loc) · 7.91 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import sys
from pathlib import Path
import cv2
import torch
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, check_requirements, colorstr, is_ascii, \
non_max_suppression, scale_coords, xyxy2xywh, set_logging, increment_path, \
save_one_box
from utils.plots import Annotator, colors
from utils.torch_utils import select_device, time_sync
FILE = Path(__file__).resolve()
sys.path.append(FILE.parents[0].as_posix())
@torch.no_grad()
def run(weights, # model.pt path(s)
source, # file/dir
img_size, # inference size (pixels)
conf_threshold, # confidence threshold
iou_threshold, # NMS IOU threshold
max_det, # maximum detections per image
device, # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img, # show results
save_txt, # save results to *.txt
save_conf, # save confidences in --save-txt labels
save_crop, # save cropped prediction boxes
nosave, # do not save images
classes, # filter by class: --class 0, or --class 0 2 3
agnostic_nms, # class-agnostic NMS
augment, # augmented inference
visualize, # visualize features
dir, # save results to results/detect/
exist_ok, # existing results/detect/ ok, do not increment
line_thickness, # bounding box thickness (pixels)
hide_labels, # hide labels
hide_conf, # hide confidences
half, # use FP16 half-precision inference
):
save_img = not nosave and not source.endswith('.txt') # save inference images
# Directories
save_dir = increment_path(Path(dir), exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(device)
half &= device.type != 'cpu' # half precision only supported on CUDA
# Load model
w = weights[0] if isinstance(weights, list) else weights
suffix = Path(w).suffix.lower()
assert suffix == ".pt"
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16
img_size = check_img_size(img_size, s=stride) # check image size
ascii = is_ascii(names) # names are ascii (use PIL for UTF-8)
# Dataloader
dataset = LoadImages(source, img_size=img_size, stride=stride, auto=True)
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, *img_size).to(device).type_as(next(model.parameters()))) # run once
dt, seen = [0.0, 0.0, 0.0], 0
for path, img, im0s, _ in dataset:
t1 = time_sync()
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(img, augment=augment, visualize=visualize)[0]
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_threshold, iou_threshold, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, pil=not ascii)
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
# Print time (inference-only)
print(f'{s}Done. ({t3 - t2:.3f}s)')
im0 = annotator.result()
# Save results (image with detections)
if save_img:
cv2.imwrite(save_path, im0)
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *img_size)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}")
def parser():
args = argparse.ArgumentParser()
args.add_argument('--weights', type=str, help='specify your weight path', required=True)
args.add_argument('--source', type=str, help='folder contain image', required=True)
args.add_argument('--dir',type=str, help='save results to dir', required=True)
args.add_argument('--conf-threshold', type=float, default=0.25, help='confidence threshold')
args.add_argument('--iou-threshold', type=float, default=0.6, help='NMS IoU threshold')
args.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
args.add_argument('--save-txt', action='store_true', help='save results to *.txt')
args.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
args.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
args.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
args.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
args.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
args = args.parse_args()
args.agnostic_nms = False
args.augment = False
args.classes = None
args.exist_ok = False
args.img_size = [640, 640]
args.nosave = False
args.view_img = False
args.visualize = False
args.max_det = 1000
args.line_thickness = 2
return args
def main(opt):
print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
main(parser())