-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_dpir_deblocking_grayscale.py
163 lines (127 loc) · 6.39 KB
/
main_dpir_deblocking_grayscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os.path
import logging
import numpy as np
from collections import OrderedDict
import torch
from utils import utils_logger
from utils import utils_image as util
import cv2
'''
Spyder (Python 3.7)
PyTorch 1.8.1
Windows 10 or Linux
If you have any question, please feel free to contact with me.
Kai Zhang (e-mail: [email protected])
(github: https://github.com/cszn/DPIR)
(github: https://github.com/cszn/KAIR)
by Kai Zhang (06/June/2021)
How to run to get the results in Table 3:
Step 1: download 'classic5' and 'LIVE1' testing dataset from https://github.com/cszn/DnCNN/tree/master/testsets
Step 2: download 'drunet_deblocking_grayscale.pth' model and 'dncnn3.pth' model, and put it into 'model_zoo'
'drunet_deblocking_grayscale.pth': https://drive.google.com/file/d/1ySemeOINvVfraFi_SZxZ93UuV4hMzk8g/view?usp=sharing
'dncnn3.pth': https://drive.google.com/file/d/1wwTFLFbS3AWowuNbe1XsEd_VCa2kof5I/view?usp=sharing
'''
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
model_name = 'drunet'
quality_factors = [10, 20, 30, 40]
testset_name = 'classic5' # test set, 'classic5' | 'LIVE1'
need_degradation = True # default: True
task_current = 'db' # 'db' for JPEG image deblocking
model_pool = 'model_zoo' # fixed
testsets = 'testsets' # fixed
results = 'results' # fixed
result_name = testset_name + '_' + model_name + '_' + task_current
border = 0 # shave boader to calculate PSNR and SSIM
# ----------------------------------------
# L_path, E_path, H_path
# ----------------------------------------
L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images
E_path = os.path.join(results, result_name) # E_path, for Estimated images
util.mkdir(E_path)
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
if model_name == 'dncnn3':
model_path = os.path.join(model_pool, model_name+'.pth')
from models.network_dncnn import DnCNN as net
model = net(in_nc=1, out_nc=1, nc=64, nb=20, act_mode='R')
model_path = os.path.join('model_zoo', 'dncnn3.pth')
else:
model_name = 'drunet'
model_path = os.path.join('model_zoo', 'drunet_deblocking_grayscale.pth')
from models.network_unet import UNetRes as net
model = net(in_nc=2, out_nc=1, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode='strideconv', upsample_mode='convtranspose', bias=False)
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('Params number: {}'.format(number_parameters))
L_paths = util.get_image_paths(L_path)
for quality_factor in quality_factors:
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
logger.info('model_name:{}, quality factor:{}'.format(model_name, quality_factor))
for idx, img in enumerate(L_paths):
# ------------------------------------
# (1) img_L
# ------------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
img_L = cv2.imread(img, cv2.IMREAD_UNCHANGED) # BGR or G
grayscale = True if img_L.ndim == 2 else False
if not grayscale:
img_L = cv2.cvtColor(img_L, cv2.COLOR_BGR2RGB) # RGB
img_L_ycbcr = util.rgb2ycbcr(img_L, only_y=False)
img_L = img_L_ycbcr[..., 0] # we operate on Y channel for color images
img_H = img_L.copy()
# ------------------------------------
# Do the JPEG compression
# ------------------------------------
if need_degradation:
result, encimg = cv2.imencode('.jpg', img_L, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img_L = cv2.imdecode(encimg, 0)
img_L = util.uint2tensor4(img_L[..., np.newaxis])
if model_name == 'drunet':
noise_level = (100-quality_factor)/100.0
noise_level = torch.FloatTensor([noise_level])
noise_level_map = torch.ones((1,1, img_L.shape[2], img_L.shape[3])).mul_(noise_level).float()
img_L = torch.cat((img_L, noise_level_map), 1)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
img_E = model(img_L)
img_E = util.tensor2uint(img_E)
if need_degradation:
# --------------------------------
# PSNR and SSIM
# --------------------------------
psnr = util.calculate_psnr(img_E, img_H, border=border)
ssim = util.calculate_ssim(img_E, img_H, border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim))
util.imsave(img_E, os.path.join(E_path, img_name+'_'+model_name+'_'+str(quality_factor)+'.png'))
if not grayscale:
img_L_ycbcr[..., 0] = img_E
img_E_rgb = util.ycbcr2rgb(img_L_ycbcr)
util.imsave(img_E_rgb, os.path.join(E_path, img_name+'_'+model_name+'_'+str(quality_factor)+'_rgb.png'))
if need_degradation:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
logger.info('Average PSNR/SSIM(RGB) - {} - qf{} --PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, quality_factor, ave_psnr, ave_ssim))
if __name__ == '__main__':
main()