-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsmorlet.m
executable file
·98 lines (81 loc) · 2.17 KB
/
smorlet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
% Generates 2D real and imaginary Morlet wavelet kernels
%
% MORLET WAVELET (according to Wikipedia, as of Aug 16 2012)
% The Morlet wavelet (or Gabor wavelet) is a wavelet
% composed of a complex exponential (carrier) multiplied by
% a Gaussian window (envelope).
% This wavelet is closely related to human perception,
% both hearing and vision.
%
% USAGE
% [mr,mi] = smorlet(stretch,scale,orientation,npeaks);
%
% RETURNS
% mr: real part of kernel (in the range [-1,1])
% mi: imaginary part of kernel (in the range [-1,1])
%
% PARAMETERS
% stretch: controls how stretched is the wavelet
% typical values: 1,2,...,10
% scale: controls the size of the kernel
% typical values: 1,2,...,20
% orientation: angle of rotation, in degrees
% typical values: anything in the range [0,360)
% npeaks: rough number of significant peaks appearing in the kernel
% typical values: 1,2,...,10
%
% EXAMPLE
% scale = 20;
% orientation = 45;
% npeaks = 3;
% stretch = 3;
%
% [mr,mi] = smorlet(stretch,scale,orientation,npeaks);
%
% mr = mr-min(min(mr));
% mr = mr/max(max(mr));
% imshow(mr)
%
% mi = mi-min(min(mi));
% mi = mi/max(max(mi));
% figure
% imshow(mi)
%
% VERSION
% 1.0, Mar 26 2013
%
% AUTHOR
% Marcelo Cicconet, New York University
% marceloc.net
function [mr,mi] = smorlet(stretch,scale,orientation,npeaks)
% controls width of gaussian window (default: scale)
sigma = scale;
% orientation (in radians)
theta = -(orientation-90)/360*2*pi;
% controls elongation in direction perpendicular to wave
gamma = 1/(1+stretch);
% width and height of kernel
support = ceil(2.5*sigma/gamma);
% wavelength (default: 4*sigma)
lambda = 1/npeaks*4*sigma;
% phase offset (in radians)
psi = 0;
xmin = -support;
xmax = -xmin;
ymin = xmin;
ymax = xmax;
xdomain = xmin:xmax;
ydomain = ymin:ymax;
[x,y] = meshgrid(xdomain,ydomain);
xprime = cos(theta)*x+sin(theta)*y;
yprime = -sin(theta)*x+cos(theta)*y;
expf = exp(-0.5/sigma^2*(xprime.^2+gamma^2*yprime.^2));
mr = expf.*cos(2*pi/lambda*xprime+psi);
mi = expf.*sin(2*pi/lambda*xprime+psi);
% mean = 0
mr = mr-sum(sum(mr))/numel(mr);
mi = mi-sum(sum(mi))/numel(mi);
% norm = 1
mr = mr./sqrt(sum(sum(mr.*mr)));
mi = mi./sqrt(sum(sum(mi.*mi)));
end