-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_feature_extraction.py
169 lines (122 loc) · 5.65 KB
/
create_feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from torch.utils.data import Dataset, DataLoader
import torch, os, h5py
import torchvision.transforms as transforms
import pandas as pd
import openslide, argparse
import numpy as np
import pickle
parser = argparse.ArgumentParser(description='seg and patch')
parser.add_argument("--vlm_model", type = str, default="quilt1m", choices=["quilt1m", "plip", "clip"],
help="vlm_model")
parser.add_argument('--label_fp', type = str, default="/home/r10user13/TOP/data/datasets/LUNG/subtyping_label.csv",
help='file path for label file')
parser.add_argument('--batch_size', type = int, default=32,
help='batch_size')
parser.add_argument('--num_workers', type = int, default=32,
help='num_workers')
parser.add_argument('--save_rp', type = str, default="/data2/r10user13/",
help='')
parser.add_argument('--base_mag', type = int, default=20,
help='')
parser.add_argument('--base_patch_size', type = int, default=448,
help='')
# seg_patches_fp_path = "/home/r10user13/Capstone/TOP/experiment/LUNG/seg_patches_fp.csv"
# label_path = "/home/r10user13/Capstone/TOP/experiment/LUNG/label.csv"
class TOPDataset(Dataset):
def __init__(self, coords, slide, patch_level, transform, patch_size):
self.slide = slide
self.patch_level = patch_level
self.coords = coords
self.transform = transform
self.patch_size = patch_size
def __len__(self):
return len(self.coords)
def __getitem__(self, idx):
coord = self.coords[idx]
img = self.slide.read_region(coord, self.patch_level, (self.patch_size, self.patch_size)).convert('RGB')
img = img.resize((224,224))
return self.transform(img)
if __name__ == "__main__":
args = parser.parse_args()
data = {}
df_seg_fp = pd.read_csv(args.label_fp)
# top_transform = transforms.ToTensor()
# top_transform = transforms.Compose([
# # transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ]),
# device = torch.device("cpu")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vlm_model = args.vlm_model
if vlm_model == "clip":
from clip import clip
clip_model, preprocess = clip.load('ViT-B/16', device=device)
model = clip_model.visual
elif vlm_model == "plip":
from clip import clip
from transformers import CLIPModel, CLIPProcessor
_, preprocess = clip.load('ViT-B/16', device=device)
clip_model = CLIPModel.from_pretrained("vinid/plip").to(device)
model = clip_model
elif vlm_model == "quilt1m":
import open_clip
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:wisdomik/QuiltNet-B-32')
clip_model = clip_model.to(device)
model = clip_model.visual
model.eval()
# transform = transforms.ToTensor()
l,_ = df_seg_fp.shape
i = 0
batch_size = args.batch_size
for row in df_seg_fp.itertuples(index=True, name='Pandas'):
# print(row.Index, row.A, row.B)
file_path, wsi_path = row.seg_fp, row.slide_fp
patch_size = int(file_path.split("/")[-3].split("_")[-1])
# print(file_path, patch_size)
wsi_name = wsi_path.split("/")[-1].replace(".svs","")
dataset_name = args.label_fp.split("/")[-2].lower()
save_rp_ = os.path.join(args.save_rp, f"{dataset_name}_{args.vlm_model}_{args.base_mag}x_{args.base_patch_size}")
if not os.path.exists(save_rp_):
os.makedirs(save_rp_)
out_fp = os.path.join(save_rp_, f'{wsi_name}.pkl')
if os.path.exists(out_fp):
continue
else:
# print("no jump")
try:
data = {}
print(f"process: {wsi_path}")
patch_size = int(file_path.split("/")[-3].split("_")[-1])
slide = openslide.open_slide(wsi_path)
h5_content = h5py.File(file_path,'r')
patch_level = h5_content["coords"].attrs['patch_level']
coords = h5_content["coords"][:]
dataset = TOPDataset(
coords, slide, patch_level, preprocess, patch_size
)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=args.num_workers)
output = []
for image in data_loader:
input = image.to(device)
with torch.no_grad():
if vlm_model == "plip":
out = model.visual_projection(model.vision_model(input).pooler_output)
elif vlm_model == "clip":
# print("before clip output")
out = model(input.type(clip_model.dtype))
# print("after clip output")
else:
# print("before output")
out = model(input)
# print("after output")
output.append(out.cpu().detach().numpy())
data["data"] = np.concatenate(output, axis=0)
slide.close()
with open(out_fp, 'wb') as file:
pickle.dump(data, file)
except:
print(f"{wsi_name} is not normal")
i+=1
print(f"{vlm_model} complete: {i}/{l}")
# break