diff --git a/hera_pspec/pspecdata.py b/hera_pspec/pspecdata.py index 7bc37017..6aca712c 100644 --- a/hera_pspec/pspecdata.py +++ b/hera_pspec/pspecdata.py @@ -551,10 +551,10 @@ def set_C(self, cov): ---------- cov : dict Covariance keys and ndarrays. - The key should conform to + The key should conform to (dset_pair_index, blpair_int, model, time_index, conj_1, conj_2). e.g. ((0, 1), ((25,37,"xx"), (25, 37, "xx")), 'empirical', False, True) - while the ndarrays should have shape (spw_Nfreqs, spw_Nfreqs) + while the ndarrays should have shape (spw_Nfreqs, spw_Nfreqs) """ self.clear_cache(cov.keys()) for key in cov: self._C[key] = cov[key] @@ -567,7 +567,7 @@ def get_spw(self, include_extension=False): ---------- include_extension : bool If True, include self.filter_extension in spw_range - + Returns ------- spectral_window : tuple @@ -585,7 +585,7 @@ def C_model(self, key, model='empirical', time_index=None, known_cov=None, inclu """ Return a covariance model having specified a key and model type. Note: Time-dependent flags that differ from frequency channel-to-channel - can create spurious spectral structure. Consider factorizing the flags with + can create spurious spectral structure. Consider factorizing the flags with self.broadcast_dset_flags() before using model='empirical'. Parameters @@ -596,18 +596,18 @@ def C_model(self, key, model='empirical', time_index=None, known_cov=None, inclu subsequent indices specify the baseline index, in _key2inds format. model : string, optional - Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos', + Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos', (other model names in known_cov)] How the covariances of the input data should be estimated. In 'dsets' mode, error bars are estimated from user-provided - per baseline and per channel standard deivations. + per baseline and per channel standard deivations. If 'empirical' is set, then error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these - frequency-domain covariances. + frequency-domain covariances. If 'autos' is set, the covariances of the input data - over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth - and integration time. + over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth + and integration time. time_index : integer, compute covariance at specific time-step in dset supported if mode == 'dsets' or 'autos' @@ -641,7 +641,7 @@ def C_model(self, key, model='empirical', time_index=None, known_cov=None, inclu # add model to key Ckey = ((dset, dset), (bl,bl), ) + (model, time_index, False, True,) - # Check if Ckey exists in known_cov. If so, just update self._C[Ckey] with known_cov. + # Check if Ckey exists in known_cov. If so, just update self._C[Ckey] with known_cov. if known_cov is not None: if Ckey in known_cov.keys(): spw = slice(*self.get_spw(include_extension=include_extension)) @@ -660,7 +660,7 @@ def C_model(self, key, model='empirical', time_index=None, known_cov=None, inclu self.set_C({Ckey: np.diag(utils.variance_from_auto_correlations(self.dsets[dset], bl, spw_range, time_index))}) else: raise ValueError("didn't recognize Ckey {}".format(Ckey)) - + return self._C[Ckey] def cross_covar_model(self, key1, key2, model='empirical', @@ -668,7 +668,7 @@ def cross_covar_model(self, key1, key2, model='empirical', """ Return a covariance model having specified a key and model type. Note: Time-dependent flags that differ from frequency channel-to-channel - can create spurious spectral structure. Consider factorizing the flags + can create spurious spectral structure. Consider factorizing the flags with self.broadcast_dset_flags() before using model='time_average'. Parameters @@ -679,20 +679,20 @@ def cross_covar_model(self, key1, key2, model='empirical', subsequent indices specify the baseline index, in _key2inds format. model : string, optional - Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos', + Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos', (other model names in known_cov)] How the covariances of the input data should be estimated. In 'dsets' mode, error bars are estimated from user-provided - per baseline and per channel standard deivations. + per baseline and per channel standard deivations. If 'empirical' is set, then error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these - frequency-domain covariances. + frequency-domain covariances. If 'autos' is set, the covariances of the input data - over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth - and integration time. + over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth + and integration time. - time_index : integer, compute covariance at specific time-step + time_index : integer, compute covariance at specific time-step conj_1 : boolean, optional Whether to conjugate first copy of data in covar or not. @@ -703,10 +703,10 @@ def cross_covar_model(self, key1, key2, model='empirical', Default: True known_cov : dicts of covariance matrices - Covariance matrices that are imported from a outer dict instead of - using data stored or calculated inside the PSpecData object. - known_cov could be initialized when using PSpecData.pspec() method. - See PSpecData.pspec() for more details. + Covariance matrices that are imported from a outer dict instead of + using data stored or calculated inside the PSpecData object. + known_cov could be initialized when using PSpecData.pspec() method. + See PSpecData.pspec() for more details. include_extension : bool (optional) default=False @@ -732,9 +732,9 @@ def cross_covar_model(self, key1, key2, model='empirical', self.x(key2, include_extension=include_extension), self.w(key2, include_extension=include_extension), conj_1=conj_1, conj_2=conj_2) if model in ['dsets','autos']: - covar = np.zeros((np.diff(self.get_spw(include_extension=include_extension))[0], + covar = np.zeros((np.diff(self.get_spw(include_extension=include_extension))[0], np.diff(self.get_spw(include_extension=include_extension))[0]), dtype=np.float64) - # Check if model exists in known_cov. If so, just overwrite covar with known_cov. + # Check if model exists in known_cov. If so, just overwrite covar with known_cov. if known_cov is not None: Ckey = ((dset1, dset2), (bl1,bl2), ) + (model, time_index, conj_1, conj_2,) if Ckey in known_cov.keys(): @@ -786,14 +786,14 @@ def iC(self, key, model='empirical', time_index=None): Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos'] How the covariances of the input data should be estimated. In 'dsets' mode, error bars are estimated from user-provided - per baseline and per channel standard deivations. + per baseline and per channel standard deivations. If 'empirical' is set, then error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these - frequency-domain covariances. + frequency-domain covariances. If 'autos' is set, the covariances of the input data - over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth - and integration time. + over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth + and integration time. time_index : integer, compute covariance at specific time-step @@ -1171,14 +1171,14 @@ def cov_q_hat(self, key1, key2, model='empirical', exact_norm=False, pol=False, Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos'] How the covariances of the input data should be estimated. In 'dsets' mode, error bars are estimated from user-provided - per baseline and per channel standard deivations. + per baseline and per channel standard deivations. If 'empirical' is set, then error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these - frequency-domain covariances. + frequency-domain covariances. If 'autos' is set, the covariances of the input data - over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth - and integration time. + over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth + and integration time. time_indices: list of indices of times to include or just a single time. default is None -> compute covariance for all times. @@ -1663,16 +1663,16 @@ def get_unnormed_V(self, key1, key2, model='empirical', exact_norm=False, pol=Fa Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos'] How the covariances of the input data should be estimated. In 'dsets' mode, error bars are estimated from user-provided - per baseline and per channel standard deivations. + per baseline and per channel standard deivations. If 'empirical' is set, then error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these - frequency-domain covariances. + frequency-domain covariances. If 'autos' is set, the covariances of the input data - over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth - and integration time. + over a baseline is estimated from the autocorrelations of the two antennas over channel bandwidth + and integration time. - time_index : integer, compute covariance at specific time-step + time_index : integer, compute covariance at specific time-step Returns ------- @@ -1786,33 +1786,33 @@ def get_analytic_covariance(self, key1, key2, M=None, exact_norm=False, pol=Fals Used only if exact_norm is True. model : string, optional - Type of covariance model to use. if not cached. Options=['empirical', 'dsets', 'autos', 'foreground_dependent', + Type of covariance model to use. if not cached. Options=['empirical', 'dsets', 'autos', 'foreground_dependent', (other model names in known_cov)] In 'dsets' mode, error bars are estimated from user-provided - per baseline and per channel standard deivations. In 'empirical' mode, + per baseline and per channel standard deivations. In 'empirical' mode, error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these frequency-domain covariances. In 'autos' mode, the covariances of the input data over a baseline is estimated from the autocorrelations of the two antennas forming the baseline - across channel bandwidth and integration time. + across channel bandwidth and integration time. In 'foreground_dependent' mode, it involves using auto-correlation amplitudes to model the input noise covariance - and visibility outer products to model the input systematics covariance. - + and visibility outer products to model the input systematics covariance. + ############ When model is chosen as "autos" or "dsets", only C^{11} and C^{22} are accepted as non-zero values, - and the two matrices are also expected to be diagonal, - thus only - = tr[ E^{12,a} C^{22} E^{21,b} C^{11} ] exists + and the two matrices are also expected to be diagonal, + thus only - = tr[ E^{12,a} C^{22} E^{21,b} C^{11} ] exists in the covariance terms of q vectors. When model is chosen as 'foreground_dependent', we further include the signal-noise coupling term besides the noise in the output covariance. Still only - is non-zero, - while it takes a form of tr[ E^{12,a} Cn^{22} E^{21,b} Cn^{11} + - E^{12,a} Cs^{22} E^{21,b} Cn^{11} + + while it takes a form of tr[ E^{12,a} Cn^{22} E^{21,b} Cn^{11} + + E^{12,a} Cs^{22} E^{21,b} Cn^{11} + E^{12,a} Cn^{22} E^{21,b} Cs^{11} ], - where Cn is just Cautos, the input noise covariance estimated by the auto-correlation amplitudes (by calling C_model(model='autos')), and + where Cn is just Cautos, the input noise covariance estimated by the auto-correlation amplitudes (by calling C_model(model='autos')), and Cs uses the outer product of input visibilities to model the covariance on systematics. To construct a symmetric and unbiased covariance matrix, we choose - Cs^{11}_{ij} = Cs^{22}_{ij} = 1/2 * [ x1_i x2_j^{*} + x2_i x1_j^{*} ], which preserves the property Cs_{ij}^* = Cs_{ji}. + Cs^{11}_{ij} = Cs^{22}_{ij} = 1/2 * [ x1_i x2_j^{*} + x2_i x1_j^{*} ], which preserves the property Cs_{ij}^* = Cs_{ji}. ############# known_cov : dicts of covariance matrices @@ -1836,11 +1836,11 @@ def get_analytic_covariance(self, key1, key2, M=None, exact_norm=False, pol=Fals einstein_path_2 = np.einsum_path('ab,cd,bd->ac', M[0], M[0], M[0], optimize='optimal')[0] # check if the covariance matrix is uniform along the time axis. If so, we just calculate the result for one timestamp and duplicate its copies - # along the time axis. + # along the time axis. check_uniform_input = False if model != 'foreground_dependent': # When model is 'foreground_dependent', since we are processing the outer products of visibilities from different times, - # we are expected to have time-dependent inputs, thus check_uniform_input is always set to be False here. + # we are expected to have time-dependent inputs, thus check_uniform_input is always set to be False here. C11_first = self.C_model(key1, model=model, known_cov=known_cov, time_index=0) C11_last = self.C_model(key1, model=model, known_cov=known_cov, time_index=self.dsets[0].Ntimes-1) if np.isclose(C11_first, C11_last).all(): @@ -1851,23 +1851,23 @@ def get_analytic_covariance(self, key1, key2, M=None, exact_norm=False, pol=Fals if model in ['dsets','autos']: # calculate - = tr[ E^{12,a} C^{22} E^{21,b} C^{11} ] # We have used tr[A D_1 B D_2] = \sum_{ijkm} A_{ij} d_{1j} \delta_{jk} B_{km} d_{2m} \delta_{mi} = \sum_{ik} [A_{ik}*d_{1k}] * [B_{ki}*d_{2i}] - # to simplify the computation. + # to simplify the computation. C11 = self.C_model(key1, model=model, known_cov=known_cov, time_index=time_index) C22 = self.C_model(key2, model=model, known_cov=known_cov, time_index=time_index) E21C11 = np.multiply(np.transpose(E_matrices.conj(), (0,2,1)), np.diag(C11)) E12C22 = np.multiply(E_matrices, np.diag(C22)) # Get q_q, q_qdagger, qdagger_qdagger q_q, qdagger_qdagger = 0.+1.j*0, 0.+1.j*0 - q_qdagger = np.einsum('bij, cji->bc', E12C22, E21C11, optimize=einstein_path_0) + q_qdagger = np.einsum('bij, cji->bc', E12C22, E21C11, optimize=einstein_path_0) elif model == 'foreground_dependent': - # calculate tr[ E^{12,b} Cautos^{22} E^{21,c} Cautos^{11} + - # E^{12,b} Cs E^{21,c} Cautos^{11} + - # E^{12,b} Cautos^{22} E^{21,c} Cs ], - # and we take Cs_{ij} = 1/2 * [ x1_i x2_j^{*} + x2_i x1_j^{*} ]. + # calculate tr[ E^{12,b} Cautos^{22} E^{21,c} Cautos^{11} + + # E^{12,b} Cs E^{21,c} Cautos^{11} + + # E^{12,b} Cautos^{22} E^{21,c} Cs ], + # and we take Cs_{ij} = 1/2 * [ x1_i x2_j^{*} + x2_i x1_j^{*} ]. # For terms like E^{12,b} Cs E^{21,c} Cautos^{11}, # we have used tr[A u u*^t B D_2] = \sum_{ijkm} A_{ij} u_j u*_k B_{km} D_{2mi} \\ # = \sum_{i} [ \sum_j A_{ij} u_j ] * [\sum_k u*_k B_{ki} ] * d_{2i} - # to simplify the computation. + # to simplify the computation. C11_autos = self.C_model(key1, model='autos', known_cov=known_cov, time_index=time_index) C22_autos = self.C_model(key2, model='autos', known_cov=known_cov, time_index=time_index) E21C11_autos = np.multiply(np.transpose(E_matrices.conj(), (0,2,1)), np.diag(C11_autos)) @@ -1890,7 +1890,7 @@ def get_analytic_covariance(self, key1, key2, M=None, exact_norm=False, pol=Fals # Apply zero clipping on the columns and rows containing negative diagonal elements SN_cov[np.real(np.diag(SN_cov))<=0., :] = 0. + 1.j*0 SN_cov[:, np.real(np.diag(SN_cov))<=0.,] = 0. + 1.j*0 - q_qdagger += SN_cov + q_qdagger += SN_cov else: # for general case (which is the slowest without simplification) C11 = self.C_model(key1, model=model, known_cov=known_cov, time_index=time_index) @@ -1910,35 +1910,35 @@ def get_analytic_covariance(self, key1, key2, M=None, exact_norm=False, pol=Fals E12P22 = np.matmul(E_matrices, P22) E21starS11 = np.matmul(np.transpose(E_matrices, (0,2,1)), S11) q_q = np.einsum('bij, cji->bc', E12P22, E21starS11, optimize=einstein_path_0) - if np.isclose(C21, 0).all(): + if np.isclose(C21, 0).all(): q_q += 0.+1.j*0 else: E12C21 = np.matmul(E_matrices, C21) q_q += np.einsum('bij, cji->bc', E12C21, E12C21, optimize=einstein_path_0) E21C11 = np.matmul(np.transpose(E_matrices.conj(), (0,2,1)), C11) E12C22 = np.matmul(E_matrices, C22) - q_qdagger = np.einsum('bij, cji->bc', E12C22, E21C11, optimize=einstein_path_0) + q_qdagger = np.einsum('bij, cji->bc', E12C22, E21C11, optimize=einstein_path_0) if np.isclose(P21, 0).all() or np.isclose(S21,0).all(): q_qdagger += 0.+1.j*0 else: E12P21 = np.matmul(E_matrices, P21) E12starS21 = np.matmul(E_matrices.conj(), S21) q_qdagger += np.einsum('bij, cji->bc', E12P21, E12starS21, optimize=einstein_path_0) - if np.isclose(C12, 0).all(): + if np.isclose(C12, 0).all(): qdagger_qdagger = 0.+1.j*0 else: E21C12 = np.matmul(np.transpose(E_matrices.conj(), (0,2,1)), C12) - qdagger_qdagger = np.einsum('bij, cji->bc', E21C12, E21C12, optimize=einstein_path_0) + qdagger_qdagger = np.einsum('bij, cji->bc', E21C12, E21C12, optimize=einstein_path_0) if np.isclose(P11, 0).all() or np.isclose(S22,0).all(): qdagger_qdagger += 0.+1.j*0 else: E21P11 = np.matmul(np.transpose(E_matrices.conj(), (0,2,1)), P11) - E12starS22 = np.matmul(E_matrices.conj(), S22) + E12starS22 = np.matmul(E_matrices.conj(), S22) qdagger_qdagger += np.einsum('bij, cji->bc', E21P11, E12starS22, optimize=einstein_path_0) cov_q_real_temp = (q_q + qdagger_qdagger + q_qdagger + q_qdagger.conj() ) / 4. cov_q_imag_temp = -(q_q + qdagger_qdagger - q_qdagger - q_qdagger.conj() ) / 4. - + m = M[time_index] # calculate \sum_{bd} [ M_{ab} M_{cd} ( - ) ] if np.isclose([q_q], 0).all(): @@ -1968,7 +1968,7 @@ def get_analytic_covariance(self, key1, key2, M=None, exact_norm=False, pol=Fals if check_uniform_input: # if the covariance matrix is uniform along the time axis, we just calculate the result for one timestamp and duplicate its copies - # along the time axis. + # along the time axis. cov_q_real.extend([cov_q_real_temp]*self.dsets[0].Ntimes) cov_q_imag.extend([cov_q_imag_temp]*self.dsets[0].Ntimes) cov_p_real.extend([cov_p_real_temp]*self.dsets[0].Ntimes) @@ -2019,20 +2019,20 @@ def get_MW(self, G, H, mode='I', band_covar=None, exact_norm=False, rcond=1e-15) ---------- G : array_like Denominator matrix for the bandpowers, with dimensions (Nfreqs, Nfreqs). - + H : array_like Response matrix for the bandpowers, with dimensions (Nfreqs, Nfreqs). - + mode : str, optional Definition to use for M. Must be one of the options listed above. Default: 'I'. - + band_covar : array_like, optional Covariance matrix of the unnormalized bandpowers (i.e., q). Used only if requesting the V^-1/2 normalization. Use get_unnormed_V to get the covariance to put in here, or provide your own array. Default: None - + exact_norm : boolean, optional Exact normalization (see HERA memo #44, Eq. 11 and documentation of q_hat for details). Currently, this is supported only for mode I @@ -2045,7 +2045,7 @@ def get_MW(self, G, H, mode='I', band_covar=None, exact_norm=False, rcond=1e-15) M : array_like Normalization matrix, M. (If G was passed in as a dict, a dict of array_like will be returned.) - + W : array_like Window function matrix, W. (If G was passed in as a dict, a dict of array_like will be returned.) @@ -2771,15 +2771,15 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, in the UVPSpec object. store_cov_diag : bool, optional - If True, store the square root of the diagonal of the output covariance matrix - calculated by using get_analytic_covariance(). The error bars will + If True, store the square root of the diagonal of the output covariance matrix + calculated by using get_analytic_covariance(). The error bars will be stored in the form of: sqrt(diag(cov_array_real)) + 1.j*sqrt(diag(cov_array_imag)). It's a way to save the disk space since the whole cov_array data with a size of Ndlys x Ndlys x Ntimes x Nblpairs x Nspws - is too large. + is too large. return_q : bool, optional - If True, return the results (delay spectra and covariance - matrices) for the unnormalized bandpowers in the UVPSpec object. + If True, return the results (delay spectra and covariance + matrices) for the unnormalized bandpowers in the UVPSpec object. store_window : bool, optional If True, store the window function of the bandpowers. @@ -2788,28 +2788,28 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, cov_model : string, optional Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos', 'foreground_dependent', (other model names in known_cov)] - In 'dsets' mode, error bars are estimated from user-provided per baseline and per channel standard deivations. + In 'dsets' mode, error bars are estimated from user-provided per baseline and per channel standard deivations. In 'empirical' mode, error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these - frequency-domain covariances. + frequency-domain covariances. In 'autos' mode, the covariances of the input data over a baseline is estimated from the autocorrelations of the two antennas forming the baseline - across channel bandwidth and integration time. + across channel bandwidth and integration time. In 'foreground_dependent' mode, it involves using auto-correlation amplitudes to model the input noise covariance - and visibility outer products to model the input systematics covariance. + and visibility outer products to model the input systematics covariance. For more details see ds.get_analytic_covariance(). known_cov : dicts of input covariance matrices - known_cov has a type {Ckey:covariance}, which is the same with - ds._C. The matrices stored in known_cov are constructed - outside the PSpecData object, different from those in ds._C which are constructed - internally. - The Ckey should conform to + known_cov has a type {Ckey:covariance}, which is the same with + ds._C. The matrices stored in known_cov are constructed + outside the PSpecData object, different from those in ds._C which are constructed + internally. + The Ckey should conform to (dset_pair_index, blpair_int, model, time_index, conj_1, conj_2), e.g. ((0, 1), ((25,37,"xx"), (25, 37, "xx")), 'empirical', False, True), while covariance are ndarrays with shape (Nfreqs, Nfreqs). - Also see PSpecData.set_C() for more details. + Also see PSpecData.set_C() for more details. verbose : bool, optional If True, print progress, warnings and debugging info to stdout. @@ -2842,7 +2842,7 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, Returns ------- uvp : UVPSpec object - Instance of UVPSpec that holds the normalized output power spectrum + Instance of UVPSpec that holds the normalized output power spectrum data. Examples @@ -2979,7 +2979,7 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, if store_cov_diag and store_cov: store_cov = False # Only store diagnonal parts of the cov_array to save the disk space if store_cov_diag==True, - # no matter what the initial choice for store_cov. + # no matter what the initial choice for store_cov. # setup polarization selection if isinstance(pols, (tuple, str)): pols = [pols] @@ -3204,12 +3204,12 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, if store_cov or store_cov_diag: if verbose: print(" Building q_hat covariance...") cov_q_real, cov_q_imag, cov_real, cov_imag \ - = self.get_analytic_covariance(key1, key2, Mv, + = self.get_analytic_covariance(key1, key2, Mv, exact_norm=exact_norm, pol=pol, - model=cov_model, + model=cov_model, known_cov=known_cov, ) - + if self.primary_beam != None: cov_real = cov_real * (scalar)**2. cov_imag = cov_imag * (scalar)**2. @@ -3221,8 +3221,8 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, else: cov_real = cov_real * np.outer(sa, sa)[None] cov_imag = cov_imag * np.outer(sa, sa)[None] - - if not return_q: + + if not return_q: if store_cov: pol_cov_real.extend(np.real(cov_real).astype(np.float64)) pol_cov_imag.extend(np.real(cov_imag).astype(np.float64)) @@ -3236,9 +3236,10 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, if store_cov_diag: stats = np.sqrt(np.diagonal(np.real(cov_q_real), axis1=1, axis2=2)) + 1.j*np.sqrt(np.diagonal(np.real(cov_q_imag), axis1=1, axis2=2)) pol_stats_array_cov_model.extend(stats) - + # store the window_function - pol_window_function.extend(np.repeat(Wv[np.newaxis,:,:], qv.shape[1], axis=0).astype(np.float64)) + if store_window: + pol_window_function.extend(np.repeat(Wv[np.newaxis,:,:], qv.shape[1], axis=0).astype(np.float64)) # Get baseline keys if isinstance(blp, list): @@ -3312,15 +3313,19 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, spw_wgts = np.moveaxis(np.array(spw_wgts), 0, -1) spw_ints = np.moveaxis(np.array(spw_ints), 0, -1) spw_stats_array_cov_model = np.moveaxis(np.array(spw_stats_array_cov_model), 0, -1) - spw_cov_real = np.moveaxis(np.array(spw_cov_real), 0, -1) - spw_cov_imag = np.moveaxis(np.array(spw_cov_imag), 0, -1) - spw_window_function = np.moveaxis(np.array(spw_window_function), 0, -1) + if store_cov: + spw_cov_real = np.moveaxis(np.array(spw_cov_real), 0, -1) + spw_cov_imag = np.moveaxis(np.array(spw_cov_imag), 0, -1) + if store_window: + spw_window_function = np.moveaxis(np.array(spw_window_function), 0, -1) data_array[i] = spw_data stats_array_cov_model[i] = spw_stats_array_cov_model - cov_array_real[i] = spw_cov_real - cov_array_imag[i] = spw_cov_imag - window_function_array[i] = spw_window_function + if store_cov: + cov_array_real[i] = spw_cov_real + cov_array_imag[i] = spw_cov_imag + if store_window: + window_function_array[i] = spw_window_function wgt_array[i] = spw_wgts integration_array[i] = spw_ints sclr_arr.append(spw_scalar) @@ -3412,7 +3417,7 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, uvp.nsample_array = dict( [ (k, np.ones_like(uvp.integration_array[k], np.float)) for k in uvp.integration_array.keys() ] ) - + if store_cov: uvp.cov_array_real = cov_array_real uvp.cov_array_imag = cov_array_imag @@ -3425,7 +3430,7 @@ def pspec(self, bls1, bls2, dsets, pols, n_dlys=None, # run check uvp.check() - return uvp + return uvp def rephase_to_dset(self, dset_index=0, inplace=True): """ @@ -3743,7 +3748,7 @@ def pspec_run(dsets, filename, dsets_std=None, cals=None, cal_flag=True, degrees. bl_error_tol : float, optional - Baseline vector error tolerance when constructing redundant groups. + Baseline vector error tolerance when constructing redundant groups. Default: 1.0. store_window : bool @@ -3786,24 +3791,24 @@ def pspec_run(dsets, filename, dsets_std=None, cals=None, cal_flag=True, If True, use the beam model provided to convert the units of each dataset from Jy to milli-Kelvin. If the visibility data are not in Jy, this correction is not applied. - + exact_norm : bool, optional If True, estimates power spectrum using Q instead of Q_alt - (HERA memo #44), where q = R_1 x_1 Q R_2 x_2. + (HERA memo #44), where q = R_1 x_1 Q R_2 x_2. The default options is False. Beware that turning this True would take ~ 7 sec for computing power spectrum for 100 channels per time sample per baseline. - + store_cov : boolean, optional If True, solve for covariance between bandpowers and store in output UVPSpec object. store_cov_diag : bool, optional - If True, store the square root of the diagonal of the output covariance matrix - calculated by using get_analytic_covariance(). The error bars will + If True, store the square root of the diagonal of the output covariance matrix + calculated by using get_analytic_covariance(). The error bars will be stored in the form of: sqrt(diag(cov_array_real)) + 1.j*sqrt(diag(cov_array_imag)). It's a way to save the disk space since the whole cov_array data with a size of Ndlys x Ndlys x Ntimes x Nblpairs x Nspws - is too large. + is too large. return_q : bool, optional If True, return the results (delay spectra and covariance matrices) @@ -3815,7 +3820,7 @@ def pspec_run(dsets, filename, dsets_std=None, cals=None, cal_flag=True, are constructed internally. return_q : bool, optional - If True, return the results (delay spectra and covariance matrices) + If True, return the results (delay spectra and covariance matrices) for the unnormalized bandpowers in the separate UVPSpec object. known_cov : dicts of input covariance matrices @@ -3853,16 +3858,16 @@ def pspec_run(dsets, filename, dsets_std=None, cals=None, cal_flag=True, cov_model : string, optional Type of covariance model to calculate, if not cached. Options=['empirical', 'dsets', 'autos', 'foreground_dependent', (other model names in known_cov)] - In 'dsets' mode, error bars are estimated from user-provided per baseline and per channel standard deivations. + In 'dsets' mode, error bars are estimated from user-provided per baseline and per channel standard deivations. In 'empirical' mode, error bars are estimated from the data by averaging the channel-channel covariance of each baseline over time and then applying the appropriate linear transformations to these - frequency-domain covariances. + frequency-domain covariances. In 'autos' mode, the covariances of the input data over a baseline is estimated from the autocorrelations of the two antennas forming the baseline - across channel bandwidth and integration time. + across channel bandwidth and integration time. In 'foreground_dependent' mode, it involves using auto-correlation amplitudes to model the input noise covariance - and visibility outer products to model the input systematics covariance. + and visibility outer products to model the input systematics covariance. For more details see ds.get_analytic_covariance(). Note: if dsets are str and cov_model is autos or fg_dependent, will also load auto correlations. @@ -4087,7 +4092,7 @@ def pspec_run(dsets, filename, dsets_std=None, cals=None, cal_flag=True, exclude_permutations=exclude_permutations, Nblps_per_group=Nblps_per_group, bl_len_range=bl_len_range, - bl_deg_range=bl_deg_range, + bl_deg_range=bl_deg_range, bl_tol=bl_error_tol) bls1_list.append(bls1) bls2_list.append(bls2) @@ -4138,7 +4143,7 @@ def pspec_run(dsets, filename, dsets_std=None, cals=None, cal_flag=True, if verbose: print("Storing {}".format(psname)) psc.set_pspec(group=groupname, psname=psname, pspec=uvp, overwrite=overwrite) - + return ds