diff --git a/hera_cal/frf.py b/hera_cal/frf.py index f63f1a0c1..6cbe8ae42 100644 --- a/hera_cal/frf.py +++ b/hera_cal/frf.py @@ -2152,12 +2152,15 @@ def prep_var_for_frop(data, nsamples, weights, cross_antpairpol, freq_slice, nsamples=nsamples, auto_ant=auto_ant) var = var[:, freq_slice] - # Check all the infs are weighted to zero and replace with default value - all_infs_zero = np.all(weights[cross_antpairpol][:, freq_slice][np.isinf(var)]) == 0 - if not all_infs_zero: - print(f"Not all infinite variance locations are of zero weight!") - - var[np.isinf(var)] = default_value + var_isinf = np.isinf(var) + if np.any(var_isinf): + # Check all the infs are weighted to zero and replace with default value + all_infs_zero = np.all(weights[cross_antpairpol][:, freq_slice][var_isinf]) == 0 + if not all_infs_zero: + warnings.warn("Not all infinite variance locations are of zero weight!") + + print(f"Replacing infinite variances with default value: {default_value}") + var[var_isinf] = default_value return var diff --git a/hera_cal/tests/test_frf.py b/hera_cal/tests/test_frf.py index 72fd60245..eb71ff83f 100644 --- a/hera_cal/tests/test_frf.py +++ b/hera_cal/tests/test_frf.py @@ -19,7 +19,7 @@ from pyuvdata import UVFlag, UVBeam from hera_filters import dspec from .. import utils -from .. import datacontainer, io, frf +from .. import datacontainer, io, frf, noise from ..data import DATA_PATH import warnings @@ -1079,7 +1079,7 @@ def test_get_frop_for_noise(): # Have to get some FRF parameters, but getting realistic ones is cumbersome # This file has ~600s so the resolution is only ~1.7 mHz # Integration time is 10s, so the Nyquist fringe rate is 200 mHz - # This is a short baseline so its fringe-rate profile is underresolved anyway + # This is a short baseline so its fringe-rate profile is living in the first bin or so # Just filter around 0 and see that it's similar to what the pipeline gives filt_cent = 0 filt_hw = 0.005 @@ -1165,6 +1165,48 @@ def test_get_frop_for_noise(): frf_dat = (frop * data[bl]).sum(axis=1) assert np.allclose(frf_dat_pipeline[bl], frf_dat) + +def test_prep_var_for_frop(): + uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") + hd = io.HERAData([uvh5]) + data, flags, nsamples = hd.read() + # The first 37 freqs give 0 variance so just exclude them to make the rest + # of the test more transparent + freq_slice = slice(37, 1024) + cross_antpairpol = (53, 54, 'ee') + weights = copy.deepcopy(nsamples) + + # This should return the exact same thing as the original noise prediction function + var_for_frop = frf.prep_var_for_frop(data, nsamples, weights, + cross_antpairpol, freq_slice) + var = noise.predict_noise_variance_from_autos(cross_antpairpol, data, nsamples=nsamples) + + assert np.array_equal(var[:, freq_slice], var_for_frop) + + # Now tell it to only use one antenna; they should all be different + var_for_frop = frf.prep_var_for_frop(data, nsamples, weights, + cross_antpairpol, freq_slice, + auto_ant=53) + + assert np.logical_not(np.any(var_for_frop == var[:, freq_slice])) + + # Now give it some nsamples == 0 to deal with + # Should replace all of one channel with a peculiarly chosen value of 2.3 + nsamples[cross_antpairpol][:, 48] = 0 + with pytest.warns(UserWarning, + match="Not all infinite variance locations are of zero weight!"): + var_for_frop = frf.prep_var_for_frop(data, nsamples, weights, + cross_antpairpol, freq_slice, + auto_ant=53, + default_value=2.3) + assert np.all(var_for_frop[:, 48-37] == 2.3) + + + + + + +