forked from 0x5446/api4sensevoice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver_wss.py
396 lines (346 loc) · 13.2 KB
/
server_wss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request, HTTPException
from fastapi.exceptions import RequestValidationError
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from starlette.status import HTTP_422_UNPROCESSABLE_ENTITY
from pydantic_settings import BaseSettings
from pydantic import BaseModel, Field
from funasr import AutoModel
import numpy as np
import soundfile as sf
import argparse
import uvicorn
from urllib.parse import parse_qs
import os
import re
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from loguru import logger
import sys
import json
import traceback
import time
logger.remove()
log_format = "{time:YYYY-MM-DD HH:mm:ss} [{level}] {file}:{line} - {message}"
logger.add(sys.stdout, format=log_format, level="DEBUG", filter=lambda record: record["level"].no < 40)
logger.add(sys.stderr, format=log_format, level="ERROR", filter=lambda record: record["level"].no >= 40)
class Config(BaseSettings):
sv_thr: float = Field(0.3, description="Speaker verification threshold")
chunk_size_ms: int = Field(300, description="Chunk size in milliseconds")
sample_rate: int = Field(16000, description="Sample rate in Hz")
bit_depth: int = Field(16, description="Bit depth")
channels: int = Field(1, description="Number of audio channels")
avg_logprob_thr: float = Field(-0.25, description="average logprob threshold")
config = Config()
emo_dict = {
"<|HAPPY|>": "😊",
"<|SAD|>": "😔",
"<|ANGRY|>": "😡",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "😰",
"<|DISGUSTED|>": "🤢",
"<|SURPRISED|>": "😮",
}
event_dict = {
"<|BGM|>": "🎼",
"<|Speech|>": "",
"<|Applause|>": "👏",
"<|Laughter|>": "😀",
"<|Cry|>": "😭",
"<|Sneeze|>": "🤧",
"<|Breath|>": "",
"<|Cough|>": "🤧",
}
emoji_dict = {
"<|nospeech|><|Event_UNK|>": "❓",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "😊",
"<|SAD|>": "😔",
"<|ANGRY|>": "😡",
"<|NEUTRAL|>": "",
"<|BGM|>": "🎼",
"<|Speech|>": "",
"<|Applause|>": "👏",
"<|Laughter|>": "😀",
"<|FEARFUL|>": "😰",
"<|DISGUSTED|>": "🤢",
"<|SURPRISED|>": "😮",
"<|Cry|>": "😭",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "🤧",
"<|Breath|>": "",
"<|Cough|>": "😷",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set = {"😊", "😔", "😡", "😰", "🤢", "😮"}
event_set = {"🎼", "👏", "😀", "😭", "🤧", "😷",}
def format_str(s):
for sptk in emoji_dict:
s = s.replace(sptk, emoji_dict[sptk])
return s
def format_str_v2(s):
sptk_dict = {}
for sptk in emoji_dict:
sptk_dict[sptk] = s.count(sptk)
s = s.replace(sptk, "")
emo = "<|NEUTRAL|>"
for e in emo_dict:
if sptk_dict[e] > sptk_dict[emo]:
emo = e
for e in event_dict:
if sptk_dict[e] > 0:
s = event_dict[e] + s
s = s + emo_dict[emo]
for emoji in emo_set.union(event_set):
s = s.replace(" " + emoji, emoji)
s = s.replace(emoji + " ", emoji)
return s.strip()
def format_str_v3(s):
def get_emo(s):
return s[-1] if s[-1] in emo_set else None
def get_event(s):
return s[0] if s[0] in event_set else None
s = s.replace("<|nospeech|><|Event_UNK|>", "❓")
for lang in lang_dict:
s = s.replace(lang, "<|lang|>")
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
new_s = " " + s_list[0]
cur_ent_event = get_event(new_s)
for i in range(1, len(s_list)):
if len(s_list[i]) == 0:
continue
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
s_list[i] = s_list[i][1:]
#else:
cur_ent_event = get_event(s_list[i])
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
new_s = new_s[:-1]
new_s += s_list[i].strip().lstrip()
new_s = new_s.replace("The.", " ")
return new_s.strip()
def contains_chinese_english_number(s: str) -> bool:
# Check if the string contains any Chinese character, English letter, or Arabic number
return bool(re.search(r'[\u4e00-\u9fffA-Za-z0-9]', s))
sv_pipeline = pipeline(
task='speaker-verification',
model='./models/speech_eres2net_large_sv_zh-cn_3dspeaker_16k',
model_revision='v1.0.0'
)
asr_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='./models/SenseVoiceSmall',
model_revision="master",
device="cuda:0",
disable_update=True
)
model_asr = AutoModel(
model="./models/SenseVoiceSmall",
trust_remote_code=True,
remote_code="./model.py",
device="cuda:0",
disable_update=True
)
model_vad = AutoModel(
model="./models/speech_fsmn_vad_zh-cn-16k-common-pytorch",
model_revision="v2.0.4",
disable_pbar = True,
max_end_silence_time=500,
# speech_noise_thres=0.6,
disable_update=True,
)
reg_spks_files = [
"speaker/speaker1_a_cn_16k.wav"
]
def reg_spk_init(files):
reg_spk = {}
for f in files:
data, sr = sf.read(f, dtype="float32")
k, _ = os.path.splitext(os.path.basename(f))
reg_spk[k] = {
"data": data,
"sr": sr,
}
return reg_spk
reg_spks = reg_spk_init(reg_spks_files)
def speaker_verify(audio, sv_thr):
hit = False
for k, v in reg_spks.items():
res_sv = sv_pipeline([audio, v["data"]], sv_thr)
if res_sv["score"] >= sv_thr:
hit = True
logger.info(f"[speaker_verify] audio_len: {len(audio)}; sv_thr: {sv_thr}; hit: {hit}; {k}: {res_sv}")
return hit, k
def asr(audio, lang, cache, use_itn=False):
# with open('test.pcm', 'ab') as f:
# logger.debug(f'write {f.write(audio)} bytes to `test.pcm`')
# result = asr_pipeline(audio, lang)
start_time = time.time()
result = model_asr.generate(
input = audio,
cache = cache,
language = lang.strip(),
use_itn = use_itn,
batch_size_s = 60,
)
end_time = time.time()
elapsed_time = end_time - start_time
logger.debug(f"asr elapsed: {elapsed_time * 1000:.2f} milliseconds")
return result
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.exception_handler(Exception)
async def custom_exception_handler(request: Request, exc: Exception):
logger.error("Exception occurred", exc_info=True)
if isinstance(exc, HTTPException):
status_code = exc.status_code
message = exc.detail
data = ""
elif isinstance(exc, RequestValidationError):
status_code = HTTP_422_UNPROCESSABLE_ENTITY
message = "Validation error: " + str(exc.errors())
data = ""
else:
status_code = 500
message = "Internal server error: " + str(exc)
data = ""
return JSONResponse(
status_code=status_code,
content=TranscriptionResponse(
code=status_code,
msg=message,
data=data
).model_dump()
)
# Define the response model
class TranscriptionResponse(BaseModel):
code: int
info: str
data: str
@app.websocket("/ws/transcribe")
async def websocket_endpoint(websocket: WebSocket):
try:
query_params = parse_qs(websocket.scope['query_string'].decode())
sv = query_params.get('sv', ['false'])[0].lower() in ['true', '1', 't', 'y', 'yes']
lang = query_params.get('lang', ['auto'])[0].lower()
await websocket.accept()
chunk_size = int(config.chunk_size_ms * config.sample_rate / 1000)
audio_buffer = np.array([], dtype=np.float32)
audio_vad = np.array([], dtype=np.float32)
cache = {}
cache_asr = {}
last_vad_beg = last_vad_end = -1
offset = 0
hit = False
buffer = b""
while True:
data = await websocket.receive_bytes()
# logger.info(f"received {len(data)} bytes")
buffer += data
if len(buffer) < 2:
continue
audio_buffer = np.append(
audio_buffer,
np.frombuffer(buffer[:len(buffer) - (len(buffer) % 2)], dtype=np.int16).astype(np.float32) / 32767.0
)
# with open('buffer.pcm', 'ab') as f:
# logger.debug(f'write {f.write(buffer[:len(buffer) - (len(buffer) % 2)])} bytes to `buffer.pcm`')
buffer = buffer[len(buffer) - (len(buffer) % 2):]
while len(audio_buffer) >= chunk_size:
chunk = audio_buffer[:chunk_size]
audio_buffer = audio_buffer[chunk_size:]
audio_vad = np.append(audio_vad, chunk)
# with open('chunk.pcm', 'ab') as f:
# logger.debug(f'write {f.write(chunk)} bytes to `chunk.pcm`')
if last_vad_beg > 1:
if sv:
# speaker verify
# If no hit is detected, continue accumulating audio data and check again until a hit is detected
# `hit` will reset after `asr`.
if not hit:
hit, speaker = speaker_verify(audio_vad[int((last_vad_beg - offset) * config.sample_rate / 1000):], config.sv_thr)
if hit:
response = TranscriptionResponse(
code=2,
info="detect speaker",
data=speaker
)
await websocket.send_json(response.model_dump())
else:
response = TranscriptionResponse(
code=2,
info="detect speech",
data=''
)
await websocket.send_json(response.model_dump())
res = model_vad.generate(input=chunk, cache=cache, is_final=False, chunk_size=config.chunk_size_ms)
# logger.info(f"vad inference: {res}")
if len(res[0]["value"]):
vad_segments = res[0]["value"]
for segment in vad_segments:
if segment[0] > -1: # speech begin
last_vad_beg = segment[0]
if segment[1] > -1: # speech end
last_vad_end = segment[1]
if last_vad_beg > -1 and last_vad_end > -1:
last_vad_beg -= offset
last_vad_end -= offset
offset += last_vad_end
beg = int(last_vad_beg * config.sample_rate / 1000)
end = int(last_vad_end * config.sample_rate / 1000)
logger.info(f"[vad segment] audio_len: {end - beg}")
result = None if sv and not hit else asr(audio_vad[beg:end], lang.strip(), cache_asr, True)
logger.info(f"asr response: {result}")
audio_vad = audio_vad[end:]
last_vad_beg = last_vad_end = -1
hit = False
if result is not None:
response = TranscriptionResponse(
code=0,
info=json.dumps(result[0], ensure_ascii=False),
data=format_str_v3(result[0]['text'])
)
await websocket.send_json(response.model_dump())
# logger.debug(f'last_vad_beg: {last_vad_beg}; last_vad_end: {last_vad_end} len(audio_vad): {len(audio_vad)}')
except WebSocketDisconnect:
logger.info("WebSocket disconnected")
except Exception as e:
logger.error(f"Unexpected error: {e}\nCall stack:\n{traceback.format_exc()}")
await websocket.close()
finally:
audio_buffer = np.array([], dtype=np.float32)
audio_vad = np.array([], dtype=np.float32)
cache.clear()
logger.info("Cleaned up resources after WebSocket disconnect")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the FastAPI app with a specified port.")
parser.add_argument('--port', type=int, default=27000, help='Port number to run the FastAPI app on.')
# parser.add_argument('--certfile', type=str, default='path_to_your_SSL_certificate_file.crt', help='SSL certificate file')
# parser.add_argument('--keyfile', type=str, default='path_to_your_SSL_certificate_file.key', help='SSL key file')
args = parser.parse_args()
# uvicorn.run(app, host="0.0.0.0", port=args.port, ssl_certfile=args.certfile, ssl_keyfile=args.keyfile)
# uvicorn.run(app, host="0.0.0.0", port=args.port)
uvicorn.run(app, host="0.0.0.0", port=8888)