-
Notifications
You must be signed in to change notification settings - Fork 141
/
demo_camera_mobile.py
819 lines (661 loc) · 30.4 KB
/
demo_camera_mobile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
'''
Author: Guanghan Ning
E-mail: [email protected]
May 15th, 2019
LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
Demo on Camera using YOLOv3 detector and Mobilenetv1-Deconv.
'''
import time
import argparse
import collections
# import vision essentials
import cv2
import numpy as np
import tensorflow as tf
# import Network
from network_mobile_deconv import Network
# detector utils
from detector.detector_yolov3 import *
# pose estimation utils
from HPE.dataset import Preprocessing
from HPE.config import cfg
from tfflat.base import Tester
from tfflat.utils import mem_info
from tfflat.logger import colorlogger
from nms.gpu_nms import gpu_nms
from nms.cpu_nms import cpu_nms
# import GCN utils
from graph import visualize_pose_matching
from graph .visualize_pose_matching import *
# import my own utils
import sys, os, time
sys.path.append(os.path.abspath("./graph/"))
from utils_json import *
from visualizer import *
from utils_io_file import *
from utils_io_folder import *
flag_visualize = True
flag_nms = False #Default is False, unless you know what you are doing
os.environ["CUDA_VISIBLE_DEVICES"]="0"
def initialize_parameters():
global video_name, img_id
global nms_method, nms_thresh, min_scores, min_box_size
nms_method = 'nms'
nms_thresh = 1.
min_scores = 1e-10
min_box_size = 0.
global keyframe_interval, enlarge_scale, pose_matching_threshold
keyframe_interval = 40 # choice examples: [2, 3, 5, 8, 10]
enlarge_scale = 0.2
pose_matching_threshold = 0.5
global flag_flip
flag_flip = True
global total_time_POSE, total_time_DET, total_time_ALL, total_num_FRAMES, total_num_PERSONS
total_time_POSE = 0
total_time_DET = 0
total_time_ALL = 0
total_num_FRAMES = 0
total_num_PERSONS = 0
return
def light_track_camera(pose_estimator, video_capture):
global total_time_POSE, total_time_DET, total_time_ALL, total_num_FRAMES, total_num_PERSONS
''' statistics: get total time for lighttrack processing'''
st_time_total = time.time()
# process the frames sequentially
keypoints_list = []
bbox_dets_list = []
bbox_dets_list_q = collections.deque(maxlen=2)
keypoints_list_q = collections.deque(maxlen=2)
next_id = 0
img_id = -1
flag_mandatory_keyframe = False
while video_capture.isOpened():
img_id += 1
total_num_FRAMES += 1
ret, cur_img = video_capture.read()
if cur_img is None: break
''' KEYFRAME: (1) call the detector;
(2) perform HPE on the candidates;
(3) perform data association via Spatial Consistency and Pose Matching'''
if is_keyframe(img_id, keyframe_interval) or flag_mandatory_keyframe:
flag_mandatory_keyframe = False
bbox_dets_list = [] # keyframe: start from empty
keypoints_list = [] # keyframe: start from empty
# perform detection at keyframes
st_time_detection = time.time()
human_candidates = inference_yolov3_from_img(cur_img)
end_time_detection = time.time()
total_time_DET += (end_time_detection - st_time_detection)
num_dets = len(human_candidates)
print("Keyframe: {} detections".format(num_dets))
# if nothing detected at keyframe, regard next frame as keyframe because there is nothing to track
if num_dets <= 0:
# add empty result
bbox_det_dict = {"img_id":img_id,
"det_id": 0,
"track_id": None,
"bbox": [0, 0, 2, 2]}
bbox_dets_list.append(bbox_det_dict)
keypoints_dict = {"img_id":img_id,
"det_id": 0,
"track_id": None,
"bbox": [0, 0, 2, 2],
"keypoints": []}
keypoints_list.append(keypoints_dict)
bbox_dets_list_q.append(bbox_dets_list)
keypoints_list_q.append(keypoints_list)
flag_mandatory_keyframe = True
cv2.imshow('frame', cur_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
continue
''' 2. statistics: get total number of detected persons '''
total_num_PERSONS += num_dets
if img_id > 0: # First frame does not have previous frame
bbox_list_prev_frame = bbox_dets_list_q.popleft()
keypoints_list_prev_frame = keypoints_list_q.popleft()
# For each candidate, perform pose estimation and data association based on Spatial Consistency (SC)
for det_id in range(num_dets):
# obtain bbox position and track id
bbox_det = human_candidates[det_id]
# enlarge bbox by 20% with same center position
bbox_x1y1x2y2 = xywh_to_x1y1x2y2(bbox_det)
bbox_in_xywh = enlarge_bbox(bbox_x1y1x2y2, enlarge_scale)
bbox_det = x1y1x2y2_to_xywh(bbox_in_xywh)
# Keyframe: use provided bbox
if bbox_invalid(bbox_det):
track_id = None # this id means null
keypoints = []
bbox_det = [0, 0, 2 ,2]
# update current frame bbox
bbox_det_dict = {"img_id":img_id,
"det_id":det_id,
"track_id": track_id,
"bbox":bbox_det}
bbox_dets_list.append(bbox_det_dict)
# update current frame keypoints
keypoints_dict = {"img_id":img_id,
"det_id":det_id,
"bbox":bbox_det,
"track_id": track_id,
"keypoints":keypoints}
keypoints_list.append(keypoints_dict)
continue
# update current frame bbox
bbox_det_dict = {"img_id":img_id,
"det_id":det_id,
"bbox":bbox_det}
# obtain keypoints for each bbox position in the keyframe
st_time_pose = time.time()
keypoints = inference_keypoints(pose_estimator, bbox_det_dict, cur_img)[0]["keypoints"]
end_time_pose = time.time()
total_time_POSE += (end_time_pose - st_time_pose)
if img_id == 0: # First frame, all ids are assigned automatically
track_id = next_id
next_id += 1
else:
track_id, match_index = get_track_id_SpatialConsistency(bbox_det, bbox_list_prev_frame)
if track_id != -1: # if candidate from prev frame matched, prevent it from matching another
del bbox_list_prev_frame[match_index]
del keypoints_list_prev_frame[match_index]
# update current frame bbox
bbox_det_dict = {"img_id":img_id,
"det_id":det_id,
"track_id":track_id,
"bbox":bbox_det}
bbox_dets_list.append(bbox_det_dict)
# update current frame keypoints
keypoints_dict = {"img_id":img_id,
"det_id":det_id,
"bbox":bbox_det,
"track_id":track_id,
"keypoints":keypoints}
keypoints_list.append(keypoints_dict)
# For candidate that is not assopciated yet, perform data association based on Pose Similarity (SGCN)
for det_id in range(num_dets):
bbox_det_dict = bbox_dets_list[det_id]
keypoints_dict = keypoints_list[det_id]
assert(det_id == bbox_det_dict["det_id"])
assert(det_id == keypoints_dict["det_id"])
if bbox_det_dict["track_id"] == -1: # this id means matching not found yet
track_id, match_index = get_track_id_SGCN(bbox_det_dict["bbox"], bbox_list_prev_frame,
keypoints_dict["keypoints"], keypoints_list_prev_frame)
if track_id != -1: # if candidate from prev frame matched, prevent it from matching another
del bbox_list_prev_frame[match_index]
del keypoints_list_prev_frame[match_index]
bbox_det_dict["track_id"] = track_id
keypoints_dict["track_id"] = track_id
# if still can not find a match from previous frame, then assign a new id
if track_id == -1 and not bbox_invalid(bbox_det_dict["bbox"]):
bbox_det_dict["track_id"] = next_id
keypoints_dict["track_id"] = next_id
next_id += 1
# update frame
bbox_dets_list_q.append(bbox_dets_list)
keypoints_list_q.append(keypoints_list)
print("deque length", len(keypoints_list_q))
else:
''' NOT KEYFRAME: (1) perform Single Pose Tracking (SPT) and Single Object Tracking (SOT)
via Human Pose Estimation (HPE) for each candidate; '''
bbox_dets_list_next = []
keypoints_list_next = []
num_dets = len(keypoints_list)
total_num_PERSONS += num_dets
print("Non-Keyframe: tracking {} candidates".format(num_dets))
if num_dets == 0:
flag_mandatory_keyframe = True
for det_id in range(num_dets):
keypoints = keypoints_list[det_id]["keypoints"]
# for non-keyframes, the tracked target preserves its track_id
track_id = keypoints_list[det_id]["track_id"]
# next frame bbox
bbox_det_next = get_bbox_from_keypoints(keypoints)
if bbox_det_next[2] == 0 or bbox_det_next[3] == 0:
bbox_det_next = [0, 0, 2, 2]
total_num_PERSONS -= 1
assert(bbox_det_next[2] != 0 and bbox_det_next[3] != 0) # width and height must not be zero
bbox_det_dict_next = {"img_id":img_id,
"det_id":det_id,
"track_id":track_id,
"bbox":bbox_det_next}
# next frame keypoints
st_time_pose = time.time()
keypoints_next = inference_keypoints(pose_estimator, bbox_det_dict_next, cur_img)[0]["keypoints"]
end_time_pose = time.time()
total_time_POSE += (end_time_pose - st_time_pose)
#print("time for pose estimation: ", (end_time_pose - st_time_pose))
# check whether the target is lost
target_lost = is_target_lost(keypoints_next)
if target_lost is False:
bbox_dets_list_next.append(bbox_det_dict_next)
keypoints_dict_next = {"img_id":img_id,
"det_id":det_id,
"bbox":bbox_det,
"track_id":track_id,
"keypoints":keypoints_next}
keypoints_list_next.append(keypoints_dict_next)
else:
# remove this bbox, do not register its keypoints
bbox_det_dict_next = {"img_id":img_id,
"det_id": det_id,
"track_id": -1,
"bbox": [0, 0, 2, 2]}
bbox_dets_list_next.append(bbox_det_dict_next)
keypoints_null = 45*[0]
keypoints_dict_next = {"img_id":img_id,
"det_id":det_id,
"bbox": [0, 0, 2, 2],
"track_id":track_id,
"keypoints": []}
keypoints_list_next.append(keypoints_dict_next)
print("Target lost. Process this frame again as keyframe. \n\n\n")
flag_mandatory_keyframe = True
## Re-process this frame by treating it as a keyframe
total_num_PERSONS -= 1
if img_id not in [0]:
img_id -= 1
# Re-process if anyone of the targets is lost
break
# update frame
if flag_mandatory_keyframe is False:
bbox_dets_list = bbox_dets_list_next
keypoints_list = keypoints_list_next
bbox_dets_list_q.append(bbox_dets_list)
keypoints_list_q.append(keypoints_list)
bbox_dets_list_q.popleft()
keypoints_list_q.popleft()
# visulize this frame
cur_candidates = list(keypoints_list_q)[-1] # peek right-most item, latest
vis_img = visualize_img(cur_img, cur_candidates, img_id)
# provide a way to exit
cv2.imshow('frame', vis_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# release resources
video_capture.release()
cv2.destroyAllWindows()
''' statistics: get total time for lighttrack processing'''
end_time_total = time.time()
total_time_ALL += (end_time_total - st_time_total)
''' ---------------------------------------------------------------------------'''
''' ---------------------------------------------------------------------------'''
def get_track_id_SGCN(bbox_cur_frame, bbox_list_prev_frame, keypoints_cur_frame, keypoints_list_prev_frame):
assert(len(bbox_list_prev_frame) == len(keypoints_list_prev_frame))
min_index = None
min_matching_score = sys.maxsize
global pose_matching_threshold
# if track_id is still not assigned, the person is really missing or track is really lost
track_id = -1
for det_index, bbox_det_dict in enumerate(bbox_list_prev_frame):
bbox_prev_frame = bbox_det_dict["bbox"]
# check the pose matching score
keypoints_dict = keypoints_list_prev_frame[det_index]
keypoints_prev_frame = keypoints_dict["keypoints"]
pose_matching_score = get_pose_matching_score(keypoints_cur_frame, keypoints_prev_frame, bbox_cur_frame, bbox_prev_frame)
if pose_matching_score <= pose_matching_threshold and pose_matching_score <= min_matching_score:
# match the target based on the pose matching score
min_matching_score = pose_matching_score
min_index = det_index
if min_index is None:
return -1, None
else:
track_id = bbox_list_prev_frame[min_index]["track_id"]
return track_id, min_index
def get_track_id_SpatialConsistency(bbox_cur_frame, bbox_list_prev_frame):
thresh = 0.3
max_iou_score = 0
max_index = -1
for bbox_index, bbox_det_dict in enumerate(bbox_list_prev_frame):
bbox_prev_frame = bbox_det_dict["bbox"]
boxA = xywh_to_x1y1x2y2(bbox_cur_frame)
boxB = xywh_to_x1y1x2y2(bbox_prev_frame)
iou_score = iou(boxA, boxB)
if iou_score > max_iou_score:
max_iou_score = iou_score
max_index = bbox_index
if max_iou_score > thresh:
track_id = bbox_list_prev_frame[max_index]["track_id"]
return track_id, max_index
else:
return -1, None
def get_pose_matching_score(keypoints_A, keypoints_B, bbox_A, bbox_B):
if keypoints_A == [] or keypoints_B == []:
print("graph not correctly generated!")
return sys.maxsize
if bbox_invalid(bbox_A) or bbox_invalid(bbox_B):
print("graph not correctly generated!")
return sys.maxsize
graph_A, flag_pass_check = keypoints_to_graph(keypoints_A, bbox_A)
if flag_pass_check is False:
print("graph not correctly generated!")
return sys.maxsize
graph_B, flag_pass_check = keypoints_to_graph(keypoints_B, bbox_B)
if flag_pass_check is False:
print("graph not correctly generated!")
return sys.maxsize
sample_graph_pair = (graph_A, graph_B)
data_A, data_B = graph_pair_to_data(sample_graph_pair)
start = time.time()
flag_match, dist = pose_matching(data_A, data_B)
end = time.time()
return dist
def get_iou_score(bbox_gt, bbox_det):
boxA = xywh_to_x1y1x2y2(bbox_gt)
boxB = xywh_to_x1y1x2y2(bbox_det)
iou_score = iou(boxA, boxB)
#print("iou_score: ", iou_score)
return iou_score
def is_target_lost(keypoints, method="max_average"):
num_keypoints = int(len(keypoints) / 3.0)
if method == "average":
# pure average
score = 0
for i in range(num_keypoints):
score += keypoints[3*i + 2]
score /= num_keypoints*1.0
print("target_score: {}".format(score))
elif method == "max_average":
score_list = keypoints[2::3]
score_list_sorted = sorted(score_list)
top_N = 4
assert(top_N < num_keypoints)
top_scores = [score_list_sorted[-i] for i in range(1, top_N+1)]
score = sum(top_scores)/top_N
if score < 0.6:
return True
else:
return False
def iou(boxA, boxB):
# box: (x1, y1, x2, y2)
# determine the (x, y)-coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# compute the area of both the prediction and ground-truth
# rectangles
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
return iou
def get_bbox_from_keypoints(keypoints_python_data):
if keypoints_python_data == [] or keypoints_python_data == 45*[0]:
return [0, 0, 2, 2]
num_keypoints = len(keypoints_python_data)
x_list = []
y_list = []
for keypoint_id in range(int(num_keypoints / 3)):
x = keypoints_python_data[3 * keypoint_id]
y = keypoints_python_data[3 * keypoint_id + 1]
vis = keypoints_python_data[3 * keypoint_id + 2]
if vis != 0 and vis!= 3:
x_list.append(x)
y_list.append(y)
min_x = min(x_list)
min_y = min(y_list)
max_x = max(x_list)
max_y = max(y_list)
if not x_list or not y_list:
return [0, 0, 2, 2]
scale = enlarge_scale # enlarge bbox by 20% with same center position
bbox = enlarge_bbox([min_x, min_y, max_x, max_y], scale)
bbox_in_xywh = x1y1x2y2_to_xywh(bbox)
return bbox_in_xywh
def enlarge_bbox(bbox, scale):
assert(scale > 0)
min_x, min_y, max_x, max_y = bbox
margin_x = int(0.5 * scale * (max_x - min_x))
margin_y = int(0.5 * scale * (max_y - min_y))
if margin_x < 0: margin_x = 2
if margin_y < 0: margin_y = 2
min_x -= margin_x
max_x += margin_x
min_y -= margin_y
max_y += margin_y
width = max_x - min_x
height = max_y - min_y
if max_y < 0 or max_x < 0 or width <= 0 or height <= 0 or width > 2000 or height > 2000:
min_x=0
max_x=2
min_y=0
max_y=2
bbox_enlarged = [min_x, min_y, max_x, max_y]
return bbox_enlarged
def inference_keypoints(pose_estimator, test_data, raw_img):
cls_dets = test_data["bbox"]
# nms on the bboxes
if flag_nms is True:
cls_dets, keep = apply_nms(cls_dets, nms_method, nms_thresh)
test_data = np.asarray(test_data)[keep]
if len(keep) == 0:
return -1
else:
test_data = [test_data]
# crop and detect pose
pose_heatmaps, details, cls_skeleton, crops, start_id, end_id = get_pose_from_bbox(pose_estimator, test_data, raw_img, cfg)
# get keypoint positions from pose
keypoints = get_keypoints_from_pose(pose_heatmaps, details, cls_skeleton, crops, start_id, end_id)
# dump results
results = prepare_results(test_data[0], keypoints, cls_dets)
return results
def apply_nms(cls_dets, nms_method, nms_thresh):
# nms and filter
keep = np.where((cls_dets[:, 4] >= min_scores) &
((cls_dets[:, 3] - cls_dets[:, 1]) * (cls_dets[:, 2] - cls_dets[:, 0]) >= min_box_size))[0]
cls_dets = cls_dets[keep]
if len(cls_dets) > 0:
if nms_method == 'nms':
keep = gpu_nms(cls_dets, nms_thresh)
elif nms_method == 'soft':
keep = cpu_soft_nms(np.ascontiguousarray(cls_dets, dtype=np.float32), method=2)
else:
assert False
cls_dets = cls_dets[keep]
return cls_dets, keep
def get_pose_from_bbox(pose_estimator, test_data, raw_img, cfg):
cls_skeleton = np.zeros((len(test_data), cfg.nr_skeleton, 3))
crops = np.zeros((len(test_data), 4))
batch_size = 32
start_id = 0
end_id = min(len(test_data), batch_size)
test_imgs = []
details = []
for i in range(start_id, end_id):
test_img, detail = Preprocessing(test_data[i], raw_img, stage='test')
test_imgs.append(test_img)
details.append(detail)
details = np.asarray(details)
feed = test_imgs
for i in range(end_id - start_id):
ori_img = test_imgs[i][0].transpose(1, 2, 0)
if flag_flip == True:
flip_img = cv2.flip(ori_img, 1)
feed.append(flip_img.transpose(2, 0, 1)[np.newaxis, ...])
feed = np.vstack(feed)
res = pose_estimator.predict_one([feed.transpose(0, 2, 3, 1).astype(np.float32)])[0]
res = res.transpose(0, 3, 1, 2)
if flag_flip == True:
for i in range(end_id - start_id):
fmp = res[end_id - start_id + i].transpose((1, 2, 0))
fmp = cv2.flip(fmp, 1)
fmp = list(fmp.transpose((2, 0, 1)))
for (q, w) in cfg.symmetry:
fmp[q], fmp[w] = fmp[w], fmp[q]
fmp = np.array(fmp)
res[i] += fmp
res[i] /= 2
pose_heatmaps = res
return pose_heatmaps, details, cls_skeleton, crops, start_id, end_id
def get_keypoints_from_pose(pose_heatmaps, details, cls_skeleton, crops, start_id, end_id):
res = pose_heatmaps
for test_image_id in range(start_id, end_id):
r0 = res[test_image_id - start_id].copy()
r0 /= 255.
r0 += 0.5
for w in range(cfg.nr_skeleton):
res[test_image_id - start_id, w] /= np.amax(res[test_image_id - start_id, w])
border = 10
dr = np.zeros((cfg.nr_skeleton, cfg.output_shape[0] + 2 * border, cfg.output_shape[1] + 2 * border))
dr[:, border:-border, border:-border] = res[test_image_id - start_id][:cfg.nr_skeleton].copy()
for w in range(cfg.nr_skeleton):
dr[w] = cv2.GaussianBlur(dr[w], (21, 21), 0)
for w in range(cfg.nr_skeleton):
lb = dr[w].argmax()
y, x = np.unravel_index(lb, dr[w].shape)
dr[w, y, x] = 0
lb = dr[w].argmax()
py, px = np.unravel_index(lb, dr[w].shape)
y -= border
x -= border
py -= border + y
px -= border + x
ln = (px ** 2 + py ** 2) ** 0.5
delta = 0.25
if ln > 1e-3:
x += delta * px / ln
y += delta * py / ln
x = max(0, min(x, cfg.output_shape[1] - 1))
y = max(0, min(y, cfg.output_shape[0] - 1))
cls_skeleton[test_image_id, w, :2] = (x * 4 + 2, y * 4 + 2)
cls_skeleton[test_image_id, w, 2] = r0[w, int(round(y) + 1e-10), int(round(x) + 1e-10)]
# map back to original images
crops[test_image_id, :] = details[test_image_id - start_id, :]
for w in range(cfg.nr_skeleton):
cls_skeleton[test_image_id, w, 0] = cls_skeleton[test_image_id, w, 0] / cfg.data_shape[1] * (crops[test_image_id][2] - crops[test_image_id][0]) + crops[test_image_id][0]
cls_skeleton[test_image_id, w, 1] = cls_skeleton[test_image_id, w, 1] / cfg.data_shape[0] * (crops[test_image_id][3] - crops[test_image_id][1]) + crops[test_image_id][1]
return cls_skeleton
def prepare_results(test_data, cls_skeleton, cls_dets):
cls_partsco = cls_skeleton[:, :, 2].copy().reshape(-1, cfg.nr_skeleton)
cls_scores = 1
dump_results = []
cls_skeleton = np.concatenate(
[cls_skeleton.reshape(-1, cfg.nr_skeleton * 3), (cls_scores * cls_partsco.mean(axis=1))[:, np.newaxis]],
axis=1)
for i in range(len(cls_skeleton)):
result = dict(image_id=test_data['img_id'],
category_id=1,
score=float(round(cls_skeleton[i][-1], 4)),
keypoints=cls_skeleton[i][:-1].round(3).tolist())
dump_results.append(result)
return dump_results
def is_keyframe(img_id, interval=10):
if img_id % interval == 0:
return True
else:
return False
def pose_to_standard_mot(keypoints_list_list, dets_list_list):
openSVAI_python_data_list = []
num_keypoints_list = len(keypoints_list_list)
num_dets_list = len(dets_list_list)
assert(num_keypoints_list == num_dets_list)
for i in range(num_dets_list):
dets_list = dets_list_list[i]
keypoints_list = keypoints_list_list[i]
if dets_list == []:
continue
img_path = dets_list[0]["imgpath"]
img_folder_path = os.path.dirname(img_path)
img_name = os.path.basename(img_path)
img_info = {"folder": img_folder_path,
"name": img_name,
"id": [int(i)]}
openSVAI_python_data = {"image":[], "candidates":[]}
openSVAI_python_data["image"] = img_info
num_dets = len(dets_list)
num_keypoints = len(keypoints_list) #number of persons, not number of keypoints for each person
candidate_list = []
for j in range(num_dets):
keypoints_dict = keypoints_list[j]
dets_dict = dets_list[j]
img_id = keypoints_dict["img_id"]
det_id = keypoints_dict["det_id"]
track_id = keypoints_dict["track_id"]
img_path = keypoints_dict["imgpath"]
bbox_dets_data = dets_list[det_id]
det = dets_dict["bbox"]
if det == [0, 0, 2, 2]:
# do not provide keypoints
candidate = {"det_bbox": [0, 0, 2, 2],
"det_score": 0}
else:
bbox_in_xywh = det[0:4]
keypoints = keypoints_dict["keypoints"]
track_score = sum(keypoints[2::3])/len(keypoints)/3.0
candidate = {"det_bbox": bbox_in_xywh,
"det_score": 1,
"track_id": track_id,
"track_score": track_score,
"pose_keypoints_2d": keypoints}
candidate_list.append(candidate)
openSVAI_python_data["candidates"] = candidate_list
openSVAI_python_data_list.append(openSVAI_python_data)
return openSVAI_python_data_list
def x1y1x2y2_to_xywh(det):
x1, y1, x2, y2 = det
w, h = int(x2) - int(x1), int(y2) - int(y1)
return [x1, y1, w, h]
def xywh_to_x1y1x2y2(det):
x1, y1, w, h = det
x2, y2 = x1 + w, y1 + h
return [x1, y1, x2, y2]
def bbox_invalid(bbox):
if bbox == [0, 0, 2, 2]:
return True
if bbox[2] <= 0 or bbox[3] <= 0 or bbox[2] > 2000 or bbox[3] > 2000:
return True
return False
def visualize_img(img, candidates, img_id, flag_track = True):
for candidate in candidates:
bbox = np.array(candidate["bbox"]).astype(int)
'''
# optional: show the bounding boxes
if flag_track is True:
track_id = candidate["track_id"]
img = draw_bbox(img, bbox, score, classes, track_id = track_id)
else:
#img = draw_bbox(img, bbox, score, classes)
img = draw_bbox(img, bbox, score, classes, -1, python_data["image"]["id"][0]) #for lighttrack
'''
pose_keypoints_2d = candidate["keypoints"]
joints = reshape_keypoints_into_joints(pose_keypoints_2d)
if flag_track is True:
track_id = candidate["track_id"]
img = show_poses_from_python_data(img, joints, joint_pairs, joint_names, track_id = track_id, flag_only_draw_sure = True)
else:
img = show_poses_from_python_data(img, joints, joint_pairs, joint_names)
return img
if __name__ == '__main__':
global args
parser = argparse.ArgumentParser()
parser.add_argument('--model', '-m', type=str, dest='test_model', default="weights/mobile-deconv/snapshot_296.ckpt")
args = parser.parse_args()
args.bbox_thresh = 0.4
# initialize pose estimator
initialize_parameters()
pose_estimator = Tester(Network(), cfg)
pose_estimator.load_weights(args.test_model)
video_capture = cv2.VideoCapture(0)
if not video_capture.isOpened():
video_capture.open()
if video_capture.isOpened():
light_track_camera(pose_estimator, video_capture)
print("Finished Camera Demo")
''' Display statistics '''
print("total_time_ALL: {:.2f}s".format(total_time_ALL))
print("total_time_DET: {:.2f}s".format(total_time_DET))
print("total_time_POSE: {:.2f}s".format(total_time_POSE))
print("total_time_LIGHTTRACK: {:.2f}s".format(total_time_ALL - total_time_DET - total_time_POSE))
print("total_num_FRAMES: {:d}".format(total_num_FRAMES))
print("total_num_PERSONS: {:d}\n".format(total_num_PERSONS))
print("Average FPS: {:.2f}fps".format(total_num_FRAMES / total_time_ALL))
print("Average FPS excluding Pose Estimation: {:.2f}fps".format(total_num_FRAMES / (total_time_ALL - total_time_POSE)))
print("Average FPS excluding Detection: {:.2f}fps".format(total_num_FRAMES / (total_time_ALL - total_time_DET)))
print("Average FPS for framework only: {:.2f}fps".format(total_num_FRAMES / (total_time_ALL - total_time_DET - total_time_POSE)))
else:
print("Camera not found.")