-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathsbhash.cpp
332 lines (295 loc) · 9.85 KB
/
sbhash.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/* -*- Mode: C++ ; indent-tabs-mode: nil ; c-file-style: "stroustrup" -*-
Project: samblaster
Fast mark duplicates in read-ID grouped SAM file.
Also, optionally pull discordants, splitters, and/or unmappend/clipped reads.
Author: Greg Faust ([email protected])
Date: October 2013
File: sbhash.cpp code file for our hash table.
License Information:
Copyright 2013-2020 Gregory G. Faust
Licensed under the MIT license (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at http://opensource.org/licenses/MIT
*/
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/mman.h>
#include <cmath>
#include "sbhash.h"
///////////////////////////////////////////////////////////////////////////////
// Slab Allocator common code
///////////////////////////////////////////////////////////////////////////////
// We will lazily allocate more slabs when needed, and only clean up at the end.
//////////////////////////////////////////////////////////////////////////////
void fatalError(const char * errorStr);
void checkFSerrWithFilename (ssize_t returnCode)
{
if (returnCode == -1)
{
char * temp;
if (errno == ENOMEM)
temp = (char *)"samblaster: Insufficient memory available to satisfy allocation request.\n";
else
asprintf(&temp, "File system error %d trying to allocate or free memory\n", errno);
fatalError(temp);
}
}
// Allocate big blocks of memory.
char * blockMalloc(ssize_t size)
{
char * retval = (char *)mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0);
checkFSerrWithFilename((ssize_t)retval);
return retval;
}
// Free big blocks of memory. Not the size is needed.
void blockFree(char * ptr, ssize_t size)
{
int err = munmap(ptr, size);
checkFSerrWithFilename(err);
}
typedef struct LBMallocBlock LBMallocBlock_t;
struct LBMallocBlock
{
char * block; // Pointer to the payload block
LBMallocBlock_t * next; // Pointer to the next allocation block
size_t size; // Size of the allocated block
};
char * pushNewLBMallocBlock(int blockSize, LBMallocBlock_t **blockArrayPtr)
{
char * newBlock = blockMalloc(blockSize);
LBMallocBlock_t * newMallocBlock = (LBMallocBlock_t *)malloc(sizeof(LBMallocBlock_t));
if (newMallocBlock == NULL) fatalError("samblaster: Insufficeint memory available to allocate (more) objects.\n");
newMallocBlock->size = blockSize;
newMallocBlock->block = newBlock;
newMallocBlock->next = *blockArrayPtr;
*blockArrayPtr = newMallocBlock;
return newBlock;
}
void freeLBMallocBlocks(LBMallocBlock_t * block)
{
while (block != NULL)
{
LBMallocBlock_t * nextBlock = block->next;
blockFree(block->block, block->size);
free(block);
block = nextBlock;
}
}
///////////////////////////////////////////////////////////////////////////////
// Hash Table Collision Nodes
///////////////////////////////////////////////////////////////////////////////
#define newNodeCount 4096
// Ptr to head of linked list of allocated node slabs.
LBMallocBlock_t * nodeBlockList = NULL;
// Ptr to head of linked list of free node objects.
hashNode_t * hashNodeFreeList = NULL;
void makeMoreHashNodes()
{
hashNode_t * nodeArray = (hashNode_t *)pushNewLBMallocBlock(sizeof(hashNode_t) * newNodeCount, &nodeBlockList);
for (int i=1; i<newNodeCount; i++)
{
(nodeArray + (i - 1))->next = (nodeArray + i);
}
(nodeArray + (newNodeCount - 1))->next = NULL;
hashNodeFreeList = nodeArray;
}
hashNode_t * getHashNode()
{
if (hashNodeFreeList == NULL) makeMoreHashNodes();
hashNode_t * node = hashNodeFreeList;
hashNodeFreeList = hashNodeFreeList->next;
node->next = NULL;
for (int i=0; i<HASHNODE_PAYLOAD_SIZE; i++) node->values[i] = 0;
return node;
}
// I don't think this is currently being called, as we always put the entire string of nodes on the freelist.
void disposeHashNode(hashNode_t * node)
{
node->next = hashNodeFreeList;
hashNodeFreeList = node;
}
void freeHashTableNodes()
{
freeLBMallocBlocks(nodeBlockList);
}
///////////////////////////////////////////////////////////////////////////////
// Hash Table
///////////////////////////////////////////////////////////////////////////////
// We are going to depend on an old hack.
// ptrs to 8 byte things will be 8 byte aligned.
// Therefore, the lower 3 bits will be zero.
// Also, no known chromosome offset requires all 32 bits.
// So we will roll the signature up one bit and put a one there.
// We can then tell apart the three following state for a table entry:
// 0 -> empty bucket
// low bit 1 -> value
// low bit 0 -> ptr to overflow nodes.
///////////////////////////////////////////////////////////////////////////////
inline UINT64 makeValue(UINT64 value)
{
return (value << 1) | 1;
}
inline UINT64 unmakeValue(UINT64 value)
{
return (value >> 1);
}
inline hashNode_t * makePtr(UINT64 value)
{
return (hashNode_t *)value;
}
inline bool isEmpty(UINT64 value)
{
return (value == 0);
}
inline bool isValue(UINT64 value)
{
return ((value & 1) != 0);
}
#define numOfSizes 27
static UINT32 hashTableSizes [] = {0, 23, 47, 97, 199, 409, 823, 1741, 3739, 7517, 15173, 30727, 62233, 126271, 256279, 520241, 1056323,
2144977, 4355707, 8844859, 17961079, 36473443, 74066549, 150406843, 305431229, 620239453, 1259520799};
inline UINT32 hash(UINT64 value)
{
return (UINT32)value;
}
void hashTableInit(hashTable_t * ht, int size)
{
ht->entries = 0;
ht->size = size;
if (size == 0)
{
ht->table = (UINT64 *)NULL;
return;
}
ht->table = (UINT64 *)calloc(ht->size, sizeof(UINT64));
if (ht->table == NULL) fatalError("samblaster: unable to allocate hash table.\n");
}
hashTable_t * makeHashTable()
{
hashTable_t * ht = (hashTable_t *)malloc(sizeof(hashTable_t));
if (ht == NULL) fatalError("samblaster: unable to allocate hash table.\n");
hashTableInit(ht, hashTableSizes[0]);
return ht;
}
// Use a C++ style destructor so that arrays of hash tables will be cleaned up automagically.
hashTable::~hashTable()
{
if (table != NULL) free(table);
}
// C style delete.
void deleteHashTable(hashTable_t * ht)
{
if (ht->table != NULL) free(ht->table);
}
void resizeHashTable(hashTable_t * ht)
{
// Find out what size table is next.
int newsize = 0;
for (int i=0; i<numOfSizes; i++)
{
if (hashTableSizes[i] == ht->size)
{
newsize = hashTableSizes[i+1];
break;
}
}
// Remember the current values array.
UINT64 * oldtable = ht->table;
int size = ht->size;
// Now reinit the hash table with a new table, etc.
hashTableInit(ht, newsize);
// Now iterate over all values and rehash them into the new table.
for (int i=0; i<size; i++)
{
UINT64 value = oldtable[i];
if (isEmpty(value)) continue;
if (isValue(value)) {hashTableInsert(ht, unmakeValue(value)); continue;}
// We need to iterate through the nodes.
hashNode_t * node = makePtr(value);
while (true)
{
for (int j=0; j<HASHNODE_PAYLOAD_SIZE; j++)
{
value = node->values[j];
if (isEmpty(value)) break;
hashTableInsert(ht, unmakeValue(value));
}
if (node->next == NULL) break;
node = node->next;
}
// We need to free up the nodes.
// TODO move out of line.
node->next = hashNodeFreeList;
hashNodeFreeList = makePtr(oldtable[i]);
}
// Free up the oldtable.
if (oldtable != NULL) free(oldtable);
}
bool hashTableInsert(hashTable_t * ht, UINT64 value)
{
// See if we have reached our size limit.
if (ht->entries == ht->size) resizeHashTable(ht);
int bucket = hash(value) % ht->size;
// We need to empty the low order bit so that we can tell the difference between values and ptrs.
value = makeValue(value);
UINT64 curvalue = ht->table[bucket];
// The empty case should be most common.
if (isEmpty(curvalue))
{
ht->table[bucket] = value;
ht->entries += 1;
return true;
}
// The value case should be next most common.
if (isValue(curvalue))
{
// The value is already here.
if (curvalue == value) return false;
// We have a collision and need to add an overflow node.
hashNode_t * node = getHashNode();
ht->table[bucket] = (UINT64)node;
node->values[0] = curvalue;
// Note that this test doesn't cost us anything as it happens at compile time.
if (HASHNODE_PAYLOAD_SIZE >= 2)
{
node->values[1] = value;
}
else
{
// We need to add a second new node.
hashNode_t * secondNode = getHashNode();
node->next = secondNode;
secondNode->values[0] = value;
}
ht->entries += 1;
return true;
}
// The overflow node case.
hashNode_t * curNode = makePtr(curvalue);
while (true)
{
for (int i=0; i<HASHNODE_PAYLOAD_SIZE; i++)
{
// Check if we have an empty slot.
if (curNode->values[i] == 0)
{
curNode->values[i] = value;
ht->entries += 1;
return true;
}
// Check if the value matches the current value.
if (curNode->values[i] == value) return false;
}
if (curNode->next == NULL) break;
curNode = curNode->next;
}
// If we are here, we need a new node.
hashNode_t * node = getHashNode();
curNode->next = node;
node->values[0] = value;
ht->entries += 1;
return true;
}