forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_fx_to_onnx.py
322 lines (266 loc) · 11.5 KB
/
test_fx_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Owner(s): ["module: onnx"]
from __future__ import annotations
import logging
import tempfile
import onnx
import onnx.inliner
import pytorch_test_common
import transformers # type: ignore[import]
import torch
from torch import nn
from torch._subclasses import fake_tensor
from torch.nn import functional as F
from torch.onnx import dynamo_export, ExportOptions
from torch.testing._internal import common_utils
@common_utils.instantiate_parametrized_tests
class TestFxToOnnx(pytorch_test_common.ExportTestCase):
def setUp(self):
super().setUp()
self.export_options = ExportOptions()
def tearDown(self):
super().tearDown()
def test_simple_function(self):
def func(x):
y = x + 1
z = y.relu()
return (y, z)
_ = dynamo_export(
func, torch.randn(1, 1, 2), export_options=self.export_options
)
def test_empty(self):
# Since `torch.empty` returns tensor with uninitialized data, we cannot
# test this under `test_fx_to_onnx_with_onnxruntime.py` with result comparison.
def func(x):
return torch.empty(x.size(), dtype=torch.int64)
tensor_x = torch.randn(1, 1, 2)
_ = dynamo_export(func, tensor_x, export_options=self.export_options)
def test_args_used_for_export_is_not_converted_to_fake_tensors(self):
def func(x, y):
return x + y
tensor_x = torch.randn(1, 1, 2)
tensor_y = torch.randn(1, 1, 2)
_ = dynamo_export(func, tensor_x, tensor_y, export_options=self.export_options)
self.assertNotIsInstance(tensor_x, fake_tensor.FakeTensor)
self.assertNotIsInstance(tensor_y, fake_tensor.FakeTensor)
def test_mnist_exported_with_no_warnings(self):
class MNISTModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=False)
self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=False)
self.fc1 = nn.Linear(9216, 128, bias=False)
self.fc2 = nn.Linear(128, 10, bias=False)
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.conv1(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = self.conv2(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = F.max_pool2d(tensor_x, 2)
tensor_x = torch.flatten(tensor_x, 1)
tensor_x = self.fc1(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = self.fc2(tensor_x)
output = F.log_softmax(tensor_x, dim=1)
return output
tensor_x = torch.rand((64, 1, 28, 28), dtype=torch.float32)
onnx_program = dynamo_export(MNISTModel(), tensor_x)
assert onnx_program is not None
def test_trace_only_op_with_evaluator(self):
model_input = torch.tensor([[1.0, 2.0, 3.0], [1.0, 1.0, 2.0]])
class ArgminArgmaxModel(torch.nn.Module):
def forward(self, input):
return (
torch.argmin(input),
torch.argmax(input),
torch.argmin(input, keepdim=True),
torch.argmax(input, keepdim=True),
torch.argmin(input, dim=0, keepdim=True),
torch.argmax(input, dim=1, keepdim=True),
)
_ = dynamo_export(
ArgminArgmaxModel(), model_input, export_options=self.export_options
)
def test_multiple_outputs_op_with_evaluator(self):
class TopKModel(torch.nn.Module):
def forward(self, x):
values, _ = torch.topk(x, 3)
return torch.sum(values)
x = torch.arange(1.0, 6.0, requires_grad=True)
_ = dynamo_export(TopKModel(), x, export_options=self.export_options)
def test_dynamo_export_retains_readable_parameter_and_buffer_names(self):
class SubModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=False)
self.fc1 = nn.Linear(9216, 128, bias=False)
self.buffer = torch.nn.Buffer(torch.randn(1, 128))
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.conv2(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = F.max_pool2d(tensor_x, 2)
tensor_x = torch.flatten(tensor_x, 1)
tensor_x = self.fc1(tensor_x)
tensor_x = tensor_x + self.buffer
tensor_x = F.sigmoid(tensor_x)
return tensor_x
class MNISTModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=False)
self.submodule = SubModule()
self.fc2 = nn.Linear(128, 10, bias=False)
def forward(self, tensor_x: torch.Tensor):
tensor_x = self.conv1(tensor_x)
tensor_x = F.sigmoid(tensor_x)
tensor_x = self.submodule(tensor_x)
tensor_x = self.fc2(tensor_x)
output = F.log_softmax(tensor_x, dim=1)
return output
tensor_x = torch.rand((64, 1, 28, 28), dtype=torch.float32)
model = MNISTModel()
onnx_program = torch.onnx.dynamo_export(model, tensor_x)
model_proto = onnx_program.model_proto
# NOTE: initializers could be optimized away by onnx optimizer
onnx_initilizers = {init.name for init in model_proto.graph.initializer}
torch_weights = {*model.state_dict().keys()}
self.assertTrue(onnx_initilizers.issubset(torch_weights))
def test_fake_tensor_mode_simple(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, x):
out = self.linear(x)
return out
with torch.onnx.enable_fake_mode() as fake_context:
x = torch.rand(5, 2, 2)
model = Model()
export_options = ExportOptions(fake_context=fake_context)
onnx_program = torch.onnx.dynamo_export(
model, x, export_options=export_options
)
assert (
onnx_program is not None
), "ONNXProgram must be created on successful export"
onnx_program.apply_weights(Model().state_dict())
assert (
onnx_program.model_proto is not None
), "A model protobuf must be created on a successful export"
onnx.checker.check_model(onnx_program.model_proto, full_check=True)
def test_exported_program_torch_distributions_normal_Normal(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
self.normal = torch.distributions.normal.Normal(0, 1)
super().__init__()
def forward(self, x):
return self.normal.sample(x.shape)
x = torch.randn(2, 3)
with torch.no_grad():
exported_program = torch.export.export(Model(), args=(x,))
_ = torch.onnx.dynamo_export(
exported_program,
x,
)
def test_aten_div_no_opmath_type_promotion(self):
class Model(torch.nn.Module):
def forward(self, input):
return input / 2
model = Model()
input = torch.randn(3, 5, requires_grad=True, dtype=torch.float16)
model_proto = torch.onnx.dynamo_export(model, input).model_proto
model_proto = onnx.inliner.inline_local_functions(model_proto)
div_node = next(
node for node in model_proto.graph.node if node.op_type == "Div"
)
# The input of Div node should be the input of the model,
# with no Cast node in between.
self.assertEqual(div_node.input[0], model_proto.graph.input[0].name)
@common_utils.parametrize(
"float8_type",
[
common_utils.subtest(
torch.float8_e5m2,
name="torch_float8_e5m2",
),
common_utils.subtest(
torch.float8_e5m2fnuz,
name="torch_float8_e5m2fnuz",
),
common_utils.subtest(
torch.float8_e4m3fn,
name="torch_float8_e4m3fn",
),
common_utils.subtest(
torch.float8_e4m3fnuz,
name="torch_float8_e4m3fnuz",
),
],
)
def test_float8_support(self, float8_type):
class Float8Module(torch.nn.Module):
def forward(self, input: torch.Tensor):
input = input.to(float8_type)
return input + torch.tensor(1.0, dtype=float8_type)
# NOTE: shape inference error raised in optimizer due to unsupported dtype
with self.assertWarnsOnceRegex(
UserWarning, "ONNXScript optimizer failed. Skipping optimization."
):
_ = torch.onnx.dynamo_export(Float8Module(), torch.randn(1, 2, 3, 4))
def test_export_with_logging_logger(self):
logger = logging.getLogger(__name__)
class LoggingLoggerModule(torch.nn.Module):
def forward(self, x):
logger.log("abc")
return x + 1
input = torch.randn(2, 3)
model = LoggingLoggerModule()
_ = torch.onnx.dynamo_export(model, input)
def test_export_with_hf_logging_logger(self):
logger = transformers.utils.logging.get_logger(__name__)
class HFLoggingLoggerModule(torch.nn.Module):
def forward(self, x):
logger.warning_once("abc")
return x + 1
input = torch.randn(2, 3)
model = HFLoggingLoggerModule()
_ = torch.onnx.dynamo_export(model, input)
def test_checkpoint_cast(self):
model_id = "openai/whisper-large-v3"
feature_extractor = transformers.WhisperFeatureExtractor(feature_size=128)
batch = 4
with torch.onnx.enable_fake_mode() as ctx:
model = transformers.AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, low_cpu_mem_usage=False, use_safetensors=False
)
input = {
"input_features": torch.randn(
(
batch,
feature_extractor.feature_size,
feature_extractor.nb_max_frames,
)
),
"decoder_input_ids": torch.tensor([[1, 1]]) * 8001,
"return_dict": False,
}
export_options = torch.onnx.ExportOptions(fake_context=ctx)
onnx_program = torch.onnx.dynamo_export(
model, **input, export_options=export_options
)
with tempfile.NamedTemporaryFile(suffix=".onnx") as tmp_onnx_file:
onnx_program.save(
tmp_onnx_file.name,
keep_initializers_as_inputs=True,
include_initializers=False,
)
onnx.checker.check_model(tmp_onnx_file.name, full_check=True)
def test_export_with_print(self):
class PrintModule(torch.nn.Module):
def forward(self, x):
print("abc")
return x + 1
input = torch.randn(2, 3)
model = PrintModule()
_ = torch.onnx.dynamo_export(model, input)
if __name__ == "__main__":
common_utils.run_tests()