forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DistributionsHelper.h
329 lines (280 loc) · 12.2 KB
/
DistributionsHelper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#pragma once
#include <ATen/core/Array.h>
#include <ATen/core/TransformationHelper.h>
#include <c10/util/Half.h>
#include <c10/util/BFloat16.h>
#include <c10/util/MathConstants.h>
#include <c10/macros/Macros.h>
#include <cmath>
#include <limits>
#include <optional>
#include <type_traits>
/**
* Distributions kernel adapted from THRandom.cpp
* The kernels try to follow std::random distributions signature
* For instance: in ATen
* auto gen = at::detail::createCPUGenerator();
* at::uniform_real_distribution<double> uniform(0, 1);
* auto sample = uniform(gen.get());
*
* vs std::random
*
* std::mt19937 gen;
* std::uniform_real_distribution uniform(0, 1);
* auto sample = uniform(gen);
*/
namespace at {
namespace {
/**
* Samples a discrete uniform distribution in the range [base, base+range) of type T
*/
template <typename T>
struct uniform_int_from_to_distribution {
C10_HOST_DEVICE inline uniform_int_from_to_distribution(uint64_t range, int64_t base) : range_(range), base_(base) {}
template <typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator) {
if ((
std::is_same_v<T, int64_t> ||
std::is_same_v<T, double> ||
std::is_same_v<T, float> ||
std::is_same_v<T, at::BFloat16>) && range_ >= 1ULL << 32)
{
return transformation::uniform_int_from_to<T>(generator->random64(), range_, base_);
} else {
return transformation::uniform_int_from_to<T>(generator->random(), range_, base_);
}
}
private:
uint64_t range_;
int64_t base_;
};
/**
* Samples a discrete uniform distribution in the range [min_value(int64_t), max_value(int64_t)]
*/
template <typename T>
struct uniform_int_full_range_distribution {
template <typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator) {
return transformation::uniform_int_full_range<T>(generator->random64());
}
};
/**
* Samples a discrete uniform distribution in the range [0, max_value(T)] for integral types
* and [0, 2^mantissa] for floating-point types.
*/
template <typename T>
struct uniform_int_distribution {
template <typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator) {
if constexpr (std::is_same_v<T, double> || std::is_same_v<T, int64_t>) {
return transformation::uniform_int<T>(generator->random64());
} else {
return transformation::uniform_int<T>(generator->random());
}
}
};
/**
* Samples a uniform distribution in the range [from, to) of type T
*/
template <typename T>
struct uniform_real_distribution {
C10_HOST_DEVICE inline uniform_real_distribution(T from, T to) : from_(from), to_(to) {
TORCH_CHECK_IF_NOT_ON_CUDA(from <= to);
TORCH_CHECK_IF_NOT_ON_CUDA(to - from <= std::numeric_limits<T>::max());
}
template <typename RNG>
C10_HOST_DEVICE inline dist_acctype<T> operator()(RNG generator){
if constexpr (std::is_same_v<T, double>) {
return transformation::uniform_real<T>(generator->random64(), from_, to_);
} else {
return transformation::uniform_real<T>(generator->random(), from_, to_);
}
}
private:
T from_;
T to_;
};
// The SFINAE checks introduced in #39816 looks overcomplicated and must revisited
// https://github.com/pytorch/pytorch/issues/40052
#define DISTRIBUTION_HELPER_GENERATE_HAS_MEMBER(member) \
template <typename T> \
struct has_member_##member \
{ \
typedef char yes; \
typedef long no; \
template <typename U> static yes test(decltype(&U::member)); \
template <typename U> static no test(...); \
static constexpr bool value = sizeof(test<T>(0)) == sizeof(yes); \
}
DISTRIBUTION_HELPER_GENERATE_HAS_MEMBER(next_double_normal_sample);
DISTRIBUTION_HELPER_GENERATE_HAS_MEMBER(set_next_double_normal_sample);
DISTRIBUTION_HELPER_GENERATE_HAS_MEMBER(next_float_normal_sample);
DISTRIBUTION_HELPER_GENERATE_HAS_MEMBER(set_next_float_normal_sample);
#define DISTRIBUTION_HELPER_GENERATE_NEXT_NORMAL_METHODS(TYPE) \
\
template <typename RNG, typename ret_type, \
typename std::enable_if_t<( \
has_member_next_##TYPE##_normal_sample<RNG>::value && \
has_member_set_next_##TYPE##_normal_sample<RNG>::value \
), int> = 0> \
C10_HOST_DEVICE inline bool maybe_get_next_##TYPE##_normal_sample(RNG* generator, ret_type* ret) { \
if (generator->next_##TYPE##_normal_sample()) { \
*ret = *(generator->next_##TYPE##_normal_sample()); \
generator->set_next_##TYPE##_normal_sample(std::optional<TYPE>()); \
return true; \
} \
return false; \
} \
\
template <typename RNG, typename ret_type, \
typename std::enable_if_t<( \
!has_member_next_##TYPE##_normal_sample<RNG>::value || \
!has_member_set_next_##TYPE##_normal_sample<RNG>::value \
), int> = 0> \
C10_HOST_DEVICE inline bool maybe_get_next_##TYPE##_normal_sample(RNG* /*generator*/, ret_type* /*ret*/) { \
return false; \
} \
\
template <typename RNG, typename ret_type, \
typename std::enable_if_t<( \
has_member_set_next_##TYPE##_normal_sample<RNG>::value \
), int> = 0> \
C10_HOST_DEVICE inline void maybe_set_next_##TYPE##_normal_sample(RNG* generator, ret_type cache) { \
generator->set_next_##TYPE##_normal_sample(cache); \
} \
\
template <typename RNG, typename ret_type, \
typename std::enable_if_t<( \
!has_member_set_next_##TYPE##_normal_sample<RNG>::value \
), int> = 0> \
C10_HOST_DEVICE inline void maybe_set_next_##TYPE##_normal_sample(RNG* /*generator*/, ret_type /*cache*/) { \
}
DISTRIBUTION_HELPER_GENERATE_NEXT_NORMAL_METHODS(double)
DISTRIBUTION_HELPER_GENERATE_NEXT_NORMAL_METHODS(float)
/**
* Samples a normal distribution using the Box-Muller method
* Takes mean and standard deviation as inputs
* Note that Box-muller method returns two samples at a time.
* Hence, we cache the "next" sample in the CPUGeneratorImpl class.
*/
template <typename T>
struct normal_distribution {
C10_HOST_DEVICE inline normal_distribution(T mean_in, T stdv_in) : mean(mean_in), stdv(stdv_in) {
TORCH_CHECK_IF_NOT_ON_CUDA(stdv_in >= 0, "stdv_in must be positive: ", stdv_in);
}
template <typename RNG>
C10_HOST_DEVICE inline dist_acctype<T> operator()(RNG generator){
dist_acctype<T> ret;
// return cached values if available
if constexpr (std::is_same_v<T, double>) {
if (maybe_get_next_double_normal_sample(generator, &ret)) {
return transformation::normal(ret, mean, stdv);
}
} else {
if (maybe_get_next_float_normal_sample(generator, &ret)) {
return transformation::normal(ret, mean, stdv);
}
}
// otherwise generate new normal values
uniform_real_distribution<T> uniform(0.0, 1.0);
const dist_acctype<T> u1 = uniform(generator);
const dist_acctype<T> u2 = uniform(generator);
const dist_acctype<T> r = ::sqrt(static_cast<T>(-2.0) * ::log1p(-u2));
const dist_acctype<T> theta = static_cast<T>(2.0) * c10::pi<T> * u1;
if constexpr (std::is_same_v<T, double>) {
maybe_set_next_double_normal_sample(generator, r * ::sin(theta));
} else {
maybe_set_next_float_normal_sample(generator, r * ::sin(theta));
}
ret = r * ::cos(theta);
return transformation::normal(ret, mean, stdv);
}
private:
T mean;
T stdv;
};
template <typename T>
struct DiscreteDistributionType { using type = float; };
template <> struct DiscreteDistributionType<double> { using type = double; };
/**
* Samples a bernoulli distribution given a probability input
*/
template <typename T>
struct bernoulli_distribution {
C10_HOST_DEVICE inline bernoulli_distribution(T p_in) : p(p_in) {
TORCH_CHECK_IF_NOT_ON_CUDA(p_in >= 0 && p_in <= 1);
}
template <typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
return transformation::bernoulli<T>(uniform(generator), p);
}
private:
T p;
};
/**
* Samples a geometric distribution given a probability input
*/
template <typename T>
struct geometric_distribution {
C10_HOST_DEVICE inline geometric_distribution(T p_in) : p(p_in) {
TORCH_CHECK_IF_NOT_ON_CUDA(p_in > 0 && p_in < 1);
}
template <typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
return transformation::geometric<T>(uniform(generator), p);
}
private:
T p;
};
/**
* Samples an exponential distribution given a lambda input
*/
template <typename T>
struct exponential_distribution {
C10_HOST_DEVICE inline exponential_distribution(T lambda_in) : lambda(lambda_in) {}
template <typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
return transformation::exponential<T>(uniform(generator), lambda);
}
private:
T lambda;
};
/**
* Samples a cauchy distribution given median and sigma as inputs
*/
template <typename T>
struct cauchy_distribution {
C10_HOST_DEVICE inline cauchy_distribution(T median_in, T sigma_in) : median(median_in), sigma(sigma_in) {}
template <typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator) {
uniform_real_distribution<T> uniform(0.0, 1.0);
return transformation::cauchy<T>(uniform(generator), median, sigma);
}
private:
T median;
T sigma;
};
/**
* Samples a lognormal distribution
* Takes mean and standard deviation as inputs
* Outputs two samples at a time
*/
template <typename T>
struct lognormal_distribution {
C10_HOST_DEVICE inline lognormal_distribution(T mean_in, T stdv_in) : mean(mean_in), stdv(stdv_in) {
TORCH_CHECK_IF_NOT_ON_CUDA(stdv_in > 0);
}
template<typename RNG>
C10_HOST_DEVICE inline T operator()(RNG generator){
normal_distribution<T> normal(mean, stdv);
return transformation::log_normal<T>(normal(generator));
}
private:
T mean;
T stdv;
};
}
} // namespace at