forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 1
/
blip2-opt2.7b_8xb16_vqa.py
95 lines (88 loc) · 2.34 KB
/
blip2-opt2.7b_8xb16_vqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
_base_ = [
'../_base_/datasets/coco_vqa.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='Blip2VQA',
tokenizer=dict(
type='AutoTokenizer', name_or_path='facebook/opt-2.7b',
use_fast=False),
vision_backbone=dict(
type='BEiTViT',
# eva-g without the final layer
arch=dict(
embed_dims=1408,
num_layers=39,
num_heads=16,
feedforward_channels=6144,
),
img_size=364,
patch_size=14,
out_indices=-2,
layer_scale_init_value=0.0,
use_abs_pos_emb=True,
use_rel_pos_bias=False,
frozen_stages=39,
final_norm=False,
use_shared_rel_pos_bias=False,
out_type='raw'),
text_backbone=dict(
type='OPTForCausalLM', name_or_path='facebook/opt-2.7b'),
multimodal_backbone=dict(
type='Qformer',
model_style='bert-base-uncased',
vision_model_width=1408,
add_cross_attention=True,
cross_attention_freq=2,
num_query_token=32),
vision_neck=dict(
type='LinearClsHead',
in_channels=768,
num_classes=2560,
),
prompt='Question: {} Answer:',
max_txt_len=10)
# data settings
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224),
dict(
type='PackInputs',
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
meta_keys=['question_id', 'image_id'],
),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale=(224, 224),
interpolation='bicubic',
backend='pillow'),
dict(
type='CleanCaption',
keys=['question'],
),
dict(
type='PackInputs',
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
meta_keys=['question_id', 'image_id'],
),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
# schedule settings
optim_wrapper = dict(optimizer=dict(type='AdamW', lr=1e-5, weight_decay=0.05))
param_scheduler = [
dict(
type='CosineAnnealingLR',
by_epoch=True,
begin=0,
end=10,
)
]
train_cfg = dict(max_epochs=10)
val_cfg = dict()
test_cfg = dict()