From 7070116260540a2e2d3df8e76102fb9789901399 Mon Sep 17 00:00:00 2001 From: Shuhei Iitsuka Date: Sat, 14 Dec 2024 01:02:21 +0900 Subject: [PATCH 1/3] fix: Change HEY_LLM's default location from asia-northeast1 to us-central1 (#1529) # Description --------- Co-authored-by: code-review-assist[bot] <182814678+code-review-assist[bot]@users.noreply.github.com> --- vision/use-cases/hey_llm/src/main.ts | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/vision/use-cases/hey_llm/src/main.ts b/vision/use-cases/hey_llm/src/main.ts index 4b63eaab3c3..9f83ae341a3 100644 --- a/vision/use-cases/hey_llm/src/main.ts +++ b/vision/use-cases/hey_llm/src/main.ts @@ -19,8 +19,9 @@ import type {GenerateContentResponse} from '@google-cloud/vertexai'; /** * Vertex AI location. Change this const if you want to use another location. + * us-central1 is chosen as default to currently provide the most model availability. See [Vertex AI locations documentation](https://cloud.google.com/vertex-ai/docs/general/locations) for more details. */ -const LOCATION = 'asia-northeast1'; +const LOCATION = 'us-central1'; /** * Default Gemini model to use. From 076464885ddf63d57d91cac830ff83f774d5c877 Mon Sep 17 00:00:00 2001 From: Holt Skinner Date: Fri, 13 Dec 2024 10:06:13 -0600 Subject: [PATCH 2/3] fix: formatting --- ...tro_research_multi_agents_gemini_2_0.ipynb | 5152 +++++++++-------- .../code-execution/intro_code_execution.ipynb | 3336 ++++++----- .../real_time_rag_bank_loans_gemini_2_0.ipynb | 1115 ++-- .../real_time_rag_retail_gemini_2_0.ipynb | 3654 ++++++------ .../tutorial_langgraph_rag_agent.ipynb | 2258 ++++---- ...ning_using_gemini_on_multiple_images.ipynb | 157 +- ...upervised_finetuning_using_gemini_qa.ipynb | 183 +- 7 files changed, 7899 insertions(+), 7956 deletions(-) diff --git a/gemini/agents/research-multi-agents/intro_research_multi_agents_gemini_2_0.ipynb b/gemini/agents/research-multi-agents/intro_research_multi_agents_gemini_2_0.ipynb index 281d745e573..f6201082e09 100644 --- a/gemini/agents/research-multi-agents/intro_research_multi_agents_gemini_2_0.ipynb +++ b/gemini/agents/research-multi-agents/intro_research_multi_agents_gemini_2_0.ipynb @@ -1,2576 +1,2580 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "jJZw3h2myqls" - }, - "outputs": [], - "source": [ - "# Copyright 2024 Google LLC\n", - "#\n", - "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", - "# you may not use this file except in compliance with the License.\n", - "# You may obtain a copy of the License at\n", - "#\n", - "# https://www.apache.org/licenses/LICENSE-2.0\n", - "#\n", - "# Unless required by applicable law or agreed to in writing, software\n", - "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", - "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", - "# See the License for the specific language governing permissions and\n", - "# limitations under the License." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qGrXr6X4yXG5" - }, - "source": [ - "# Building a Research Multi Agent System - a Design Pattern Overview with Gemini 2.0\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \"Google
Open in Colab\n", - "
\n", - "
\n", - " \n", - " \"Google
Open in Colab Enterprise\n", - "
\n", - "
\n", - " \n", - " \"Vertex
Open in Vertex AI Workbench\n", - "
\n", - "
\n", - " \n", - " \"GitHub
View on GitHub\n", - "
\n", - "
\n", - "\n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "KJWqTM-CS0qC" - }, - "source": [ - "Share to:\n", - "\n", - "\n", - " \"LinkedIn\n", - "\n", - "\n", - "\n", - " \"Bluesky\n", - "\n", - "\n", - "\n", - " \"X\n", - "\n", - "\n", - "\n", - " \"Reddit\n", - "\n", - "\n", - "\n", - " \"Facebook\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "EnoVKOgny2ZM" - }, - "source": [ - "| | |\n", - "|-|-|\n", - "| Author(s) | [Lavi Nigam](https://github.com/lavinigam-gcp)|" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CSt0qUR2Sg61" - }, - "source": [ - "
\n", - "\n", - "⚠️ Gemini 2.0 Flash (Model ID: gemini-2.0-flash-exp) and the Google Gen AI SDK are currently experimental and output can vary ⚠️\n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IDDZhYrClJQK" - }, - "source": [ - "## Overview\n", - "\n", - "In today's rapidly evolving technology landscape, businesses frequently need to conduct comprehensive research and analysis that spans multiple data sources, requires complex reasoning, and demands clear actionable insights. Whether it's market research, competitive analysis, urban planning, or scientific research, the challenges remain similar: how to efficiently gather, process, and synthesize information while ensuring accuracy and scalability.\n", - "\n", - "In this notebook, as a developer, you'll discover how to create intelligent agents and multi-agent systems using Vertex AI Gemini 2.0.\n", - "\n", - "\n", - "### Learning Through Implementation\n", - "\n", - "Rather than using existing frameworks, we'll build our multi-agent system from scratch. This approach offers several benefits:\n", - "\n", - "1. **Core Understanding**: Building from the ground up helps you understand the fundamental principles of multi-agent systems\n", - "2. **Design Pattern Mastery**: Learn reusable patterns that work across different domains and technologies\n", - "3. **Custom Control**: Gain the ability to fine-tune every aspect of your system\n", - "4. **Debugging Confidence**: Understanding the internals makes troubleshooting much more straightforward\n", - "\n", - "While there are excellent open-source frameworks available for building multi-agent systems, such as [AutoGen](https://github.com/microsoft/autogen), [CrewAI](https://github.com/crewAIInc/crewAI), [PydanticAI](https://github.com/pydantic/pydantic-ai), and [LangGraph](https://github.com/langchain-ai/langgraph), we believe that a from-scratch approach in this notebook will provide a deeper understanding of the underlying concepts and mechanics.\n", - "\n", - "The open-source frameworks offers many valuable features like conditional routing, annotated global state, checkpointing, and more.\n", - "\n", - "Once you've grasped the fundamentals from this notebook, exploring these frameworks can unlock even more advanced capabilities and streamline your development process.\n", - "\n", - "\n", - "### Key Technical Components\n", - "\n", - "Our implementation showcases essential Vertex AI ***Gemini 2.0*** capabilities:\n", - "\n", - "1. **Function Calling**: Structure agent behaviors and interactions\n", - "2. **Structured Output**: Generate consistent, validatable data\n", - "3. **Async Operations**: Handle parallel agent tasks efficiently\n", - "4. **Google Search Integration**: Ground agent reasoning in real-world data\n", - "\n", - "\n", - "### To get started, let's explore some key questions:\n", - "\n", - "* What exactly is an agent, and how does it differ from a simple LLM call?\n", - "* How can agents use tools to achieve their goals?\n", - "* And what possibilities emerge when multiple agents work together in a multi-agent system?\n", - "\n", - "\n", - "#### **LLM Execution (The Foundation)**\n", - "\n", - "Think of an LLM as a powerful prediction engine. Given some input text (a prompt), it predicts what comes next, generating text, translating languages, writing different kinds of creative content, and answering your questions in an informative way. However, on its own, it simply reacts to your input and provides an output. It doesn't have a sense of purpose or the ability to act independently.\n", - "\n", - "**Example:** An LLM is like a super smart travel guidebook. You ask it \"What are some popular attractions in Paris?\" and it gives you a list. It provides information but doesn't actually do anything.\n", - "\n", - "![title](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/simple-llm-flow.png)\n", - "\n", - "#### **Agent (LLM with a Purpose)**\n", - "\n", - "Now, imagine giving that prediction engine some goals and the ability to act on them. This is essentially what an agent is. It's an LLM wrapped with extra code that allows it to:\n", - "\n", - "* **Understand the goal:** \"Book a flight to London.\"\n", - "* **Break it down into steps:** Search for flights, compare prices, choose a date, make a booking.\n", - "* **Use tools to achieve those steps:** Access a flight booking API, a web browser, or even interact with a human.\n", - "\n", - "**Example:** An agent is like a personal travel assistant. You tell it \"Plan a trip to Paris for me next month.\" The agent uses its LLM \"brain\" to understand what that means, then uses tools like flight booking websites, hotel search engines, and even weather apps to create an itinerary.\n", - "\n", - "\n", - "![title](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/agent-flow.png)\n", - "\n", - "#### **Multi-Agent (Teamwork Makes the Dream Work)**\n", - "\n", - "Now, imagine several of these specialized agents working together, each with its own skills and responsibilities. That's a multi-agent system. They can communicate, share information, and coordinate their actions to achieve a complex goal.\n", - "\n", - "**Example:** Now imagine a team of specialized travel agents working together. One agent books the flights, another finds the perfect hotel, a third arranges tours and activities. They communicate and coordinate to create an amazing Paris trip.\n", - "\n", - "![title](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/multi-agent-flow.png)\n", - "\n", - "\n", - "---\n", - "\n", - "Now that you have learned the fundamentals, moving forward, you'll learn the core design patterns behind agents and multi-agent systems. We'll demonstrate its capabilities through a practical use case - Electric Vehicle (EV) infrastructure expansion analysis - while keeping the core architecture adaptable for any research-intensive application." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_ItHSSWRBG_D" - }, - "source": [ - "## Objective\n", - "\n", - "This notebook will guide you through building a research-focused multi-agent system. Here's what you'll learn:\n", - "\n", - "* **A design pattern for creating these systems:** We'll introduce a reusable structure for building multi-agent systems geared towards research tasks.\n", - "* **A practical example: EV Research Agent:** See how we applied the design pattern to create an agent specializing in Electronic Vehicle research. This agent can answer complex queries like \"EV Charging Station Expansion in [City Name]\" by planning, researching, and generating a comprehensive report.\n", - "* **Component integration and orchestration:** Understand how individual components within the agent work together seamlessly to produce the final output." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DKeB9J-EPFeQ" - }, - "source": [ - "## Our Use Case: EV Infrastructure Analysis\n", - "\n", - "To demonstrate the power and flexibility of our Research Multi-Agent system, we'll tackle a real-world challenge: analyzing optimal locations for expanding Electric Vehicle (EV) charging infrastructure in cities across the United States.\n", - "\n", - "### The Challenge\n", - "\n", - "Urban planners and EV infrastructure companies face complex decisions when expanding charging networks:\n", - "- Understanding population density and movement patterns\n", - "- Analyzing existing charging infrastructure\n", - "- Evaluating proximity to major highways and transit routes\n", - "- Considering local demographics and economic factors\n", - "- Assessing grid capacity and infrastructure readiness\n", - "\n", - "### Our Solution\n", - "\n", - "We'll build a research system that:\n", - "1. Accepts queries about specific cities or regions\n", - "2. Gathers data from multiple sources (OpenStreetMap, NREL API)\n", - "3. Analyzes infrastructure patterns and gaps\n", - "4. Generates actionable insights with citations\n", - "5. Visualizes findings for better decision-making\n", - "\n", - "Simply, A team of research agents armed with data and search engines, technical know how, coordinated with a common goal across specialized skillsets and tasks.\n", - "\n", - "\n", - "While we focus on EV infrastructure, the patterns and approaches we develop can be applied to any research-intensive domain requiring similar data gathering, analysis, and insight generation capabilities." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fAlzMGTdGhO-" - }, - "source": [ - "## Gemini 2.0" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PkgSZ0wTzFU7" - }, - "source": [ - "## Overview\n", - "\n", - "[Gemini 2.0 Flash](https://cloud.google.com/vertex-ai/generative-ai/docs/gemini-v2) is a new multimodal generative ai model from the Gemini family developed by [Google DeepMind](https://deepmind.google/). It now available as an experimental preview release through the Gemini API in Vertex AI and Vertex AI Studio. The model introduces new features and enhanced core capabilities:\n", - "\n", - "- Multimodal Live API: This new API helps you create real-time vision and audio streaming applications with tool use.\n", - "- Speed and performance: Gemini 2.0 Flash is the fastest model in the industry, with a 3x improvement in time to first token (TTFT) over 1.5 Flash.\n", - "- Quality: The model maintains quality comparable to larger models like Gemini 1.5 Pro and GPT-4o.\n", - "- Improved agentic experiences: Gemini 2.0 delivers improvements to multimodal understanding, coding, complex instruction following, and function calling.\n", - "- New Modalities: Gemini 2.0 introduces native image generation and controllable text-to-speech capabilities, enabling image editing, localized artwork creation, and expressive storytelling.\n", - "- To support the new model, we're also shipping an all new SDK that supports simple migration between the Gemini Developer API and the Gemini API in Vertex AI." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "90JzDyyRzRRU" - }, - "source": [ - "## Getting Started" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qE48lDlSzf81" - }, - "source": [ - "### Install Google Gen AI SDK for Python" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "db8O7nh0zw_B" - }, - "outputs": [], - "source": [ - "# Downloading Google Gen AI SDK (experimental)\n", - "%pip install google-genai\n", - "\n", - "# Libraries required for saving markdowns as external files.\n", - "! apt install pandoc\n", - "! apt install libreoffice" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2jCwQQxO0WVx" - }, - "source": [ - "### Restart runtime\n", - "\n", - "To use the newly installed packages in this Jupyter runtime, you must restart the runtime. You can do this by running the cell below, which restarts the current kernel." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "sDXGN26_0Y0R" - }, - "outputs": [], - "source": [ - "import sys\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " import IPython\n", - "\n", - " app = IPython.Application.instance()\n", - " app.kernel.do_shutdown(True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IGcO4hXDzzuH" - }, - "source": [ - "### Authenticate your notebook environment (Colab only)\n", - "\n", - "If you are running this notebook on Google Colab, run the cell below to authenticate your environment." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "rbm_CqxKz1b6" - }, - "outputs": [], - "source": [ - "import sys\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " from google.colab import auth\n", - "\n", - " auth.authenticate_user()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ES6LwuBr0GSD" - }, - "source": [ - "### Connect to a generative AI API service\n", - "\n", - "Google Gen AI APIs and models including Gemini are available in the following two API services:\n", - "\n", - "- **[Google AI for Developers](https://ai.google.dev/gemini-api/docs)**: Experiment, prototype, and deploy small projects.\n", - "- **[Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/overview)**: Build enterprise-ready projects on Google Cloud.\n", - "\n", - "The Google Gen AI SDK provides a unified interface to these two API services.\n", - "\n", - "This notebook shows how to use the Google Gen AI SDK with the Gemini API in Vertex AI." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pMegXbM90JEk" - }, - "source": [ - "### Set Google Cloud project information\n", - "\n", - "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", - "\n", - "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "4mrov4hC0OZ-" - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "PROJECT_ID = \"[your-project-id]\" # @param {type: \"string\", placeholder: \"[your-project-id]\", isTemplate: true}\n", - "if not PROJECT_ID or PROJECT_ID == \"[your-project-id]\":\n", - " PROJECT_ID = str(os.environ.get(\"GOOGLE_CLOUD_PROJECT\"))\n", - "\n", - "LOCATION = os.environ.get(\"GOOGLE_CLOUD_REGION\", \"us-central1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Mp0umgC00TMZ" - }, - "source": [ - "### Import libraries\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "5FzK2TuA0SYe" - }, - "outputs": [], - "source": [ - "from google import genai\n", - "from rich import print as rich_print" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "C2iaXGH21j_U" - }, - "source": [ - "### Create Gen AI Client" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "maA6ZXozxphR" - }, - "outputs": [], - "source": [ - "client = genai.Client(vertexai=True, project=PROJECT_ID, location=LOCATION)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "B70wFwV61uiK" - }, - "source": [ - "### Load the Gemini 2.0 Flash model\n", - "\n", - "To learn more about all [Gemini models on Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-models)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "9qipKyrW1vG9" - }, - "outputs": [], - "source": [ - "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type: \"string\"}\n", - "MODEL_ID_Flash = \"gemini-1.5-flash-002\" # For control generation for grounding with google search as a Tool" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oMdna9zsJKx7" - }, - "source": [ - "To access comprehensive EV infrastructure data, you'll need an API key from the National Renewable Energy Laboratory (NREL). This key allows you to retrieve detailed information about EV charging stations, which is crucial for the `DataGatherAgent` to function correctly.\n", - "\n", - "**Here's how to get your NREL API key:**\n", - "\n", - "1. **Sign up:** Visit the [NREL Developer Network signup page](https://developer.nrel.gov/signup/).\n", - "2. **Email Confirmation:** You'll receive an email with your API key.\n", - "3. **Wait Time:** It might take some time to receive the email, so please be patient.\n", - "4. **Check Spam:** Make sure to check your spam or junk folder if you don't see the email in your inbox.\n", - "\n", - "**Enter your API key in the following code cell:**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "HGKLVzF4JLJS" - }, - "outputs": [], - "source": [ - "NREL_API_KEY = \"[your-nrel-api-key]\" # @param {type: \"string\", placeholder: \"[your-nrel-api-key]\", isTemplate: true}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "nscpdicqtHa8" - }, - "source": [ - "### Download utils" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IyWeX1ZqbVMZ" - }, - "source": [ - "To streamline the process and keep our focus on the design, utility, and output of the multi-agent system, we've placed the core code for the `ev_agent` in an external location. This includes both the `agent_handler` and `api_handler`, which contain the main logic. However, we're now downloading it to our current environment to ensure we can import the necessary functions for our analysis:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "P4cULOECtKeU" - }, - "outputs": [], - "source": [ - "!git clone https://github.com/GoogleCloudPlatform/generative-ai.git \\\n", - " && cp -r generative-ai/gemini/agents/research-multi-agents/ev_agent ./ \\\n", - " && rm -rf generative-ai" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ul4QvAKDbc6t" - }, - "source": [ - "This makes the code, including all the agents and API handlers, readily available for use. You can always explore the downloaded code and make changes as you see fit. This approach allows us to keep the notebook cleaner and focused on the higher-level aspects of the system while still providing access to the underlying implementation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "cellView": "form", - "id": "UYMXmaWny0JH" - }, - "outputs": [], - "source": [ - "# @title Saving Report (DOCX/PDF) Helper Functions\n", - "\n", - "import os\n", - "import subprocess\n", - "\n", - "\n", - "def convert_markdown(markdown_text, output_path, filename, file_type):\n", - " \"\"\"\n", - " Converts markdown text to DOCX or PDF using pandoc.\n", - "\n", - " Args:\n", - " markdown_text: The markdown text to convert.\n", - " output_path: The directory where the output file should be saved.\n", - " filename: The name of the output file (without extension).\n", - " file_type: The desired output file type ('docx' or 'pdf').\n", - "\n", - " Raises:\n", - " ValueError: If an invalid file type is specified.\n", - " FileNotFoundError: If pandoc is not found in the system's PATH.\n", - " subprocess.CalledProcessError: If the pandoc command fails.\n", - " OSError: If there is an error during file operations.\n", - " \"\"\"\n", - " os.makedirs(output_path, exist_ok=True)\n", - "\n", - " if file_type not in [\"docx\", \"pdf\"]:\n", - " raise ValueError(\"Invalid file type specified. Must be 'docx' or 'pdf'.\")\n", - "\n", - " docx_filepath = os.path.join(output_path, f\"{filename}.docx\")\n", - "\n", - " try:\n", - " # Check if pandoc is available\n", - " subprocess.run([\"pandoc\", \"--version\"], capture_output=True, check=True)\n", - "\n", - " # Convert Markdown to DOCX\n", - " subprocess.run(\n", - " [\"pandoc\", \"-f\", \"markdown\", \"-t\", \"docx\", \"-o\", docx_filepath],\n", - " input=markdown_text,\n", - " encoding=\"utf-8\",\n", - " check=True,\n", - " )\n", - " # print(f\"DOCX file saved to: {docx_filepath}\")\n", - "\n", - " if file_type == \"pdf\":\n", - " pdf_filepath = os.path.join(output_path, f\"{filename}.pdf\")\n", - " # Convert DOCX to PDF (using libreoffice on Colab)\n", - " subprocess.run(\n", - " [\n", - " \"libreoffice\",\n", - " \"--headless\",\n", - " \"--convert-to\",\n", - " \"pdf\",\n", - " \"--outdir\",\n", - " output_path,\n", - " docx_filepath,\n", - " ],\n", - " check=True,\n", - " )\n", - " print(f\"PDF file saved to: {pdf_filepath}\")\n", - "\n", - " # Delete the temporary DOCX file\n", - " os.remove(docx_filepath)\n", - " print(f\"Temporary DOCX file deleted: {docx_filepath}\")\n", - "\n", - " except FileNotFoundError:\n", - " raise FileNotFoundError(\n", - " \"pandoc not found. Please ensure it is installed and in your system's PATH.\"\n", - " )\n", - " except subprocess.CalledProcessError as e:\n", - " raise subprocess.CalledProcessError(\n", - " e.returncode, e.cmd, output=e.output, stderr=e.stderr\n", - " )\n", - " except OSError as e:\n", - " raise OSError(f\"Error during file operations: {e}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DUHn-HALvWuB" - }, - "source": [ - "# Gemini-Powered EV Research: A Multi-Agent Approach\n", - "\n", - "This section outlines a powerful multi-agent system designed for in-depth research on Electric Vehicle (EV) charging infrastructure in US cities. Built entirely using Gemini 2.0, this system showcases a streamlined approach to complex research tasks.\n", - "\n", - "**Core Idea:** We've assembled a team of specialized AI agents, each using Gemini 2.0, to automate and enhance the research process. This approach leverages Gemini's strengths in:\n", - "\n", - "* **Function Calling:** Enables agents to trigger specific actions and tools facilitating seamless interaction.\n", - "* **Structured Generations:** Ensures consistent, predictable output from each agent, simplifying inter-agent communication.\n", - "* **Async Model Calling:** Allows agents to work concurrently, significantly speeding up research.\n", - "* **Google Search Grounding:** Keeps the research grounded in real-world data and up-to-date information.\n", - "\n", - "## System Architecture\n", - "\n", - "At the heart of our system lies a clear, modular architecture, visualized below:\n", - "\n", - "![research-multi-agent-desing-pattern](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/multi-agent-design-pattern.png)\n", - "**Agent Breakdown:**\n", - "\n", - "The diagram illustrates the core components of our system:\n", - "\n", - "* **User (Pink):** Initiates the research process by submitting a query.\n", - "* **ExecutionAgent (Pink):** The central orchestrator, managing the workflow, handling communication between agents, and ensuring smooth execution. It also handles error recovery, such as retries and alternative execution paths, to maintain system robustness.\n", - "* **Core Research Agents (Green):**\n", - " * **PlanningAgent:** The strategist, converting the user's query into a detailed, step-by-step research plan.\n", - " * **QueryAnalysisAgent:** The interpreter, determining the specific data required and the desired output format (e.g., raw data, report, visualization).\n", - " * **DataGatherAgent:** The collector, responsible for fetching data from external APIs. It leverages Gemini's search grounding to ensure data accuracy and relevance. This agent is designed to be adaptable to various data sources.\n", - " * **ReportAgent:** The writer, transforming raw data into a comprehensive, well-structured report. It can incorporate search-based grounding for validation and supports multiple output formats.\n", - " * **VisualizeAgent:** The illustrator, creating clear and insightful visualizations (charts, graphs) to represent the findings. It adapts its output based on data types and user requirements.\n", - "* **Research Output (Pink):** The final, comprehensive research product delivered to the user.\n", - "* **External Systems (Blue):**\n", - " * **External APIs:** Data sources for the `DataGatherAgent`.\n", - " * **Visualization Tools:** Libraries used by the `VisualizeAgent`.\n", - " * **Document Tools:** Resources utilized by the `ReportAgent` for formatting and presentation.\n", - "\n", - "\n", - "**Benefits of the Gemini-Powered Approach:**\n", - "\n", - "* **Simplified Development:** Build the entire system using a single, powerful API – Gemini.\n", - "* **Native Functionality:** Leverage Gemini's built-in features for seamless agent interaction and consistent output.\n", - "* **Enhanced Performance:** Async model calling enables parallel processing, accelerating the research process.\n", - "* **Real-World Relevance:** Google Search grounding ensures your research is always based on the latest information.\n", - "* **Scalability and Flexibility:**\n", - " * Easily add new agents for specialized tasks (e.g., sentiment analysis of EV adoption).\n", - " * Modify existing agents to adapt to new data sources or research requirements.\n", - " * The modular design allows independent scaling of different system components." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "W9mEtr_yw0vZ" - }, - "source": [ - "## Exploring the EV Agent in Action\n", - "\n", - "Now that you've seen the architecture, let's dive into the practical side and see how our EV Research Agent works. We'll explore two ways to interact with it:\n", - "\n", - "**1. The \"Black Box\" Experience: Witnessing the Magic**\n", - "\n", - "Imagine the entire multi-agent system as a single, powerful unit – the `EVAgent`. In this section, we'll treat it as a \"black box.\" You'll simply send it a research query, and watch as it works behind the scenes, delivering a comprehensive report in about 1-2 minutes.\n", - "\n", - "We'll try two exciting examples:\n", - "\n", - "* **Example 1: Basic Report Generation:** See how the agent generates a structured report with predefined sections based on your query.\n", - "* **Example 2: Google Search Enhanced Report:** Observe how the agent leverages Google Search to enrich the report with citations, deeper insights, and up-to-the-minute information.\n", - "\n", - "**2. Deconstructing the Process: A Step-by-Step Journey**\n", - "\n", - "Ready to peek under the hood? In this section, we'll dissect the agent's inner workings. You'll follow along as your query is processed through each stage of the research pipeline:\n", - "\n", - "* **Planning:** Witness how the `PlanningAgent` crafts the initial research strategy. *We'll briefly touch upon the code behind this, highlighting the input it receives and the plan it outputs, along with the data models that structure this communication.*\n", - "* **Reasoning:** See how the `QueryAnalysisAgent` determines the necessary data and output format. *Again, we'll peek at the underlying code to understand its input, output, and the data models involved.*\n", - "* **Tool Selection:** Observe how the `DataGatherAgent` chooses the right APIs and leverages Google Search. *We'll examine the code's role in this selection process, focusing on the data models that guide its choices.*\n", - "* **Coordination:** Understand how the `ExecutionAgent` orchestrates the entire process. *We will shed some light on the code that enables this coordination, emphasizing the data models as the communication backbone between agents.*\n", - "* **Decision-Making:** Learn how the agents make choices at each step, leading to the final output.\n", - "\n", - "You'll see firsthand how these individual steps, powered by their underlying logic and data models, contribute to the final, polished report and visualizations.\n", - "\n", - "**A Note on Code Structure:**\n", - "\n", - "To keep this exploration clear and focused, the detailed code for each agent is neatly organized in separate files. **We are choosing not to put code directly in this notebook as it will make it unnecessarily complex.** So when we go through step by step, think of each agent as a black box. We will, however briefly talk about the design pattern it follows, what the data model it uses behind the scene to produce an output. Once you understand that, you can easily refer to the code from scratch or use any open-source library to implement a similar agent. Think of them as behind-the-scenes appendices you can explore later to dive deep into the implementation details of each agent.\n", - "\n", - "**The primary goal here is to showcase the power of agent collaboration with Gemini 2.0.** You'll witness how our team of Gemini-powered agents works together seamlessly to fulfill your research requests, demonstrating the elegance and efficiency of this multi-agent approach.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4Xh-cZwQFJpz" - }, - "source": [ - "## EV Agent - The \"Black Box\" Experience:" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "on2mGosD1WBp" - }, - "source": [ - "The `ExecutionAgent` is the heart of our EV infrastructure analysis system. Think of it as the conductor of an orchestra, coordinating a team of specialized agents to perform a comprehensive analysis based on your query.\n", - "\n", - "**Before you start:**\n", - "\n", - "* **What it does:** The `ExecutionAgent` takes your query about EV infrastructure, develops a plan, gathers relevant data, generates reports, and creates insightful visualizations.\n", - "* **How it works:** It delegates tasks to other agents (like a planning agent, data gathering agent, etc.) and manages the overall workflow.\n", - "* **What you get:** You'll receive a structured output containing the analysis plan, gathered data, a detailed report (if requested), and visualizations (if applicable).\n", - "* **Customization:** You can control the level of detail (debug mode), whether to see intermediate outputs (stage\\_output), and the type of output you desire (e.g., raw data, report, text).\n", - "\n", - "Essentially, the `ExecutionAgent` simplifies the complex process of EV infrastructure analysis, providing you with a powerful tool to gain valuable insights." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "K5O-SIBr0g7p" - }, - "outputs": [], - "source": [ - "# Importing ExecutionAgent from our agent_handler\n", - "\n", - "\n", - "from ev_agent.agent_handler.agent_01_ExecutionAgent import ExecutionAgent" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "EeXrJaqTIBJv" - }, - "outputs": [], - "source": [ - "# Create the agent\n", - "\n", - "agent = ExecutionAgent.create(\n", - " client=client,\n", - " model_name=MODEL_ID_Flash, # Gemini 2.0 Flash\n", - " api_key=NREL_API_KEY,\n", - " debug=False,\n", - " stage_output=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YgUWghr5IG5T" - }, - "source": [ - "### Basic Report Generation" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pRvAIJmD2p76" - }, - "source": [ - "In this case, we're treating the `ExecutionAgent` as a **\"black box\"**. We provide the input query (\"I want to understand the EV charging situation in Austin.\") and it will eventually deliver the final report without revealing the inner workings." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lgIT_0Wc2uPK" - }, - "source": [ - "Since we set `debug=False` and `stage_output=False` earlier, the agent is giving us some playful warnings. It's essentially saying, \"Hey, you've turned off all the visibility into the process, so you'll only see the final result! But, just so you know, there are four agents working hard behind the scenes\"." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "QI6Lfz6QIek4" - }, - "outputs": [], - "source": [ - "# Execute the analysis\n", - "results = await agent.execute(\n", - " \"I want to understand the EV charging situation in Austin.\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a4I0IohK2wPn" - }, - "source": [ - "You'll notice a humorous warning: `*Deciphering your cryptic commands! It's like translating ancient hieroglyphs, but with more emojis.*` This is a subtle hint that the **QueryAnalysisAgent** is currently at work, interpreting your input query. If you ever want to peek behind the curtain, simply set `debug=True` or `stage_output=True` when creating the agent. But for now, we're embracing the black box experience and eagerly awaiting the final, comprehensive report." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fMWrJ7AyD5FW" - }, - "source": [ - "---\n", - "If you want to save the generated report for later use or sharing, you can easily convert it to PDF or DOCX format. Here's how:\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Q3n4cZJj5IjH" - }, - "outputs": [], - "source": [ - "# # You can save the report as PDF or DOCX\n", - "\n", - "markdown_text = (\n", - " results[\"report\"][\"full_text\"] + \"\\n\\n\\n\" + results[\"report\"][\"citations\"]\n", - ")\n", - "\n", - "convert_markdown(\n", - " markdown_text,\n", - " output_path=\"/content/generated_report\",\n", - " filename=\"austin_normal\",\n", - " file_type=\"pdf\", # or \"docx\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZXk8CAHE5pRE" - }, - "source": [ - "This will generate a nicely formatted report file in your chosen location, ready to be viewed or shared. You can see an example of a pre-generated report here: [Austin Report with Sections](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/sample_reports/austin_normal.pdf)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7vb7X_RUFIPi" - }, - "source": [ - "The `results` object is a dictionary containing all the data generated from the analysis, including the `plan`, `query_analysis`, `data`, and the final `report` (with `citations`, `full_text`, and `sections`)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "UFH-oLQDKAxP" - }, - "outputs": [], - "source": [ - "rich_print(\n", - " \"The result object contains all these internal data points with the reports: \",\n", - " list(results.keys()),\n", - ")\n", - "rich_print(\n", - " \"The Report contains the citations, full text of the report and individual sections: \",\n", - " list(results[\"report\"].keys()),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "R8JZGlBcGBKw" - }, - "source": [ - "We've saved the full report above, but for now, let's just look at one section to see how they're structured. This demonstrates the organized way we store information within the report.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Osqut3cyLFkx" - }, - "outputs": [], - "source": [ - "for section_name, section_text in results[\"report\"][\"sections\"].items():\n", - " if section_name == \"Infrastructure Overview\":\n", - " print(section_name)\n", - " rich_print(section_text)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JrGgCle_GsSr" - }, - "source": [ - "Let's focus on the data structure of each report section, which is crucial for developers to understand, especially in the context of our multi-agent system.\n", - "\n", - "As shown in the output, each section, like \"Infrastructure Overview,\" is represented as a `Section` object. This object neatly encapsulates:\n", - "\n", - "* **`title`:** The title of the section (e.g., \"Infrastructure Overview\").\n", - "* **`content`:** The main text of the section, generated by Gemini, providing a detailed analysis. It's important to note that this content is dynamically created based on the data gathered by the `DataGatherAgent` and the insights generated by the language model.\n", - "* **`citations`:** A dictionary containing `CitationData` objects. Each citation provides a `number`, `value`, `data_path`, `raw_value`, and `context`, meticulously linking claims in the content to specific data points retrieved by our `DataGatherAgent` via API calls.\n", - "* **`key_findings`:** A list of key insights extracted from the section's content.\n", - "* **`enhanced_content`:** An optional field for additional data or analysis.\n", - "\n", - "\n", - "In the normal \"Infrastructure Overview\" section, the numbers and facts presented are not manually entered; they are dynamically derived from our structured data model. This model is populated with real-world data fetched from various APIs by our dedicated `DataGatherAgent`. Let's see how this works with an example:\n", - "\n", - "**From the \"Infrastructure Overview\" section:**\n", - "\n", - "> \"Austin's total area encompasses 1679.20 sq km [1], with a significant portion dedicated to built areas (644.59 sq km) [1].\"\n", - "\n", - "The numbers \"1679.20\" and \"644.59\" are linked to **Citation 1**:\n", - "\n", - "```\n", - "1: CitationData(\n", - " number=1,\n", - " value='1679.20 sq km total area, 644.59 sq km built area, 42224 service roads, 476 EV charging\n", - "stations',\n", - " data_path='summary.area_metrics.total_area, summary.area_metrics.built_area,\n", - "summary.roads.service_roads, summary.parking.ev_charging',\n", - " raw_value=\"{'total_area': {'value': '1679.20', 'path': 'summary.area_metrics.total_area_sqkm', 'unit':\n", - "'sq km'}, 'built_area': {'value': '644.59', 'path': 'summary.area_metrics.built_area_sqkm', 'unit': 'sq km'},\n", - "'service_roads': {'value': '42224', 'path': 'summary.roads.service_roads', 'unit': 'roads'}, 'ev_charging':\n", - "{'value': '476', 'path': 'summary.parking.ev_charging', 'unit': 'stations'}}\",\n", - " context='Overall Austin metrics and existing EV charging station count'\n", - "),\n", - "```\n", - "\n", - "**Here's the breakdown:**\n", - "\n", - "1. **Data Source:** The `DataGatherAgent` makes API calls to sources like OpenStreetMap to gather data about Austin.\n", - "2. **Structured Data Model:** This fetched data is stored in a structured format. For example, `summary.area_metrics.total_area` is a specific field in our data model that holds Austin's total area.\n", - "3. **Citation Tracing:** Citation 1 clearly links the numbers in the text to their source in the data model. The `data_path` field shows where to find the data (e.g., `summary.area_metrics.total_area`), and the `raw_value` field reveals the exact value fetched from the API (\"1679.20\").\n", - "4. **Dynamic Content Generation:** When the report is generated, the system automatically pulls the relevant data from the model, based on the `data_path` specified in the citation, and inserts it into the text.\n", - "\n", - "**Why is this important?**\n", - "\n", - "* **Accuracy:** Our report is based on real data from trusted APIs, not on manual input, minimizing errors.\n", - "* **Traceability:** We can always trace the data back to its source, ensuring transparency and verifiability.\n", - "* **Automation:** The `DataGatherAgent` and our structured data model automate the data retrieval and integration process, making it efficient.\n", - "* **Consistency:** This structured approach ensures consistency across the report, as all agents use the same data model.\n", - "\n", - "In essence, the normal section demonstrates the power of our data-driven approach. The `DataGatherAgent`, our structured data model, and the `CitationData` system work together seamlessly to create a report grounded in accurate, traceable, and automatically updated information. This highlights the core strength of our multi-agent system: its ability to leverage structured data to produce reliable and insightful analysis.\n", - "\n", - "\n", - "\n", - "**Why is this data structure useful for developers and a multi-agent system?**\n", - "\n", - "This structured format promotes modularity, allowing developers to reuse sections and enabling different agents to collaborate seamlessly by contributing to specific parts of the report. The clear link between generated content and underlying data via CitationData ensures data integrity and transparency. Furthermore, the design is extensible, accommodating future growth and new types of analysis without disrupting the core structure, making it ideal for a multi-agent system." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "w7CchYhMItoe" - }, - "source": [ - "While we've focused on the report, you can also explore other parts of the `results` object. This provides a way to delve deeper into the agent's inner workings, but we'll break down each agent's role in more detail in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "926d0bb80f59" - }, - "outputs": [], - "source": [ - "# You can print the whole text of the report:\n", - "rich_print(results[\"report\"][\"full_text\"])\n", - "\n", - "# You can print the whole citations of the report:\n", - "rich_print(results[\"report\"][\"citations\"])\n", - "\n", - "# You can also check the data it has used to generate the report\n", - "rich_print(results[\"data\"])\n", - "\n", - "# If you want to see the whole plan of the agent that it executed\n", - "rich_print(results[\"plan\"])\n", - "\n", - "# If you want to see the query analysis of the agent\n", - "rich_print(results[\"query_analysis\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kiumiZy46oob" - }, - "source": [ - "---\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8JIQYmPkIL1q" - }, - "source": [ - "### Google Search Enhanced Report" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YKw5q6woJ8pt" - }, - "source": [ - "Now, let's kick it up a notch! We're going to run the analysis again with `results_grounded_plot = await agent.execute(\"\"\"I want to understand the EV charging situation in Austin. I need a report and enhance the sections of report with google. Also add some plots\"\"\")`. This time, we've added two new twists to our request: grounding the report sections with Google Search results and adding data plots.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "t-3L1Nz-1nPy" - }, - "source": [ - "**Note on grounding with google search as a Tool with Gemini 2.0:**\n", - "\n", - "Currently, grounding with google search as a Tool on Gemini 2.0 does not support controlled generation. While you can still perform grounding with search, the output format and structure cannot be explicitly controlled at this time. Controlled generation is important for grounding as it allows us to specify the desired format and structure of the output, ensuring that the information retrieved from web search is integrated into the report in a consistent and organized manner. In the meantime, we are utilizing the Gemini 1.5 Flash model to perform grounding with controlled generation capabilities. You can explore examples of grounding with google search as a Tool Gemini 2.0 (without controlled generation) [here](link)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "rboGC6pP1EBW" - }, - "outputs": [], - "source": [ - "# Create the agent\n", - "\n", - "agent = ExecutionAgent.create(\n", - " client=client,\n", - " model_name=MODEL_ID_Flash, # Gemini 1.5 Flash\n", - " api_key=NREL_API_KEY,\n", - " debug=False,\n", - " stage_output=False,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "bCZ23K5SIMMj" - }, - "outputs": [], - "source": [ - "# Execute the analysis\n", - "results_grounded_plot = await agent.execute(\n", - " \"\"\"I want to understand the EV charging situation in Austin. I need a report and enhance the sections of report with google. Also add some plots\"\"\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Jzz2vbC1J_Q8" - }, - "source": [ - "Just like before, you'll see the familiar playful warnings since we're still running in a \"black box\" mode. However, now you'll also notice `DEBUG` messages indicating that sections are being enhanced with new citations, for example: `DEBUG: Enhanced Executive Summary with 17 new citations`. This is where the magic happens! The agent is now smartly integrating information from Google Search to bolster the report.\n", - "\n", - "What can you expect? Not only will the report be more comprehensive and grounded in a wider range of sources, but you'll also get to see insightful visualizations of the data. This is a significant step up from the previous run, showcasing the agent's ability to dynamically adapt to our requests and provide a richer, more visually engaging analysis. Get ready to be impressed by the power of combining AI, data analysis, and web search in a single, seamless process!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "90xiSV6G6Jts" - }, - "outputs": [], - "source": [ - "# Just like before, you can save this enhanced report as a PDF or DOCX using:\n", - "\n", - "convert_markdown(\n", - " markdown_text=results_grounded_plot[\"report\"][\"combined_report\"],\n", - " output_path=\"/content/generated_report\",\n", - " filename=\"austin_grounded\",\n", - " file_type=\"pdf\", # or \"docx\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CVB0HBPP7Rgu" - }, - "source": [ - "This will generate a file with the grounded sections. If you're eager to see the complete report right away, you can check out the pre-generated version here: [Austin Report - Sections Grounded with Search](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/sample_reports/austin_grounded.pdf)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "H1yg0GWZN17j" - }, - "source": [ - "You've seen the full, enhanced report – now let's take a closer look at how a single grounded section compares to the normal section we saw earlier. We'll examine the \"Infrastructure Overview\" section again:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "4nCGfx-NMdel" - }, - "outputs": [], - "source": [ - "for section_name, section_text in results_grounded_plot[\"report\"][\"sections\"].items():\n", - " if section_name == \"Infrastructure Overview\":\n", - " print(section_name)\n", - " rich_print(section_text)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "1jLTWQe0N3ZY" - }, - "source": [ - "**Here's the \"aha\" moment:** Notice how the `content` of this section is now significantly richer and more detailed. It's not just stating facts from our initial data; it's weaving in insights and information gathered from the web through Google Search. This demonstrates the power of grounding our analysis in a broader context." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uVlnk6OxQyn1" - }, - "source": [ - "Okay, let's break down how Google Search enhances the report by focusing on a specific example: **Citation 8**.\n", - "\n", - "In the grounded \"Infrastructure Overview\" section, we have:\n", - "\n", - "```\n", - " 8: CitationData(\n", - " number=8,\n", - " value=\"Report on global EV infrastructure trends and best practices. | Context: Informs strategic\n", - "recommendations for improving Austin's EV infrastructure. | URL: BloombergNEF\",\n", - " data_path='BloombergNEF',\n", - " raw_value='Report on global EV infrastructure trends and best practices.',\n", - " context=\"Informs strategic recommendations for improving Austin's EV infrastructure.\"\n", - " )\n", - "```\n", - "\n", - "This citation points to a report from **BloombergNEF** on global EV infrastructure trends. Now, let's see how this reference, found through Google Search, contributes to the enhanced content:\n", - "\n", - "**Original Content (Before Search):**\n", - "\n", - "> \"The existing EV charging infrastructure, while growing, needs significant expansion to meet the rising demand for EVs. Currently, there are 78 total EV charging stations [2] across the city. This number is significantly lower than other major cities with similar populations.\"\n", - "\n", - "**Enhanced Content (After Search):**\n", - "\n", - "> \"The existing EV charging infrastructure, while growing, needs significant expansion to meet the rising demand for EVs. Currently, there are 78 total EV charging stations [2] across the city. This number is significantly lower than other major cities with similar populations. **A recent study by BloombergNEF [3] highlights the need for a much higher density of charging stations to support widespread EV adoption.**\"\n", - "\n", - "**Here's the impact:**\n", - "\n", - "1. **External Validation:** The original content stated that Austin's charging station count is low compared to similar cities. The enhanced content, using the BloombergNEF report found via Google Search, adds external validation to this claim. It's no longer just an observation based on our data; it's now supported by a reputable source on global EV trends.\n", - "2. **Strategic Depth:** The BloombergNEF citation adds a layer of strategic depth. It's not just about the current number of stations; it connects to the broader concept of \"charging station density\" needed for \"widespread EV adoption\" – a key insight for planning Austin's EV future.\n", - "3. **Credibility Boost:** Referencing a well-known organization like BloombergNEF significantly enhances the credibility of the report. It demonstrates that our analysis is informed by industry experts and best practices.\n", - "\n", - "**In essence, Google Search, through this specific citation, helped us transform a simple observation into a well-supported, strategically relevant insight.** It demonstrates how our system leverages web knowledge to enhance the report's quality, moving beyond the limitations of our initial data and providing a more nuanced and impactful analysis. This dynamic integration of external information is a key strength of our multi-agent approach." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CZLXKarZVcQC" - }, - "source": [ - "---\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hUrIIjc6To8S" - }, - "source": [ - "Now, let's visualize the raw data that underpins our analysis. The following code will generate plots directly from the data fetched by our `DataGatherAgent` from external APIs.\n", - "\n", - "You can also check the data it has used to generate the plots\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "7cd5d15ec423" - }, - "outputs": [], - "source": [ - "rich_print(results_grounded_plot[\"data\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CuELS1YtVNVA" - }, - "source": [ - "Let's explore the visualizations generated from the raw API data, which offer a deeper understanding of Austin's EV infrastructure and its urban context. The code uses the `create_comprehensive_city_analysis` function to produce a set of Plotly figures, each shedding light on different aspects of the city:\n", - "\n", - "**1. EV Infrastructure Overview Dashboard:**\n", - "\n", - "* **Charging Station Types:** This bar chart breaks down the number of DC Fast, Level 2, and Level 1 charging stations. For Austin, it highlights the dominance of Level 2 chargers and the relative scarcity of DC Fast chargers. This is crucial for understanding the current charging landscape and identifying potential gaps, especially for users requiring faster charging options.\n", - "* **Connector Distribution:** This pie chart reveals the types of connectors available (e.g., CCS, CHAdeMO, Tesla). By examining this chart for Austin, you can assess the compatibility of the existing infrastructure with various EV models.\n", - "* **Network Distribution:** This bar chart displays the number of charging stations associated with different networks (e.g., ChargePoint, Tesla). For Austin, it might reveal a reliance on a particular network, which could influence decisions about network diversification and partnerships.\n", - "* **Access & Payment Methods:** This bar chart shows the percentage of stations offering various access and payment methods (e.g., credit card, mobile pay, 24/7 access). In Austin's case, it can indicate the ease of use and accessibility of the charging infrastructure for different users.\n", - "\n", - "**2. Transportation Infrastructure Analysis:**\n", - "\n", - "* **Public Transport Facilities:** This section visualizes the number of bus stops, train stations, bus stations, and bike rental locations. For Austin, this data helps assess the integration of EV charging with existing public transportation, which is vital for planning intermodal hubs.\n", - "* **Road Network Distribution:** This shows the distribution of motorways, primary, secondary, and residential roads. Understanding Austin's road network density and types can inform decisions about optimal charging station placement along major thoroughfares.\n", - "* **Parking Facilities:** This section charts the number of surface parking lots, parking structures, street parking spaces, and designated EV charging spots. For Austin, it helps evaluate the availability of parking spaces that could potentially be equipped with EV charging.\n", - "* **EV vs. Traditional Infrastructure:** This compares the number of EV charging stations, fuel stations, car dealerships, and car repair shops. In Austin's context, it provides insights into the current balance between EV and traditional vehicle infrastructure, indicating the progress of EV adoption.\n", - "\n", - "**3. Urban Amenities and Services:**\n", - "\n", - "* **Retail and Shopping:** This visualizes the distribution of shopping centers, supermarkets, department stores, and convenience stores. For Austin, it helps identify potential locations for charging stations near high-traffic retail areas.\n", - "* **Food and Entertainment:** This section charts restaurants, cafes, bars, and fast-food outlets. Understanding the density of these amenities in Austin can guide the placement of charging stations near popular destinations.\n", - "* **Emergency Services:** This displays the number of police stations, fire stations, hospitals, and clinics. For Austin, this information can be relevant for ensuring the resilience of the EV infrastructure and planning for emergency response related to EVs.\n", - "* **Public Amenities:** This visualizes the number of post offices, banks, ATMs, and public toilets. In Austin's context, it helps assess the availability of essential services near potential charging station locations.\n", - "\n", - "**4. Area Analysis:**\n", - "\n", - "* **Area Distribution:** This pie chart shows the breakdown of Austin's total area into water, green, built, and other areas. It provides a quick overview of the city's land use, which can be a factor in determining suitable locations for charging infrastructure.\n", - "\n", - "**Ideally, these charts would be integrated into the report itself, providing a visual complement to the textual analysis.** However, even as standalone visualizations, they offer valuable insights for decision-making related to EV charging station expansion. For example, by examining the distribution of charging types, connector types, and network providers, along with the city's transportation infrastructure and urban amenities, stakeholders can identify strategic locations for new charging stations, optimize the mix of charging options, and ensure that the expansion aligns with the city's overall development and EV adoption trends. By correlating the density of public transportation, road networks, and parking facilities with the location of existing EV charging stations, planners can pinpoint areas where additional infrastructure is most needed. They can also consider factors such as proximity to retail centers, food and entertainment venues, and public amenities to enhance the user experience and maximize the utilization of charging stations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "7Q_MfimBMdbS" - }, - "outputs": [], - "source": [ - "print(\"\\n=== Single City Analysis ===\")\n", - "for name, fig in results_grounded_plot[\"visualizations\"][0].items():\n", - " print(f\"\\nDisplaying: {name.replace('_', ' ').title()}\")\n", - " fig.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YE6bl8haTPL-" - }, - "source": [ - "The `results` object is a dictionary containing all the data generated from the analysis, includes extra variables to add visualizations and `combined_report`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "K_j2N-_5Kv_D" - }, - "outputs": [], - "source": [ - "rich_print(\n", - " \"The result object contains all these internal data points with the reports: \",\n", - " list(results_grounded_plot.keys()),\n", - ")\n", - "rich_print(\n", - " \"The Report contains the combined reports, citations, full text of the report and individual sections: \",\n", - " list(results_grounded_plot[\"report\"].keys()),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Bz-FBnhJTi-5" - }, - "source": [ - "While we've focused on the report, you can also explore other parts of the `results` object. This provides a way to delve deeper into the agent's inner workings, but we'll break down each agent's role in more detail in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "1192d611f92b" - }, - "outputs": [], - "source": [ - "# You can print the whole report:\n", - "rich_print(results_grounded_plot[\"report\"][\"combined_report\"])\n", - "\n", - "# You can print the whole text of the report:\n", - "rich_print(results_grounded_plot[\"report\"][\"full_text\"])\n", - "\n", - "# You can print the whole citations of the report:\n", - "rich_print(results_grounded_plot[\"report\"][\"citations\"])\n", - "\n", - "# You can also check the data it has used to generate the report\n", - "rich_print(results_grounded_plot[\"data\"])\n", - "\n", - "# If you want to see the whole plan of the agent that it executed\n", - "rich_print(results_grounded_plot[\"plan\"])\n", - "\n", - "# If you want to see the query analysis of the agent\n", - "rich_print(results_grounded_plot[\"query_analysis\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GcW6BJTq8WuT" - }, - "source": [ - "---\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jGdQeo_CRHh_" - }, - "source": [ - "## Deconstructing the Process: A Step-by-Step Journey of Agents" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ruk0__600E3e" - }, - "source": [ - "Before we delve into the inner workings of each agent, let's take a look at the overall flow of our multi-agent system. This sequence diagram provides a visual representation of how the agents interact and collaborate to process your query and generate the final output:\n", - "\n", - "![research-multi-agent-desing-pattern](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/ev_agent_simple.png)\n", - "\n", - "\n", - "This sequence diagram serves as a visual roadmap for understanding the flow of our multi-agent system, and you can refer back to it as we explore each agent's inner workings. It illustrates how agents like the `ExecutionAgent`, `PlanningAgent`, `QueryAnalysisAgent`, `DataGatherAgent`, `ReportAgent`, and `VisualizeAgent` interact and collaborate to process your query, highlighting their roles, the flow of information, and key decision points. This diagram is crucial for grasping the big picture as we delve into the specifics of each agent, starting with the `PlanningAgent`, which initiates the analysis process based on your query." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hIQNRrF9KWqL" - }, - "source": [ - "### Agent: PlanningAgent" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "BHYuwLIgDHyw" - }, - "source": [ - "### Agent: PlanningAgent\n", - "\n", - "The `PlanningAgent` is the first active agent in our sequence, responsible for taking your initial query and crafting a strategic execution plan. As seen in the sequence diagram, the `ExecutionAgent` passes the user's query to the `PlanningAgent`, which then returns a structured plan. Let's break down its role:\n", - "\n", - "**Input:**\n", - "\n", - "* **Query:** The user's raw query about EV infrastructure (e.g., \"Analyze EV charging stations in Austin\").\n", - "* **Client:** An instance of the generative AI model client (e.g., `gemini`).\n", - "* **Model Name:** The specific model to be used (e.g., \"gemini-pro\").\n", - "* **Debug:** A boolean flag to enable/disable debug mode.\n", - "* **API Key:** The API key for external services like NREL.\n", - "\n", - "**Output:**\n", - "\n", - "* **ExecutionPlan:** A structured plan containing:\n", - " * **Query:** The original user query.\n", - " * **Timestamp:** When the plan was created.\n", - " * **Validated Query:** Result of query validation, including validity, cities mentioned, missing elements, and suggestions for improvement.\n", - " * **Enable Search:** A boolean flag indicating if enhanced search/grounding is required.\n", - " * **Steps:** A list of `PlanStep` objects, each defining a step in the execution process with details like agent name, description, input/output formats, and status.\n", - " * **Debug:** A boolean flag indicating debug status.\n", - "\n", - "This section will explore five key aspects of the `PlanningAgent`: its setup, the creation of the `ExecutionPlan`, query validation and suggestions, handling of invalid queries, and a glimpse into its internal code structure." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qIj_pscoDmQU" - }, - "source": [ - "Agent Code:\n", - "```\n", - "`/content/ev_agent/agent_handler/agent_02_PlanningAgent.py`\n", - "```\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qLxSAgN3AyyW" - }, - "source": [ - "#### Setting up and Calling the agent\n", - "\n", - "First, we need to set up and call the `PlanningAgent`. Here's how we do it:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "6ZzI1mSbJ3bt" - }, - "outputs": [], - "source": [ - "from ev_agent.agent_handler.agent_02_PlanningAgent import *" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pFrQSpP5E3Kv" - }, - "source": [ - "We start by importing the necessary `PlanningAgent` class. Then, we create an instance of the agent, providing the user's query, the client object, the model name, and setting `debug` to `False` for now. Finally, we call the `create_plan()` method to generate the execution plan. If `debug` is set to `False`, you might see a humorous warning about the complexity of plan creation, which is just a playful way to indicate that the agent is working behind the scenes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "qONvCmwqJ3Yq" - }, - "outputs": [], - "source": [ - "agent = PlanningAgent(\n", - " query=\"I want to understand the EV charging situation in austin and proper vetted information and some plot\",\n", - " client=client,\n", - " model_name=MODEL_ID_Flash,\n", - " debug=False,\n", - ")\n", - "plan = agent.create_plan()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GQjRth99ATj0" - }, - "source": [ - "#### ExecutionPlan" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7BOaeF9aGULR" - }, - "source": [ - "Now, let's examine the `ExecutionPlan` generated by the `PlanningAgent`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "VGN-ZitTJ3Vz" - }, - "outputs": [], - "source": [ - "rich_print(plan)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rLe_ptdcGaf1" - }, - "source": [ - "The core of this plan lies in the `steps` list, which contains a sequence of `PlanStep` objects. Each `PlanStep` is defined by a structured data model, specifying:\n", - "\n", - "* **`step_id`:** A unique identifier for the step.\n", - "* **`agent_name`:** The name of the agent responsible for this step (e.g., `QueryAnalysisAgent`, `DataGatherAgent`).\n", - "* **`description`:** A brief description of the step's purpose.\n", - "* **`input_requirements`:** The data required for this step (e.g., the output of a previous step).\n", - "* **`output_format`:** The format of the data produced by this step (e.g., a specific data model like `QueryEntity` or `DataGatherAgentOutput`).\n", - "* **`status`:** The current status of the step (e.g., `PENDING`, `COMPLETED`).\n", - "* **`error`:** Any error encountered during the step (initially `None`).\n", - "* **`skip_conditions`:** Conditions under which this step should be skipped (currently `None` for all steps).\n", - "\n", - "**Leveraging Gemini's Function Calling for Planning:**\n", - "\n", - "The `PlanningAgent` intelligently determines the need for steps like visualization and enhanced search (grounding) by utilizing Gemini's function calling capabilities. It analyzes the user's query and calls specific functions (e.g., `_determine_visualization_requirement`, `_determine_search_requirement`) to decide whether these steps are required. This dynamic plan creation based on query analysis demonstrates the power of combining structured planning with advanced language model features.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "s0cyXQBfAel0" - }, - "source": [ - "#### Query Validation and Suggestions\n", - "\n", - "A crucial part of the `PlanningAgent`'s role is to validate the user's query and provide suggestions for improvement. Let's see how this works:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "X1AwbwP__pxh" - }, - "outputs": [], - "source": [ - "rich_print(plan.validated_query)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "v9SEDT97HNYk" - }, - "source": [ - "Here, the `PlanningAgent` has determined that the query is valid (`is_valid=True`) and has identified 'Austin' as the city of interest. It also confirms that no essential elements are missing (`missing_elements=[]`)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "53RSiAZjAjiB" - }, - "source": [ - "#### Query Suggestions\n", - "\n", - "Furthermore, the `PlanningAgent` provides suggestions to enhance the query:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "rirBCWfS_5Dc" - }, - "outputs": [], - "source": [ - "rich_print(plan.validated_query.suggestions)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "B2FxhYZmDA8S" - }, - "source": [ - "#### Failed Query\n", - "\n", - "What happens when the query is not valid? Let's see how the `PlanningAgent` handles such scenarios:\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "lad587v4J3P3" - }, - "outputs": [], - "source": [ - "agent = PlanningAgent(\n", - " query=\"I want to understand the EV charging situation in Paris and proper vetted information and some plot\",\n", - " client=client,\n", - " model_name=MODEL_ID_Flash,\n", - " debug=False,\n", - ")\n", - "plan = agent.create_plan()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uFEeB2a8IlrJ" - }, - "source": [ - "In this case, the query mentions \"Paris,\" which is not a valid city in our predefined list (in `STATE_MAPPING`). The `PlanningAgent` detects this and returns:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "U7YCYqosIz5C" - }, - "outputs": [], - "source": [ - "rich_print(plan.validated_query)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8BC-GeWPI3Ey" - }, - "source": [ - "The `is_valid` flag is now `False`, and the `missing_elements` indicate that a \"valid city\" is required. Importantly, the `suggestions` provide specific guidance on how to correct the query, even suggesting valid city replacements." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "4INx_rCJDjtp" - }, - "outputs": [], - "source": [ - "# You can see that it disable enabled search since the query didn't ask for anything \"enhance\" or \"grounding\"\n", - "rich_print(plan.enable_search)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "I9Z11rQwDfEE" - }, - "outputs": [], - "source": [ - "# it also skipped the visualization steps, since we didn't mention that in the query\n", - "rich_print(plan.steps)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dYuYw015I8Du" - }, - "source": [ - "Since the query was invalid, the `PlanningAgent` disables the search functionality (`enable_search=False`) and creates an empty list of steps (`steps=[]`). This effectively halts the execution process, as there's no valid plan to execute. This demonstrates the agent's ability to gracefully handle invalid queries and prevent unnecessary processing." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "FG322SGOGnrb" - }, - "source": [ - "### Agent: QueryAnalysisAgent" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lMeMdzKrKJAD" - }, - "source": [ - "### Agent: QueryAnalysisAgent\n", - "\n", - "The `QueryAnalysisAgent` comes right after the `PlanningAgent` in our sequence. Its primary role is to dissect the user's query, identify key entities, and determine the type of analysis requested. It then passes this structured information to the next agent in the pipeline.\n", - "\n", - "**Input:**\n", - "\n", - "* **Query:** The user's query about EV infrastructure, validated by the `PlanningAgent` (e.g., \"Analyze EV charging stations in Austin\").\n", - "* **Client:** An instance of the generative AI model client.\n", - "* **Model Name:** The specific model to be used (e.g., \"gemini-pro\").\n", - "\n", - "**Output:**\n", - "\n", - "* **Dictionary:** Containing:\n", - " * `status`: Whether the analysis was successful (\"success\" or \"error\").\n", - " * `entities`: A dictionary representing the extracted entities from the query, based on the `QueryEntities` data model. This includes:\n", - " * `pattern_type`: The type of analysis pattern detected (e.g., \"DISCOVERY\", \"COMPARISON\"). Although identified, these patterns are not yet used downstream in the current version but could be leveraged in future iterations.\n", - " * `cities`: A list of valid cities extracted from the query.\n", - " * `states`: A list of corresponding states for the extracted cities.\n", - " * `research_theme`: The general theme of the query (currently fixed to \"Electronic Vehicle\").\n", - " * `output_type`: The desired output type (e.g., \"Report\", \"Text\", \"Raw Data\").\n", - "\n", - "In essence, the `QueryAnalysisAgent` transforms the user's raw query into a structured format that can be easily understood and processed by the subsequent agents in the system. This section will delve into how the agent extracts these entities, handles different query patterns, and prepares the data for the next stage of the analysis." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "SzUjpbDoGn8j" - }, - "outputs": [], - "source": [ - "from ev_agent.agent_handler.agent_03_QueryAnalysisAgent import *" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Uq_s_HCWMVIL" - }, - "source": [ - "Let's see how the `QueryAnalysisAgent` processes different types of queries.\n", - "We'll examine three examples:" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yQj--mhuqegX" - }, - "source": [ - "#### Extraction Type 1" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dQM-sR_qMctq" - }, - "source": [ - "Here, the query asks about gaps in Austin's charging network and requests a report format. The agent successfully analyzes the query and returns:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "9bYBVxCoHF_S" - }, - "outputs": [], - "source": [ - "query = \"Where are the gaps in Austin charging network? Report format please\"\n", - "query_agent = QueryAnalysisAgent(client, MODEL_ID)\n", - "agent_1_result = query_agent.analyze(query)\n", - "rich_print(agent_1_result)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zGizyMvLMfEF" - }, - "source": [ - "The agent correctly identifies the `pattern_type` as `GAPS`, extracts the city and state, and recognizes the desired `output_type` as `REPORT`." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yOsBXcErqkLg" - }, - "source": [ - "#### Extraction Type 2" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gxMepfZGMkYQ" - }, - "source": [ - "In this case, the query requests raw data for Dallas. The agent responds with:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "aaRoYZLUHbGL" - }, - "outputs": [], - "source": [ - "query = \"Need some raw data on Dallas for Ev charging stations\"\n", - "agent_1_result = query_agent.analyze(query)\n", - "rich_print(agent_1_result)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kVWU7b4tMmnz" - }, - "source": [ - "The agent identifies the `pattern_type` as `DISCOVERY` (since it's a general inquiry), extracts the city and state, and correctly sets the `output_type` to `RAW`." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "C5bWr2alqk8J" - }, - "source": [ - "#### Extraction Type 3" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ubffVGHoNMOY" - }, - "outputs": [], - "source": [ - "query = \"compare Dallas and Austin for EV Charging expansion and give me detail report.\"\n", - "agent_1_result = query_agent.analyze(query)\n", - "rich_print(agent_1_result)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "cbM1lY83MvKT" - }, - "source": [ - "These examples demonstrate the `QueryAnalysisAgent`'s ability to understand different query structures, extract relevant entities, and determine the user's intent regarding the analysis type and desired output format. This structured information is then passed on to subsequent agents in the pipeline, ensuring that the analysis stays focused and aligned with the user's needs." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "i-So9XlsE4L-" - }, - "source": [ - "### Agent: DataGatherAgent" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "y4IaUnAqNSRu" - }, - "source": [ - "### Agent: DataGatherAgent\n", - "\n", - "The `DataGatherAgent` is responsible for collecting the necessary data for our analysis by interacting with external APIs. It takes the structured output from the `QueryAnalysisAgent` and fetches relevant information about EV infrastructure and city demographics.\n", - "\n", - "**Input:**\n", - "\n", - "* **`api_key`:** Your NREL API key to access EV infrastructure data.\n", - "* **`radius_miles`:** The radius (in miles) around each city for which to gather data.\n", - "* **`debug`:** A boolean flag to enable/disable debug mode.\n", - "\n", - "**Output:**\n", - "\n", - "* **`DataGatherAgentOutput`:** A data object containing:\n", - " * `timestamp`: When the data was gathered.\n", - " * `cities_data`: A list of `CityData` objects, one for each city in the query. Each `CityData` object may contain:\n", - " * `city`: The name of the city.\n", - " * `state`: The state abbreviation.\n", - " * `summary`: A dictionary containing general city data retrieved from the Neighborhood Summary API (e.g., population, area, etc.).\n", - " * `ev_data`: A dictionary containing EV charging station data retrieved from the EV Infrastructure Station Analysis API (e.g., number of stations, charger types, etc.).\n", - " * `error`: Any error encountered while gathering data for the city.\n", - " * `status`: The overall status of the data gathering process (\"success\" or \"error\").\n", - " * `error`: Any general error encountered during the process.\n", - "\n", - "**Functionality:**\n", - "\n", - "The `DataGatherAgent` utilizes asynchronous programming (`asyncio`) to fetch data from two different APIs concurrently for each city:\n", - "\n", - "1. **Neighborhood Summary API:** Retrieves general demographic and infrastructure data about the city.\n", - "2. **EV Infrastructure Station Analysis API:** Retrieves detailed information about EV charging stations within the specified radius.\n", - "\n", - "It handles potential errors during API calls, provides informative debug messages (if enabled), and compiles the gathered data into a structured `DataGatherAgentOutput` object. This agent plays a crucial role in bridging the gap between our analytical system and the real-world data needed to generate a meaningful report." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "g9NKTXKHEpkq" - }, - "outputs": [], - "source": [ - "from ev_agent.agent_handler.agent_04_DataGatherAgent import *" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "nAMEg6_COMq0" - }, - "outputs": [], - "source": [ - "# The Agent hits the OpenMapStreets API and NREL Developer API to gather data for a given city that can be helpful for Analysis.\n", - "\n", - "data_gather_agent = DataGatherAgent(\n", - " api_key=NREL_API_KEY, radius_miles=100.0, debug=False\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "eTVSEplfOi5Y" - }, - "source": [ - "Here, we create an instance of the `DataGatherAgent`, providing our `NREL_API_KEY`, a `radius_miles` of 100.00 miles, and setting `debug` to `True` to see detailed output." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Tnsr3EzYOBqX" - }, - "source": [ - "#### Single City" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "tgpy8Q8-N9SM" - }, - "outputs": [], - "source": [ - "# Get the city from the QueryAnalysisAgent\n", - "agent_1_result = query_agent.analyze(\n", - " \"Need some raw data on Dallas for Ev charging stations\"\n", - ")\n", - "\n", - "# Get data from DataGatherAgent of the city\n", - "agent_2_result = await data_gather_agent.process(agent_1_result)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "XutOgx13ZRqr" - }, - "outputs": [], - "source": [ - "print(\"Number of cities given by the agent: \", len(agent_2_result.cities_data))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Vj5qPtLJqotV" - }, - "source": [ - "##### Data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "15623699cf29" - }, - "outputs": [], - "source": [ - "# You can access the complete NeighborhoodSummary here:\n", - "rich_print(\"NeighborhoodSummary - Complete \\n\", agent_2_result.cities_data[0].summary)\n", - "\n", - "\n", - "# You can access the complete EVInfraSummary here:\n", - "rich_print(\"EV Infra Summary - Complete \\n\", agent_2_result.cities_data[0].ev_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "P4Kfv7uHOEsA" - }, - "source": [ - "#### Multi City" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "2OXo_jl-Epfz" - }, - "outputs": [], - "source": [ - "# Get the city from the QueryAnalysisAgent\n", - "agent_1_result_multi_city = query_agent.analyze(\n", - " \"compare Dallas and Austin for EV Charging expansion and give me detail report\"\n", - ")\n", - "\n", - "# Get data from DataGatherAgent of the city\n", - "agent_2_result_multi_city = await data_gather_agent.process(agent_1_result_multi_city)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "B66HlEAzZL1P" - }, - "outputs": [], - "source": [ - "print(\n", - " \"Number of cities given by the agent: \", len(agent_2_result_multi_city.cities_data)\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bJgYsa0pqstF" - }, - "source": [ - "##### Data - NeighborhoodSummary (OpenStreetMap - Overpass API)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wv0LiUHdsbi6" - }, - "source": [ - "This API Handler uses Nomination API and Overpass API (OpenStreetMap). You can find more details [here](https://nominatim.org/), [here](https://nominatim.org/release-docs/develop/api/Overview/), [here](https://wiki.openstreetmap.org/wiki/Overpass_API)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "we3aopWOmiZj" - }, - "outputs": [], - "source": [ - "index = 0 # 0 for Dallas, 1 for Austin\n", - "\n", - "# You can see the NeighborhoodSummary of the city\n", - "rich_print(\"City :\", agent_2_result_multi_city.cities_data[index].summary.city)\n", - "rich_print(\"State :\", agent_2_result_multi_city.cities_data[index].summary.state)\n", - "rich_print(\n", - " \"NeighborhoodSummary - Healthcare \\n\",\n", - " agent_2_result_multi_city.cities_data[index].summary.healthcare,\n", - ")\n", - "rich_print(\n", - " \"NeighborhoodSummary - Education \\n\",\n", - " agent_2_result_multi_city.cities_data[index].summary.education,\n", - ")\n", - "\n", - "# You can see the complete data and all the elements of NeighborhoodSummary:\n", - "rich_print(\n", - " \"NeighborhoodSummary - Complete \\n\",\n", - " agent_2_result_multi_city.cities_data[index].summary,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pVgA-XG2q-Q0" - }, - "source": [ - "##### Data - EVInfraSummary (NREL Developer API)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OW5LGTu2ruGf" - }, - "source": [ - "You can get more details about the API [here](https://developer.nrel.gov/) and [here](https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "OfO4oJOvnK_o" - }, - "outputs": [], - "source": [ - "index = 0 # 0 for Dallas, 1 for Austin\n", - "\n", - "# You can see the EV Infra Summary of the city\n", - "rich_print(\n", - " \"City :\", agent_2_result_multi_city.cities_data[index].ev_data.metadata[\"city\"]\n", - ")\n", - "rich_print(\n", - " \"State :\", agent_2_result_multi_city.cities_data[index].ev_data.metadata[\"state\"]\n", - ")\n", - "rich_print(\n", - " \"EV Infra Summary - Charging Capability \\n\",\n", - " agent_2_result_multi_city.cities_data[index].ev_data.charging_capabilities,\n", - ")\n", - "rich_print(\n", - " \"EV Infra Summary - Accessibility \\n\",\n", - " agent_2_result_multi_city.cities_data[index].ev_data.accessibility,\n", - ")\n", - "\n", - "# You can see the complete data and all the elements of EV Infra Summary:\n", - "# rich_print(\"EV Infra Summary - Complete \\n\",\n", - "# agent_2_result_multi_city.cities_data[index].ev_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "x1fu8LdFqFR8" - }, - "source": [ - "### Agent: ReportAgent" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "93F5K5cjPjAn" - }, - "source": [ - "### Agent: ReportAgent\n", - "\n", - "The `ReportAgent` takes the structured data gathered by the `DataGatherAgent` and transforms it into a comprehensive, well-formatted report. It's responsible for generating individual sections of the report, citing data sources appropriately, and optionally enhancing the content with information from web search.\n", - "\n", - "**Input:**\n", - "\n", - "* **`client`:** An instance of the generative AI model client.\n", - "* **`model_name`:** The specific model to be used (e.g., \"gemini-pro-1.5\").\n", - "* **`enable_search`:** A boolean flag indicating whether to enhance the report with web search results.\n", - "* **`debug`:** A boolean flag to enable/disable debug mode.\n", - "\n", - "**Output:**\n", - "\n", - "* **`Report`:** A data object containing the entire report, structured as follows:\n", - " * `city`: The name of the city.\n", - " * `state`: The state abbreviation.\n", - " * `timestamp`: When the report was generated.\n", - " * `sections`: A dictionary of `Section` objects, each representing a section of the report (e.g., \"Executive Summary\", \"Infrastructure Overview\"). Each `Section` includes:\n", - " * `title`: The section title.\n", - " * `content`: The main text content of the section.\n", - " * `citations`: A dictionary of `CitationData` objects, mapping citation numbers to their corresponding data sources.\n", - " * `key_findings`: A list of key takeaways from the section.\n", - " * `enhanced_content`: Additional content generated through web search (if enabled).\n", - " * `citations_text`: A formatted string containing all citations used in the report.\n", - " * `full_text`: The entire report content as a single string.\n", - " * `combined_report`: The full report content along with formatted citations.\n", - "\n", - "**Functionality:**\n", - "\n", - "The `ReportAgent` performs several key tasks:\n", - "\n", - "1. **Section Generation:** It generates individual report sections based on predefined templates and the gathered data, citing specific data points using a structured `CitationData` model.\n", - "2. **Data Mapping:** It utilizes a detailed `_prepare_data_map` function to create a structured representation of the data from the `DataGatherAgent`, making it easier to reference specific data points in the report.\n", - "3. **Asynchronous Processing:** It leverages asynchronous programming to generate multiple sections concurrently, improving efficiency.\n", - "4. **Optional Search Enhancement:** If `enable_search` is set to `True`, it can enhance each section with information retrieved from Google Search, adding citations for the newly found data. This is achieved using the `_enhance_section_with_search` method.\n", - "5. **Report Assembly:** Finally, it assembles the individual sections into a complete `Report` object, generating a formatted string representation of the entire report and its citations.\n", - "\n", - "The `ReportAgent` plays a critical role in synthesizing the raw data into a coherent, insightful, and well-supported analysis of the EV infrastructure. The following subsections will explore how this agent is used to generate reports, either for a single city with search grounding or for multiple cities without grounding." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ibu15GgxJ3G-" - }, - "outputs": [], - "source": [ - "from ev_agent.agent_handler.agent_05_ReportAgent import *" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pUiv3t3M7foo" - }, - "source": [ - "#### Single City with grounding with Google" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ihv4IAfn-5gm" - }, - "outputs": [], - "source": [ - "report_agent_single_grounded = ReportAgent(\n", - " client=client, model_name=MODEL_ID_Flash, enable_search=True, debug=True\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "TeqzU17t7ozN" - }, - "outputs": [], - "source": [ - "# Get the city from the QueryAnalysisAgent\n", - "agent_1_result = query_agent.analyze(\n", - " \"Need some raw data on Dallas for Ev charging stations\"\n", - ")\n", - "rich_print(agent_1_result)\n", - "\n", - "# Get data from DataGatherAgent of the city\n", - "agent_2_result = await data_gather_agent.process(agent_1_result)\n", - "\n", - "# Get the report built out using ReportAgent\n", - "reports_single_grounded = await report_agent_single_grounded.analyze(\n", - " agent_1_result, agent_2_result\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "UCmgBSuU7SQC" - }, - "outputs": [], - "source": [ - "print(\n", - " \"Report is on the city: \",\n", - " reports_single_grounded.city,\n", - " \" and state: \",\n", - " reports_single_grounded.state,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "biVMqgbuAwMY" - }, - "source": [ - "Predefined/Available Section of the Reports:\n", - "\n", - "* Executive Summary\n", - "* Infrastructure Overview\n", - "* Current EV Assessment\n", - "* Demand Analysis\n", - "* Supply Analysis\n", - "* Gap Analysis\n", - "* Location Recommendations\n", - "* Implementation Strategy\n", - "\n", - "You can explore each section and see how grounding with Google, enhanced the section with updated text and citations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "-Q7T-w9R7hwd" - }, - "outputs": [], - "source": [ - "for section_name, section_text in reports_single_grounded.sections.items():\n", - " if section_name == \"Infrastructure Overview\":\n", - " print(section_name)\n", - " rich_print(section_text)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "c3d5741c77ca" - }, - "outputs": [], - "source": [ - "# You can access other key areas of the report:\n", - "reports_single_grounded.full_text # Full text of the report - without citations\n", - "reports_single_grounded.citations_text # Full text of the citations - without text\n", - "reports_single_grounded.combined_report # Full text of the report combined with citations\n", - "reports_single_grounded.timestamp # Timestamp of report generations" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vt9f7S5v7icz" - }, - "source": [ - "#### Multi City without grounding with Google" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "_Ifsrp-G-_T1" - }, - "outputs": [], - "source": [ - "report_agent_multi_city = ReportAgent(\n", - " client=client,\n", - " model_name=MODEL_ID_Flash,\n", - " enable_search=False, # you can enable grounding for both the cities if you want\n", - " debug=True,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "TpRaJx-v7kNm" - }, - "outputs": [], - "source": [ - "# Get the city from the QueryAnalysisAgent\n", - "agent_1_result_multi_city = query_agent.analyze(\n", - " \"compare Dallas and Austin for EV Charging expansion and give me detail report\"\n", - ")\n", - "rich_print(agent_1_result_multi_city)\n", - "\n", - "# Get data from DataGatherAgent of the city\n", - "agent_2_result_multi_city = await data_gather_agent.process(agent_1_result_multi_city)\n", - "\n", - "# Get the report built out using ReportAgent\n", - "reports_multi_city = await report_agent_multi_city.analyze(\n", - " agent_1_result_multi_city, agent_2_result_multi_city\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ph40v5rp7wPK" - }, - "outputs": [], - "source": [ - "index = 0\n", - "print(\n", - " \"Report is on the city: \",\n", - " reports_multi_city[index].city,\n", - " \" and state: \",\n", - " reports_multi_city[index].state,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "zn1LtOvi7wIU" - }, - "outputs": [], - "source": [ - "index = 1\n", - "print(\n", - " \"Report is on the city: \",\n", - " reports_multi_city[index].city,\n", - " \" and state: \",\n", - " reports_multi_city[index].state,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "kmU1fJFB8PTi" - }, - "outputs": [], - "source": [ - "for section_name, section_text in reports_multi_city[index].sections.items():\n", - " if section_name == \"Demand Analysis\":\n", - " print(section_name)\n", - " rich_print(section_text)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "582a01dfc15d" - }, - "outputs": [], - "source": [ - "# You can also check all the sections using object\n", - "\n", - "print(\"All the sections in the report\")\n", - "for section_name, section_text in reports_multi_city[index].sections.items():\n", - " print(section_name)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "3e0df2853b20" - }, - "outputs": [], - "source": [ - "# You can access other key areas of the report by passing appropriate indexes:\n", - "\n", - "reports_multi_city[index].full_text # Full text of the report - without citations\n", - "\n", - "reports_multi_city[index].citations_text # Full text of the citations - without text\n", - "\n", - "reports_multi_city[\n", - " index\n", - "].combined_report # Full text of the report combined with citations\n", - "\n", - "reports_multi_city[index].timestamp # Timestamp of report generations" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_Yd9DWWLP7T2" - }, - "source": [ - "### Agent: VisualizeAgent\n", - "\n", - "The `VisualizeAgent` is responsible for creating insightful visualizations based on the data gathered by the `DataGatherAgent`. It uses the `plotly` library to generate various charts and graphs that help to understand the EV infrastructure landscape in a more visual and intuitive manner. Although it's called an \"agent\" here, it's important to note that this is essentially a set of helper functions for creating visualizations rather than an autonomous agent with decision-making capabilities.\n", - "\n", - "**Input:**\n", - "\n", - "* **`data`:** The `DataGatherAgentOutput` object, containing structured data for one or more cities.\n", - "\n", - "**Output:**\n", - "\n", - "* A tuple containing two dictionaries:\n", - " * **`single_city_figs`:** A dictionary of `plotly` figure objects, each representing a visualization specific to a single city.\n", - " * **`comparison_figs`:** A dictionary of `plotly` figure objects, each representing a comparative visualization across multiple cities (if applicable).\n", - "\n", - "**Functionality:**\n", - "\n", - "The `VisualizeAgent` performs the following tasks:\n", - "\n", - "1. **Single City Visualizations:** It generates a set of visualizations for each city using the `create_comprehensive_city_analysis` function. These include:\n", - " * **EV Infrastructure Overview:** Bar charts showing charging station types, connector distribution, network distribution, and access & payment methods.\n", - " * **Transportation Infrastructure Analysis:** A multi-panel plot showing public transport facilities, road network distribution, parking facilities, and a comparison of EV vs. traditional vehicle infrastructure.\n", - " * **Urban Amenities and Services:** A multi-panel plot showing the distribution of retail and shopping centers, food and entertainment venues, emergency services, and public amenities.\n", - " * **Area Analysis:** A pie chart displaying the distribution of total area, water area, green area, and built area.\n", - "\n", - "2. **Multi-City Comparisons (if applicable):** If the input data contains information for multiple cities, it uses the `plot_multi_city_comparison` function to generate comparative visualizations. These include:\n", - " * **EV Infrastructure Comparisons:** Bar charts comparing the number of EV stations vs. fuel stations, charging station types, and EV station density across cities.\n", - " * **Transportation Infrastructure:** Bar charts comparing public transport infrastructure, road network distribution, and parking facilities across cities.\n", - " * **Area Analysis:** A bar chart comparing area distribution (total, water, green, built) across cities.\n", - " * **Urban Amenities:** A bar chart comparing the prevalence of various urban amenities (e.g., shopping centers, restaurants, hospitals) across cities.\n", - "\n", - "3. **Visualization Organization:** It organizes all generated plots into the `single_city_figs` and `comparison_figs` dictionaries, making it easy to access specific visualizations.\n", - "\n", - "The `VisualizeAgent` plays a crucial role in making the data more accessible and understandable by providing a visual representation of key metrics and trends. These visualizations can aid in identifying patterns, making comparisons, and ultimately supporting decision-making related to EV infrastructure planning and development." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LqGemlxj-ohw" - }, - "outputs": [], - "source": [ - "from ev_agent.agent_handler.agent_06_VisualizeAgent import *" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Ly_pvvoNCKr_" - }, - "source": [ - "#### Single City" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "zjveHtOhGzfn" - }, - "outputs": [], - "source": [ - "single_city_figs, comparison_figs = plot_all_visualizations(agent_2_result)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "SM9nbe5FHEap" - }, - "outputs": [], - "source": [ - "print(\"\\n=== Single City Analysis ===\")\n", - "for name, fig in single_city_figs.items():\n", - " print(f\"\\nDisplaying: {name.replace('_', ' ').title()}\")\n", - " fig.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5iF_b6oMCVBL" - }, - "source": [ - "#### Multi City" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "33fASgQGHP6d" - }, - "outputs": [], - "source": [ - "single_city_figs, comparison_figs = plot_all_visualizations(agent_2_result_multi_city)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "dZuNdJeoHTVD" - }, - "outputs": [], - "source": [ - "print(\"\\n=== Multi-City Comparisons ===\")\n", - "for name, fig in comparison_figs.items():\n", - " print(f\"\\nDisplaying: {name.replace('_', ' ').title()}\")\n", - " fig.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "o4cW5bVtQ2Lo" - }, - "source": [ - "## Next Steps and Potential Improvements\n", - "\n", - "We've built a solid foundation for a multi-agent system that analyzes EV infrastructure. However, there's always room for improvement and expansion. Here are some potential next steps, inspired by features found in advanced multi-agent frameworks like AutoGen, CrewAI, and LangGraph:\n", - "\n", - "1. **Enhanced Agent Communication:** Implement dynamic inter-agent communication for iterative feedback, dynamic task allocation, and agent specialization.\n", - "2. **Sophisticated Planning:** Develop more advanced planning with conditional logic, sub-planning, and plan repair capabilities.\n", - "3. **Expanded Tool Integration:** Integrate with more APIs, databases, web scraping, and knowledge graphs to broaden the system's knowledge base.\n", - "4. **Interactive User Experience:** Allow for clarification dialogs, progress updates, interactive visualizations, and user feedback mechanisms.\n", - "5. **Robust Error Handling:** Implement comprehensive exception handling, retry mechanisms, and fallback strategies for increased reliability.\n", - "6. **Integrated Visualizations:** Incorporate visualizations directly into the generated reports for a more cohesive and engaging presentation.\n", - "7. **Agent Memory and Learning:** Introduce agent memory for caching, learning from user feedback, and potential model fine-tuning to improve performance over time.\n", - "\n", - "By implementing these enhancements, we can create a more powerful, flexible, and user-friendly multi-agent system for analyzing EV infrastructure and generating actionable insights." - ] - } - ], - "metadata": { - "colab": { - "name": "intro_research_multi_agents_gemini_2_0.ipynb", - "toc_visible": true - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - } - }, - "nbformat": 4, - "nbformat_minor": 0 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jJZw3h2myqls" + }, + "outputs": [], + "source": [ + "# Copyright 2024 Google LLC\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qGrXr6X4yXG5" + }, + "source": [ + "# Building a Research Multi Agent System - a Design Pattern Overview with Gemini 2.0\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \"Google
Open in Colab\n", + "
\n", + "
\n", + " \n", + " \"Google
Open in Colab Enterprise\n", + "
\n", + "
\n", + " \n", + " \"Vertex
Open in Vertex AI Workbench\n", + "
\n", + "
\n", + " \n", + " \"GitHub
View on GitHub\n", + "
\n", + "
\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KJWqTM-CS0qC" + }, + "source": [ + "Share to:\n", + "\n", + "\n", + " \"LinkedIn\n", + "\n", + "\n", + "\n", + " \"Bluesky\n", + "\n", + "\n", + "\n", + " \"X\n", + "\n", + "\n", + "\n", + " \"Reddit\n", + "\n", + "\n", + "\n", + " \"Facebook\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EnoVKOgny2ZM" + }, + "source": [ + "| | |\n", + "|-|-|\n", + "| Author(s) | [Lavi Nigam](https://github.com/lavinigam-gcp)|" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CSt0qUR2Sg61" + }, + "source": [ + "
\n", + "\n", + "⚠️ Gemini 2.0 Flash (Model ID: gemini-2.0-flash-exp) and the Google Gen AI SDK are currently experimental and output can vary ⚠️\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IDDZhYrClJQK" + }, + "source": [ + "## Overview\n", + "\n", + "In today's rapidly evolving technology landscape, businesses frequently need to conduct comprehensive research and analysis that spans multiple data sources, requires complex reasoning, and demands clear actionable insights. Whether it's market research, competitive analysis, urban planning, or scientific research, the challenges remain similar: how to efficiently gather, process, and synthesize information while ensuring accuracy and scalability.\n", + "\n", + "In this notebook, as a developer, you'll discover how to create intelligent agents and multi-agent systems using Vertex AI Gemini 2.0.\n", + "\n", + "\n", + "### Learning Through Implementation\n", + "\n", + "Rather than using existing frameworks, we'll build our multi-agent system from scratch. This approach offers several benefits:\n", + "\n", + "1. **Core Understanding**: Building from the ground up helps you understand the fundamental principles of multi-agent systems\n", + "2. **Design Pattern Mastery**: Learn reusable patterns that work across different domains and technologies\n", + "3. **Custom Control**: Gain the ability to fine-tune every aspect of your system\n", + "4. **Debugging Confidence**: Understanding the internals makes troubleshooting much more straightforward\n", + "\n", + "While there are excellent open-source frameworks available for building multi-agent systems, such as [AutoGen](https://github.com/microsoft/autogen), [CrewAI](https://github.com/crewAIInc/crewAI), [PydanticAI](https://github.com/pydantic/pydantic-ai), and [LangGraph](https://github.com/langchain-ai/langgraph), we believe that a from-scratch approach in this notebook will provide a deeper understanding of the underlying concepts and mechanics.\n", + "\n", + "The open-source frameworks offers many valuable features like conditional routing, annotated global state, checkpointing, and more.\n", + "\n", + "Once you've grasped the fundamentals from this notebook, exploring these frameworks can unlock even more advanced capabilities and streamline your development process.\n", + "\n", + "\n", + "### Key Technical Components\n", + "\n", + "Our implementation showcases essential Vertex AI ***Gemini 2.0*** capabilities:\n", + "\n", + "1. **Function Calling**: Structure agent behaviors and interactions\n", + "2. **Structured Output**: Generate consistent, validatable data\n", + "3. **Async Operations**: Handle parallel agent tasks efficiently\n", + "4. **Google Search Integration**: Ground agent reasoning in real-world data\n", + "\n", + "\n", + "### To get started, let's explore some key questions:\n", + "\n", + "* What exactly is an agent, and how does it differ from a simple LLM call?\n", + "* How can agents use tools to achieve their goals?\n", + "* And what possibilities emerge when multiple agents work together in a multi-agent system?\n", + "\n", + "\n", + "#### **LLM Execution (The Foundation)**\n", + "\n", + "Think of an LLM as a powerful prediction engine. Given some input text (a prompt), it predicts what comes next, generating text, translating languages, writing different kinds of creative content, and answering your questions in an informative way. However, on its own, it simply reacts to your input and provides an output. It doesn't have a sense of purpose or the ability to act independently.\n", + "\n", + "**Example:** An LLM is like a super smart travel guidebook. You ask it \"What are some popular attractions in Paris?\" and it gives you a list. It provides information but doesn't actually do anything.\n", + "\n", + "![title](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/simple-llm-flow.png)\n", + "\n", + "#### **Agent (LLM with a Purpose)**\n", + "\n", + "Now, imagine giving that prediction engine some goals and the ability to act on them. This is essentially what an agent is. It's an LLM wrapped with extra code that allows it to:\n", + "\n", + "* **Understand the goal:** \"Book a flight to London.\"\n", + "* **Break it down into steps:** Search for flights, compare prices, choose a date, make a booking.\n", + "* **Use tools to achieve those steps:** Access a flight booking API, a web browser, or even interact with a human.\n", + "\n", + "**Example:** An agent is like a personal travel assistant. You tell it \"Plan a trip to Paris for me next month.\" The agent uses its LLM \"brain\" to understand what that means, then uses tools like flight booking websites, hotel search engines, and even weather apps to create an itinerary.\n", + "\n", + "\n", + "![title](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/agent-flow.png)\n", + "\n", + "#### **Multi-Agent (Teamwork Makes the Dream Work)**\n", + "\n", + "Now, imagine several of these specialized agents working together, each with its own skills and responsibilities. That's a multi-agent system. They can communicate, share information, and coordinate their actions to achieve a complex goal.\n", + "\n", + "**Example:** Now imagine a team of specialized travel agents working together. One agent books the flights, another finds the perfect hotel, a third arranges tours and activities. They communicate and coordinate to create an amazing Paris trip.\n", + "\n", + "![title](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/multi-agent-flow.png)\n", + "\n", + "\n", + "---\n", + "\n", + "Now that you have learned the fundamentals, moving forward, you'll learn the core design patterns behind agents and multi-agent systems. We'll demonstrate its capabilities through a practical use case - Electric Vehicle (EV) infrastructure expansion analysis - while keeping the core architecture adaptable for any research-intensive application." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_ItHSSWRBG_D" + }, + "source": [ + "## Objective\n", + "\n", + "This notebook will guide you through building a research-focused multi-agent system. Here's what you'll learn:\n", + "\n", + "* **A design pattern for creating these systems:** We'll introduce a reusable structure for building multi-agent systems geared towards research tasks.\n", + "* **A practical example: EV Research Agent:** See how we applied the design pattern to create an agent specializing in Electronic Vehicle research. This agent can answer complex queries like \"EV Charging Station Expansion in [City Name]\" by planning, researching, and generating a comprehensive report.\n", + "* **Component integration and orchestration:** Understand how individual components within the agent work together seamlessly to produce the final output." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DKeB9J-EPFeQ" + }, + "source": [ + "## Our Use Case: EV Infrastructure Analysis\n", + "\n", + "To demonstrate the power and flexibility of our Research Multi-Agent system, we'll tackle a real-world challenge: analyzing optimal locations for expanding Electric Vehicle (EV) charging infrastructure in cities across the United States.\n", + "\n", + "### The Challenge\n", + "\n", + "Urban planners and EV infrastructure companies face complex decisions when expanding charging networks:\n", + "- Understanding population density and movement patterns\n", + "- Analyzing existing charging infrastructure\n", + "- Evaluating proximity to major highways and transit routes\n", + "- Considering local demographics and economic factors\n", + "- Assessing grid capacity and infrastructure readiness\n", + "\n", + "### Our Solution\n", + "\n", + "We'll build a research system that:\n", + "1. Accepts queries about specific cities or regions\n", + "2. Gathers data from multiple sources (OpenStreetMap, NREL API)\n", + "3. Analyzes infrastructure patterns and gaps\n", + "4. Generates actionable insights with citations\n", + "5. Visualizes findings for better decision-making\n", + "\n", + "Simply, A team of research agents armed with data and search engines, technical know how, coordinated with a common goal across specialized skillsets and tasks.\n", + "\n", + "\n", + "While we focus on EV infrastructure, the patterns and approaches we develop can be applied to any research-intensive domain requiring similar data gathering, analysis, and insight generation capabilities." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fAlzMGTdGhO-" + }, + "source": [ + "## Gemini 2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PkgSZ0wTzFU7" + }, + "source": [ + "## Overview\n", + "\n", + "[Gemini 2.0 Flash](https://cloud.google.com/vertex-ai/generative-ai/docs/gemini-v2) is a new multimodal generative ai model from the Gemini family developed by [Google DeepMind](https://deepmind.google/). It now available as an experimental preview release through the Gemini API in Vertex AI and Vertex AI Studio. The model introduces new features and enhanced core capabilities:\n", + "\n", + "- Multimodal Live API: This new API helps you create real-time vision and audio streaming applications with tool use.\n", + "- Speed and performance: Gemini 2.0 Flash is the fastest model in the industry, with a 3x improvement in time to first token (TTFT) over 1.5 Flash.\n", + "- Quality: The model maintains quality comparable to larger models like Gemini 1.5 Pro and GPT-4o.\n", + "- Improved agentic experiences: Gemini 2.0 delivers improvements to multimodal understanding, coding, complex instruction following, and function calling.\n", + "- New Modalities: Gemini 2.0 introduces native image generation and controllable text-to-speech capabilities, enabling image editing, localized artwork creation, and expressive storytelling.\n", + "- To support the new model, we're also shipping an all new SDK that supports simple migration between the Gemini Developer API and the Gemini API in Vertex AI." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "90JzDyyRzRRU" + }, + "source": [ + "## Getting Started" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qE48lDlSzf81" + }, + "source": [ + "### Install Google Gen AI SDK for Python" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "db8O7nh0zw_B" + }, + "outputs": [], + "source": [ + "# Downloading Google Gen AI SDK (experimental)\n", + "%pip install google-genai\n", + "\n", + "# Libraries required for saving markdowns as external files.\n", + "! apt install pandoc\n", + "! apt install libreoffice" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2jCwQQxO0WVx" + }, + "source": [ + "### Restart runtime\n", + "\n", + "To use the newly installed packages in this Jupyter runtime, you must restart the runtime. You can do this by running the cell below, which restarts the current kernel." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sDXGN26_0Y0R" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "if \"google.colab\" in sys.modules:\n", + " import IPython\n", + "\n", + " app = IPython.Application.instance()\n", + " app.kernel.do_shutdown(True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IGcO4hXDzzuH" + }, + "source": [ + "### Authenticate your notebook environment (Colab only)\n", + "\n", + "If you are running this notebook on Google Colab, run the cell below to authenticate your environment." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rbm_CqxKz1b6" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "if \"google.colab\" in sys.modules:\n", + " from google.colab import auth\n", + "\n", + " auth.authenticate_user()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ES6LwuBr0GSD" + }, + "source": [ + "### Connect to a generative AI API service\n", + "\n", + "Google Gen AI APIs and models including Gemini are available in the following two API services:\n", + "\n", + "- **[Google AI for Developers](https://ai.google.dev/gemini-api/docs)**: Experiment, prototype, and deploy small projects.\n", + "- **[Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/overview)**: Build enterprise-ready projects on Google Cloud.\n", + "\n", + "The Google Gen AI SDK provides a unified interface to these two API services.\n", + "\n", + "This notebook shows how to use the Google Gen AI SDK with the Gemini API in Vertex AI." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pMegXbM90JEk" + }, + "source": [ + "### Set Google Cloud project information\n", + "\n", + "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", + "\n", + "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4mrov4hC0OZ-" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "PROJECT_ID = \"[your-project-id]\" # @param {type: \"string\", placeholder: \"[your-project-id]\", isTemplate: true}\n", + "if not PROJECT_ID or PROJECT_ID == \"[your-project-id]\":\n", + " PROJECT_ID = str(os.environ.get(\"GOOGLE_CLOUD_PROJECT\"))\n", + "\n", + "LOCATION = os.environ.get(\"GOOGLE_CLOUD_REGION\", \"us-central1\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Mp0umgC00TMZ" + }, + "source": [ + "### Import libraries\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5FzK2TuA0SYe" + }, + "outputs": [], + "source": [ + "from google import genai\n", + "from rich import print as rich_print" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C2iaXGH21j_U" + }, + "source": [ + "### Create Gen AI Client" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "maA6ZXozxphR" + }, + "outputs": [], + "source": [ + "client = genai.Client(vertexai=True, project=PROJECT_ID, location=LOCATION)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "B70wFwV61uiK" + }, + "source": [ + "### Load the Gemini 2.0 Flash model\n", + "\n", + "To learn more about all [Gemini models on Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-models)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9qipKyrW1vG9" + }, + "outputs": [], + "source": [ + "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type: \"string\"}\n", + "MODEL_ID_Flash = \"gemini-1.5-flash-002\" # For control generation for grounding with google search as a Tool" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oMdna9zsJKx7" + }, + "source": [ + "To access comprehensive EV infrastructure data, you'll need an API key from the National Renewable Energy Laboratory (NREL). This key allows you to retrieve detailed information about EV charging stations, which is crucial for the `DataGatherAgent` to function correctly.\n", + "\n", + "**Here's how to get your NREL API key:**\n", + "\n", + "1. **Sign up:** Visit the [NREL Developer Network signup page](https://developer.nrel.gov/signup/).\n", + "2. **Email Confirmation:** You'll receive an email with your API key.\n", + "3. **Wait Time:** It might take some time to receive the email, so please be patient.\n", + "4. **Check Spam:** Make sure to check your spam or junk folder if you don't see the email in your inbox.\n", + "\n", + "**Enter your API key in the following code cell:**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HGKLVzF4JLJS" + }, + "outputs": [], + "source": [ + "NREL_API_KEY = \"[your-nrel-api-key]\" # @param {type: \"string\", placeholder: \"[your-nrel-api-key]\", isTemplate: true}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nscpdicqtHa8" + }, + "source": [ + "### Download utils" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IyWeX1ZqbVMZ" + }, + "source": [ + "To streamline the process and keep our focus on the design, utility, and output of the multi-agent system, we've placed the core code for the `ev_agent` in an external location. This includes both the `agent_handler` and `api_handler`, which contain the main logic. However, we're now downloading it to our current environment to ensure we can import the necessary functions for our analysis:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "P4cULOECtKeU" + }, + "outputs": [], + "source": [ + "!git clone https://github.com/GoogleCloudPlatform/generative-ai.git \\\n", + " && cp -r generative-ai/gemini/agents/research-multi-agents/ev_agent ./ \\\n", + " && rm -rf generative-ai" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ul4QvAKDbc6t" + }, + "source": [ + "This makes the code, including all the agents and API handlers, readily available for use. You can always explore the downloaded code and make changes as you see fit. This approach allows us to keep the notebook cleaner and focused on the higher-level aspects of the system while still providing access to the underlying implementation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "UYMXmaWny0JH" + }, + "outputs": [], + "source": [ + "# @title Saving Report (DOCX/PDF) Helper Functions\n", + "\n", + "import os\n", + "import subprocess\n", + "\n", + "\n", + "def convert_markdown(markdown_text, output_path, filename, file_type):\n", + " \"\"\"\n", + " Converts markdown text to DOCX or PDF using pandoc.\n", + "\n", + " Args:\n", + " markdown_text: The markdown text to convert.\n", + " output_path: The directory where the output file should be saved.\n", + " filename: The name of the output file (without extension).\n", + " file_type: The desired output file type ('docx' or 'pdf').\n", + "\n", + " Raises:\n", + " ValueError: If an invalid file type is specified.\n", + " FileNotFoundError: If pandoc is not found in the system's PATH.\n", + " subprocess.CalledProcessError: If the pandoc command fails.\n", + " OSError: If there is an error during file operations.\n", + " \"\"\"\n", + " os.makedirs(output_path, exist_ok=True)\n", + "\n", + " if file_type not in [\"docx\", \"pdf\"]:\n", + " raise ValueError(\"Invalid file type specified. Must be 'docx' or 'pdf'.\")\n", + "\n", + " docx_filepath = os.path.join(output_path, f\"{filename}.docx\")\n", + "\n", + " try:\n", + " # Check if pandoc is available\n", + " subprocess.run([\"pandoc\", \"--version\"], capture_output=True, check=True)\n", + "\n", + " # Convert Markdown to DOCX\n", + " subprocess.run(\n", + " [\"pandoc\", \"-f\", \"markdown\", \"-t\", \"docx\", \"-o\", docx_filepath],\n", + " input=markdown_text,\n", + " encoding=\"utf-8\",\n", + " check=True,\n", + " )\n", + " # print(f\"DOCX file saved to: {docx_filepath}\")\n", + "\n", + " if file_type == \"pdf\":\n", + " pdf_filepath = os.path.join(output_path, f\"{filename}.pdf\")\n", + " # Convert DOCX to PDF (using libreoffice on Colab)\n", + " subprocess.run(\n", + " [\n", + " \"libreoffice\",\n", + " \"--headless\",\n", + " \"--convert-to\",\n", + " \"pdf\",\n", + " \"--outdir\",\n", + " output_path,\n", + " docx_filepath,\n", + " ],\n", + " check=True,\n", + " )\n", + " print(f\"PDF file saved to: {pdf_filepath}\")\n", + "\n", + " # Delete the temporary DOCX file\n", + " os.remove(docx_filepath)\n", + " print(f\"Temporary DOCX file deleted: {docx_filepath}\")\n", + "\n", + " except FileNotFoundError:\n", + " raise FileNotFoundError(\n", + " \"pandoc not found. Please ensure it is installed and in your system's PATH.\"\n", + " )\n", + " except subprocess.CalledProcessError as e:\n", + " raise subprocess.CalledProcessError(\n", + " e.returncode, e.cmd, output=e.output, stderr=e.stderr\n", + " )\n", + " except OSError as e:\n", + " raise OSError(f\"Error during file operations: {e}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DUHn-HALvWuB" + }, + "source": [ + "# Gemini-Powered EV Research: A Multi-Agent Approach\n", + "\n", + "This section outlines a powerful multi-agent system designed for in-depth research on Electric Vehicle (EV) charging infrastructure in US cities. Built entirely using Gemini 2.0, this system showcases a streamlined approach to complex research tasks.\n", + "\n", + "**Core Idea:** We've assembled a team of specialized AI agents, each using Gemini 2.0, to automate and enhance the research process. This approach leverages Gemini's strengths in:\n", + "\n", + "* **Function Calling:** Enables agents to trigger specific actions and tools facilitating seamless interaction.\n", + "* **Structured Generations:** Ensures consistent, predictable output from each agent, simplifying inter-agent communication.\n", + "* **Async Model Calling:** Allows agents to work concurrently, significantly speeding up research.\n", + "* **Google Search Grounding:** Keeps the research grounded in real-world data and up-to-date information.\n", + "\n", + "## System Architecture\n", + "\n", + "At the heart of our system lies a clear, modular architecture, visualized below:\n", + "\n", + "![research-multi-agent-desing-pattern](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/multi-agent-design-pattern.png)\n", + "**Agent Breakdown:**\n", + "\n", + "The diagram illustrates the core components of our system:\n", + "\n", + "* **User (Pink):** Initiates the research process by submitting a query.\n", + "* **ExecutionAgent (Pink):** The central orchestrator, managing the workflow, handling communication between agents, and ensuring smooth execution. It also handles error recovery, such as retries and alternative execution paths, to maintain system robustness.\n", + "* **Core Research Agents (Green):**\n", + " * **PlanningAgent:** The strategist, converting the user's query into a detailed, step-by-step research plan.\n", + " * **QueryAnalysisAgent:** The interpreter, determining the specific data required and the desired output format (e.g., raw data, report, visualization).\n", + " * **DataGatherAgent:** The collector, responsible for fetching data from external APIs. It leverages Gemini's search grounding to ensure data accuracy and relevance. This agent is designed to be adaptable to various data sources.\n", + " * **ReportAgent:** The writer, transforming raw data into a comprehensive, well-structured report. It can incorporate search-based grounding for validation and supports multiple output formats.\n", + " * **VisualizeAgent:** The illustrator, creating clear and insightful visualizations (charts, graphs) to represent the findings. It adapts its output based on data types and user requirements.\n", + "* **Research Output (Pink):** The final, comprehensive research product delivered to the user.\n", + "* **External Systems (Blue):**\n", + " * **External APIs:** Data sources for the `DataGatherAgent`.\n", + " * **Visualization Tools:** Libraries used by the `VisualizeAgent`.\n", + " * **Document Tools:** Resources utilized by the `ReportAgent` for formatting and presentation.\n", + "\n", + "\n", + "**Benefits of the Gemini-Powered Approach:**\n", + "\n", + "* **Simplified Development:** Build the entire system using a single, powerful API – Gemini.\n", + "* **Native Functionality:** Leverage Gemini's built-in features for seamless agent interaction and consistent output.\n", + "* **Enhanced Performance:** Async model calling enables parallel processing, accelerating the research process.\n", + "* **Real-World Relevance:** Google Search grounding ensures your research is always based on the latest information.\n", + "* **Scalability and Flexibility:**\n", + " * Easily add new agents for specialized tasks (e.g., sentiment analysis of EV adoption).\n", + " * Modify existing agents to adapt to new data sources or research requirements.\n", + " * The modular design allows independent scaling of different system components." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W9mEtr_yw0vZ" + }, + "source": [ + "## Exploring the EV Agent in Action\n", + "\n", + "Now that you've seen the architecture, let's dive into the practical side and see how our EV Research Agent works. We'll explore two ways to interact with it:\n", + "\n", + "**1. The \"Black Box\" Experience: Witnessing the Magic**\n", + "\n", + "Imagine the entire multi-agent system as a single, powerful unit – the `EVAgent`. In this section, we'll treat it as a \"black box.\" You'll simply send it a research query, and watch as it works behind the scenes, delivering a comprehensive report in about 1-2 minutes.\n", + "\n", + "We'll try two exciting examples:\n", + "\n", + "* **Example 1: Basic Report Generation:** See how the agent generates a structured report with predefined sections based on your query.\n", + "* **Example 2: Google Search Enhanced Report:** Observe how the agent leverages Google Search to enrich the report with citations, deeper insights, and up-to-the-minute information.\n", + "\n", + "**2. Deconstructing the Process: A Step-by-Step Journey**\n", + "\n", + "Ready to peek under the hood? In this section, we'll dissect the agent's inner workings. You'll follow along as your query is processed through each stage of the research pipeline:\n", + "\n", + "* **Planning:** Witness how the `PlanningAgent` crafts the initial research strategy. *We'll briefly touch upon the code behind this, highlighting the input it receives and the plan it outputs, along with the data models that structure this communication.*\n", + "* **Reasoning:** See how the `QueryAnalysisAgent` determines the necessary data and output format. *Again, we'll peek at the underlying code to understand its input, output, and the data models involved.*\n", + "* **Tool Selection:** Observe how the `DataGatherAgent` chooses the right APIs and leverages Google Search. *We'll examine the code's role in this selection process, focusing on the data models that guide its choices.*\n", + "* **Coordination:** Understand how the `ExecutionAgent` orchestrates the entire process. *We will shed some light on the code that enables this coordination, emphasizing the data models as the communication backbone between agents.*\n", + "* **Decision-Making:** Learn how the agents make choices at each step, leading to the final output.\n", + "\n", + "You'll see firsthand how these individual steps, powered by their underlying logic and data models, contribute to the final, polished report and visualizations.\n", + "\n", + "**A Note on Code Structure:**\n", + "\n", + "To keep this exploration clear and focused, the detailed code for each agent is neatly organized in separate files. **We are choosing not to put code directly in this notebook as it will make it unnecessarily complex.** So when we go through step by step, think of each agent as a black box. We will, however briefly talk about the design pattern it follows, what the data model it uses behind the scene to produce an output. Once you understand that, you can easily refer to the code from scratch or use any open-source library to implement a similar agent. Think of them as behind-the-scenes appendices you can explore later to dive deep into the implementation details of each agent.\n", + "\n", + "**The primary goal here is to showcase the power of agent collaboration with Gemini 2.0.** You'll witness how our team of Gemini-powered agents works together seamlessly to fulfill your research requests, demonstrating the elegance and efficiency of this multi-agent approach.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4Xh-cZwQFJpz" + }, + "source": [ + "## EV Agent - The \"Black Box\" Experience:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "on2mGosD1WBp" + }, + "source": [ + "The `ExecutionAgent` is the heart of our EV infrastructure analysis system. Think of it as the conductor of an orchestra, coordinating a team of specialized agents to perform a comprehensive analysis based on your query.\n", + "\n", + "**Before you start:**\n", + "\n", + "* **What it does:** The `ExecutionAgent` takes your query about EV infrastructure, develops a plan, gathers relevant data, generates reports, and creates insightful visualizations.\n", + "* **How it works:** It delegates tasks to other agents (like a planning agent, data gathering agent, etc.) and manages the overall workflow.\n", + "* **What you get:** You'll receive a structured output containing the analysis plan, gathered data, a detailed report (if requested), and visualizations (if applicable).\n", + "* **Customization:** You can control the level of detail (debug mode), whether to see intermediate outputs (stage\\_output), and the type of output you desire (e.g., raw data, report, text).\n", + "\n", + "Essentially, the `ExecutionAgent` simplifies the complex process of EV infrastructure analysis, providing you with a powerful tool to gain valuable insights." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "K5O-SIBr0g7p" + }, + "outputs": [], + "source": [ + "# Importing ExecutionAgent from our agent_handler\n", + "\n", + "\n", + "from ev_agent.agent_handler.agent_01_ExecutionAgent import ExecutionAgent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EeXrJaqTIBJv" + }, + "outputs": [], + "source": [ + "# Create the agent\n", + "\n", + "agent = ExecutionAgent.create(\n", + " client=client,\n", + " model_name=MODEL_ID_Flash, # Gemini 2.0 Flash\n", + " api_key=NREL_API_KEY,\n", + " debug=False,\n", + " stage_output=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YgUWghr5IG5T" + }, + "source": [ + "### Basic Report Generation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pRvAIJmD2p76" + }, + "source": [ + "In this case, we're treating the `ExecutionAgent` as a **\"black box\"**. We provide the input query (\"I want to understand the EV charging situation in Austin.\") and it will eventually deliver the final report without revealing the inner workings." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lgIT_0Wc2uPK" + }, + "source": [ + "Since we set `debug=False` and `stage_output=False` earlier, the agent is giving us some playful warnings. It's essentially saying, \"Hey, you've turned off all the visibility into the process, so you'll only see the final result! But, just so you know, there are four agents working hard behind the scenes\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QI6Lfz6QIek4" + }, + "outputs": [], + "source": [ + "# Execute the analysis\n", + "results = await agent.execute(\n", + " \"I want to understand the EV charging situation in Austin.\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a4I0IohK2wPn" + }, + "source": [ + "You'll notice a humorous warning: `*Deciphering your cryptic commands! It's like translating ancient hieroglyphs, but with more emojis.*` This is a subtle hint that the **QueryAnalysisAgent** is currently at work, interpreting your input query. If you ever want to peek behind the curtain, simply set `debug=True` or `stage_output=True` when creating the agent. But for now, we're embracing the black box experience and eagerly awaiting the final, comprehensive report." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fMWrJ7AyD5FW" + }, + "source": [ + "---\n", + "If you want to save the generated report for later use or sharing, you can easily convert it to PDF or DOCX format. Here's how:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Q3n4cZJj5IjH" + }, + "outputs": [], + "source": [ + "# # You can save the report as PDF or DOCX\n", + "\n", + "markdown_text = (\n", + " results[\"report\"][\"full_text\"] + \"\\n\\n\\n\" + results[\"report\"][\"citations\"]\n", + ")\n", + "\n", + "convert_markdown(\n", + " markdown_text,\n", + " output_path=\"/content/generated_report\",\n", + " filename=\"austin_normal\",\n", + " file_type=\"pdf\", # or \"docx\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZXk8CAHE5pRE" + }, + "source": [ + "This will generate a nicely formatted report file in your chosen location, ready to be viewed or shared. You can see an example of a pre-generated report here: [Austin Report with Sections](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/sample_reports/austin_normal.pdf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7vb7X_RUFIPi" + }, + "source": [ + "The `results` object is a dictionary containing all the data generated from the analysis, including the `plan`, `query_analysis`, `data`, and the final `report` (with `citations`, `full_text`, and `sections`)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UFH-oLQDKAxP" + }, + "outputs": [], + "source": [ + "rich_print(\n", + " \"The result object contains all these internal data points with the reports: \",\n", + " list(results.keys()),\n", + ")\n", + "rich_print(\n", + " \"The Report contains the citations, full text of the report and individual sections: \",\n", + " list(results[\"report\"].keys()),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "R8JZGlBcGBKw" + }, + "source": [ + "We've saved the full report above, but for now, let's just look at one section to see how they're structured. This demonstrates the organized way we store information within the report.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Osqut3cyLFkx" + }, + "outputs": [], + "source": [ + "for section_name, section_text in results[\"report\"][\"sections\"].items():\n", + " if section_name == \"Infrastructure Overview\":\n", + " print(section_name)\n", + " rich_print(section_text)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JrGgCle_GsSr" + }, + "source": [ + "Let's focus on the data structure of each report section, which is crucial for developers to understand, especially in the context of our multi-agent system.\n", + "\n", + "As shown in the output, each section, like \"Infrastructure Overview,\" is represented as a `Section` object. This object neatly encapsulates:\n", + "\n", + "* **`title`:** The title of the section (e.g., \"Infrastructure Overview\").\n", + "* **`content`:** The main text of the section, generated by Gemini, providing a detailed analysis. It's important to note that this content is dynamically created based on the data gathered by the `DataGatherAgent` and the insights generated by the language model.\n", + "* **`citations`:** A dictionary containing `CitationData` objects. Each citation provides a `number`, `value`, `data_path`, `raw_value`, and `context`, meticulously linking claims in the content to specific data points retrieved by our `DataGatherAgent` via API calls.\n", + "* **`key_findings`:** A list of key insights extracted from the section's content.\n", + "* **`enhanced_content`:** An optional field for additional data or analysis.\n", + "\n", + "\n", + "In the normal \"Infrastructure Overview\" section, the numbers and facts presented are not manually entered; they are dynamically derived from our structured data model. This model is populated with real-world data fetched from various APIs by our dedicated `DataGatherAgent`. Let's see how this works with an example:\n", + "\n", + "**From the \"Infrastructure Overview\" section:**\n", + "\n", + "> \"Austin's total area encompasses 1679.20 sq km [1], with a significant portion dedicated to built areas (644.59 sq km) [1].\"\n", + "\n", + "The numbers \"1679.20\" and \"644.59\" are linked to **Citation 1**:\n", + "\n", + "```\n", + "1: CitationData(\n", + " number=1,\n", + " value='1679.20 sq km total area, 644.59 sq km built area, 42224 service roads, 476 EV charging\n", + "stations',\n", + " data_path='summary.area_metrics.total_area, summary.area_metrics.built_area,\n", + "summary.roads.service_roads, summary.parking.ev_charging',\n", + " raw_value=\"{'total_area': {'value': '1679.20', 'path': 'summary.area_metrics.total_area_sqkm', 'unit':\n", + "'sq km'}, 'built_area': {'value': '644.59', 'path': 'summary.area_metrics.built_area_sqkm', 'unit': 'sq km'},\n", + "'service_roads': {'value': '42224', 'path': 'summary.roads.service_roads', 'unit': 'roads'}, 'ev_charging':\n", + "{'value': '476', 'path': 'summary.parking.ev_charging', 'unit': 'stations'}}\",\n", + " context='Overall Austin metrics and existing EV charging station count'\n", + "),\n", + "```\n", + "\n", + "**Here's the breakdown:**\n", + "\n", + "1. **Data Source:** The `DataGatherAgent` makes API calls to sources like OpenStreetMap to gather data about Austin.\n", + "2. **Structured Data Model:** This fetched data is stored in a structured format. For example, `summary.area_metrics.total_area` is a specific field in our data model that holds Austin's total area.\n", + "3. **Citation Tracing:** Citation 1 clearly links the numbers in the text to their source in the data model. The `data_path` field shows where to find the data (e.g., `summary.area_metrics.total_area`), and the `raw_value` field reveals the exact value fetched from the API (\"1679.20\").\n", + "4. **Dynamic Content Generation:** When the report is generated, the system automatically pulls the relevant data from the model, based on the `data_path` specified in the citation, and inserts it into the text.\n", + "\n", + "**Why is this important?**\n", + "\n", + "* **Accuracy:** Our report is based on real data from trusted APIs, not on manual input, minimizing errors.\n", + "* **Traceability:** We can always trace the data back to its source, ensuring transparency and verifiability.\n", + "* **Automation:** The `DataGatherAgent` and our structured data model automate the data retrieval and integration process, making it efficient.\n", + "* **Consistency:** This structured approach ensures consistency across the report, as all agents use the same data model.\n", + "\n", + "In essence, the normal section demonstrates the power of our data-driven approach. The `DataGatherAgent`, our structured data model, and the `CitationData` system work together seamlessly to create a report grounded in accurate, traceable, and automatically updated information. This highlights the core strength of our multi-agent system: its ability to leverage structured data to produce reliable and insightful analysis.\n", + "\n", + "\n", + "\n", + "**Why is this data structure useful for developers and a multi-agent system?**\n", + "\n", + "This structured format promotes modularity, allowing developers to reuse sections and enabling different agents to collaborate seamlessly by contributing to specific parts of the report. The clear link between generated content and underlying data via CitationData ensures data integrity and transparency. Furthermore, the design is extensible, accommodating future growth and new types of analysis without disrupting the core structure, making it ideal for a multi-agent system." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w7CchYhMItoe" + }, + "source": [ + "While we've focused on the report, you can also explore other parts of the `results` object. This provides a way to delve deeper into the agent's inner workings, but we'll break down each agent's role in more detail in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "926d0bb80f59" + }, + "outputs": [], + "source": [ + "# You can print the whole text of the report:\n", + "rich_print(results[\"report\"][\"full_text\"])\n", + "\n", + "# You can print the whole citations of the report:\n", + "rich_print(results[\"report\"][\"citations\"])\n", + "\n", + "# You can also check the data it has used to generate the report\n", + "rich_print(results[\"data\"])\n", + "\n", + "# If you want to see the whole plan of the agent that it executed\n", + "rich_print(results[\"plan\"])\n", + "\n", + "# If you want to see the query analysis of the agent\n", + "rich_print(results[\"query_analysis\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kiumiZy46oob" + }, + "source": [ + "---\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8JIQYmPkIL1q" + }, + "source": [ + "### Google Search Enhanced Report" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YKw5q6woJ8pt" + }, + "source": [ + "Now, let's kick it up a notch! We're going to run the analysis again with `results_grounded_plot = await agent.execute(\"\"\"I want to understand the EV charging situation in Austin. I need a report and enhance the sections of report with google. Also add some plots\"\"\")`. This time, we've added two new twists to our request: grounding the report sections with Google Search results and adding data plots.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t-3L1Nz-1nPy" + }, + "source": [ + "**Note on grounding with google search as a Tool with Gemini 2.0:**\n", + "\n", + "Currently, grounding with google search as a Tool on Gemini 2.0 does not support controlled generation. While you can still perform grounding with search, the output format and structure cannot be explicitly controlled at this time. Controlled generation is important for grounding as it allows us to specify the desired format and structure of the output, ensuring that the information retrieved from web search is integrated into the report in a consistent and organized manner. In the meantime, we are utilizing the Gemini 1.5 Flash model to perform grounding with controlled generation capabilities. You can explore examples of grounding with google search as a Tool Gemini 2.0 (without controlled generation) [here](link)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rboGC6pP1EBW" + }, + "outputs": [], + "source": [ + "# Create the agent\n", + "\n", + "agent = ExecutionAgent.create(\n", + " client=client,\n", + " model_name=MODEL_ID_Flash, # Gemini 1.5 Flash\n", + " api_key=NREL_API_KEY,\n", + " debug=False,\n", + " stage_output=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bCZ23K5SIMMj" + }, + "outputs": [], + "source": [ + "# Execute the analysis\n", + "results_grounded_plot = await agent.execute(\n", + " \"\"\"I want to understand the EV charging situation in Austin. I need a report and enhance the sections of report with google. Also add some plots\"\"\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Jzz2vbC1J_Q8" + }, + "source": [ + "Just like before, you'll see the familiar playful warnings since we're still running in a \"black box\" mode. However, now you'll also notice `DEBUG` messages indicating that sections are being enhanced with new citations, for example: `DEBUG: Enhanced Executive Summary with 17 new citations`. This is where the magic happens! The agent is now smartly integrating information from Google Search to bolster the report.\n", + "\n", + "What can you expect? Not only will the report be more comprehensive and grounded in a wider range of sources, but you'll also get to see insightful visualizations of the data. This is a significant step up from the previous run, showcasing the agent's ability to dynamically adapt to our requests and provide a richer, more visually engaging analysis. Get ready to be impressed by the power of combining AI, data analysis, and web search in a single, seamless process!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "90xiSV6G6Jts" + }, + "outputs": [], + "source": [ + "# Just like before, you can save this enhanced report as a PDF or DOCX using:\n", + "\n", + "convert_markdown(\n", + " markdown_text=results_grounded_plot[\"report\"][\"combined_report\"],\n", + " output_path=\"/content/generated_report\",\n", + " filename=\"austin_grounded\",\n", + " file_type=\"pdf\", # or \"docx\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CVB0HBPP7Rgu" + }, + "source": [ + "This will generate a file with the grounded sections. If you're eager to see the complete report right away, you can check out the pre-generated version here: [Austin Report - Sections Grounded with Search](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/sample_reports/austin_grounded.pdf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "H1yg0GWZN17j" + }, + "source": [ + "You've seen the full, enhanced report – now let's take a closer look at how a single grounded section compares to the normal section we saw earlier. We'll examine the \"Infrastructure Overview\" section again:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4nCGfx-NMdel" + }, + "outputs": [], + "source": [ + "for section_name, section_text in results_grounded_plot[\"report\"][\"sections\"].items():\n", + " if section_name == \"Infrastructure Overview\":\n", + " print(section_name)\n", + " rich_print(section_text)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1jLTWQe0N3ZY" + }, + "source": [ + "**Here's the \"aha\" moment:** Notice how the `content` of this section is now significantly richer and more detailed. It's not just stating facts from our initial data; it's weaving in insights and information gathered from the web through Google Search. This demonstrates the power of grounding our analysis in a broader context." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uVlnk6OxQyn1" + }, + "source": [ + "Okay, let's break down how Google Search enhances the report by focusing on a specific example: **Citation 8**.\n", + "\n", + "In the grounded \"Infrastructure Overview\" section, we have:\n", + "\n", + "```\n", + " 8: CitationData(\n", + " number=8,\n", + " value=\"Report on global EV infrastructure trends and best practices. | Context: Informs strategic\n", + "recommendations for improving Austin's EV infrastructure. | URL: BloombergNEF\",\n", + " data_path='BloombergNEF',\n", + " raw_value='Report on global EV infrastructure trends and best practices.',\n", + " context=\"Informs strategic recommendations for improving Austin's EV infrastructure.\"\n", + " )\n", + "```\n", + "\n", + "This citation points to a report from **BloombergNEF** on global EV infrastructure trends. Now, let's see how this reference, found through Google Search, contributes to the enhanced content:\n", + "\n", + "**Original Content (Before Search):**\n", + "\n", + "> \"The existing EV charging infrastructure, while growing, needs significant expansion to meet the rising demand for EVs. Currently, there are 78 total EV charging stations [2] across the city. This number is significantly lower than other major cities with similar populations.\"\n", + "\n", + "**Enhanced Content (After Search):**\n", + "\n", + "> \"The existing EV charging infrastructure, while growing, needs significant expansion to meet the rising demand for EVs. Currently, there are 78 total EV charging stations [2] across the city. This number is significantly lower than other major cities with similar populations. **A recent study by BloombergNEF [3] highlights the need for a much higher density of charging stations to support widespread EV adoption.**\"\n", + "\n", + "**Here's the impact:**\n", + "\n", + "1. **External Validation:** The original content stated that Austin's charging station count is low compared to similar cities. The enhanced content, using the BloombergNEF report found via Google Search, adds external validation to this claim. It's no longer just an observation based on our data; it's now supported by a reputable source on global EV trends.\n", + "2. **Strategic Depth:** The BloombergNEF citation adds a layer of strategic depth. It's not just about the current number of stations; it connects to the broader concept of \"charging station density\" needed for \"widespread EV adoption\" – a key insight for planning Austin's EV future.\n", + "3. **Credibility Boost:** Referencing a well-known organization like BloombergNEF significantly enhances the credibility of the report. It demonstrates that our analysis is informed by industry experts and best practices.\n", + "\n", + "**In essence, Google Search, through this specific citation, helped us transform a simple observation into a well-supported, strategically relevant insight.** It demonstrates how our system leverages web knowledge to enhance the report's quality, moving beyond the limitations of our initial data and providing a more nuanced and impactful analysis. This dynamic integration of external information is a key strength of our multi-agent approach." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CZLXKarZVcQC" + }, + "source": [ + "---\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hUrIIjc6To8S" + }, + "source": [ + "Now, let's visualize the raw data that underpins our analysis. The following code will generate plots directly from the data fetched by our `DataGatherAgent` from external APIs.\n", + "\n", + "You can also check the data it has used to generate the plots\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7cd5d15ec423" + }, + "outputs": [], + "source": [ + "rich_print(results_grounded_plot[\"data\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CuELS1YtVNVA" + }, + "source": [ + "Let's explore the visualizations generated from the raw API data, which offer a deeper understanding of Austin's EV infrastructure and its urban context. The code uses the `create_comprehensive_city_analysis` function to produce a set of Plotly figures, each shedding light on different aspects of the city:\n", + "\n", + "**1. EV Infrastructure Overview Dashboard:**\n", + "\n", + "* **Charging Station Types:** This bar chart breaks down the number of DC Fast, Level 2, and Level 1 charging stations. For Austin, it highlights the dominance of Level 2 chargers and the relative scarcity of DC Fast chargers. This is crucial for understanding the current charging landscape and identifying potential gaps, especially for users requiring faster charging options.\n", + "* **Connector Distribution:** This pie chart reveals the types of connectors available (e.g., CCS, CHAdeMO, Tesla). By examining this chart for Austin, you can assess the compatibility of the existing infrastructure with various EV models.\n", + "* **Network Distribution:** This bar chart displays the number of charging stations associated with different networks (e.g., ChargePoint, Tesla). For Austin, it might reveal a reliance on a particular network, which could influence decisions about network diversification and partnerships.\n", + "* **Access & Payment Methods:** This bar chart shows the percentage of stations offering various access and payment methods (e.g., credit card, mobile pay, 24/7 access). In Austin's case, it can indicate the ease of use and accessibility of the charging infrastructure for different users.\n", + "\n", + "**2. Transportation Infrastructure Analysis:**\n", + "\n", + "* **Public Transport Facilities:** This section visualizes the number of bus stops, train stations, bus stations, and bike rental locations. For Austin, this data helps assess the integration of EV charging with existing public transportation, which is vital for planning intermodal hubs.\n", + "* **Road Network Distribution:** This shows the distribution of motorways, primary, secondary, and residential roads. Understanding Austin's road network density and types can inform decisions about optimal charging station placement along major thoroughfares.\n", + "* **Parking Facilities:** This section charts the number of surface parking lots, parking structures, street parking spaces, and designated EV charging spots. For Austin, it helps evaluate the availability of parking spaces that could potentially be equipped with EV charging.\n", + "* **EV vs. Traditional Infrastructure:** This compares the number of EV charging stations, fuel stations, car dealerships, and car repair shops. In Austin's context, it provides insights into the current balance between EV and traditional vehicle infrastructure, indicating the progress of EV adoption.\n", + "\n", + "**3. Urban Amenities and Services:**\n", + "\n", + "* **Retail and Shopping:** This visualizes the distribution of shopping centers, supermarkets, department stores, and convenience stores. For Austin, it helps identify potential locations for charging stations near high-traffic retail areas.\n", + "* **Food and Entertainment:** This section charts restaurants, cafes, bars, and fast-food outlets. Understanding the density of these amenities in Austin can guide the placement of charging stations near popular destinations.\n", + "* **Emergency Services:** This displays the number of police stations, fire stations, hospitals, and clinics. For Austin, this information can be relevant for ensuring the resilience of the EV infrastructure and planning for emergency response related to EVs.\n", + "* **Public Amenities:** This visualizes the number of post offices, banks, ATMs, and public toilets. In Austin's context, it helps assess the availability of essential services near potential charging station locations.\n", + "\n", + "**4. Area Analysis:**\n", + "\n", + "* **Area Distribution:** This pie chart shows the breakdown of Austin's total area into water, green, built, and other areas. It provides a quick overview of the city's land use, which can be a factor in determining suitable locations for charging infrastructure.\n", + "\n", + "**Ideally, these charts would be integrated into the report itself, providing a visual complement to the textual analysis.** However, even as standalone visualizations, they offer valuable insights for decision-making related to EV charging station expansion. For example, by examining the distribution of charging types, connector types, and network providers, along with the city's transportation infrastructure and urban amenities, stakeholders can identify strategic locations for new charging stations, optimize the mix of charging options, and ensure that the expansion aligns with the city's overall development and EV adoption trends. By correlating the density of public transportation, road networks, and parking facilities with the location of existing EV charging stations, planners can pinpoint areas where additional infrastructure is most needed. They can also consider factors such as proximity to retail centers, food and entertainment venues, and public amenities to enhance the user experience and maximize the utilization of charging stations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7Q_MfimBMdbS" + }, + "outputs": [], + "source": [ + "print(\"\\n=== Single City Analysis ===\")\n", + "for name, fig in results_grounded_plot[\"visualizations\"][0].items():\n", + " print(f\"\\nDisplaying: {name.replace('_', ' ').title()}\")\n", + " fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YE6bl8haTPL-" + }, + "source": [ + "The `results` object is a dictionary containing all the data generated from the analysis, includes extra variables to add visualizations and `combined_report`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "K_j2N-_5Kv_D" + }, + "outputs": [], + "source": [ + "rich_print(\n", + " \"The result object contains all these internal data points with the reports: \",\n", + " list(results_grounded_plot.keys()),\n", + ")\n", + "rich_print(\n", + " \"The Report contains the combined reports, citations, full text of the report and individual sections: \",\n", + " list(results_grounded_plot[\"report\"].keys()),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bz-FBnhJTi-5" + }, + "source": [ + "While we've focused on the report, you can also explore other parts of the `results` object. This provides a way to delve deeper into the agent's inner workings, but we'll break down each agent's role in more detail in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1192d611f92b" + }, + "outputs": [], + "source": [ + "# You can print the whole report:\n", + "rich_print(results_grounded_plot[\"report\"][\"combined_report\"])\n", + "\n", + "# You can print the whole text of the report:\n", + "rich_print(results_grounded_plot[\"report\"][\"full_text\"])\n", + "\n", + "# You can print the whole citations of the report:\n", + "rich_print(results_grounded_plot[\"report\"][\"citations\"])\n", + "\n", + "# You can also check the data it has used to generate the report\n", + "rich_print(results_grounded_plot[\"data\"])\n", + "\n", + "# If you want to see the whole plan of the agent that it executed\n", + "rich_print(results_grounded_plot[\"plan\"])\n", + "\n", + "# If you want to see the query analysis of the agent\n", + "rich_print(results_grounded_plot[\"query_analysis\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GcW6BJTq8WuT" + }, + "source": [ + "---\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jGdQeo_CRHh_" + }, + "source": [ + "## Deconstructing the Process: A Step-by-Step Journey of Agents" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ruk0__600E3e" + }, + "source": [ + "Before we delve into the inner workings of each agent, let's take a look at the overall flow of our multi-agent system. This sequence diagram provides a visual representation of how the agents interact and collaborate to process your query and generate the final output:\n", + "\n", + "![research-multi-agent-desing-pattern](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/research_multi_agent_ev/img/ev_agent_simple.png)\n", + "\n", + "\n", + "This sequence diagram serves as a visual roadmap for understanding the flow of our multi-agent system, and you can refer back to it as we explore each agent's inner workings. It illustrates how agents like the `ExecutionAgent`, `PlanningAgent`, `QueryAnalysisAgent`, `DataGatherAgent`, `ReportAgent`, and `VisualizeAgent` interact and collaborate to process your query, highlighting their roles, the flow of information, and key decision points. This diagram is crucial for grasping the big picture as we delve into the specifics of each agent, starting with the `PlanningAgent`, which initiates the analysis process based on your query." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hIQNRrF9KWqL" + }, + "source": [ + "### Agent: PlanningAgent" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BHYuwLIgDHyw" + }, + "source": [ + "### Agent: PlanningAgent\n", + "\n", + "The `PlanningAgent` is the first active agent in our sequence, responsible for taking your initial query and crafting a strategic execution plan. As seen in the sequence diagram, the `ExecutionAgent` passes the user's query to the `PlanningAgent`, which then returns a structured plan. Let's break down its role:\n", + "\n", + "**Input:**\n", + "\n", + "* **Query:** The user's raw query about EV infrastructure (e.g., \"Analyze EV charging stations in Austin\").\n", + "* **Client:** An instance of the generative AI model client (e.g., `gemini`).\n", + "* **Model Name:** The specific model to be used (e.g., \"gemini-pro\").\n", + "* **Debug:** A boolean flag to enable/disable debug mode.\n", + "* **API Key:** The API key for external services like NREL.\n", + "\n", + "**Output:**\n", + "\n", + "* **ExecutionPlan:** A structured plan containing:\n", + " * **Query:** The original user query.\n", + " * **Timestamp:** When the plan was created.\n", + " * **Validated Query:** Result of query validation, including validity, cities mentioned, missing elements, and suggestions for improvement.\n", + " * **Enable Search:** A boolean flag indicating if enhanced search/grounding is required.\n", + " * **Steps:** A list of `PlanStep` objects, each defining a step in the execution process with details like agent name, description, input/output formats, and status.\n", + " * **Debug:** A boolean flag indicating debug status.\n", + "\n", + "This section will explore five key aspects of the `PlanningAgent`: its setup, the creation of the `ExecutionPlan`, query validation and suggestions, handling of invalid queries, and a glimpse into its internal code structure." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qIj_pscoDmQU" + }, + "source": [ + "Agent Code:\n", + "```\n", + "`/content/ev_agent/agent_handler/agent_02_PlanningAgent.py`\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qLxSAgN3AyyW" + }, + "source": [ + "#### Setting up and Calling the agent\n", + "\n", + "First, we need to set up and call the `PlanningAgent`. Here's how we do it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6ZzI1mSbJ3bt" + }, + "outputs": [], + "source": [ + "from ev_agent.agent_handler.agent_02_PlanningAgent import *" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pFrQSpP5E3Kv" + }, + "source": [ + "We start by importing the necessary `PlanningAgent` class. Then, we create an instance of the agent, providing the user's query, the client object, the model name, and setting `debug` to `False` for now. Finally, we call the `create_plan()` method to generate the execution plan. If `debug` is set to `False`, you might see a humorous warning about the complexity of plan creation, which is just a playful way to indicate that the agent is working behind the scenes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qONvCmwqJ3Yq" + }, + "outputs": [], + "source": [ + "agent = PlanningAgent(\n", + " query=\"I want to understand the EV charging situation in austin and proper vetted information and some plot\",\n", + " client=client,\n", + " model_name=MODEL_ID_Flash,\n", + " debug=False,\n", + ")\n", + "plan = agent.create_plan()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GQjRth99ATj0" + }, + "source": [ + "#### ExecutionPlan" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7BOaeF9aGULR" + }, + "source": [ + "Now, let's examine the `ExecutionPlan` generated by the `PlanningAgent`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "VGN-ZitTJ3Vz" + }, + "outputs": [], + "source": [ + "rich_print(plan)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rLe_ptdcGaf1" + }, + "source": [ + "The core of this plan lies in the `steps` list, which contains a sequence of `PlanStep` objects. Each `PlanStep` is defined by a structured data model, specifying:\n", + "\n", + "* **`step_id`:** A unique identifier for the step.\n", + "* **`agent_name`:** The name of the agent responsible for this step (e.g., `QueryAnalysisAgent`, `DataGatherAgent`).\n", + "* **`description`:** A brief description of the step's purpose.\n", + "* **`input_requirements`:** The data required for this step (e.g., the output of a previous step).\n", + "* **`output_format`:** The format of the data produced by this step (e.g., a specific data model like `QueryEntity` or `DataGatherAgentOutput`).\n", + "* **`status`:** The current status of the step (e.g., `PENDING`, `COMPLETED`).\n", + "* **`error`:** Any error encountered during the step (initially `None`).\n", + "* **`skip_conditions`:** Conditions under which this step should be skipped (currently `None` for all steps).\n", + "\n", + "**Leveraging Gemini's Function Calling for Planning:**\n", + "\n", + "The `PlanningAgent` intelligently determines the need for steps like visualization and enhanced search (grounding) by utilizing Gemini's function calling capabilities. It analyzes the user's query and calls specific functions (e.g., `_determine_visualization_requirement`, `_determine_search_requirement`) to decide whether these steps are required. This dynamic plan creation based on query analysis demonstrates the power of combining structured planning with advanced language model features.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s0cyXQBfAel0" + }, + "source": [ + "#### Query Validation and Suggestions\n", + "\n", + "A crucial part of the `PlanningAgent`'s role is to validate the user's query and provide suggestions for improvement. Let's see how this works:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "X1AwbwP__pxh" + }, + "outputs": [], + "source": [ + "rich_print(plan.validated_query)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "v9SEDT97HNYk" + }, + "source": [ + "Here, the `PlanningAgent` has determined that the query is valid (`is_valid=True`) and has identified 'Austin' as the city of interest. It also confirms that no essential elements are missing (`missing_elements=[]`)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "53RSiAZjAjiB" + }, + "source": [ + "#### Query Suggestions\n", + "\n", + "Furthermore, the `PlanningAgent` provides suggestions to enhance the query:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rirBCWfS_5Dc" + }, + "outputs": [], + "source": [ + "rich_print(plan.validated_query.suggestions)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "B2FxhYZmDA8S" + }, + "source": [ + "#### Failed Query\n", + "\n", + "What happens when the query is not valid? Let's see how the `PlanningAgent` handles such scenarios:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lad587v4J3P3" + }, + "outputs": [], + "source": [ + "agent = PlanningAgent(\n", + " query=\"I want to understand the EV charging situation in Paris and proper vetted information and some plot\",\n", + " client=client,\n", + " model_name=MODEL_ID_Flash,\n", + " debug=False,\n", + ")\n", + "plan = agent.create_plan()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uFEeB2a8IlrJ" + }, + "source": [ + "In this case, the query mentions \"Paris,\" which is not a valid city in our predefined list (in `STATE_MAPPING`). The `PlanningAgent` detects this and returns:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "U7YCYqosIz5C" + }, + "outputs": [], + "source": [ + "rich_print(plan.validated_query)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8BC-GeWPI3Ey" + }, + "source": [ + "The `is_valid` flag is now `False`, and the `missing_elements` indicate that a \"valid city\" is required. Importantly, the `suggestions` provide specific guidance on how to correct the query, even suggesting valid city replacements." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4INx_rCJDjtp" + }, + "outputs": [], + "source": [ + "# You can see that it disable enabled search since the query didn't ask for anything \"enhance\" or \"grounding\"\n", + "rich_print(plan.enable_search)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "I9Z11rQwDfEE" + }, + "outputs": [], + "source": [ + "# it also skipped the visualization steps, since we didn't mention that in the query\n", + "rich_print(plan.steps)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dYuYw015I8Du" + }, + "source": [ + "Since the query was invalid, the `PlanningAgent` disables the search functionality (`enable_search=False`) and creates an empty list of steps (`steps=[]`). This effectively halts the execution process, as there's no valid plan to execute. This demonstrates the agent's ability to gracefully handle invalid queries and prevent unnecessary processing." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FG322SGOGnrb" + }, + "source": [ + "### Agent: QueryAnalysisAgent" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lMeMdzKrKJAD" + }, + "source": [ + "### Agent: QueryAnalysisAgent\n", + "\n", + "The `QueryAnalysisAgent` comes right after the `PlanningAgent` in our sequence. Its primary role is to dissect the user's query, identify key entities, and determine the type of analysis requested. It then passes this structured information to the next agent in the pipeline.\n", + "\n", + "**Input:**\n", + "\n", + "* **Query:** The user's query about EV infrastructure, validated by the `PlanningAgent` (e.g., \"Analyze EV charging stations in Austin\").\n", + "* **Client:** An instance of the generative AI model client.\n", + "* **Model Name:** The specific model to be used (e.g., \"gemini-pro\").\n", + "\n", + "**Output:**\n", + "\n", + "* **Dictionary:** Containing:\n", + " * `status`: Whether the analysis was successful (\"success\" or \"error\").\n", + " * `entities`: A dictionary representing the extracted entities from the query, based on the `QueryEntities` data model. This includes:\n", + " * `pattern_type`: The type of analysis pattern detected (e.g., \"DISCOVERY\", \"COMPARISON\"). Although identified, these patterns are not yet used downstream in the current version but could be leveraged in future iterations.\n", + " * `cities`: A list of valid cities extracted from the query.\n", + " * `states`: A list of corresponding states for the extracted cities.\n", + " * `research_theme`: The general theme of the query (currently fixed to \"Electronic Vehicle\").\n", + " * `output_type`: The desired output type (e.g., \"Report\", \"Text\", \"Raw Data\").\n", + "\n", + "In essence, the `QueryAnalysisAgent` transforms the user's raw query into a structured format that can be easily understood and processed by the subsequent agents in the system. This section will delve into how the agent extracts these entities, handles different query patterns, and prepares the data for the next stage of the analysis." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SzUjpbDoGn8j" + }, + "outputs": [], + "source": [ + "from ev_agent.agent_handler.agent_03_QueryAnalysisAgent import *" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Uq_s_HCWMVIL" + }, + "source": [ + "Let's see how the `QueryAnalysisAgent` processes different types of queries.\n", + "We'll examine three examples:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yQj--mhuqegX" + }, + "source": [ + "#### Extraction Type 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dQM-sR_qMctq" + }, + "source": [ + "Here, the query asks about gaps in Austin's charging network and requests a report format. The agent successfully analyzes the query and returns:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9bYBVxCoHF_S" + }, + "outputs": [], + "source": [ + "query = \"Where are the gaps in Austin charging network? Report format please\"\n", + "query_agent = QueryAnalysisAgent(client, MODEL_ID)\n", + "agent_1_result = query_agent.analyze(query)\n", + "rich_print(agent_1_result)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zGizyMvLMfEF" + }, + "source": [ + "The agent correctly identifies the `pattern_type` as `GAPS`, extracts the city and state, and recognizes the desired `output_type` as `REPORT`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yOsBXcErqkLg" + }, + "source": [ + "#### Extraction Type 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gxMepfZGMkYQ" + }, + "source": [ + "In this case, the query requests raw data for Dallas. The agent responds with:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aaRoYZLUHbGL" + }, + "outputs": [], + "source": [ + "query = \"Need some raw data on Dallas for Ev charging stations\"\n", + "agent_1_result = query_agent.analyze(query)\n", + "rich_print(agent_1_result)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kVWU7b4tMmnz" + }, + "source": [ + "The agent identifies the `pattern_type` as `DISCOVERY` (since it's a general inquiry), extracts the city and state, and correctly sets the `output_type` to `RAW`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C5bWr2alqk8J" + }, + "source": [ + "#### Extraction Type 3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ubffVGHoNMOY" + }, + "outputs": [], + "source": [ + "query = \"compare Dallas and Austin for EV Charging expansion and give me detail report.\"\n", + "agent_1_result = query_agent.analyze(query)\n", + "rich_print(agent_1_result)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cbM1lY83MvKT" + }, + "source": [ + "These examples demonstrate the `QueryAnalysisAgent`'s ability to understand different query structures, extract relevant entities, and determine the user's intent regarding the analysis type and desired output format. This structured information is then passed on to subsequent agents in the pipeline, ensuring that the analysis stays focused and aligned with the user's needs." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i-So9XlsE4L-" + }, + "source": [ + "### Agent: DataGatherAgent" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y4IaUnAqNSRu" + }, + "source": [ + "### Agent: DataGatherAgent\n", + "\n", + "The `DataGatherAgent` is responsible for collecting the necessary data for our analysis by interacting with external APIs. It takes the structured output from the `QueryAnalysisAgent` and fetches relevant information about EV infrastructure and city demographics.\n", + "\n", + "**Input:**\n", + "\n", + "* **`api_key`:** Your NREL API key to access EV infrastructure data.\n", + "* **`radius_miles`:** The radius (in miles) around each city for which to gather data.\n", + "* **`debug`:** A boolean flag to enable/disable debug mode.\n", + "\n", + "**Output:**\n", + "\n", + "* **`DataGatherAgentOutput`:** A data object containing:\n", + " * `timestamp`: When the data was gathered.\n", + " * `cities_data`: A list of `CityData` objects, one for each city in the query. Each `CityData` object may contain:\n", + " * `city`: The name of the city.\n", + " * `state`: The state abbreviation.\n", + " * `summary`: A dictionary containing general city data retrieved from the Neighborhood Summary API (e.g., population, area, etc.).\n", + " * `ev_data`: A dictionary containing EV charging station data retrieved from the EV Infrastructure Station Analysis API (e.g., number of stations, charger types, etc.).\n", + " * `error`: Any error encountered while gathering data for the city.\n", + " * `status`: The overall status of the data gathering process (\"success\" or \"error\").\n", + " * `error`: Any general error encountered during the process.\n", + "\n", + "**Functionality:**\n", + "\n", + "The `DataGatherAgent` utilizes asynchronous programming (`asyncio`) to fetch data from two different APIs concurrently for each city:\n", + "\n", + "1. **Neighborhood Summary API:** Retrieves general demographic and infrastructure data about the city.\n", + "2. **EV Infrastructure Station Analysis API:** Retrieves detailed information about EV charging stations within the specified radius.\n", + "\n", + "It handles potential errors during API calls, provides informative debug messages (if enabled), and compiles the gathered data into a structured `DataGatherAgentOutput` object. This agent plays a crucial role in bridging the gap between our analytical system and the real-world data needed to generate a meaningful report." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "g9NKTXKHEpkq" + }, + "outputs": [], + "source": [ + "from ev_agent.agent_handler.agent_04_DataGatherAgent import *" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nAMEg6_COMq0" + }, + "outputs": [], + "source": [ + "# The Agent hits the OpenMapStreets API and NREL Developer API to gather data for a given city that can be helpful for Analysis.\n", + "\n", + "data_gather_agent = DataGatherAgent(\n", + " api_key=NREL_API_KEY, radius_miles=100.0, debug=False\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eTVSEplfOi5Y" + }, + "source": [ + "Here, we create an instance of the `DataGatherAgent`, providing our `NREL_API_KEY`, a `radius_miles` of 100.00 miles, and setting `debug` to `True` to see detailed output." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Tnsr3EzYOBqX" + }, + "source": [ + "#### Single City" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tgpy8Q8-N9SM" + }, + "outputs": [], + "source": [ + "# Get the city from the QueryAnalysisAgent\n", + "agent_1_result = query_agent.analyze(\n", + " \"Need some raw data on Dallas for Ev charging stations\"\n", + ")\n", + "\n", + "# Get data from DataGatherAgent of the city\n", + "agent_2_result = await data_gather_agent.process(agent_1_result)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XutOgx13ZRqr" + }, + "outputs": [], + "source": [ + "print(\"Number of cities given by the agent: \", len(agent_2_result.cities_data))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Vj5qPtLJqotV" + }, + "source": [ + "##### Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "15623699cf29" + }, + "outputs": [], + "source": [ + "# You can access the complete NeighborhoodSummary here:\n", + "rich_print(\"NeighborhoodSummary - Complete \\n\", agent_2_result.cities_data[0].summary)\n", + "\n", + "\n", + "# You can access the complete EVInfraSummary here:\n", + "rich_print(\"EV Infra Summary - Complete \\n\", agent_2_result.cities_data[0].ev_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P4Kfv7uHOEsA" + }, + "source": [ + "#### Multi City" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2OXo_jl-Epfz" + }, + "outputs": [], + "source": [ + "# Get the city from the QueryAnalysisAgent\n", + "agent_1_result_multi_city = query_agent.analyze(\n", + " \"compare Dallas and Austin for EV Charging expansion and give me detail report\"\n", + ")\n", + "\n", + "# Get data from DataGatherAgent of the city\n", + "agent_2_result_multi_city = await data_gather_agent.process(agent_1_result_multi_city)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "B66HlEAzZL1P" + }, + "outputs": [], + "source": [ + "print(\n", + " \"Number of cities given by the agent: \", len(agent_2_result_multi_city.cities_data)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bJgYsa0pqstF" + }, + "source": [ + "##### Data - NeighborhoodSummary (OpenStreetMap - Overpass API)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wv0LiUHdsbi6" + }, + "source": [ + "This API Handler uses Nomination API and Overpass API (OpenStreetMap). You can find more details [here](https://nominatim.org/), [here](https://nominatim.org/release-docs/develop/api/Overview/), [here](https://wiki.openstreetmap.org/wiki/Overpass_API)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "we3aopWOmiZj" + }, + "outputs": [], + "source": [ + "index = 0 # 0 for Dallas, 1 for Austin\n", + "\n", + "# You can see the NeighborhoodSummary of the city\n", + "rich_print(\"City :\", agent_2_result_multi_city.cities_data[index].summary.city)\n", + "rich_print(\"State :\", agent_2_result_multi_city.cities_data[index].summary.state)\n", + "rich_print(\n", + " \"NeighborhoodSummary - Healthcare \\n\",\n", + " agent_2_result_multi_city.cities_data[index].summary.healthcare,\n", + ")\n", + "rich_print(\n", + " \"NeighborhoodSummary - Education \\n\",\n", + " agent_2_result_multi_city.cities_data[index].summary.education,\n", + ")\n", + "\n", + "# You can see the complete data and all the elements of NeighborhoodSummary:\n", + "rich_print(\n", + " \"NeighborhoodSummary - Complete \\n\",\n", + " agent_2_result_multi_city.cities_data[index].summary,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pVgA-XG2q-Q0" + }, + "source": [ + "##### Data - EVInfraSummary (NREL Developer API)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OW5LGTu2ruGf" + }, + "source": [ + "You can get more details about the API [here](https://developer.nrel.gov/) and [here](https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OfO4oJOvnK_o" + }, + "outputs": [], + "source": [ + "index = 0 # 0 for Dallas, 1 for Austin\n", + "\n", + "# You can see the EV Infra Summary of the city\n", + "rich_print(\n", + " \"City :\", agent_2_result_multi_city.cities_data[index].ev_data.metadata[\"city\"]\n", + ")\n", + "rich_print(\n", + " \"State :\", agent_2_result_multi_city.cities_data[index].ev_data.metadata[\"state\"]\n", + ")\n", + "rich_print(\n", + " \"EV Infra Summary - Charging Capability \\n\",\n", + " agent_2_result_multi_city.cities_data[index].ev_data.charging_capabilities,\n", + ")\n", + "rich_print(\n", + " \"EV Infra Summary - Accessibility \\n\",\n", + " agent_2_result_multi_city.cities_data[index].ev_data.accessibility,\n", + ")\n", + "\n", + "# You can see the complete data and all the elements of EV Infra Summary:\n", + "# rich_print(\"EV Infra Summary - Complete \\n\",\n", + "# agent_2_result_multi_city.cities_data[index].ev_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x1fu8LdFqFR8" + }, + "source": [ + "### Agent: ReportAgent" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "93F5K5cjPjAn" + }, + "source": [ + "### Agent: ReportAgent\n", + "\n", + "The `ReportAgent` takes the structured data gathered by the `DataGatherAgent` and transforms it into a comprehensive, well-formatted report. It's responsible for generating individual sections of the report, citing data sources appropriately, and optionally enhancing the content with information from web search.\n", + "\n", + "**Input:**\n", + "\n", + "* **`client`:** An instance of the generative AI model client.\n", + "* **`model_name`:** The specific model to be used (e.g., \"gemini-pro-1.5\").\n", + "* **`enable_search`:** A boolean flag indicating whether to enhance the report with web search results.\n", + "* **`debug`:** A boolean flag to enable/disable debug mode.\n", + "\n", + "**Output:**\n", + "\n", + "* **`Report`:** A data object containing the entire report, structured as follows:\n", + " * `city`: The name of the city.\n", + " * `state`: The state abbreviation.\n", + " * `timestamp`: When the report was generated.\n", + " * `sections`: A dictionary of `Section` objects, each representing a section of the report (e.g., \"Executive Summary\", \"Infrastructure Overview\"). Each `Section` includes:\n", + " * `title`: The section title.\n", + " * `content`: The main text content of the section.\n", + " * `citations`: A dictionary of `CitationData` objects, mapping citation numbers to their corresponding data sources.\n", + " * `key_findings`: A list of key takeaways from the section.\n", + " * `enhanced_content`: Additional content generated through web search (if enabled).\n", + " * `citations_text`: A formatted string containing all citations used in the report.\n", + " * `full_text`: The entire report content as a single string.\n", + " * `combined_report`: The full report content along with formatted citations.\n", + "\n", + "**Functionality:**\n", + "\n", + "The `ReportAgent` performs several key tasks:\n", + "\n", + "1. **Section Generation:** It generates individual report sections based on predefined templates and the gathered data, citing specific data points using a structured `CitationData` model.\n", + "2. **Data Mapping:** It utilizes a detailed `_prepare_data_map` function to create a structured representation of the data from the `DataGatherAgent`, making it easier to reference specific data points in the report.\n", + "3. **Asynchronous Processing:** It leverages asynchronous programming to generate multiple sections concurrently, improving efficiency.\n", + "4. **Optional Search Enhancement:** If `enable_search` is set to `True`, it can enhance each section with information retrieved from Google Search, adding citations for the newly found data. This is achieved using the `_enhance_section_with_search` method.\n", + "5. **Report Assembly:** Finally, it assembles the individual sections into a complete `Report` object, generating a formatted string representation of the entire report and its citations.\n", + "\n", + "The `ReportAgent` plays a critical role in synthesizing the raw data into a coherent, insightful, and well-supported analysis of the EV infrastructure. The following subsections will explore how this agent is used to generate reports, either for a single city with search grounding or for multiple cities without grounding." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ibu15GgxJ3G-" + }, + "outputs": [], + "source": [ + "from ev_agent.agent_handler.agent_05_ReportAgent import *" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pUiv3t3M7foo" + }, + "source": [ + "#### Single City with grounding with Google" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ihv4IAfn-5gm" + }, + "outputs": [], + "source": [ + "report_agent_single_grounded = ReportAgent(\n", + " client=client, model_name=MODEL_ID_Flash, enable_search=True, debug=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TeqzU17t7ozN" + }, + "outputs": [], + "source": [ + "# Get the city from the QueryAnalysisAgent\n", + "agent_1_result = query_agent.analyze(\n", + " \"Need some raw data on Dallas for Ev charging stations\"\n", + ")\n", + "rich_print(agent_1_result)\n", + "\n", + "# Get data from DataGatherAgent of the city\n", + "agent_2_result = await data_gather_agent.process(agent_1_result)\n", + "\n", + "# Get the report built out using ReportAgent\n", + "reports_single_grounded = await report_agent_single_grounded.analyze(\n", + " agent_1_result, agent_2_result\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UCmgBSuU7SQC" + }, + "outputs": [], + "source": [ + "print(\n", + " \"Report is on the city: \",\n", + " reports_single_grounded.city,\n", + " \" and state: \",\n", + " reports_single_grounded.state,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "biVMqgbuAwMY" + }, + "source": [ + "Predefined/Available Section of the Reports:\n", + "\n", + "* Executive Summary\n", + "* Infrastructure Overview\n", + "* Current EV Assessment\n", + "* Demand Analysis\n", + "* Supply Analysis\n", + "* Gap Analysis\n", + "* Location Recommendations\n", + "* Implementation Strategy\n", + "\n", + "You can explore each section and see how grounding with Google, enhanced the section with updated text and citations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-Q7T-w9R7hwd" + }, + "outputs": [], + "source": [ + "for section_name, section_text in reports_single_grounded.sections.items():\n", + " if section_name == \"Infrastructure Overview\":\n", + " print(section_name)\n", + " rich_print(section_text)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "c3d5741c77ca" + }, + "outputs": [], + "source": [ + "# You can access other key areas of the report:\n", + "reports_single_grounded.full_text # Full text of the report - without citations\n", + "reports_single_grounded.citations_text # Full text of the citations - without text\n", + "reports_single_grounded.combined_report # Full text of the report combined with citations\n", + "reports_single_grounded.timestamp # Timestamp of report generations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vt9f7S5v7icz" + }, + "source": [ + "#### Multi City without grounding with Google" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "_Ifsrp-G-_T1" + }, + "outputs": [], + "source": [ + "report_agent_multi_city = ReportAgent(\n", + " client=client,\n", + " model_name=MODEL_ID_Flash,\n", + " enable_search=False, # you can enable grounding for both the cities if you want\n", + " debug=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TpRaJx-v7kNm" + }, + "outputs": [], + "source": [ + "# Get the city from the QueryAnalysisAgent\n", + "agent_1_result_multi_city = query_agent.analyze(\n", + " \"compare Dallas and Austin for EV Charging expansion and give me detail report\"\n", + ")\n", + "rich_print(agent_1_result_multi_city)\n", + "\n", + "# Get data from DataGatherAgent of the city\n", + "agent_2_result_multi_city = await data_gather_agent.process(agent_1_result_multi_city)\n", + "\n", + "# Get the report built out using ReportAgent\n", + "reports_multi_city = await report_agent_multi_city.analyze(\n", + " agent_1_result_multi_city, agent_2_result_multi_city\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ph40v5rp7wPK" + }, + "outputs": [], + "source": [ + "index = 0\n", + "print(\n", + " \"Report is on the city: \",\n", + " reports_multi_city[index].city,\n", + " \" and state: \",\n", + " reports_multi_city[index].state,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zn1LtOvi7wIU" + }, + "outputs": [], + "source": [ + "index = 1\n", + "print(\n", + " \"Report is on the city: \",\n", + " reports_multi_city[index].city,\n", + " \" and state: \",\n", + " reports_multi_city[index].state,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kmU1fJFB8PTi" + }, + "outputs": [], + "source": [ + "for section_name, section_text in reports_multi_city[index].sections.items():\n", + " if section_name == \"Demand Analysis\":\n", + " print(section_name)\n", + " rich_print(section_text)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "582a01dfc15d" + }, + "outputs": [], + "source": [ + "# You can also check all the sections using object\n", + "\n", + "print(\"All the sections in the report\")\n", + "for section_name, section_text in reports_multi_city[index].sections.items():\n", + " print(section_name)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3e0df2853b20" + }, + "outputs": [], + "source": [ + "# You can access other key areas of the report by passing appropriate indexes:\n", + "\n", + "reports_multi_city[index].full_text # Full text of the report - without citations\n", + "\n", + "reports_multi_city[index].citations_text # Full text of the citations - without text\n", + "\n", + "reports_multi_city[\n", + " index\n", + "].combined_report # Full text of the report combined with citations\n", + "\n", + "reports_multi_city[index].timestamp # Timestamp of report generations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_Yd9DWWLP7T2" + }, + "source": [ + "### Agent: VisualizeAgent\n", + "\n", + "The `VisualizeAgent` is responsible for creating insightful visualizations based on the data gathered by the `DataGatherAgent`. It uses the `plotly` library to generate various charts and graphs that help to understand the EV infrastructure landscape in a more visual and intuitive manner. Although it's called an \"agent\" here, it's important to note that this is essentially a set of helper functions for creating visualizations rather than an autonomous agent with decision-making capabilities.\n", + "\n", + "**Input:**\n", + "\n", + "* **`data`:** The `DataGatherAgentOutput` object, containing structured data for one or more cities.\n", + "\n", + "**Output:**\n", + "\n", + "* A tuple containing two dictionaries:\n", + " * **`single_city_figs`:** A dictionary of `plotly` figure objects, each representing a visualization specific to a single city.\n", + " * **`comparison_figs`:** A dictionary of `plotly` figure objects, each representing a comparative visualization across multiple cities (if applicable).\n", + "\n", + "**Functionality:**\n", + "\n", + "The `VisualizeAgent` performs the following tasks:\n", + "\n", + "1. **Single City Visualizations:** It generates a set of visualizations for each city using the `create_comprehensive_city_analysis` function. These include:\n", + " * **EV Infrastructure Overview:** Bar charts showing charging station types, connector distribution, network distribution, and access & payment methods.\n", + " * **Transportation Infrastructure Analysis:** A multi-panel plot showing public transport facilities, road network distribution, parking facilities, and a comparison of EV vs. traditional vehicle infrastructure.\n", + " * **Urban Amenities and Services:** A multi-panel plot showing the distribution of retail and shopping centers, food and entertainment venues, emergency services, and public amenities.\n", + " * **Area Analysis:** A pie chart displaying the distribution of total area, water area, green area, and built area.\n", + "\n", + "2. **Multi-City Comparisons (if applicable):** If the input data contains information for multiple cities, it uses the `plot_multi_city_comparison` function to generate comparative visualizations. These include:\n", + " * **EV Infrastructure Comparisons:** Bar charts comparing the number of EV stations vs. fuel stations, charging station types, and EV station density across cities.\n", + " * **Transportation Infrastructure:** Bar charts comparing public transport infrastructure, road network distribution, and parking facilities across cities.\n", + " * **Area Analysis:** A bar chart comparing area distribution (total, water, green, built) across cities.\n", + " * **Urban Amenities:** A bar chart comparing the prevalence of various urban amenities (e.g., shopping centers, restaurants, hospitals) across cities.\n", + "\n", + "3. **Visualization Organization:** It organizes all generated plots into the `single_city_figs` and `comparison_figs` dictionaries, making it easy to access specific visualizations.\n", + "\n", + "The `VisualizeAgent` plays a crucial role in making the data more accessible and understandable by providing a visual representation of key metrics and trends. These visualizations can aid in identifying patterns, making comparisons, and ultimately supporting decision-making related to EV infrastructure planning and development." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LqGemlxj-ohw" + }, + "outputs": [], + "source": [ + "from ev_agent.agent_handler.agent_06_VisualizeAgent import *" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ly_pvvoNCKr_" + }, + "source": [ + "#### Single City" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zjveHtOhGzfn" + }, + "outputs": [], + "source": [ + "single_city_figs, comparison_figs = plot_all_visualizations(agent_2_result)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SM9nbe5FHEap" + }, + "outputs": [], + "source": [ + "print(\"\\n=== Single City Analysis ===\")\n", + "for name, fig in single_city_figs.items():\n", + " print(f\"\\nDisplaying: {name.replace('_', ' ').title()}\")\n", + " fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5iF_b6oMCVBL" + }, + "source": [ + "#### Multi City" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "33fASgQGHP6d" + }, + "outputs": [], + "source": [ + "single_city_figs, comparison_figs = plot_all_visualizations(agent_2_result_multi_city)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dZuNdJeoHTVD" + }, + "outputs": [], + "source": [ + "print(\"\\n=== Multi-City Comparisons ===\")\n", + "for name, fig in comparison_figs.items():\n", + " print(f\"\\nDisplaying: {name.replace('_', ' ').title()}\")\n", + " fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o4cW5bVtQ2Lo" + }, + "source": [ + "## Next Steps and Potential Improvements\n", + "\n", + "We've built a solid foundation for a multi-agent system that analyzes EV infrastructure. However, there's always room for improvement and expansion. Here are some potential next steps, inspired by features found in advanced multi-agent frameworks like AutoGen, CrewAI, and LangGraph:\n", + "\n", + "1. **Enhanced Agent Communication:** Implement dynamic inter-agent communication for iterative feedback, dynamic task allocation, and agent specialization.\n", + "2. **Sophisticated Planning:** Develop more advanced planning with conditional logic, sub-planning, and plan repair capabilities.\n", + "3. **Expanded Tool Integration:** Integrate with more APIs, databases, web scraping, and knowledge graphs to broaden the system's knowledge base.\n", + "4. **Interactive User Experience:** Allow for clarification dialogs, progress updates, interactive visualizations, and user feedback mechanisms.\n", + "5. **Robust Error Handling:** Implement comprehensive exception handling, retry mechanisms, and fallback strategies for increased reliability.\n", + "6. **Integrated Visualizations:** Incorporate visualizations directly into the generated reports for a more cohesive and engaging presentation.\n", + "7. **Agent Memory and Learning:** Introduce agent memory for caching, learning from user feedback, and potential model fine-tuning to improve performance over time.\n", + "\n", + "By implementing these enhancements, we can create a more powerful, flexible, and user-friendly multi-agent system for analyzing EV infrastructure and generating actionable insights." + ] + } + ], + "metadata": { + "colab": { + "name": "intro_research_multi_agents_gemini_2_0.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.11.0" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/gemini/code-execution/intro_code_execution.ipynb b/gemini/code-execution/intro_code_execution.ipynb index a91fab135e4..1dbdca00180 100644 --- a/gemini/code-execution/intro_code_execution.ipynb +++ b/gemini/code-execution/intro_code_execution.ipynb @@ -1,1845 +1,1803 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ur8xi4C7S06n" - }, - "outputs": [], - "source": [ - "# Copyright 2024 Google LLC\n", - "#\n", - "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", - "# you may not use this file except in compliance with the License.\n", - "# You may obtain a copy of the License at\n", - "#\n", - "# https://www.apache.org/licenses/LICENSE-2.0\n", - "#\n", - "# Unless required by applicable law or agreed to in writing, software\n", - "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", - "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", - "# See the License for the specific language governing permissions and\n", - "# limitations under the License." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JAPoU8Sm5E6e" - }, - "source": [ - "# Intro to Generating and Executing Python Code with Gemini 2.0\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \"Google
Open in Colab\n", - "
\n", - "
\n", - " \n", - " \"Google
Open in Colab Enterprise\n", - "
\n", - "
\n", - " \n", - " \"Vertex
Open in Vertex AI Workbench\n", - "
\n", - "
\n", - " \n", - " \"BigQuery
Open in BigQuery Studio\n", - "
\n", - "
\n", - " \n", - " \"GitHub
View on GitHub\n", - "
\n", - "
\n", - "\n", - "
\n", - "\n", - "Share to:\n", - "\n", - "\n", - " \"LinkedIn\n", - "\n", - "\n", - "\n", - " \"Bluesky\n", - "\n", - "\n", - "\n", - " \"X\n", - "\n", - "\n", - "\n", - " \"Reddit\n", - "\n", - "\n", - "\n", - " \"Facebook\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "84f0f73a0f76" - }, - "source": [ - "| | |\n", - "|-|-|\n", - "| Author(s) | [Kristopher Overholt](https://github.com/koverholt/) |" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tvgnzT1CKxrO" - }, - "source": [ - "## Overview\n", - "\n", - "This notebook introduces the code execution capabilities of the [Gemini 2.0 Flash model](https://cloud.google.com/vertex-ai/generative-ai/docs/gemini-v2), a new multimodal generative AI model from Google [DeepMind](https://deepmind.google/). Gemini 2.0 Flash offers improvements in speed, quality, and advanced reasoning capabilities including enhanced understanding, coding, and instruction following.\n", - "\n", - "## Code Execution\n", - "\n", - "A key feature of this model is [code execution](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution), which is the ability to generate and execute Python code directly within the API. If you want the API to generate and run Python code and return the results, you can use code execution as demonstrated in this notebook.\n", - "\n", - "This code execution capability enables the model to generate code, execute and observe the results, correct the code if needed, and learn iteratively from the results until it produces a final output. This is particularly useful for applications that involve code-based reasoning such as solving mathematical equations or processing text.\n", - "\n", - "## Objectives\n", - "\n", - "In this tutorial, you will learn how to generate and execute code using the Gemini API in Vertex AI and the Google Gen AI SDK for Python with the Gemini 2.0 Flash model.\n", - "\n", - "You will complete the following tasks:\n", - "\n", - "- Generating and running sample Python code from text prompts\n", - "- Exploring data using code execution in multi-turn chats\n", - "- Using code execution in streaming sessions" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "61RBz8LLbxCR" - }, - "source": [ - "## Getting started" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "No17Cw5hgx12" - }, - "source": [ - "### Install Google Gen AI SDK for Python\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "tFy3H3aPgx12" - }, - "outputs": [], - "source": [ - "%pip install --upgrade --quiet google-genai" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dmWOrTJ3gx13" - }, - "source": [ - "### Authenticate your notebook environment (Colab only)\n", - "\n", - "If you're running this notebook on Google Colab, run the cell below to authenticate your environment." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "NyKGtVQjgx13" - }, - "outputs": [], - "source": [ - "import sys\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " from google.colab import auth\n", - "\n", - " auth.authenticate_user()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0fggiCx13zxX" - }, - "source": [ - "### Import libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "JbrnA9yv3zMC" - }, - "outputs": [], - "source": [ - "import os\n", - "from IPython.display import display, Markdown\n", - "\n", - "from google import genai\n", - "from google.genai.types import (\n", - " Content,\n", - " GenerateContentConfig,\n", - " Part,\n", - " Tool,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vXiC1rOE3gSZ" - }, - "source": [ - "### Connect to a generative AI API service\n", - "\n", - "Google Gen AI APIs and models including Gemini are available in the following two API services:\n", - "\n", - "- [Google AI for Developers](https://ai.google.dev/gemini-api/docs): Experiment, prototype, and deploy small projects.\n", - "- [Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/overview): Build enterprise-ready projects on Google Cloud.\n", - "The Google Gen AI SDK provides a unified interface to these two API services.\n", - "\n", - "This notebook shows how to use the Google Gen AI SDK with the Gemini API in Vertex AI." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DF4l8DTdWgPY" - }, - "source": [ - "### Set Google Cloud project information and create client\n", - "\n", - "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", - "\n", - "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "id": "Nqwi-5ufWp_B" - }, - "outputs": [], - "source": [ - "PROJECT_ID = \"[your-project-id]\" # @param {type: \"string\", placeholder: \"[your-project-id]\", isTemplate: true}\n", - "if not PROJECT_ID or PROJECT_ID == \"[your-project-id]\":\n", - " PROJECT_ID = str(os.environ.get(\"GOOGLE_CLOUD_PROJECT\"))\n", - "\n", - "LOCATION = os.environ.get(\"GOOGLE_CLOUD_REGION\", \"us-central1\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "3Ab5NQwr4B8j" - }, - "outputs": [], - "source": [ - "client = genai.Client(vertexai=True, project=PROJECT_ID, location=LOCATION)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YZNpgtKJDdPZ" - }, - "source": [ - "### Improve code rendering in cell outputs" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "id": "Y2e1lK_f_YWN" - }, - "outputs": [], - "source": [ - "from IPython.display import HTML, Markdown\n", - "\n", - "\n", - "# Modify CSS to display the results more clearly in Colab\n", - "def set_css_in_cell_output(unused):\n", - " display(HTML(\"\"\"\"\"\"))\n", - "\n", - "get_ipython().events.register('pre_run_cell', set_css_in_cell_output)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "x1vpnyk-q-fz" - }, - "source": [ - "## Working with code execution in Gemini 2.0\n", - "\n", - "### Load the Gemini model\n", - "\n", - "The following code loads the Gemini 2.0 Flash model. You can learn about all Gemini models on Vertex AI by visiting the [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models):" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 - }, - "id": "L8gLWcOFqqF2", - "outputId": "1b29d0fd-92d4-4cbb-a7bc-2d6f201069c5" - }, - "outputs": [ + "cells": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ur8xi4C7S06n" + }, + "outputs": [], + "source": [ + "# Copyright 2024 Google LLC\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type: \"string\"}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "q-jdBwXlM67j" - }, - "source": [ - "### Define the code execution tool\n", - "\n", - "The following code initializes the code execution tool by passing `code_execution` in a `Tool` definition.\n", - "\n", - "Later we'll register this tool with the model that it can use to generate and run Python code:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 }, - "id": "BFxIcGkxbq3_", - "outputId": "e63a2531-1e94-4216-b440-6b3230c0773a" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "JAPoU8Sm5E6e" + }, + "source": [ + "# Intro to Generating and Executing Python Code with Gemini 2.0\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \"Google
Open in Colab\n", + "
\n", + "
\n", + " \n", + " \"Google
Open in Colab Enterprise\n", + "
\n", + "
\n", + " \n", + " \"Vertex
Open in Vertex AI Workbench\n", + "
\n", + "
\n", + " \n", + " \"BigQuery
Open in BigQuery Studio\n", + "
\n", + "
\n", + " \n", + " \"GitHub
View on GitHub\n", + "
\n", + "
\n", + "\n", + "
\n", + "\n", + "Share to:\n", + "\n", + "\n", + " \"LinkedIn\n", + "\n", + "\n", + "\n", + " \"Bluesky\n", + "\n", + "\n", + "\n", + " \"X\n", + "\n", + "\n", + "\n", + " \"Reddit\n", + "\n", + "\n", + "\n", + " \"Facebook\n", + "" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "code_execution_tool = Tool(\n", - " code_execution={}\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mZgn5tm-NCfH" - }, - "source": [ - "### Generate and execute code\n", - "\n", - "The following code sends a prompt to the Gemini model, asking it to generate and execute Python code to calculate the sum of the first 50 prime numbers. The code execution tool is passed in so the model can generate and run the code:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 }, - "id": "b52qMx0IGA0K", - "outputId": "27176edc-11d8-44e1-ff6d-34b2939f5fcb" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "84f0f73a0f76" + }, + "source": [ + "| | |\n", + "|-|-|\n", + "| Author(s) | [Kristopher Overholt](https://github.com/koverholt/) |" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "PROMPT = \"\"\"\n", - "What is the sum of the first 50 prime numbers?\n", - "Generate and run code for the calculation.\n", - "\"\"\"\n", - "\n", - "response = client.models.generate_content(\n", - " model=MODEL_ID,\n", - " contents=PROMPT,\n", - " config=GenerateContentConfig(\n", - " tools=[code_execution_tool],\n", - " temperature=0,\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "l-mfiMNasgqH" - }, - "source": [ - "### View the generated code\n", - "\n", - "The following code iterates through the response and displays any generated Python code by checking for `part.executable_code` in the response parts:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 557 }, - "id": "J5mcXw6ZraLS", - "outputId": "32b45048-e529-439d-e7ea-d20dcd032a40" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "tvgnzT1CKxrO" + }, + "source": [ + "## Overview\n", + "\n", + "This notebook introduces the code execution capabilities of the [Gemini 2.0 Flash model](https://cloud.google.com/vertex-ai/generative-ai/docs/gemini-v2), a new multimodal generative AI model from Google [DeepMind](https://deepmind.google/). Gemini 2.0 Flash offers improvements in speed, quality, and advanced reasoning capabilities including enhanced understanding, coding, and instruction following.\n", + "\n", + "## Code Execution\n", + "\n", + "A key feature of this model is [code execution](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution), which is the ability to generate and execute Python code directly within the API. If you want the API to generate and run Python code and return the results, you can use code execution as demonstrated in this notebook.\n", + "\n", + "This code execution capability enables the model to generate code, execute and observe the results, correct the code if needed, and learn iteratively from the results until it produces a final output. This is particularly useful for applications that involve code-based reasoning such as solving mathematical equations or processing text.\n", + "\n", + "## Objectives\n", + "\n", + "In this tutorial, you will learn how to generate and execute code using the Gemini API in Vertex AI and the Google Gen AI SDK for Python with the Gemini 2.0 Flash model.\n", + "\n", + "You will complete the following tasks:\n", + "\n", + "- Generating and running sample Python code from text prompts\n", + "- Exploring data using code execution in multi-turn chats\n", + "- Using code execution in streaming sessions" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "\n", - "```\n", - "\n", - "def is_prime(n):\n", - " if n <= 1:\n", - " return False\n", - " if n <= 3:\n", - " return True\n", - " if n % 2 == 0 or n % 3 == 0:\n", - " return False\n", - " i = 5\n", - " while i * i <= n:\n", - " if n % i == 0 or n % (i + 2) == 0:\n", - " return False\n", - " i += 6\n", - " return True\n", - "\n", - "primes = []\n", - "num = 2\n", - "while len(primes) < 50:\n", - " if is_prime(num):\n", - " primes.append(num)\n", - " num += 1\n", - "\n", - "sum_of_primes = sum(primes)\n", - "print(f'{sum_of_primes=}')\n", - "\n", - "```\n" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "61RBz8LLbxCR" + }, + "source": [ + "## Getting started" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for part in response.candidates[0].content.parts:\n", - " if part.executable_code:\n", - " display(Markdown(\n", - "f\"\"\"\n", - "```\n", - "{part.executable_code.code}\n", - "```\n", - "\"\"\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ppumif-94xTF" - }, - "source": [ - "### View the code execution results\n", - "\n", - "The following code iterates through the response and displays the execution result and outcome by checking for `part.code_execution_result` in the response parts:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 136 }, - "id": "J891OBjc4xn9", - "outputId": "9df01f46-295f-407d-b79c-60704aa4f0d9" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "No17Cw5hgx12" + }, + "source": [ + "### Install Google Gen AI SDK for Python\n" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "sum_of_primes=5117\n" - ], - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "tFy3H3aPgx12" + }, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet google-genai" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Outcome: OUTCOME_OK\n" - ] - } - ], - "source": [ - "for part in response.candidates[0].content.parts:\n", - " if part.code_execution_result:\n", - " display(Markdown(part.code_execution_result.output))\n", - " print(\"\\nOutcome:\", part.code_execution_result.outcome)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5u_XuZlMnH9S" - }, - "source": [ - "Great! Now you have the answer (5117) as well as the generated (and verified via execution!) Python code.\n", - "\n", - "At this point in your application, you would save the output code, result, or outcome and display it to the end-user or use it downstream in your application." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8uJ-Fk1I_AH8" - }, - "source": [ - "### Code execution in a chat session\n", - "\n", - "This section shows how to use code execution in an interactive chat with history using the Gemini API.\n", - "\n", - "You can use `client.chats.create` to create a chat session and passes in the code execution tool, enabling the model to generate and run code:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 }, - "id": "puL91bq7tirC", - "outputId": "3ff3d89f-6153-46f9-96cc-37d1119d13de" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "dmWOrTJ3gx13" + }, + "source": [ + "### Authenticate your notebook environment (Colab only)\n", + "\n", + "If you're running this notebook on Google Colab, run the cell below to authenticate your environment." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "chat = client.chats.create(model=MODEL_ID,\n", - " config=GenerateContentConfig(\n", - " tools=[code_execution_tool],\n", - " temperature=0,\n", - "))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Bmu4bSApoECT" - }, - "source": [ - "You'll start the chat by asking the model to generate sample time series data with noise and then output a sample of 10 data points:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 }, - "id": "8iyq5sKCtstH", - "outputId": "7a896abc-a4ad-4b5f-eed7-8f417a6b523b" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "NyKGtVQjgx13" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "if \"google.colab\" in sys.modules:\n", + " from google.colab import auth\n", + "\n", + " auth.authenticate_user()" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "response = chat.send_message(\"\"\"Generate code that creates sample time series\n", - "data of temperature vs. time in a test furnace. Add noise to the data. Output\n", - "a sample of 10 data points from the time series data.\"\"\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vVhCKKBioJga" - }, - "source": [ - "Now you can iterate through the response to display any generated Python code and execution results by checking for `part.executable_code` and `part.code_execution_result` in the response parts:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 660 }, - "id": "8pjwEGzft29N", - "outputId": "d5b25483-b48c-4e67-b9a7-82ebc0a50640" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "0fggiCx13zxX" + }, + "source": [ + "### Import libraries" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "\n", - "```\n", - "\n", - "import numpy as np\n", - "\n", - "# 1. Define Time Range\n", - "time = np.linspace(0, 10, 100) # 100 points from 0 to 10 seconds\n", - "\n", - "# 2. Generate Base Temperature Data (linear increase)\n", - "base_temp = 20 + 5 * time # Start at 20 degrees, increase by 5 degrees per second\n", - "\n", - "# 3. Add Noise\n", - "noise = np.random.normal(0, 2, len(time)) # Gaussian noise with mean 0, std dev 2\n", - "noisy_temp = base_temp + noise\n", - "\n", - "# 4. Output Sample\n", - "sample_indices = np.linspace(0, len(time) - 1, 10, dtype=int)\n", - "sample_time = time[sample_indices]\n", - "sample_temp = noisy_temp[sample_indices]\n", - "\n", - "print(\"Sample Time Series Data (Time, Temperature):\")\n", - "for t, temp in zip(sample_time, sample_temp):\n", - " print(f\"Time: {t:.2f} s, Temperature: {temp:.2f} °C\")\n", - "\n", - "```\n" - ], - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "JbrnA9yv3zMC" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "from IPython.display import Markdown, display\n", + "from google import genai\n", + "from google.genai.types import GenerateContentConfig, Tool" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "Sample Time Series Data (Time, Temperature):\n", - "Time: 0.00 s, Temperature: 21.10 °C\n", - "Time: 1.11 s, Temperature: 27.38 °C\n", - "Time: 2.22 s, Temperature: 32.54 °C\n", - "Time: 3.33 s, Temperature: 35.23 °C\n", - "Time: 4.44 s, Temperature: 44.09 °C\n", - "Time: 5.56 s, Temperature: 49.99 °C\n", - "Time: 6.67 s, Temperature: 52.68 °C\n", - "Time: 7.78 s, Temperature: 59.13 °C\n", - "Time: 8.89 s, Temperature: 64.07 °C\n", - "Time: 10.00 s, Temperature: 66.55 °C\n" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "vXiC1rOE3gSZ" + }, + "source": [ + "### Connect to a generative AI API service\n", + "\n", + "Google Gen AI APIs and models including Gemini are available in the following two API services:\n", + "\n", + "- [Google AI for Developers](https://ai.google.dev/gemini-api/docs): Experiment, prototype, and deploy small projects.\n", + "- [Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/overview): Build enterprise-ready projects on Google Cloud.\n", + "The Google Gen AI SDK provides a unified interface to these two API services.\n", + "\n", + "This notebook shows how to use the Google Gen AI SDK with the Gemini API in Vertex AI." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Outcome: OUTCOME_OK\n" - ] - } - ], - "source": [ - "for part in response.candidates[0].content.parts:\n", - " if part.executable_code:\n", - " display(Markdown(\n", - "f\"\"\"\n", - "```\n", - "{part.executable_code.code}\n", - "```\n", - "\"\"\"))\n", - " if part.code_execution_result:\n", - " display(Markdown(part.code_execution_result.output))\n", - " print(\"\\nOutcome:\", part.code_execution_result.outcome)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4AHoGmDBQuxn" - }, - "source": [ - "Now you can ask the model to add a smoothed data series to the time series data:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 - }, - "id": "alR_tq3pss7j", - "outputId": "77f1acd6-e45f-4b8f-cea6-eafb3848af4c" - }, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "DF4l8DTdWgPY" + }, + "source": [ + "### Set Google Cloud project information and create client\n", + "\n", + "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", + "\n", + "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "response = chat.send_message(\"\"\"Now add a data series that smooths the data using an appropriate method.\"\"\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "MnSlnA5FQ9UH" - }, - "source": [ - "And then display the generated Python code and execution results:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 }, - "id": "uMXRpE0NtRYC", - "outputId": "8b4674b3-c6fe-4118-f6ed-1f7a8d73fd6a" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "Nqwi-5ufWp_B" + }, + "outputs": [], + "source": [ + "PROJECT_ID = \"[your-project-id]\" # @param {type: \"string\", placeholder: \"[your-project-id]\", isTemplate: true}\n", + "if not PROJECT_ID or PROJECT_ID == \"[your-project-id]\":\n", + " PROJECT_ID = str(os.environ.get(\"GOOGLE_CLOUD_PROJECT\"))\n", + "\n", + "LOCATION = os.environ.get(\"GOOGLE_CLOUD_REGION\", \"us-central1\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "\n", - "```\n", - "\n", - "import numpy as np\n", - "\n", - "def moving_average(data, window_size):\n", - " \"\"\"Calculates the moving average of a 1D array.\"\"\"\n", - " if window_size > len(data):\n", - " raise ValueError(\"Window size cannot be larger than the data length.\")\n", - " \n", - " weights = np.repeat(1.0, window_size) / window_size\n", - " return np.convolve(data, weights, 'valid')\n", - "\n", - "# 1. Define Time Range\n", - "time = np.linspace(0, 10, 100) # 100 points from 0 to 10 seconds\n", - "\n", - "# 2. Generate Base Temperature Data (linear increase)\n", - "base_temp = 20 + 5 * time # Start at 20 degrees, increase by 5 degrees per second\n", - "\n", - "# 3. Add Noise\n", - "noise = np.random.normal(0, 2, len(time)) # Gaussian noise with mean 0, std dev 2\n", - "noisy_temp = base_temp + noise\n", - "\n", - "# 4. Calculate Moving Average\n", - "window_size = 5\n", - "smoothed_temp = moving_average(noisy_temp, window_size)\n", - "\n", - "# Adjust time array to match the length of smoothed data\n", - "smoothed_time = time[window_size - 1:]\n", - "\n", - "# 5. Output Sample\n", - "sample_indices = np.linspace(0, len(smoothed_time) - 1, 10, dtype=int)\n", - "sample_time = smoothed_time[sample_indices]\n", - "sample_noisy_temp = noisy_temp[window_size - 1:][sample_indices]\n", - "sample_smoothed_temp = smoothed_temp[sample_indices]\n", - "\n", - "\n", - "print(\"Sample Time Series Data (Time, Noisy Temp, Smoothed Temp):\")\n", - "for t, noisy_temp, smoothed_temp in zip(sample_time, sample_noisy_temp, sample_smoothed_temp):\n", - " print(f\"Time: {t:.2f} s, Noisy Temp: {noisy_temp:.2f} °C, Smoothed Temp: {smoothed_temp:.2f} °C\")\n", - "\n", - "```\n" - ], - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "3Ab5NQwr4B8j" + }, + "outputs": [], + "source": [ + "client = genai.Client(vertexai=True, project=PROJECT_ID, location=LOCATION)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "Sample Time Series Data (Time, Noisy Temp, Smoothed Temp):\n", - "Time: 0.40 s, Noisy Temp: 24.24 °C, Smoothed Temp: 20.87 °C\n", - "Time: 1.41 s, Noisy Temp: 25.06 °C, Smoothed Temp: 25.35 °C\n", - "Time: 2.53 s, Noisy Temp: 35.70 °C, Smoothed Temp: 31.72 °C\n", - "Time: 3.54 s, Noisy Temp: 37.72 °C, Smoothed Temp: 37.53 °C\n", - "Time: 4.65 s, Noisy Temp: 42.47 °C, Smoothed Temp: 41.59 °C\n", - "Time: 5.66 s, Noisy Temp: 46.74 °C, Smoothed Temp: 47.52 °C\n", - "Time: 6.77 s, Noisy Temp: 51.56 °C, Smoothed Temp: 52.91 °C\n", - "Time: 7.78 s, Noisy Temp: 59.30 °C, Smoothed Temp: 57.67 °C\n", - "Time: 8.89 s, Noisy Temp: 63.41 °C, Smoothed Temp: 62.32 °C\n", - "Time: 10.00 s, Noisy Temp: 69.06 °C, Smoothed Temp: 69.32 °C\n" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "YZNpgtKJDdPZ" + }, + "source": [ + "### Improve code rendering in cell outputs" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Outcome: OUTCOME_OK\n" - ] - } - ], - "source": [ - "for part in response.candidates[0].content.parts:\n", - " if part.executable_code:\n", - " display(Markdown(\n", - "f\"\"\"\n", - "```\n", - "{part.executable_code.code}\n", - "```\n", - "\"\"\"))\n", - " if part.code_execution_result:\n", - " display(Markdown(part.code_execution_result.output))\n", - " print(\"\\nOutcome:\", part.code_execution_result.outcome)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "I4VacTEyQ4lD" - }, - "source": [ - "Finally, you can ask the model to generate descriptive statistics for the time series data:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17 }, - "id": "dmhPzmP8tywL", - "outputId": "6c3d6f7c-f937-4a83-9ba1-82e91ce96664" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "Y2e1lK_f_YWN" + }, + "outputs": [], + "source": [ + "from IPython.display import HTML, Markdown\n", + "\n", + "\n", + "# Modify CSS to display the results more clearly in Colab\n", + "def set_css_in_cell_output(unused):\n", + " display(\n", + " HTML(\n", + " \"\"\"\"\"\"\n", + " )\n", + " )\n", + "\n", + "\n", + "get_ipython().events.register(\"pre_run_cell\", set_css_in_cell_output)" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "response = chat.send_message(\"\"\"Now generate and output descriptive statistics on the time series data.\"\"\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "I1t_zA5jRHsB" - }, - "source": [ - "And then display the generated Python code and execution results:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 }, - "id": "hIsMH3fPuKr5", - "outputId": "a56cf8bd-b65e-4913-a48e-bb4adb15962a" - }, - "outputs": [ { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "x1vpnyk-q-fz" + }, + "source": [ + "## Working with code execution in Gemini 2.0\n", + "\n", + "### Load the Gemini model\n", + "\n", + "The following code loads the Gemini 2.0 Flash model. You can learn about all Gemini models on Vertex AI by visiting the [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models):" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "\n", - "```\n", - "\n", - "import numpy as np\n", - "\n", - "def moving_average(data, window_size):\n", - " \"\"\"Calculates the moving average of a 1D array.\"\"\"\n", - " if window_size > len(data):\n", - " raise ValueError(\"Window size cannot be larger than the data length.\")\n", - " \n", - " weights = np.repeat(1.0, window_size) / window_size\n", - " return np.convolve(data, weights, 'valid')\n", - "\n", - "# 1. Define Time Range\n", - "time = np.linspace(0, 10, 100) # 100 points from 0 to 10 seconds\n", - "\n", - "# 2. Generate Base Temperature Data (linear increase)\n", - "base_temp = 20 + 5 * time # Start at 20 degrees, increase by 5 degrees per second\n", - "\n", - "# 3. Add Noise\n", - "noise = np.random.normal(0, 2, len(time)) # Gaussian noise with mean 0, std dev 2\n", - "noisy_temp = base_temp + noise\n", - "\n", - "# 4. Calculate Moving Average\n", - "window_size = 5\n", - "smoothed_temp = moving_average(noisy_temp, window_size)\n", - "\n", - "# Adjust time array to match the length of smoothed data\n", - "smoothed_time = time[window_size - 1:]\n", - "\n", - "# 5. Calculate Descriptive Statistics\n", - "noisy_mean = np.mean(noisy_temp)\n", - "noisy_std = np.std(noisy_temp)\n", - "noisy_min = np.min(noisy_temp)\n", - "noisy_max = np.max(noisy_temp)\n", - "\n", - "smoothed_mean = np.mean(smoothed_temp)\n", - "smoothed_std = np.std(smoothed_temp)\n", - "smoothed_min = np.min(smoothed_temp)\n", - "smoothed_max = np.max(smoothed_temp)\n", - "\n", - "\n", - "# 6. Output Statistics\n", - "print(\"Descriptive Statistics:\")\n", - "print(\"--------------------------------------------------\")\n", - "print(\"Noisy Temperature Data:\")\n", - "print(f\" Mean: {noisy_mean:.2f} °C\")\n", - "print(f\" Standard Deviation: {noisy_std:.2f} °C\")\n", - "print(f\" Minimum: {noisy_min:.2f} °C\")\n", - "print(f\" Maximum: {noisy_max:.2f} °C\")\n", - "print(\"--------------------------------------------------\")\n", - "print(\"Smoothed Temperature Data:\")\n", - "print(f\" Mean: {smoothed_mean:.2f} °C\")\n", - "print(f\" Standard Deviation: {smoothed_std:.2f} °C\")\n", - "print(f\" Minimum: {smoothed_min:.2f} °C\")\n", - "print(f\" Maximum: {smoothed_max:.2f} °C\")\n", - "print(\"--------------------------------------------------\")\n", - "\n", - "```\n" + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "L8gLWcOFqqF2" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type: \"string\"}" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "Descriptive Statistics:\n", - "--------------------------------------------------\n", - "Noisy Temperature Data:\n", - " Mean: 44.80 °C\n", - " Standard Deviation: 14.48 °C\n", - " Minimum: 17.34 °C\n", - " Maximum: 70.30 °C\n", - "--------------------------------------------------\n", - "Smoothed Temperature Data:\n", - " Mean: 44.84 °C\n", - " Standard Deviation: 13.84 °C\n", - " Minimum: 21.89 °C\n", - " Maximum: 67.61 °C\n", - "--------------------------------------------------\n" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "q-jdBwXlM67j" + }, + "source": [ + "### Define the code execution tool\n", + "\n", + "The following code initializes the code execution tool by passing `code_execution` in a `Tool` definition.\n", + "\n", + "Later we'll register this tool with the model that it can use to generate and run Python code:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Outcome: OUTCOME_OK\n" - ] - } - ], - "source": [ - "for part in response.candidates[0].content.parts:\n", - " if part.executable_code:\n", - " display(Markdown(\n", - "f\"\"\"\n", - "```\n", - "{part.executable_code.code}\n", - "```\n", - "\"\"\"))\n", - " if part.code_execution_result:\n", - " display(Markdown(part.code_execution_result.output))\n", - " print(\"\\nOutcome:\", part.code_execution_result.outcome)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TBbNyWtDRZto" - }, - "source": [ - "This chat example demonstrates how you can use the Gemini API with code execution as a powerful tool for exploratory data analysis and more. Go forth and adapt this approach to your own projects and use cases!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Bl6KG5Ufu5XQ" - }, - "source": [ - "### Code execution in a streaming session\n", - "\n", - "You can also use the code execution functionality with streaming output from the Gemini API.\n", - "\n", - "The following code demonstrates how the Gemini API can generate and execute code while streaming the results:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "gTNMMLkNu5JH", - "outputId": "b2dd9780-297d-402e-9300-3254705540d3" - }, - "outputs": [ - { - "data": { - "text/html": [ - "" + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "BFxIcGkxbq3_" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "code_execution_tool = Tool(code_execution={})" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Natural language stream" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "mZgn5tm-NCfH" + }, + "source": [ + "### Generate and execute code\n", + "\n", + "The following code sends a prompt to the Gemini model, asking it to generate and execute Python code to calculate the sum of the first 50 prime numbers. The code execution tool is passed in so the model can generate and run the code:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "Okay" + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "b52qMx0IGA0K" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "PROMPT = \"\"\"\n", + "What is the sum of the first 50 prime numbers?\n", + "Generate and run code for the calculation.\n", + "\"\"\"\n", + "\n", + "response = client.models.generate_content(\n", + " model=MODEL_ID,\n", + " contents=PROMPT,\n", + " config=GenerateContentConfig(\n", + " tools=[code_execution_tool],\n", + " temperature=0,\n", + " ),\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "l-mfiMNasgqH" + }, + "source": [ + "### View the generated code\n", + "\n", + "The following code iterates through the response and displays any generated Python code by checking for `part.executable_code` in the response parts:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Natural language stream" + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "J5mcXw6ZraLS" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "```\n", + "\n", + "def is_prime(n):\n", + " if n <= 1:\n", + " return False\n", + " if n <= 3:\n", + " return True\n", + " if n % 2 == 0 or n % 3 == 0:\n", + " return False\n", + " i = 5\n", + " while i * i <= n:\n", + " if n % i == 0 or n % (i + 2) == 0:\n", + " return False\n", + " i += 6\n", + " return True\n", + "\n", + "primes = []\n", + "num = 2\n", + "while len(primes) < 50:\n", + " if is_prime(num):\n", + " primes.append(num)\n", + " num += 1\n", + "\n", + "sum_of_primes = sum(primes)\n", + "print(f'{sum_of_primes=}')\n", + "\n", + "```\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "for part in response.candidates[0].content.parts:\n", + " if part.executable_code:\n", + " display(\n", + " Markdown(\n", + " f\"\"\"\n", + "```\n", + "{part.executable_code.code}\n", + "```\n", + "\"\"\"\n", + " )\n", + " )" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - ", I can do that. Here's how I'll approach this:" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "ppumif-94xTF" + }, + "source": [ + "### View the code execution results\n", + "\n", + "The following code iterates through the response and displays the execution result and outcome by checking for `part.code_execution_result` in the response parts:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "J891OBjc4xn9" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "sum_of_primes=5117\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Outcome: OUTCOME_OK\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "for part in response.candidates[0].content.parts:\n", + " if part.code_execution_result:\n", + " display(Markdown(part.code_execution_result.output))\n", + " print(\"\\nOutcome:\", part.code_execution_result.outcome)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Natural language stream" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "5u_XuZlMnH9S" + }, + "source": [ + "Great! Now you have the answer (5117) as well as the generated (and verified via execution!) Python code.\n", + "\n", + "At this point in your application, you would save the output code, result, or outcome and display it to the end-user or use it downstream in your application." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "\n", - "\n", - "1. **Generate 20 random names:** I'll use" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "8uJ-Fk1I_AH8" + }, + "source": [ + "### Code execution in a chat session\n", + "\n", + "This section shows how to use code execution in an interactive chat with history using the Gemini API.\n", + "\n", + "You can use `client.chats.create` to create a chat session and passes in the code execution tool, enabling the model to generate and run code:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "puL91bq7tirC" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "chat = client.chats.create(\n", + " model=MODEL_ID,\n", + " config=GenerateContentConfig(\n", + " tools=[code_execution_tool],\n", + " temperature=0,\n", + " ),\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Natural language stream" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "Bmu4bSApoECT" + }, + "source": [ + "You'll start the chat by asking the model to generate sample time series data with noise and then output a sample of 10 data points:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - " Python's `random` module to generate a list of 20 random names. For simplicity, I'll use a combination of common first names." + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "8iyq5sKCtstH" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "response = chat.send_message(\n", + " \"\"\"Generate code that creates sample time series\n", + "data of temperature vs. time in a test furnace. Add noise to the data. Output\n", + "a sample of 10 data points from the time series data.\"\"\"\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "vVhCKKBioJga" + }, + "source": [ + "Now you can iterate through the response to display any generated Python code and execution results by checking for `part.executable_code` and `part.code_execution_result` in the response parts:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Natural language stream" + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "8pjwEGzft29N" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "```\n", + "\n", + "import numpy as np\n", + "\n", + "# 1. Define Time Range\n", + "time = np.linspace(0, 10, 100) # 100 points from 0 to 10 seconds\n", + "\n", + "# 2. Generate Base Temperature Data (linear increase)\n", + "base_temp = 20 + 5 * time # Start at 20 degrees, increase by 5 degrees per second\n", + "\n", + "# 3. Add Noise\n", + "noise = np.random.normal(0, 2, len(time)) # Gaussian noise with mean 0, std dev 2\n", + "noisy_temp = base_temp + noise\n", + "\n", + "# 4. Output Sample\n", + "sample_indices = np.linspace(0, len(time) - 1, 10, dtype=int)\n", + "sample_time = time[sample_indices]\n", + "sample_temp = noisy_temp[sample_indices]\n", + "\n", + "print(\"Sample Time Series Data (Time, Temperature):\")\n", + "for t, temp in zip(sample_time, sample_temp):\n", + " print(f\"Time: {t:.2f} s, Temperature: {temp:.2f} °C\")\n", + "\n", + "```\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "Sample Time Series Data (Time, Temperature):\n", + "Time: 0.00 s, Temperature: 21.10 °C\n", + "Time: 1.11 s, Temperature: 27.38 °C\n", + "Time: 2.22 s, Temperature: 32.54 °C\n", + "Time: 3.33 s, Temperature: 35.23 °C\n", + "Time: 4.44 s, Temperature: 44.09 °C\n", + "Time: 5.56 s, Temperature: 49.99 °C\n", + "Time: 6.67 s, Temperature: 52.68 °C\n", + "Time: 7.78 s, Temperature: 59.13 °C\n", + "Time: 8.89 s, Temperature: 64.07 °C\n", + "Time: 10.00 s, Temperature: 66.55 °C\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Outcome: OUTCOME_OK\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "for part in response.candidates[0].content.parts:\n", + " if part.executable_code:\n", + " display(\n", + " Markdown(\n", + " f\"\"\"\n", + "```\n", + "{part.executable_code.code}\n", + "```\n", + "\"\"\"\n", + " )\n", + " )\n", + " if part.code_execution_result:\n", + " display(Markdown(part.code_execution_result.output))\n", + " print(\"\\nOutcome:\", part.code_execution_result.outcome)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "\n", - "2. **Filter for names with 'a':** I'll iterate through the list and create a new list containing only the names that include the" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "4AHoGmDBQuxn" + }, + "source": [ + "Now you can ask the model to add a smoothed data series to the time series data:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "alR_tq3pss7j" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "response = chat.send_message(\n", + " \"\"\"Now add a data series that smooths the data using an appropriate method.\"\"\"\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Natural language stream" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "MnSlnA5FQ9UH" + }, + "source": [ + "And then display the generated Python code and execution results:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - " letter 'a' (case-insensitive).\n", - "3. **Count and output:** I'll count the number of names in the filtered list and output that count, along with the filtered list itself.\n", - "\n", - "Here's the code" + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "uMXRpE0NtRYC" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "```\n", + "\n", + "import numpy as np\n", + "\n", + "def moving_average(data, window_size):\n", + " \"\"\"Calculates the moving average of a 1D array.\"\"\"\n", + " if window_size > len(data):\n", + " raise ValueError(\"Window size cannot be larger than the data length.\")\n", + " \n", + " weights = np.repeat(1.0, window_size) / window_size\n", + " return np.convolve(data, weights, 'valid')\n", + "\n", + "# 1. Define Time Range\n", + "time = np.linspace(0, 10, 100) # 100 points from 0 to 10 seconds\n", + "\n", + "# 2. Generate Base Temperature Data (linear increase)\n", + "base_temp = 20 + 5 * time # Start at 20 degrees, increase by 5 degrees per second\n", + "\n", + "# 3. Add Noise\n", + "noise = np.random.normal(0, 2, len(time)) # Gaussian noise with mean 0, std dev 2\n", + "noisy_temp = base_temp + noise\n", + "\n", + "# 4. Calculate Moving Average\n", + "window_size = 5\n", + "smoothed_temp = moving_average(noisy_temp, window_size)\n", + "\n", + "# Adjust time array to match the length of smoothed data\n", + "smoothed_time = time[window_size - 1:]\n", + "\n", + "# 5. Output Sample\n", + "sample_indices = np.linspace(0, len(smoothed_time) - 1, 10, dtype=int)\n", + "sample_time = smoothed_time[sample_indices]\n", + "sample_noisy_temp = noisy_temp[window_size - 1:][sample_indices]\n", + "sample_smoothed_temp = smoothed_temp[sample_indices]\n", + "\n", + "\n", + "print(\"Sample Time Series Data (Time, Noisy Temp, Smoothed Temp):\")\n", + "for t, noisy_temp, smoothed_temp in zip(sample_time, sample_noisy_temp, sample_smoothed_temp):\n", + " print(f\"Time: {t:.2f} s, Noisy Temp: {noisy_temp:.2f} °C, Smoothed Temp: {smoothed_temp:.2f} °C\")\n", + "\n", + "```\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "Sample Time Series Data (Time, Noisy Temp, Smoothed Temp):\n", + "Time: 0.40 s, Noisy Temp: 24.24 °C, Smoothed Temp: 20.87 °C\n", + "Time: 1.41 s, Noisy Temp: 25.06 °C, Smoothed Temp: 25.35 °C\n", + "Time: 2.53 s, Noisy Temp: 35.70 °C, Smoothed Temp: 31.72 °C\n", + "Time: 3.54 s, Noisy Temp: 37.72 °C, Smoothed Temp: 37.53 °C\n", + "Time: 4.65 s, Noisy Temp: 42.47 °C, Smoothed Temp: 41.59 °C\n", + "Time: 5.66 s, Noisy Temp: 46.74 °C, Smoothed Temp: 47.52 °C\n", + "Time: 6.77 s, Noisy Temp: 51.56 °C, Smoothed Temp: 52.91 °C\n", + "Time: 7.78 s, Noisy Temp: 59.30 °C, Smoothed Temp: 57.67 °C\n", + "Time: 8.89 s, Noisy Temp: 63.41 °C, Smoothed Temp: 62.32 °C\n", + "Time: 10.00 s, Noisy Temp: 69.06 °C, Smoothed Temp: 69.32 °C\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Outcome: OUTCOME_OK\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "for part in response.candidates[0].content.parts:\n", + " if part.executable_code:\n", + " display(\n", + " Markdown(\n", + " f\"\"\"\n", + "```\n", + "{part.executable_code.code}\n", + "```\n", + "\"\"\"\n", + " )\n", + " )\n", + " if part.code_execution_result:\n", + " display(Markdown(part.code_execution_result.output))\n", + " print(\"\\nOutcome:\", part.code_execution_result.outcome)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "I4VacTEyQ4lD" + }, + "source": [ + "Finally, you can ask the model to generate descriptive statistics for the time series data:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Natural language stream" + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "dmhPzmP8tywL" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "response = chat.send_message(\n", + " \"\"\"Now generate and output descriptive statistics on the time series data.\"\"\"\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - ":\n", - "\n" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "I1t_zA5jRHsB" + }, + "source": [ + "And then display the generated Python code and execution results:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "hIsMH3fPuKr5" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "```\n", + "\n", + "import numpy as np\n", + "\n", + "def moving_average(data, window_size):\n", + " \"\"\"Calculates the moving average of a 1D array.\"\"\"\n", + " if window_size > len(data):\n", + " raise ValueError(\"Window size cannot be larger than the data length.\")\n", + " \n", + " weights = np.repeat(1.0, window_size) / window_size\n", + " return np.convolve(data, weights, 'valid')\n", + "\n", + "# 1. Define Time Range\n", + "time = np.linspace(0, 10, 100) # 100 points from 0 to 10 seconds\n", + "\n", + "# 2. Generate Base Temperature Data (linear increase)\n", + "base_temp = 20 + 5 * time # Start at 20 degrees, increase by 5 degrees per second\n", + "\n", + "# 3. Add Noise\n", + "noise = np.random.normal(0, 2, len(time)) # Gaussian noise with mean 0, std dev 2\n", + "noisy_temp = base_temp + noise\n", + "\n", + "# 4. Calculate Moving Average\n", + "window_size = 5\n", + "smoothed_temp = moving_average(noisy_temp, window_size)\n", + "\n", + "# Adjust time array to match the length of smoothed data\n", + "smoothed_time = time[window_size - 1:]\n", + "\n", + "# 5. Calculate Descriptive Statistics\n", + "noisy_mean = np.mean(noisy_temp)\n", + "noisy_std = np.std(noisy_temp)\n", + "noisy_min = np.min(noisy_temp)\n", + "noisy_max = np.max(noisy_temp)\n", + "\n", + "smoothed_mean = np.mean(smoothed_temp)\n", + "smoothed_std = np.std(smoothed_temp)\n", + "smoothed_min = np.min(smoothed_temp)\n", + "smoothed_max = np.max(smoothed_temp)\n", + "\n", + "\n", + "# 6. Output Statistics\n", + "print(\"Descriptive Statistics:\")\n", + "print(\"--------------------------------------------------\")\n", + "print(\"Noisy Temperature Data:\")\n", + "print(f\" Mean: {noisy_mean:.2f} °C\")\n", + "print(f\" Standard Deviation: {noisy_std:.2f} °C\")\n", + "print(f\" Minimum: {noisy_min:.2f} °C\")\n", + "print(f\" Maximum: {noisy_max:.2f} °C\")\n", + "print(\"--------------------------------------------------\")\n", + "print(\"Smoothed Temperature Data:\")\n", + "print(f\" Mean: {smoothed_mean:.2f} °C\")\n", + "print(f\" Standard Deviation: {smoothed_std:.2f} °C\")\n", + "print(f\" Minimum: {smoothed_min:.2f} °C\")\n", + "print(f\" Maximum: {smoothed_max:.2f} °C\")\n", + "print(\"--------------------------------------------------\")\n", + "\n", + "```\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "Descriptive Statistics:\n", + "--------------------------------------------------\n", + "Noisy Temperature Data:\n", + " Mean: 44.80 °C\n", + " Standard Deviation: 14.48 °C\n", + " Minimum: 17.34 °C\n", + " Maximum: 70.30 °C\n", + "--------------------------------------------------\n", + "Smoothed Temperature Data:\n", + " Mean: 44.84 °C\n", + " Standard Deviation: 13.84 °C\n", + " Minimum: 21.89 °C\n", + " Maximum: 67.61 °C\n", + "--------------------------------------------------\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Outcome: OUTCOME_OK\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "for part in response.candidates[0].content.parts:\n", + " if part.executable_code:\n", + " display(\n", + " Markdown(\n", + " f\"\"\"\n", + "```\n", + "{part.executable_code.code}\n", + "```\n", + "\"\"\"\n", + " )\n", + " )\n", + " if part.code_execution_result:\n", + " display(Markdown(part.code_execution_result.output))\n", + " print(\"\\nOutcome:\", part.code_execution_result.outcome)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Code stream" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "TBbNyWtDRZto" + }, + "source": [ + "This chat example demonstrates how you can use the Gemini API with code execution as a powerful tool for exploratory data analysis and more. Go forth and adapt this approach to your own projects and use cases!" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "\n", - "```\n", - "\n", - "import random\n", - "\n", - "def generate_random_names(num_names):\n", - " first_names = [\"Alice\", \"Bob\", \"Charlie\", \"David\", \"Eve\", \"Frank\", \"Grace\", \"Henry\", \"Ivy\", \"Jack\", \"Kate\", \"Liam\", \"Mia\", \"Noah\", \"Olivia\", \"Peter\", \"Quinn\", \"Ryan\", \"Sophia\", \"Tom\"]\n", - " return random.choices(first_names, k=num_names)\n", - "\n", - "def filter_names_with_a(names):\n", - " return [name for name in names if 'a' in name.lower()]\n", - "\n", - "# Generate 20 random names\n", - "random_names = generate_random_names(20)\n", - "\n", - "# Filter names containing 'a'\n", - "names_with_a = filter_names_with_a(random_names)\n", - "\n", - "# Count the names with 'a'\n", - "count_of_names_with_a = len(names_with_a)\n", - "\n", - "# Output the results\n", - "print(f'{random_names=}')\n", - "print(f'{count_of_names_with_a=}')\n", - "print(f'{names_with_a=}')\n", - "\n", - "```\n" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "Bl6KG5Ufu5XQ" + }, + "source": [ + "### Code execution in a streaming session\n", + "\n", + "You can also use the code execution functionality with streaming output from the Gemini API.\n", + "\n", + "The following code demonstrates how the Gemini API can generate and execute code while streaming the results:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "---" + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "gTNMMLkNu5JH" + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Natural language stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "Okay" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Natural language stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + ", I can do that. Here's how I'll approach this:" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Natural language stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "\n", + "1. **Generate 20 random names:** I'll use" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Natural language stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + " Python's `random` module to generate a list of 20 random names. For simplicity, I'll use a combination of common first names." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Natural language stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "2. **Filter for names with 'a':** I'll iterate through the list and create a new list containing only the names that include the" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Natural language stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + " letter 'a' (case-insensitive).\n", + "3. **Count and output:** I'll count the number of names in the filtered list and output that count, along with the filtered list itself.\n", + "\n", + "Here's the code" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Natural language stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + ":\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Code stream" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "```\n", + "\n", + "import random\n", + "\n", + "def generate_random_names(num_names):\n", + " first_names = [\"Alice\", \"Bob\", \"Charlie\", \"David\", \"Eve\", \"Frank\", \"Grace\", \"Henry\", \"Ivy\", \"Jack\", \"Kate\", \"Liam\", \"Mia\", \"Noah\", \"Olivia\", \"Peter\", \"Quinn\", \"Ryan\", \"Sophia\", \"Tom\"]\n", + " return random.choices(first_names, k=num_names)\n", + "\n", + "def filter_names_with_a(names):\n", + " return [name for name in names if 'a' in name.lower()]\n", + "\n", + "# Generate 20 random names\n", + "random_names = generate_random_names(20)\n", + "\n", + "# Filter names containing 'a'\n", + "names_with_a = filter_names_with_a(random_names)\n", + "\n", + "# Count the names with 'a'\n", + "count_of_names_with_a = len(names_with_a)\n", + "\n", + "# Output the results\n", + "print(f'{random_names=}')\n", + "print(f'{count_of_names_with_a=}')\n", + "print(f'{names_with_a=}')\n", + "\n", + "```\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "#### Code result" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "\n", + "```\n", + "random_names=['Noah', 'Bob', 'Tom', 'Quinn', 'Jack', 'Ryan', 'Henry', 'Eve', 'Kate', 'Liam', 'Ivy', 'Ivy', 'Eve', 'Henry', 'Liam', 'Jack', 'Bob', 'Frank', 'Grace', 'Kate']\n", + "count_of_names_with_a=10\n", + "names_with_a=['Noah', 'Jack', 'Ryan', 'Kate', 'Liam', 'Liam', 'Jack', 'Frank', 'Grace', 'Kate']\n", + "\n", + "```\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "---" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "PROMPT = \"\"\"\n", + "Generate a list of 20 random names, then create a new list with just the names\n", + "containing the letter 'a', then output the number of names that contain 'a' and\n", + "finally show me that new list.\n", + "\"\"\"\n", + "\n", + "for chunk in client.models.generate_content_stream(\n", + " model=MODEL_ID,\n", + " contents=PROMPT,\n", + " config=GenerateContentConfig(\n", + " tools=[code_execution_tool],\n", + " temperature=0,\n", + " ),\n", + "):\n", + " for part in chunk.candidates[0].content.parts:\n", + " if part.text:\n", + " display(Markdown(\"#### Natural language stream\"))\n", + " display(Markdown(part.text))\n", + " display(Markdown(\"---\"))\n", + " if part.executable_code:\n", + " display(Markdown(\"#### Code stream\"))\n", + " display(\n", + " Markdown(\n", + " f\"\"\"\n", + "```\n", + "{part.executable_code.code}\n", + "```\n", + "\"\"\"\n", + " )\n", + " )\n", + " display(Markdown(\"---\"))\n", + " if part.code_execution_result:\n", + " display(Markdown(\"#### Code result\"))\n", + " display(\n", + " Markdown(\n", + " f\"\"\"\n", + "```\n", + "{part.code_execution_result.output}\n", + "```\n", + "\"\"\"\n", + " )\n", + " )\n", + " display(Markdown(\"---\"))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/markdown": [ - "#### Code result" - ], - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "2a4e033321ad" + }, + "source": [ + "This streaming example demonstrated how the Gemini API can generate, execute code, and provide results within a streaming session.\n", + "\n", + "## Summary\n", + "\n", + "Refer to the [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution) for more details about code execution, and in particular, the [recommendations](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution#code-execution-vs-function-calling) regarding differences between code execution and [function calling](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling).\n", + "\n", + "### Next steps\n", + "\n", + "- See the [Google Gen AI SDK reference docs](https://googleapis.github.io/python-genai/)\n", + "- Explore other notebooks in the [Google Cloud Generative AI GitHub repository](https://github.com/GoogleCloudPlatform/generative-ai)\n", + "- Explore AI models in [Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models)" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/markdown": [ - "\n", - "```\n", - "random_names=['Noah', 'Bob', 'Tom', 'Quinn', 'Jack', 'Ryan', 'Henry', 'Eve', 'Kate', 'Liam', 'Ivy', 'Ivy', 'Eve', 'Henry', 'Liam', 'Jack', 'Bob', 'Frank', 'Grace', 'Kate']\n", - "count_of_names_with_a=10\n", - "names_with_a=['Noah', 'Jack', 'Ryan', 'Kate', 'Liam', 'Liam', 'Jack', 'Frank', 'Grace', 'Kate']\n", - "\n", - "```\n" + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "YZNpgtKJDdPZ" ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "intro_code_execution.ipynb", + "toc_visible": true }, - { - "data": { - "text/markdown": [ - "---" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "kernelspec": { + "display_name": "Python 3", + "name": "python3" } - ], - "source": [ - "PROMPT = \"\"\"\n", - "Generate a list of 20 random names, then create a new list with just the names\n", - "containing the letter 'a', then output the number of names that contain 'a' and\n", - "finally show me that new list.\n", - "\"\"\"\n", - "\n", - "for chunk in client.models.generate_content_stream(\n", - " model=MODEL_ID,\n", - " contents=PROMPT,\n", - "\n", - " config=GenerateContentConfig(\n", - " tools=[code_execution_tool],\n", - " temperature=0,\n", - " )\n", - "):\n", - " for part in chunk.candidates[0].content.parts:\n", - " if part.text:\n", - " display(Markdown(\"#### Natural language stream\"))\n", - " display(Markdown(part.text))\n", - " display(Markdown(\"---\"))\n", - " if part.executable_code:\n", - " display(Markdown(\"#### Code stream\"))\n", - " display(Markdown(\n", - "f\"\"\"\n", - "```\n", - "{part.executable_code.code}\n", - "```\n", - "\"\"\"))\n", - " display(Markdown(\"---\"))\n", - " if part.code_execution_result:\n", - " display(Markdown(\"#### Code result\"))\n", - " display(Markdown(\n", - "f\"\"\"\n", - "```\n", - "{part.code_execution_result.output}\n", - "```\n", - "\"\"\"))\n", - " display(Markdown(\"---\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2a4e033321ad" - }, - "source": [ - "This streaming example demonstrated how the Gemini API can generate, execute code, and provide results within a streaming session.\n", - "\n", - "## Summary\n", - "\n", - "Refer to the [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution) for more details about code execution, and in particular, the [recommendations](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution#code-execution-vs-function-calling) regarding differences between code execution and [function calling](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling).\n", - "\n", - "### Next steps\n", - "\n", - "- See the [Google Gen AI SDK reference docs](https://googleapis.github.io/python-genai/)\n", - "- Explore other notebooks in the [Google Cloud Generative AI GitHub repository](https://github.com/GoogleCloudPlatform/generative-ai)\n", - "- Explore AI models in [Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models)" - ] - } - ], - "metadata": { - "colab": { - "collapsed_sections": [ - "YZNpgtKJDdPZ" - ], - "provenance": [], - "toc_visible": true }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - } - }, - "nbformat": 4, - "nbformat_minor": 0 + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/gemini/multimodal-live-api/real_time_rag_bank_loans_gemini_2_0.ipynb b/gemini/multimodal-live-api/real_time_rag_bank_loans_gemini_2_0.ipynb index 0b2cf287082..7ec5d2d82c1 100644 --- a/gemini/multimodal-live-api/real_time_rag_bank_loans_gemini_2_0.ipynb +++ b/gemini/multimodal-live-api/real_time_rag_bank_loans_gemini_2_0.ipynb @@ -158,8 +158,7 @@ " * For longer documents, the entire content can be analyzed at once.\n", " * This might be slower, but can provide more comprehensive answers.\n", "\n", - "**More in depth techincal details in the code below**\n", - "\n" + "**More in depth techincal details in the code below**\n" ] }, { @@ -194,19 +193,20 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mqkS0MFt53rB" + }, + "outputs": [], "source": [ "%%capture\n", "\n", "from google.colab import auth\n", + "\n", "auth.authenticate_user()\n", "\n", "!pip3 install PyPDF2" - ], - "metadata": { - "id": "mqkS0MFt53rB" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", @@ -291,26 +291,28 @@ }, "outputs": [], "source": [ + "import os\n", + "import subprocess\n", + "from typing import Any\n", + "\n", + "from IPython.display import Audio, Markdown, display\n", + "import PyPDF2\n", + "import gcsfs\n", "from google import genai\n", - "from google.genai.types import Tool, GenerateContentConfig, Retrieval, VertexAISearch, VertexRagStore, LiveConnectConfig, EmbedContentConfig\n", "from google.cloud import storage\n", - "\n", + "from google.genai.types import (\n", + " EmbedContentConfig,\n", + " GenerateContentConfig,\n", + " LiveConnectConfig,\n", + " Retrieval,\n", + " Tool,\n", + " VertexAISearch,\n", + " VertexRagStore,\n", + ")\n", "import numpy as np\n", - "import PyPDF2\n", - "from sklearn.metrics.pairwise import cosine_similarity\n", "import pandas as pd\n", - "import time\n", - "from tenacity import retry, wait_random_exponential, stop_after_attempt\n", - "from typing import List, Dict, Any\n", - "\n", - "import asyncio\n", - "import base64\n", - "import json\n", - "import os\n", - "import subprocess\n", - "from IPython.display import display, Audio, Markdown\n", - "\n", - "import gcsfs" + "from sklearn.metrics.pairwise import cosine_similarity\n", + "from tenacity import retry, stop_after_attempt, wait_random_exponential" ] }, { @@ -330,65 +332,72 @@ }, "outputs": [], "source": [ - "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type: \"string\"}\n", + "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type: \"string\"}\n", "\n", - "MODEL = f\"projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}\"\n", - "text_embedding_model = \"text-embedding-004\" # @param {type:\"string\", isTemplate: true}" + "MODEL = (\n", + " f\"projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}\"\n", + ")\n", + "text_embedding_model = \"text-embedding-004\" # @param {type:\"string\", isTemplate: true}" ] }, { "cell_type": "markdown", + "metadata": { + "id": "ibJJK_4ZfWhf" + }, "source": [ "### Initialize GenAi Client\n", "\n", "* Client for calling the Vertex AI GenAI APIs.\n", "* `vertexai=True`, indicates the client should communicate with the Vertex AI API endpoints." - ], - "metadata": { - "id": "ibJJK_4ZfWhf" - } + ] }, { "cell_type": "code", - "source": [ - "client = genai.Client(\n", - " vertexai=True, project=PROJECT_ID, location=LOCATION,\n", - ")\n" - ], + "execution_count": null, "metadata": { "id": "t7Jq0XZUnDz7" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "client = genai.Client(\n", + " vertexai=True,\n", + " project=PROJECT_ID,\n", + " location=LOCATION,\n", + ")" + ] }, { "cell_type": "markdown", - "source": [ - "## Multimodal Live API Implementation\n", - "\n", - "\n" - ], "metadata": { "id": "IOsTjQqBER70" - } + }, + "source": [ + "## Multimodal Live API Implementation\n" + ] }, { "cell_type": "markdown", - "source": [ - "### Authentication and token setup" - ], "metadata": { "id": "wqCyzisyF6nK" - } + }, + "source": [ + "### Authentication and token setup" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eBeVELQzF5-O" + }, + "outputs": [], "source": [ "def get_access_token():\n", " \"\"\"Fetches the Google Cloud access token.\"\"\"\n", " try:\n", " return subprocess.check_output(\n", - " [\"gcloud\", \"auth\", \"print-access-token\"], universal_newlines=True\n", + " [\"gcloud\", \"auth\", \"print-access-token\"], text=True\n", " ).strip()\n", " except subprocess.CalledProcessError as e:\n", " print(f\"Error getting access token: {e}\")\n", @@ -402,24 +411,24 @@ " print(\"Error: API_ENDPOINT environment variable not set.\")\n", " return None\n", " return api_endpoint" - ], - "metadata": { - "id": "eBeVELQzF5-O" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "### Multimodal Live API - Text in text out implementation" - ], "metadata": { "id": "BuL_GUXiIGSc" - } + }, + "source": [ + "### Multimodal Live API - Text in text out implementation" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Mco9ix1iIJhe" + }, + "outputs": [], "source": [ "def generate_text(prompt: str) -> str:\n", " \"\"\"Generates text using the specified model and prompt.\n", @@ -436,137 +445,136 @@ " \"\"\"\n", " modality = \"TEXT\"\n", " response = client.models.generate_content(\n", - " model=MODEL, contents=f\"{prompt}\",\n", + " model=MODEL,\n", + " contents=f\"{prompt}\",\n", " config=GenerateContentConfig(\n", - " response_modalities=[modality],\n", - " )\n", + " response_modalities=[modality],\n", + " ),\n", " )\n", " return response.text" - ], - "metadata": { - "id": "Mco9ix1iIJhe" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "### Multimodel Live API - Text to Audio implementation" - ], "metadata": { "id": "A0xNxpkevK8V" - } + }, + "source": [ + "### Multimodel Live API - Text to Audio implementation" + ] }, { "cell_type": "code", - "source": [ - "async def generate_n_play_audio(client, prompt):\n", - " \"\"\"Generates audio from text using Gemini and plays it.\n", - "\n", - " Args:\n", - " client: The GenAI client instance.\n", - " prompt: The text to convert to audio.\n", - " model_id: The ID of the Gemini model to use (default: 'gemini-2.0-flash-exp').\n", - "\n", - " Returns:\n", - " None. Plays the generated audio directly.\n", - " \"\"\"\n", - " config = LiveConnectConfig(response_modalities=[\"AUDIO\"])\n", - " async with client.aio.live.connect(\n", - " model=MODEL_ID,\n", - " config=config,\n", - " ) as session:\n", - " text_input = prompt\n", - " display(Markdown(f\"**Input:** {text_input}\"))\n", - "\n", - " await session.send(input=text_input, end_of_turn=True)\n", - "\n", - " audio_data = []\n", - " async for message in session.receive():\n", - " if message.server_content.model_turn:\n", - " for part in message.server_content.model_turn.parts:\n", - " if part.inline_data:\n", - " audio_data.append(\n", - " np.frombuffer(part.inline_data.data, dtype=np.int16)\n", - " )\n", - "\n", - " if audio_data:\n", - " display(Audio(np.concatenate(audio_data), rate=24000, autoplay=True))\n" - ], + "execution_count": null, "metadata": { "id": "ARidhpu0vIre" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "async def generate_n_play_audio(client, prompt):\n", + " \"\"\"Generates audio from text using Gemini and plays it.\n", + "\n", + " Args:\n", + " client: The GenAI client instance.\n", + " prompt: The text to convert to audio.\n", + " model_id: The ID of the Gemini model to use (default: 'gemini-2.0-flash-exp').\n", + "\n", + " Returns:\n", + " None. Plays the generated audio directly.\n", + " \"\"\"\n", + " config = LiveConnectConfig(response_modalities=[\"AUDIO\"])\n", + " async with client.aio.live.connect(\n", + " model=MODEL_ID,\n", + " config=config,\n", + " ) as session:\n", + " text_input = prompt\n", + " display(Markdown(f\"**Input:** {text_input}\"))\n", + "\n", + " await session.send(input=text_input, end_of_turn=True)\n", + "\n", + " audio_data = []\n", + " async for message in session.receive():\n", + " if message.server_content.model_turn:\n", + " for part in message.server_content.model_turn.parts:\n", + " if part.inline_data:\n", + " audio_data.append(\n", + " np.frombuffer(part.inline_data.data, dtype=np.int16)\n", + " )\n", + "\n", + " if audio_data:\n", + " display(Audio(np.concatenate(audio_data), rate=24000, autoplay=True))" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "7thHmNHkkJ3x" + }, "source": [ "## Quick Usages\n", "\n", "Verify the initilisation with simple question" - ], - "metadata": { - "id": "7thHmNHkkJ3x" - } + ] }, { "cell_type": "code", - "source": [ - "test_prompt = \"How many days are there in year 2025?\"" - ], + "execution_count": null, "metadata": { "id": "c3T0HI02Nf3G" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "test_prompt = \"How many days are there in year 2025?\"" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "HFPYjSi-Fu_C" + }, "source": [ "### Text In Text Out\n", "\n", "Quick verification of all setup before further proceeding" - ], - "metadata": { - "id": "HFPYjSi-Fu_C" - } + ] }, { "cell_type": "code", - "source": [ - "output = generate_text(test_prompt)\n", - "print(output)" - ], + "execution_count": null, "metadata": { "id": "aLXgIDu5FS7-" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "output = generate_text(test_prompt)\n", + "print(output)" + ] }, { "cell_type": "markdown", - "source": [ - "### Text in Audio Out" - ], "metadata": { "id": "_z5XFF55valp" - } + }, + "source": [ + "### Text in Audio Out" + ] }, { "cell_type": "code", - "source": [ - "await generate_n_play_audio(client, test_prompt)" - ], + "execution_count": null, "metadata": { "id": "RuMEPbrjvkvQ" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "await generate_n_play_audio(client, test_prompt)" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "0sO_veps6Xt0" + }, "source": [ "## Option 1: Custom RAG (Retrieval-Augmented Generation)\n", "\n", @@ -607,49 +615,49 @@ " 2. Use Gemini to extract and generate an answer based on those sections.\n", " 3. Present the answer to you in a clear and concise format.\n", "\n", - "This approach significantly streamlines the process of extracting information from complex documents, enabling more efficient and informed decision-making.\n", - "\n" - ], - "metadata": { - "id": "0sO_veps6Xt0" - } + "This approach significantly streamlines the process of extracting information from complex documents, enabling more efficient and informed decision-making.\n" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "cx1ALgNtnMUn" + }, "source": [ "#### Get your documents\n", "\n", "\n", "\n", "1. Local Content\n", - "2. GCS Files\n", - "\n" - ], - "metadata": { - "id": "cx1ALgNtnMUn" - } + "2. GCS Files\n" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aJclTv_l3llP" + }, + "outputs": [], "source": [ - "#GCS path for the demo document, please use this for only refrence.\n", + "# GCS path for the demo document, please use this for only refrence.\n", "\n", - "#gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/DEMO-BANK-LOAN-DETAILS.pdf\n", - "#gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/Demo-bank-home-loan-agreement.pdf\n", + "# gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/DEMO-BANK-LOAN-DETAILS.pdf\n", + "# gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/Demo-bank-home-loan-agreement.pdf\n", "\n", "document = [\n", " \"gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/DEMO-BANK-LOAN-DETAILS.pdf\",\n", - " \"gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/Demo-bank-home-loan-agreement.pdf\"\n", + " \"gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/Demo-bank-home-loan-agreement.pdf\",\n", "]" - ], - "metadata": { - "id": "aJclTv_l3llP" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tlB48y1IXj8e" + }, + "outputs": [], "source": [ "## Use and modify the below example code if you have the local document\n", "\n", @@ -657,43 +665,44 @@ "# \"/content/DEMO-BANK-LOAN-DETAILS.pdf\",\n", "# \"/content/Demo-bank-home-loan-agreement.pdf\"\n", "# ]" - ], - "metadata": { - "id": "tlB48y1IXj8e" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aEbT4aCXSFF9" + }, + "outputs": [], "source": [ "# Document read from GCS\n", "\n", + "\n", "def extract_text_from_gcs(gcs_path):\n", - " \"\"\"Extracts text from a PDF file.\"\"\"\n", - " bucket_name = gcs_path.split(\"/\")[2]\n", - " file_name = \"/\".join(gcs_path.split(\"/\")[3:])\n", + " \"\"\"Extracts text from a PDF file.\"\"\"\n", + " bucket_name = gcs_path.split(\"/\")[2]\n", + " file_name = \"/\".join(gcs_path.split(\"/\")[3:])\n", "\n", - " storage_client = storage.Client()\n", - " bucket = storage_client.bucket(bucket_name)\n", - " blob = bucket.blob(file_name)\n", + " storage_client = storage.Client()\n", + " bucket = storage_client.bucket(bucket_name)\n", + " blob = bucket.blob(file_name)\n", "\n", - " document_content = blob.download_as_bytes()\n", - " return document_content" - ], - "metadata": { - "id": "aEbT4aCXSFF9" - }, - "execution_count": null, - "outputs": [] + " document_content = blob.download_as_bytes()\n", + " return document_content" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mbidBvbOZRGo" + }, + "outputs": [], "source": [ "def extract_text_from_pdf(pdf_path):\n", " \"\"\"Extracts text from a PDF file, skipping blanks and handling empty PDFs.\"\"\"\n", " try:\n", - " with open(pdf_path, 'rb') as pdf_file:\n", + " with open(pdf_path, \"rb\") as pdf_file:\n", " pdf_reader = PyPDF2.PdfReader(pdf_file)\n", " text = []\n", "\n", @@ -712,40 +721,41 @@ "\n", " # Join the extracted text from all pages into a single string\n", " final_text = \"\\n\".join(text)\n", - " return final_text if final_text else \"Error: No readable text found in the PDF.\"\n", + " return (\n", + " final_text\n", + " if final_text\n", + " else \"Error: No readable text found in the PDF.\"\n", + " )\n", "\n", " except FileNotFoundError:\n", " return \"Error: PDF file not found.\"\n", " except PyPDF2.errors.PdfReadError:\n", - " return \"Error: Could not read the PDF file. It may be corrupted or encrypted.\"\n" - ], - "metadata": { - "id": "mbidBvbOZRGo" - }, - "execution_count": null, - "outputs": [] + " return \"Error: Could not read the PDF file. It may be corrupted or encrypted.\"" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "BPoVUUQ2WBbI" + }, "source": [ "#### RAG Creation\n", "\n", "RAG based on the large files chunking and embedding using text-embedding-004 with vector db" - ], - "metadata": { - "id": "BPoVUUQ2WBbI" - } + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "87dsljf4WFAH" + }, + "outputs": [], "source": [ "@retry(wait=wait_random_exponential(multiplier=1, max=120), stop=stop_after_attempt(4))\n", "def get_embeddings(\n", - " embedding_client: Any,\n", - " embedding_model: str,\n", - " text: str,\n", - " output_dim: int = 768\n", - ") -> List[float]:\n", + " embedding_client: Any, embedding_model: str, text: str, output_dim: int = 768\n", + ") -> list[float]:\n", " \"\"\"\n", " Generate embeddings for text with retry logic for API quota management.\n", " \"\"\"\n", @@ -753,7 +763,7 @@ " response = embedding_client.models.embed_content(\n", " model=embedding_model,\n", " contents=[text],\n", - " config=EmbedContentConfig(output_dimensionality=output_dim)\n", + " config=EmbedContentConfig(output_dimensionality=output_dim),\n", " )\n", " return [response.embeddings[0].values]\n", " except Exception as e:\n", @@ -761,21 +771,21 @@ " return None\n", " print(f\"Error generating embeddings: {str(e)}\")\n", " raise" - ], - "metadata": { - "id": "87dsljf4WFAH" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FeKzRYQSWF7a" + }, + "outputs": [], "source": [ "def build_index(\n", - " document_paths: List[str],\n", + " document_paths: list[str],\n", " embedding_client: Any,\n", " embedding_model: str,\n", - " chunk_size: int = 500\n", + " chunk_size: int = 500,\n", ") -> pd.DataFrame:\n", " \"\"\"\n", " Build searchable index from documents with page-wise processing.\n", @@ -793,28 +803,28 @@ " page_text = page.extract_text()\n", "\n", " chunks = [\n", - " page_text[i:i+chunk_size]\n", + " page_text[i : i + chunk_size]\n", " for i in range(0, len(page_text), chunk_size)\n", " ]\n", "\n", " for chunk_num, chunk_text in enumerate(chunks):\n", " embeddings = get_embeddings(\n", - " embedding_client,\n", - " embedding_model,\n", - " chunk_text\n", + " embedding_client, embedding_model, chunk_text\n", " )\n", "\n", " if embeddings is None:\n", - " print(f\"Warning: Could not generate embeddings for chunk {chunk_num} on page {page_num + 1}\")\n", + " print(\n", + " f\"Warning: Could not generate embeddings for chunk {chunk_num} on page {page_num + 1}\"\n", + " )\n", " continue\n", "\n", " chunk_info = {\n", - " 'document_name': doc_path,\n", - " 'page_number': page_num + 1,\n", - " 'page_text': page_text,\n", - " 'chunk_number': chunk_num,\n", - " 'chunk_text': chunk_text,\n", - " 'embeddings': embeddings\n", + " \"document_name\": doc_path,\n", + " \"page_number\": page_num + 1,\n", + " \"page_text\": page_text,\n", + " \"chunk_number\": chunk_num,\n", + " \"chunk_text\": chunk_text,\n", + " \"embeddings\": embeddings,\n", " }\n", " all_chunks.append(chunk_info)\n", "\n", @@ -826,22 +836,22 @@ " raise ValueError(\"No chunks were created from the documents\")\n", "\n", " return pd.DataFrame(all_chunks)" - ], - "metadata": { - "id": "FeKzRYQSWF7a" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "817nRd1kWQ8q" + }, + "outputs": [], "source": [ "def get_relevant_chunks(\n", " query: str,\n", " vector_db: pd.DataFrame,\n", " embedding_client: Any,\n", " embedding_model: str,\n", - " top_k: int = 3\n", + " top_k: int = 3,\n", ") -> str:\n", " \"\"\"\n", " Retrieve most relevant document chunks for a query using similarity search.\n", @@ -854,7 +864,7 @@ "\n", " similarities = [\n", " cosine_similarity(query_embedding, chunk_emb)[0][0]\n", - " for chunk_emb in vector_db['embeddings']\n", + " for chunk_emb in vector_db[\"embeddings\"]\n", " ]\n", "\n", " top_indices = np.argsort(similarities)[-top_k:]\n", @@ -862,44 +872,46 @@ "\n", " context = []\n", " for _, row in relevant_chunks.iterrows():\n", - " context.append({\n", - " 'document_name': row['document_name'],\n", - " 'page_number': row['page_number'],\n", - " 'chunk_number': row['chunk_number'],\n", - " 'chunk_text': row['chunk_text']\n", - " })\n", - "\n", - " return \"\\n\\n\".join([\n", - " f\"[Page {chunk['page_number']}, Chunk {chunk['chunk_number']}]: {chunk['chunk_text']}\"\n", - " for chunk in context\n", - " ])\n", + " context.append(\n", + " {\n", + " \"document_name\": row[\"document_name\"],\n", + " \"page_number\": row[\"page_number\"],\n", + " \"chunk_number\": row[\"chunk_number\"],\n", + " \"chunk_text\": row[\"chunk_text\"],\n", + " }\n", + " )\n", + "\n", + " return \"\\n\\n\".join(\n", + " [\n", + " f\"[Page {chunk['page_number']}, Chunk {chunk['chunk_number']}]: {chunk['chunk_text']}\"\n", + " for chunk in context\n", + " ]\n", + " )\n", "\n", " except Exception as e:\n", " print(f\"Error getting relevant chunks: {str(e)}\")\n", " return \"Error retrieving relevant chunks\"" - ], - "metadata": { - "id": "817nRd1kWQ8q" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6MWtTrJ-WXs7" + }, + "outputs": [], "source": [ "@retry(wait=wait_random_exponential(multiplier=1, max=120), stop=stop_after_attempt(4))\n", - "def generate_answer(\n", - " query: str,\n", - " context: str,\n", - " llm_client: Any,\n", - " llm_model: str\n", - ") -> str:\n", + "def generate_answer(query: str, context: str, llm_client: Any, llm_model: str) -> str:\n", " \"\"\"\n", " Generate answer using LLM with retry logic for API quota management.\n", " \"\"\"\n", " try:\n", " # If context indicates earlier quota issues, return early\n", - " if context in [\"Could not process query due to quota issues\", \"Error retrieving relevant chunks\"]:\n", + " if context in [\n", + " \"Could not process query due to quota issues\",\n", + " \"Error retrieving relevant chunks\",\n", + " ]:\n", " return \"Can't Process, Quota Issues\"\n", "\n", " prompt = f\"\"\"Based on the following context, please answer the question.\n", @@ -912,10 +924,7 @@ "\n", " Answer:\"\"\"\n", "\n", - " response = llm_client.models.generate_content(\n", - " model=llm_model,\n", - " contents=prompt\n", - " )\n", + " response = llm_client.models.generate_content(model=llm_model, contents=prompt)\n", " return response.text\n", "\n", " except Exception as e:\n", @@ -923,25 +932,25 @@ " return \"Can't Process, Quota Issues\"\n", " print(f\"Error generating answer: {str(e)}\")\n", " return \"Error generating answer\"" - ], - "metadata": { - "id": "6MWtTrJ-WXs7" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "def rag(\n", - " document_name: str,\n", - " question_set: List[Dict],\n", + "execution_count": null, + "metadata": { + "id": "zXDUqw9IWYey" + }, + "outputs": [], + "source": [ + "def rag(\n", + " document_name: str,\n", + " question_set: list[dict],\n", " vector_db: pd.DataFrame,\n", " embedding_client: Any,\n", " embedding_model: str,\n", " llm_client: Any,\n", " top_k: int,\n", - " llm_model: str\n", + " llm_model: str,\n", ") -> pd.DataFrame:\n", " \"\"\"\n", " RAG Pipeline.\n", @@ -964,82 +973,102 @@ " try:\n", " # Get relevant context for question\n", " relevant_context = get_relevant_chunks(\n", - " question['question'],\n", + " question[\"question\"],\n", " vector_db,\n", " embedding_client,\n", " embedding_model,\n", - " top_k=top_k\n", + " top_k=top_k,\n", " )\n", "\n", " # Generate answer using LLM\n", " generated_answer = generate_answer(\n", - " question['question'],\n", - " relevant_context,\n", - " llm_client,\n", - " llm_model\n", + " question[\"question\"], relevant_context, llm_client, llm_model\n", " )\n", "\n", " # Store results\n", - " results.append({\n", - " 'document_name': document_name,\n", - " 'question': question['question'],\n", - " 'source_page_num': question['page'],\n", - " 'answer': question['answer'],\n", - " 'generated_answer': generated_answer\n", - " })\n", + " results.append(\n", + " {\n", + " \"document_name\": document_name,\n", + " \"question\": question[\"question\"],\n", + " \"source_page_num\": question[\"page\"],\n", + " \"answer\": question[\"answer\"],\n", + " \"generated_answer\": generated_answer,\n", + " }\n", + " )\n", "\n", " except Exception as e:\n", " print(f\"Error processing question '{question['question']}': {str(e)}\")\n", - " results.append({\n", - " 'document_name': document_name,\n", - " 'question': question['question'],\n", - " 'source_page_num': question['page'],\n", - " 'answer': question['answer'],\n", - " 'generated_answer': \"Error processing question\"\n", - " })\n", + " results.append(\n", + " {\n", + " \"document_name\": document_name,\n", + " \"question\": question[\"question\"],\n", + " \"source_page_num\": question[\"page\"],\n", + " \"answer\": question[\"answer\"],\n", + " \"generated_answer\": \"Error processing question\",\n", + " }\n", + " )\n", "\n", - " return pd.DataFrame(results)\n" - ], - "metadata": { - "id": "zXDUqw9IWYey" - }, - "execution_count": null, - "outputs": [] + " return pd.DataFrame(results)" + ] }, { "cell_type": "code", - "source": [ - "vector_db_mini_vertex = build_index(document,\n", - " embedding_client=client,\n", - " embedding_model=text_embedding_model\n", - " )\n", - "vector_db_mini_vertex.head()" - ], + "execution_count": null, "metadata": { "id": "iCn8euT3Wh0r" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "vector_db_mini_vertex = build_index(\n", + " document, embedding_client=client, embedding_model=text_embedding_model\n", + ")\n", + "vector_db_mini_vertex.head()" + ] }, { "cell_type": "code", - "source": [ - "question_set_1 = [\n", - " {\"question\": \"What are the loan products avaliable?\", \"answer\": \"Home Loan, Smart Loan, Loan Against Property, Smart loan againg property\", \"page\": 6},\n", - " {\"question\": \"How much is the Processing fee for the loan?\", \"answer\": \"1% of the sanctioned loan amount or 10000 INR, which ever is higher\", \"page\": 7},\n", - " {\"question\": \"Documents to submit as proof od identity?\", \"answer\": \"Passport, Election/voters IDs, Permanent Driving license, permanent account number, Adhaar card\", \"page\": 2},\n", - " {\"question\": \"How many days it take for Loan Pay Order?\", \"answer\": \"1 day\", \"page\": 5},\n", - " {\"question\": \"Phone number for phone banking service?\", \"answer\": \"+91-49-3111-1111\", \"page\": 16 },\n", - " ]" - ], + "execution_count": null, "metadata": { "id": "5yiwVFC_Z0Vj" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "question_set_1 = [\n", + " {\n", + " \"question\": \"What are the loan products avaliable?\",\n", + " \"answer\": \"Home Loan, Smart Loan, Loan Against Property, Smart loan againg property\",\n", + " \"page\": 6,\n", + " },\n", + " {\n", + " \"question\": \"How much is the Processing fee for the loan?\",\n", + " \"answer\": \"1% of the sanctioned loan amount or 10000 INR, which ever is higher\",\n", + " \"page\": 7,\n", + " },\n", + " {\n", + " \"question\": \"Documents to submit as proof od identity?\",\n", + " \"answer\": \"Passport, Election/voters IDs, Permanent Driving license, permanent account number, Adhaar card\",\n", + " \"page\": 2,\n", + " },\n", + " {\n", + " \"question\": \"How many days it take for Loan Pay Order?\",\n", + " \"answer\": \"1 day\",\n", + " \"page\": 5,\n", + " },\n", + " {\n", + " \"question\": \"Phone number for phone banking service?\",\n", + " \"answer\": \"+91-49-3111-1111\",\n", + " \"page\": 16,\n", + " },\n", + "]" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gc3TwXS8Wks6" + }, + "outputs": [], "source": [ "%%time\n", "\n", @@ -1047,49 +1076,44 @@ " document_name=document[0].split(\"/\")[-1],\n", " question_set=question_set_1,\n", " vector_db=vector_db_mini_vertex,\n", - " embedding_client=client, # For embedding generation\n", - " embedding_model=text_embedding_model, # For embedding model\n", - " llm_client=client, # For answer generation,\n", + " embedding_client=client, # For embedding generation\n", + " embedding_model=text_embedding_model, # For embedding model\n", + " llm_client=client, # For answer generation,\n", " top_k=10,\n", - " llm_model=MODEL\n", + " llm_model=MODEL,\n", ")" - ], - "metadata": { - "id": "gc3TwXS8Wks6", - "collapsed": true - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "### Loan QnA with Gemini 2.0 Model - RAG" - ], "metadata": { "id": "NsLTh_J2RznY" - } + }, + "source": [ + "### Loan QnA with Gemini 2.0 Model - RAG" + ] }, { "cell_type": "code", - "source": [ - "question = \"What are different types of home loan?\"" - ], + "execution_count": null, "metadata": { "id": "tfB3BQIrSDXv" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "question = \"What are different types of home loan?\"" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mOFE7VFTa9R3" + }, + "outputs": [], "source": [ "relevant_context = get_relevant_chunks(\n", - " question,\n", - " vector_db_mini_vertex,\n", - " client,\n", - " text_embedding_model,\n", - " top_k=10\n", + " question, vector_db_mini_vertex, client, text_embedding_model, top_k=10\n", ")\n", "rag_prompt = f\"\"\"Based on the following context, please answer the question.\n", "\n", @@ -1098,58 +1122,55 @@ "\n", "Question: {question}\n", "\n", - "Answer:\"\"\"\n", - "\n" - ], - "metadata": { - "id": "mOFE7VFTa9R3" - }, - "execution_count": null, - "outputs": [] + "Answer:\"\"\"" + ] }, { "cell_type": "markdown", - "source": [ - "#### Text output - RAG" - ], "metadata": { "id": "vcmD3qWJniMv" - } + }, + "source": [ + "#### Text output - RAG" + ] }, { "cell_type": "code", - "source": [ - "response = generate_text(prompt=rag_prompt)\n", - "print(response)" - ], + "execution_count": null, "metadata": { "id": "dQ2e3ZXEm1D7" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "response = generate_text(prompt=rag_prompt)\n", + "print(response)" + ] }, { "cell_type": "markdown", - "source": [ - "#### Audio Output" - ], "metadata": { "id": "1NVC8L0nLmRB" - } + }, + "source": [ + "#### Audio Output" + ] }, { "cell_type": "code", - "source": [ - "await generate_n_play_audio(client, rag_prompt)" - ], + "execution_count": null, "metadata": { "id": "1hQ7JBwtLlMj" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "await generate_n_play_audio(client, rag_prompt)" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "R5KLDaAOWGge" + }, "source": [ "## Option 2 : Large Context Window\n", "\n", @@ -1208,49 +1229,51 @@ " * You need deeper insights and comprehensive answers.\n", " * Your questions involve understanding information spread across the entire document.\n", " * Accuracy and detailed analysis are critical for your task." - ], - "metadata": { - "id": "R5KLDaAOWGge" - } + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hIfczQlbhG4y" + }, + "outputs": [], "source": [ "# Taking document from the GCS path\n", "# document_path = \"gs://github-repo/generative-ai/gemini2/use-cases/loan_example_documents/Demo-bank-home-loan-agreement.pdf\"\n", "# document_content = extract_text_from_gcs(document_path)" - ], - "metadata": { - "id": "hIfczQlbhG4y" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "e7GNNxptVVHk" + }, + "outputs": [], "source": [ "# Taking document from the local path\n", "# download the example file and keep in the colab files.\n", "document_path = \"/content/DEMO-BANK-LOAN-DETAILS.pdf\"\n", "document_content = extract_text_from_pdf(document_path)" - ], - "metadata": { - "id": "e7GNNxptVVHk" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "### Text Output - Large Context" - ], "metadata": { "id": "7wuk15mxEfxE" - } + }, + "source": [ + "### Text Output - Large Context" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Teg4LiNqEPxh" + }, + "outputs": [], "source": [ "query = \"what are the type of loans?\"\n", "\n", @@ -1261,58 +1284,46 @@ "\n", " Question: {query}\n", "\n", - " Answer:\"\"\"\n", - "\n" - ], - "metadata": { - "id": "Teg4LiNqEPxh" - }, - "execution_count": null, - "outputs": [] + " Answer:\"\"\"" + ] }, { "cell_type": "code", - "source": [ - "response = client.models.generate_content(\n", - " model=MODEL, contents= large_context_prompt\n", - ")\n", - "display(Markdown(response.text))" - ], + "execution_count": null, "metadata": { "id": "ogwQmErQPb-g" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "response = client.models.generate_content(model=MODEL, contents=large_context_prompt)\n", + "display(Markdown(response.text))" + ] }, { "cell_type": "markdown", - "source": [ - "### Text In Audio Out, Multimodal Live API" - ], "metadata": { "id": "JggCQgsdv16Q" - } + }, + "source": [ + "### Text In Audio Out, Multimodal Live API" + ] }, { "cell_type": "code", - "source": [ - "await generate_n_play_audio(client, large_context_prompt)" - ], + "execution_count": null, "metadata": { "id": "rLjZeApGvy4d" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "await generate_n_play_audio(client, large_context_prompt)" + ] }, { "cell_type": "markdown", - "source": [], "metadata": { - "id": "H95OvWs6zW6J" - } - }, - { - "cell_type": "markdown", + "id": "0ZShwrOt0KSi" + }, "source": [ "## Option 3 : With Vertex Datastore\n", "\n", @@ -1369,79 +1380,73 @@ "* You have a large dataset of documents.\n", "* You need high performance and scalability.\n", "* You want to integrate with other Google Cloud services.\n" - ], - "metadata": { - "id": "0ZShwrOt0KSi" - } + ] }, { "cell_type": "markdown", - "source": [ - "### Initlise the vertex datatstore" - ], "metadata": { "id": "SSHYTbIq5Q7N" - } + }, + "source": [ + "### Initlise the vertex datatstore" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-aH8OrA_0VMr" + }, + "outputs": [], "source": [ "## Vertex datastore\n", "\n", - "datastore_id = \"Your-datastore\" # @param {type: \"string\", isTemplate: true}\n", + "datastore_id = \"Your-datastore\" # @param {type: \"string\", isTemplate: true}\n", "\n", "datastore_path = f\"projects/{PROJECT_ID}/locations/global/collections/default_collection/dataStores/{datastore_id}\"\n", "\n", "vertext_ai_search_tool = Tool(\n", - " retrieval=Retrieval(\n", - " vertex_ai_search=VertexAISearch(\n", - " datastore=datastore_path\n", - " )\n", - " )\n", + " retrieval=Retrieval(vertex_ai_search=VertexAISearch(datastore=datastore_path))\n", ")" - ], - "metadata": { - "id": "-aH8OrA_0VMr" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "### Get your QnA with vertex datastore and Vertex Multimodel API\n", - "\n" - ], "metadata": { "id": "EU__4wc65Zhi" - } + }, + "source": [ + "### Get your QnA with vertex datastore and Vertex Multimodel API\n" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MT_SK9iC0ZnF" + }, + "outputs": [], "source": [ - "query = \"what are the types of loans?\" # @param {type: \"string\", isTemplate: true, label: \"Select Modality\"}\n", + "query = \"what are the types of loans?\" # @param {type: \"string\", isTemplate: true, label: \"Select Modality\"}\n", "\n", "modality = \"TEXT\"\n", "\n", "response = client.models.generate_content(\n", " model=MODEL_ID,\n", - " contents = query,\n", - " config = GenerateContentConfig(\n", - " tools=[vertext_ai_search_tool],\n", - " response_modalities=[modality]\n", - " ),\n", + " contents=query,\n", + " config=GenerateContentConfig(\n", + " tools=[vertext_ai_search_tool], response_modalities=[modality]\n", + " ),\n", ")\n", "\n", "display(Markdown(response.text))" - ], - "metadata": { - "id": "MT_SK9iC0ZnF" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "iiEE2Brm5MkU" + }, "source": [ "## Option 4: with Vertex AI Search\n", "\n", @@ -1494,34 +1499,35 @@ "* You need high performance and scalability.\n", "* You want to integrate with other Google Cloud services.\n", "* You want to improve search result diversity, quality, and ranking through ranking and recall tuning features of vector search." - ], - "metadata": { - "id": "iiEE2Brm5MkU" - } + ] }, { "cell_type": "markdown", - "source": [ - "### Import for api platform" - ], "metadata": { "id": "Zc14X-p31sci" - } + }, + "source": [ + "### Import for api platform" + ] }, { "cell_type": "code", - "source": [ - "from google.cloud import aiplatform\n", - "aiplatform.init(project=PROJECT_ID, location=LOCATION)" - ], + "execution_count": null, "metadata": { "id": "l_uQrCum1U2O" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "from google.cloud import aiplatform\n", + "\n", + "aiplatform.init(project=PROJECT_ID, location=LOCATION)" + ] }, { "cell_type": "markdown", + "metadata": { + "id": "etYrU8Zq1xEC" + }, "source": [ "### Setup Vertex AI Vector Search index and index endpoint\n", "\n", @@ -1542,13 +1548,15 @@ " to use in the RAG corpus. Other parameters can be tuned based on\n", " your choices, which determine whether the additional parameters can be\n", " tuned." - ], - "metadata": { - "id": "etYrU8Zq1xEC" - } + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1M_dnU9P1gvQ" + }, + "outputs": [], "source": [ "# create the index\n", "my_index = aiplatform.MatchingEngineIndex.create_tree_ah_index(\n", @@ -1562,38 +1570,36 @@ " feature_norm_type=\"UNIT_L2_NORM\",\n", " index_update_method=\"STREAM_UPDATE\",\n", ")" - ], - "metadata": { - "id": "1M_dnU9P1gvQ" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "### Vertex ai search public endpoint [public endpoints](https://cloud.google.com/vertex-ai/docs/vector-search/deploy-index-public)." - ], "metadata": { "id": "gnPusIuK1mpD" - } + }, + "source": [ + "### Vertex ai search public endpoint [public endpoints](https://cloud.google.com/vertex-ai/docs/vector-search/deploy-index-public)." + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "If92NcCT1mDD" + }, + "outputs": [], "source": [ "# create IndexEndpoint\n", "my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create(\n", " display_name=\"loanDemoRag\", public_endpoint_enabled=True\n", ")" - ], - "metadata": { - "id": "If92NcCT1mDD" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "0VCAa0qe2X6F" + }, "source": [ "Deploying the Index to the Index Endpoint\n", "When deploying an index to an index endpoint for the first time, it takes approximately 30 minutes to automatically build and initialize the backend. Subsequent deployments are significantly faster, with the index becoming ready in seconds.\n", @@ -1611,50 +1617,52 @@ "\n", "\n", "If you're unsure of the resource names, use the following command to retrieve them:" - ], - "metadata": { - "id": "0VCAa0qe2X6F" - } + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CAB9Sj0p2YUH" + }, + "outputs": [], "source": [ "print(my_index_endpoint.resource_name)\n", "print(my_index.resource_name)\n", "print(my_index.name)\n", "print(my_index)" - ], - "metadata": { - "id": "CAB9Sj0p2YUH" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "# Deploy Index\n", - "my_index_endpoint.deploy_index(index=my_index, deployed_index_id=\"loanDemoRag\")" - ], + "execution_count": null, "metadata": { "id": "IteN67ln20cm" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "# Deploy Index\n", + "my_index_endpoint.deploy_index(index=my_index, deployed_index_id=\"loanDemoRag\")" + ] }, { "cell_type": "code", - "source": [ - "from vertexai.preview import rag" - ], + "execution_count": null, "metadata": { "id": "JqggwGu721AT" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "from vertexai.preview import rag" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "caa_Vprs237T" + }, + "outputs": [], "source": [ "vector_db = rag.VertexVectorSearch(\n", " index=my_index.resource_name, index_endpoint=my_index_endpoint.resource_name\n", @@ -1666,24 +1674,24 @@ "# Create RAG Corpus\n", "rag_corpus = rag.create_corpus(display_name=DISPLAY_NAME, vector_db=vector_db)\n", "print(f\"Created RAG Corpus resource: {rag_corpus.name}\")" - ], - "metadata": { - "id": "caa_Vprs237T" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "### Import the files from the GCS" - ], "metadata": { "id": "XuTDZP7c28yi" - } + }, + "source": [ + "### Import the files from the GCS" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "_V_S8aC_29Mj" + }, + "outputs": [], "source": [ "GCS_BUCKET = \"gs://demo-loan-documents/\" # @param {type:\"string\", \"placeholder\": \"your-gs-bucket\"}\n", "\n", @@ -1693,36 +1701,36 @@ " chunk_size=512,\n", " chunk_overlap=50,\n", ")" - ], - "metadata": { - "id": "_V_S8aC_29Mj" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "### Check the files just imported. It may take a few seconds to process the imported files.\n", - "rag.list_files(corpus_name=rag_corpus.name)" - ], + "execution_count": null, "metadata": { "id": "8U_TcPZU3C0j" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "### Check the files just imported. It may take a few seconds to process the imported files.\n", + "rag.list_files(corpus_name=rag_corpus.name)" + ] }, { "cell_type": "markdown", - "source": [ - "### Add Rag corpus to the context" - ], "metadata": { "id": "HCpBI2DZ3F_Z" - } + }, + "source": [ + "### Add Rag corpus to the context" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jwjcsMjx3Gem" + }, + "outputs": [], "source": [ "rag_resource = rag.RagResource(\n", " rag_corpus=rag_corpus.name,\n", @@ -1737,40 +1745,37 @@ " ),\n", " )\n", ")" - ], - "metadata": { - "id": "jwjcsMjx3Gem" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jqljXg1f3VzU" + }, + "outputs": [], "source": [ - "query = \"what are the types of loans?\" # @param {type: \"string\", isTemplate: true, label: \"Select Modality\"}\n", + "query = \"what are the types of loans?\" # @param {type: \"string\", isTemplate: true, label: \"Select Modality\"}\n", "\n", "modality = \"TEXT\"\n", "\n", "\n", "response = client.models.generate_content(\n", " model=MODEL_ID,\n", - " contents = query,\n", - " config = GenerateContentConfig(\n", - " tools=[vertext_ai_rag_tool],\n", - " response_modalities=[modality]\n", - " ),\n", + " contents=query,\n", + " config=GenerateContentConfig(\n", + " tools=[vertext_ai_rag_tool], response_modalities=[modality]\n", + " ),\n", ")\n", "\n", "display(Markdown(response.text))" - ], - "metadata": { - "id": "jqljXg1f3VzU" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "4PWWqy4J_lTm" + }, "source": [ "## Conclusion\n", "\n", @@ -1795,17 +1800,13 @@ "\n", "* Developing Q&A Applications: Build a Question-and-Answer application powered by Gemini 2.0.\n", "\n", - "This comprehensive guide equips you with practical knowledge for utilizing Gemini 2.0 in diverse scenarios, from multimodal data handling to advanced AI-powered application development.\n", - "\n" - ], - "metadata": { - "id": "4PWWqy4J_lTm" - } + "This comprehensive guide equips you with practical knowledge for utilizing Gemini 2.0 in diverse scenarios, from multimodal data handling to advanced AI-powered application development.\n" + ] } ], "metadata": { "colab": { - "provenance": [], + "name": "real_time_rag_bank_loans_gemini_2_0.ipynb", "toc_visible": true }, "kernelspec": { @@ -1815,4 +1816,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/gemini/multimodal-live-api/real_time_rag_retail_gemini_2_0.ipynb b/gemini/multimodal-live-api/real_time_rag_retail_gemini_2_0.ipynb index 90aaa0b666e..6537a42a049 100644 --- a/gemini/multimodal-live-api/real_time_rag_retail_gemini_2_0.ipynb +++ b/gemini/multimodal-live-api/real_time_rag_retail_gemini_2_0.ipynb @@ -1,1827 +1,1831 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ur8xi4C7S06n" - }, - "outputs": [], - "source": [ - "# Copyright 2024 Google LLC\n", - "#\n", - "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", - "# you may not use this file except in compliance with the License.\n", - "# You may obtain a copy of the License at\n", - "#\n", - "# https://www.apache.org/licenses/LICENSE-2.0\n", - "#\n", - "# Unless required by applicable law or agreed to in writing, software\n", - "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", - "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", - "# See the License for the specific language governing permissions and\n", - "# limitations under the License." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JAPoU8Sm5E6e" - }, - "source": [ - "# Real-time Retrieval Augmented Generation (RAG) using the Multimodal Live API with Gemini 2.0\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \"Google
Open in Colab\n", - "
\n", - "
\n", - " \n", - " \"Google
Open in Colab Enterprise\n", - "
\n", - "
\n", - " \n", - " \"Vertex
Open in Vertex AI Workbench\n", - "
\n", - "
\n", - " \n", - " \"GitHub
View on GitHub\n", - "
\n", - "
\n", - "\n", - "
\n", - "\n", - "
\n", - "\n", - "
\n", - "
\n", - "Share to:\n", - "\n", - "\n", - " \"LinkedIn\n", - "\n", - "\n", - "\n", - " \"Bluesky\n", - "\n", - "\n", - "\n", - " \"X\n", - "\n", - "\n", - "\n", - " \"Reddit\n", - "\n", - "\n", - "\n", - " \"Facebook\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "84f0f73a0f76" - }, - "source": [ - "| | |\n", - "|-|-|\n", - "| Author(s) | [Deepak Moonat](https://github.com/dmoonat/) |" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-MDW_A-nBksi" - }, - "source": [ - "
\n", - "\n", - "⚠️ Gemini 2.0 Flash (Model ID: gemini-2.0-flash-exp) and the Google Gen AI SDK are currently experimental and output can vary ⚠️\n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tvgnzT1CKxrO" - }, - "source": [ - "## Overview\n", - "\n", - "This notebook provides a comprehensive demonstration of the Vertex AI Gemini and Multimodal Live APIs, showcasing text and audio generation capabilities. Users will learn to develop a real-time Retrieval Augmented Generation (RAG) system leveraging the Multimodal Live API for a retail use-case. This system will generate audio and text responses grounded in provided documents. The tutorial covers the following:\n", - "\n", - "- **Gemini API:** Text output generation.\n", - "- **Multimodal Live API:** Text and audio output generation.\n", - "- **Retrieval Augmented Generation (RAG):** Text and audio output generation grounded in provided documents for a retail use-case." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "xKVzRJhgJ4EZ" - }, - "source": [ - "### Gemini 2.0\n", - "\n", - "[Gemini 2.0 Flash](https://cloud.google.com/vertex-ai/generative-ai/docs/gemini-v2) is a new multimodal generative ai model from the Gemini family developed by [Google DeepMind](https://deepmind.google/). It now available as an experimental preview release through the Gemini API in Vertex AI and Vertex AI Studio. The model introduces new features and enhanced core capabilities:\n", - "\n", - "- Multimodal Live API: This new API helps you create real-time vision and audio streaming applications with tool use.\n", - "- Speed and performance: Gemini 2.0 Flash is the fastest model in the industry, with a 3x improvement in time to first token (TTFT) over 1.5 Flash.\n", - "- Quality: The model maintains quality comparable to larger models like Gemini 1.5 Pro and GPT-4o.\n", - "- Improved agentic experiences: Gemini 2.0 delivers improvements to multimodal understanding, coding, complex instruction following, and function calling.\n", - "- New Modalities: Gemini 2.0 introduces native image generation and controllable text-to-speech capabilities, enabling image editing, localized artwork creation, and expressive storytelling.\n", - "- To support the new model, we're also shipping an all new SDK that supports simple migration between the Gemini Developer API and the Gemini API in Vertex AI.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "61RBz8LLbxCR" - }, - "source": [ - "## Get started" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "No17Cw5hgx12" - }, - "source": [ - "### Install Dependencies\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ue_G9ZU80ON0" - }, - "source": [ - "- `google-genai`: Google Gen AI python library\n", - "- `PyPDF2`: To read PDFs" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "tFy3H3aPgx12" - }, - "outputs": [], - "source": [ - "%%capture\n", - "\n", - "%pip install --upgrade --quiet google-genai PyPDF2" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "R5Xep4W9lq-Z" - }, - "source": [ - "### Restart runtime\n", - "\n", - "To use the newly installed packages in this Jupyter runtime, you must restart the runtime. You can do this by running the cell below, which restarts the current kernel.\n", - "\n", - "The restart might take a minute or longer. After it's restarted, continue to the next step." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "XRvKdaPDTznN" - }, - "outputs": [], - "source": [ - "import IPython\n", - "\n", - "app = IPython.Application.instance()\n", - "app.kernel.do_shutdown(True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "SbmM4z7FOBpM" - }, - "source": [ - "
\n", - "⚠️ The kernel is going to restart. Wait until it's finished before continuing to the next step. ⚠️\n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dmWOrTJ3gx13" - }, - "source": [ - "### Authenticate your notebook environment (Colab only)\n", - "\n", - "If you're running this notebook on Google Colab, run the cell below to authenticate your environment." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "NyKGtVQjgx13" - }, - "outputs": [], - "source": [ - "import sys\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " from google.colab import auth\n", - "\n", - " auth.authenticate_user()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DF4l8DTdWgPY" - }, - "source": [ - "### Set Google Cloud project information\n", - "\n", - "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", - "\n", - "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Nqwi-5ufWp_B" - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "PROJECT_ID = \"[your-project-id]\" # @param {type: \"string\", placeholder: \"[your-project-id]\", isTemplate: true}\n", - "if not PROJECT_ID or PROJECT_ID == \"[your-project-id]\":\n", - " PROJECT_ID = str(os.environ.get(\"GOOGLE_CLOUD_PROJECT\"))\n", - "\n", - "LOCATION = os.environ.get(\"GOOGLE_CLOUD_REGION\", \"us-central1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5303c05f7aa6" - }, - "source": [ - "### Import libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "6fc324893334" - }, - "outputs": [], - "source": [ - "# For asynchronous operations\n", - "import asyncio\n", - "\n", - "# For data processing\n", - "import glob\n", - "from typing import Any\n", - "\n", - "from IPython.display import Audio, Markdown, display\n", - "import PyPDF2\n", - "\n", - "# For GenerativeAI\n", - "from google import genai\n", - "from google.genai import types\n", - "from google.genai.types import LiveConnectConfig\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# For similarity score\n", - "from sklearn.metrics.pairwise import cosine_similarity\n", - "\n", - "# For retry mechanism\n", - "from tenacity import retry, stop_after_attempt, wait_random_exponential" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OV5bFDTVE3oX" - }, - "source": [ - "#### Initialize Gen AI client" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3pjBP_V7JqhD" - }, - "source": [ - "- Client for calling the Gemini API in Vertex AI\n", - "- `vertexai=True`, indicates the client should communicate with the Vertex AI API endpoints." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "bEhq_4GBEW2a" - }, - "outputs": [], - "source": [ - "# Vertex AI API\n", - "client = genai.Client(\n", - " vertexai=True,\n", - " project=PROJECT_ID,\n", - " location=LOCATION,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "e43229f3ad4f" - }, - "source": [ - "### Initialize model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "cf93d5f0ce00" - }, - "outputs": [], - "source": [ - "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type:\"string\", isTemplate: true}\n", - "MODEL = (\n", - " f\"projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}\"\n", - ")\n", - "\n", - "text_embedding_model = \"text-embedding-004\" # @param {type:\"string\", isTemplate: true}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "H4TDOc3aqwuz" - }, - "source": [ - "## Sample Use Case - Retail Customer Support Assistance" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "cH6zJeecq6SU" - }, - "source": [ - "Let's imagine a bicycle shop called `Cymbal Bikes` that offers various services like brake repair, chain replacement, and more. Our goal is to create a straightforward support system that can answer customer questions based on the shop's policies and service offerings." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uA3X24j86uE7" - }, - "source": [ - "Having a customer support assistance offers numerous advantages for businesses, ultimately leading to improved customer satisfaction and loyalty, as well as increased profitability. Here are some key benefits:\n", - "\n", - "- Faster Resolution of Issues: Users can quickly find answers to their questions without having to search through store's website.\n", - "- Improved Efficiency: The assistant can handle simple, repetitive questions, freeing up human agents to focus on more complex or strategic tasks.\n", - "- 24/7 Availability: Unlike human colleagues, the assistant is available around the clock, providing immediate support regardless of time zones or working hours.\n", - "- Consistent Information: The assistant provides standardized answers, ensuring consistency and accuracy." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mZZLuCecsp0e" - }, - "source": [ - "#### Context Documents" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "nWrK7HHjssqB" - }, - "source": [ - "- Download the documents from Google Cloud Storage bucket\n", - "- These documents are specific to `Cymbal Bikes` store\n", - " - [`Cymbal Bikes Return Policy`](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesReturnPolicy.pdf): Contains information about return policy\n", - " - [`Cymbal Bikes Services`](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesServices.pdf): Contains information about services provided by Cymbal Bikes" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "iLhNfYfYspnC" - }, - "outputs": [], - "source": [ - "!gsutil cp \"gs://github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesReturnPolicy.pdf\" \"documents/CymbalBikesReturnPolicy.pdf\"\n", - "!gsutil cp \"gs://github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesServices.pdf\" \"documents/CymbalBikesServices.pdf\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GOFNGNGjjEzD" - }, - "source": [ - "### Text" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QlcEVrUtP9TI" - }, - "source": [ - "- Let's check a specific query to our retail use-case" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "eLqbaZjoCzng" - }, - "outputs": [], - "source": [ - "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", - "\n", - "response = client.models.generate_content(\n", - " model=MODEL_ID,\n", - " contents=query,\n", - ")\n", - "\n", - "display(Markdown(response.text))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-D6q7KUDuH-E" - }, - "source": [ - "> The correct answer to the query is `A basic tune-up costs $100.`\n", - "\n", - "![BasicTuneUp](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/BasicTuneUp.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "uoigEKWkQjwi" - }, - "source": [ - "- You can see, the model is unable to answer it correctly, as it's very specific to our hypothetical use-case. However, it does provide some details to get the answer from the internet.\n", - "\n", - "- Without the necessary context, the model's response is essentially a guess and may not align with the desired information.\n", - "\n", - "- LLM is trained on vast amount of data, which leads to hallucinations. To overcome this challenge, in coming sections we'll look into how to ground the answers using Retrieval Augmented Generation (RAG)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "nhzKqZdunwYJ" - }, - "source": [ - "## Grounding" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kzNcDkRevJi3" - }, - "source": [ - "Grounding is crucial in this scenario because the model needs to access and process relevant information from external sources (the \"Cymbal Bikes Return Policy\" and \"Cymbal Bikes Services\" documents) to answer specific queries accurately. Without grounding, the model relies solely on its pre-trained knowledge, which may not contain the specific details about the bike store's policies.\n", - "\n", - "In the example, the question about the return policy for bike helmets at Cymbal Bikes cannot be answered correctly without accessing the provided documents. The model's general knowledge of return policies is insufficient. Grounding allows the model to:\n", - "\n", - "1. **Retrieve relevant information:** The system must first locate the pertinent sections within the provided documents that address the user's question about bike helmet returns.\n", - "\n", - "2. **Process and synthesize information:** After retrieving relevant passages, the model must then understand and synthesize the information to construct an accurate answer.\n", - "\n", - "3. **Generate a grounded response:** Finally, the response needs to be directly derived from the factual content of the documents. This ensures accuracy and avoids hallucinations – generating incorrect or nonsensical information not present in the source documents.\n", - "\n", - "Without grounding, the model is forced to guess or extrapolate from its general knowledge, which can lead to inaccurate or misleading responses. The grounding process makes the model's responses more reliable and trustworthy, especially for domain-specific knowledge like store policies or procedures.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-SyokS1pUR9O" - }, - "source": [ - "## Multimodal Live API" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pwZeOc5-UXKD" - }, - "source": [ - "The multimodal live API enables you to build low-latency, multi-modal applications. It currently supports text as input and text & audio as output.\n", - "\n", - "- Low Latency, where audio output is required, where the Text-to-Speech step can be skipped\n", - "- Provides a more interactive user experience.\n", - "- Suitable for applications requiring immediate audio feedback" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "See the [Multimodal Live API](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-live) page for more details." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "aS1zTjSMcij2" - }, - "source": [ - "#### Asynchronous (async) operation" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "iH9CBOpncnK8" - }, - "source": [ - "When to use async calls:\n", - "1. **I/O-bound operations**: When your code spends a significant amount of time waiting for external resources\n", - " (e.g., network requests, file operations, database queries). Async allows other tasks to run while waiting. \n", - " This is especially beneficial for real-time applications or when dealing with multiple concurrent requests.\n", - " \n", - " Example:\n", - " - Fetching data from a remote server.\n", - "\n", - "2. **Parallel tasks**: When you have independent tasks that can run concurrently without blocking each other. Async\n", - " allows you to efficiently utilize multiple CPU cores or network connections.\n", - " \n", - " Example:\n", - " - Processing a large number of prompts and generating audio for each.\n", - "\n", - "\n", - "3. **User interfaces**: In applications with graphical user interfaces (GUIs), async operations prevent the UI from\n", - " freezing while performing long-running tasks. Users can interact with the interface even when background\n", - " operations are active.\n", - " \n", - " Example: \n", - " - A chatbot interacting in real time, where an audio response is generated in the background.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "aB4U6s1-UlFw" - }, - "source": [ - "### Text" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YvUJzbgPM26m" - }, - "source": [ - "For text generation, you need to set the `response_modalities` to `TEXT`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "YQOurRs5UU9p" - }, - "outputs": [], - "source": [ - "async def generate_content(query: str) -> str:\n", - " \"\"\"Function to generate text content using Gemini live API.\n", - "\n", - " Args:\n", - " query: The query to generate content for.\n", - "\n", - " Returns:\n", - " The generated content.\n", - " \"\"\"\n", - " config = LiveConnectConfig(response_modalities=[\"TEXT\"])\n", - "\n", - " async with client.aio.live.connect(model=MODEL, config=config) as session:\n", - "\n", - " await session.send(input=query, end_of_turn=True)\n", - "\n", - " response = []\n", - " async for message in session.receive():\n", - " try:\n", - " if message.text:\n", - " response.append(message.text)\n", - " except AttributeError:\n", - " pass\n", - "\n", - " if message.server_content.turn_complete:\n", - " response = \"\".join(str(x) for x in response)\n", - " return response" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ye1TwWVaVSxF" - }, - "source": [ - "- Try a specific query" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "gGqsp6nFDNsG" - }, - "outputs": [], - "source": [ - "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", - "\n", - "response = await generate_content(query)\n", - "display(Markdown(response))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "roXuCp_cXE9q" - }, - "source": [ - "### Audio" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lBnz34QaakVM" - }, - "source": [ - "- For audio generation, you need to set the `response_modalities` to `AUDIO`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "BmLuvxnFbC4Z" - }, - "outputs": [], - "source": [ - "async def generate_audio_content(query: str):\n", - " \"\"\"Function to generate audio response for provided query using Gemini Multimodal Live API.\n", - "\n", - " Args:\n", - " query: The query to generate audio response for.\n", - "\n", - " Returns:\n", - " The audio response.\n", - " \"\"\"\n", - " config = LiveConnectConfig(response_modalities=[\"AUDIO\"])\n", - " async with client.aio.live.connect(model=MODEL, config=config) as session:\n", - "\n", - " await session.send(input=query, end_of_turn=True)\n", - "\n", - " audio_parts = []\n", - " async for message in session.receive():\n", - " if message.server_content.model_turn:\n", - " for part in message.server_content.model_turn.parts:\n", - " if part.inline_data:\n", - " audio_parts.append(\n", - " np.frombuffer(part.inline_data.data, dtype=np.int16)\n", - " )\n", - "\n", - " if message.server_content.turn_complete:\n", - " if audio_parts:\n", - " audio_data = np.concatenate(audio_parts, axis=0)\n", - " await asyncio.sleep(0.4)\n", - " display(Audio(audio_data, rate=24000, autoplay=True))\n", - " break" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "xKQ_l6wiLH_w" - }, - "source": [ - "In this example, you send a text prompt and request the model response in audio." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rXJRoxUAcFVB" - }, - "source": [ - "- Let's check the same query as before" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "CfZy_XZeDUtS" - }, - "outputs": [], - "source": [ - "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", - "\n", - "await generate_audio_content(query)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "clfXp2PZmxDZ" - }, - "source": [ - "- Model is unable to answer the query, but with the Multimodal Live API, it doesn't hallucinate, which is pretty good!!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wT2oB1BOqDYP" - }, - "source": [ - "### Continuous Audio Interaction (Not multiturn)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "T4iAJCstqR5s" - }, - "source": [ - " - Below function generates audio output based on the provided text prompt.\n", - " - The generated audio is displayed using `IPython.display.Audio`." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bZntNTPiYLA8" - }, - "source": [ - "- Input your prompts (type `q` or `quit` or `exit` to exit).\n", - "- Example prompts:\n", - " - Hello\n", - " - Who are you?\n", - " - What's the largest planet in our solar system?\n", - " - Tell me 3 fun facts about the universe?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "7M0zkHNrOBQf" - }, - "outputs": [], - "source": [ - "async def continuous_audio_generation():\n", - " \"\"\"Continuously generates audio responses for the asked queries.\"\"\"\n", - " while True:\n", - " query = input(\"Your query > \")\n", - " if any(query.lower() in s for s in [\"q\", \"quit\", \"exit\"]):\n", - " break\n", - " await generate_audio_content(query)\n", - "\n", - "\n", - "await continuous_audio_generation()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QX9k92TlJ864" - }, - "source": [ - "## Enhancing LLM Accuracy with RAG" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oOJ-Wx18hpju" - }, - "source": [ - "We'll be showcasing the design pattern for how to implement Real-time Retrieval Augmented Generation (RAG) using Gemini 2.0 multimodal live API.\n", - "\n", - "- Multimodal live API uses websockets to communicate over the internet\n", - "- It maintains a continuous connection\n", - "- Ideal for real-time applications which require persistent communication\n", - "\n", - "\n", - "> Note: Replicating real-life scenarios with Python can be challenging within the constraints of a Colab environment.\n", - "\n", - "\n", - "However, the flow shown in this section can be modified for streaming audio input and output.\n", - "\n", - "
\n", - "\n", - "We'll build the RAG pipeline from scratch to help you understand each and every components of the pipeline.\n", - "\n", - "There are other ways to build the RAG pipeline using open source tools such as [LangChain](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/use-cases/retrieval-augmented-generation/multimodal_rag_langchain.ipynb), [LlamaIndex](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/use-cases/retrieval-augmented-generation/llamaindex_rag.ipynb) etc." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "u5CXTtsPEyJ0" - }, - "source": [ - "### Context Documents" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vvdcw1AOg4se" - }, - "source": [ - "- Documents are the building blocks of any RAG pipeline, as it provides the relevant context needed to ground the LLM responses\n", - "- We'll be using the documents already downloaded at the start of the notebook\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "M22BSDb2Xxpb" - }, - "outputs": [], - "source": [ - "documents = glob.glob(\"documents/*\")\n", - "documents" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zNpUL7t0e054" - }, - "source": [ - "### Retrieval Augmented Generation Architecture" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vV5Et4YHbqqE" - }, - "source": [ - "In general, RAG architecture consists of the following components\n", - "\n", - "**Data Preparation**\n", - "1. Chunking: Dividing the document into smaller, manageable pieces for processing.\n", - "2. Embedding: Transforming text chunks into numerical vectors representing semantic meaning.\n", - "3. Indexing: Organizing embeddings for efficient similarity search." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "563756fa3b7f" - }, - "source": [ - "![RAGArchitecture](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/RAGArchitecture.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pf4sXzYUby57" - }, - "source": [ - "**Inference**\n", - "1. Retrieval: Finding the most relevant chunks based on the query embedding.\n", - "2. Query Augmentation: Enhancing the query with retrieved context for improved generation.\n", - "3. Generation: Synthesizing a coherent and informative answer based on the augmented query." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "1a30b41b63f1" - }, - "source": [ - "![LiveAPI](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/LiveAPI.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "M-0zlJ3_FRfa" - }, - "source": [ - "#### Document Embedding and Indexing" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0fY3xLaFKBIS" - }, - "source": [ - "Following blocks of code shows how to process unstructured data(PDFs), extract text, and divide them into smaller chunks for efficient embedding and retrieval." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JTTOQ35Ia-V2" - }, - "source": [ - "- Embeddings:\n", - " - Numerical representations of text\n", - " - It capture the semantic meaning and context of the text\n", - " - We'll use Vertex AI's text embedding model to generate embeddings\n", - " - Error handling (like the retry mechanism) during embedding generation due to potential API quota limits.\n", - "\n", - "- Indexing:\n", - " - Build a searchable index from embeddings, enabling efficient similarity search.\n", - " - For example, the index is like a detailed table of contents for a massive reference book.\n", - "\n", - "\n", - "Check out the Google Cloud Platform [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings) for detailed understanding and example use-cases." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Vun69x23FWiw" - }, - "outputs": [], - "source": [ - "@retry(wait=wait_random_exponential(multiplier=1, max=120), stop=stop_after_attempt(4))\n", - "def get_embeddings(\n", - " embedding_client: Any, embedding_model: str, text: str, output_dim: int = 768\n", - ") -> list[float]:\n", - " \"\"\"\n", - " Generate embeddings for text with retry logic for API quota management.\n", - "\n", - " Args:\n", - " embedding_client: The client object used to generate embeddings.\n", - " embedding_model: The name of the embedding model to use.\n", - " text: The text for which to generate embeddings.\n", - " output_dim: The desired dimensionality of the output embeddings (default is 768).\n", - "\n", - " Returns:\n", - " A list of floats representing the generated embeddings. Returns None if a \"RESOURCE_EXHAUSTED\" error occurs.\n", - "\n", - " Raises:\n", - " Exception: Any exception encountered during embedding generation, excluding \"RESOURCE_EXHAUSTED\" errors.\n", - " \"\"\"\n", - " try:\n", - " response = embedding_client.models.embed_content(\n", - " model=embedding_model,\n", - " contents=[text],\n", - " config=types.EmbedContentConfig(output_dimensionality=output_dim),\n", - " )\n", - " return [response.embeddings[0].values]\n", - " except Exception as e:\n", - " if \"RESOURCE_EXHAUSTED\" in str(e):\n", - " return None\n", - " print(f\"Error generating embeddings: {str(e)}\")\n", - " raise" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2csDY5NsswwJ" - }, - "source": [ - "- The code block executes the following steps:\n", - "\n", - " - Extracts text from PDF documents and segments it into smaller chunks for processing.\n", - " - Employs a Vertex AI model to transform each text chunk into a numerical embedding vector, facilitating semantic representation and search.\n", - " - Constructs a Pandas DataFrame to store the embeddings, enriched with metadata such as document name and page number, effectively creating a searchable index for efficient retrieval.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "9TJlvdIsRfmX" - }, - "outputs": [], - "source": [ - "def build_index(\n", - " document_paths: list[str],\n", - " embedding_client: Any,\n", - " embedding_model: str,\n", - " chunk_size: int = 512,\n", - ") -> pd.DataFrame:\n", - " \"\"\"\n", - " Build searchable index from a list of PDF documents with page-wise processing.\n", - "\n", - " Args:\n", - " document_paths: A list of file paths to PDF documents.\n", - " embedding_client: The client object used to generate embeddings.\n", - " embedding_model: The name of the embedding model to use.\n", - " chunk_size: The maximum size (in characters) of each text chunk. Defaults to 512.\n", - "\n", - " Returns:\n", - " A Pandas DataFrame where each row represents a text chunk. The DataFrame includes columns for:\n", - " - 'document_name': The path to the source PDF document.\n", - " - 'page_number': The page number within the document.\n", - " - 'page_text': The full text of the page.\n", - " - 'chunk_number': The chunk number within the page.\n", - " - 'chunk_text': The text content of the chunk.\n", - " - 'embeddings': The embedding vector for the chunk.\n", - "\n", - " Raises:\n", - " ValueError: If no chunks are created from the input documents.\n", - " Exception: Any exceptions encountered during file processing are printed to the console and the function continues to the next document.\n", - " \"\"\"\n", - " all_chunks = []\n", - "\n", - " for doc_path in document_paths:\n", - " try:\n", - " with open(doc_path, \"rb\") as file:\n", - " pdf_reader = PyPDF2.PdfReader(file)\n", - "\n", - " for page_num in range(len(pdf_reader.pages)):\n", - " page = pdf_reader.pages[page_num]\n", - " page_text = page.extract_text()\n", - "\n", - " chunks = [\n", - " page_text[i : i + chunk_size]\n", - " for i in range(0, len(page_text), chunk_size)\n", - " ]\n", - "\n", - " for chunk_num, chunk_text in enumerate(chunks):\n", - " embeddings = get_embeddings(\n", - " embedding_client, embedding_model, chunk_text\n", - " )\n", - "\n", - " if embeddings is None:\n", - " print(\n", - " f\"Warning: Could not generate embeddings for chunk {chunk_num} on page {page_num + 1}\"\n", - " )\n", - " continue\n", - "\n", - " chunk_info = {\n", - " \"document_name\": doc_path,\n", - " \"page_number\": page_num + 1,\n", - " \"page_text\": page_text,\n", - " \"chunk_number\": chunk_num,\n", - " \"chunk_text\": chunk_text,\n", - " \"embeddings\": embeddings,\n", - " }\n", - " all_chunks.append(chunk_info)\n", - "\n", - " except Exception as e:\n", - " print(f\"Error processing document {doc_path}: {str(e)}\")\n", - " continue\n", - "\n", - " if not all_chunks:\n", - " raise ValueError(\"No chunks were created from the documents\")\n", - "\n", - " return pd.DataFrame(all_chunks)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yFGsl-Zvlej6" - }, - "source": [ - "Let's create embeddings and an index using the provided documents" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "hjl5FDQckDcO" - }, - "outputs": [], - "source": [ - "vector_db_mini_vertex = build_index(\n", - " documents, embedding_client=client, embedding_model=text_embedding_model\n", - ")\n", - "vector_db_mini_vertex" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "pZLX5ozMlxTX" - }, - "outputs": [], - "source": [ - "# Index size\n", - "vector_db_mini_vertex.shape" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "cvNVn3kT9FiB" - }, - "outputs": [], - "source": [ - "# Example of how a chunk looks like\n", - "vector_db_mini_vertex.loc[0, \"chunk_text\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Hul4bjAkBkg0" - }, - "source": [ - "To enhance the performance of retrieval systems, consider the following:\n", - "\n", - "- Optimize chunk size selection to balance granularity and context.\n", - "- Evaluate various chunking strategies to identify the most effective approach for your data.\n", - "- Explore managed services and scalable indexing solutions, such as [Vertex AI Search](https://cloud.google.com/generative-ai-app-builder/docs/create-datastore-ingest), to enhance performance and efficiency." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "43txjyVlHT6v" - }, - "source": [ - "#### Retrieval" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "y92jM-v8KBfV" - }, - "source": [ - "The below code demonstrates how to query the index and uses a cosine similarity measure for comparing query vectors against the index. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bI1YsFoKtyxY" - }, - "source": [ - "* **Input:** Accepts a query string and parameters like the number of relevant chunks to return.\n", - "* **Embedding Generation:** Generates an embedding for the input query using the same model used to embed the document chunks.\n", - "* **Similarity Search:** Compares the query embedding to the embeddings of all indexed document chunks, using cosine similarity. Could use other distance metrics as well.\n", - "* **Ranking:** Ranks the chunks based on their similarity scores to the query.\n", - "* **Top-k Retrieval:** Returns the top *k* most similar chunks, where *k* is specified by the input parameters. This could be configurable.\n", - "* **Output:** Returns a list of relevant chunks, potentially including the original chunk text, similarity score, document source (filename, page number), and chunk metadata.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "88ndL_2wJ5ZD" - }, - "outputs": [], - "source": [ - "def get_relevant_chunks(\n", - " query: str,\n", - " vector_db: pd.DataFrame,\n", - " embedding_client: Any,\n", - " embedding_model: str,\n", - " top_k: int = 3,\n", - ") -> str:\n", - " \"\"\"\n", - " Retrieve the most relevant document chunks for a query using similarity search.\n", - "\n", - " Args:\n", - " query: The search query string.\n", - " vector_db: A pandas DataFrame containing the vectorized document chunks.\n", - " It must contain columns named 'embeddings', 'document_name',\n", - " 'page_number', and 'chunk_text'.\n", - " The 'embeddings' column should contain lists or numpy arrays\n", - " representing the embeddings.\n", - " embedding_client: The client object used to generate embeddings.\n", - " embedding_model: The name of the embedding model to use.\n", - " top_k: The number of most similar chunks to retrieve. Defaults to 3.\n", - "\n", - " Returns:\n", - " A formatted string containing the top_k most relevant chunks. Each chunk is\n", - " presented with its page number and chunk number. Returns an error message if\n", - " the query processing fails or if an error occurs during chunk retrieval.\n", - "\n", - " Raises:\n", - " Exception: If any error occurs during the process (e.g., issues with the embedding client,\n", - " data format problems in the vector database).\n", - " The specific error is printed to the console.\n", - " \"\"\"\n", - " try:\n", - " query_embedding = get_embeddings(embedding_client, embedding_model, query)\n", - "\n", - " if query_embedding is None:\n", - " return \"Could not process query due to quota issues\"\n", - "\n", - " similarities = [\n", - " cosine_similarity(query_embedding, chunk_emb)[0][0]\n", - " for chunk_emb in vector_db[\"embeddings\"]\n", - " ]\n", - "\n", - " top_indices = np.argsort(similarities)[-top_k:]\n", - " relevant_chunks = vector_db.iloc[top_indices]\n", - "\n", - " context = []\n", - " for _, row in relevant_chunks.iterrows():\n", - " context.append(\n", - " {\n", - " \"document_name\": row[\"document_name\"],\n", - " \"page_number\": row[\"page_number\"],\n", - " \"chunk_number\": row[\"chunk_number\"],\n", - " \"chunk_text\": row[\"chunk_text\"],\n", - " }\n", - " )\n", - "\n", - " return \"\\n\\n\".join(\n", - " [\n", - " f\"[Page {chunk['page_number']}, Chunk {chunk['chunk_number']}]: {chunk['chunk_text']}\"\n", - " for chunk in context\n", - " ]\n", - " )\n", - "\n", - " except Exception as e:\n", - " print(f\"Error getting relevant chunks: {str(e)}\")\n", - " return \"Error retrieving relevant chunks\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3hxyLlTjsstI" - }, - "source": [ - "Let's test out our retrieval component" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Ek4aF0Esck2H" - }, - "source": [ - "- Let's try the same query for which the model was not able to answer earlier, due to lack of context" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "lSd8ZeH6D7m4" - }, - "outputs": [], - "source": [ - "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", - "relevant_context = get_relevant_chunks(\n", - " query, vector_db_mini_vertex, client, text_embedding_model, top_k=3\n", - ")\n", - "relevant_context" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YBxnXReUn8Iy" - }, - "source": [ - "- You can see, with the help of the relevant context we can derive the answer as it contains the chunks specific to the asked query.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "25eb6422c9cf" - }, - "source": [ - "![Context](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/Context.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kHzw7_UwzutC" - }, - "source": [ - "For optimal performance, consider these points:\n", - "\n", - "* **Context Window:** Considers a context window around the retrieved chunks to provide more comprehensive context. This could involve returning neighboring chunks or a specified window size.\n", - "* **Filtering:** Option to filter retrieved chunks based on criteria like minimum similarity score or source document.\n", - "* **Efficiency:** Designed for efficient retrieval, especially for large indexes, potentially using optimized search algorithms or data structures." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZEfJkwSqJ5KR" - }, - "source": [ - "### Generation" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "b7OZpv33KBx_" - }, - "source": [ - "* **Contextual Answer Synthesis:** The core function of the generation component is to synthesize a coherent and informative answer based on the retrieved context. It takes the user's query and the relevant document chunks as input.\n", - "* **Large Language Model (LLM) Integration:** It leverages a large language model (LLM) to generate the final answer. The LLM processes both the query and the retrieved context to produce a response. The quality of the answer heavily relies on the capabilities of the chosen LLM.\n", - "* **Coherence and Relevance:** A good generation function ensures the generated answer is coherent, factually accurate, and directly addresses the user's query, using only the provided context. It avoids hallucinations (generating information not present in the context).\n", - "* **Prompt Engineering:** The effectiveness of the LLM is heavily influenced by the prompt. The generation function likely incorporates prompt engineering techniques to guide the LLM towards generating the desired output. This may involve carefully crafting instructions for the LLM or providing examples.\n", - "\n", - "For more details on prompt engineering, check out the [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-design-strategies)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0xs-AQmqm03l" - }, - "source": [ - "Let's see two use-cases, `Text-In-Text-Out` and `Text-In-Audio-Out`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "xp7doymTJ7Iu" - }, - "outputs": [], - "source": [ - "@retry(wait=wait_random_exponential(multiplier=1, max=120), stop=stop_after_attempt(4))\n", - "async def generate_answer(\n", - " query: str, context: str, llm_client: Any, modality: str = \"text\"\n", - ") -> str:\n", - " \"\"\"\n", - " Generate answer using LLM with retry logic for API quota management.\n", - "\n", - " Args:\n", - " query: User query.\n", - " context: Relevant text providing context for the query.\n", - " llm_client: Client for accessing LLM API.\n", - " modality: Output modality (text or audio).\n", - "\n", - " Returns:\n", - " Generated answer.\n", - "\n", - " Raises:\n", - " Exception: If an unexpected error occurs during the LLM call (after retry attempts are exhausted).\n", - " \"\"\"\n", - " try:\n", - " # If context indicates earlier quota issues, return early\n", - " if context in [\n", - " \"Could not process query due to quota issues\",\n", - " \"Error retrieving relevant chunks\",\n", - " ]:\n", - " return \"Can't Process, Quota Issues\"\n", - "\n", - " prompt = f\"\"\"Based on the following context, please answer the question.\n", - "\n", - " Context:\n", - " {context}\n", - "\n", - " Question: {query}\n", - "\n", - " Answer:\"\"\"\n", - "\n", - " if modality == \"text\":\n", - " # Generate text answer using LLM\n", - " response = await generate_content(prompt)\n", - " return response\n", - "\n", - " elif modality == \"audio\":\n", - " # Generate audio answer using LLM\n", - " await generate_audio_content(prompt)\n", - "\n", - " except Exception as e:\n", - " if \"RESOURCE_EXHAUSTED\" in str(e):\n", - " return \"Can't Process, Quota Issues\"\n", - " print(f\"Error generating answer: {str(e)}\")\n", - " return \"Error generating answer\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "11q0Sf0oJ7wL" - }, - "source": [ - "Let's test our `Generation` component" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "S-iesR2BEHnI" - }, - "outputs": [], - "source": [ - "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", - "\n", - "generated_answer = await generate_answer(\n", - " query, relevant_context, client, modality=\"text\"\n", - ")\n", - "display(Markdown(generated_answer))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "W7EHYeP-EMpN" - }, - "outputs": [], - "source": [ - "await generate_answer(query, relevant_context, client, modality=\"audio\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CbQB5PbMrrsB" - }, - "source": [ - "> And the answer is... CORRECT !! 🎉" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "1gnr-j-ocxlx" - }, - "source": [ - "- The accuracy of the generated answer is attributed to the provision of relevant context to the Large Language Model (LLM), enabling it to effectively comprehend the query and produce an appropriate response." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2MNlAoAHR0Do" - }, - "source": [ - "### Pipeline" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8LemsW6WrOfm" - }, - "source": [ - "Let's put `Retrieval` and `Generation` components together in a pipeline." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "yoOeqxETR2G_" - }, - "outputs": [], - "source": [ - "async def rag(\n", - " question: str,\n", - " vector_db: pd.DataFrame,\n", - " embedding_client: Any,\n", - " embedding_model: str,\n", - " llm_client: Any,\n", - " top_k: int,\n", - " llm_model: str,\n", - " modality: str = \"text\",\n", - ") -> str | None:\n", - " \"\"\"\n", - " RAG Pipeline.\n", - "\n", - " Args:\n", - " question: User query.\n", - " vector_db: DataFrame containing document chunks and embeddings.\n", - " embedding_client: Client for accessing embedding API.\n", - " embedding_model: Name of the embedding model.\n", - " llm_client: Client for accessing LLM API.\n", - " top_k: The number of top relevant chunks to retrieve from the vector database.\n", - " llm_model: Name of the LLM model.\n", - " modality: Output modality (text or audio).\n", - "\n", - " Returns:\n", - " For text modality, generated answer.\n", - " For audio modality, audio playback widget.\n", - "\n", - " Raises:\n", - " Exception: Catches and prints any exceptions during processing. Returns an error message.\n", - " \"\"\"\n", - "\n", - " try:\n", - " # Get relevant context for question\n", - " relevant_context = get_relevant_chunks(\n", - " question, vector_db, embedding_client, embedding_model, top_k=top_k\n", - " )\n", - "\n", - " if modality == \"text\":\n", - " # Generate text answer using LLM\n", - " generated_answer = await generate_answer(\n", - " question,\n", - " relevant_context,\n", - " llm_client,\n", - " )\n", - " return generated_answer\n", - "\n", - " elif modality == \"audio\":\n", - " # Generate audio answer using LLM\n", - " await generate_answer(\n", - " question, relevant_context, llm_client, modality=modality\n", - " )\n", - " return\n", - "\n", - " except Exception as e:\n", - " print(f\"Error processing question '{question}': {str(e)}\")\n", - " return {\"question\": question, \"generated_answer\": \"Error processing question\"}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Q8bNzUvbVJcx" - }, - "source": [ - "Our Retrieval Augmented Generation (RAG) architecture allows for flexible output modality(text and audio) selection. By modifying only the generation component, we can produce both text and audio output while maintaining the same retrieval mechanism. This highlights the adaptability of RAG in catering to diverse content presentation needs." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Pkn75-1cFW1J" - }, - "source": [ - "### Inference" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QMGtlPWcVXT0" - }, - "source": [ - "Let's test our simple RAG pipeline" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0vwfQbodn89Y" - }, - "source": [ - "#### Sample Queries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Zx_GwXESk9aP" - }, - "outputs": [], - "source": [ - "question_set = [\n", - " {\n", - " \"question\": \"What is the price of a basic tune-up at Cymbal Bikes?\",\n", - " \"answer\": \"A basic tune-up costs $100.\",\n", - " },\n", - " {\n", - " \"question\": \"How much does it cost to replace a tire at Cymbal Bikes?\",\n", - " \"answer\": \"Replacing a tire at Cymbal Bikes costs $50 per tire.\",\n", - " },\n", - " {\n", - " \"question\": \"What does gear repair at Cymbal Bikes include?\",\n", - " \"answer\": \"Gear repair includes inspection and repair of the gears, including replacement of chainrings, cogs, and cables as needed.\",\n", - " },\n", - " {\n", - " \"question\": \"What is the cost of replacing a tube at Cymbal Bikes?\",\n", - " \"answer\": \"Replacing a tube at Cymbal Bikes costs $20.\",\n", - " },\n", - " {\n", - " \"question\": \"Can I return clothing items to Cymbal Bikes?\",\n", - " \"answer\": \"Clothing can only be returned if it is unworn and in the original packaging.\",\n", - " },\n", - " {\n", - " \"question\": \"What is the time frame for returning items to Cymbal Bikes?\",\n", - " \"answer\": \"Cymbal Bikes offers a 30-day return policy on all items.\",\n", - " },\n", - " {\n", - " \"question\": \"Can I return edible items like energy gels?\",\n", - " \"answer\": \"No, edible items are not returnable.\",\n", - " },\n", - " {\n", - " \"question\": \"How can I return an item purchased online from Cymbal Bikes?\",\n", - " \"answer\": \"Items purchased online can be returned to any Cymbal Bikes store or mailed back.\",\n", - " },\n", - " {\n", - " \"question\": \"What should I include when returning an item to Cymbal Bikes?\",\n", - " \"answer\": \"Please include the original receipt and a copy of your shipping confirmation when returning an item.\",\n", - " },\n", - " {\n", - " \"question\": \"Does Cymbal Bikes offer refunds for shipping charges?\",\n", - " \"answer\": \"Cymbal Bikes does not offer refunds for shipping charges, except for defective items.\",\n", - " },\n", - " {\n", - " \"question\": \"How do I process a return for a defective item at Cymbal Bikes?\",\n", - " \"answer\": \"To process a return for a defective item, please contact Cymbal Bikes first.\",\n", - " },\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZUo_fcNzoAp3" - }, - "source": [ - "#### Text" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "y1RC5-djV0-r" - }, - "source": [ - "First we will try, `modality='text'`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "dmyN-h18EZdT" - }, - "outputs": [], - "source": [ - "question_set[0]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "-f3hsHqBEbwc" - }, - "outputs": [], - "source": [ - "response = await rag(\n", - " question=question_set[0][\"question\"],\n", - " vector_db=vector_db_mini_vertex,\n", - " embedding_client=client, # For embedding generation\n", - " embedding_model=text_embedding_model, # For embedding model\n", - " llm_client=client, # For answer generation,\n", - " top_k=3,\n", - " llm_model=MODEL,\n", - " modality=\"text\",\n", - ")\n", - "display(Markdown(response))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Nb3VytmIyo-1" - }, - "source": [ - "#### Audio" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kEl80N8VV_6E" - }, - "source": [ - "Now, let's try `modality='audio'` to get audio response." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "STdO_EtxEhFA" - }, - "outputs": [], - "source": [ - "await rag(\n", - " question=question_set[0][\"question\"],\n", - " vector_db=vector_db_mini_vertex,\n", - " embedding_client=client, # For embedding generation\n", - " embedding_model=text_embedding_model, # For embedding model\n", - " llm_client=client, # For answer generation,\n", - " top_k=3,\n", - " llm_model=MODEL,\n", - " modality=\"audio\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "l9NMyJm-_0lM" - }, - "source": [ - "Evaluating Retrieval Augmented Generation (RAG) applications before production is crucial for identifying areas for improvement and ensuring optimal performance.\n", - "Check out the Vertex AI [Gen AI evaluation service](https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-overview)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Erp1ImX9Lu1Y" - }, - "source": [ - "## Conclusion" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "W2A4xXWP1EB4" - }, - "source": [ - "Congratulations on making it through this notebook!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Uyc3uq1uYHEN" - }, - "source": [ - "- We have seen how to use the Gemini API in Vertex AI to generate text and Multimodal Live API to generate text and audio output.\n", - "- Developed a fully functional Retrieval Augmented Generation (RAG) pipeline capable of answering questions based on provided documents.\n", - "- Demonstrated the versatility of the RAG architecture by enabling both text and audio output modalities.\n", - "- Ensured the adaptability of the RAG pipeline to various use cases by enabling seamless integration of different context documents.\n", - "- Established a foundation for building more advanced RAG systems leveraging larger document sets and sophisticated indexing/retrieval services like Vertex AI Datastore/Agent Builder and Vertex AI Multimodal Live API." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## What's next\n", - "\n", - "- Learn how to [build a web application that enables you to use your voice and camera to talk to Gemini 2.0 through the Multimodal Live API.](https://github.com/GoogleCloudPlatform/generative-ai/tree/main/gemini/multimodal-live-api/websocket-demo-app)\n", - "- See the [Multimodal Live API reference docs](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-live).\n", - "- See the [Google Gen AI SDK reference docs](https://googleapis.github.io/python-genai/).\n", - "- Explore other notebooks in the [Google Cloud Generative AI GitHub repository](https://github.com/GoogleCloudPlatform/generative-ai)." - ] - } - ], - "metadata": { - "colab": { - "name": "real_time_rag_retail_gemini_2_0.ipynb", - "toc_visible": true - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - } - }, - "nbformat": 4, - "nbformat_minor": 0 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ur8xi4C7S06n" + }, + "outputs": [], + "source": [ + "# Copyright 2024 Google LLC\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JAPoU8Sm5E6e" + }, + "source": [ + "# Real-time Retrieval Augmented Generation (RAG) using the Multimodal Live API with Gemini 2.0\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \"Google
Open in Colab\n", + "
\n", + "
\n", + " \n", + " \"Google
Open in Colab Enterprise\n", + "
\n", + "
\n", + " \n", + " \"Vertex
Open in Vertex AI Workbench\n", + "
\n", + "
\n", + " \n", + " \"GitHub
View on GitHub\n", + "
\n", + "
\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "
\n", + "
\n", + "Share to:\n", + "\n", + "\n", + " \"LinkedIn\n", + "\n", + "\n", + "\n", + " \"Bluesky\n", + "\n", + "\n", + "\n", + " \"X\n", + "\n", + "\n", + "\n", + " \"Reddit\n", + "\n", + "\n", + "\n", + " \"Facebook\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "84f0f73a0f76" + }, + "source": [ + "| | |\n", + "|-|-|\n", + "| Author(s) | [Deepak Moonat](https://github.com/dmoonat/) |" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-MDW_A-nBksi" + }, + "source": [ + "
\n", + "\n", + "⚠️ Gemini 2.0 Flash (Model ID: gemini-2.0-flash-exp) and the Google Gen AI SDK are currently experimental and output can vary ⚠️\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tvgnzT1CKxrO" + }, + "source": [ + "## Overview\n", + "\n", + "This notebook provides a comprehensive demonstration of the Vertex AI Gemini and Multimodal Live APIs, showcasing text and audio generation capabilities. Users will learn to develop a real-time Retrieval Augmented Generation (RAG) system leveraging the Multimodal Live API for a retail use-case. This system will generate audio and text responses grounded in provided documents. The tutorial covers the following:\n", + "\n", + "- **Gemini API:** Text output generation.\n", + "- **Multimodal Live API:** Text and audio output generation.\n", + "- **Retrieval Augmented Generation (RAG):** Text and audio output generation grounded in provided documents for a retail use-case." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xKVzRJhgJ4EZ" + }, + "source": [ + "### Gemini 2.0\n", + "\n", + "[Gemini 2.0 Flash](https://cloud.google.com/vertex-ai/generative-ai/docs/gemini-v2) is a new multimodal generative ai model from the Gemini family developed by [Google DeepMind](https://deepmind.google/). It now available as an experimental preview release through the Gemini API in Vertex AI and Vertex AI Studio. The model introduces new features and enhanced core capabilities:\n", + "\n", + "- Multimodal Live API: This new API helps you create real-time vision and audio streaming applications with tool use.\n", + "- Speed and performance: Gemini 2.0 Flash is the fastest model in the industry, with a 3x improvement in time to first token (TTFT) over 1.5 Flash.\n", + "- Quality: The model maintains quality comparable to larger models like Gemini 1.5 Pro and GPT-4o.\n", + "- Improved agentic experiences: Gemini 2.0 delivers improvements to multimodal understanding, coding, complex instruction following, and function calling.\n", + "- New Modalities: Gemini 2.0 introduces native image generation and controllable text-to-speech capabilities, enabling image editing, localized artwork creation, and expressive storytelling.\n", + "- To support the new model, we're also shipping an all new SDK that supports simple migration between the Gemini Developer API and the Gemini API in Vertex AI.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "61RBz8LLbxCR" + }, + "source": [ + "## Get started" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "No17Cw5hgx12" + }, + "source": [ + "### Install Dependencies\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ue_G9ZU80ON0" + }, + "source": [ + "- `google-genai`: Google Gen AI python library\n", + "- `PyPDF2`: To read PDFs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tFy3H3aPgx12" + }, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "%pip install --upgrade --quiet google-genai PyPDF2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "R5Xep4W9lq-Z" + }, + "source": [ + "### Restart runtime\n", + "\n", + "To use the newly installed packages in this Jupyter runtime, you must restart the runtime. You can do this by running the cell below, which restarts the current kernel.\n", + "\n", + "The restart might take a minute or longer. After it's restarted, continue to the next step." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XRvKdaPDTznN" + }, + "outputs": [], + "source": [ + "import IPython\n", + "\n", + "app = IPython.Application.instance()\n", + "app.kernel.do_shutdown(True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SbmM4z7FOBpM" + }, + "source": [ + "
\n", + "⚠️ The kernel is going to restart. Wait until it's finished before continuing to the next step. ⚠️\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dmWOrTJ3gx13" + }, + "source": [ + "### Authenticate your notebook environment (Colab only)\n", + "\n", + "If you're running this notebook on Google Colab, run the cell below to authenticate your environment." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NyKGtVQjgx13" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "if \"google.colab\" in sys.modules:\n", + " from google.colab import auth\n", + "\n", + " auth.authenticate_user()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DF4l8DTdWgPY" + }, + "source": [ + "### Set Google Cloud project information\n", + "\n", + "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", + "\n", + "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Nqwi-5ufWp_B" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "PROJECT_ID = \"[your-project-id]\" # @param {type: \"string\", placeholder: \"[your-project-id]\", isTemplate: true}\n", + "if not PROJECT_ID or PROJECT_ID == \"[your-project-id]\":\n", + " PROJECT_ID = str(os.environ.get(\"GOOGLE_CLOUD_PROJECT\"))\n", + "\n", + "LOCATION = os.environ.get(\"GOOGLE_CLOUD_REGION\", \"us-central1\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5303c05f7aa6" + }, + "source": [ + "### Import libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6fc324893334" + }, + "outputs": [], + "source": [ + "# For asynchronous operations\n", + "import asyncio\n", + "\n", + "# For data processing\n", + "import glob\n", + "from typing import Any\n", + "\n", + "from IPython.display import Audio, Markdown, display\n", + "import PyPDF2\n", + "\n", + "# For GenerativeAI\n", + "from google import genai\n", + "from google.genai import types\n", + "from google.genai.types import LiveConnectConfig\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# For similarity score\n", + "from sklearn.metrics.pairwise import cosine_similarity\n", + "\n", + "# For retry mechanism\n", + "from tenacity import retry, stop_after_attempt, wait_random_exponential" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OV5bFDTVE3oX" + }, + "source": [ + "#### Initialize Gen AI client" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3pjBP_V7JqhD" + }, + "source": [ + "- Client for calling the Gemini API in Vertex AI\n", + "- `vertexai=True`, indicates the client should communicate with the Vertex AI API endpoints." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bEhq_4GBEW2a" + }, + "outputs": [], + "source": [ + "# Vertex AI API\n", + "client = genai.Client(\n", + " vertexai=True,\n", + " project=PROJECT_ID,\n", + " location=LOCATION,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e43229f3ad4f" + }, + "source": [ + "### Initialize model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cf93d5f0ce00" + }, + "outputs": [], + "source": [ + "MODEL_ID = \"gemini-2.0-flash-exp\" # @param {type:\"string\", isTemplate: true}\n", + "MODEL = (\n", + " f\"projects/{PROJECT_ID}/locations/{LOCATION}/publishers/google/models/{MODEL_ID}\"\n", + ")\n", + "\n", + "text_embedding_model = \"text-embedding-004\" # @param {type:\"string\", isTemplate: true}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "H4TDOc3aqwuz" + }, + "source": [ + "## Sample Use Case - Retail Customer Support Assistance" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cH6zJeecq6SU" + }, + "source": [ + "Let's imagine a bicycle shop called `Cymbal Bikes` that offers various services like brake repair, chain replacement, and more. Our goal is to create a straightforward support system that can answer customer questions based on the shop's policies and service offerings." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uA3X24j86uE7" + }, + "source": [ + "Having a customer support assistance offers numerous advantages for businesses, ultimately leading to improved customer satisfaction and loyalty, as well as increased profitability. Here are some key benefits:\n", + "\n", + "- Faster Resolution of Issues: Users can quickly find answers to their questions without having to search through store's website.\n", + "- Improved Efficiency: The assistant can handle simple, repetitive questions, freeing up human agents to focus on more complex or strategic tasks.\n", + "- 24/7 Availability: Unlike human colleagues, the assistant is available around the clock, providing immediate support regardless of time zones or working hours.\n", + "- Consistent Information: The assistant provides standardized answers, ensuring consistency and accuracy." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mZZLuCecsp0e" + }, + "source": [ + "#### Context Documents" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nWrK7HHjssqB" + }, + "source": [ + "- Download the documents from Google Cloud Storage bucket\n", + "- These documents are specific to `Cymbal Bikes` store\n", + " - [`Cymbal Bikes Return Policy`](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesReturnPolicy.pdf): Contains information about return policy\n", + " - [`Cymbal Bikes Services`](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesServices.pdf): Contains information about services provided by Cymbal Bikes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iLhNfYfYspnC" + }, + "outputs": [], + "source": [ + "!gsutil cp \"gs://github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesReturnPolicy.pdf\" \"documents/CymbalBikesReturnPolicy.pdf\"\n", + "!gsutil cp \"gs://github-repo/generative-ai/gemini2/use-cases/retail_rag/documents/CymbalBikesServices.pdf\" \"documents/CymbalBikesServices.pdf\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GOFNGNGjjEzD" + }, + "source": [ + "### Text" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QlcEVrUtP9TI" + }, + "source": [ + "- Let's check a specific query to our retail use-case" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eLqbaZjoCzng" + }, + "outputs": [], + "source": [ + "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", + "\n", + "response = client.models.generate_content(\n", + " model=MODEL_ID,\n", + " contents=query,\n", + ")\n", + "\n", + "display(Markdown(response.text))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-D6q7KUDuH-E" + }, + "source": [ + "> The correct answer to the query is `A basic tune-up costs $100.`\n", + "\n", + "![BasicTuneUp](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/BasicTuneUp.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uoigEKWkQjwi" + }, + "source": [ + "- You can see, the model is unable to answer it correctly, as it's very specific to our hypothetical use-case. However, it does provide some details to get the answer from the internet.\n", + "\n", + "- Without the necessary context, the model's response is essentially a guess and may not align with the desired information.\n", + "\n", + "- LLM is trained on vast amount of data, which leads to hallucinations. To overcome this challenge, in coming sections we'll look into how to ground the answers using Retrieval Augmented Generation (RAG)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nhzKqZdunwYJ" + }, + "source": [ + "## Grounding" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kzNcDkRevJi3" + }, + "source": [ + "Grounding is crucial in this scenario because the model needs to access and process relevant information from external sources (the \"Cymbal Bikes Return Policy\" and \"Cymbal Bikes Services\" documents) to answer specific queries accurately. Without grounding, the model relies solely on its pre-trained knowledge, which may not contain the specific details about the bike store's policies.\n", + "\n", + "In the example, the question about the return policy for bike helmets at Cymbal Bikes cannot be answered correctly without accessing the provided documents. The model's general knowledge of return policies is insufficient. Grounding allows the model to:\n", + "\n", + "1. **Retrieve relevant information:** The system must first locate the pertinent sections within the provided documents that address the user's question about bike helmet returns.\n", + "\n", + "2. **Process and synthesize information:** After retrieving relevant passages, the model must then understand and synthesize the information to construct an accurate answer.\n", + "\n", + "3. **Generate a grounded response:** Finally, the response needs to be directly derived from the factual content of the documents. This ensures accuracy and avoids hallucinations – generating incorrect or nonsensical information not present in the source documents.\n", + "\n", + "Without grounding, the model is forced to guess or extrapolate from its general knowledge, which can lead to inaccurate or misleading responses. The grounding process makes the model's responses more reliable and trustworthy, especially for domain-specific knowledge like store policies or procedures.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-SyokS1pUR9O" + }, + "source": [ + "## Multimodal Live API" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pwZeOc5-UXKD" + }, + "source": [ + "The multimodal live API enables you to build low-latency, multi-modal applications. It currently supports text as input and text & audio as output.\n", + "\n", + "- Low Latency, where audio output is required, where the Text-to-Speech step can be skipped\n", + "- Provides a more interactive user experience.\n", + "- Suitable for applications requiring immediate audio feedback" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ad9d532aab36" + }, + "source": [ + "See the [Multimodal Live API](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-live) page for more details." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aS1zTjSMcij2" + }, + "source": [ + "#### Asynchronous (async) operation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iH9CBOpncnK8" + }, + "source": [ + "When to use async calls:\n", + "1. **I/O-bound operations**: When your code spends a significant amount of time waiting for external resources\n", + " (e.g., network requests, file operations, database queries). Async allows other tasks to run while waiting. \n", + " This is especially beneficial for real-time applications or when dealing with multiple concurrent requests.\n", + " \n", + " Example:\n", + " - Fetching data from a remote server.\n", + "\n", + "2. **Parallel tasks**: When you have independent tasks that can run concurrently without blocking each other. Async\n", + " allows you to efficiently utilize multiple CPU cores or network connections.\n", + " \n", + " Example:\n", + " - Processing a large number of prompts and generating audio for each.\n", + "\n", + "\n", + "3. **User interfaces**: In applications with graphical user interfaces (GUIs), async operations prevent the UI from\n", + " freezing while performing long-running tasks. Users can interact with the interface even when background\n", + " operations are active.\n", + " \n", + " Example: \n", + " - A chatbot interacting in real time, where an audio response is generated in the background.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aB4U6s1-UlFw" + }, + "source": [ + "### Text" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YvUJzbgPM26m" + }, + "source": [ + "For text generation, you need to set the `response_modalities` to `TEXT`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YQOurRs5UU9p" + }, + "outputs": [], + "source": [ + "async def generate_content(query: str) -> str:\n", + " \"\"\"Function to generate text content using Gemini live API.\n", + "\n", + " Args:\n", + " query: The query to generate content for.\n", + "\n", + " Returns:\n", + " The generated content.\n", + " \"\"\"\n", + " config = LiveConnectConfig(response_modalities=[\"TEXT\"])\n", + "\n", + " async with client.aio.live.connect(model=MODEL, config=config) as session:\n", + "\n", + " await session.send(input=query, end_of_turn=True)\n", + "\n", + " response = []\n", + " async for message in session.receive():\n", + " try:\n", + " if message.text:\n", + " response.append(message.text)\n", + " except AttributeError:\n", + " pass\n", + "\n", + " if message.server_content.turn_complete:\n", + " response = \"\".join(str(x) for x in response)\n", + " return response" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ye1TwWVaVSxF" + }, + "source": [ + "- Try a specific query" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gGqsp6nFDNsG" + }, + "outputs": [], + "source": [ + "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", + "\n", + "response = await generate_content(query)\n", + "display(Markdown(response))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "roXuCp_cXE9q" + }, + "source": [ + "### Audio" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lBnz34QaakVM" + }, + "source": [ + "- For audio generation, you need to set the `response_modalities` to `AUDIO`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BmLuvxnFbC4Z" + }, + "outputs": [], + "source": [ + "async def generate_audio_content(query: str):\n", + " \"\"\"Function to generate audio response for provided query using Gemini Multimodal Live API.\n", + "\n", + " Args:\n", + " query: The query to generate audio response for.\n", + "\n", + " Returns:\n", + " The audio response.\n", + " \"\"\"\n", + " config = LiveConnectConfig(response_modalities=[\"AUDIO\"])\n", + " async with client.aio.live.connect(model=MODEL, config=config) as session:\n", + "\n", + " await session.send(input=query, end_of_turn=True)\n", + "\n", + " audio_parts = []\n", + " async for message in session.receive():\n", + " if message.server_content.model_turn:\n", + " for part in message.server_content.model_turn.parts:\n", + " if part.inline_data:\n", + " audio_parts.append(\n", + " np.frombuffer(part.inline_data.data, dtype=np.int16)\n", + " )\n", + "\n", + " if message.server_content.turn_complete:\n", + " if audio_parts:\n", + " audio_data = np.concatenate(audio_parts, axis=0)\n", + " await asyncio.sleep(0.4)\n", + " display(Audio(audio_data, rate=24000, autoplay=True))\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xKQ_l6wiLH_w" + }, + "source": [ + "In this example, you send a text prompt and request the model response in audio." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rXJRoxUAcFVB" + }, + "source": [ + "- Let's check the same query as before" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CfZy_XZeDUtS" + }, + "outputs": [], + "source": [ + "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", + "\n", + "await generate_audio_content(query)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "clfXp2PZmxDZ" + }, + "source": [ + "- Model is unable to answer the query, but with the Multimodal Live API, it doesn't hallucinate, which is pretty good!!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wT2oB1BOqDYP" + }, + "source": [ + "### Continuous Audio Interaction (Not multiturn)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "T4iAJCstqR5s" + }, + "source": [ + " - Below function generates audio output based on the provided text prompt.\n", + " - The generated audio is displayed using `IPython.display.Audio`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bZntNTPiYLA8" + }, + "source": [ + "- Input your prompts (type `q` or `quit` or `exit` to exit).\n", + "- Example prompts:\n", + " - Hello\n", + " - Who are you?\n", + " - What's the largest planet in our solar system?\n", + " - Tell me 3 fun facts about the universe?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7M0zkHNrOBQf" + }, + "outputs": [], + "source": [ + "async def continuous_audio_generation():\n", + " \"\"\"Continuously generates audio responses for the asked queries.\"\"\"\n", + " while True:\n", + " query = input(\"Your query > \")\n", + " if any(query.lower() in s for s in [\"q\", \"quit\", \"exit\"]):\n", + " break\n", + " await generate_audio_content(query)\n", + "\n", + "\n", + "await continuous_audio_generation()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QX9k92TlJ864" + }, + "source": [ + "## Enhancing LLM Accuracy with RAG" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oOJ-Wx18hpju" + }, + "source": [ + "We'll be showcasing the design pattern for how to implement Real-time Retrieval Augmented Generation (RAG) using Gemini 2.0 multimodal live API.\n", + "\n", + "- Multimodal live API uses websockets to communicate over the internet\n", + "- It maintains a continuous connection\n", + "- Ideal for real-time applications which require persistent communication\n", + "\n", + "\n", + "> Note: Replicating real-life scenarios with Python can be challenging within the constraints of a Colab environment.\n", + "\n", + "\n", + "However, the flow shown in this section can be modified for streaming audio input and output.\n", + "\n", + "
\n", + "\n", + "We'll build the RAG pipeline from scratch to help you understand each and every components of the pipeline.\n", + "\n", + "There are other ways to build the RAG pipeline using open source tools such as [LangChain](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/use-cases/retrieval-augmented-generation/multimodal_rag_langchain.ipynb), [LlamaIndex](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/use-cases/retrieval-augmented-generation/llamaindex_rag.ipynb) etc." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u5CXTtsPEyJ0" + }, + "source": [ + "### Context Documents" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vvdcw1AOg4se" + }, + "source": [ + "- Documents are the building blocks of any RAG pipeline, as it provides the relevant context needed to ground the LLM responses\n", + "- We'll be using the documents already downloaded at the start of the notebook\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "M22BSDb2Xxpb" + }, + "outputs": [], + "source": [ + "documents = glob.glob(\"documents/*\")\n", + "documents" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNpUL7t0e054" + }, + "source": [ + "### Retrieval Augmented Generation Architecture" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vV5Et4YHbqqE" + }, + "source": [ + "In general, RAG architecture consists of the following components\n", + "\n", + "**Data Preparation**\n", + "1. Chunking: Dividing the document into smaller, manageable pieces for processing.\n", + "2. Embedding: Transforming text chunks into numerical vectors representing semantic meaning.\n", + "3. Indexing: Organizing embeddings for efficient similarity search." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "563756fa3b7f" + }, + "source": [ + "![RAGArchitecture](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/RAGArchitecture.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pf4sXzYUby57" + }, + "source": [ + "**Inference**\n", + "1. Retrieval: Finding the most relevant chunks based on the query embedding.\n", + "2. Query Augmentation: Enhancing the query with retrieved context for improved generation.\n", + "3. Generation: Synthesizing a coherent and informative answer based on the augmented query." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1a30b41b63f1" + }, + "source": [ + "![LiveAPI](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/LiveAPI.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "M-0zlJ3_FRfa" + }, + "source": [ + "#### Document Embedding and Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0fY3xLaFKBIS" + }, + "source": [ + "Following blocks of code shows how to process unstructured data(PDFs), extract text, and divide them into smaller chunks for efficient embedding and retrieval." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JTTOQ35Ia-V2" + }, + "source": [ + "- Embeddings:\n", + " - Numerical representations of text\n", + " - It capture the semantic meaning and context of the text\n", + " - We'll use Vertex AI's text embedding model to generate embeddings\n", + " - Error handling (like the retry mechanism) during embedding generation due to potential API quota limits.\n", + "\n", + "- Indexing:\n", + " - Build a searchable index from embeddings, enabling efficient similarity search.\n", + " - For example, the index is like a detailed table of contents for a massive reference book.\n", + "\n", + "\n", + "Check out the Google Cloud Platform [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings) for detailed understanding and example use-cases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Vun69x23FWiw" + }, + "outputs": [], + "source": [ + "@retry(wait=wait_random_exponential(multiplier=1, max=120), stop=stop_after_attempt(4))\n", + "def get_embeddings(\n", + " embedding_client: Any, embedding_model: str, text: str, output_dim: int = 768\n", + ") -> list[float]:\n", + " \"\"\"\n", + " Generate embeddings for text with retry logic for API quota management.\n", + "\n", + " Args:\n", + " embedding_client: The client object used to generate embeddings.\n", + " embedding_model: The name of the embedding model to use.\n", + " text: The text for which to generate embeddings.\n", + " output_dim: The desired dimensionality of the output embeddings (default is 768).\n", + "\n", + " Returns:\n", + " A list of floats representing the generated embeddings. Returns None if a \"RESOURCE_EXHAUSTED\" error occurs.\n", + "\n", + " Raises:\n", + " Exception: Any exception encountered during embedding generation, excluding \"RESOURCE_EXHAUSTED\" errors.\n", + " \"\"\"\n", + " try:\n", + " response = embedding_client.models.embed_content(\n", + " model=embedding_model,\n", + " contents=[text],\n", + " config=types.EmbedContentConfig(output_dimensionality=output_dim),\n", + " )\n", + " return [response.embeddings[0].values]\n", + " except Exception as e:\n", + " if \"RESOURCE_EXHAUSTED\" in str(e):\n", + " return None\n", + " print(f\"Error generating embeddings: {str(e)}\")\n", + " raise" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2csDY5NsswwJ" + }, + "source": [ + "- The code block executes the following steps:\n", + "\n", + " - Extracts text from PDF documents and segments it into smaller chunks for processing.\n", + " - Employs a Vertex AI model to transform each text chunk into a numerical embedding vector, facilitating semantic representation and search.\n", + " - Constructs a Pandas DataFrame to store the embeddings, enriched with metadata such as document name and page number, effectively creating a searchable index for efficient retrieval.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9TJlvdIsRfmX" + }, + "outputs": [], + "source": [ + "def build_index(\n", + " document_paths: list[str],\n", + " embedding_client: Any,\n", + " embedding_model: str,\n", + " chunk_size: int = 512,\n", + ") -> pd.DataFrame:\n", + " \"\"\"\n", + " Build searchable index from a list of PDF documents with page-wise processing.\n", + "\n", + " Args:\n", + " document_paths: A list of file paths to PDF documents.\n", + " embedding_client: The client object used to generate embeddings.\n", + " embedding_model: The name of the embedding model to use.\n", + " chunk_size: The maximum size (in characters) of each text chunk. Defaults to 512.\n", + "\n", + " Returns:\n", + " A Pandas DataFrame where each row represents a text chunk. The DataFrame includes columns for:\n", + " - 'document_name': The path to the source PDF document.\n", + " - 'page_number': The page number within the document.\n", + " - 'page_text': The full text of the page.\n", + " - 'chunk_number': The chunk number within the page.\n", + " - 'chunk_text': The text content of the chunk.\n", + " - 'embeddings': The embedding vector for the chunk.\n", + "\n", + " Raises:\n", + " ValueError: If no chunks are created from the input documents.\n", + " Exception: Any exceptions encountered during file processing are printed to the console and the function continues to the next document.\n", + " \"\"\"\n", + " all_chunks = []\n", + "\n", + " for doc_path in document_paths:\n", + " try:\n", + " with open(doc_path, \"rb\") as file:\n", + " pdf_reader = PyPDF2.PdfReader(file)\n", + "\n", + " for page_num in range(len(pdf_reader.pages)):\n", + " page = pdf_reader.pages[page_num]\n", + " page_text = page.extract_text()\n", + "\n", + " chunks = [\n", + " page_text[i : i + chunk_size]\n", + " for i in range(0, len(page_text), chunk_size)\n", + " ]\n", + "\n", + " for chunk_num, chunk_text in enumerate(chunks):\n", + " embeddings = get_embeddings(\n", + " embedding_client, embedding_model, chunk_text\n", + " )\n", + "\n", + " if embeddings is None:\n", + " print(\n", + " f\"Warning: Could not generate embeddings for chunk {chunk_num} on page {page_num + 1}\"\n", + " )\n", + " continue\n", + "\n", + " chunk_info = {\n", + " \"document_name\": doc_path,\n", + " \"page_number\": page_num + 1,\n", + " \"page_text\": page_text,\n", + " \"chunk_number\": chunk_num,\n", + " \"chunk_text\": chunk_text,\n", + " \"embeddings\": embeddings,\n", + " }\n", + " all_chunks.append(chunk_info)\n", + "\n", + " except Exception as e:\n", + " print(f\"Error processing document {doc_path}: {str(e)}\")\n", + " continue\n", + "\n", + " if not all_chunks:\n", + " raise ValueError(\"No chunks were created from the documents\")\n", + "\n", + " return pd.DataFrame(all_chunks)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yFGsl-Zvlej6" + }, + "source": [ + "Let's create embeddings and an index using the provided documents" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hjl5FDQckDcO" + }, + "outputs": [], + "source": [ + "vector_db_mini_vertex = build_index(\n", + " documents, embedding_client=client, embedding_model=text_embedding_model\n", + ")\n", + "vector_db_mini_vertex" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pZLX5ozMlxTX" + }, + "outputs": [], + "source": [ + "# Index size\n", + "vector_db_mini_vertex.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cvNVn3kT9FiB" + }, + "outputs": [], + "source": [ + "# Example of how a chunk looks like\n", + "vector_db_mini_vertex.loc[0, \"chunk_text\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Hul4bjAkBkg0" + }, + "source": [ + "To enhance the performance of retrieval systems, consider the following:\n", + "\n", + "- Optimize chunk size selection to balance granularity and context.\n", + "- Evaluate various chunking strategies to identify the most effective approach for your data.\n", + "- Explore managed services and scalable indexing solutions, such as [Vertex AI Search](https://cloud.google.com/generative-ai-app-builder/docs/create-datastore-ingest), to enhance performance and efficiency." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "43txjyVlHT6v" + }, + "source": [ + "#### Retrieval" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y92jM-v8KBfV" + }, + "source": [ + "The below code demonstrates how to query the index and uses a cosine similarity measure for comparing query vectors against the index. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bI1YsFoKtyxY" + }, + "source": [ + "* **Input:** Accepts a query string and parameters like the number of relevant chunks to return.\n", + "* **Embedding Generation:** Generates an embedding for the input query using the same model used to embed the document chunks.\n", + "* **Similarity Search:** Compares the query embedding to the embeddings of all indexed document chunks, using cosine similarity. Could use other distance metrics as well.\n", + "* **Ranking:** Ranks the chunks based on their similarity scores to the query.\n", + "* **Top-k Retrieval:** Returns the top *k* most similar chunks, where *k* is specified by the input parameters. This could be configurable.\n", + "* **Output:** Returns a list of relevant chunks, potentially including the original chunk text, similarity score, document source (filename, page number), and chunk metadata.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "88ndL_2wJ5ZD" + }, + "outputs": [], + "source": [ + "def get_relevant_chunks(\n", + " query: str,\n", + " vector_db: pd.DataFrame,\n", + " embedding_client: Any,\n", + " embedding_model: str,\n", + " top_k: int = 3,\n", + ") -> str:\n", + " \"\"\"\n", + " Retrieve the most relevant document chunks for a query using similarity search.\n", + "\n", + " Args:\n", + " query: The search query string.\n", + " vector_db: A pandas DataFrame containing the vectorized document chunks.\n", + " It must contain columns named 'embeddings', 'document_name',\n", + " 'page_number', and 'chunk_text'.\n", + " The 'embeddings' column should contain lists or numpy arrays\n", + " representing the embeddings.\n", + " embedding_client: The client object used to generate embeddings.\n", + " embedding_model: The name of the embedding model to use.\n", + " top_k: The number of most similar chunks to retrieve. Defaults to 3.\n", + "\n", + " Returns:\n", + " A formatted string containing the top_k most relevant chunks. Each chunk is\n", + " presented with its page number and chunk number. Returns an error message if\n", + " the query processing fails or if an error occurs during chunk retrieval.\n", + "\n", + " Raises:\n", + " Exception: If any error occurs during the process (e.g., issues with the embedding client,\n", + " data format problems in the vector database).\n", + " The specific error is printed to the console.\n", + " \"\"\"\n", + " try:\n", + " query_embedding = get_embeddings(embedding_client, embedding_model, query)\n", + "\n", + " if query_embedding is None:\n", + " return \"Could not process query due to quota issues\"\n", + "\n", + " similarities = [\n", + " cosine_similarity(query_embedding, chunk_emb)[0][0]\n", + " for chunk_emb in vector_db[\"embeddings\"]\n", + " ]\n", + "\n", + " top_indices = np.argsort(similarities)[-top_k:]\n", + " relevant_chunks = vector_db.iloc[top_indices]\n", + "\n", + " context = []\n", + " for _, row in relevant_chunks.iterrows():\n", + " context.append(\n", + " {\n", + " \"document_name\": row[\"document_name\"],\n", + " \"page_number\": row[\"page_number\"],\n", + " \"chunk_number\": row[\"chunk_number\"],\n", + " \"chunk_text\": row[\"chunk_text\"],\n", + " }\n", + " )\n", + "\n", + " return \"\\n\\n\".join(\n", + " [\n", + " f\"[Page {chunk['page_number']}, Chunk {chunk['chunk_number']}]: {chunk['chunk_text']}\"\n", + " for chunk in context\n", + " ]\n", + " )\n", + "\n", + " except Exception as e:\n", + " print(f\"Error getting relevant chunks: {str(e)}\")\n", + " return \"Error retrieving relevant chunks\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3hxyLlTjsstI" + }, + "source": [ + "Let's test out our retrieval component" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ek4aF0Esck2H" + }, + "source": [ + "- Let's try the same query for which the model was not able to answer earlier, due to lack of context" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lSd8ZeH6D7m4" + }, + "outputs": [], + "source": [ + "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", + "relevant_context = get_relevant_chunks(\n", + " query, vector_db_mini_vertex, client, text_embedding_model, top_k=3\n", + ")\n", + "relevant_context" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YBxnXReUn8Iy" + }, + "source": [ + "- You can see, with the help of the relevant context we can derive the answer as it contains the chunks specific to the asked query.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "25eb6422c9cf" + }, + "source": [ + "![Context](https://storage.googleapis.com/github-repo/generative-ai/gemini2/use-cases/retail_rag/images/Context.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kHzw7_UwzutC" + }, + "source": [ + "For optimal performance, consider these points:\n", + "\n", + "* **Context Window:** Considers a context window around the retrieved chunks to provide more comprehensive context. This could involve returning neighboring chunks or a specified window size.\n", + "* **Filtering:** Option to filter retrieved chunks based on criteria like minimum similarity score or source document.\n", + "* **Efficiency:** Designed for efficient retrieval, especially for large indexes, potentially using optimized search algorithms or data structures." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZEfJkwSqJ5KR" + }, + "source": [ + "### Generation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b7OZpv33KBx_" + }, + "source": [ + "* **Contextual Answer Synthesis:** The core function of the generation component is to synthesize a coherent and informative answer based on the retrieved context. It takes the user's query and the relevant document chunks as input.\n", + "* **Large Language Model (LLM) Integration:** It leverages a large language model (LLM) to generate the final answer. The LLM processes both the query and the retrieved context to produce a response. The quality of the answer heavily relies on the capabilities of the chosen LLM.\n", + "* **Coherence and Relevance:** A good generation function ensures the generated answer is coherent, factually accurate, and directly addresses the user's query, using only the provided context. It avoids hallucinations (generating information not present in the context).\n", + "* **Prompt Engineering:** The effectiveness of the LLM is heavily influenced by the prompt. The generation function likely incorporates prompt engineering techniques to guide the LLM towards generating the desired output. This may involve carefully crafting instructions for the LLM or providing examples.\n", + "\n", + "For more details on prompt engineering, check out the [documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-design-strategies)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0xs-AQmqm03l" + }, + "source": [ + "Let's see two use-cases, `Text-In-Text-Out` and `Text-In-Audio-Out`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xp7doymTJ7Iu" + }, + "outputs": [], + "source": [ + "@retry(wait=wait_random_exponential(multiplier=1, max=120), stop=stop_after_attempt(4))\n", + "async def generate_answer(\n", + " query: str, context: str, llm_client: Any, modality: str = \"text\"\n", + ") -> str:\n", + " \"\"\"\n", + " Generate answer using LLM with retry logic for API quota management.\n", + "\n", + " Args:\n", + " query: User query.\n", + " context: Relevant text providing context for the query.\n", + " llm_client: Client for accessing LLM API.\n", + " modality: Output modality (text or audio).\n", + "\n", + " Returns:\n", + " Generated answer.\n", + "\n", + " Raises:\n", + " Exception: If an unexpected error occurs during the LLM call (after retry attempts are exhausted).\n", + " \"\"\"\n", + " try:\n", + " # If context indicates earlier quota issues, return early\n", + " if context in [\n", + " \"Could not process query due to quota issues\",\n", + " \"Error retrieving relevant chunks\",\n", + " ]:\n", + " return \"Can't Process, Quota Issues\"\n", + "\n", + " prompt = f\"\"\"Based on the following context, please answer the question.\n", + "\n", + " Context:\n", + " {context}\n", + "\n", + " Question: {query}\n", + "\n", + " Answer:\"\"\"\n", + "\n", + " if modality == \"text\":\n", + " # Generate text answer using LLM\n", + " response = await generate_content(prompt)\n", + " return response\n", + "\n", + " elif modality == \"audio\":\n", + " # Generate audio answer using LLM\n", + " await generate_audio_content(prompt)\n", + "\n", + " except Exception as e:\n", + " if \"RESOURCE_EXHAUSTED\" in str(e):\n", + " return \"Can't Process, Quota Issues\"\n", + " print(f\"Error generating answer: {str(e)}\")\n", + " return \"Error generating answer\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "11q0Sf0oJ7wL" + }, + "source": [ + "Let's test our `Generation` component" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "S-iesR2BEHnI" + }, + "outputs": [], + "source": [ + "query = \"What is the price of a basic tune-up at Cymbal Bikes?\"\n", + "\n", + "generated_answer = await generate_answer(\n", + " query, relevant_context, client, modality=\"text\"\n", + ")\n", + "display(Markdown(generated_answer))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "W7EHYeP-EMpN" + }, + "outputs": [], + "source": [ + "await generate_answer(query, relevant_context, client, modality=\"audio\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CbQB5PbMrrsB" + }, + "source": [ + "> And the answer is... CORRECT !! 🎉" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1gnr-j-ocxlx" + }, + "source": [ + "- The accuracy of the generated answer is attributed to the provision of relevant context to the Large Language Model (LLM), enabling it to effectively comprehend the query and produce an appropriate response." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2MNlAoAHR0Do" + }, + "source": [ + "### Pipeline" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8LemsW6WrOfm" + }, + "source": [ + "Let's put `Retrieval` and `Generation` components together in a pipeline." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yoOeqxETR2G_" + }, + "outputs": [], + "source": [ + "async def rag(\n", + " question: str,\n", + " vector_db: pd.DataFrame,\n", + " embedding_client: Any,\n", + " embedding_model: str,\n", + " llm_client: Any,\n", + " top_k: int,\n", + " llm_model: str,\n", + " modality: str = \"text\",\n", + ") -> str | None:\n", + " \"\"\"\n", + " RAG Pipeline.\n", + "\n", + " Args:\n", + " question: User query.\n", + " vector_db: DataFrame containing document chunks and embeddings.\n", + " embedding_client: Client for accessing embedding API.\n", + " embedding_model: Name of the embedding model.\n", + " llm_client: Client for accessing LLM API.\n", + " top_k: The number of top relevant chunks to retrieve from the vector database.\n", + " llm_model: Name of the LLM model.\n", + " modality: Output modality (text or audio).\n", + "\n", + " Returns:\n", + " For text modality, generated answer.\n", + " For audio modality, audio playback widget.\n", + "\n", + " Raises:\n", + " Exception: Catches and prints any exceptions during processing. Returns an error message.\n", + " \"\"\"\n", + "\n", + " try:\n", + " # Get relevant context for question\n", + " relevant_context = get_relevant_chunks(\n", + " question, vector_db, embedding_client, embedding_model, top_k=top_k\n", + " )\n", + "\n", + " if modality == \"text\":\n", + " # Generate text answer using LLM\n", + " generated_answer = await generate_answer(\n", + " question,\n", + " relevant_context,\n", + " llm_client,\n", + " )\n", + " return generated_answer\n", + "\n", + " elif modality == \"audio\":\n", + " # Generate audio answer using LLM\n", + " await generate_answer(\n", + " question, relevant_context, llm_client, modality=modality\n", + " )\n", + " return\n", + "\n", + " except Exception as e:\n", + " print(f\"Error processing question '{question}': {str(e)}\")\n", + " return {\"question\": question, \"generated_answer\": \"Error processing question\"}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q8bNzUvbVJcx" + }, + "source": [ + "Our Retrieval Augmented Generation (RAG) architecture allows for flexible output modality(text and audio) selection. By modifying only the generation component, we can produce both text and audio output while maintaining the same retrieval mechanism. This highlights the adaptability of RAG in catering to diverse content presentation needs." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Pkn75-1cFW1J" + }, + "source": [ + "### Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QMGtlPWcVXT0" + }, + "source": [ + "Let's test our simple RAG pipeline" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0vwfQbodn89Y" + }, + "source": [ + "#### Sample Queries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Zx_GwXESk9aP" + }, + "outputs": [], + "source": [ + "question_set = [\n", + " {\n", + " \"question\": \"What is the price of a basic tune-up at Cymbal Bikes?\",\n", + " \"answer\": \"A basic tune-up costs $100.\",\n", + " },\n", + " {\n", + " \"question\": \"How much does it cost to replace a tire at Cymbal Bikes?\",\n", + " \"answer\": \"Replacing a tire at Cymbal Bikes costs $50 per tire.\",\n", + " },\n", + " {\n", + " \"question\": \"What does gear repair at Cymbal Bikes include?\",\n", + " \"answer\": \"Gear repair includes inspection and repair of the gears, including replacement of chainrings, cogs, and cables as needed.\",\n", + " },\n", + " {\n", + " \"question\": \"What is the cost of replacing a tube at Cymbal Bikes?\",\n", + " \"answer\": \"Replacing a tube at Cymbal Bikes costs $20.\",\n", + " },\n", + " {\n", + " \"question\": \"Can I return clothing items to Cymbal Bikes?\",\n", + " \"answer\": \"Clothing can only be returned if it is unworn and in the original packaging.\",\n", + " },\n", + " {\n", + " \"question\": \"What is the time frame for returning items to Cymbal Bikes?\",\n", + " \"answer\": \"Cymbal Bikes offers a 30-day return policy on all items.\",\n", + " },\n", + " {\n", + " \"question\": \"Can I return edible items like energy gels?\",\n", + " \"answer\": \"No, edible items are not returnable.\",\n", + " },\n", + " {\n", + " \"question\": \"How can I return an item purchased online from Cymbal Bikes?\",\n", + " \"answer\": \"Items purchased online can be returned to any Cymbal Bikes store or mailed back.\",\n", + " },\n", + " {\n", + " \"question\": \"What should I include when returning an item to Cymbal Bikes?\",\n", + " \"answer\": \"Please include the original receipt and a copy of your shipping confirmation when returning an item.\",\n", + " },\n", + " {\n", + " \"question\": \"Does Cymbal Bikes offer refunds for shipping charges?\",\n", + " \"answer\": \"Cymbal Bikes does not offer refunds for shipping charges, except for defective items.\",\n", + " },\n", + " {\n", + " \"question\": \"How do I process a return for a defective item at Cymbal Bikes?\",\n", + " \"answer\": \"To process a return for a defective item, please contact Cymbal Bikes first.\",\n", + " },\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZUo_fcNzoAp3" + }, + "source": [ + "#### Text" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y1RC5-djV0-r" + }, + "source": [ + "First we will try, `modality='text'`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dmyN-h18EZdT" + }, + "outputs": [], + "source": [ + "question_set[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-f3hsHqBEbwc" + }, + "outputs": [], + "source": [ + "response = await rag(\n", + " question=question_set[0][\"question\"],\n", + " vector_db=vector_db_mini_vertex,\n", + " embedding_client=client, # For embedding generation\n", + " embedding_model=text_embedding_model, # For embedding model\n", + " llm_client=client, # For answer generation,\n", + " top_k=3,\n", + " llm_model=MODEL,\n", + " modality=\"text\",\n", + ")\n", + "display(Markdown(response))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Nb3VytmIyo-1" + }, + "source": [ + "#### Audio" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kEl80N8VV_6E" + }, + "source": [ + "Now, let's try `modality='audio'` to get audio response." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "STdO_EtxEhFA" + }, + "outputs": [], + "source": [ + "await rag(\n", + " question=question_set[0][\"question\"],\n", + " vector_db=vector_db_mini_vertex,\n", + " embedding_client=client, # For embedding generation\n", + " embedding_model=text_embedding_model, # For embedding model\n", + " llm_client=client, # For answer generation,\n", + " top_k=3,\n", + " llm_model=MODEL,\n", + " modality=\"audio\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l9NMyJm-_0lM" + }, + "source": [ + "Evaluating Retrieval Augmented Generation (RAG) applications before production is crucial for identifying areas for improvement and ensuring optimal performance.\n", + "Check out the Vertex AI [Gen AI evaluation service](https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-overview)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Erp1ImX9Lu1Y" + }, + "source": [ + "## Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W2A4xXWP1EB4" + }, + "source": [ + "Congratulations on making it through this notebook!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Uyc3uq1uYHEN" + }, + "source": [ + "- We have seen how to use the Gemini API in Vertex AI to generate text and Multimodal Live API to generate text and audio output.\n", + "- Developed a fully functional Retrieval Augmented Generation (RAG) pipeline capable of answering questions based on provided documents.\n", + "- Demonstrated the versatility of the RAG architecture by enabling both text and audio output modalities.\n", + "- Ensured the adaptability of the RAG pipeline to various use cases by enabling seamless integration of different context documents.\n", + "- Established a foundation for building more advanced RAG systems leveraging larger document sets and sophisticated indexing/retrieval services like Vertex AI Datastore/Agent Builder and Vertex AI Multimodal Live API." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "54e180a34fd0" + }, + "source": [ + "## What's next\n", + "\n", + "- Learn how to [build a web application that enables you to use your voice and camera to talk to Gemini 2.0 through the Multimodal Live API.](https://github.com/GoogleCloudPlatform/generative-ai/tree/main/gemini/multimodal-live-api/websocket-demo-app)\n", + "- See the [Multimodal Live API reference docs](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-live).\n", + "- See the [Google Gen AI SDK reference docs](https://googleapis.github.io/python-genai/).\n", + "- Explore other notebooks in the [Google Cloud Generative AI GitHub repository](https://github.com/GoogleCloudPlatform/generative-ai)." + ] + } + ], + "metadata": { + "colab": { + "name": "real_time_rag_retail_gemini_2_0.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/gemini/reasoning-engine/tutorial_langgraph_rag_agent.ipynb b/gemini/reasoning-engine/tutorial_langgraph_rag_agent.ipynb index 3398a789dc5..b53f620d1f0 100644 --- a/gemini/reasoning-engine/tutorial_langgraph_rag_agent.ipynb +++ b/gemini/reasoning-engine/tutorial_langgraph_rag_agent.ipynb @@ -1,1140 +1,1140 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "3YcBnq20nC6r" - }, - "outputs": [], - "source": [ - "# Copyright 2024 Google LLC\n", - "#\n", - "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", - "# you may not use this file except in compliance with the License.\n", - "# You may obtain a copy of the License at\n", - "#\n", - "# https://www.apache.org/licenses/LICENSE-2.0\n", - "#\n", - "# Unless required by applicable law or agreed to in writing, software\n", - "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", - "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", - "# See the License for the specific language governing permissions and\n", - "# limitations under the License." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "xU0F5ObiGgF4" - }, - "source": [ - "# Building a Multi-Agent RAG Application with LangGraph and Reasoning Engine\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \"Google
Run in Colab\n", - "
\n", - "
\n", - " \n", - " \"Google
Run in Colab Enterprise\n", - "
\n", - "
\n", - " \n", - " \"GitHub
View on GitHub\n", - "
\n", - "
\n", - " \n", - " \"Vertex
Open in Vertex AI Workbench\n", - "
\n", - "
\n", - "\n", - "
\n", - "\n", - "Share to:\n", - "\n", - "\n", - " \"LinkedIn\n", - "\n", - "\n", - "\n", - " \"Bluesky\n", - "\n", - "\n", - "\n", - " \"X\n", - "\n", - "\n", - "\n", - " \"Reddit\n", - "\n", - "\n", - "\n", - " \"Facebook\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4sA9r45YMz_O" - }, - "source": [ - "| | |\n", - "|-|-|\n", - "|Author(s) | [Xiaolong Yang](https://github.com/shawn-yang-google) |" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GZft-jYpHmYv" - }, - "source": [ - "## Overview\n", - "\n", - "[Reasoning Engine](https://cloud.google.com/vertex-ai/generative-ai/docs/reasoning-engine/overview) (LangChain on Vertex AI) is a managed service in Vertex AI that helps you to build and deploy an agent reasoning framework. It gives you the flexibility to choose how much reasoning you want to delegate to the LLM and how much you want to handle with customized code.\n", - "\n", - "RAG (Retrieval-Augmented Generation) is an AI framework that combines the strengths of traditional information retrieval systems (such as databases) with the capabilities of generative large language models (LLMs). \n", - "\n", - "[LangGraph](https://langchain-ai.github.io/langgraph/) is a library for building stateful, multi-actor applications with LLMs, used to create agent and multi-agent workflows.\n", - "\n", - "This notebook demonstrates how to build, deploy, and test a LangGraph + RAG application using [Reasoning Engine](https://cloud.google.com/vertex-ai/generative-ai/docs/reasoning-engine/overview) in Vertex AI.\n", - "\n", - "\n", - "## Context\n", - "\n", - "In previous tutorials:\n", - "* [LangGraph application with Reasoning Engine](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_langgraph.ipynb?)\n", - "You have learned how to combine LangGraph's workflow orchestration with the scalability of Vertex AI, which enables you to build custom generative AI applications.\n", - "* [RAG application with Reasoning Engine and Cloud SQL for PostgreSQL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_cloud_sql_pg_rag_agent.ipynb)\n", - "By combining this extra knowledge with its own language skills, the AI can write text that is more accurate, up-to-date, and relevant to your specific needs.\n", - "Your [LangChain](https://python.langchain.com/docs/get_started/introduction) agent uses an [Postgres Vector Store](https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main) to perform a similary search and retrieve related data to ground the LLM response.\n", - "\n", - "## Objectives\n", - "\n", - "In this tutorial, you will learn how to build and deploy an agent (model, tools, and reasoning) using the Vertex AI SDK for Python and Cloud SQL for PostgreSQL LangGraph integration.\n", - "\n", - "We're using the `Multi Agent Collaboration` [approach](https://blog.langchain.dev/langgraph-multi-agent-workflows/). \n", - "This sample notebook could be adapted to use other multi-agent implementations described in the [link](https://blog.langchain.dev/langgraph-multi-agent-workflows/), such as the `Agent Supervisor` or other approaches. \n", - "\n", - "You will develop a LangGraph Application like: \"Image \n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QL58mPu9Hw7g" - }, - "source": [ - "## Before you begin\n", - "\n", - "1. In the Google Cloud console, on the project selector page, select or [create a Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projects).\n", - "2. [Make sure that billing is enabled for your Google Cloud project](https://cloud.google.com/billing/docs/how-to/verify-billing-enabled#console).\n", - "3. Follow the instruction in [RAG application with Reasoning Engine and Cloud SQL for PostgreSQL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_cloud_sql_pg_rag_agent.ipynb), set up Cloud SQL for PostgreSQL.\n", - "\n", - "### Required roles\n", - "\n", - "To get the permissions that you need to complete the tutorial, ask your administrator to grant you the [Owner](https://cloud.google.com/iam/docs/understanding-roles#owner) (`roles/owner`) IAM role on your project. For more information about granting roles, see [Manage access](https://cloud.google.com/iam/docs/granting-changing-revoking-access).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-RYpMytsZ882" - }, - "source": [ - "### Install and import dependencies" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "w_94DKOCX5pG" - }, - "outputs": [], - "source": [ - "%pip install --upgrade --user --quiet \\\n", - " \"google-cloud-aiplatform[reasoningengine,langchain]\"==1.60.0 \\\n", - " langchain-google-cloud-sql-pg==0.6.1 \\\n", - " cloud-sql-python-connector==1.9.0 \\\n", - " langchain-google-vertexai==1.0.4 \\\n", - " cloudpickle==3.0.0 \\\n", - " pydantic==2.7.4 \\\n", - " langgraph==0.0.51 \\\n", - " httpx==0.27.2" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "R5Xep4W9lq-Z" - }, - "source": [ - "### Restart runtime\n", - "\n", - "To use the newly installed packages in this Jupyter runtime, you must restart the runtime. You can do this by running the cell below, which restarts the current kernel.\n", - "\n", - "The restart might take a minute or longer. After it's restarted, continue to the next step." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "XRvKdaPDTznN" - }, - "outputs": [], - "source": [ - "import IPython\n", - "\n", - "app = IPython.Application.instance()\n", - "app.kernel.do_shutdown(True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bThFamq9351N" - }, - "source": [ - "### Import libraries\n", - "\n", - "Import the necessary Python libraries. These libraries provide the tools we need to interact with LangGraph, Vertex AI, and other components of our application." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "KNt0YeKaMz_Q" - }, - "outputs": [], - "source": [ - "import json\n", - "from typing import Literal\n", - "import uuid\n", - "\n", - "from google.cloud import storage\n", - "from langchain_core.documents import Document\n", - "from langchain_core.messages import BaseMessage, HumanMessage\n", - "from langchain_core.tools import tool\n", - "from langchain_google_cloud_sql_pg import PostgresEngine, PostgresVectorStore\n", - "from langchain_google_vertexai import ChatVertexAI, VertexAIEmbeddings\n", - "from langgraph.graph import END, MessageGraph\n", - "from langgraph.prebuilt import ToolNode\n", - "import vertexai\n", - "from vertexai.preview import reasoning_engines" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yPKXjZrFZuUZ" - }, - "source": [ - "### Authenticate to Google Cloud\n", - "\n", - "Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "NyKGtVQjgx13" - }, - "outputs": [], - "source": [ - "import sys\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " from google.colab import auth\n", - "\n", - " auth.authenticate_user()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9aGBuLA7aQ6O" - }, - "source": [ - "### Define project information\n", - "\n", - "Initialize `gcloud` with your Project ID and resource location. At this time, only `us-central1` is supported." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "DF4l8DTdWgPY" - }, - "source": [ - "### Set Google Cloud project information and initialize Vertex AI SDK\n", - "\n", - "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", - "\n", - "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Nqwi-5ufWp_B" - }, - "outputs": [], - "source": [ - "PROJECT_ID = \"[your-project-id]\" # @param {type:\"string\"}\n", - "LOCATION = \"us-central1\" # @param {type:\"string\"}\n", - "STAGING_BUCKET = \"gs://[your-staging-bucket]\" # @param {type:\"string\"}\n", - "\n", - "vertexai.init(project=PROJECT_ID, location=LOCATION, staging_bucket=STAGING_BUCKET)\n", - "!gcloud config set project {PROJECT_ID}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "S_yG0kddIvr7" - }, - "source": [ - "## Set up Cloud SQL\n", - "\n", - "You should have already set up Cloud SQL in [RAG application with Reasoning Engine and Cloud SQL for PostgreSQL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_cloud_sql_pg_rag_agent.ipynb):\n", - "* Enable APIs.\n", - "* Create a Cloud SQL instance.\n", - "* Create a database.\n", - "* Initialize multiple vector store tables.\n", - "* Create a user.\n", - "\n", - "\n", - "In this Colab, we will create two new vector store tables: Book and Movie.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "XtiB5-LVVkv0" - }, - "outputs": [], - "source": [ - "REGION = \"us-central1\" # @param {type:\"string\"}\n", - "INSTANCE = \"langgraph-rag-instance\" # @param {type:\"string\"}\n", - "DATABASE = \"harry_potter_data\" # @param {type:\"string\"}\n", - "MOVIE_TABLE_NAME = \"my-movie\" # @param {type:\"string\"}\n", - "BOOK_TABLE_NAME = \"my-book\" # @param {type:\"string\"}\n", - "PASSWORD = input(\"Please provide a password to be used for 'postgres' database user: \")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dqDjyLpS5zCm" - }, - "source": [ - "### Grant access to vector store table to IAM users" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "24NjnjF95ySA" - }, - "outputs": [], - "source": [ - "engine = await PostgresEngine.afrom_instance(\n", - " PROJECT_ID, REGION, INSTANCE, DATABASE, user=\"postgres\", password=PASSWORD\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OaP1LRhPi0y7" - }, - "source": [ - "### Initialize multiple vector store tables\n", - "\n", - "The `PostgresEngine` has a helper method `init_vectorstore_table()` that can be used to create a table with the proper schema to store vector embeddings." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "id": "GGd89YWIi2qg" - }, - "outputs": [], - "source": [ - "for table_name in [MOVIE_TABLE_NAME, BOOK_TABLE_NAME]:\n", - " engine = await PostgresEngine.afrom_instance(\n", - " PROJECT_ID, REGION, INSTANCE, DATABASE, user=\"postgres\", password=PASSWORD\n", - " )\n", - "\n", - " await engine.ainit_vectorstore_table(\n", - " table_name=table_name,\n", - " vector_size=768, # Vector size for VertexAI model(textembedding-gecko@latest)\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "sQ1MI8ARi5Rr" - }, - "source": [ - "### Add embeddings to the vector store\n", - "\n", - "Load data from a CSV file to generate and insert embeddings to the vector store.\n", - "\n", - "We will use two datasets:\n", - "\n", - "* Harry Potter Movie\n", - " - Intro: https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset\n", - " - Data: gs://github-repo/generative-ai/gemini/reasoning-engine/sample_data/harry_potter_movies.json\n", - "* Harry Potter Book\n", - " - Intro: https://www.kaggle.com/datasets/shubhammaindola/harry-potter-books\n", - " - Data: gs://github-repo/generative-ai/gemini/reasoning-engine/sample_data/harry_potter_books.json\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "Kcawj2ILdNmN" - }, - "outputs": [], - "source": [ - "def get_docs_from_gcs(bucket_name, gcs_dir, blob_name):\n", - " \"\"\"Fetches a JSON file from GCS, deserializes it, and returns the data.\n", - "\n", - " Args:\n", - " bucket_name: Name of the GCS bucket (e.g., 'my-bucket').\n", - " gcs_dir: Directory within the bucket where the JSON file is located.\n", - " blob_name: Path and filename within the bucket\n", - " (e.g., 'my_data.json').\n", - "\n", - " Returns:\n", - " A Python object representing the Document, or None if the file\n", - " is not found or an error occurs.\n", - " \"\"\"\n", - "\n", - " storage_client = storage.Client()\n", - " bucket = storage_client.bucket(bucket_name)\n", - " blob = bucket.blob(f\"{gcs_dir}/{blob_name}\")\n", - "\n", - " if not blob.exists():\n", - " print(f\"File not found: gs://{bucket_name}/{gcs_dir}/{blob_name}\")\n", - " return None\n", - "\n", - " try:\n", - " with blob.open(\"r\") as f:\n", - " json_docs = json.loads(f.read())\n", - " except json.JSONDecodeError:\n", - " print(f\"Error: Invalid JSON format in gs://{bucket_name}/{gcs_dir}/{blob_name}\")\n", - " return None\n", - "\n", - " docs = []\n", - " for json_doc in json_docs:\n", - " docs.append(Document(**(json_doc[\"kwargs\"])))\n", - "\n", - " return docs" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Pg5k6FyykfzW" - }, - "source": [ - "#### Movies" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "dkMjEXEmi4ro" - }, - "outputs": [], - "source": [ - "# Initialize the vector store for movies\n", - "vector_store = await PostgresVectorStore.create(\n", - " engine,\n", - " table_name=MOVIE_TABLE_NAME,\n", - " embedding_service=VertexAIEmbeddings(\n", - " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", - " ),\n", - ")\n", - "docs = get_docs_from_gcs(\n", - " \"github-repo\",\n", - " \"generative-ai/gemini/reasoning-engine/sample_data\",\n", - " \"harry_potter_movies.json\",\n", - ")\n", - "# Add data to the vector store\n", - "ids = [str(uuid.uuid4()) for i in range(len(docs))]\n", - "await vector_store.aadd_documents(docs, ids=ids)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GBdIVxqVkjT-" - }, - "source": [ - "#### Books" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "PWAElYbEkyzB" - }, - "outputs": [], - "source": [ - "# Initialize the vector store for books\n", - "vector_store = await PostgresVectorStore.create(\n", - " engine,\n", - " table_name=BOOK_TABLE_NAME,\n", - " embedding_service=VertexAIEmbeddings(\n", - " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", - " ),\n", - ")\n", - "docs = get_docs_from_gcs(\n", - " \"github-repo\",\n", - " \"generative-ai/gemini/reasoning-engine/sample_data\",\n", - " \"harry_potter_books.json\",\n", - ")\n", - "# Add data to the vector store\n", - "ids = [str(uuid.uuid4()) for i in range(len(docs))]\n", - "await vector_store.aadd_documents(docs, ids=ids)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XCra5kJVKyg5" - }, - "source": [ - "## Define the retriever tool\n", - "\n", - "Tools are interfaces that an agent, chain, or LLM can use to enable the Gemini model to interact with external systems, databases, document stores, and other APIs so that the model can get the most up-to-date information or take action with those systems.\n", - "\n", - "In this example, you'll define a function that will retrieve similar documents from the vector store using semantic search." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "vLx7O_UdqDyr" - }, - "outputs": [], - "source": [ - "@tool\n", - "def movie_similarity_search(query: str) -> str:\n", - " \"\"\"\n", - " Perform a similarity search for movies based on the user's last message.\n", - "\n", - " Args:\n", - " query str: The current conversation state, where the last message contains the query.\n", - "\n", - " Returns:\n", - " str: A list of BaseMessage containing the search results.\n", - " \"\"\"\n", - " engine = PostgresEngine.from_instance(\n", - " PROJECT_ID,\n", - " REGION,\n", - " INSTANCE,\n", - " DATABASE,\n", - " quota_project=PROJECT_ID,\n", - " user=\"postgres\",\n", - " password=PASSWORD,\n", - " )\n", - "\n", - " vector_store = PostgresVectorStore.create_sync(\n", - " engine,\n", - " table_name=MOVIE_TABLE_NAME,\n", - " embedding_service=VertexAIEmbeddings(\n", - " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", - " ),\n", - " )\n", - " retriever = vector_store.as_retriever()\n", - " return str([doc for doc in retriever.invoke(query)])" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "id": "XVjf2fT_bIGa" - }, - "outputs": [], - "source": [ - "@tool\n", - "def book_similarity_search(query: str) -> str:\n", - " \"\"\"\n", - " Perform a similarity search for books based on the user's last message.\n", - "\n", - " Args:\n", - " state (List[BaseMessage]): The current conversation state, where the last message contains the query.\n", - "\n", - " Returns:\n", - " List[BaseMessage]: A list of BaseMessage containing the search results.\n", - " \"\"\"\n", - " engine = PostgresEngine.from_instance(\n", - " PROJECT_ID,\n", - " REGION,\n", - " INSTANCE,\n", - " DATABASE,\n", - " quota_project=PROJECT_ID,\n", - " # Uncomment to use built-in authentication instead of IAM authentication\n", - " user=\"postgres\",\n", - " password=PASSWORD,\n", - " )\n", - "\n", - " vector_store = PostgresVectorStore.create_sync(\n", - " engine,\n", - " table_name=BOOK_TABLE_NAME,\n", - " embedding_service=VertexAIEmbeddings(\n", - " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", - " ),\n", - " )\n", - " retriever = vector_store.as_retriever()\n", - " return str([doc for doc in retriever.invoke(query)])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "BF8xqd84351O" - }, - "source": [ - "### Define router\n", - "\n", - "We're using the `Multi Agent Collaboration` [approach](https://blog.langchain.dev/langgraph-multi-agent-workflows/). \n", - "This sample notebook could be adapted to use other multi-agent implementations described in the [link](https://blog.langchain.dev/langgraph-multi-agent-workflows/), such as the `Agent Supervisor` or other approaches. \n", - "\n", - "Then, you'll define a router to control the flow of the conversation, determining which tool to use based on user input or the state of the interaction. Here we'll use a simple router setup, and you can customize the behavior of your router to handle multiple tools, custom logic, or multi-agent workflows.\n", - "\n", - "In this example, the router will invoke different nodes in the graph based on whether the user prompt contains the word 'book' or 'movie'." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "id": "7m9XRSn3351O" - }, - "outputs": [], - "source": [ - "def router(\n", - " state: list[BaseMessage],\n", - ") -> Literal[\"book_similarity_search\", \"movie_similarity_search\", \"__end__\"]:\n", - " if not state[0].content or len(state[1].tool_calls) == 0:\n", - " return \"__end__\"\n", - " if \"book\" in state[0].content:\n", - " return \"book_similarity_search\"\n", - " if \"movie\" in state[0].content:\n", - " return \"movie_similarity_search\"\n", - " return \"__end__\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CFeOIbed351O" - }, - "source": [ - "## Define LangGraph application\n", - "\n", - "Now you'll bring everything together to define your LangGraph application as a custom template in Reasoning Engine.\n", - "\n", - "This application will use the tool and router that you just defined. LangGraph provides a powerful way to structure these interactions and leverage the capabilities of LLMs." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tZYtR6-zqudb" - }, - "source": [ - "#### Multi stage" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "id": "WWjFaLeW351O" - }, - "outputs": [], - "source": [ - "class MultiStageLangGraphApp:\n", - " def __init__(self, project: str, location: str) -> None:\n", - " self.project_id = project\n", - " self.location = location\n", - "\n", - " # The set_up method is used to define application initialization logic\n", - " def set_up(self) -> None:\n", - " model = ChatVertexAI(model=\"gemini-1.5-pro\")\n", - " builder = MessageGraph()\n", - "\n", - " # Checker node\n", - " def checker(state: list[BaseMessage]):\n", - " if not state[0].content:\n", - " return \"__end__\"\n", - " user_question = state[0].content\n", - " response = model.invoke(\n", - " [\n", - " HumanMessage(\n", - " content=(\n", - " f\"What is the type of the question? {user_question}\"\n", - " \"Think step by step, then answer one of the following:\"\n", - " \"* movie\"\n", - " \"* book\"\n", - " \"* no\"\n", - " )\n", - " )\n", - " ]\n", - " )\n", - " table_name = response.content.split(\"\")[1].split(\"\")[0]\n", - " # Multiturn requests alternate between user and model.\n", - " state[0].content = f\"query:{state[0].content},table_name:{table_name}\"\n", - "\n", - " builder.add_node(\"checker\", checker)\n", - " # Set entry point to checker node so it is reachable\n", - " builder.set_entry_point(\"checker\")\n", - "\n", - " # Tool node.\n", - " model_with_tools = model.bind_tools(\n", - " [book_similarity_search, movie_similarity_search]\n", - " )\n", - " builder.add_node(\"tools\", model_with_tools)\n", - " # Add edge from tools to checker so the flow is checker->tools->router...\n", - " builder.add_edge(\"checker\", \"tools\")\n", - "\n", - " # Summerize node.\n", - " # node\n", - " def summerizar(state: list[BaseMessage]):\n", - " question = state[0].content\n", - " related_docs = state[-1].content\n", - " response = model.invoke(\n", - " [\n", - " HumanMessage(\n", - " content=(\n", - " f\"\"\"\n", - " Use the docs: {related_docs} to answer question:{question}.\n", - " The answer format should be json dict.\n", - " \"\"\"\n", - " )\n", - " )\n", - " ]\n", - " )\n", - " # Multiturn requests alternate between user and model.\n", - " state.append(response)\n", - "\n", - " builder.add_node(\"summerizar_node\", summerizar)\n", - " builder.add_edge(\"summerizar_node\", END)\n", - " # Book retrieval node\n", - " book_node = ToolNode([book_similarity_search])\n", - " builder.add_node(\"book_similarity_search\", book_node)\n", - " builder.add_edge(\"book_similarity_search\", \"summerizar_node\")\n", - "\n", - " # Movie retrieval node\n", - " movie_node = ToolNode([movie_similarity_search])\n", - " builder.add_node(\"movie_similarity_search\", movie_node)\n", - " builder.add_edge(\"movie_similarity_search\", \"summerizar_node\")\n", - "\n", - " # Router to check condition.\n", - " builder.add_conditional_edges(\"tools\", router)\n", - "\n", - " self.runnable = builder.compile()\n", - "\n", - " # The query method will be used to send inputs to the agent\n", - " def query(self, message: str):\n", - " \"\"\"Query the application.\n", - "\n", - " Args:\n", - " message: The user message.\n", - "\n", - " Returns:\n", - " str: The LLM response.\n", - " \"\"\"\n", - " chat_history = self.runnable.invoke(HumanMessage(message))\n", - "\n", - " return chat_history[-1].content" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "sEfQYtgSm9ol" - }, - "source": [ - "### Local test" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "id": "IcWux9IskE-c" - }, - "outputs": [], - "source": [ - "agent = MultiStageLangGraphApp(project=PROJECT_ID, location=LOCATION)\n", - "agent.set_up()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0aaf11c1677a" - }, - "source": [ - "Expect a JSON format answer like \n", - "```json\n", - "{\"company\": [\"Warner Bros.\", \"Heyday Films\"]}\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "J9yUujSokJpQ" - }, - "outputs": [ + "cells": [ { - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3YcBnq20nC6r" }, - "text/plain": [ - "```json\n", - "{\n", - " 'answer': 'Warner Bros and Heyday Films produce Harry Potter and the Deathly Hallows: Part 2.'\n", - "}\n", - "```" + "outputs": [], + "source": [ + "# Copyright 2024 Google LLC\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "agent.query(message=\"Which company produces and distributes Harry Potter films\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "077f1396f641" - }, - "source": [ - "Expect a JSON format answer like \n", - "```json\n", - "{\n", - " \"answer\": [\"Daniel Radcliffe\", \"Darren Criss\"]\n", - "}\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Vn1wBUEyLGSG" - }, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "```json\n", - "[\n", - " {\n", - " \"actor\": \"Darren Criss\",\n", - " \"movie\": \"A Very Potter Musical\"\n", - " },\n", - " {\n", - " \"actor\": \"Daniel Radcliffe\",\n", - " \"movie\": \"Harry Potter and the Deathly Hallows: Part 2\"\n", - " }\n", - "]\n", - "```\n" - ] - } - ], - "source": [ - "agent.query(message=\"Who acts as Harry Potter\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "df468170bc6d" - }, - "source": [ - "Expect a JSON format answer like \n", - "```json\n", - "{\n", - " \"answer\": \"Harry Potter and the Chamber of Secrets.\"\n", - "}\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "EPGRJjdEb228" - }, - "outputs": [ + "cell_type": "markdown", + "metadata": { + "id": "xU0F5ObiGgF4" + }, + "source": [ + "# Building a Multi-Agent RAG Application with LangGraph and Reasoning Engine\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \"Google
Run in Colab\n", + "
\n", + "
\n", + " \n", + " \"Google
Run in Colab Enterprise\n", + "
\n", + "
\n", + " \n", + " \"GitHub
View on GitHub\n", + "
\n", + "
\n", + " \n", + " \"Vertex
Open in Vertex AI Workbench\n", + "
\n", + "
\n", + "\n", + "
\n", + "\n", + "Share to:\n", + "\n", + "\n", + " \"LinkedIn\n", + "\n", + "\n", + "\n", + " \"Bluesky\n", + "\n", + "\n", + "\n", + " \"X\n", + "\n", + "\n", + "\n", + " \"Reddit\n", + "\n", + "\n", + "\n", + " \"Facebook\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4sA9r45YMz_O" + }, + "source": [ + "| | |\n", + "|-|-|\n", + "|Author(s) | [Xiaolong Yang](https://github.com/shawn-yang-google) |" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GZft-jYpHmYv" + }, + "source": [ + "## Overview\n", + "\n", + "[Reasoning Engine](https://cloud.google.com/vertex-ai/generative-ai/docs/reasoning-engine/overview) (LangChain on Vertex AI) is a managed service in Vertex AI that helps you to build and deploy an agent reasoning framework. It gives you the flexibility to choose how much reasoning you want to delegate to the LLM and how much you want to handle with customized code.\n", + "\n", + "RAG (Retrieval-Augmented Generation) is an AI framework that combines the strengths of traditional information retrieval systems (such as databases) with the capabilities of generative large language models (LLMs). \n", + "\n", + "[LangGraph](https://langchain-ai.github.io/langgraph/) is a library for building stateful, multi-actor applications with LLMs, used to create agent and multi-agent workflows.\n", + "\n", + "This notebook demonstrates how to build, deploy, and test a LangGraph + RAG application using [Reasoning Engine](https://cloud.google.com/vertex-ai/generative-ai/docs/reasoning-engine/overview) in Vertex AI.\n", + "\n", + "\n", + "## Context\n", + "\n", + "In previous tutorials:\n", + "* [LangGraph application with Reasoning Engine](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_langgraph.ipynb?)\n", + "You have learned how to combine LangGraph's workflow orchestration with the scalability of Vertex AI, which enables you to build custom generative AI applications.\n", + "* [RAG application with Reasoning Engine and Cloud SQL for PostgreSQL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_cloud_sql_pg_rag_agent.ipynb)\n", + "By combining this extra knowledge with its own language skills, the AI can write text that is more accurate, up-to-date, and relevant to your specific needs.\n", + "Your [LangChain](https://python.langchain.com/docs/get_started/introduction) agent uses an [Postgres Vector Store](https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main) to perform a similary search and retrieve related data to ground the LLM response.\n", + "\n", + "## Objectives\n", + "\n", + "In this tutorial, you will learn how to build and deploy an agent (model, tools, and reasoning) using the Vertex AI SDK for Python and Cloud SQL for PostgreSQL LangGraph integration.\n", + "\n", + "We're using the `Multi Agent Collaboration` [approach](https://blog.langchain.dev/langgraph-multi-agent-workflows/). \n", + "This sample notebook could be adapted to use other multi-agent implementations described in the [link](https://blog.langchain.dev/langgraph-multi-agent-workflows/), such as the `Agent Supervisor` or other approaches. \n", + "\n", + "You will develop a LangGraph Application like: \"Image \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QL58mPu9Hw7g" + }, + "source": [ + "## Before you begin\n", + "\n", + "1. In the Google Cloud console, on the project selector page, select or [create a Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projects).\n", + "2. [Make sure that billing is enabled for your Google Cloud project](https://cloud.google.com/billing/docs/how-to/verify-billing-enabled#console).\n", + "3. Follow the instruction in [RAG application with Reasoning Engine and Cloud SQL for PostgreSQL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_cloud_sql_pg_rag_agent.ipynb), set up Cloud SQL for PostgreSQL.\n", + "\n", + "### Required roles\n", + "\n", + "To get the permissions that you need to complete the tutorial, ask your administrator to grant you the [Owner](https://cloud.google.com/iam/docs/understanding-roles#owner) (`roles/owner`) IAM role on your project. For more information about granting roles, see [Manage access](https://cloud.google.com/iam/docs/granting-changing-revoking-access).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-RYpMytsZ882" + }, + "source": [ + "### Install and import dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "w_94DKOCX5pG" + }, + "outputs": [], + "source": [ + "%pip install --upgrade --user --quiet \\\n", + " \"google-cloud-aiplatform[reasoningengine,langchain]\"==1.60.0 \\\n", + " langchain-google-cloud-sql-pg==0.6.1 \\\n", + " cloud-sql-python-connector==1.9.0 \\\n", + " langchain-google-vertexai==1.0.4 \\\n", + " cloudpickle==3.0.0 \\\n", + " pydantic==2.7.4 \\\n", + " langgraph==0.0.51 \\\n", + " httpx==0.27.2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "R5Xep4W9lq-Z" + }, + "source": [ + "### Restart runtime\n", + "\n", + "To use the newly installed packages in this Jupyter runtime, you must restart the runtime. You can do this by running the cell below, which restarts the current kernel.\n", + "\n", + "The restart might take a minute or longer. After it's restarted, continue to the next step." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XRvKdaPDTznN" + }, + "outputs": [], + "source": [ + "import IPython\n", + "\n", + "app = IPython.Application.instance()\n", + "app.kernel.do_shutdown(True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bThFamq9351N" + }, + "source": [ + "### Import libraries\n", + "\n", + "Import the necessary Python libraries. These libraries provide the tools we need to interact with LangGraph, Vertex AI, and other components of our application." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "KNt0YeKaMz_Q" + }, + "outputs": [], + "source": [ + "import json\n", + "from typing import Literal\n", + "import uuid\n", + "\n", + "from google.cloud import storage\n", + "from langchain_core.documents import Document\n", + "from langchain_core.messages import BaseMessage, HumanMessage\n", + "from langchain_core.tools import tool\n", + "from langchain_google_cloud_sql_pg import PostgresEngine, PostgresVectorStore\n", + "from langchain_google_vertexai import ChatVertexAI, VertexAIEmbeddings\n", + "from langgraph.graph import END, MessageGraph\n", + "from langgraph.prebuilt import ToolNode\n", + "import vertexai\n", + "from vertexai.preview import reasoning_engines" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yPKXjZrFZuUZ" + }, + "source": [ + "### Authenticate to Google Cloud\n", + "\n", + "Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "NyKGtVQjgx13" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "if \"google.colab\" in sys.modules:\n", + " from google.colab import auth\n", + "\n", + " auth.authenticate_user()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9aGBuLA7aQ6O" + }, + "source": [ + "### Define project information\n", + "\n", + "Initialize `gcloud` with your Project ID and resource location. At this time, only `us-central1` is supported." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DF4l8DTdWgPY" + }, + "source": [ + "### Set Google Cloud project information and initialize Vertex AI SDK\n", + "\n", + "To get started using Vertex AI, you must have an existing Google Cloud project and [enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).\n", + "\n", + "Learn more about [setting up a project and a development environment](https://cloud.google.com/vertex-ai/docs/start/cloud-environment)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Nqwi-5ufWp_B" + }, + "outputs": [], + "source": [ + "PROJECT_ID = \"[your-project-id]\" # @param {type:\"string\"}\n", + "LOCATION = \"us-central1\" # @param {type:\"string\"}\n", + "STAGING_BUCKET = \"gs://[your-staging-bucket]\" # @param {type:\"string\"}\n", + "\n", + "vertexai.init(project=PROJECT_ID, location=LOCATION, staging_bucket=STAGING_BUCKET)\n", + "!gcloud config set project {PROJECT_ID}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "S_yG0kddIvr7" + }, + "source": [ + "## Set up Cloud SQL\n", + "\n", + "You should have already set up Cloud SQL in [RAG application with Reasoning Engine and Cloud SQL for PostgreSQL](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/reasoning-engine/tutorial_cloud_sql_pg_rag_agent.ipynb):\n", + "* Enable APIs.\n", + "* Create a Cloud SQL instance.\n", + "* Create a database.\n", + "* Initialize multiple vector store tables.\n", + "* Create a user.\n", + "\n", + "\n", + "In this Colab, we will create two new vector store tables: Book and Movie.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XtiB5-LVVkv0" + }, + "outputs": [], + "source": [ + "REGION = \"us-central1\" # @param {type:\"string\"}\n", + "INSTANCE = \"langgraph-rag-instance\" # @param {type:\"string\"}\n", + "DATABASE = \"harry_potter_data\" # @param {type:\"string\"}\n", + "MOVIE_TABLE_NAME = \"my-movie\" # @param {type:\"string\"}\n", + "BOOK_TABLE_NAME = \"my-book\" # @param {type:\"string\"}\n", + "PASSWORD = input(\"Please provide a password to be used for 'postgres' database user: \")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dqDjyLpS5zCm" + }, + "source": [ + "### Grant access to vector store table to IAM users" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "24NjnjF95ySA" + }, + "outputs": [], + "source": [ + "engine = await PostgresEngine.afrom_instance(\n", + " PROJECT_ID, REGION, INSTANCE, DATABASE, user=\"postgres\", password=PASSWORD\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OaP1LRhPi0y7" + }, + "source": [ + "### Initialize multiple vector store tables\n", + "\n", + "The `PostgresEngine` has a helper method `init_vectorstore_table()` that can be used to create a table with the proper schema to store vector embeddings." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "GGd89YWIi2qg" + }, + "outputs": [], + "source": [ + "for table_name in [MOVIE_TABLE_NAME, BOOK_TABLE_NAME]:\n", + " engine = await PostgresEngine.afrom_instance(\n", + " PROJECT_ID, REGION, INSTANCE, DATABASE, user=\"postgres\", password=PASSWORD\n", + " )\n", + "\n", + " await engine.ainit_vectorstore_table(\n", + " table_name=table_name,\n", + " vector_size=768, # Vector size for VertexAI model(textembedding-gecko@latest)\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sQ1MI8ARi5Rr" + }, + "source": [ + "### Add embeddings to the vector store\n", + "\n", + "Load data from a CSV file to generate and insert embeddings to the vector store.\n", + "\n", + "We will use two datasets:\n", + "\n", + "* Harry Potter Movie\n", + " - Intro: https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset\n", + " - Data: gs://github-repo/generative-ai/gemini/reasoning-engine/sample_data/harry_potter_movies.json\n", + "* Harry Potter Book\n", + " - Intro: https://www.kaggle.com/datasets/shubhammaindola/harry-potter-books\n", + " - Data: gs://github-repo/generative-ai/gemini/reasoning-engine/sample_data/harry_potter_books.json\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Kcawj2ILdNmN" + }, + "outputs": [], + "source": [ + "def get_docs_from_gcs(bucket_name, gcs_dir, blob_name):\n", + " \"\"\"Fetches a JSON file from GCS, deserializes it, and returns the data.\n", + "\n", + " Args:\n", + " bucket_name: Name of the GCS bucket (e.g., 'my-bucket').\n", + " gcs_dir: Directory within the bucket where the JSON file is located.\n", + " blob_name: Path and filename within the bucket\n", + " (e.g., 'my_data.json').\n", + "\n", + " Returns:\n", + " A Python object representing the Document, or None if the file\n", + " is not found or an error occurs.\n", + " \"\"\"\n", + "\n", + " storage_client = storage.Client()\n", + " bucket = storage_client.bucket(bucket_name)\n", + " blob = bucket.blob(f\"{gcs_dir}/{blob_name}\")\n", + "\n", + " if not blob.exists():\n", + " print(f\"File not found: gs://{bucket_name}/{gcs_dir}/{blob_name}\")\n", + " return None\n", + "\n", + " try:\n", + " with blob.open(\"r\") as f:\n", + " json_docs = json.loads(f.read())\n", + " except json.JSONDecodeError:\n", + " print(f\"Error: Invalid JSON format in gs://{bucket_name}/{gcs_dir}/{blob_name}\")\n", + " return None\n", + "\n", + " docs = []\n", + " for json_doc in json_docs:\n", + " docs.append(Document(**(json_doc[\"kwargs\"])))\n", + "\n", + " return docs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Pg5k6FyykfzW" + }, + "source": [ + "#### Movies" + ] + }, { - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dkMjEXEmi4ro" }, - "text/plain": [ - "'```json\n", - "{\n", - " \"book\": \"Harry Potter and the Chamber of Secrets\"\n", - "}\n", - "```'" + "outputs": [], + "source": [ + "# Initialize the vector store for movies\n", + "vector_store = await PostgresVectorStore.create(\n", + " engine,\n", + " table_name=MOVIE_TABLE_NAME,\n", + " embedding_service=VertexAIEmbeddings(\n", + " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", + " ),\n", + ")\n", + "docs = get_docs_from_gcs(\n", + " \"github-repo\",\n", + " \"generative-ai/gemini/reasoning-engine/sample_data\",\n", + " \"harry_potter_movies.json\",\n", + ")\n", + "# Add data to the vector store\n", + "ids = [str(uuid.uuid4()) for i in range(len(docs))]\n", + "await vector_store.aadd_documents(docs, ids=ids)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GBdIVxqVkjT-" + }, + "source": [ + "#### Books" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PWAElYbEkyzB" + }, + "outputs": [], + "source": [ + "# Initialize the vector store for books\n", + "vector_store = await PostgresVectorStore.create(\n", + " engine,\n", + " table_name=BOOK_TABLE_NAME,\n", + " embedding_service=VertexAIEmbeddings(\n", + " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", + " ),\n", + ")\n", + "docs = get_docs_from_gcs(\n", + " \"github-repo\",\n", + " \"generative-ai/gemini/reasoning-engine/sample_data\",\n", + " \"harry_potter_books.json\",\n", + ")\n", + "# Add data to the vector store\n", + "ids = [str(uuid.uuid4()) for i in range(len(docs))]\n", + "await vector_store.aadd_documents(docs, ids=ids)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XCra5kJVKyg5" + }, + "source": [ + "## Define the retriever tool\n", + "\n", + "Tools are interfaces that an agent, chain, or LLM can use to enable the Gemini model to interact with external systems, databases, document stores, and other APIs so that the model can get the most up-to-date information or take action with those systems.\n", + "\n", + "In this example, you'll define a function that will retrieve similar documents from the vector store using semantic search." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "vLx7O_UdqDyr" + }, + "outputs": [], + "source": [ + "@tool\n", + "def movie_similarity_search(query: str) -> str:\n", + " \"\"\"\n", + " Perform a similarity search for movies based on the user's last message.\n", + "\n", + " Args:\n", + " query str: The current conversation state, where the last message contains the query.\n", + "\n", + " Returns:\n", + " str: A list of BaseMessage containing the search results.\n", + " \"\"\"\n", + " engine = PostgresEngine.from_instance(\n", + " PROJECT_ID,\n", + " REGION,\n", + " INSTANCE,\n", + " DATABASE,\n", + " quota_project=PROJECT_ID,\n", + " user=\"postgres\",\n", + " password=PASSWORD,\n", + " )\n", + "\n", + " vector_store = PostgresVectorStore.create_sync(\n", + " engine,\n", + " table_name=MOVIE_TABLE_NAME,\n", + " embedding_service=VertexAIEmbeddings(\n", + " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", + " ),\n", + " )\n", + " retriever = vector_store.as_retriever()\n", + " return str([doc for doc in retriever.invoke(query)])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "XVjf2fT_bIGa" + }, + "outputs": [], + "source": [ + "@tool\n", + "def book_similarity_search(query: str) -> str:\n", + " \"\"\"\n", + " Perform a similarity search for books based on the user's last message.\n", + "\n", + " Args:\n", + " state (List[BaseMessage]): The current conversation state, where the last message contains the query.\n", + "\n", + " Returns:\n", + " List[BaseMessage]: A list of BaseMessage containing the search results.\n", + " \"\"\"\n", + " engine = PostgresEngine.from_instance(\n", + " PROJECT_ID,\n", + " REGION,\n", + " INSTANCE,\n", + " DATABASE,\n", + " quota_project=PROJECT_ID,\n", + " # Uncomment to use built-in authentication instead of IAM authentication\n", + " user=\"postgres\",\n", + " password=PASSWORD,\n", + " )\n", + "\n", + " vector_store = PostgresVectorStore.create_sync(\n", + " engine,\n", + " table_name=BOOK_TABLE_NAME,\n", + " embedding_service=VertexAIEmbeddings(\n", + " model_name=\"textembedding-gecko@latest\", project=PROJECT_ID\n", + " ),\n", + " )\n", + " retriever = vector_store.as_retriever()\n", + " return str([doc for doc in retriever.invoke(query)])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BF8xqd84351O" + }, + "source": [ + "### Define router\n", + "\n", + "We're using the `Multi Agent Collaboration` [approach](https://blog.langchain.dev/langgraph-multi-agent-workflows/). \n", + "This sample notebook could be adapted to use other multi-agent implementations described in the [link](https://blog.langchain.dev/langgraph-multi-agent-workflows/), such as the `Agent Supervisor` or other approaches. \n", + "\n", + "Then, you'll define a router to control the flow of the conversation, determining which tool to use based on user input or the state of the interaction. Here we'll use a simple router setup, and you can customize the behavior of your router to handle multiple tools, custom logic, or multi-agent workflows.\n", + "\n", + "In this example, the router will invoke different nodes in the graph based on whether the user prompt contains the word 'book' or 'movie'." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "7m9XRSn3351O" + }, + "outputs": [], + "source": [ + "def router(\n", + " state: list[BaseMessage],\n", + ") -> Literal[\"book_similarity_search\", \"movie_similarity_search\", \"__end__\"]:\n", + " if not state[0].content or len(state[1].tool_calls) == 0:\n", + " return \"__end__\"\n", + " if \"book\" in state[0].content:\n", + " return \"book_similarity_search\"\n", + " if \"movie\" in state[0].content:\n", + " return \"movie_similarity_search\"\n", + " return \"__end__\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CFeOIbed351O" + }, + "source": [ + "## Define LangGraph application\n", + "\n", + "Now you'll bring everything together to define your LangGraph application as a custom template in Reasoning Engine.\n", + "\n", + "This application will use the tool and router that you just defined. LangGraph provides a powerful way to structure these interactions and leverage the capabilities of LLMs." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tZYtR6-zqudb" + }, + "source": [ + "#### Multi stage" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "WWjFaLeW351O" + }, + "outputs": [], + "source": [ + "class MultiStageLangGraphApp:\n", + " def __init__(self, project: str, location: str) -> None:\n", + " self.project_id = project\n", + " self.location = location\n", + "\n", + " # The set_up method is used to define application initialization logic\n", + " def set_up(self) -> None:\n", + " model = ChatVertexAI(model=\"gemini-1.5-pro\")\n", + " builder = MessageGraph()\n", + "\n", + " # Checker node\n", + " def checker(state: list[BaseMessage]):\n", + " if not state[0].content:\n", + " return \"__end__\"\n", + " user_question = state[0].content\n", + " response = model.invoke(\n", + " [\n", + " HumanMessage(\n", + " content=(\n", + " f\"What is the type of the question? {user_question}\"\n", + " \"Think step by step, then answer one of the following:\"\n", + " \"* movie\"\n", + " \"* book\"\n", + " \"* no\"\n", + " )\n", + " )\n", + " ]\n", + " )\n", + " table_name = response.content.split(\"\")[1].split(\"\")[0]\n", + " # Multiturn requests alternate between user and model.\n", + " state[0].content = f\"query:{state[0].content},table_name:{table_name}\"\n", + "\n", + " builder.add_node(\"checker\", checker)\n", + " # Set entry point to checker node so it is reachable\n", + " builder.set_entry_point(\"checker\")\n", + "\n", + " # Tool node.\n", + " model_with_tools = model.bind_tools(\n", + " [book_similarity_search, movie_similarity_search]\n", + " )\n", + " builder.add_node(\"tools\", model_with_tools)\n", + " # Add edge from tools to checker so the flow is checker->tools->router...\n", + " builder.add_edge(\"checker\", \"tools\")\n", + "\n", + " # Summerize node.\n", + " # node\n", + " def summerizar(state: list[BaseMessage]):\n", + " question = state[0].content\n", + " related_docs = state[-1].content\n", + " response = model.invoke(\n", + " [\n", + " HumanMessage(\n", + " content=(\n", + " f\"\"\"\n", + " Use the docs: {related_docs} to answer question:{question}.\n", + " The answer format should be json dict.\n", + " \"\"\"\n", + " )\n", + " )\n", + " ]\n", + " )\n", + " # Multiturn requests alternate between user and model.\n", + " state.append(response)\n", + "\n", + " builder.add_node(\"summerizar_node\", summerizar)\n", + " builder.add_edge(\"summerizar_node\", END)\n", + " # Book retrieval node\n", + " book_node = ToolNode([book_similarity_search])\n", + " builder.add_node(\"book_similarity_search\", book_node)\n", + " builder.add_edge(\"book_similarity_search\", \"summerizar_node\")\n", + "\n", + " # Movie retrieval node\n", + " movie_node = ToolNode([movie_similarity_search])\n", + " builder.add_node(\"movie_similarity_search\", movie_node)\n", + " builder.add_edge(\"movie_similarity_search\", \"summerizar_node\")\n", + "\n", + " # Router to check condition.\n", + " builder.add_conditional_edges(\"tools\", router)\n", + "\n", + " self.runnable = builder.compile()\n", + "\n", + " # The query method will be used to send inputs to the agent\n", + " def query(self, message: str):\n", + " \"\"\"Query the application.\n", + "\n", + " Args:\n", + " message: The user message.\n", + "\n", + " Returns:\n", + " str: The LLM response.\n", + " \"\"\"\n", + " chat_history = self.runnable.invoke(HumanMessage(message))\n", + "\n", + " return chat_history[-1].content" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sEfQYtgSm9ol" + }, + "source": [ + "### Local test" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "IcWux9IskE-c" + }, + "outputs": [], + "source": [ + "agent = MultiStageLangGraphApp(project=PROJECT_ID, location=LOCATION)\n", + "agent.set_up()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0aaf11c1677a" + }, + "source": [ + "Expect a JSON format answer like \n", + "```json\n", + "{\"company\": [\"Warner Bros.\", \"Heyday Films\"]}\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "J9yUujSokJpQ" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "```json\n", + "{\n", + " 'answer': 'Warner Bros and Heyday Films produce Harry Potter and the Deathly Hallows: Part 2.'\n", + "}\n", + "```" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "agent.query(message=\"Which company produces and distributes Harry Potter films\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "077f1396f641" + }, + "source": [ + "Expect a JSON format answer like \n", + "```json\n", + "{\n", + " \"answer\": [\"Daniel Radcliffe\", \"Darren Criss\"]\n", + "}\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Vn1wBUEyLGSG" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "```json\n", + "[\n", + " {\n", + " \"actor\": \"Darren Criss\",\n", + " \"movie\": \"A Very Potter Musical\"\n", + " },\n", + " {\n", + " \"actor\": \"Daniel Radcliffe\",\n", + " \"movie\": \"Harry Potter and the Deathly Hallows: Part 2\"\n", + " }\n", + "]\n", + "```\n" + ] + } + ], + "source": [ + "agent.query(message=\"Who acts as Harry Potter\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "df468170bc6d" + }, + "source": [ + "Expect a JSON format answer like \n", + "```json\n", + "{\n", + " \"answer\": \"Harry Potter and the Chamber of Secrets.\"\n", + "}\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EPGRJjdEb228" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'```json\n", + "{\n", + " \"book\": \"Harry Potter and the Chamber of Secrets\"\n", + "}\n", + "```'" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "agent.query(message=\"In which book Harry Potter drives car\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EdvJRUWRNGHE" + }, + "source": [ + "## Building and deploying a LangGraph app on Reasoning Engine\n", + "\n", + "In the following sections, we'll walk through the process of building and deploying a LangGraph application using Reasoning Engine in Vertex AI." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ERxxgFTcI3DC" + }, + "source": [ + "## Deploy the service\n", + "\n", + "Now that you've specified a model, tools, and reasoning for your agent and tested it out, you're ready to deploy your agent as a remote service in Vertex AI!\n", + "\n", + "Here, you'll use the LangChain agent template provided in the Vertex AI SDK for Reasoning Engine, which brings together the model, tools, and reasoning that you've built up so far." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "k2nGSr2_JWcc" + }, + "outputs": [], + "source": [ + "remote_app = reasoning_engines.ReasoningEngine.create(\n", + " MultiStageLangGraphApp(project=PROJECT_ID, location=LOCATION),\n", + " requirements=[\n", + " \"google-cloud-aiplatform[reasoningengine,langchain]==1.60.0\",\n", + " \"langchain-google-cloud-sql-pg==0.6.1\",\n", + " \"cloud-sql-python-connector==1.9.0\",\n", + " \"langchain-google-vertexai==1.0.4\",\n", + " \"cloudpickle==3.0.0\",\n", + " \"pydantic==2.7.4\",\n", + " \"langgraph==0.0.51\",\n", + " \"httpx==0.27.2\",\n", + " ],\n", + " display_name=\"Reasoning Engine with LangGraph Rag Agent\",\n", + " description=\"This is a sample custom application in Reasoning Engine that uses LangGraph and sql pg rag\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TYqMpB16I4iH" + }, + "source": [ + "## Try it out\n", + "\n", + "Query the remote app directly or retrieve the application endpoint via the resource ID or display name. The endpoint can be used from any Python environment." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5A-5oNnQjePC" + }, + "source": [ + "### Ask question that can only be answered by the movie." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "P9-7ZcQugWkJ" + }, + "outputs": [], + "source": [ + "response = remote_app.query(message=\"Who acts as Harry Potter\")\n", + "print(response)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UuACdm6zgaLm" + }, + "outputs": [], + "source": [ + "response = remote_app.query(\n", + " message=\"Which company produces and distributes Harry Potter film\"\n", + ")\n", + "print(response)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oXVavFQfi9Hz" + }, + "source": [ + "### Ask question that can only be answered by the book." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NxiCmdMnalY-" + }, + "outputs": [], + "source": [ + "response = remote_app.query(message=\"In which book Harry Potter drives car\")\n", + "print(response)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MrZ9IjnAI5v9" + }, + "source": [ + "## Clean up\n", + "\n", + "If you created a new project for this tutorial, delete the project. If you used an existing project and wish to keep it without the changes added in this tutorial, delete resources created for the tutorial." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tBc48ZHOJS6J" + }, + "source": [ + "### Deleting the project\n", + "\n", + "The easiest way to eliminate billing is to delete the project that you created for the tutorial.\n", + "\n", + "1. In the Google Cloud console, go to the [Manage resources](https://console.cloud.google.com/iam-admin/projects?_ga=2.235586881.1783688455.1719351858-1945987529.1719351858) page.\n", + "1. In the project list, select the project that you want to delete, and then click Delete.\n", + "1. In the dialog, type the project ID, and then click Shut down to delete the project.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ed-BFtW-JPbI" + }, + "source": [ + "### Deleting tutorial resources\n", + "\n", + "Delete the reasoning engine instance(s) and Cloud SQL instance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LgNlHrxkb6c-" + }, + "outputs": [], + "source": [ + "# Delete the ReasoningEngine instance\n", + "remote_app.delete()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "goyrqS2_I8Hs" + }, + "outputs": [], + "source": [ + "# Or delete all Reasoning Engine apps\n", + "apps = reasoning_engines.ReasoningEngine.list()\n", + "for app in apps:\n", + " app.delete()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "odvj8aKpb3Wi" + }, + "outputs": [], + "source": [ + "# Delete the Cloud SQL instance\n", + "!gcloud sql instances delete {INSTANCE} \\\n", + " --project={PROJECT_ID}" ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "agent.query(message=\"In which book Harry Potter drives car\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "EdvJRUWRNGHE" - }, - "source": [ - "## Building and deploying a LangGraph app on Reasoning Engine\n", - "\n", - "In the following sections, we'll walk through the process of building and deploying a LangGraph application using Reasoning Engine in Vertex AI." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ERxxgFTcI3DC" - }, - "source": [ - "## Deploy the service\n", - "\n", - "Now that you've specified a model, tools, and reasoning for your agent and tested it out, you're ready to deploy your agent as a remote service in Vertex AI!\n", - "\n", - "Here, you'll use the LangChain agent template provided in the Vertex AI SDK for Reasoning Engine, which brings together the model, tools, and reasoning that you've built up so far." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "k2nGSr2_JWcc" - }, - "outputs": [], - "source": [ - "remote_app = reasoning_engines.ReasoningEngine.create(\n", - " MultiStageLangGraphApp(project=PROJECT_ID, location=LOCATION),\n", - " requirements=[\n", - " \"google-cloud-aiplatform[reasoningengine,langchain]==1.60.0\",\n", - " \"langchain-google-cloud-sql-pg==0.6.1\",\n", - " \"cloud-sql-python-connector==1.9.0\",\n", - " \"langchain-google-vertexai==1.0.4\",\n", - " \"cloudpickle==3.0.0\",\n", - " \"pydantic==2.7.4\",\n", - " \"langgraph==0.0.51\",\n", - " \"httpx==0.27.2\",\n", - " ],\n", - " display_name=\"Reasoning Engine with LangGraph Rag Agent\",\n", - " description=\"This is a sample custom application in Reasoning Engine that uses LangGraph and sql pg rag\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TYqMpB16I4iH" - }, - "source": [ - "## Try it out\n", - "\n", - "Query the remote app directly or retrieve the application endpoint via the resource ID or display name. The endpoint can be used from any Python environment." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5A-5oNnQjePC" - }, - "source": [ - "### Ask question that can only be answered by the movie." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "P9-7ZcQugWkJ" - }, - "outputs": [], - "source": [ - "response = remote_app.query(message=\"Who acts as Harry Potter\")\n", - "print(response)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "UuACdm6zgaLm" - }, - "outputs": [], - "source": [ - "response = remote_app.query(\n", - " message=\"Which company produces and distributes Harry Potter film\"\n", - ")\n", - "print(response)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oXVavFQfi9Hz" - }, - "source": [ - "### Ask question that can only be answered by the book." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "NxiCmdMnalY-" - }, - "outputs": [], - "source": [ - "response = remote_app.query(message=\"In which book Harry Potter drives car\")\n", - "print(response)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "MrZ9IjnAI5v9" - }, - "source": [ - "## Clean up\n", - "\n", - "If you created a new project for this tutorial, delete the project. If you used an existing project and wish to keep it without the changes added in this tutorial, delete resources created for the tutorial." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tBc48ZHOJS6J" - }, - "source": [ - "### Deleting the project\n", - "\n", - "The easiest way to eliminate billing is to delete the project that you created for the tutorial.\n", - "\n", - "1. In the Google Cloud console, go to the [Manage resources](https://console.cloud.google.com/iam-admin/projects?_ga=2.235586881.1783688455.1719351858-1945987529.1719351858) page.\n", - "1. In the project list, select the project that you want to delete, and then click Delete.\n", - "1. In the dialog, type the project ID, and then click Shut down to delete the project.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Ed-BFtW-JPbI" - }, - "source": [ - "### Deleting tutorial resources\n", - "\n", - "Delete the reasoning engine instance(s) and Cloud SQL instance." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LgNlHrxkb6c-" - }, - "outputs": [], - "source": [ - "# Delete the ReasoningEngine instance\n", - "remote_app.delete()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "goyrqS2_I8Hs" - }, - "outputs": [], - "source": [ - "# Or delete all Reasoning Engine apps\n", - "apps = reasoning_engines.ReasoningEngine.list()\n", - "for app in apps:\n", - " app.delete()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "odvj8aKpb3Wi" - }, - "outputs": [], - "source": [ - "# Delete the Cloud SQL instance\n", - "!gcloud sql instances delete {INSTANCE} \\\n", - " --project={PROJECT_ID}" - ] - } - ], - "metadata": { - "colab": { - "collapsed_sections": [ - "-RYpMytsZ882", - "R5Xep4W9lq-Z", - "OaP1LRhPi0y7", - "GBdIVxqVkjT-" - ], - "name": "tutorial_langgraph_rag_agent.ipynb", - "toc_visible": true + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "-RYpMytsZ882", + "R5Xep4W9lq-Z", + "OaP1LRhPi0y7", + "GBdIVxqVkjT-" + ], + "name": "tutorial_langgraph_rag_agent.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_on_multiple_images.ipynb b/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_on_multiple_images.ipynb index 2d9bbbcc546..2d8823393b0 100644 --- a/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_on_multiple_images.ipynb +++ b/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_on_multiple_images.ipynb @@ -33,22 +33,22 @@ "\n", "\n", " \n", " \n", " \n", " \n", @@ -58,23 +58,23 @@ "\n", "Share to:\n", "\n", - "\n", + "\n", " \"LinkedIn\n", "\n", "\n", - "\n", + "\n", " \"Bluesky\n", "\n", "\n", - "\n", + "\n", " \"X\n", "\n", "\n", - "\n", + "\n", " \"Reddit\n", "\n", "\n", - "\n", + "\n", " \"Facebook\n", "" ] @@ -236,17 +236,17 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "Nqwi-5ufWp_B", - "cellView": "code" + "cellView": "code", + "id": "Nqwi-5ufWp_B" }, "outputs": [], "source": [ "# Use the environment variable if the user doesn't provide Project ID.\n", "import os\n", "\n", - "import vertexai\n", "from google import genai\n", "from google.genai import types\n", + "import vertexai\n", "\n", "PROJECT_ID = \"[your-project-id]\" # @param {type: \"string\", placeholder: \"[your-project-id]\", isTemplate: true}\n", "if not PROJECT_ID or PROJECT_ID == \"[your-project-id]\":\n", @@ -259,9 +259,7 @@ "\n", "vertexai.init(project=PROJECT_ID, location=REGION, staging_bucket=BUCKET_URI)\n", "\n", - "client = genai.Client(\n", - " vertexai=True, project=PROJECT_ID, location=REGION\n", - ")" + "client = genai.Client(vertexai=True, project=PROJECT_ID, location=REGION)" ] }, { @@ -318,8 +316,7 @@ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", - "# For model fine tuning.\n", - "from vertexai.preview.tuning import sft" + "# For model fine tuning." ] }, { @@ -658,24 +655,29 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Sr8r90AAiyoB" + }, + "outputs": [], "source": [ - "train_dataset=str(Path(INPUT_DATA_URI) / \"prepared_train.jsonl\")\n", - "validation_dataset=str(Path(INPUT_DATA_URI) / \"prepared_val.jsonl\")\n", + "train_dataset = str(Path(INPUT_DATA_URI) / \"prepared_train.jsonl\")\n", + "validation_dataset = str(Path(INPUT_DATA_URI) / \"prepared_val.jsonl\")\n", "\n", - "training_dataset= {\n", - " 'gcs_uri': train_dataset,\n", + "training_dataset = {\n", + " \"gcs_uri\": train_dataset,\n", "}\n", "\n", "validation_dataset = types.TuningValidationDataset(gcs_uri=validation_dataset)" - ], - "metadata": { - "id": "Sr8r90AAiyoB" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GToiYxswipZA" + }, + "outputs": [], "source": [ "tuned_model_display_name = \"spot-the-difference-tuning-job\" # @param {type:\"string\"}\n", "\n", @@ -683,39 +685,34 @@ " base_model=MODEL_ID,\n", " training_dataset=training_dataset,\n", " config=types.CreateTuningJobConfig(\n", - " adapter_size = 'ADAPTER_SIZE_EIGHT',\n", - " epoch_count = 1, # set to one to keep time and cost low\n", + " adapter_size=\"ADAPTER_SIZE_EIGHT\",\n", + " epoch_count=1, # set to one to keep time and cost low\n", " tuned_model_display_name=tuned_model_display_name,\n", - ")\n", + " ),\n", ")\n", "sft_tuning_job" - ], - "metadata": { - "id": "GToiYxswipZA" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "⚠️ It will take ~30 mins for the model tuning job to complete on the provided dataset and set configurations/hyperparameters. ⚠️" - ], "metadata": { "id": "HF3HVA8GTh8N" - } + }, + "source": [ + "⚠️ It will take ~30 mins for the model tuning job to complete on the provided dataset and set configurations/hyperparameters. ⚠️" + ] }, { "cell_type": "code", - "source": [ - "tuning_job = client.tunings.get(name=sft_tuning_job.name)\n", - "tuning_job" - ], + "execution_count": null, "metadata": { "id": "0bGX6OjmitaR" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "tuning_job = client.tunings.get(name=sft_tuning_job.name)\n", + "tuning_job" + ] }, { "cell_type": "markdown", @@ -730,24 +727,24 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sqaAHUmufq8-" + }, + "outputs": [], "source": [ "import time\n", "\n", - "running_states = set([\n", + "running_states = {\n", " \"JOB_STATE_PENDING\",\n", " \"JOB_STATE_RUNNING\",\n", - "])\n", + "}\n", "\n", "while sft_tuning_job.state in running_states:\n", " print(sft_tuning_job.state)\n", " tuning_job = client.tunings.get(name=sft_tuning_job.name)\n", " time.sleep(10)" - ], - "metadata": { - "id": "sqaAHUmufq8-" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", @@ -764,16 +761,12 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "Up7_r1lWLo6i", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "45b2f2c3-86c0-4d4f-e57b-86f0b5714a70" + "id": "Up7_r1lWLo6i" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Tuned model experiment None\n", "Tuned model endpoint resource name: projects/801452371447/locations/us-central1/endpoints/2471008347403321344\n" @@ -860,23 +853,18 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "1UiaDg_3ZKuN", - "outputId": "75216560-945a-4b37-f570-2e746e26691f", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 626 - } + "id": "1UiaDg_3ZKuN" }, "outputs": [ { - "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAJhCAYAAADmLrFYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aax1a1YWDF/jbuZca+29n+Y01VMFFFggL3ylEk34IVBKAEPI+2lQ8Q2dkeAPFUlEDQaJQIgIGkhQ80UMmFAEo0YUjZoQUBP1U4yA9YYPKami2lOnebq991prznk34/sxxrjnXPt5quoUOdW8xRxV++z97L3WmnPezRjXuEZzEzMzVllllVVWWWWVVVZZZZVVVllllVVWWeUVEPfJvoFVVllllVVWWWWVVVZZZZVVVllllVU+fWQlm1ZZZZVVVllllVVWWWWVVVZZZZVVVnnFZCWbVllllVVWWWWVVVZZZZVVVllllVVWecVkJZtWWWWVVVZZZZVVVllllVVWWWWVVVZ5xWQlm1ZZZZVVVllllVVWWWWVVVZZZZVVVnnFZCWbVllllVVWWWWVVVZZZZVVVllllVVWecVkJZtWWWWVVVZZZZVVVllllVVWWWWVVVZ5xWQlm1ZZZZVVVllllVVWWWWVVVZZZZVVVnnFZCWbVllllVVWWWWVVVZZZZVVVllllVVWecVkJZtWWWWVVVZZZZVVVllllVVWWWWVVVZ5xWQlm1ZZZZUT+cmf/EkQEf77f//vn+xb+bjK3//7fx9f93Vfhze+8Y0gInzzN3/zJ/uWVllllVVWWWWV/4fK7wT89L73vQ9/42/8Dfz+3//7cffuXTzzzDP4si/7Mvz8z//8J/vWVllllU9BWcmmVVZZ5Xek/OAP/iB+4Rd+AV/wBV+AEMIn+3ZWWWWVVVZZZZVVPqXlX/yLf4Ef/MEfxOd8zufg+7//+/Hd3/3duLq6wld8xVfgJ37iJz7Zt7fKKqt8isnqYa2yyiq/I+U//If/0LKazs/PP9m3s8oqq6yyyiqrrPIpLV/+5V+O9773vXjmmWfa7/7sn/2zeOtb34q//tf/Or7lW77lk3h3q6yyyqearJlNq6yyykeVb/7mb8b5+Tne+9734mu+5mtwfn6O17/+9fi7f/fvAgDe8Y534G1vexvOzs7wpje9CT/90z998v779+/jL/2lv4Qv/MIvxPn5OW7duoWv/uqvxq/+6q8+dq33vOc9+Nqv/VqcnZ3hVa96Fb7jO74D/+7f/TsQEf79v//3J6/9r//1v+KrvuqrcPv2bex2O3zpl34p/tN/+k8v65ne9KY3gYh+ewOyyiqrrLLKKqus8lHk0w0/fcEXfMEJ0QQAfd/jj/yRP4L3v//9uLq6+hhHaJVVVvl0lpVsWmWVVV6WlFLw1V/91fiMz/gM/K2/9bfwmZ/5mfhzf+7P4Sd/8ifxVV/1VfjiL/5i/OAP/iAuLi7wjd/4jXj3u9/d3vuud70LP/uzP4uv+Zqvwd/5O38H3/md34l3vOMd+NIv/VJ88IMfbK/b7/d429vehp//+Z/HX/gLfwF/7a/9Nfzn//yf8Vf+yl957H5+4Rd+AX/wD/5BXF5e4nu+53vwAz/wA3j48CHe9ra34b/9t//2CRmTVVZZZZVVVllllY8kvxPw04c+9CHsdjvsdrvf1vtXWWWVT1PhVVZZZZWF/MRP/AQD4F/6pV9qv/umb/omBsA/8AM/0H734MED3m63TET8Mz/zM+33v/7rv84A+Hu+53va74Zh4FLKyXXe/e53c9/3/L3f+73td3/7b/9tBsA/+7M/2353PB758z7v8xgA/+Iv/iIzM9da+XM/93P5K7/yK7nW2l57OBz4sz7rs/grvuIrPqZnPjs742/6pm/6mN6zyiqrrLLKKqusYvI7ET8xM7/zne/kzWbD3/AN3/Axv3eVVVb59JY1s2mVVVZ52fJn/syfaT/fuXMHb3nLW3B2doY//sf/ePv9W97yFty5cwfvete72u/6vodzom5KKbh37x7Oz8/xlre8Bf/jf/yP9rp/+2//LV7/+tfja7/2a9vvNpsNvvVbv/XkPn7lV34F73znO/Gn/tSfwr179/DSSy/hpZdewn6/xx/6Q38I//E//kfUWl/x519llVVWWWWVVVb5WOXTFT8dDgd83dd9HbbbLf7m3/ybL39AVlllld8RsjYIX2WVVV6WbDYbPPvssye/u337Nt7whjc81vvo9u3bePDgQft3rRU/+qM/ir/39/4e3v3ud6OU0v729NNPt5/f85734M1vfvNjn/c5n/M5J/9+5zvfCQD4pm/6pg97v48ePcLdu3df5tOtssoqq6yyyiqrvPLy6YqfSin4k3/yT+LXfu3X8G/+zb/B6173uo/6nlVWWeV3lqxk0yqrrPKyxHv/Mf2emdvPP/ADP4Dv/u7vxp/+038a3/d934ennnoKzjn8xb/4F39bGUj2nh/6oR/CW9/61ie+Zj1hbpVVVllllVVW+WTLpyt++tZv/Vb8q3/1r/D2t78db3vb2z7me1lllVU+/WUlm1ZZZZWPu/zTf/pP8eVf/uX4h//wH578/uHDhyenmrzpTW/Cr/3ar4GZT6Jz//t//++T9735zW8GANy6dQt/+A//4Y/jna+yyiqrrLLKKqt8cuRTFT9953d+J37iJ34CP/IjP4Kv//qv/21/ziqrrPLpLWvPplVWWeXjLt77k0gdAPyTf/JP8IEPfODkd1/5lV+JD3zgA/iX//Jftt8Nw4B/8A/+wcnrft/v+31485vfjB/+4R/G9fX1Y9d78cUXX8G7X2WVVVZZZZVVVvnEy6cifvqhH/oh/PAP/zC+67u+C9/+7d/+sTzOKqus8jtM1symVVZZ5eMuX/M1X4Pv/d7vxbd8y7fgS77kS/COd7wDb3/72/HZn/3ZJ6/7tm/7NvzYj/0Yvv7rvx7f/u3fjte+9rV4+9vfjs1mAwAtWuecw4//+I/jq7/6q/EFX/AF+JZv+Ra8/vWvxwc+8AH84i/+Im7duoWf+7mf+4j39HM/93P41V/9VQBASgn/83/+T3z/938/AOBrv/Zr8UVf9EWv9DCsssoqq6yyyiqrvGz5VMNP//yf/3P85b/8l/G5n/u5+PzP/3z81E/91Mnfv+IrvgKvfvWrX+FRWGWVVf6fKivZtMoqq3zc5bu+67uw3+/x0z/90/jH//gf4/f+3t+Lf/2v/zX+6l/9qyevOz8/xy/8wi/gz//5P48f/dEfxfn5Ob7xG78RX/IlX4I/9sf+WANNAPBlX/Zl+C//5b/g+77v+/BjP/ZjuL6+xmte8xr8gT/wB/Bt3/ZtH/We/tk/+2f4R//oH7V///Iv/zJ++Zd/GQDwhje8YSWbVllllVVWWWWVT6p8quEnC9K9853vxDd8wzc89vdf/MVfXMmmVVZZpQnxzdzMVVZZZZVPMfmRH/kRfMd3fAfe//734/Wvf/0n+3ZWWWWVVVZZZZVVPuVlxU+rrLLKJ1NWsmmVVVb5lJLj8Yjtdtv+PQwDfs/v+T0opeA3fuM3Pol3tsoqq6yyyiqrrPKpKSt+WmWVVT7VZC2jW2WVVT6l5I/+0T+KN77xjXjrW9+KR48e4ad+6qfw67/+63j729/+yb61VVZZZZVVVllllU9JWfHTKqus8qkmK9m0yiqrfErJV37lV+LHf/zH8fa3vx2lFPzu3/278TM/8zP4E3/iT3yyb22VVVZZZZVVVlnlU1JW/LTKKqt8qslaRrfKKqusssoqq6yyyiqrrLLKKqusssorJu6TfQOrrLLKKqusssoqq6yyyiqrrLLKKqt8+shKNq2yyiqrrLLKKqusssoqq6yyyiqrrPKKyUo2rbLKKqusssoqq6yyyiqrrLLKKqus8orJy24Q/n/9v78CYMZUElJOSKXg8nDAlDNQAS4AgdCFiECEWgtqySAibGJE9B7b7Qa3b12AnMOQEqacEUJA33cAEY6j/K4LAednG3jnADCIGaUwpqGiVsYmdvKZMeD2+RZdDNjsNtid7QAwypTAtQIEgAAiB+8DyDk8vL7Gh+7fx5QyLi8TjseCza7Hxe0zAMAL917Ew6tHcM4h+AAiQgwOMTiUWjGkjMqM8VgwDgXeB2z6M3gf4D3BBwdHQAgOzhEqZxSekHPBg0d7DMOEWipyKgADnghEhH7TY3e+g3MO5DJABeOYsL8+opSKnGUMHHlEv0HwHm96wxle/5od9mPG+1+6xnHM2F8XHPYFAMM5yPiRA+l1nJOft7sdLi4uEGLErTu30G83OOwPuHx0iZQSrq/3GIZR3g/IPHZbxNDh/OIWXvXa16HvN7i4fRdn57fgQ0S/2cE5D4CB1gnMgWjxTxX7NzOffOGx3wNov2f9uYIh3wFGzgWlFFw+eoD3vPudOOyv8MKHPoCXXvyQXOjkM0TIyXh47+C9BwDUWufrVm7vofYm+aiUM2qtiDFiu5U58z7AOYdcMoZhALPcGwjgyuBcQCDcvfsU7ty5Ax88uk0H5x1SmpDShFIKhuGAUjKmacI0TqilYByPKDkjxg02/Rm6rsOrn30Nzs8vEByh84Tdbosv/v1fjDd/zmfh+lHCSx/cI40VOWXUXFBRUHgCc0XligoGyIFdAJzHxflTuLi4C4ID4MEM7IdLXB0fodSElB+h1AnDcY/D/hrjcMRzz70Xl5cPkKYRw3EPANj0ETF4cAVqkXnMOSOXAuccYpCx5loBZmx3Ozzzmteg63ukzEiZMR4PeOmF5zANR4QYEWPUtQsQAaWKHqjMOhcM7x1C9CAiBO/hHGG73eHi4g6IHK4PGeNUcP/BS3jve38T4zSAAoECod963H5mg9h5xN4hRgJXlrGrjJodaiGUwhiHhJIL0lQwjkWus+sRgoP3BBcIzEBKCaVW5JGRjrKeuBQwM/rzgPNnNnCeME6yt2uqyMcCroBjgoNr+6HtDV2SXG1Vzns6hA6OHEIHhI7gPBA2Hi4Qas3IdQIzo1TZO8F7dF0H50RPEQG1MHIq4MqoFajMgAPIA84Rdtsttn2PLnS42Fwg+IiSM4rq+Rg9yBFqqaKzUsbVoytMY0KIAbGLsgb6CB88Sqkouega0TlV3ch1uQdZNyFjmiaknBD7gLM7O4QY0G97sSEAKlcdNwZI9AcXB2ZCKQU5F7EJXtaSPL/EXHKu7frTMKkekHvxMaDbbgAHHIcRU0rwROhCAAEYhxHTlFBrRUnyTCF4hODhXECMWzjyqEX0eKlV9nXJWGpHIvuZmspq3yuDq66HKv+2de8c6TwSQAw4ec7NNqDrI5wHYvRwntB1HTZ9j1IYh+uEnCqGYcJwHHUOiuhCqqjIAAEODo5I71HGbbvtELuAnCuOQ5Jnjh7eO8TocXbWwXlCSjLuJVcc9wmlVAzHEeMwwjuHTdcheIczijhHhz54PHuxwS4GRO/RhQAwIw8Tai7wDvBilEDkAXKyFyC2zcazlIJxHMHM8N43PW+2cGlv/u6/fwc+3vJ//Z9fCWbGkCcc04hcMg7DASlncCXBUOSw2XTw3iOnhGkc4IhwZ3eGbSfjvdn1ICLUXFFrhfcBIcjvRgYSAzF4nG86eEcouaIWRq0V05TBzNj2HTZdRBcjbt++EF0QHXx0stVqRVuKIBAIcA5MhHsPH+J9zz+HlAtqCqjFIXQe/TaiouLBwwe4ur6G9x59093yVSuQs6xfOA+4gBA6nF88hRA71JJRSxElVyeAC4ZxxGE8IqWMR4+uMY6j6KfCIILqe4d+0+H8YgvnZK8zF0xTxmE/oVYG4AF4dDHgfLdFjAGve90FXv2qM1ztR/zm++9hf5yQp4qc6sn+80HWDzkHH8TWP/PsM3jd616Lru9wcfcC/XaDFz/0At7zrt/CNE447gekMQFgMCqcc7h79ylcnF/g7lOvwmd/zufj7OwCT7/61bjz9FMg5+F9BNEiBrzAbEshohmXgNQc6DwR2uu51vlNTAARvCeQzof3sg+OxwHTOOH5Dz2HX/mlX8LDB/fwW+/+X3j/+34T0zRif3WJnFL7KOccYtfBOY8YA2LsVI+r7qiseAoC03C678ZxRM4Z57du4VWveQ1CDHLvIAzDgEcPHiArzhJ9V1FKAhHw1FN3cffubV1XsqdTToqhMoZxj1IS0jRhHAfUykij7IHddofbF7cRQ8StO7ex2Wyw6ze4c3aG3XaHL/x/fSE+441vxMMHR7z/PQ8xTRnkRMUUTpj4gMoFtYpNJgqIbgPnAm7duovz23eA6pAmoFRgGK9wHC5RyojjeB+5HHE87LG/foRpHPHcc8/h6uoSpUzI0wAiYNN3iCGg1IqUUrNDtRZ47xFCAEDgWsFccXZ+gde+4U3o+g0ePrzGo0d7pDTicPUQOU9ih6L4Mh6CkUqpKJVRuSKXhMoVIQZ0XZS1ob7T2fkF7j71LBjAhz70Eh4+usJ+f4n7L30IOScgOFBw8IHQ78S+bLYBfR/a3mEGSuFm+6Yxy/VLRc4V3hN2FxGxc8hZbAVXII0Q3JUK8lRAALreIUSH0Dl0ZxFEwHhISGMRnZBlnRPJGofaM9RTDFV0TXrvERS7xyB4qNtG9LtO5j0UwFWkacIwDADEljhygo2cXCduAnx0QCVwdmAGpjEhJ7XvsvWw20ZsNwEOAYF3IHiEAPgAhOCx2Wzgvcc4TDgeJ5SccTzskVNC10Vstn3zZ52T8Uqq0wUbQPyHJHbvxHkB4Mjh/PYW23PBn65zIAfkkpFzVh3iwCBMY8U4FoBlnQAs99D3ABgVBUDFNBUMg+zVPFbUXOWzg+BKU2e1VKRJ1rPptJwKjocBtVQ452f/UaXvenRdh1oqhsOIUgoM9wKMUsUfp8VTmm9XDEuy2Apm+VsI4pN2PSFEQug8tufii8m4epAT8wRiTGPBNBWUVHC8HlGSrN1aKogA3zs4T/AhiK/iCD4QyOHETvWbiBC8jIka15whmKtWpFLEryXx/4Pz6GMHAuH60YD91YTKjMKA+ffkIBjKRQTy2HHAGQf0XjDUtvPwBASS9Z8n8ZW98whOdIEj080ORLJv7Z5KLRizYOGoGErmlPR1VdcG8P/5hV/DR5KXTTZFBeRcCyoRCjNKzsgpgdgJ0AOBmMVAkoPzQYgXdWicGUgWR26aJgFLzskC0c1AJM4eQyYJEOPWdeIEByIABWBqhIQ4UkXucbG5SDc5aF6gYiwKcp2QOWGYMvg6yWtcxdlZr06KgIRhSNjrIrdl7Z3HdtshhIDtdgPvQyNAmBljkmdLacKURpRSMU4JpTCICF0vyr+LXkg1IjE4GZhSQikZpTByYjBISTkHRx7eRVGSURQOQRy8nAtqKWCeSRMZOxk/GSfZIDnr+HPF8XhEVmCeU9aN79DFqJ9T2ljCSB61IrUWlJx0zip4AYoE+rD+9DjhtJypm3+bwZWsJ1TWsa/t96za1Ywu1IkOIbSvWkUp3LyAOaSVCcTzZ964CbRHpvlGqa0lUhBbAYiDWWuFI0KFg6F1IkYluYdhOOLhQ5b1rsq4FFEAXCuyOnq1VHH6uCppI07i7du3EEOEjw6MgmlKGKYRaTzg4f0X8eDeOcARt57Zgpmw3+9xPGaknDENe5SS237p+h1u330asdtit72N3faOGl1xEI7jDreGC6Q84Xp/jikNqPVFPHx4jTExpqkiJUZKjFJU+RSA3UxWMNt3WS+qHp4g82ts/o1IEQW3BN0FzBkOQr4yVTATcmYQCUkh5Icob4KAihhlTccYUbkAXu6VyCk5ZgQHLe5B9FApoljb2tT7s3VfK+C8g3NeQKhzIGbde7KECss6JufgnRAEwTsAFZUJ1cm1PBwcCdlUS13sJG6rlBmyvljIN+gepOARKJwMcmVGyUrQqkPCDORUQFQRlSAQIks+0/uAQB5MjEpZjKqTvRVjwGbTIYSINBFyUneKWawrz4REiFF0tu5HWV8BPngQTF9B9UhtIJ4bS2zPWxX0zGuqlorilLR3Xsi9lFFqFRI56PoJHYickmBKNjlqBJbpyRg7EBxKzpi6Thwm3YON4q7cnk0cJyMD5TuBGqkxr1exlZXU+SLTYzOx1J6V2xODeblRZgUk81cVOM9Aa/laAQ4yjzEagCgoFSBk0cisjieFBsyEkEtiS10Fed0/Ttc9t7tDqQxXGFkdB1n3SlxWEoKZCSklTFNWUkvIpmrElPOIIQjwQUBlh8yE/ZSRSsUmBpzZM6qeZt2iFgQh5+bxafNhzuByL+vPimUIaHP/iRDDULkIpU8MlFwUQ3kQFMipj+CJEH2AdwTvhOxzRigooZ1SRgwMIiFyQfo6UHNABFcRyHnEiGbDBFDa2kVbkgwomlsYPqL2zfYM14pUEkoGMhMyRgBCTJ+dbVErNzK55IJSKoiMUFFd0vUIoUPsIkIISFwUx2SMgwRZhnHA4XhUO5kBaDAvCm6MQfQXEQm5CEaasjqtYosAIHYBIUTEEND1nbxPcVFlVue3CBlc6mJf2wwqvgWhuoppnHA4HASvUUU8HrDf7wEmOPLoYodAAZULcklC7jgL/Cl2Khk5J0zTpI5OUEdE12r76aPL0uFa2lGwWUEoZmMQK5nNYleEYC5wJIGrnM6x2WwQuw61lkYeEWbCqGjwRIjEGVc88cZu/HpJ8qckZAfrWsw5yXwiaGCpopISFpVxOFyjcmraUGxgafdTS0blqsEMr9hQNkLfd7h1+1wDyYwpjUBJwHDAuN3i6tE9HPYXYDDuPBuRi8cwHDGlETmNmI6XKLXAh4gQIrq+x63bz6DrNtid3cJud0t8H+dBIByGcxyO50hpwuWjDuN4QMkv4MH4CONQNcDBSgbL/mpDaItvgeVtTS4xlNnH9pyo4qm4GT9Z4NyRfGcUVM4aRJCgPldGSqmRw+TQ9oGQlB5R8VOI0ZQU4AnOkxkGtZu1rUiGYCd71pzFtwEDjqD7Qu/VseIgwHv1HKrgZ7FnTm277HlAcBe5KmU6Ti9o2EwdabMXzeJaIKoyCoriiklsdmT4ov5olbGsVXA5WPEcAaiiJ2STMmp1ADsQuwbSZJ5kLIkIm80GF+dbOAro3E4CUDUJkeoIpcq9FE2WICfjLoEcGXenJCuRU/+DYYFEIwmWC8SwlHlhpYqec0zwTibByD8igg9CpsXoQOTVrxG/MgQhYowYFr8kIoReCMKYUbMEqmDYWd9LjhBigAXz2WyN2m/nLKC1WNwkAUTBYGxTC4UiTxBqXw0bMEB6TUDwsgyPBA9EF3k4Igkkc4YPDr2PcM7DeyAEAjHBuwI4IUOFnyAlycQu11pBLPsHZPyEXLcW0WOgef2VzC1wztWesYBRAMcI5NvnLhMhZNwgpB4J4SQBakJmAlXG9ShJQV0gbIJr68Tw27wXdNxPfIZ5zGcMZa9b2BrDIy9DXjbZ1GkEoTqHrE54yRlpmuBdQKAIuHn6nSN4EifRe6fKRG+qAjlljKMyZuqEAOqEkROFhdoyfyRqH1X5ZKBmNaA6kbrxxdDq47d1Rxb8lEGuBaVm5Doi1QlpIgz5AOcIfd/h/GyDnAvGYUIpjOMwYH+QKGwfe4mi9R267RYhBOzOtvA+IJeEnMWxH6ZJiIBhwPFwFAOijGuMHl0vmVCbTYcYvbz2OKLkiuvrEcOYhcFWom7TR2y34jRJBMwhdl4UrRIWOZVmnHkRUpK1TmrIjFHNYuRrBbkjwiT3btEk7zxc5xQQ6bySuVyzUWMFgKL4ygmonydh/udjpFL73eNOkxkJmP/P8waZSSZRrkYE+CAG0ZzbUgq41BvXnR07ViCzjBy222ZVqkv9R2iOHNTpq9Xpd25Eg2tRBd3W5ACuOA5HDMNBwBCLI2sOksyRhyheUsJhQTbFHndu3xan3TtUZEzjEceHDzF2EQ/uvYD7t3c4u3UXz77uaSFAH0xIVwfkIWHK10ic1LEgxL7DnVfdwe7sNvruAn13C8F7bDcdgvcYpxHDJBkbL927j8NxwPV+wpQ/gHGqGFPFNFXkDOTi1CirA3OShaHzxEYgLA2hjlH7m3w5I5oa2TR/B5JcBxWOGKwArWR5byGNJPSl7bsQJJUlxk4ANFdx/qmqvlGirDSfdl6DjBatbQ4uuRadqLWCCoODOIOsAIrZCZnllKRiIatnEOgQWMiuUguKF+UujqVTg8wzv9rGbeF0g9teAADfdQCFhe/NTTcyM3wIjczPmpEkxhbz9ZgQvQCIygWpMkByX8ELObDZdhoJNHKhzPoEFmwQcAFItplk4DjEGBVA2b4TYjWn3HTVcpnYHl8abq4KGqq8yDkn5L7qsK6L8CE2Xe19ONETRjYVjegREbpugxCiZq4lGSPVh1NOOA5D03HiDOlasf2rSkYiz7PtZgZKzVgCIKIKOlF4dLIPlo6b6Zumc5Z/ZyMBZpAlrzKyyaOLEbVWjCnr/MieI3IIvkcIHiVXpJDbeJdS4IjhdC8JqJG9UDRKaOuq5CqgiRnOVVQHlALkLHpsmhLGQTKojkNCyUJwxhiUbIpib6pHqQIOr8aMQECussc9CKHW5ksIEUcNLDaiCXNUbkkOL78+DNv9cZdOnaNR9wwgQbc0JQQHIdwY7cuTgwtRSGkF4s1OKdk0HEfUHghxI7rFL0h5rupiuBaJdM7J1lLQWlVPN5JOiXodXR2rmWyaiVBuDmRKFSgM0ghu1/c42+wwjRP2k2R1Hw8jxmFCCB22uwuE4NBRkD0XozosEaVMYBTkmrA/HDGNklFwOBzA0GguSXS600zJrvPwwWGaEo7Ho2TQHRKmSTJB+l70TdcFbLY9gg/YRIkyO+/ac8s6lmcyfWlkHADBkUrSkHMYxxH7/QE+eIx5hI8O43Fsf++7HohALgk0cXOWLeO84dCURN8EIHYVN7tbLLHJqfVcvGapMw2uzR7BCUlsThdVgPVeSslCNjnCbrdDLRnb7RZd16HkNOsEdWpQBXPWWk/2lulvvcJ8Mzeex5FgfTAjpQm5+PnzIMED7zxcEUxbCjABqFxwvb/G/vBooYtM94rjY464XEwcMOYCIka3ibh95wLOORwOR0xpQM4FwzRht9ng8tE97K9vI3Q97j57ASbg/v09ytUB4AFjfoScM3bhHD469LuAp1/7DDa7W9h0Z+j7MwTvsNt18EGusd/vMY4jQgw47Pe4vhwwje/HOEoGnTj6jFp0quZY7iKYMROfjYuyMVYcIK+RwCeoir+lmfsNQznJnGMW0h+acQfFbKlIJqusU5KsINUiQW1JUsJJlRTYEcjp6tKgnZEgJhbomYMatWEgISs16O51zwGAJ0E6hVEsGcE7+GDvcwApcenVV9Cxs01CDhCAb/vAjISMoDn5qBWF1H+JjFCEbvdU4RgtkwVQm+9IiLOSdV9V+OJkjBXD21qXL80G7re4uLilOkjIpuPxgOOR2x4DJHPOsrN88ABBssNjEKdfbV4ppe3rXLLOKRrZ1rILoQQHCV4tpaAygTU7Jpd5ToLiWBc9YhD9mLMQwoYVAWhAgxBChxC2YAaSZv6XWlCqvGecKnJhwAHBBbFdU5ZnZYC8h6c52+mmWCUGLyFO02mKm0wHKja3ySenc67kHStxKL5lmIkmJYxSEn8ndhGbjVYLePkMYofgs+S5OEYlmSPvJKNP1oYY71oVL2l2vuAS86XFN5QgjBDNrF61+ElCBMN7FMotMKT8pRLL8nzOoQWhHAhMhATBQFdjwjAB296DKCgnWo0bbebCfADGMnlHK2A0YNcIaGEaYdaESNbBy5GXTTY1gIrThzuZf51wB/m7N9bNO4SW2URgDd0ZK2bREvufLDAGKqtCkd95pyl+LAPTnL7FazTuC26fNN+9iSjmKtk94wTnHUIMqLp5kSDAwxSM8gZOHV5ZXEY4aIQHrAROlk2fl0y4U1s4A7ZSCxiElBOYq7wvF025k3Q+r06yM+dGF2gtGbW6piBqIypmkocWz70kgFj/Y2BRFJYs6LJIgbYFLSSKPEeligKLfmc4n5BzksgskUbGJJXD0XL0FywqbmIiM5myLpb3ffJKmj8Ny0gdRNEbodGUu6Mbzz0bPpu3+RoGKGf6sjl6Oq68uFpbr2T3qtdY4Cpqc00AyQZnsntfAIdTmzxfhYXWwwJwlFLnbEAFyubcgwnTmHHYD4Dbo3v0EC54XF1dYn99jeNwwOXlNVJK8lRM8GELBtQhjzjb9fCONKIBIBfkOiCVCWM6YJyOKHXS6gcnUeLYAQwUSvJsLKUSS6VoQGg55m3+WfYNOYecWctFyzxRZE4SIcZes0ZI3sNOxpb00/TjLdvMiFcjhYgcnGa+lRJQqQphZTnj5kBnM99AYzs/gjRlbKQ2L9YeLdadEohW1ip7Vog1dtQAkyMhm+oyi+9kvaNFKLD8Lcles2yq0/teOgNoOkDArRKmi9K1Rjwt3Juq5Et2HlNKMu85a+Rq3qPz/lAiy/OJEyw6BS1ayHXWsSC0TIR5r8xkU9Uvv9yRtbZSTYmaFtTq2/6SNWBRmjYcurzmKJRb6AybO9vHpHPrzJEijV6egIDZwWtrcjHWDInkmj481Rfzv2+uNrvPlvG1eN187YXFa/qNTl9bT51n215WJtL+3bC5pVgvVhkvM4b4xtdsV6plHVcjf5RsZsAyB+1WHRx8y4yedWkBIxdGyhoRrIBnBpyDb/p1XitVHYglKXkTvLZMMKIn/v3jKTbHpitcG+vZ6i0xlOEar9FtC8RRW0EL3KRYiJcYSoGvYDXX1jEIQg4t7SUtIpRLb215/zOwUJ1RkXNCShXOAx5OouRZHN6WtWHkBjkt3XINP80lUpI5blm+9r6qm8qHAGDW5cAcbU+ZUaqUaxbLEHFS1iylrKE5teBZX4hNjc3/tDF0Tv1TsjW9yMRZYArRh1r6kCBZeUn1YWGQZolWC8ip3bKKgHEa4LzHNI2YJskKq0XI1TZXdgPNXuhcLADVQqXN35eqYPE5M4HIutdVH7CNJ7dxkLfwrHduysK2i3PMSgLP5AjauM77rV3DWdDGiA00x8wIT6eli3OE/ebnP2YF5+9sOG7WCSVLBr+1PKhKNHgmcIUSiHu4KSGUAiYouXXA4Tjg6nIvAYjiUArBxzM4J1lsm02H3baHc4APDHIFhUdM+YAxjRgnxVCc4IJm54QAH6KMP2V5Ol5mHT6ZaFrOOENIa6KpkYatjQPMxolTLQEir3tygpltwRulqXIjKcSWytwuP8d7D0aAJvPoXplTI+syAxin2sTIRufs86jZuBtKHbbmLaPCOYLzs79nw+B0jcDzPE6Gr58gzf4S2otosS+cVWcbdr35QWbTFatwBbiIvq1OMTk0w22BCSTjroCYUFyRzPFlqau5O46kGh6CWQHL4NLgnt5TXWAkWwtmUQwntuwnAFTnSgoHB8ce0LXPlZtptn0qN8NC8ME1jLTEx5alz4yW1GHZT5Ll40CsRDCcjjvNeheYK2JsWu0Phr1O/LelPlH12PzfOR+3DWYDe4tJp9PPuZnFemr9aPH2G7ptcT+GfYgAx07vi+dnrBVlgUENk81Y3nSV7vUqWWiEObNJFp6tUyVpFUHZT0sOJQPIhTHlKlwMA44Z7vQB9YZYCxOWOn/heZyAVp5tz8vEUC+bbHIQBzAQoTqP6jyifhHJIzoQPMni64JH3wU4B8QggElSOeU+gw+IsWoWikSoZK/K6smpyLIJAeSlLr8LEc57lEQoYAQfEWKHEDs478FP6Hc+Ex2zYq5ckGvG/uoKDx9cot9scev2LZDzOIyD9DVhNPBKlbCNcq3dxVnLDgARChdcXV9J7XOSKJ+BMIkUOezOxKkvWt5WSsLheAAz4/rK5k42PJFD321wto3wgdB1vjloAqwSrveSKn5rV3BrB4xTAUjYVecnzaQgkKbg0YIxllQ9YeqnMYGcpUIL6WXEGbd7zZjGEQwg+tJSva+vLhHHDlWjIZt+i67bSFQgRJAPABjuhvIz4cXczJzCTdikr23Gwzwy6Z8l6YSaXZUzuBZxtIMYJIlafpgSuba96+zcLhw5LED7fP+20fV3li5tTrw+jAE1I7wqipbRWa8pIxnUdV3cmm3tOSPIMqaA/X6PD33oeYTgsTs/R9d38BmIfodIAZf3DvggvwCKLwHvey/YAcOQkKaM/f6IF168j2lKAnKcw2tfl/GZn5Vx+5bHU3fP8PrXPY1aC/bHPVJOeHS4j3uXH8TxeMRz957D/nqPYTygPwNciLg93EaMHQ7Xe5QETbcvKInBXFBrVoJAs+AYYA3fEUlpTuWM/eEabvQtG6IWeZ8YMTFwMUTcvfM0Nv0WDx89wDgmEBV4J0q36lgxM1KWMtR+HLXnAQAXNMujx9mZ9ChJNSHXLGQIS6nAdCxIQ5KsHN17MmUC+Bu+ZQEYluYco2+p3QzAa75smZEGfAwgB4Rujnx5IjjPYiS2UbOnxGDkBKSkpKNd9ibAsBsiBoFBPiJ2AuQLKRFNgPdxJgLqXPLZnNQqOqFMQkY6ypB+ONwAxjSNKGnEGAbUXBF8bI6zADQtEzHjTCR9tJxD8A4hSEp2TqIbc84tg4ggvRCkp9ScsWjfU8qL+2e4qhEpL8RXvhYH8nA8CJgjIHYRADBNI4gmybCNWsZiUVEikJYYSIq+AGWmikoMdgKgyUtPhcoOQeei5opUs2TDMaSsjAiawNJIINnLqiOCh7MosAJBIztlqTX0JNN6A4DzwgExjcFc5fM9NU1VWcgEI+fEJgl4CRGN/AsRGhBSkE2SVVB9hfdAjHIvJ6RRNYK3KlGlwMOAbRHnI2dZN9myRTKDqxOHslLLsIgI6BBli1UBlpnlGkeu4DzCE7DxDoEIfdByigXIqVoacLOEzkp1AOi6EGOzBImfOOGm96J34Cr4qXgDigQPQiSHAI8QpMedc4RNiIjmbMChgqWcPgAh9Aihh/MeGYQCAlfBOA4skWpvpRGy1muuqKkiuIDoI6KL4onUJYrGwjapvdJIcZoSpmHE/uqA43GSbKbzM5ADDsOIUo+yV3VOPAVse4/YRWzPOu17RChFcAfvr0HOYxpHjJoNlUpFYW5RZnBFyqPqDsNQ6uixOHekPWk2mw3iedAM8KBZeU4yl2rBsYxwBJydEcptIZxi6NB3hEwVjjTgoRmCpE42FkNSSsHxeBQHeJLsijxlpKP0S+Ei45lSwnE4yLASSQ9FJvTb57HZbiUTEBXb7Rm6bovWe8wZKSkWQf6/9MbmabLPXpI6y9eBRD8A1NpWiE0uzW7nNKGUpM4iqd6VjHdgqYXM7Mhn2747wW/tspIla2Mnb2OwF50hfYKkV07VHn7z3gT6TtbKOA6YxqPaeAcLlPj2sQsPDtRwh2R6yFwwV1w+ugb4g4IFevnsvnoE9HA14t7zD6V9BSoGZFQwpqkgp4r9/ojnn7uHlDJu3TrH+cU5Xvd6xud9vsfts3M89fQtPPXUbaQ84sHVixinIx5dv4Dnnn8Ow3HACy+8iOP+iON0xOZ2B78ljPkOnO8wHo+oWQMxBUhKOGXFQm3sNAPbAh/kHEphXF1dwnmP4zBgTKM8r5ZLeiXDQuxwfn4XMXR48PAe9vtrMFclfoBc0XBUGhNKzej7LdKUWiuDGKVnz9n5uRDNKMiQdHCuGZKlDJRUtNxN8FvOVdoKQLAcO8AH0lJ3JaDV/jgCqqVeaBmb9MARTBZ7yVK3lo6SLa3YyBtJNvdlMmg+txfB7OBXySiR9SalXj4S+o1gHylzEl/UWz+EqiX1mgkPADwxihNSrmgAtO+3iF2HOeNM+jhdPZJ+dlOXYG0XWPeoZa86lrHhWoX8rlXKfhVDTePU+ltZ36KKOXvHnlOyAs0nlf5R1Un2f4xBMmchRG9OFYEFvzlyGqxN6sNaoBfzemxOjwcrgUmepGKVxecndggIQFXiSfdmSppZtSC/hUEXnG2ZuOShpZFaqgkre3OakOJnIsnIJp4D9VAfi0m9TZLPkNdLVJYhARJWqODVp2uahaClptJjyjCr6RrS4HAumnjhAK8Z/dCxZLBgWNSm2wgAWNna5fNXAJVQqvTIBsvcVKswUmIt+IhN18Gzw6b08NW3jwAYqVRkVC3jlhLpbZDEHzhGR4bt1NevjNRK+SA+BWERABSyvkFSUvLX0Ylt+HDysskmewBH6iC1r5lJMyNhJTAheO07gFaTuzSMvqWvee1zs2APlRRpfYA8tKzGg6mALSLixeGQqJ7ho5kJPc1wkt+Y4klpkialPghgISClgpS15EFHlCAp7sFr6n8IqKy9aCpj0ubOWfvXiBMh6achSANXBgDt/5HLXJ5Rc1XfQiMGToC0pJU7UXqApBpnGZcpJf2uWVRVCBiyDafEjW0QA9hos6SlNVUMQE4OzpkDqwoZtZFPVgtPykrnnDClCUxAnEaJznjfIioWVbk58qeEk4IlWigvAKfgX6NgzRHTGVajJR8zj7dkV9zMTqB5Ey8Ix9Nrz5EF8/PaDes6WPDTzVmZod4C2DXCCYv70IyOx8bDPu/GKDHAKJgNo3yllHE8HmS8YwSI0CPAU4QjjzRmHK4GZJcxXE+oYJQs5WWHw4gH9y4xpSz7MjhcXBw1k47QdwEXFz1yThizZN7lesRxvMR+3GN/uI+rwxU4M7xncJQeUqVnpDHDaXosdO1UdU6NODCW3HJ0bG+J4ZlAxWtfJGrpykTzCnLOYdNvsN2eYX84KKFnJR82zlCSeF63Vk7jdG9YGRcULEgIWxodzo58hasEFzwMX0ja7ZL0mafOkRlAas7YMvJi02pROdJMxznIwhoNFdJHCHctxWvXWkTsjGhqa3mxhskaG8pfrd9Qi/osyj0tYllLRSFt7K0IzsbNeg0A+jrt3zH4EcEXBC8ASDKYfJszmw9x9rkBBOaKpM6iZDBoqSO0gbASyrZmrHbc7ocX42BzX0rVLM85s0nKYNRAKslATsqxRIyQX3wZL0GA1TLZ/4RMc9qzxUghezG3eZo1GRZ7d+4bYw7aPHeqc8g+a/6+VIVEVj63mHuWTAJmtDJjuAat9VIz8Kx2H0ZimXp0luWA9juZL27p4eVGlN2uQbp+ab6q7P1GpM1gpmFT08OKrywuB15mlsraz6ViqkVagwCAk9JTNAs/j+Uc/bOh5kY2nRB0CzvxiZXZ7lgPS6cls42gxSJoR9LfzJGUsHjntMJKLFILdljfCXKtBE8eUw+CqKz4epFJIIlELYtSdI1Gs5s5Wy7A2Z6BoZlNRUvAJsFlVV7YMBRzuxfTjV6b5nstz2h2Gw6gomWwcxkbA9po3Cu2yEoBaGlHFRtXK+BcQPCa0eS9ltIawQakibVcSRr+EqA9DFnv0UoqgGUmB3AasKv6+lo1o8SJc0hOnGzLmkKRrM2UJ0zTBAIJSRcmxHHEcdijouJsOGAcByn1LaJf4SBZk80AnSKNkyXVfC3TG0vktQy3Unsmy0SoGkQWkiNrOTa19xm5bzrDkLVpPVKbIsnI1K5jYtlgovtPcZ71aBHyy528z+59mYlsQQ8robW9dDIqZEFb0zHWYFyeYZqSlD56cVI7IjCkFyrB4XgcQZdXGEvCdd5LgLgGgD2ur454+OBanEbFN3fuDHBw6GLAdtPh/KzDMBU8uJ6Q6xHjdInrw30cjwOu9w9w2B/BFfCdA5NHiB26TpoPOwrau6rOevRGOVqbdJ4VNlc5OEOyw1ML8pmtsYqM4AP6rkfUcnH5HC1fcoCrikjZSn5Ky5QyDCtVFlJKb3jLCN9SFxijsJZho2Uu2XzNa+K078xjsgBZpj+cNrdnxe4N22gmkGFKTeqU1y1soNlj+XhTlPN6k2tJw26AtExz4c+Y29FaDsz/nvcaK1lCjUyy7M6q1QneSxaK4aJ2iFMLPIklABGYveBRDTZY/zTBOrUFH5uC4Bltmx1ekk0pF/icYX1858ym+TlsYFg2E0IQ33f5LDagDCddwtq25OaLOtbSR3XDSNerdi1c7GM210fdrjlTydZNw2gKVhrOvIGbGmaG4aalzHOIxec3jGZ6zhasYg3jw5ZZuNauZ+nL1FrEN2WrUZ49Ra6Cn5eZfMu7P71R0n5iUiZStccZt0+bS5EDe4Ti4cmjEUVGPoKEda0sQS5LgDhxdA1Hqj0GxBzTPCG08EFg5lrv5eWiqJdPNkG2WyNZ9I5IG8yZwxWsgZu38jZgeTekaNYv63WBeTKhDoI6PdE5SWnk9keJBGsd8nwtVViMNuAnBlfH1ho3llzR9z02m15AiW76vovw0TdgBmgTT23udTiOAKV5QplbDwvpF6Qgiq0xodyInG6VkIs0dU6TMJZeo4UxBnR9L31RggMg/UfGS2ugO5/Atel6EKGdhESNcOHWb4RI6nGd1hD74M0baIbXIlbNGTux2QaoFo3JWCJhpSRMwxG1ZITWvNnPJRriwciaIQMmL3ON3XAW5syAqvcvUZSUJwyjZDFMmsEyjccZrC3A0eNCsEybpcMxX3uxcrTWgZqDRa3e9fQTjQ3GyTjqJy/+V9u64PbfWVk6khO9AgIQdJPLQVuIQfpPWI17KQXoAuImSt+TswC3cxiPE1548UXkWrDtz9HFLbpuh9e/9g6YvbozDq9++jW4dXaBbdfhwYMXcRxewOF4wG+97324ur7Ci/dewvMvPI9hGPDC88/jcDhodELe7xHh4BE6h9tP3dXad0H+KQ04Hq/ANYNZGtGTkRwLxwoMiQAz5n5JXHUJmdGVn2PXod/0iF3UhtYVXGSOHTmQByoRggtgx2LodYSlFFRLW6tkfQTn4ZXgkNp7AZ4ilmdAkIbkovSX5WWk5WGhcwi9h/cLMNJwEsFHKemyDBaujDTIKTfeK8lSGCUpcCgAa5Paak6X9r8yHUjtGvL+2Ad4D/Qbj9DJfeRJgGstaM3Pa6knQImBGWiwARwDkFXXPi1+p9eEgycp46xTgVNnWOZqkT4eXQNHk/Z0Gkcpv5VsomhbpM1VLiQlKHW+puAaamCRq5Q6E5FE4HgmxL0XxzmXIiBNs99aSfBii3svpQwEQs3iwKfF4RWnvQwkWlW0jwhBgDeBtMeI2gvr7WDrhKidlLjMOLDyydmp5ZYltVAQOC2TnyOzUJ1c1cm3tcTQBBVmpKlgcKmNGVgAb54EbEKzsUopsh4DwXfUIs/OmfNhEVIrkTBQrI6KZyVCBOUbwLcyKOccmNSGVAYVLY31Drc2W2y7DcpYUCYBO1U/w3EB1QQmIKuj69hhBMHzXI4m2E/fo5nWZqMNU1QI+WG9I81Z/kRJux8dFwukOGjmN0lvS28lNn4+RdacB4Baqa7zDr5KRk17BVedezlwgsBgzwrtZ6JfiFNtBusJ5DXj7MONiPUqYrE9XdejMtD1E3IpmsEomYJd10kDYdWoFhEttSDliuvrQQh3bYfgvcdmK83svSfsdr30OKOEnOV+K0t/nnHK0ucqS+kvWAJ6IIfgI/pOemp6L1mzdRKCQcQDLEG5Td/Be8moKNoc24jtaZpwPA4amJCyo6B9IAG0U0VLyRgnhf/ar5Q1gAieCxqXhx7kIq0WhnHA9dUV0jRhd3aBrtsJ2WDtAHjWFdZXRsiZ02mxgJqtLXFOW370fDiH7lVA+scR7NQqwUzX11c4HPYYhqP0C6FZT5pPZnjFgm9LHLQ8RXNxdzCH23sdO3DbA3ZYA6POMIgA5zyiD4KDFOc7c3zMbqkfteil3q5ofYm8Y8Qg11NuXQ636LuGLXLJQN9hc7aVg1H6gELAYRzw/IsvodSC23eewfnFGc5pg9fRbXAlnJ+d42y3wzN3X4voHWoZ8b73/SZ+87eusT9c47fe9y5cXV/i/v2HuHfvHsZhwksv3MdwOML5oFUeDo4jnHfotz2cuyPYtYpBnqYj8rFoZo0Er8UH0L4rpH0DNSjsagWXOsdWLWFCf+GWGEozCyvQ9i17gmfZx76I/2IBa1nbc2mfEU8BEtmqJPuNNVulEquvOJNAtp6dNgCXSgzXCCRS2yV2ZqZIHUGzdoE8FQlGOoILrvlWzU/IGljJrJm0DBReYLdlDyOc/Byi9oOKavfm1b3wRQBAD4tqWBDgRVMZFgOGkhl5qsayyJ7LBYkrqqtwbOXESuQ5aqeZ0aJcmghgp1lKo2DYaUpISfy2qIewEOVFFpNlrxvhJPhpdsglcy7pYVRyInYSHaUn6Nnz1SK9ZqeklTKGYarZeUJhyYSchgkpZakMCObLKOlTWU9QZTjNOK2lYCpK3iqekUNdjHib9cWMEHnxe1lvpgdmMnFWDOIjLzkmavrESKaSLbBq5daEcZCm7d4FJQ2lNUepc9oALfYjiFuWt/g7ag80q73Y4V16Wi81nUzzeKt+dY4E/1YLmioONk+T5NquMKIjXGx26F2Uk/NGyTCUI5cloYSq6NrMpO0ICBOz9MQ2Eh8EFLmXdlAblHtYjh+olbUyz8nQH01eNtlket72rqQeSkRACA0lkBaRK+ct/0RBt96kAAytMtT0ScK8WCqkYRmYwcHPC2UB3u069jWPROP2MJv7uT7UkTT5rhXYbjfY7UbEThrIOu/go0enGz9oPcRhSKh6ktxhPzRml9q9iHHbbLyke0MMOjO3oykry7GP45SQ04Q0yjGusesRvcem73B+ayvpy1kiC9OYcH19kMbnWq4YQsDZbosQPLro9ZBKASNca2vaTiBwAKy+OvjQHMwKUUhJQZgZe+fmk5Ts1JTmnILBVWrYS54wHPfwSQymHD0ftARmmRo5r50n/fzEdWbKmzUrQ4FWtXRoZSSmacRhfy2AaRqRtHeUnepmjv4Tg9e8vI/H7+hETbUa5abJYOV8RIv363WoreXT57fkRMv8ksdcADQlxrwLcGREqvXrCloCIWQTwBjzASUnYNujuyWEabyI8FuPcT/ig899EOOU8OpnX4+n7m6w257j1a/7bMS4Q5kcSiY8++xt3D2/g/PNBs+/9C48/9K7cf/hA/zKO/5v3HvwAFdXe1w+usY0Tnh4/z7G4yAnsMQOfd/jta95A25d3ELstjg/vwOClBHUXHA4XGNMBTVPEiXjLGtPfVLWyByr80tVla3urTkTScbJOUK36dDvtrpfNf24SlNp6xVWXUUIUckdPSKYgcoCEKrqFWIgeg/nA1IhJD1OG94aHjlAgZQV5jfCtTKkAaceWdt7dBs9stWYVQa4khINBmpUeWfGqMc4d31AiB4lS8SJi5QQFz3+txRZa3UxNrZmbI16ctj2cnTwZhsQNxq5mCq4Sv+ToseN13Jj7akRU3wLizhZyRqR0IqA09In+fIkZFPSLMcQgpQ5k2VahHkeAQzDIEeWl4phkFMvY9dhs4mwenfT3C6LXrIj0uXeaGFwBSDkJPs8ldyanfs4g4WcioIFJVTAgDqH1oeu6zpstrIWa00SPMhFT+pkTVOv2vR40xoDl8oAuXZiTgge2XtYU3G2PhcOWq7mNPtzscadROktws8Kzme2SZbTsjeiRentNBeJWtqrJSujMvQkVSkBUc4Q1oOqloo0ygmDxVtGoIB+OELoSMvsCM7bNazPDWkWiewR0vJtH8TJKUzNXlRUdZrFnrCrjfCEI/gKdORw52yHi+05xsOEI0kfkepEzZaSULOQCgkVSfWvZ0IgQiQgunldCNlEesoYI2c9SdDIJrKUeLQ9/YkSc1jmHlYzcPPOITjNQAheT+qb+1Eyccv8Ju2B4b1DZSGoiBikpLj1oeEqJUlWpmpajaC9VCK0NEPmvrJm7jWnSkVtE1fRX94FbDZbgDw22xGllnbSpHOEPkbFKwBIbPjhcEQaitiG4Qg7aZFBiF0AOYcYK7a7Dba7XsnPhJQIaaqYBgn4jWPGOEyQoI1TJ1GafXddxG67BUDIWUrCcpLju5ml51+IcgrddtchaqPhm1mw4zjg+voK3ntst2fS8yn4ho2E3BYHP+UJMGzEhgtV72sZ+NysXk9hdhNAwOWjB+i6HpvtBULcwrs49ytsi0bWrkCNKhvDsIbaE6dzZLjFnC1xFMuiyatkSdWaNSttxPEoGOr6+kocymlErRlSC2s969oF55vSa7dMzzpnM5yK4BchH9Huq9SsZU7S1sJpSh5p9m/U5u/zurqRoWg2FkuiS64fQoR31urCKZbX0191nTAYw3QtWdVnhO3dM3H0vUMm4PpwxAfe/xxyzug3t/HUszvsdju86pln4KnDrjvDptvhqafP0YWAWo74zXf9Gn7j3f83Hj16hP/1G/8Ljx5dYhrlcIRpmvDgpYcYhxH9Zovdboe+3+B1r30DLi5uo+83OL91ATCQx4KaKvaHS+yHAcxJLWMGuML6YlUWH6xyRc1ZSoWqlGjIVEhZlfXjswOQpPF7bHbSMi2MPKpMKFmuZWXxgNqBIjZZesCJj+CZkRhIPMFiwiACVWoZRgA061tJHpyW0TWyyXR2ZVhdEznr9SNZ9KJvPOImAI5QrdFAYXCWtViSVY2wBq3Uj2jBJteWqhA1cnBT6CRhwHkLBug6a71IZ8LqJFPPMBLEpjMTSgISC4kRouyfnAtKktNyoXbUsoytVFFOg7O9xJq1RaI7xqSkTkLOBV3Xoes7cyFAVCBJpWUmmlpwwx5Y5r1WOY2RSE6MzUn7B0+dEopyD6UWHA6yBoP6kmjjogkXihGGY0JOGV3foetCC5Z456Tsr2b1F+XgljQlTKOsG2si770EikFq0x/DvjN5L8+i/boa+WV8g6FkUp8DbZ1bBQLrGGVIECfGIBmmXDAc5QAzSUghJcj11D4j3Uj1F4sfLWQTg6sQrjnrifJsaweIENBCmtEmD0rtvm3uGUAuQDshe6HzAAZlhs+MPnrc3Z1hF7fY+xF7Psp4OPmqWfwJQNoTyME6QGAgEOtpt5oxSpCAkiYPFSWaWHGXLUvryWy80MuRjyGz6XHHXS5s6eCL0jr3JAO1ZFXRFuFJbaT+R8f0xpXmF8xRVfuaX3nzuVucjjUuSBZpkVNwQgza7V8WwoclKNoYyClUoh8slX1eNLaoajFAcrNJJilzGwT8ed8MqR2bKE2SrfH4/B6npXytTpIWjD4vygiYW8O1JfBYXr+27JoFO79QoOZoth4vAAoZ0+7U8dAGwa1sZf4sgE6y8OcJ4hv/5Md+Pi0TOf2CkjWlHRucJdW35EYkmEFbZjYxjI229WC/W9zkYpkt62rNGV6+7EklGPORxbTgHGYNMa/r02du6e/OjnGOsCNrZX+5dj9SFiVKOWtEYpgGVBTEMQAOGKeprbtSqkaBK5yX5t/n2zN0YYtbd88gfTMyri4PeOFDD/Dw8hGuHh5wuBwwHQvqRODsQDXKSQbswexQix4TmrL2t5BBj10ExQ6lZnT9RshTHpCttp3np+d5EFRpLXZ+axa/nEcl5RZjAsxRDSJqEeF5zAQUydLRUiz9Llkp5vCZcdO+Wmz74bFZBmANTlmjAjz/CbPBs4iyOGsW4dZ1J/VDp59va6QRCmoQF6VlTUGqmyGZoouPaEbtdN8/phgXz2HrcPEQJ/vCjLQ885z6bUDJvpany7TtQbbGZX1TxZNFN0y7js6tZJTNd8TtP5gjrZptJUOhNfLMyKXIaXWOUcmedzHQWIwVa/aOOpJidDGTxzZGvEhJP1kfGh2iuRQMpkMWeshWSHsXmQG/MYk2E8IEYTmgZCCMl/prqY8W+qXqKa2k5ZUgzYCtmny6tHcepwvF9NnSIs9r8EQvO0ikjQA+set8+nFLxKTgxZGUjdkR2Axo/3UBkvAejQBhyYzMak9zqUhNL6JBDBu25XhisVZP5vQTKTTrA/Pj5zLO0+84GcPZOBlOshJXMqdkXnnyrnkAFquD2nq0e2iwrE3zDCRna4a23iUjUUkxK6O1U93UQZvvCThdU1ZSZQ9h7RXkGicl0OXDkOxE4j6Yk2wOG1NzBIplhgqAEr3Qsu7n3iiiI+cy3Vrryf5c6oc2yjpnAsLngJg9O+s9FkAz3yWrCyyZTT5LxFyaOosTVrPZptmRcsYStPvQUm6dA8M01udtxikLTMgWNLDTU1n7XYoOG8extUVIKWmPpqTNs0v7vBM1s/DSDZ+ernGdJ6t6WJBFwLJXoOixZYNky/Bo7zEdc6NEdilL9eiclJ56Hxf+wqJUi6CH81RkxY9TShimQbLptCH5pL0emSVDNqUE31X0fZBTgc8vcOvsNnbnHVJK2F8XPHp4jZdeeISrqyscrhLGQ0FOQM0eyAHEUXwG9uAqJfPSdyeBAgFBTtvu+ghEQq4jYuxAJDhb8AMtntcyIU7tPJkjfnNOFrrR/DZ+wtwRz37C8jATZsx7hOf5kICU04CfdCYwanzOBpp1Apv+NRU3q5cFdgLIAAHPNrNhI7t22wvyfstcv0lKPsGpfOy5l8GAOVtK1sD85lkn234ze9JeQYuBbq/W9anYVPrfLfaFzYlV6ljfNgBgKx1d2lz7XFsDqqnp9Ku95+Te0X4vbTROfUDLYia1MQBQNLNOsrHld1VbKkgGm2QsWQIGYbY/rffmgtBnKzGbzdpHlKZ+iJvuAM/4Ctac/mS024O2zzD4h6WehOAkCeDonFetBuC5wqA+dqo5TvTzbMvnG7b3t/liyzpf6K0F9gUw9/rVjCm7v1rNLi98Rv0yDGVJPwyWbuDEIA+Nl9smcEIoNwwlhZDNv7jxlLNdN/5Dr6z6+wlO0hPl5TcI1wcgR5Lqrxe2euBOSZOoR85bOr/dl42M/d45B8+8MPoL514H1zbVvEGVyDLG27snrtIl9Jo3nAADIun9Qs7h4uJCMrWqnHoDzhBtKYbZaqfnU+I8dn0Hi5Y4jWrbjVuJiDWOLLnAWG5ZjB5dJFAX4Ggj46oApVbg0UNhJOUkPG5HhzvnsN1u0PW9PBNLPTRQ5ejcUjUN0vrTWK2vLK5l6muIUjKCBEkhnvV5U7gAkLKAo1IyUhaG18Y66vHg3gcQScZV322RckKsRXpqPMnZuPGbD0c0NaWvWVWlagNwMFoZXZpwHA7SMyJNyDm1ch1ZX15PSps35s17MFv02J9p3vBCBnpVGotT0tr9SqTJNqBrDoAaAjNcNy9BWo+vC5WIEEPAnbsX6PuNGlrZByknlFqRy4TjQUDgMByQ04TD4QqX1w/gg8f5+Rn6zQbH44hSPIg8hqHg8tEeznWodIWwIXzB//G5+Pzf9fkYU8L9B/fx4P5D/Nqvvgf/3//8P5GmCcMwoZQIH85w13eoxDi7PSCdFVQkFIwgxzgOFSlfYrfLAEn5xNNPvwrn5xfYX58jbiOmccCLL2SM4wGKA2RN2nLiuXcQDGAsVsnSGWNdH9YPDlwboDdH0vq6IQAhRASNspfRTotMmMZRT2Ds4F2AJ4dN7KWEokxIJWm/qwJ2VmM+A2HAAUo0+eAAYul9YRkdSxIElsFi/TwKtApY+nxAyRF1msDS7LlkXaBa1tewEjOMbHH62Q7iZCFV+ARMaTZybZHr5pXothlG05/a56KBFWBJJtkJdcEHhCilxttNj87LARAgRowRuzM5KltKeeQ9Vclh7xl9H1G8k0xP7fFRap19F2V3QoyoRY7MFUMtqIdI9KWVb2dNyQZBM2zFCXZeInWH4wEALUp9rdRMjiUP1uuvCDiepgmpZKmD90ET2wikp0lKmjmw3x9wPB6l8arvYQEKKyNk70CO56CA08wUngl5BjRiO/fuafpwbpsi46Lp/2C07ChxxEvLJvF+DlhYmTtDehCylsz1vYfzQBqlcSSRZOZJk/sAF2bCwMrwsDhpUPpFoIH/nAumkcBUQS5LE3XtITQ7iWhOtJQ6atQaVswrkXHPRTKUouwF9g7sCLU41Bo1E1d7I9aK/ZjhINlv0cvBJZ3Ts1iajz4HYCh4BM0Ualm7Wtr1iZJ2wpDpKrK+C64dK24/y95bvhnNTkiTcN2jnrUMRXVlWztqc3QepTmvlO07kqwjKSlcXufUTtHivwDU4Ze1ut1t4WPAMI1gB2kwq1mAoUX4KwprhneRrGcfPPrYg+zwBxICW3rAOExDwjCMKKVgGAbJWFz01IkhAFxb82FgdmZSKhgHaxou6y/EgO12q5H0HrHrZBy07UKtBVOS/pfTNGGapNluiHK9Wov0hCpzT0ivhERKpeGOWc/aoAOTtj7IOWEYDgDLfowhou83UobYbTAeR6SpIE+lEW3OzxkPNitVbUObleZUyt+d6XM2XCKEey1l9mpYDqjhmnG9v8KLLz4vx30rhpqmCfvrS0zjiGE8tiyoeV2cBvCaYbrhMEmbjAjvpQF41/VgPTW4ckXKHk51yzgOaleDZnQHyWwiJ+TXMGCakjYsBlpzmLbAbS84dLHDnduCoXJJyCWpLZQeqVMakI7yTMfhIHhgGHA8XEvWRtfBx4BxSIhxgxCA4/WA5z/4ITz9TMEbP+MNuH17g9/9ls/E53z2m/Hw4SV+7f/3G3jw8BF+9ZffjV/9lfdqdv0OwBbbIM9SQsEGglfhKtjLYTaH/YBpGrE7O8PtO3r/d2/jbHuGy4cbAAXjOODRoxdw2B913N0JfyLZQ9zaaYCt2MaCPNbzCAAJhiPHCNp3qerhKNzIBMFXREBQf45IMgCnaZJet+MErgUhRtkPPgD9BpUZiRMyJ/FrFo62NLeesb7z1NZ45QIUeb0QRgDg2yEX1kagatYTe5wEFp2TksictMxO2nDKXqiLddq26LxnSNsfpCTrxQdGtxEy5LQps/iFddETrPkWzfl3cF58LCsBBVXUKpnEfd9h04uej6rnjVyOIeBst0Ps4okfJIH9Kk2sGeJPkuBQZqkCsu0tAT9ugWqeMopVerQsKjcTGCnNe0gzH6chiT1vFZRsyVCgjUMfxbdMkx0eYIkF1KpoyDnBzwAmPfBBWp5I5rLzEY6CYut5bF07OMlGXVVLY4mgmFlaEPjg4CpaGfRSFzEYpFlorilNs2NAyZjLn42wqw5cSAOKlhk3oUxFmpoXbmvB6Sl8RrwIFxLRKAECuErbnLqoGiBilE7z4FxpLYCMeDTMWFJBmbLqbEae1GnSthBUWVoJAHBcQVwQHWMTZX4RCXBSzhm84PCslSapVFwPgmsnL9grkMPGuZb53XxX9V99cOLzt+Vuf/9wEeRTefmZTcZGn/6qgSavyn4+ypLaFNpiNMVi4Hx+3YKPsgWBUzJC/mbRCdloc4TyhitvpNUJWpsJF+89IkcpodhsMKWMVJRQqYLC5PaXZI2mmYaomVHUmqeyPuk0JT15p2AcbCMKUAIgpQle3huDvLfmDC4VJRWMoza81ONGYxcQu05Sf/sO220vpXIpafoyo/VRqkVP0VuQK0v2Vn9vjURdWR6hPI//ko2u2svAlF2jASprlpU0CM3Jjhs31vrDL6OPRjSdvNac1VpbZBB68kXRaFPOSZsN59OIh67J0iJqeOyzdVUow2zG49SQ2JiVVouC9n0eVxtBU0SnDzuTBDyTSCfgVMR5h16Pz5XPlqyyiiSRz5wx5UGP7x2QpglTBoYk752ynApUCykB5pC1z0VKCUwjyE949tUX+F2f9xl48PASDx7dxzCMuPfCI7znnS+AmbHtpUyt222xjReSXICM0jGmesBYr8HIKPmIXKTZYdqOcnriJuLs1jngCMM4KliRHOJG8BkRp2w5eOEYLQduOdwLvQB17Kv1hGufLj+ZAXfq0EhDbl2fxSLnGcxBCS51tpnldDEFRFy1/JHnaMqpw2gniSkZYGtCnY/5ffqaKqftwCnBtHxU01kKovkj6m+zqLMulbVC7fSRZYTwprRnoVn/Gj9M7TMX2Sm6VI3kiyEgamaDr3PJZ4wBMQbZq7ofBfFJyWEI0knnNBP0dK4NMLUn1bkgzU6jxessW9TsyJxlKuTbOEo5cdF14D2hBgmO9J0+PywbVXpF5JRBUXsnELWTSQE0/ZqSOGXBB0TtDzKPKzVy8dQWopFM9mCnDiM9Doix0CptnRjhOYtbzJX1urC9Zv0vvGfU6hUAsZRYydZrp7yQRfVs/S++7GYW1ANqkZIH8hWIRl4pgK48n1KldqgRUA0VGC+iZAhJDzMmAEHYk+pcK+MrWhJUNetXoqgVuVb03suJas4tFslCR4NaJJmUFHwM0HycxbJRjDQCFutWSSdbv8u+UrOS0/daII+ovd5e3UBuu6oZIZ4zFmh+/o+cgbYcINXfmpUSYwBDTnzscoeUimaDqLNIloG8yIIwYqkTB7UR2oKgARBSyXrgigXuKoIHKEhD53bwjPb8YJaDMyy7ehrTQndKQDBqGVzXRSnZY4C0rE3WFbdM4aLZ0dYYHHyaMW5jZluwFmt4Z9kNM5ZJSQiO1g9Fbb60BCB0YwLBazCzzkEK23M2SWy3MtuU5lMtbIxlPdnsWVZTbXvQdIJkgk/TiMPhGtM0tmcXImGQgExO87PLAj7F1PPSOumdJNjbtZ6qzsv416p7u4rjCyf7QYggKXEz4t1Oop2UYBYCRy9mIOB0d2iwQTDUdtMjZcKULGNNsGMtSU5VLQXjICRbLRmlyGmlXb+Rkj928C4A2sNvf73HrVsX6DfA2UXAa153G5/zua/D+97v8N//xxEvvfQAzz/3EM+99xGc87h1cYEYI6LvsQ1CwrjNDjkWZB6RcQQjI6UDUk4IMaBwATtGv+txfusMpSRsdzs4IlxfBSym8WQKSCfBcKa5Lkufilq2sdhjwy7MchLZkmY2HQEnOMu17HDN0tOyHGYpn7WAWQjaQFoJI4IERBpSMd20sGVmU5bBKXsWW84t26iRaafrwLJAScmhmnnuW9VMz5Oze9p9QHrqQO1Wzpbxc3q/JxikPQOh9bRzZo/nrDBuOEd7FUUtEdXMettfPgRZM3F5crBmBTWCi072owzFonTSEWq1w1hsfwrovon3oPMDzNmhoh+E+IMGEhu70DCXjZfgJWglE5EQaN6FhoMrVw3yZul9rIcnBDhJFsGiggFmmyxPazHOOP2HYTdHhEoSEDzBTgqcluvaES162M3rCpgrj7yrcGq7LLMpwzJBDQva8y71oZYAO6/PxM23NNLKcPW8luWVTsfYnrwdhOBqM+aWaWUD4dy8mqVyr4JYDkIKTvWs99ITVK6imftZbZoQWAQGVTmdsPcefVS9rOvD8Jr5yMsM1Xlv4WXJx9QgHFgYkcraFFXYsaoRara6csvwWLy3DQ9pKRuJ4yYLnsAtPIe2oJjnyJUjZaJ1f1tfhqpEwNIQ8vJ6J/dPrVaS2rXMYVveLIMXo8nt3wIUSmFY4oCdCJCLZC5wlYiapGxbc0TWIyplIY+jHuWtQEOcE9/qqp2ytrGThnE5y/H1qCxNAAm42GmUjYTgEnBjZBPNzwhukTmnDvr8PMtHnlND7e+1DcqsAuTUl07693RbbDY7xLjRiOkTwOvLXls3y9UMvSwyW5apjepY51KQ9Wh0OyVHonHmaNg6oHaN9h2mwBeOnRkLIzSX6/iGxT+53xv3LwSDbEpHHnWRGYCTtSWfm1PC5eVDHIdDA+hyaqJmNuWsLHlVY8/a34tBjsH1CB8SutjjbHsLIUTcvvUUzs5uoesCHjx4hHGc8ODBA1ztr1BqxtPPPoXt2Rne+vu+CEBArQWWMOh8gHMRhSsOozSCvd4/xMPLl5DzhP3hIaY0oBaSCN2Y8Xz4EK6v9kjThOPhgKQnNTqnUTR13r2b97nNNjCvSQMbNv/MjJRHpOmIkicABaR9k0g/azlmArrmRncGwBoAXwB7U/RMQHQB7KtED+QNzaAbsWh9bGSutUcZzynj+jbZPxpVsutCDb995VQBylratCgbaX7DbBhPhdv4neCqok0pIdkG1vOotnVIaMfK0mxIwIxqxlL1q3OG56SsrOs8dtsNova3mx0vyWLY7w8YhqHNgUXlrGQxhCCnC8Wg/Sao9fUzMJy5IJXU9reNqZR0zPumajZh1awep6iVraeJNTsHtJ9AgXNRou2OmlOZcwbRpOtL9pllmAEz6BEQrTqUSE8J85parSni2lfO29joumaWPhxN39D8+1M7tUiPbkSCvUB+77SvhfW4QAOzMs+qdRYby/pvWYNKgvTxEhtSmUCZEZnhXNWeVXMPBufsVEwDuGgNy0UPyc8hnmbINBQiClU5IKf3yQC0lNxJo/9aC4jlpNsGbp0e/606wKLtxWm7XK5Scg6AA8NThZf0HenfBm6Nr+0gErDYTwZulGd9YsQAtWWoOe/hSm1Aflka3xyZJ3wGoGRmld8Unfz5kajZltmeWwaIZAyQ/tvmZGHqder4hMgEbF2SYsDaejfI37QuWLOupRekHq6AGWwbeM6lgFlP/iXpj5dLaScfGqkUQkDXBSGEMmmPkIJ8tL6YVsJBmoVBCF6yZEK00zIJ05QwTRneO2zV4ZO+NgxGaU6RlXk1RUh2TXXqHHTfzc6vmCBq+9v0RMUST4hN9T7ChwjvO3jfIYQeXdcjhHhK5izlZG4ez9Y2HHyC3/hUnxjINayaUsI4jRjHQdoh1IJpGnE8HjBNA8ZplDYFShjMpeuL+3lsbdpasIoE0jaI2o9HM4weC84Y5nDigIpeFtybtZ2EBa1qkeCiGXUGtGWFZFE8fPQQ+8Ne2ixoZlNOctJeyhljmhp2ZJZ1OIwyVlMq8M5js93h9u2nEUJE320QYo/gI1568SVM44QHb36I/TiAQsBnfNYbcX7nLkLY4JmnnwGz9BEzMtV7h1wK9vsrTFmy0a/2D1BKwnECch5RC2F/ecB0TPDF4frhFYbjgGEY5fQ7BkjdtVosm96jNfBWPWsY2CbDbJcFblMe4ZJDYclcISYpNW92wjCpWT7tG6czW6u1B9Fsm1rhFYuEdhpWFEygvWCtQsSWjd2f16oIAUhqt1oGCJoVs7VthI390Qgt6UdAjTBoQB7Urvq4L2i/Md9CcRnkIIJpzE1Xye9qO/hj9gmakZ9JDPNPHbTNgtyz0/d1ncdm28nbLPPK5qdWIT/59BTw+aRt6TNcagUOAxJEl3m3qGTRz2sn1dXSMChY9EOaAOkvNMdmSH1yZsY06WmGi+BG7KSRPRf5ey0F4zDJSaQhIPRRYc2s//Kij50jJwdVlPl0vlpTw0/k9LAs6+UKm19CpQrjAUzPM/k2NrUCIO2DBZ57DFU0/5W84G0HKZeTe5LM6lohhzoAyFRgxGFV2wpm1CLrgi22AMhpb9UqlxxQtXiUbI1AyUW/yGxyTRcy5OR5OVQMDfdXFrJUOAEHBMC5ips92E7JQ+nR6KhCzrGRzC84QmEGKx8TWDBXKYSS5CKpZBR1XKSHU0X00tLAxsmWOmnSyRxExIe3WTfkYzuNjsVoeHiEygjeoehx0FyLHrNrszEzlE1FqMGz7CLAoZaCosq0hgCQOTvUjre0PitiuGg++chRM5zOTqxA0w9PFgPx3mkz4Bk8nPJSs8Mk/SDUiSXtX1QsS6JinMoJW+mcNJ6V7wGbPqJyxXEYkHPGcMw4HgdJ1UsSWYsxou97eO9wftZjswnmVoGZsd9PGIYE2EHRzqHcjlqyKBlG45iEIHF+AXxI+3YUkDpS7E7r5E/nmNuzzqBF556kIax3HWLcIMYOm80Zdrtb2Gx20pTRDMUTANHLkZP30M3fixNkirgUy3CSpuhyrwJmshF7YFlzmDcmETWFs7yI6nNRSnoq3LIvzYzG57FqTZSdW2x8NXFquAVEeRB7rW+2jVrbheX42hEv3R8E/CooNONhnzenBIvGmzNZgD2PYGbcvXsXr3r6DNvtDq959avx1N1nsD9c47nnPwgQ8KEXnsfDR/cRuw1e9xmvBbmAu089jf/jrV8kZZOaPn8cE47DhJQLrvYHjFPCi88/hw+8t8fxeMTzzwPXV1coOeHy4R4gxtXldTshMgavhq/A+w7MBblOIMwnCCnTIM+HpbNkekMADzOQpiMGTyh5AKGAqCgpOzsgogRFBxGk+R25eU22EyW0vMDmT05+AuCtBFhKQGQNFTmCFE09AXJgh8AZ45AWX1VLyaTWu8BOimQtJyEmoBLyZNEeCMCri4bPPMOkx/aEEi+nxALkBJShtrFkRmsQTiSnonnvml4hqLNWGB5OS8CgZYLyfAZMNpuIW7fO9Jw+3zK8nPOopeDy0SNUrs0pYWYpSWTGbrfFRa86caPAhWc94TUrtlZxcCTaP5+oYtEh00vOomKOwOzheXaane5hgm8Nv5kZMXaIQYBeTlkbmnIDkTaM3hF4UxtJaYDXwJ93Dpu+1xMEJbiQk5W/ELoousN6ztRSMR0lsicHWxhaWJQxsq31OZvSB8mItQanMqYyrt471DpnUbE2Y2WrT3WzA2HjkrKk8lc9/p0A+CwOIbjCOdGXKVXkIllD5KRXAyvwMhIS0FP5spRNRdIj4/WGzYkUnUqtt1lV8pOckAjeewkQZCmXiqQ2WUvDMkhAIwiIETUEpJzleWvBNBZZ80H2aXBVTu80nsa7BvRJda1kyd7cUJ84scbHAjY9ildQXWtba8DsbJ3YQfuyNeLFLtnJskx+Afih2MyCRnKQRwihNQKX/o0NWTfh5fclNOI5w7FybSUoIG3i215YIKd4Jl27GuCDAPNaSU9UmmBkE9FcHiTNWmPbT13vkYvDlAi5AmlIOBwGtYmy97uuw263hfceu90GXdcB4KY3DocRwzhh0/fob0Upt6YCUEFlyfQZx6xlOfPJS02X6XHhEn03XaTK383NcO312WX5eLJsW4IPnRAXcaMYaouu36Lf7NB1/RywagNhw86LCTnFSctI/TLgZd8twGrNykstmNKEcZpwOB4xDsfW+3KaBlzvH0kZ3bBHSiNKLq1xd+ORl025Z4Tfrtf6uDqpAPBeeoTkmsRB5AIL5loJt/DEEoBOSdZzSrllQ8TYw/uIacJs6+VBUVSnpZSlAb0RUdr3RE4cUFJKiYvCRfBYkvIwfQHAjGdfFXDnqTvYbnfowhZd6FBrxQfe+0G82L+It3ze5+HycIDrAj7vCz8fuTB+11s+F5cvPUQuBYdpRC5yatg4yjp/+Og+xvGIl158Ac99MGAcR9y/DxyPB5RU8Oj+FQjA5b1HLaMouAAh4x0cRRAkK5sYWtKyyAOxUjMl8sj+q3iRa8aYBlRXkcrUyCbnCLXSqS1kAK3nlm+fY3ZQgkillXw5kob4RARPHqVGVC6YatXD4Io08jZShjW4DmnPIuSVZVA43bey7ivXprNJbRBj0ZNR3qTZrqL+2EjttjJtNJYAyjaYjCHrG3JiDIOelmsl15pIQESIIc4lq20PSgBHejFJQJK0QTNpybpzQL+JODvfgAtjHJIGqOZxHYcByTvtn5bbPRJJye35xVnzPZkrQtCWEkQtOxJgrfiwjEDLjlIyAxk+Oy0tFlJUsu09Si0YjlopIuyCHsIlmK3kiuE4ouaC4/UR0zSh3/YIXRS7TSSdaBRvWEC2lfUF0mzPLKfpQa7hCJrNKKe+5dajbPZBLSlDMtjld9K7lxECIUQrq7bx5IaHlv6Z+XENr7AEzZgZKBnFz5nQAFAUA8sJ0YLTJYO8gosDs9e9YYkMgAtouLbr5MAiK/91ntRuyNz1fWx+LCuxxdpCRg6JcvA+y4m/upTbiYVKbnItqFXWbBcV+ylHnBQHVhDISfP3NDnJ3CoVU86ouWpfXTlwZAuHXgMkQQMA3k4NVZzJpus/TPXQTXn5ZNPC0W5GVQ0Yqh3FOe++094rM1t5gvEMyaC9RBZsXdJUj5NHlmp74tzzzVc9WagpFwNyM8A3tlDunhqDyXYNyIIivSnW+2/poKRVmQ7qPGlEBzNzbcdmG0u7vO25MeIMWCwV0SIxjrSJnJtLFkHWoK2I0aYFTmn2mBWAzhvY5mf57zamyzHTMXGqDCxby+tpXk6PhryZBTQ/20eem5upnTf/tuSfbEXMRmupkJR4qbOCPZmjDyN2nydkFEGB8WL8wCfj9/LJtHl9cVUN0EDk6SNLlt8iIr18Ec9jRNa0UH/HRmywHVGuTrlzcsJCCLPyLAVjmsDOI4KFc+0cum3UyPEIFAfKkBOkXAErKHfeSakeM/p+izRlpOzAmA0LC+EPrVQA6alVMhLWhHgBBmihDuZHVcfL5rtqQ/jUxsiAhZCHcwablWY4PcHxZrbd8l/VMlnAsD50HqxBJzVeLcpnd0iwtKuWHbn8+4mnhnkd3sTnipOsh82sDxfX49nRWOpEe4mMHTdDV6sc49owZhvDxfNTe6OSAQudTvPPTxbTgxJdNYPTyIdifYSU6CnWt8Saas+lRG2uDQhhmc10IyvDykGWexCWmYj2XGYb7B5Qa4uMwcbC+idZCY12r7dsofn0qDnluWptuoAdNbDMqG3dLxbWcrRsjS/WgI35rKDnBdPG31Yz6VqzObOV0GygOxmDG9PU9CMAS9aS5ytzKRsTbgA7ew839rfpZpoJrjbubR71smUmmpj1UGgiJe/psXla3r0tO+LlnpBrWITNSvbnN4i9rtqqQ5za2vphLfXtDb8YL1uFvxJysnVJbTW1MWj6bHYTZ5xie9w+ZmGz5N+2t6GkAp+qrCV+w3K/E2xPkWKwBTR44pqe9S7aCwwPgjXLxzEMm86Xpw/7ddP2NqKCRP8VLetvQb6qfcCMUV/siZN+RzxnRdQ6O1ytEa+bSUgrsYYndYHNBj1hbxC19c3MUpZH8z3wYj5aZhORVAP40Byrk8MWWjnKcr2e4iGG4g7DBjYnSyx8c75O/sZtUmxs7MCDnJOU5o+TlNYpSW96dsaGfLKHbl7r5vqaryMBBDuEQYIdqt9OTpMxIk9+ts+VXlkEl0+bVrNiAVaDVizIqONHAEhLjZa4aj54w7ItxfmCEnIWrJTsuohSsva7kv5k4zgBLoApgLw4u3HjgcxwFVIekyuYDD9VsKtwQTAUAPSbrQaiUnMKwUbIozmp0rcs2IpUZUu29Geb8gSxNSo+RIbLkt0KGUGY77W0++QXGMpm4QkXqOqfkPXRheppJ4c6EDs4XUNLh+oxO6O/m9cVLXTRDGZmH21hkyoL+dliRsu/t49bLq8n/HJ+SMPS0kuHTt/Cp2Nh97jET+1jrZaPTu8bgBwkYr+jeZ5yzkAhXWtFP1v+7n2ZswIbTrAPvKmj5s+cMZThAEYlOwBK+6XeGBrbV2Yb7GEF05cTP7b1V67ih6LOGIrNHpz42ctBmu0RaDnnN9fIPN6LUTQ0ClsvwDzOdpCXKfJm6+YV0taVZOfrfZk6svWg41FtCZvOqXrISnsdt5tf4n2i5WKZ5/NJutouZn9rPa69EmxgoJVqyvpsq2Bpr2k2/6S23bHcA2PGXuJ6ODnJEoTCACpQmFs/Vb98Bp5HfDmBT8SgN+RjyGzik58dAV3wup9kwbUG3u1luhgWxq5os8KqiIUI7UhZhAgEaUCVfUI10LEwWmABU13fyWfW0jbXEk/OP3G7tv3cHBFblM4h+Aj2aEa/5Cw9A+p8qhfAKNmhOg+wRnKJ0XsdE0s9IwaRHB2bc8L1/oicC66v91IGlStK0lRS7xCDQ9d7bHfCHldIv5GcC4ZRUn6zRsm7LuLOrTN0XcD5GaPrGf4gze3GcYJ3Qh6Q1lyTgnCqgGMH9lWcC3XezQDNJ4Sc0nHez0RSF3tNae9xdnaumU1bdH0nx9EH3xyg377MANjIAhFr5HoTfEnzzrKIzNUqPY1ySqglz8oMjyuwJXHk3AwKrWeDpaFaNGdpIM3hvimNiNI/Oefgo5w0kh2QkoKvYtG9ee26ljozP2BTqRWtLwNLjqi+Vtem9iIaj0c8evgQKSW86lXPwkfGdtfhVa96tfQvcg4v3L+P2G+wKQnkA166dw/3XryHNI24vnyINE04HI64vpa1uz8MEtnlDttbT6HfFTi/xTSMGKcDjsdHrdSJWeYkp0kAvHOoPgr7zhKt4Zql34sDgjnZbBEmA4TcsvJSnnB9fYlxOiIPU8vwEodN1jqcvD9se3gX0G838D6IcWkGSOfDSVblNFkpiUYQgmYdUEWlAAZjzBAQCo1mQMvzgjnQrjl4ZtCNGGKWLEhJD5fswJbzqSC3Qsp8vLPeP6arGAwrH8P8uTT/C/qqXGQ9uAKkpOA8WvYn5lW2sPN2ryEEgKwfikXohZSw1xMT0pRwOByljAwSVWUSHVEqYxwL0jRp5qms2qJZFbUMGIcJjhy6rkPwQe2BRpmL6rkskarZkUOLhDHz3Px50YPA+kWFGLDdbfTo+AQfpPfLMAzqOBFytvI5jbAXybwjSNkyecI0JhzcAHLQSJY5JzIWXewQQpA+BJNkuzYHF5JtiMrgSg10OOcAT0po6ey5xf5dnmior7FT/ch71eMsZZeQaGMjbhaBFyJqGXUM/V4EjGtvS+RUkCbp2dQ+xxNCtiizHpVLUutvoJn0mNwQtRG6hs7ktBOZq1weD6KQs9PLgG7j4QNhs43Ybjr0IQh5hMXSZOnLJGkHBFcBJslohqPmqNdSpc8aOQAVU6mgymDOGBMQvcM2RLGHC5D3yRIrHRInTKjsqCdQEUyFabAJOPmaP0P7bDQAayScYCgXIth5FCJp/qqp98DsPACa4eTlFN6qWQ/z6VOYnarlfxdAc5mpBEiWQtdLhJd8kYh+ZqRkQSHSLw9CgINk+JGLC9srGTA+GFaUUp1xGHB1OSHnjKura0xTgp3WSRCdLZgwoN9IpD5rmV3VrEMj4r2TkryLix6bPgBOy2irNCQ/HEb0XQ/ETjCnlz1V6pxpaSUZlknDtWKsI8Csuii2WXMhIFgfEiJst1v0/RZdv5Ej6PuNNC0PSkKFAGeZCjbeN5wTZgacUyeCmhNzivdNN+ia4bmkWTJRNPCkh2bsr69wOO4xHg94+OBF6ee0vwZrubFF2G+Sd0siYy4b85rBKfhtHKUJ9qQn51rggFmJYwSwlWwDC0dVPtuCqptNlDElhmSSSNPeU1JBMmtu+j52CiqpTbPrVzayVsp5S66oJWM4Drh89BA5JWye3WCz6wDuseNzxBAxTgUffP5FgAgF8jwP7r2Eh/fvYUoTri6vMaWE43HE4TAqhjoi5QxPEed3n0ItjO3uNvKUME0Djse9jI3axJrEntZSEP0FEDowCipJFpbYRYZzDO9rIw1mx1C+pJeZtDMgfw0fAsZhAGnvJtnueniGl33dxQ28j9hst+KgWvbZghwVf6hgPI4IwcGhAzun2ZMehZ0cjFELpjK2/maW4dROdYVlqtVmY22/0OIERlZnGVqObVlYhsmg+FEc6sZY3NwYuEluNmLePi0xJq6ikzaSPWqkl2nA9qlKYgQXQNGy+CQr2OZIfid2turBB6bhLauMdSyv9wNyKRpQ8YpVRO9MY0YapXyUa9EemGiklPWuS0ntg/rMhrGsVEwGUzZcIqB4p+0NouJAsdHMRU9Ek/IvMEl/Y23lkcaCUoCUGXkqICf6kEh6ZiZtHt530rONAXjtJRu8YG7i09lpLS4Kt0NKjB7ywesaNNJIssZA3PCSTIlrXAHLELZ1zcoYyfphFJas266LyjHMRFFlCzZrsLPaYWHqUKMisMcGaiuqEjSYgzelVpCrij+s1YDpTdIAupZpagseaVAuGfaxE4K5pAQuWl6oqzDGIAey+XDiUyjDBGNfiZVoArTUkBoBWKuQqjlJEsCkfZyYKlJlBOewDQ4e1JICbF/xUte8DHnZZFOL1IDbJvPOoXrduAumdsncUdtW5lxJBIgbKaUOPqBNA4XMOY282U2gGR9rRpetD8oNEuLkTfp9jjbNkRH5tzX2ko7rUpoxl841w1QhpQuLYynbqXRECAEIQTZC5QTmgpQqxmlCSlI6N41JABlrVDM6hCB1m13nWxf6XKscyTqMsKZsBso2GznRoO8zQshwTp37nAEvRS42FwIQ5BQT0S+20OejfnOWHkeNKSUD9Low1aGOXYcYI7pug76XHgMxxjnLyYwQ4YT8a/KR1iWbgz6/1tK+W1bQzSlWzWDPIoRQUmcptzIpMwg3meTlvy0r5+a6E0BVTwDQ8vVPZKcXn21z0E6+UtDarNXCJlIjYE1p2u7WObMsdmZtHabK9sacppQwDAOksXkGOWk2f35xIWmq5HB1OCCUgiESyHs82D/A/f09TOOARw/vYxoHHK6PuL7eo+SKw1EA08XuGdy9dRdSahiRp4Rx3CNGPblH65qnccSxHICa4VyGd1bjrKnBPKKUBA8GO17M/BxptvGVZn0F0zRIZDHPdWu2jYkkIZtITx2KPULXgZyfx1rH1ynhxsxyyqH3QhI7IMBreYWX10BS/11xbe8sQYb1f2uL9vGF0AwfADuPQv9mJtPm39aepKAw+PE1b1dqelHfX8Xo1gqJrGq9tmsAqb3xsc8yQ2yOwjKIoblLYEhvi2ma4JXccyTNX41oKVmAjiuE6q2HDGspW8I41tkZ8VJiaSdIpilp2vVMMs3OB7dMBgdxoJbjQArMfJATvUIUYFNZItDTlNp7DMjLiZ9W3mhMoPQNkOdMQrix9dKhtnaa/akA0SgzSgD5ue/Fcs5tbo08mqfBsiO5rQNbV6A5y6xlPWQWkMOYda2NwUI/ChE09yZj3SsGzUuuyKk0G+icQyhaqgBzJu3kK70PN6+iuem5Dpo2UhVgLCWbAJQYpNa/0SlR5Qhi76KXE3lI1inMZhAkI01HpmEIR+Jkq8NRXUUJqfXpy6U1wUAmAat9kDUDnOr7003x4bDDKysnEVpInzjvnSBi+91juOfUWTLiQHTH/HtnpINzctSlRiXrCdFkn6ftEIL0WFk69kuZEdJNOzk7g/ZKIpLsWUCVnBxYYO/h5Sey6FdZ16HdtnOKoaKA4HEUe5JSxuFw1BYE0sOG4OApNJJeggR6ipZzcnqZlnmmSfSKBM5E/2w2AZs+oFSnvTdZM3uSnkZpWbEVcNZXrMLZGOg8WNAoJ3HAgjTMaBlWc9aakPgxRmmqrt9jnLETtQN2/IxXdGPzjfE3wGA4i9WBvqne2xwpPmLt30JKUEn2acE4jTgeDjge97i+vkaaBqRRyvLb8fKa9Wm47Elr28rtvDqwALREr7TMqYWrLuPpl0tTsPwSazltndF14tRNUwc/aoZ0mleo3Sfc4+NgY0bOifOlFAWRVGaYk2nZb4LXj80XiNFDTjwV3Jsr4/LyCuyAgozKBQ+uXsK9yxeQpgmPHj7CNE04HEbs9wNKYRzHjFIYF2d38dTtOyAQNmGLmgvG8YgudqLH9NSraRilrwocPFWw9xqsk9xr5glckuhIXxthb7jSUCTb3IMxjRNczig5nwBqw55WNtdvNoKhGnG6yKZZfM1ZwAE1SDkwBc1CYz2wBA6uZCGOFtmZ8l6dPw1KGamjWuVxH1B/J4HIhT9jdoJ801tLrXNTw1MbKF093D5e7iUx2AuBwG752sVnLWy5EfXt1L+Fvwl2Wv0hJcsp5VYiuXy2WiuOxwEpJT3BUUqepik3Ww4lmC1ItFyzOVt54+x7GJ6a5wlwlVCJAZIgpTPM0myDtiSAEA8GshnzwSusuIkZLSOUqnojbA2otYdcFPLXmnmbrm/BVR1Uu4eG/05IwLmiybCxvZnal03IrDcMGwlOlDdwtfUj4+k9Wr88G8s6QwkNGmpvJ8t+tUb7VqgBtHuW/9X2B4NKzvHJnLDyIYZDJUtsSWc4JfkJMVbkTrG0zq93cpCC1/7CMLKpLVJuw+H0RlpwAh4Veuqe9sRj7X0MMKhUFGb0AejhWrWU+So39xM/9pvH5WMmmyxVzEGbpDon5QXVetOQ+XTSL8UAuoFtL9CxAHP/mcoSuYQsqGKLQ2fQnJKTLBTt9WBG0xZsUxwsxvemzOSXWzS/XETSNdtiSgmDRgMqBxB5xBBxfnGO4Ls2aYwqTQ+5gjlrP4mKlAaUKifMTaOwod4HdD3BE4nD1rCaLPJpyk2By/OSghdGCHKCSx87OHXa5RQNjVYtoKEOKsBOF72p27aKnwy2m/ER8s2OsPR69GnUjAQ7ZvvEOULz5e2nBaSgeV6agqbmbKO95vGZcuT0tIE568he3eaPuZ2cJ714cmvY29bYR5CWiQS0NWZlNE3xWR08zSnXpwbl9PNOHolsnJRZjnJkfMr0WI8i4sX9nAwJzSQHSPqNVT0VMEjdfN+JQdlsNuiiZPcMxyPuP7iHGHtstrcQYoecEy4vL1HAGF/4IHItePjgAR48eICcEo77g5AwFUAlhNDhmWfvwoeIPp5j090CV8muKFNCGLykfFcxTARp7JnGUcFTkkzB4YjLRw/klJsSUHmA9RIosGaPpY2zfFeDB26ZT/NwU1snwsaLXthsd9hsdoD2GCuQDA0hUeVIWlijOx1dK/ey01UAzTIDI5CHR1B4WhdTvVgzdRGRrdaHyGtEsLa5tTVjzQ/hxfiG4LDZSZZDzdLk26mBf5IiZ3M1zZg6PWmMqxwjrCMjjTrF6RRDV3XNcWsUPqsOzZoAAbR0ZeW9NUvEiamCSxKdXitc9cjaz8Si2W3+oE0YzRCTlPkVLxHcXKo2btUoNWagYT2P5oilZqV5AVvbbQcfAvq+Q7/pNKJugM+yg2TP2Z7MOSmwqW0NLclCubZGTUn7G/E8n3VZ6geWNeaWBw0IiLMSHwMfMknSa8oHJYcaKp51COsKcwQJRxHMi4L12WL1MGe8fFruawcItPts0Xy1DNbokriduFIXfX3QQP9C9xhI9AQXLDXeiFZuzm7mAtaTbOb8HH04B3g54AkhyF70zc7PK9uGSz7ZMg8AFHNAtbxBbRMzNAtG1j9zRmYBTMcpITiHzguxJRh7vsZHNQ6voCyj7Wa/uhBQtORE9IYSR8wnxJM3/OTsdCiJzFbFYlg0V4UR4KREoF3dsBRLNNNb3yVe2KwFfpLxpJMnMDvm1DFtIBcWoJNmq4yMaSwYB2lUG+MGMWzQ9Vvcvv2UlCXpKbqVNQuWCxgFU8qopWIcJJtpGhNykmPvY5BeS+KsecXXuoYLkLLYjFqlN5Q0txXCx1vD8UjIacRECYwJzBnQCL6d1CdBBd27y/6Vqp+WUeQZhJuTpb3dfJDDYRwDGpC0pviC+TTIB21g72bPaZmN22ZmQQhafy9SJUeM1qcNWDheIFjTee+d2AFHgPWSUnKhloo0TchTQkkJJWXJLrSHI8P1pwG2mz8LGaoHt+QEwGyrBm1h6k5IL25ltPOzWra9BZabw+hJM2Mjdmc7OXpdm30vP8OcxKUBm7nbmSj33sExEFwEx42s+U4ybHbbHQjS12QYBlxfX6Lvt7i42KKLHsNwwIsvvYCUE672j5DyhKurS1xdPULOBcf9QXv8BFn3ncPZrS3gPfqwRR+3IAYKZ7CvkDYDfoEnSUrrbkumfjpm5KlgHA+4vLqHUhIqPCrLSbulJBRUzUHRwD9kLyy3L5jb6Z9iWnSdcxVCRDPs+u0WXb9rYyXQTtaoHfZRC83Et/bokUweOQQEYO15BJTiUSiAULXM0bJLNChlTvqCw7RMJ2szcDLHi3UumUQy5zUrLrddQzfWKKx0U/5lfoXpX67QfoFKatUZ79sppkRzAM+1gdZrocIglBlRAqNkAnslhJw0crYgqzXyFp0jyQJGbvDiqxbJ0rTyPuddy8yulWU/5DJjLeM7tAzTbtX7oCS3Q+wlWLjZ9Og3nWaVE1ypKCVJ70bF8wzVbU0lWG8t0p6ghiFsD2upnnEHLPiyZf+rTrEsS1DV8kUH8QM0+UGDVdY/q81m88MqsEgAIW1xwCyZe+an2poS0p21LUKFI6/kndcsMiGScjLizrLUTMfZ5xmIO1mSch0jUVtWuGW96em6ii+5ZpSsa6/o4xSSPoTqa7KTskd4bhwJgdBFh+gdglseJHMqtjRbfLYWMJEexiK2IGhv0AK07MNsJZHMCCS99GLwiNpE3qp7wFIx9XLkZZNNdkQigAZ++i7owCorhzki4ReLox3pq1ElBgBtlts2g4LLQEAxAGosYJ2ZWSOYJLIsjUWL1gJbxGlGykt3ktticPBwJKnENnFsR89SAVPFMEy4vj4gl4KuP0OMHfp+i2eefgb9ZgujK3NJ2B+ukHLC8bjHcJiQU8Zhv0fKetxjybo4OrieEIJD38mkHY8TUpII3mE/npAqcjJdhHOWft1D2qoXcNHPTpLFs3SaZmJQT/lbfC2gERYU6gJjMuAYwUu5nA8RXd/L3Blp6EM7vl4WhCoOK/sAFJA1nPJkIbRG3aeurU4XmdNvTQrn35E6no4sVVSiNSWndsTmadnbRxcjeWay6RSEm0GzBrjtITCPBfNMRyyjv7bpY/TookNKDsM0gKz0zN5f7RmXnz/vB1K070hKfmYHn+BISh69l1MvfHC4urpExojbt5/Cm+4+g+3uDMM04kMvPI/94Rrv+8B7sD8ecNzvcdgfdPuIE3FxcQe3bz+N3eYMb/qs34WLO3dRkpRp1VIwXO2RxwlpvMDZ7jYAbsdaA+rUtREiPLz/En7rXe/EcNxjHC4xjXuUkjAOR9EvNAGUJfMhqINL9vxq6FlKZhb2fQG6pSTs4uI2zi/uyp4cpZmhrRUrc3Bkp5SJUUqaydKFCEQFVQpyM3XIJE5RRUXBrAvBli1DrfE4ADgX4MmBCyCFsbbnxEmpSko4L0ao7wMubsk+K7liHDJqdaA69xtCWxXLqDI3feicgIKaWXWqgyMviacKOitXcJEU8dBOlIN+am0NK2HOVFvJQIoFMcjzJb0p57w0+64sac6LaBsAuOqaXimaKZNSBShp43LR68M4CdkONCJa+rOoLiEPIuufQej6iPOLHbpOyiX7Ta9+moyrL6TNkx1ClP1RSpLM0vZYpksMiMm/SwVqmktTudbWI8ixk6aUtQgJ5UjsiZIAlRklOel1ljJKVRJEr+eCQ5S6a1j6vwHJk/8RhMSSRa+kgTbBryzPZvqg6R7VP0WyG2utStAqhtHXlKz91AgCJmtFLlIqZM77YpB0nh28B3wgBN0fIXgN+miUszImaD8oFtJj9skZ5BihB8CE2AGdJ4TFHpeH0Ohrcwjm99dc9HMCXJRASNdv4ENFTglS2lSQlMTM6rR6Rzjre2ydg6sMVy1bg0+y5D7eYiQwIJ3rnHNwnZT5WoZMYzshJJJXsinqMfLSSVWwQ+IJciqXV1A+n3pUpXES0Pa96DlpOyD7NPRRggF1Uo5fbeUSGrQAn82EAX8plRXMoYS2kjIpSYPZcZhwfSWZ2bfveGw2Zzg/v4XXvfYN2Gy2mMqIqYxI04SHjx5og+4jhlFIpuP1EVkb5SYNxG26DVxwCErQc2Uch1ExVMU0WuBIsqe8A2IvRGmMYhM7D7E9meF8gvMJtUq2gRxyYg1Vq5RdOSPpKxpDrN/ncdI5LgWpStnZpt+i03I8OzQhxg5e++DUklGyh5HQhpGNcLJxnfe3EseYK+htzi1YiyXmoCXpJI5WJUI2m6olT957na8jpuGINIzI04Sai0Yp0AjOm4673RegwRYuICY9Be40YLfMhmLF8kI2WbjI7ERFyhOYK2Lomm2zMq/t2Q79psMwDBiOBy2NtvW7GJwF4cQ2Fk52H7GUPgGaHRBiwwfeEVwQh6wkxv76CoSCW7fu4Olnn8Z2E3F1/RCXh0vs91d47/t/C8fjHlnbYzSChIG7Tz2Lp569jX6zw93Xvg6bs3PkMWE6juDMKFRQp4quZ2x2snZjF7VkiOEgOqGMjJIYDx+8hPe8WzBUrtcoNSDlhMNRbFXwFcFpw+WA2SaqX0Rm32ud+1yavnHQcvQOu4vb2J7dRkoThuNBhtTJoRWhBnRd15pm2wEc4yT+iwsOsUrGYvQeYAf2HdgxCmfkqpkcav9l5ursNOjkWVlRLdQcWiO/5mVNiNEhRimRH0uSfUq6ASwoNG9RSNmVkviaYVOrlIKhsvo6WspaGZylTF7KjjEDJvXiG3lFomPLstqGGVwlEOiKQ9KggEMzj22RCmmqvbnYCQnBQC2SjVOYMdbUsEYkwXvDkDQTVEh58yHnYIEG7p2RFB02fYcQAzZnG9GJ2w79NgpB5Lzo0onAo8xPmkQPSwBfHs2yBMGENBVTMo0HKNr3isuCgNIgGGkjavFzpTwORf1V6wdaIWtJT7q1ALz4Z1BcpBlG5oOS/lr1Tm6lpTLMQsoJKQrlKqKP6LpOGu6TVCSJXyKtbHxwM0m0zFon6/O0MAI0m3AjpSzuEzuP2HmpABitfURG5SyN7quUKnL14CqBgVSKVn1WUKya5SStB7YxYBM8InzLDF9CNwsmC2dg41YVQ0kFh2MCxyhEm3PaNgiNOE4kZZreAdu+x6bT8u1qyQEvXz6m0+hs1szxteZpFXMUHgxU4kaYtDTI9n3+KJmLRVqm/QzMr1vs6xOv6+SWzKJ89Ien5Q8LY9x4KizSo3mOYtmRwTEGdDHKaQdEQIachKd0tkWIWYGakSIzs6l10Y5gJ/ww22iIeC8b0DnWlMPlfSoRQsv093luzLjTYjgei1p+uIHRPxtgPW1eqV+LOaXlGNKNzzthmXi+QLvcPLHztM0fItE4u8ZiHbXPu3Et+7HCJvKjys0oHYA2nstspw8n4gQv7mEBbh57rf6PFq+x9c5gtAS09tl0cn2GpZHKySCevCrsm2STNZiXN+WcMY5yJHAp4vxOE4FRcNjvcfnoEvv9NYbjgHEYABCc60DONeLBOYd+s8Fut8M0FTBl1CxKj5jhySOQHH0aYpRS1MXj2HOmadSGmAU5D3BpADMQfEWlok58UqMgaaeNQT+Z5MUcYl5LlsljJVVFs4eW49iyfbQ0QnqEzjrAjrBlNaJ2Pbrxv8fXAuNj0T8tM8nuykEdDi1b9Qq4bjxvA8+M1r/IiOm2V5+wTUynGpFp5PDSOTlRD6wQTZuoGvAqxaLI/PiUkJW+zk0npc57Xg3mdNRip7VVbTRpmQNmGNH2oVx+LhkBZn9sjrZqlK3dlH4ALZ61nH4ejPx7wgw1wn6RUbtcim2+TfeZLmyfvZgEfZllK8yg6QlzdFNON9LJ90YA8HzPVmZlJ1ee3MsNO7OY7Mf+bMT6zSXdggqO2vqTtbwYoxNFuOjBZqQFAdbtx0g+OjUEelvLHQKxp3qnliUo9nUu/z4lP6Ap53qKqRG3zNos82WZiVdcSDejzI1T3MTSWoAhoBNshrjhJ9CTFsP8mXT6wwmBunznzXG2eWh75gnGnBc/y+uXepDaq+bM4GVZzBwwCiGg6zvpuVlY9iTmDBaZt9M91zCU6kVva29xzVoZ7bAeW6MkWQ/ez89nmZ2llbJLrxHbo22/6IUtE2KO5L48PW/6cNkD8hQ7mcKYx/9kevHktclAC+KIPuSG9050+ROk6R0sH8Oed4F9bpQBf6SHPCWfFjpbyfHl3cy2eIFZl9c4mfel7T/FZfOnYd4fzC/jdsUvcdb8GnJ6shBuUkYTGukn2TfWL3CaRqQ8CUFYC9KYkLni+voKV5eXOBz2moEi4+ndfLqiJ80W2myw3W0xguQEblS4zgh5QmUlJPsIFzwcGJ7Ea82d9hKaBnRdLwHmMoFLhq+Adx3ABeAkPXocw0sF6OPL9bH9b9h8XptOS91LacV58+vJyEfpTWT71nS/ZU8yS2+Y5dyTan4JzFQ0MogXVsNuZ/GZNzSY3od8prQhEQycc5ETICE8qfUkXz6zYYbWb9M7KRsi7Q+12IjMis01y7j5OmTZzNDfL4LRs+M1275qJIz2UTQVs3gOgPXQrSWGmHtqtb0Ja+tBc9ZgWTTqZqj/hIZXlnMggSOngTvBypYRzovTCZ3hJsXFMGyhz2f33sbJnnnpQ/FMNi9X3Mnqoxs/0+krl77mcg2e9BDCAkssdKoClNO5u4F3GEJCOVdPySSIfW6N+E/ufcYrN/3307tfrjvBKnUx33YDN7HljH/RFgoRWra+rTdnfMkNLHnzDmi5/vWm5ydZ4ifoftagMQmGYkj/qVyrJupy27tmIz+avGyyiby81GnfhCWAlO7zEglwXmrWW1aCjIjUexOhWnM3MAoYwTtErVF3wbX5tQf3Thhlaz4N0oaxWVKfP3rWys1BkBjKkpVjQAtk1PHRCGQXI2pgbLYbbDY77HZbbDZb9JsN4DzgPNw0Yj8c5QQeOAW3hM1uA3AnURIPgBmpTOpoF1zv5djtaZA0uhADNp2HDwEXt86x2W5QSkKajhr5H3B1vYdjRqzSBLzrIna7IFkEBrQbCJwN8LIsrEWvjf3nWWE0cEpCiDnrJWBpm2QATk8489qcrPUPmTXCh8U8T8KypghONjTBMjjk6EdtXGzPY4oPmqLoPEibKbfAwofZAKbcbxJKp1lM8nsDicseAqdKhE/+fYqd5F+lVlAuIFSAi6ROlqLppTNQP50Lc5wAO+49dBG73Rm889j0G8QQVLlbH5qsDlVBLgWoQN5nuJFQssNm9z6pxe8CfAzYX13jud/6AA77g5YdFvgQcXbhEbrQeorELmB30ePizhaHw4DKI6qvCDWAO4fz3QXu3HpK2PFSW02xRWEtXXWz6XH56ArX11fgShiPGX0fcOfOBs4RXnjxg7h3/3kQCrpQ4Iix2biWMVdrEfBkzg9JdNaBF3rDzYbJQaMvptCVzPAODA8pPWFt/CrRuVKyNHB0hJBlnWQU/VyGZ69lYVLTDAZav16yo8ihhwqUBWm9TN9uMy4pz0qChMiS9bh12EweaQLShNN1ygDriW4+yNx4J6UF3ntME2AnzXCd064pyN6xZrpWigYDZMzNqFq5iPy/trTncQCqHv87ZzkyvKsgkqin805TxKF6XvYjAQ1wjcOk94lm3It1r+aFs1lnYDMfNSyGuOSKaRxRuSB0Hgw95lwjN6XMtfBSkkZSqGntvk7RrNgaH+CtobqNie14bXDMLJE6lvOcRb+T9pUqCYCWw8Ah07zmzJ45J+XlBjxZdYBzkjbtHFr2Lus1DYATEXyUKKcRLJZGbw63nchpvdOcHlvc7DUAriOIs/TdcqxlA1iMgwQ6SqlyPDEZ+UsgkmOGBZha2bJmqBXGUodKTETsvFTN6AlUug08SBqGLg4GOAFzuksM/DWrUBmkJwh65tbvNXiHQoCvvqW/pyIp4URZGl4C2KgtCySZQx/OTrzS4kOnT2ZBBlg1keiiRcKizPmModg7wU4AmJ3OpWRmyImjkplRFZtZ6aXZ6+C9ZtTImpIos5X/c7uvE7GhaTZy0YeiOaaCOQxjGHlcagVIMrMBwmbTa6lGL5mI2y2oergiNZkuBCB5cbqLTOhmswF6iVyDJMshpUlAbyoYtD/JNCXkXBFij+02IoaAzTYidgEpTRiHA0opuL6eME0JfXTIO48YCJsdY6P7F+ZcQdWC9mtpJ1IWwVDSNFca6EtQQMktnsvSrA+TOQk2lkaYyZHXHWInfXFaj8wbcJZ0bTR8YfqkNZuXLDldLg3XmMPiWr8ZwUiMWXemKTVdIetI2iUwO9TWr02ubVlJbb08CXezldmwNL73uv408y7XAmQJIqZawXMyxPxsXBueMSxXijjYwyCZMzkl6f+UJtEnmk3behKcOKWnznC/6XC2PWvtB/yiGoDBUjpTEioKapJmzHRdME0BuRTsznboNxsMacJYMvbXe3zoA89hOAxyMIWXrJ87d59Gt9lg228QfEQXO1yc73B++xzXxMjjAS4G3L59gY3v0XdbbLcXADlkxRZynLk0ya9ZCIX+3OPBw3vYX11hv+9wHHp0HXB27rRJ+Yfw6MGLgp36Cu+BfhtknRLdXF4Ck5wDsdPyVMX5WNRDqL5eZtZ572ZyBZaNIp+Zc8XhMCo+oLZubH131KOyHPU+1UlwxoKEbLpx6cQb/NG17byUEPngcPvOGc5ub5CT9HQrRZpX56QNzAfJopZPW/QOdITgA0IIkpkLabINSH9KgMFaltf1EVHLx+e1JaVIoLlMiWRAdc/IAFVm5FLgml23Hclt/L1WbvR9BHrrwyR9E0lxizSTLjqeI6bRGnHPB/OQZlfLASh2yMJcLugcoesCNtsOsY84u9giRD/rJxIiw7kK5+UAkar61k6Xs5Y5drr10gdaVpJIwoTeu2b8hVb2PvegMt/U/D2y/y5sGGj+3Fn9SM9Qcqz+oVU/yL0QzeNK3gMaCHXByUEiRcjFXAouLy9lbpTLYHbou9voIqHygMqia9rJ1XbiJVvptPmimAcSqrrd3JOQnCSTcHQnJBVDe0np2JSSEMghYNG/Wv0gbqVwBYRyErhbbpZWWcLzDFkWbGWANODileliANE5mQX2kO5NFVPN8llJs3aJ0GuSdbewPx9NXj7ZZP1yPIG0pKBIZ8UFxQA4zGSTvhFW1l/V6rL+zJpf5lqDXpqJB/2+PO3JommsRs2YtcfudfHT44ykbfK55wkgQy0Exlxb7r2Hh5w+ZA3bYhcRuw7SuMJreqmcasIg7W4vRJV3hBgJXScNFQ+HiilVpMwYxiQ9SxKDi/T09N4jBo/dbovzizOkNGK/L3qi3QHX10c4ZnQMBAdM0w61AWtq42PSVIBuCCv/OiVObJoW4+OozTdpk+GZ9USr226NLVvvjo+6inBiPNqPi7Vy4/XMotScea9YgillzI1sIifgvQJoDswpGfSkbKZldtvyu0UB7OclEXT6EerE6bVOqCjRzhLFAaGWDK7pCXNAN36ed5W9LASPzWaDGCPOdztJZa4FRfsWDCMDuaJkKTmpzOAhqyG/xv0HL6HvO4QuwoeA/dUeD198gOP+2ABF1/fYbS9AAa0u3AWHfhuxOetQ6oThWKUMtTpQ8HjqqVt44xveAO8DDkPCOOUGTFqqqDZrvXXnKRBFXD64BHCJEDa4fedpeO/x4OEVpuklmbWc4V1FCIyukSCaXrsYNlmjy3/Pc0JKRpH257FIqawncYZahkSWN8rJHZNGd1wzFrIPHDy55nJRMzhYEAoW5Zt75ii78USfVsh6uS8pUwJCR+h6ybwCLdfjcn3KHg2a4mukU60eyWkzcyVMCBqYo9Ooltda7boECXV5DXWy1LFJSUp3vXOIQU598lWIJe+BEJUQ9gIqrdFi6xvBcj+TNqLW6ViAB2oGfAlaANVJ+rMBsZQzQNZnypwhbmvPxl8iN/r5JyQSzxu16TdZE/OJakvyfr5fOe0Nc08sbSBsUWGLsJ1E4g3MufnSdn+mPx057eVA7RaXwKX1omr3xS26aWMm5YcK3NWJtI9iZjhKekc4iZS1+3QC2IpmnslzzPvOe4m+Wq8IaZppzS0tUjm/XnpEabYbmWYTuzI/x2wHFrNjN93uFyA5SltPtbWt70mJOigB7bw4qlXGaCSJykWNZAddp6cW8+MrZAefYKEnIHraOcVDwGxLF/bGAnwVdiQEgRsQnW0xO7N5Ol4EWPN/y2QExGGw3kLystNRaHr0xuAslvP8nYw8rS0r3PROiJI9EqP0CYldROjliytAVRryk5atsO49gjhFjgDnGc6zEkYZZZQM3XGUEr2UZsel7zxiF3F+3qPfRAxHRppqCyLs9wNS58ThjQ4hOtRuzgafsw7F0VEP7gRzCI4SdGHZAMuMpSVevbECTl4TgpwmNOOoG7PA5mzN77Xf2xwbGXsT+934CH2/ZMvYoTA5a5myZtgblpMSFoL1NxLzddpE/nHUjbYGQKIP7Vm9n/uMVS5qE2bcLffJT8SmjUSH9AEDIFlGmqndAjGtN9lyuJeeifw1hIDd2U4y7GJUm1mQi2CyARmJC1DlZF8GY+CMaZL5efToAbqhx2EacEwTDtcHPLz/EONxxKbvsOkiHEs/y03fywE6ToKym02H7a5HGo/Ss+7/z9ufNlmWJNeB4FFb7n2bu0dE7iigQIAA2UKhzIeR6VlkRigyIvPrZ9gz3WQ3u4kmCaDWrMiMxd3fdq8tOh9U1cyeR2QhW5rAA7w88vlb7rVFTfXo0aPk8OrVHvfbO+x3d3j18CWIHE7riiUpg0rLCWvJqLUg5QWH+3swHFKRWEJYU1sAwNPHZ1wvAjYRGMFLEostUTIeefq/BmiPGnF6qgEWJ9m608PakfhG1TM8gFqplc7LeZQkTqgv9gY5BA6o7FCIgToAS21N2Nc5W5ww3bHmC7HoQUXvsd3PuHvYIeeMOAsjf7lkpMWaAzBy7qUDzjtMUc+BEBBDFPD6uiBXav5FS9IzEEKXbrClNUis6aXL+WbC3SPwW2sVgEBLxUYPXysN9brEFogUCCt7R0qqrDRNxqYik/lCo49BQBXRZwP+zdmwuM4HjzgFTHPEZhu1CkATowDIStOcJWZ7EssmiAE4HnQ/R3tkcZACXOYvGSkA6DpYYjP0naO/R2jnpB1kI6DZ5lJJDs4NZ7kGYHbuARJDwpGSP0TYAjpHIsx+0U8VUUlPM0LYguCRCoNLulnHzR9svnOXn7A/kzlY1jzNZGYU07BEo/5q677yIFIO3z5Mxnr4LpZSNvMkxoctx/G/eXjeyuoMv3EQHyqQJKyK83DSZwTZAp5cUGpFcEIM8o7+N5XG/ezXLoqoopCo8zOGDdkzHzTWAzF6x1vz1ZUa7wABLoMHggND2x833R8LtAe9Jr0We45uggU7wHhYkP3RFrIFFfoec8BFtNg0VHrdvjkdptq+5gzKCeQZxBWFs1C7g0OcpMsJmOG1bppRsWpLyuuyYF0T0pqlNhiETQygyWGeIjabSZHkgmVZsCxXXM5XEVteJYMcgsdujohB2AzNidR5oLHHMxuzCWiB4yjINw6Uvs3qga0sZ8wyEGmXEXUMByvb5uElCPPpw+ZojL4/T8NrG7ty6x5m5Xy3LVhtw5K2uoeKhDug8qiw8w8++uHA7YAzgzQGdDwM84sPGOJX0sPHI4YJBIecgJwYRAXC7/vc+LwcBw1w66DFAhZnu2TknFRkOTU2Tckm5Cfg7rIueH56wjUKq8l5j3SV+u9pmpqGAhjIqxhW61hSU8Lj+/cAKi7nK87HkwTblwJOjM1mRsWK4Ahxkv2TVmn7W2sRDY9cUDlhf5hBVHE5vwZzxjRF3N0/wDnC69df4XJO4JqAcgG4YIoC8BBDhLPZSmi6o2pOU4+u2mTA1mCfKzvoqXdYcKIlV2vV9W3ZC2GwkH6mmC5lB1S0vcSuX4e39dpAD2777+ba7IDR9VK11t9VYJo8cDfDe4flUuBc6UAW91beQq4kzV6buHY/9Oxrne1rZ5l3ZTfpQWxdGwUX7WEMoIyiIYHFLLRaykWckuDUGZIAxrnGW29OXincNNTk0oZvMPBGf7NR68fgjm2cCK6VxJAGzOJQXi+rfuatbowAWjbjw7lih5NdyRDQWWnKaL/G99ZSkalblX433BwroOtW3TolypKEZfF1lxLk4CcD+tH+ZiCWAT/gbqeZ0RyqppfoA8Ju1uvtGbRaS9sz3vuWZXO+Mzhb0EqkTqddx2CXFPRtY+NEdF9iAwlaShW9AWZI4KPtiUMAjPXsLcDpg9hHnMaNYnPQgxFSR6lT6bWdu2PtdGh2M8BYC9LJBcikjn8FXNNc+Md/LMn0wvqZWQbm49hFCMO9tvfoOVBYxiKQrAE/iAA3gF0BIHOErXFBX6fWnejFOtfh+HRE+p5g7oESoHtTNadqZdXoJFQ3aByhB0ulCPO2WhKGBJSa5gk5ReQUAa5aYMgKBmhb71Wy+8aEJCJsNgJyb7cTYvQInoSZsDCuy4rrNem5qfp2PmC722CODiGIFp+A6rbXrD60B9fSLasCFY29Y2etMXdZFvtNIu5G68hKH9RnM9/zxmn65PhXOzU+T4M9o88DWw1EpDG5Jr9DCIjThHmesdlswLUi+KCXISVg1Xugafix2uZui9uSNICAe7mhlfXknAXIUHCpaAMXYy81yzkE5FRp8LOEbTpNs3ajmwEinI4iD0D1JQh4u24JPSaQ81D833Vd1ade1VYV8f9Z9FzsGotSrzLLvF2uF3x8/IgYI655xZJFS2yKopriIGsjp4xlucJ5h93+Dt4zgIzT0yMqZzw/PuH58aOwK1PBMX7AN998hy++eCNxBCuovBbk9SLXl5LqB2bc3e/VT2FMkwgbz9MMBnB89SWupxWEguAznGPEQAC71nQDALiMNryPX19F3VbQMM99/dk/O3hK0lt4CMihItFo5WoCncj+8so8EbuswtFmLlq45tSnVlDRYhoI071UIK0rlsXr3hW/aJqlo2ScpUTMJACE6UxNX5JAYKqAq/DRIbJHzhWcJBkZXWj2SSo9IK9H74ou+I6d1awkDNyMRdujjCZF0AgPw4hboxXzyaRbrgb9OSvg022f2Sz5PnFSi5bQ38Rk1DXTinYu91lIEI6lWYHYVWUr19JYbOMViq1HjwtvF03bi4KzKGuwWtdBGkqA+eY9QAfOmrbbZz5XbNDIfKNhragtKqXZk9H2mV9jwFRFFYY6oUkO7HZ7bDc7cA3I6wyuQC5oNqGtyebPm/2z+FnXvfrSZIwmMntt5rs7PD0ZgCFEYLVHBeSAwnJeehKtQqd+YmvSYXaZOtnhxVbqcZL93XxPlrXoIJqoVOU3695nbVwgcYrcW9YzsXBFZdfv5488fjbY9HxddBB7+VJ9EVQBpGicHTryugIWjFyNHRFhP0+YYwDPEbvJBC67mLiTM0oC7Nrpa7ZpSs4NkWvg1BhsfmZR65XBWDr2qKUga5Zss9tKTXSt2q0FYHZat51wXq7IEGPlghPxrAjM5ME1gmgD1lIp5op1Sbhersgp4+npiHVZAXagKof64bDFPE2YpojtbgMQsOaEp6cF1+uC56dnERTLFTkD2zng9ZsHbOeAw6HAexH7NaMjHU3s3qG/7WCpeki7F8CJOSYD60EdJkOmidC6UEgLYd+6CJgz3x3ZDtJ89tFilx7EvAhnbg4ssSfdUSolwocI76M4kJr1lY55M3wJYC7SJrYAsKDzH3zYuFWMgvh2j41K3owwf/redqUW4Atde7vdw5PD9eK0jjyDOTUHr92q/qMPXR/HnAsulzMIwPFZxrpkBZu4dy+6CQWEtoBcVlzXo7IjVBvAR+ziAXOchVZ/XYDKuJ7PWNcV969egbhiXa747d//Lf7w/aQMJen0tzwvyGvGtHH4a/wSFID9PMPRhOfnFc9Pz0gp4XK5Yl0TKmd8+fUdct5huw/44uvXIHIIftKtvcNh8y3SuuL89IScpFtQxQpwQl4ewbTC+4oQXsyBGeybkPTWyW4vs0PHAvtC4CD7wUDW2hzQ2gSgJdPrQfACNhmg52TWvYkxMzCWcTVQ7DPbgSGBmmQxE8h77A4zHh4mnE8r8lqxLNLqm0ho09erUMVDFKFl6biRURio6N1C+okjZTSmbWSlyUHLMBtFumpbVWbd3/1wBoCaqgp6MgpLeRVPATSFBsaiZX/ExizL0II8S6MEA/RYx4qZm1i7npoAKyCuYF0vc3Gt9MEcr/N5QSoKaKiYdsoZOYmosHcRxhbpjCEadqo8byUElQwIMudA6W06pjmJY0Y6nuID63qsFUlF/6uKxbPdE4ayEEYDdy34F70EYxdYaScA3IrEk5NySBG4JWQPBYYkixvjhMPuAc55nM8XXM5XCZ7K2hgHcYoC/kzyecH7JmJs15CTBQCDTk+zxR1A8k7bnLPoZ5RCWNaM69OKPGRDx9b0XgFe30jgtiFuXSNQ39PtPDBnGhZCqph28MJ6ItFRLFL7p+yrLAAHMQjCzIRm7/6pHk+Xi4xc7QGCMdCsLFwPMoFZBh/KuiIa2OvJ4WG/x24zwzdAQfwkF0LTJLLWypkIzovDKr5b1cYl/dHs04jzjYAL31pVMXZCJeZSkJcVzMC8nRGnqCUfSd9H0nEyZywpgYKWKpHYjO1uRvAE4gRikRuoyjZJ14Lz+YJSCi4XEQM34xaCw+GwwzxP2Gw22G0DyBGWdcH5XHC5XPH0dFYWHkAUMM0zXr++w3YTsKQj1nxSMfnag+MBREGtej0ScKRVMv45rXJGKLuv1ooYSMVmvfpJDsYOdVU6LYUQFCiurSzNgJwRxLMpAPdkXPcPxB6Zr9b8qMGfe/mw56dpBpFDyRkP968QQ8QPb2dAywBjFP3FdWVlRgCsLKLRb+w+d3+I8C46YxgEoiTBHVcF9gZ72cBQqFhuHYBQQpwm7Pd7TNOEw73YtLdEWJalNfWxCoubtXvz6P5VygnH41GDfvFjKguLSQI/Zeo7SFtzANKtsGBNCy7LGc4RMjMKKqKfcL99hbAPOJ9OOJ+PAAjPzx+R8hV393eIEQCv+PH73wA/EM6nM45PR3Bl/MCAZ8K/5n+Nf/kv/xybTUABAU5EmS/nRxFnXhbklFBzxTfffIGSK56f7nE6nQVA1S5RATO28UsBZpXxXoqIiXPNSOkClzMIXs6MNhdmT0lFnyvAGdTElyFJbUt6Ce7TE9LMYNWaa16XyjkwVwFlFNzx5OEAVFcRHbeGG421o3pIVqpfTReqZxDAzNIFHAWnywn1aZWOvpsI750wdsi6ukkyel3W1iCEdHLXNWFdE+BYgSnCsogchQOaPIGIkEu5mSUHvHeY5wlE8jkGPucke0W6X3plk2vHr1JRctJ29HKf1TOqxnFcSx9PFnbLsoj/VFSQXeIhBfQV2BUzRc1varF5I8Gw7j0BW69XAI5R61aArJSwKqCZ0qpz0QGSlrBRW+ckIGz7qxsZA1k6U64WRoI0sWp+OlmcDtXu0i7FtbZr7jZYPngEoY2NSRQGsEZsrdjxPMSlkMZCGpOGKN27a5LzRxhgDEceX3zxJb75+jss14z3P16wLBnXlZBSgpyvJiEgNt1KeG0viIyGSnPoCHr1M25ZYAaoCVDUyusITdS85oLzWRO0TvywGBw20feEho8gdlKCB3RNYO6zcgs4WXKPG5goMiSa8AwC/rJHxwmSzCmXjFRUPoSqssmFLXYTCv/E42eDTVkXdDGtEujBYpPfFgS1SeYRbLJNUCQoLrGLjVmYPqo23NDV0GCMNllieOzqPnPCfCayG5G/FnOY66zzT9BgEzLYkuXWa+deaueMroVBpNQWYqXW+adRlktpzoyELkEDoV4KY+x50cqQkpVWU882sU6ddgfnar/NGy9w+OcL0E2cp+7cyKIUl71nMH5i7HReblaxPde/6jPvHefl5pdcQOtI93mAagx0RjpuYzcNQZJzrn/OTQzDn9zVaNRf3uvnnrv9/ekSu8kg6jhaFr8xxcaywzbWt/dNN5Nqz8l/d8CrtGxyUgZS031AvzZWAKAqC89ODyJCjYxtYCkTs5FmLSWDdDksSbq0nY9HuKtvIEYtFeuyIq9FgKq0IseI4CfRdCFGrQKE5ZIaIBajdMvb7TbCGiIRNmcm3N9XIHukNWFyUajydUGuF9S6Ys0rahXn1UpCDaywA0fGRrsu1fpiDOlm/Y1B7OjEN/qv3mtfDzpfBDS6JvTgswO56uIYYuYbY6/ZLabb+bXDq1anB6KUeIRpKJPVDxNqs7Ga7J5efGffVjf7pv/0ErDGgMBgF8AdoDFQ2b3ILpr9Vm0TGDCh+laWparKCmiZyxePnn0efw2JjHZJIxCh46jrlVJWh1iuwQQzQZCDGgaYyPsZrK3irdySXkR646zdjq+xMeSsQLsWAlpSxa775Wf1s/KTj9U/0M1b7Fy9tTf9Nbe2t9ubFuzq2I4Jgcae0vI5M0O31zv+soHpZU6jRoUAdQLGOi3XaC2hwWClNXfHzz61r+mb6b29itt/jWvF7gdGBSfpykVS5icAvLCduPaekLXNI1Bffuk/4iMZ420Uc9U42YCkcQnYnmFoaYoGH1X3W6niV33meG3jOpYr3WSTBx/KbOAnj3YMmYc2XF/znwb7yJK5droenO4tHj7mJsHVvrszH6yD8fg+A8yMmdAz57KOJQnm4byV4aJ1Br19T/fRLKlG+dPr4mGtjue+nCeuMRNH4OXzD779XHTbOQzIT/jp8vo+BYP/ZdPTzjwCbLw+47fc7BmSMt/ALAynGBFj1NbfI2OcmsGx2W/3OXyF+VDGpGv2284FAI0hOYwH2pjYvZlf3UuYza/2XrRMo3ZNsmvtwZtdzE9Mg96+Ma8MiM05K9jUu8h6TxJ8cb9P8ycsyQ6S0vMCgCYH2iq7lKA6hBUlJSTvUNKqMgcOeZUypev1iuVyBdeKtTCoMi6XC0pJqDWCSJPGqC2ZmHNCydJxc5oiODBy3rQ5CE6Swvf3GWkh6Wi7CGi7rAFLIoC1QyA7AAm91/rtegG4+ZYWkFpcMO7LfhyN58V41t3qh0GJjs3nUjvBY9ectr4Gv82802Gt2StYfdGSM5wL7YxzTqpNRGdRS7mqR6kKeigbxHmNKxxUX6o32CFSvbugIuJer0Tw1GZLDIy7sRUv9qHZNJFp6L7AaCPMtrfmKs2/uq2qeOE69nNDP2OM7Wwe+pyMfpmse+ddA61q6f6aaCDJ2T3GfNTQR9JY4nbeb67J1pSVyqktct6Y2YzRxx4ZWTfnDA+/XxrMoUEKhs8Z3RkeLuizMab6gDFGZXuuILriZYlaT7ipBzP4Vy/3R3+ur+H+QTpizGiAE5HqznLzJa1LMUESez0OufXL0Ge43+PAXLz5dhqdPfWh9D8N4Os+lPy7qg8l5cxCbiEyptOnsfXnHj8bbPr4cem30gKzfvGdft9rz0k/Pbi+ubjIQIjmR5BafTgwaSkUVxGgijOiq3Bc4LholkGyICwWXW2GUdqG1X3zkOeKLujeLaiXroA9JjqAPRDcpMHvKln5WgGaIJl6/UoC5ugwb7zU1WZGqgU1FyxXoeEuV0WJ14L1WlEqgCJtLaPziEEQeBHuY1zXK07aYrRUh6po5TxtgagdVRxhMxGYVxFIzBU+S4nKKERswY+5TFJ2ZboKom+ix7sucjdk6LseCtEK5zx8kMM05wqiKsKu3pgECvIYiGeb2uZi2NjNUL5Ymc0s3BjQTkHtjpZDCBF2GG7mHbwLKIcM750wYpx1YFN6NHddivFxSy8fr4OHgMTG0QxK/3e/VUEabtr66udTkLI+cr1GGA7w0YNJwCEJOkSe3oarDxm3gE2uSzKspMEkhQjUiilOAEj0H5yTtqWacU05iRAsKkpNNw7fNK2gJJnMNl1M8CmBU8bxhx/xQ06AdyiTBzvCNG0wb/bwLmAT7xD9AccPK/7mf/o77A97/OVf/BJffvkFSl5xfHrCdVmQV2FDiSCjHNpfvb7HV68fWotoEanUNrnKXJRa6ivO5wvO5xN+9Xd/h6enJzw9vsWHD79DrQlMZwAFxMKGLLXg9PwReb2CfAAFEY6+AbLt0KahXlmZNsbSaFlPBbVKGuaDAGKHyUcVfxTjy6UgU2l19iGI5kANts/kCswxEAqG7NdSGdfLilIKQvBSjhgZ9282InSpjkCpjLCVFqUxCCjVbB8zKghW8WxttGN0CJM4RnEWUU0LwqHOiXSGM6FuowNLfXuMwgyqsaj+TkVJHcxbU2qUcum2IZ6lBA1y6DlyCF5tf4xCqdf9Yw5E4VswgNHZHLa9brasaous14TrRXS2QvQNaGDWA9pslSeE2auDKoF68F472UDOGOIW4HCV8upcRKcKUa5f2L3CfCXtAAkFOWQsq1LZAas5H4NF5zzAgKQdGFyojTuotj1vjkwptl67HkStBYWkRe2ySgbbmKfkCGtZQDUhZdE2Aap0ibQSaW9aUwW1AMgMKDOsVtFrsM/UnBm4AikxLucC5wmbrbTylZYlNj9y3+SAeRMQqgMXmT/nIBlWpa+TgrSVKqqWG710yoz6PgIipOtr3NeeOngKRyA41eniponkigdY7GBlxqWIns/P8pT+KzyeP1oZab83655nPpQ5rCDRQ2jsiknPnCoZbGOgwInGRAXDoYpwdGV4EDZxA/YVQdl+cpwNoHLVcsKmeTd497h9Tl3S9n6gANRlFBwHbGhqYKediUuqetYAIBMzd5gm1Vl0DgsVXIlRUFor71IKliWhloJ1LUgrq4PrVN9S9FpkP1SsaUXKBderiPQzybiAHPa7DTp7g7HZADmfsFwJa76qfpGVj/TW3gxSn4+EbaKuFSWZHym/0pEh0+GoUkKl7Fgps+ndfJd1BcihhArnApwXtoExMj/HGhrDbqif3ZNv7sbX+6lHt5vCvEKMKDnh7v6AEAivXr3C5fwFzsdnrNczyDGWdFWGQO1B4I1vhxYktWs2L4oHv5N6aUdz9RQArEXK7J1z8PAil4D+uSEEzPPc2GLOOWw2Gxzu7nC9BmESKSvpNgrtiZWXo2N+aAwBCDT8Vf0qLWNKedEqCv0KLric1x5MAshTReAn0f3JGaxaccvjEeV4xg8FqMcTmAhXrigMeD8hhBkEB84RYIfvf/eIv/mPv8LhsMf9qwdsd1ugJFyen7UaQr7Qe4fNRphx94dtA1vn7QznvJRcFQxnHOPp6RmPj484n074za/+DsfnZ5yefsTzxz+AkeHCBeSy+l0CSJ2Oj1jXK5yPcGHTfPw+umpTZDWq3TXfV85DIR6UxnZLqwquOzlvwaJD6ipJtQKpfpZWFTSr46SjnzxX1Q5ogsiJv7MsFbVK2WBrgkICPlk5fWZhQvV41cFNHpOTCgn4iprFE09ZAL95GxA0QRqigRrCCBeAW8ajQptrVtUJVEaVJaOcC82n8t4LKKJNRkAavMPAJvMRjQndS56DNtHywYAup1tSSsRtfVdLYtT+WfYwP29dMp6fzvDeNRvYQXRA6VewpI130oSDJlkLAvpqHMVFfD21/cwsYusEeBawzhKqAGHeRDgvyeuaCaa1W1v7ZduRt6STtv4MTNF7r7kgqV0yLcIRqxDwqQgDSMck54K8ZvGLo/hOm82E7XbGuiScLx9xPl1Q6oI4B1mLEkDAWcmoVhWVUuG1IQJY2Ho5S2MhrhLvWYdgAA3IgV6L86I1CAa4CpMyl4q0ynr3JHET2KFmmVfRvTazTC3uHJMEBkt1sFDHcrCX7U8QDU2QSCVRBYonEOs9kkd1AUBFZZEduhAj/0yhmp8NNh2PSj9U3Q8QtcE1wSvSrIllTg01diZAygQOclPSalRLBshykwxwFZVzHyVoqSugzqIMju4ioxMMTvmI+t0+NGDRWNGbU62OKOAQaAuG1BHLZiesSaj3QoeWr7TgNAbCdvJIVLE4SOlFlcWRktDfci4oqSCv5kS41gY1TrF1qmOIxsjxeBHnxm9ATjrZzWGCdBAQY+epAFiRKyNrPWmut11l+l3rbzZGDCmoMYwRGRXWxqlCMioFmbLS/3xzHmotoOKaU9QPdddthHkbL64DaLb1M1OkAc0QlLUMACzokGwcAaixNDp4LQmOGGvwSHmFIYJW5/rSDftpoEkzcErr7sjx7WX2TEFnL9yK1wHM2q2rsa00r+6kG4LjznIaP+cWbEL7nnF+zMFw2l3IANQpRATvhQ5b9QAoQustpSgzqLafNGUEFzSzKaLhDgRkQa8vHz/iw+mI6oCLAzIB+/0D7u6/wDRtML25h99tcH5O+PXffY/DYYdvv/oC7svXqDnhcj7jclnkUK1QBl9EcA67/Q7b7RYxRuwPB4QQcHd3h8Nhr3RUqZV/frrg6fGMD++f4d0Bb//wDlwD3v34EaVcAH+Bta5miLNyPZ+QlgvivMXm8NDWzgjikQE0OubGCHM6rgCheMlfWtZHXgz1+QlBM2mVoZnPiiL0SBHG1Qx69S8AT4YceEOb3cqMZRX69nabUFk6u+3uJjAT0pqRUhG676xdNcgCbwBVvsMXhotymJgtDmo7nJNuZj40Mi2YTKvEKNL6eXoyOOcQomjDcQ2a8axIkAYHNUtAyE60Wpi8gqfUHB79JGFiETV6OVjAKPteLga56i0xq3g5Gm26j6E6G+rErkm08+bNpMC5Huptz6rTGqXcQJcEQpRghoiRa1JqtHSMq2CkwgKs+V5+nat2C2IWsI8AR1JyTAqy1ZY0vgWsAQWlINbYwJlqQauX72+ABHUdlB5gdhtVVLNNnJ2eNMiCjqrwbdZSOdc0vpxXByKpsGsGQFpChCrMOGbV9eLm1JUMLMzwXhxxH5xkem2ObKwh2mOVHUqBdhgTm1SLHsbcZWgrWclNj7BbRhsW0tgW7Pa3P9fBKFZ7S+zASguXJJhmc7V8qdaKZIf6P8HjctIgylErZW7i0G5ogqKaXeRE10r+raaCnZaryD4GQf0nPeWYQVXKHOY4SUkDZwDaKILslUOWvI1gf8h3dae1dao0H8IAZRb759hjpi1kVReZZybtTgoNhEgTRgKAew94qacRHxGmqSOg0+ViJbgilisPKVWIwWOaoq6EonomCTnLOoibPUIUncTNxhIOkmibI6PkC9YqnYise17XZRQAS5gwtspys+EGho+eDbmeGEtp1aCjohZJqHptqJByBvkEBjDHosGXOqZ2Jn3GSbJEV2sk4EwQ1xhFDfn5IytQ1pJ0ECbkvMFutwUR4+7ugNP9PQiMx48RtQqjueq50ph4wwW178atT0X698YsfXk/w20au6Il61pEIq8PXuY5xKC2TTQmt7sdGCzlu/3l/T7t/8wmcI8RWK+nlQ4718T7nRctn7RKQhfMqAo2lSJsodFHLRMj+jNi1MS5E+2g9XRB4YrHdcX69BEVhFNlJGYcDq/w8PAliCK4bAGe8O6HE37z6z/g7m6PeZ5wd9iCasFyvmC5LpqclnNzM0kHtf1uj+12K12K7/YIMWC/32O726kNET/mx7dPePv2CR/fP6LmGT+8/RFldfiYn8C8gPwK0vVtSb7r+Yi0XjHNe2wPm87gGbxiCW5t2fWAtnfFBgoFgErTIILZMm104VWOI3rpqpVhMhW2D+RLzD9jMEjBJglOgFIAWuVs8aHCV4dpntW3Ub2byr1sFwTJdUkQ71SOg1FQPCNk0W9yjhA3Ao5LAsrWr/guPsh5avuiQo+11tBGwCLvb5sGtO7RKDcsaAGb+pjK+zvBQgBtWdPe9UqY1vFt0MKswx4z22H/y1VK+ZEKzserluMNmoFO97PrfrKTQFE69oZJzy40G1GLOAG2OqwTnnyglh9W0T0mIkyQmLolFtV/sBI6Y1z3eOgzdo3sRtGSoEAHdG7cRdXbk8YHXsYgS2wkYGJEjAHTFDDPE5wHluWI8+UICurntRXIAImPS7qO5NzQ+SVSNlpRH1ilUxTEa/tmABWddwiTyCKExAJ6svjFpbI0bNKaKM4CBrGHdtQjlUaU3/TCFrZfI1jsqHUDbX9GZzZVLXdxAOB9S/RUcqiswCRXLEVs2s/xoX422DTNUS5qyBY0wNECYXRElUj1mzQgIjCcCwhODt0pTggxYgoMZw623Tg5TJMAHCiyQIL3em4ZmtHHbqRWmkPfNhfJ5jdbaJsVREABamJspj3efPslnPPgaQWHDHc84vH0LI5by9o7cJXWqMu1ApyQUsb5fMG6Sj1w1cBahDsBCgxHUbIGpYCrGQcR1iqpKqKrHR48YdpEhDgheMImGuMog1UnxZFvgBmGgHUYwJu5H+dM4waZF/mfZsQ+BUxsnAcRyiHgGUE+awU5zs9PYn8/49Go2SMsr4GMIOQFpWYUzd6v64J1XZDzipxX7d7R27Z/7vEpnZJe/LYb6DfS15y9rn9GBxQIRP2QEMPv22vkcOprWAyQOf4vnP6fGBszWLKmLdMg3W0YgE8ZkklOIFJWUUCfK2ZMMSL6CUFbHtv4yvVWlCQdnCoBScGmMssajDHgiy9e44s332C3nXH3cMBuu8HdYY8YPQ77Hb7++kukNSkJQWvcp9Cyk/M8w4eAzWYDH7y2q1awWjNC0+yxP0xg3uLP/vwr3N3P8HHBdXnGspzw9FyxrrWjCpBsKbjCx6GMTu9tXOBWSy+xKA8+sQayZEwSMhiyARfO0c1qadlmOPRlJe64UzC9M/gGpxwdrBcdpVGPCGgFS7rnnNZ2k7NuKLKAGjFGAS5bW7ZPxzLfxjAZtGN6qYXt3b6vb0BY0xmxe7k1NG0ceCylY3TwR9dpCF6vocA5RsnSccqCFBvjokxYo98bk4Kotr8Z/VtKXORvcrYK08v+ZnNKJAwngnZmidrpK2fNrJH9f5+utmx+Yn+qiTDH0UrINVK/Gdc2t0Mmstk5A+iIW/nfTVBLYwB1a9sscDPGnqwHcZRE54l69zkltoWgbXCdrZV+neQIQQGNm79bVzmStWv3AQhbOKvopjloOTOKk7kl1cIgC0LbnFY48p+cXf3B3Qq3pXdb/m37zkHKSnLtHYRkv5oobFQbWAQYAX/uC/+rPz7xoZpjKEAIG7Ov6N8KUPSmnI65dxHBCRM0TkG0REIFuYJRpNM5h2kOYvcKAM28AuN6w0+ez8x2XcZYVzo9Q0A7mw92oBqw2z3gy6++hXMex/IBl3JEdQR3FFavdcEEGMtyhemrOWJclwXn8xnLdZGScAVVjCkE78WHYinNbmziYp0S7b4FyHLOY7uZMM0bEIqWeDLSekVKpo0WJFatDFave5yXT3yqzz7MZkKvWQZu9AOsK25LwKr/OUoAiE0orVTSzimx7S+/0QzTEFWovbAyvZd+zVje0zcQoZaCZZVGNNfliuv1gnW9Svl8axoxJHEJ2ka7+2ajLfpj//4pdjlA7bq6/9iv++VP9/07u8ucqOb5N+M3gHE/NYNk8yHzI4kQYVc7J6Lp0umYlQHR74lItO9CmOB9kOS1RvniRzFKysgkzLgERtI1Nc8TpmmL1w9/gu3mHt/9yVf45psvsdtvcTjssdnMuH+4wy9+8S1SSgg+qIRGwGYWwfTNZoN5muGix7QVH2raRITJNLzkuzb7gIc3G7hQ8Mu//A53DzvMc8G6HJHSWTrflaQMIjnza61AkY54Ni/m+9iBaDGdMHVNX07WV9sBpIzTPikw8NJRTyGIJqb6nc46dUnixppGgQR8NDpRW5Y0nA7UQV8Bj9GAFFlmcpCNQLv5Sc4R2KseYvCq4WhizLZvbvfVJ42W2pbt49WBnKrgbVX94rGkjrUT7WB1WrzldP1ZMokUIHEa9Euyz9YeIEBEZaCgKqjAek2m78tALkgqjVDVZyEiZUAbu1IG3vQQY9Ru7IB8r+0F5wBY4kbtYvv3GEuan6xzr5ds+0UASS0bG8ZOfBvzE1wH210AWPXvSmnjRs0ajBN2O4PdlprcTcbxeMK7d+/w/HQEa8xCnuFUI7a3KTOnCLBqXrPjY6OPxsoiyOvRS8AZkNI0EnAupQxo6anzhMAO00Z1ia2yy/aisaR0L0rSuyoI+em58fIxrtmW1LOzD0Jg8OTUh5U4yhOBlIkoMiYWG9Sf5UL9bLDp7mFvV6mTJuKBDBNHFOG/UlMLUqqld3Wjb+Yt7vYTPEXs9wfs9gc4LPA4gaioERAh6v12ByKPWlbUIp2GUHudfKfWyaKS54aFMDyIFEEHCcjqIV0vMiFfga+/+Rr/+r/5v2GaZzymP+CUP+KHt2/x44f3KLkixgnTNCMEj5IXrMhYrgVcC1LKeDqekZIwD/IigE2ggBAY5AOcE4dmuQIlZxE2zFKiU0tpm9ra4L56vcP+sBMxsFnKxj6+/4jj0wUUHCYX4T3Buwx2BVa62FuXYnBwWkiL8QAa20I6b4i7ZRV6plSozML2aB1W1ElqjlIdurIYwON6kD9E33/08QnbaHScbENXocvmnLCmK9Z1wfH0hNPxCTknXM4n5JIEeEq52bzRARsdIBMtNEN8s2taoEjD7zGwMeDt1vGCGoRaC0pJADxqEXp2B5oMLIR5cH/MJUI7vFoXAw3eHTVHZLOZME0T3BqQC0kHsCTC8t4zJgvGVJMh+IDtZgPvPFIVFh9Mv4AZvhb4UlEgzKZEwHZzgHMOu90W/+pf/TX+6i//GrvdBvf3B8TgcbjfYrOJmL+d8ObNK9nPBowosNKuQQ9TOTgAdtQMcmW5x8NDxOEh4Iuvd/juT+6RU8H//B++w8Orb/Dxwzv8j/++4oe3FQ4LmK4A1RawOB/VIBoTrx9sgIjNT5Mwh6p27UpZAEsBO7pj4mrXe9Cm9zqfsqekbMeLZpA9qjg3XnXExHZVdSBkFTgHwEmmfrPdNKr2sq4g8hokq7PhdanoQeVIxPmM9lyyZNvmrVfAQ21RkMDfsnPOAbkWpGQHIyvNGchc29q19qtcEyoccs1IpSh4OOzp0SlyDs4Haa5QGeCEQnYoyfeIox2VMaYi6lU+o7JoWNTKcKXCqYCyYhXqFMh1QUXTV7W9vjJCKLDSNalzVzCvCiPCB2GT7Hc7KR9F/9zCSdKk0MCarD5dMzyNXqIlXLr3WzaoVowsMTkDNajWbGFVPT45s8QpaMwuoJWWgRhMAiDcOmoG+t+aB4LQwksTLhfgxnvC5iBlC72TH4ONgad7r1QFiQTuAKCaLj4CoC5gbZ3lCLo+xUEGCSst54JlyQIS74RltiZp0c1FuvwYE5OrMJoK5D5FN8uPx1S7TdaJEvtZb2yuAU5ObXIEIRDBcUbWdRO9A6KybycBLtIqoqj/VI/7e/GhGD0gLaXo2PZW65/tUFelA+luc4/N3QExTNjvt9jsZhAvcPUZ3dkX27bd7uGIkK4n5IXhWpBmJdu3wF4/F2+DAyuLI/WhMluZKINqhKtbfP3VL/Hf/h//75imCf/5t/8ev//x7/Dx4xM+fBRh4hA8pkkadzx9/IBT8ChFSrzXlPD4KM0k0lpkXREQg9hUFz2cmyDitlLaJc55T80SJACTjr4Br1/f4XDYAShgXlBLwbsfV1xOK6qPCEH8q1VLZcUWOz2rRlZMUyfTuQMslGlrlLpPIAGEndHyfnJe2ERefltSKMaIGKS5wrIsmOa1MUDci7l5GRCMJU0d1EbztT4BnCBMUTk/5LmUEp6fnnA6PuPjh/d4/+FHXC9nXK9X0WNMpTNdhzHoftAt8GJr6I/6cfow37P5Npr5rzcgn+luFZBzKCULy56EmdkZI4TKA+BEg++r46h41HA9aHZGQHWRO5jnSTqPkUNaMjIF1EyoxcM7YI6kdlVKg4L32Gx3cM7hul6wpCs8V/ha4bliTQv4uKAS4RIckid88YbwcH+H16/f4P/yf/6/4pd/9s+wP+zw6vU9QvTSVXEKuL/f409/8S2AXiZswBjMl9LKkKoaW9zQl67v+eqrDe6/mpHTA777szdYrxn/43//HeJ0wPPTB/zq7694erzA+QKCJBNTWoFMcGHW2E6S0eBb7aBpipinDWpl5CR2S5i2WQNWap2kLQEjXVHFNzIQKjivCSpbqxW5CBOfAEAraubthDiLzMG6imgzmSZjA4fk+0ReBEipqi8CWAm7JbRI1w85QtXKW54YvJE1Itq45n9bdkjGv1YG59LsZVu5zXbLYU5U1GaR6m9lw37aDpB7ZDB7KTvVewEI3st5J/pRcubOmwkxBqSURZurVBAqiqvNd2IW4fLUNAjkf0QEXP69JLsQApjUP4tSlcQk8hSelO3jsNnM2G5lvk+nC1JK2tQLqNUhJWGIyX27/r16r77FqtpFDcYoVfmBUtSf0bOMhB1Va8W6isbaNEnXdgeP4GYQBazLgmWV7w0RGmcMX3xjj3TcNckLZqyrzMvvfvs7/PjDxyYrMcUJbipwk4j7aaPB5oexxWUQH2pZ1japVs4pjPc+z85J9btcnox7KYzlcgUYwtqdPcLsEDYicbKkBWuWKi8uTkroRmAbBazxqIfKQti5MDhRRlR4aZN78kue8046gKMUJK4gZql8CV792gBplpFUPP0ffvxssMl5WzgKHgHqiI/lKbBoDk1biRmsmhON8eM8pjhjs5ll0+dzX+/qiHrv4Z2XOkEK6Fmtnw7JP3eoAWiDKPRO1sWsGdkCxDDh/uEVNpst8uWEvF4Qp9iFpy0gJki5TIWI+RUFmLKUzBkyLAZCJtoHhg9SY1mSakYoGik+pzoPOsbeS9eDafJt0YFZFd9Zk5e91E/Zi8DNch7vmew/0TIB6FngEWU2c2lAyjiANwGOnmcNADIHY8RpuPk9tygq9b/fTFC7yE8mtT0vX9HXlv1IJ6+sGbk8tHJnBZvos589AllyvYw/srxurv92fG7v89bxEnrlGGDg5lL+CMR08xX9M2/XeAcZndKsg5dAUdZhhPdisBU7aRkS7zyCl3VeuAJjpxjWrg5ZKnKrI1SSQ5qcaAfs91s8PByw223x6uFO1u7UuxlKeZKUJL3U8nx5XwIwsZGgxMYQWhttArDbTuAKfPHla7z54kswGNO0BVGEELCHDNww/zfrtM2VBlKC9oDUFJaSbtYAYQwk7IPGH/uCAQB/se6JAFinuvGuiRqd3MT/vQqDWsDBxiRBd5Ady7UYU8n2LInviabrYw0MXL+H9lBn6EZI8ebPPKzfqqCIJhAqqaPQRghmI/qPtGY2Zljj7VEXy28TgdpAIW1OBcusWXZfDnhuwJA5e2S18GYfGJ0xBMBBA3aqLRsm7Cqxs1JvbyEkbufZ9jGG5/SWDfO1+zWH8/bH3n0z7A3ga1Gffmiz1GrnqtqMcd5uWKpjXEYDe6AC7LTszvlWbuVMO7F9LinLicCZhOWB/plEaCy5Wy1Zvh2P2zuEAeqmDeUqwVUZ41rIjuA2PpbV5GFJfGr7Bvt5s4kGO96Hou3bNkxkQDe1uSuqQfgPGv3/Sg/zocQXErHgdq3NJ9A9V3t5qy1q05rzClpMcZJykVLAK7WjEtDyV00S1exRkwVNLx+jU/55Boq9rIGd1dgiDFF58JinDV69foNpnrD5sIWPXrLhg4YnICsn56RUfBE9XlNWH0q0VUxPzjoQ+2bTCDk7OU+bRiKrLRqF8b36UEGHLqDo9ZuNkBJO15kPuvBv9pfd+nCe24R1a252zT5/PDx6Fr8ZbwM/mk81sjAGBo/50cMcjev55zxuEmzVmLLmQ3ETxs5lFKHOg+807jU7A7V87oWvM97753zwWx+QPvlbA+qavaObv98ym/pZ204fGi/15Ry+vB5G755xe26a7l0OpflQ2RfVKO1t05suUOvOLHTRZssGwKFkRiWguqCAimlRTXj9+gFff/MlNpsZh8NWAKzYS87DXrptOeqw53AXAsyQej/Mqieof9DzUvwxQp2B6GfkxHjz5Wvcv3oNRkEIE5hVJwTjWcpDZYCunMFOofmSXmOjCqoVhfJw/unaHc5yAz1GSzOuo7ZnRn9LP8p7SX4DUsrNDG0KYnPZmU12/Zb8sWuw9S+xwbiHpbENOQFdxjOk37teiP3b7vOzdrPbVCuDb+zjdtr3w/bGX7jxpV78uN7R137Acr5X9ZUdG8tb9+1wed2HYvGTzY5rfMzqezdHh2+bKoQgpaIjXixjy+3zX47G55hN4/zegNTM4vdy95ck6dn3lc2ldE32kJJRh9tvtjXWHQri7q/Z9TQfpAroVMtVZoa8yGpYp0Bw05Y2m2FMsbamjdFun/2JH4Nmc2z+ZV9Ip2dmAZvIA46tyySQKgF5+Dju46MWXf72yTLsvm2zni/W6ufsJaGD2/aw5DarPi6zQ3ECcn4+irh9/Gyw6fnd03BherhboEYeHlGMYvQNCTYBSUPDD7s7vH74CpvNjO/+7E/w6ovXOD7/gLfff5QsVRUGEgHaGlnboiMI5beO2hWfOgUvHzcTaoeBYzApGY4JqGL493cbzJsZ6XLB4/kdTutRp8kLHbFklMIoWRDZGBz8FFHngGmWLH7JmqEeIx4nyHvOCVwX4JqlDE6ZHdvtRoTBbME4QpikLnLNBeUoTLGUGc7NqCBcE4DMSNcVia84XwoceWxmWQSdMUI3pzCR1n22g7r/liCs165bZzMzkEDXCahkLYJr2/gAWva7L2Y91PsOaY7e7dR1g//Tk6mvNAccDt5FeMcAe5SC/pMBYgdPUYylOaZ6KazWt4VeajzqDbPJPPchCBx+y0dwu6a+5oZDE4SmLcOGcFtpFw//N67XW+f15f2//L7xe6c4YbvdYrMhHO7ksDken3E+n/WAFXS+shwyznvMcRKGzrkglQW1Fix5bQye6hggh+oDHHnp1jBNmKJHyVdcr8/YbBzm+UGzgxjmVg1iYZQXAWAz/sO9EXUIw6kjYYyo9nDAl98+4P/wf/pn+OEPe/z619/ieHpGWt9juTzDtDbs680L+cSBYlZK+gbOR8TpAMDh/Ye3uFxPg2MLDbq90HoZIqwL1tbe6iDr3TgnwoHSsQjN2RlZDM4R4iTB37QNCLMIfftIrZyYq7RWrrzI55J1WwJM68Yyu0SAD51aXpV5Erxpv0BLTpW4Q6QdXKxlbh+bvrZVSDIXLJcEItKOmiJ66M3BcHptrovgNtq7ziMgmWexI1V1htAc86bNhNtxgpMAncmCbplUswEpaZDC6nQ4B9OWscGoIORU4Aq1c6WSAW1SurKuuVO4deEUc1JZXGVhnZtOlmYZWxcsh5xE0NHEPA0UdiaGCrnWoswsEDS7R4h+xu6wAeBQskethFTOuJZHMFi1zvSz4GHguTCM7L65BfXee0yanXS+grzYnMo239oV1REmFRSH606g6TpJa10F+JKuFwlvVNOA4UIBVQKKJG8kCyprdU0rKGtCpEqWe7ed4IkwZQ/oWWnC8I4qPNW2BgFoKYOdL7gBR1sSgSxQaNMu72Vu4hUEtEzmFKI6eV5LZf5hR+m/xuPxR/WhtGRHrlmcZHIeE20AR9hEO6jUXeaKqmX0r+6+wLdffoN5nnH/zR129xucnt/h3e8/IOeMEELT0gimjVYiHM86OOOZcusM3545elarL2HACJyTLo56jjsEBAJiiIg7jzADSz7j4/N7nC5XDYwCck44n4+Y64TtNsh6jh6IDtMU4HxFKRNqAWoGmCtKjrBSjcqsyaQkZ1d0mGKAibt6FQu3hB1zxbKKnlxOSbv6Bni/QymE9x8TiBJOy4LzsmJZZf9Mk7dbBoAG5rcxMl+lBXBmM7sGl3cCUtjcMgM1V+kgmDIKOSQ4KTEHtZK1WksD3YZZuQmgQWKPepJBhcnbldhcDu+xydV/12bwgRAiYphFCJoCnAsIfpJmOT4ieNUlNJAHGpCyzNH4rZ+AbT/xeMkCl+dghxCsnM1poCXt3j1KERH8Wgpqkf0ge1/Lfj4TmN+OY3N9B7thcy32ebPdYLvbYbvd4bA7oJSK80l0k8brrZqQc84hzh5wEJYIa2OTkkHMCMyIkklGjDOmGLGJs9h0B4ASKq5aFicMdQPdxSfVRA+NwBrd+E0OPZALRLY1ARJ9QguQHQCagCkA3/3pa/zr//av8OPbe3z/9j/gw8cfAVxRyoLWP50AOUENBFBmUy2otcARYYoRh/0eXAkli8/5+PQey+Wi68XstNgOKcW3UroqjVduQwQ4SBmgo9D06EoRWYgQN9hsA2ohTBM03hDtsxg9Jm0+QkTKihMGpHX07gwkGcPAoTVhsDEVMXCva0LWfa1VO9lZWaXcK2spXM7WPKUnhzrQw439YXudWvyM7gvbWh4qRwiE4opeCwHtesxfUZbxqGncYQUYI54VVIed/9nAEzlvpVJGYm/pmEcgx3K2c/d5gIqcF5RakXJCLlnOaPXzSpHu6x3NkbXkGI3ZKQCZ+jEMTWprwxkNxrwLEsMq1mA+Xynyk3OV5i6bCTFMCH7GPB2EAZVOyFoNxVhlnU4zfIi6TgUsg1XisIrLk8Ph4R73d29kTpOI5Wd+RuJV9oFpE7uhkkrth3VAdSDVOpa11oBXJqBqneQL8M3GQZJMUn5A0PJ5BiI7gCJcBXxmSd5xlSopiO9TMYCZJElpsuWlgYUl4TsYjFtbqW8g8xOq2TxjjwuW4r2UUjrycD8TRvr5AuEfn+XDvSD5RB4xzPDqlPogDIk5ztrRwUprxRgAFXf7B7x5+ALb7Rbfffcn+Oq7L/GH7yt+ePufUGrWGn25Y0+iu2Ad23LKSOuqB5VrG/mnHi//RjpI7GrXTlcgIHiP3X7GtJmQecHT5QMu60nXvTjyUhIFKesjhzDP2G6lC9gO4sjVwq07iZUQMhiVKtIacDkfkZMwGDhI/fH9q4PQEgcaPRxEzC5VXFNRQTeA3AQGcM2yQZ4vCefrBbmK4zxN1Dcs9NrthNLnuvNENyAUqANRAjZ1Y9fFaEsDm6wd5+jhWLDIzdj91AR97m/9gPtjIKmBBhLYR3jPYHbCHFNHtRYCWJw+5qrdsW4PGZAF7hbkfv6rP1lHN3/7aS2Ctnn1WknF3cZPaFDT4OR356edWMP4fHoh48EWYsQ8b/T3DgCw2804n8+6voSWnFJqHWCmaQIIWLMDrhUVBYtSfasnFA08g/eiFxIj5hgRg0epC5b1COYt4iTZ5JYV1fVlgYI9mmaaHmA83oPd1vjE8LBj9M1Xd3j48g6vvpjxb//fX+IP3/+I49MFl6PWdCsbinXkx5GzjC6BVXx0Qpy22O/fgMjheHpUTZ1bp8E5AjGjqJZUrQWl3irsGWDLgGY7WA95FYTUtrIUvYDVwWF3CNjsdJ86XRWVtQxaSnUBIMYI7+IwLBJYOW9gk2RVXWUg1wZACSNA9M0gf+rzYjFHK4uzTUDtMCqZwSV1J6QKeO6igUqD+KX9DJum2ZvawSwpg+2ggWmEyRwL+CBsJLlHKWYT6r0Bwzae8h1BHcBu11qSrJgN1qAsaPapasvrnJHSqsCSBj46f60rCzr4xgTVhRlo7d6pQ1t0jOR9XadG74wlGWHBpPeiC7GZPPb7PcAe6xJRkhNtrPWjOPvRt9JlIn/jdJqWQwebetbcewd2K9gVDd6lzMEAL+cdJqLGKoOeqcKIUTDTC1AkLAjToKtwBVgXFh0olk5SYDQglaEaBGCw2r6gnZQm7xHPHkg6N0qZN4FmyzwSoKW1st4ba7GdFdyMxoibmB0nQBhDzO013jvM8zwwGh0+Y8L/UR7PH8SH8taMgYTB7J2Ha63dRQfGeac2RUYo1wWVMx7uH/Dl6y+x2W7w6us77N9s8eMfEn78vQTl3ol+HcFYGh6YAhxELLwkS678EecJACw4H/9bqbEWJAAEj4Cgay5uHfxEWMoFT8ePSIuVf3jkknC5KpOsHqQDaPBwUdpuh0lLdzVZJLYzACyisilL2czlfEFakzATtaRkt5sQJ034GesRUk6dk0geiNRDgPMblFLw+CRt4c/LivOaJLgi33QNO4j02aFpf7OXWoaatDzEWIVij6RMwjGj5IriChxlpJRaUNxYMEXY2Rq/tPGTRw8Q2Eol2ndCtfTs2qj97skQeafYVtlH3suZ7p349I4CvI9gz8qKDgpSF/TDmpsNHvfO/z7Q1nxHaMAf9L5JuiA79TeJ1E5k9bGhe9uhx+6fgk3dV6PhPej2A5LYmucJ+/1e5lMTJKfjCZfLReeoNPAgpyTlfFEAOKlmEOAj6+sCgESE4AmHOGOaBHAKTpsDUUKlBc5vsJkENM21tnVsvqkivyBISZ0BTrZHbwI58x/1d4a0JwcBIcpzX393D7cLePjdjP/v/+cBLmxFjzbLXFgJOtRXagtStVq4SifLKQTstlswe3CJKIVxPj2Lfg5pAwBoAtxpR2+StSSdSUv7u/iFHWAwAJEhAJ6rUtY2zx7SWMSAHCddfKPXZiay/y2pkpIQBVjZgwQpH7dSVUvOW/JC2GW6XrSaxoBgQM9/Lx2BJWHHzTeyfhM3bM4BbGrMHNJoYHgdNEY1oMkpOcJYnSZGLWtCKybs3B8Y8NC/A+KrNXUZLdHnKhqfY/zhWwIEHTRT1rOADGis+1xWBe+lgQO8h6cAaBIv59LXJnWdI+d8Y9vaHIPRyufM/yKg+XOdhUSdhaqAk3MClsueCsJgLRmPT9ZZr7abjjFinrcSJ2aHWirysiK7JLFtZbBj7HcHfPnF1ygl43o9odSM83JFWQWA82Y0xLmQsdEuxpSgOoKsHdzNv9amE9qlEAY8YYhHge47okKatbgmyxE1IUUF8KXCkXaeLWoTSQGn2juWt1hq0KxGA5q6rR7jHLMZPTazOLbLJ3gvcaP4ndJF/OeY/p8NNn373bcAVCjMm8j3DO88fAiyyYmk3tk7aQtbJQslznzGNEcRtdSfMEf4GNC6cg0HhAEXpAuUq7aKbxugB+EWgNCwENqx8sJZ4MqormrGgAAdqFQykAmn8xlPj8+4nBcx7Pr9IUZ4r11VCiNnIKlhtvbcpXTRt8om+CnBbUoZuajKOwNcCZkIa6ogJ8Y0KxuCXATIa4khd8cuaot1ljalFSsKLwMFXFaOZCNkLNpSJguavQJo3RmxulILXkDiPBqwaK3PrSNGUMfYq9CvBVw3jpn5o20mBqrfJ5Nib2khwk+sQjWsmqF23sPVgGmesdlskZxHSQlEGXVSsI8rSlVo3wAA9OxeAwbQyI/9gtqtjGHMTz8+R08cO/1BgQ4p8ytd4K05t/17iKCie/0zuf0PDU/rAeWcgg/imGYtB0s5IeUkh6W2MZY2z6YNIhmAlPIA9Dqw8wBLeWLwEbvdhCluAACn0wk+eLx//wG7/Q4hBLz54g3maWotiodBsPOvTS0Pe4aZUZN2Qqm9BDIpnd/7IKAhpAtYZeB6PeN8PeH9jx9xXc/wQWxC1XazFgQ055AEHJIy3A4C8+Bs8stlZ0FtWw62cl8UEHGfF5KzWJ83TR7uB4y+wTnARxGzDUEo+QBjCBUajdm+y3nf2EvE/eNM8whsDhsPB0sFV9I1p2tcM1Wszh7Lyxrw5PS7R1CwgTftgLTnuDFQzVGx0jtNusGEOTtIbGVkVtZhrWMVjFNArpfGDUGIjeBnDjZzbJrVI4Bb1wluzm0p4oCVGwdHHSoxvmqnOmNzvA4Dgq0ky0R9mx6XOuluuKYOfrUNIJ9rpaI+SKtr9kAlrAy4cguCWLLEqfBSF2dUsGiIBwzCkRjFNLjMiayNdDuEYgqm1X5/ZDZIShEtw8sM7Sxn3VxI2V4m2AkVxAduu/IwqoKpQNe7akF6+87PnhDop4mlMiTRMeT7b9/V03a2EKVzCypKyuoJjtox//iPb01/JcTW4XGeNvBONM5CDHJmeJlTAUKlQ+K6MnKWtvX2E2NonR0/y/RmswsOFILuq9LAhpcv7Z9hIIItwMEIkJZfWbKJtESHgctygStyPhyPZ3AmOIqqr6PAuJMOdS4VsAOCJw1QqgZvmrDjipozRrApazdOQGx90WBzWeV5YaDLfTB5FI4o2aNUYa85XxFjRXEZmS9gyqiUUTnd7E9r7qFhT/crobZFA6ExqRYUEB79LgGTvZZbid81Rel6JEK7ETHKPJoWi/ksQJ+PT+Z2XOo3e0bmbkzEcqup6ucW6fxaZ9AQI+bNFrvdAY4c1ssVBGCaZwG/ahEfojFbxH43+6T2+SXT+x8GNNvqQztodc2afZDGJk4Dt6pgfcK6rsI8aAnP/p2fjhujVpvbYWzaEFLznUj9tVorahaQMuUVKSdNFojUQM4FuTCoVuSawCSdDVtVAanoMnq5unU+rbXi6fkJ5Anv3r3D/rAD54q73UH8aivLs2ukcfYg4DyjJZYlaSIsjFJq01DNq3SpdiHChwnS8XZFLhUfn57x48dHvPvhPVJZMc0T0hqwLvI9Ts8wiWuynIgmbs1mhW396XgOvhTruqhqVwZ3FZaUs4Sc3Wc/54e9RsK48T7AR9cSIKzzyawseIhtYf1OZm6C7aYja74FQasYSDUDtXafnOtVDyYB036G1co9gfiyXG+8frMDbaxsK7a/yP8516VaYGc3d9/IPlPNbztPS5ZOmnZftfSEprHp640dH+/h0zPA/B1yHci0INr8MxAGAWrqPo69lPv+t0XhXH9t98srULQRDnWfic2XeGHzzD4ThEFdcoVrWljC6I2bCSU7HC8OlOS9Jsthfmn3SeReJKnD8GzsfACugktRUC1p3NCvW93EltAew4Q2W3qO16LsO7CKuWuCTpNorUSQtSx0OAN6eZ58rvMEx/pbv8Mm4BO7d7MO+/KTCzU7LeueB1/XAFfw8JzaYq4sJfuQuMO6/xmz9h96/Gyw6d/8P/8NANJafGlDKm2m5bCKMerkCrJ/Oh3x+PgRaU14enzC5bJgPx9E1HKzxe5+j+3DHvPjBi4EkGZ5bXhKlWzGxs/SrcoFpDXB+azMqh4I2GFF2q7PROdYP89aEYKBgoJcTaTNwWNCzoznyxGUCb/53ff4z//pV/AlYK4bbGLAZrfFvNug1IL1uoJXYYCYmG7KWQKZatlfRipyOAsjSoz/ZWHkEoyNCqqE/LTCuYTC0rWHycOFA+D3cEwq9uWw32ywmSeUWrDkK2rNKBePVGRhEiV4CDr7EvSwsj0ira92Um5noJ0PoRk6WVykB55XRHijGhByEErmXBhsu90Wm+0kf3MAuYqOsqOtd9uEjJdb4OZlGuDcnl6M2oSxfXBgkmzbpF05Hh5eI8YZ18sFDoSUEjabrRqKKt3puKIkaWdba8G6LjCWS8sINvtLw0X+lMPUUAhdh586WNbFkMg14FE0KlY5KLI4cv3eu6NobJF2CFugaxtfnRgEYTS1nylK2+jTM0opeD4ecTmfldFk5ULUGDdrXtCE3RlAlZbZ0VdcryecL2dstjv8yf09Hh5eYV0TfvOb32L77h02uxlv373Fn//yl3De4bDf47tvv8XDw8PtUHE3xFUFj9eckTSYOp+PyDnjdHnG5XrEsqz48OER65qw2x6w392jVsZlSUi54ve//1v86ld/g3XJOH+siDvpepRzkEBYg9pSK1JawEQo+YJSLqh1QVVqOFMFeykVrM7ADwap8Zc2uZ1JaeujuwT6DgVGxK8fspEggF2jojoFa2IgbPfSBW2zC5g2vgNsDEldsh9UkYTtsNltxPlTR2e9rkLv16DbewcuQLXSp2KihpopZcD0TcCdVm2C2wTXMkpONQG4VhXBNH0WaMZXdeaiiKoCBiwVlGJiot0pk9JNApNmqpv+kozfuuYWcOZijp6CCxVoCElbUsP+G9rkmvYVlK0jDoKCmQVYkwBM1yWpJpI5NzZHYruEFS46OZqOVUeFAApaLgksV8lYZtWKA6vOkTdXUofbgMeqGS69pUqM7WaLb775GswO79wV51PGWmOzK6ZF41xACMKmFRFWuXcfvGT+szkpUjYpjkRpjnZerP10vzYTKZcMcJLSupkA56Xl76RzfWXRhCgVOQn4tFxkzUfvgegHENVJ8J9JAb6KnESDrNYKNkac93BwCCS/velPyG31mFrtX1u6ygABAZ7VF+AODzZwE1aOS+BSNNuekVJFIQeKEbN2iPunePyb/9f/AyAgTGKnnfPYzBtpwe4dfCC1jSKC/fx8wod34kM9fwy4Xq64u9/j7v4O82bGZr/BtI2Ic2zNOzpYZMKrVZJEU5CSWF5RapWyh9Yqe3A1bcEaat4Gs4KpCLszZ1zTIuvAbRGniFQK/vDuD6hU8Jvf/Q6/+c3vsJv3+Orua8QwqbioAE6X64plLdjUCRNL2ez5mgRUWrMkPkpFXgVMqKX7UClVVDjUQsgFAFecLosGqgHMEUSEeb9FnPdis1hKNuZ5wnbvsaYF6fQRJa+oi0dhK/sYy8Ks1MtKepRZqM0cRKMHDZiPUXxhC25B0JIRr+LokgmeZu3CPE3Y7+4Qpwm7/Q6bzawaU7K2pfuxfK91xurBTPdPpFTWaq/ll9hCeXWFgUOm+dPBJ+cdtrsNyANffPkVmBmn5yNQGMv1ihDlzEk543w6aolfQkkKzum4jdIJn7KbhsD7ZXBL4+s7k9TpWhbdx4DNdhIAqCyozDifjnh6fFRBeSmV7Ik9ugFfnbPOZgWmj9qCJwIKgOgcpnlGjBHBC9iY84rj8YicC86nM67XpQHtdpZIoJiRygVVx8J5TeZWBlNBSRnrmuFcxP5wwP39A9Z1wX/5z/8Fu/0Wm82MP3z/B/z5L38JD4fdfocv3nyB/f7wWRuSa8FSBURalgUpJazrFU/HD0h5xel8xvlywXpd8Pj+I9Ka8fr1l3j95issa8Jvv/8Bx9MZHz6+xQ/vfov1mnC8LDi8ucPzhwXPH8VXnZ10xs6lYlFfOeWkLDzdLy0hoTZW8/eSBtHV2sDDblukvFT2WlGd0IaJmvQHAUTSTCLOAfNhRogOm11EiHJuVZYyQXiAinx+qcqa0p+SGHktPZFVNBHv5JpqBooXsMNrSbkxe1iZz5ZIss7ApTKIS6tkkfVgPlSPAez8IlYB+5u1b3pDDlP0iEE1Q1VHrUI6darpbfubjc3FGYVI/SVJICxrElF/TS4BXQrAwIObtJ3NIXegyZF2fic9H0j833VNKLVgmjxmksRF90sIzrEmz4Vtw0ADGntCxHWgbJWmDLUa6EOg4Np1WFzfEqEVcOwBJpQs+7OUimW5gFzF9rDBl18dkFPGeX2PNUMrkdAAU4n9ZM4rC2Dko5c4O2rCPjIqLUj1gtP1gxBlsIJBKLXgek0olRGj1wQDmg5bUeac84ALHmEipLWgrOJ/plWqC6ZNACPCOQGtq+o8TbP6Pq4iZbFXuch4THNo0huhAq4SIrl2RrSmXd469Ynmk61E86VtYVo3Xhnr0BDDce0yxE8nr0BhySgpozoHTtK0AcEjzNb98o8/fjbY9OXXXwEQ6rOPXpXplekStasTWDMgBT4CqVyxLg6Xa0Q2mmMICDHAR3mfD8Zsaq6l7itjNkkAJCJdJoj28sbG9xrMqot2/FSWELGyaUkRCELJzDUDGbherjgdz5hpxsZv4MmYTR5IQNEDJ+uPaIcoZbNal5aKVBR1roa+ygElVee6mRioSjksVRYWE8MjgDDDQ+o0PTm4sEOYNkAVzadaEuBmMCIYBdQ6Ptmtd6Mieia+gUitLMgZsOTRM7w8POeb4KaUjIRGb7YfY0BILC4W/iVL5JaXYFPBL2esH0r2LPVXNJZJcyJ6+U6IE+ZZDhIRO5TSWO+dUK0J8puta2JfFXbG9dSFBbF/DGQa/ot6Kd2n9ERF520+GAOw0wX0DUCicenavernYjAC4xgCUKZXd7ZsH5YiIqy5ZAn4SlEUXeiPpYgBLLXAEzV9JHOqwdD31OYwL+uKy/mCWis+fnxEmAIe7u/x/CwlIilpN0qgAQ6s917VuahgLEnApnVd8Hw6IaUVz6ePOJ2fcL0u+OGHd1iWFXeHV1iWgsrA+ZKQcsHvv/8ef/d3/wW1ArvwBtFvFKB0kOBAYaAqgQyTBN9cs4LOdbAPcqDyQEHGMJ9tYaIz836SA8dojr383Q536oEA9JBrndFIMyRk3ndbO+316CVzMrauXVstkoH3BiCQvZdbkG6Zt5vrUiewlSbp4d72c4MjqJdt2xolW396bQrqGIBk9fWAAVD9OwiG3ZgjYSW63FhCJgTZ5uAT8/HJyMNC5raPbjJjfa6NMl0VBGlA0+BwiTj5rV1qzo9uRWtda6V8naXY9VSs7Xm7h/YzrD1QK2dlJnif4Fy5Dcyoz2vP+FE7Q/rzHdKXc64Dn03vqNr1D/OokznqabTxVBr+mMG0+ZRsKhqAzLb+nH00qWNjpZLjIKCvs5v7aqavTfFLm9rGTofc3fgN9OlysWuuVYR6tfud14D+n+rx5TdfCggRA/wkvtM8TQo2CcOx1oLLEqUTExVcLhOcB67ngJw6q9iYxT54kHctQNObbXtbznOH4HU9uiRdedsAU9vb46ObomHjMut6Mn8HADk4F1AZWNYFBQmX6xWXyxWRJgleTA4hyKKzFta5VIQq+mg5M3KpSLlKl8xSkVMRTYpalFFiWWC5Vsv8ZmWgKAdPNCVKANUJjjwCTTIGccY8TWC6wK8JBUGlCYIEttD7bcNBah/kx3zP5i/JkCowEpTJVFWfsL/O2OCWfDItLQvCOvvZgoAuhQD6VKi1T9Lt72Zr7D7Y1kLFi80uZxmhdVSbpgmbzQ45ZYQYUUpBrBNYuvrAL0H0BmuRTkj86fV8royug5c0PPe5HTp+ULcB4tvI0wY4lpy0jE3P8/a5gw2hW7tiTSXGYRtjhVYK3sBa8Z1Syk2bRsAmtWcVov9SGGuSBGbQsWSSErPauo0K4Gfr4LKccTxJic6HDx8wTRMe7u9xOp+E+SeChv3sNlsHFrCpLNr5asG6rrguZ3x8/oh1veL5eMTz6YTlsuD923dIyypag37CZVnxh7c/4On5hPcffou3P/w9uACh3CHECc579S1kH5n4sQn3N9BlPJN1am2a+/mjPpO5ru0fekY0fVTddfqR1qnU/maAoQT3yvrU73RVAENj9rZv7kUMg/9TG8MJEF9Uzh8GUEHsQK7Ctc7FxggetBzt7NH44ebz21mFnigZzrBxb47+laxP7VjMUt4GGCupz/u4tcSHYljC2a7Ryohv7/2nfCj9rD4F7dPHuMVYaqVIslzkGtqGa69/+WhH/TCPbYZ4kCnQzd7AYQWkYH5je49daBdcr050tEqRNs1x8iCqresujevRvk/PD646UQ4gEZBRm86onFFZ9AFzWQEqYPVtjVDiPOAVRKTmq3bvhkglJAjqiwluUAvrOc/tXozJKpILcl229qQ5siRvpaxOE6qDr3/jQ708FNoRP/pQbSY+2cfDDNoENt8SWrnlmFGdAzE3tvLPefxssOnu1QYWxK75jLoWPJ2k7n2aJ2w2GzAzrssVuWQcjyd8eP+InDKOj0cslxXx1YTdmy22uz3mzUbK6Kag9FUvbZ/VMJgANUja+Ar9LLRFd3N4tPF9cdMt8BqcUWbkKsF3jDN224hpngFlODAzuABkbVW9ooe6cEQArYLWAqYErioOV61swcysbw6KiMlVcbK4SFBgLdIVACMXEdwEH2a8+upPsL//BvMUcbffSkv5ww7b7Yw1rXg+H7GmBb/+24xcj6AqbVbJDKi7HZe2iSUaViOVm+CdaI10wwmgUXlzjqg1wXkvGdIg2bp1XUCOcL6e4WPENG1w//AacZpxuHfYbLZixi0IGx6tnfPN4c/NQjmNbhqjxO5FD6imC6TsBQNafPCI8wRyQLYu5gQEBHB1qDXD6mCFNcSNPQJg0Lt6EcxS/8e4wkaDbgZNshxFxy4riEetbMO65XGtHfRrQRqJqHPTv9HMDd+OIUEpjaQBVC0oVUTlTftrXVfp0FesHWjEZrOXNUkRRAEprXh6Ckg5wSmKLayva78+Led8en4SxyNJGVrOGW/f/gHH8xNqqdjvdri/v4ePARmM4/mI9+9/wJoSLpczlmXBsix4fn5CrRWb7R7TvMPz8xN+9Xe/wuVyxvH0hPPlWTL5T5JV/Oab7/DNt3+CEGbMm1dwfsKv/stv8b/8+7+BI4fvvvtz3B0e4CLh2z/5E5RccD6fxAm7ZpyXd6hccbmepQ0xCz2+zX8Ts7byutrmEoB2xaC+PrkDEdRmA329NPst7yHt3ABihDCBqGKK2r0FCnhkozsDJnbKusCkBSyjlIR1pTYHtTJKKnpMKqtT3++drkvnYeUgRF4vTEpopQxX1rqRYFnXZ3c40M6c7vxLIbqsKyntScmcQgGfTduHq5QWWClHi59aYCVxUOVOcTc9pbanhqEdHzR+0AjqmoNlGU57vR3ETODqpNymAMHrIc8KrBZzSOlmt5ON8hDAyF43MXButl60tag5F+ZQjMBbM3eoOB2P+MMffg9mwsePV1wvCWs+YppE+lU0ohigglpXMIv4dlpV408HVjoYiV5io/nb/9X+vaMWQ+UMVAKoIkQVCK0FvFbAeQQO6jyJrQ3RYaP26nDw2OxMyFLGqdaKskqmd1llHn0gzJuIqO3KG3Cl42jNKBws0EMH74DeY8K1ibg5F9ra7F6UspsNbLO9C4DFQWWQBoQ/4YX/Izx29xPA0sb4eD7KutcutnEKmOaIWguOpyes64Lj8wUfPzwjrxnX5yvSNYEfGLvDAZvdBnFL8BMps83BSkCNsSvnkAhxT3ECUcayLr1sXEGk23N4cFZfsJPNzgkLs6BUEV6d6A7TNCNzQq4rwICnAE+hiehLdlRDOw3e1tWytwWXS1J2oIJYcPA+AiSJokpZAqlchhJstXPKQvDBIU47hDjjzTff4PDwZdPgCd5jO0VMMeB8PeOH9wdclwt+95sLUnmCAzB518TozW80eYfWeEWsNoAuCCuitBWUTN9StC1FkNyjFI/K4guUusKngBAicsmij+Q8ztcrDncPCPMW28qIYWo2uOmYkYw/LLrXoI10PHsSVXQ/Wmmtzht0vHJepTRuFdCiQnwp10A0Ay8NZBNgjMGoJd+AOIyXPtEYoNyelPL8uMZe7r0eTArLl3E+nwdbqxUC16u2tS/NhhhQZOCe/be918BTK2/pAbCtaisPLZqky1JyljIYqkvrA6ZpA+c8apGS/ZRWYVWXBO/Ed61FGE0N9IAwXz8+fsCaV2RlYuVc8Nvf/g6PHz+ilIJXr17h7u4O13XFw6tXOB6f8eO7H5DWFafzCctyxZoSjpcTKjOmaYMQJzw+fsTf/u3/itPpiGVd5LrXjPPjCTUX/MU//xf4q78+Yc0Vv//DB5wuV3z/+9/gN7/+T/DO49uv/xSH3R02uwlff/snKKXgcjkirSvWVPF8/ACuwnRf0wIHSZk7PQekXEilQ6CaM22l6rnTIn87W/v/juugAQ1tvZh/Js9VLdE37UFZK6WVMDYQeND30ep2YVZrCbG4RYzMFVQZRLd6gebLZxWudtq9eVzskpQyMKXvL0loA5SH+7XSNN+BFwMhq3Ngb00y9Fwqeg6zEBJaZUPbQ9DP6ONgJXQ9XLCSwnGIx72oQK4BM2wNRBSg5YLCVfwJOAWmHXia7CgFlJ0tdqrvfTSgSJjmUuEx7LfStYW8stmM4MBahWEsrjpg7zJ53HzQ0/GEZVnEKlepJjpfjhILwXwgSPURq/5kRgOO2sCoI3G+nLQsdUXK0jCpckaFkUdMLsE3M9nGTaVzuv9sQL5omV1TQc4iWL8uovcmSXzf7w0AUMBUUZOwzWtlxElKRR05zHNEYIdYgzL6hI1mjCao32dyB5IRQbNzdrvuBU5wcwncXy9jwHCsHXFLRUVutrVp5/0Dj58NNh1ez2BmPB1XpOczlrTgw/v3WK5XbLcb7HZbVGaczmcpjTld8fR4Rk4Fy2lBXhIedq+w3Wyx3+0xb2aEKcDHoO0FVU2rDgF0EYffhyDsCu8bIDBm7W4OtJuzrR8qLSTkipylM1MME7YbOUDYQbvUsRAjnGjXSDtyEx8UNlPKFXAFFVqeoSJxbdMCUMhUwQYPqhWUlGfpGMCn9xHCBnHa4atvvsOX3/0FDvsZX315h2kKOBy22GxnXJcF7z8+4XK94Lp8wNPj96DKiEwqummiwfSJcaq16AbKWFdGWVZxjgaByqzghGTpxEhUFjHpHIUOLwKY0nFF6TDYbHcAEebNFpvdTkp6ALDSZO0xZr80F67PSWaxKuJMRHDBgkiG9HG7zfYYQGMdsHyQjS1zJZawIfRckXOS1yoiywbO2aYZgKNPH7dOVb8ftDmUMa7tPs1psUlghjpJvVsVWgCLljUlOcG7wtwNCCbXIk6MlQEWVHbtsM9FggoRRjTANuJwuEfwAcFv4P2E6/WKnCvWZQFRBiDXm9Ii+gyQQJAZeH5+xrquKig6IZeMtz+8BX6U2vHNPOPh1SscHh7gpoi3P36P//S3/xHn8xnv3r/D0/MTTs/PePu736OUgq+//gXevPka7358h3/33/87PD094XI54nI5opaK9ZKACvz5P/8L/MVf/RV2uzt8++1fYbO9V7DpfxXtt7gBHONuc8CX332Hkit+/7sfsa4nXC+P+Hh8r4dQAkM7Z+i6BljXDwAaBQU1GGtoRQd/OvgysgPagv7sqnGQ7wjRwweGVkLJGqkFKDavluEm+xK5RoieFSctfVyEKemqZt2bWILsdWH0adlTFRZVF4mkdhsoBkVQAy1k/4+HkrRfBck+c16A85pNW4vgE4bsvW/MBclCl54ZbHuG294xMfKiTqHpDXzigMLGZRzc2yzcCDZZhzsAg4ZYL4UrlUHF2qprYeTas1/mDFtXjjF7ZGLoKHZ/LN0ENUExqcZdWjMSF5Bm0gxQawLs6gkej0f84e33AAPn04p1LXBBQUkn2l7Sp6I0un5aE5Y1N+FOSyiQinjWauLcOob6vYTuZArYpPbZifgqoJTzwnABYBYXgTQG9Qpmek843E3YH6Q8KynLIGVGrlKauS7y2XebGft9hCcrSho0m8jBBQ9PbtA3lbEyp4k1avZk5TF9KXQ21ACZUDeXzT5XNnoVTFujgkE/01H6r/HY3U1gZlw+HnE8f5TE0dMRaU3YbGfsdipe/fgB1+WK6znh9LzIurkyOMkZtTvssdvvgG0CxwIXfAMIzHKZ2LQlYqwRhLDIi64LbjajB376MKypORGwJ1oQVqvDJs6Ik/gouWakIuURnkR02ljR5Jw0PtG9yczgpaBkQi65gU02v8IMipL0KwWVvCqHJzCXdiS2cxtSwjRvt5g3e3z59Tf44ptfYH/Y4osvXyFOARsVFT+ejti+nXE+n3C5/oinj9/DO4fdNCNYGbGxE1vCSwDlWgtSukiiLom/xMwqIKuMCA2iatXyRu9RqvhQpcTWae26LHDeY8kFj89HvH5zxasvvoZzHrttZzdKQwtqONNNgMRVs9/QMxuoNaOWBAJpCZ7X90iglPKKlFZl5AibtHWA835oFkBND9J7LfPxHrn9jaRb1YvHyEJ4GdwOr/rJfSLrS9hCZ5UAkOfE375er628iYAboMnAppHl1Bew2T4rExr9qc5+MDHodV3VfxM9p2me8fDwSgBCLYe+XheUyljXBY4yiESiY7lcYU0nBGwq+Pj8EafljBglOZ9Lwe9+9zsFB4Evv/wSd/f3WErGq9Mz/vD2e/zN3/zPOJ1P+PHHt3h6fsRyXfD0+IRaGV98+Q0eXr3B2x/e4v/33/1bPD0+wphxXBjlImfPh3cnBTwJ7x8XXJeMX//9b/Gf/+Y/YbOZcNjusNt5bHZ7PNx9gbwW/P633+N8esJ1PeF0/oDKcm8gYXDNph+pfqtU5GcFPDWO0v+1JWvt7Efg4wVU2ebfgIr2nLYJEQ1K6+oqa1eSqlL5Ep01NVKdworG6LXAm5kUIDHtQ/mqUiwW6OvQSjuJABdDu06pzGgHlnyn/rsJPWvyjEgTApZYUS3JWmy/OtSqMZtXsf/SJVksPut7qCdDu16kgU23/lXznT7nm9JY4YJmv2qVMzSXLDbZScmi86RC3OqVWlhS5SzlCpCVbtk4koDYJvZv11KrVKI4R41hHIJUOhXV6GugpZ0XL9iUtRScTmcAksA5Lc8yfzqlddA9srhLGlDoOjTbrr4Ng3G+nATgRgUgNMZcc9NBq7a2ycA/bnaXq4Kt1nmcHLwHpkmkI65qq1OqWJaMEKjp990AiCw6qzlnKcMrFXnr5XMdYY4BkQLi4kFV/D4D2FnjRfM3ZRHoPhtMXj/jXtplWxy2tO1ME1yGtMyhMQRFt+PT93/m8bPBppIF4S9ZFmDJWl+/FnifEWLWQGjFmlYsy4plXVGz7HinCGeMEyatb2+01eY9jjtiAIiqLY5uDIRW9rnw3x49OGcdPDuwTSTVqbg5OSmjK8hYk4gPTohykKnHOrJ+gJu48wbcur2D4ZbU0LWgsHnLrv23HRSVV5R6RS4Va3JgeLhLQqkR12XF+fIsh1zWNqVk4JWi5S/GsmW4a21o7ZrWXvLE3QnvrCMGHPfsAEu3DaeEsh4UW1jWqbfGVsALIGY04jfzZIta54ypqjMDDW5Zu0sYylq78R3cZAmkNBtngrXtpOvfadduINM4Yx0sfAEiDEvtJliGGWpzSOnmdU0jhcVAjx/bxpBsw1sWrkVJ7R5ZAVMLFkcmRy0FxTmlfa+q52JrqTNKLPMTYsAUJwCM/W6HGALW9Swt4JVVaEL3NrLMECPujUWjDBsUpFXW0nK94t27d/Ax4g8//B6/+rtf4Xw+4+npUbQETqJBUmvFbvsKu+0V18uCtGTkNcvnFUbNrN9v1NPaGSe1gxIlV1yvC87nEyIC0iSsj81uB9AEPFc8nT5I6WuVTCk7wfFaQNacyUXusxZ1ollAAgV9eiBrUaytmC6IDMgWF2CHb15D0NI57+Bc7+xgY4ubdWMwiQbcxmDTDFfbR4CuK24YmbRO7cwg+V/1ltiW2xBA2vttr+p/j+7ezT4YHgZwOHebSe7xKb34gOGj2toaDOQL+9qfp5dPyp7S7xgpxAYsvCzl7XtG3mdldNkRfNZOfbloC15xPI2q3h1iueYmwNkYWGZ7XjjPFjjb946OIgOmMVjroP2kThGqipTz4GxVE5y0rKiUazRakY6H2BkaZpHNtxLHw9EAsvYzTMmXrd1xZ25ZOaS8Jqi+kIjbC2BE8KjVSRembDpROmq1rQZZ9xiCWRpsGuuKILOpfQ67szSOZbvpm0dVAKJqhGHOrzW2c03gFDdlOP/YDxMIzVpCnFNBVo0i7x3WIN10liVjuSasq3S84iJ6Fc55BC8ldCFGVF9FV87OAhuKMY5uyLL+ndD+yBZFYXzJGOD1z2snQTtzRGzVR2E8kwNSXrGkK3JKAxhgDBhW/4TVRhl4Y/+WddRNK42WoQHTYi87H1ne14Oxqp03S11Q6hUpM66LR6kexTkERzhdzrheTrguF9SqgJz6CYzadEIw3LvZJ+aCNS2oxTQHreRJX9ccQvsZkqF8+7zpQIGHwG3wNSUQdsNcQc6kwRw5c8jQg86qrekJBFcNqFYJgWrMiw4I2J33xGdn8o++VlsjzcZ/6rd33+rmSLOV9OJx+9wIEBmIaAm7Hvjf+uH29S/fOzKa+me7Bkjd2BGycmj5rpwyrEPgOCbyOdoQwwcQROtke93Ce4+UTkjrVRuwmO9la8ABHAD2IHgAHmBGyasy0ROWNcFfr3j79gc8HY94+/Z7/ObXv8XlcsLHjx9wOj9jXRPORwmwd9t7bDcJ6ZpRUkVJnanBmvAhJg2UJSGpcXILRksu4kOdLthOEfNW9Nx2+wOAADo6nM7PqJUVbOKmnwoIiLamhFIYOUlpLLPo892c4bCzyfwpauVHdiab/8vq2JiP5DQhZH5WKx2z11owbb4UG9hutkXY5Ux1WHVDebteonwU3/439x+zZ80o3vj7BozY7Q77wnx36tc5GIsGlNq4fNKsZniMS7/5a2zxh33nAKJ99jH4C4M/aCy01iiE0WIO+24R6FeQTAExqhBpUp2T4QrbdZo4t31Qsz1mS8heP4zJ0I3PGmNZfGoJREdSQURMTUvSBmlMclpZGjc/l+S1ow/efPYKS8EOJ5/sfaeJje7k9nXtSMAYkiRyyWiAIxitCsd7Qpw8gpfmB953Np3YcQNJAeuyecMUtXU0xoHDzDLQxrQtxZcrwPwrm/sXvmutVbpCD+tIrkXG46YhTR3n/KcfPxtsOj4fwZBOI+fTBct1xem44HpdJJuZhTnzfBQK+PksNHBUYO9mbPyE/bzF/f0D9ncHzJuNCo17WBhtAAMNgQsX6UrCtUgW1zvRfbFAXIO/m4Ot2QtGbc6sMJSQRJysFEIIEdv9ARQ8jssz1rLg4+NHfHj/EXQAaP8VgpzUqCW3w5ot/tEDq9GrFVWW9ToEhSzUxFogJXoCvakxDSAwChNyXsEEnK8/YDo7LNnjmj281mg6EoHb42lBWhMeH38ApLEpKicpsVkyUsldr4ZHgU3JSBar8ZXWLSpkabXKGlB5JwJ1yjLwXkuOlPFF2tXO+QjnA4LfwmECQUSa85IAot6c6yaQHBwG3eQ9kBYBQnLABhEBTsRrs95fru36G/yipwJBWprCe1T9kR6f5rh1JtNnwVwnm14y7L3dsP1qoRu/3Fy94wL6stAMmW5kZzl93LwGt7YCxoiythP2eqcovJXx2G+GZNVKyTidIphFkDKl5ZPOFKS6ILv9Bof9A0opONztkVPG7373Gzz+7hE5ieh0ScJuAII6SRHgCYQI7yKYK9LliDVdcH4+4XI6o+SKf/tv/zvAO/z+t7/Ff/h3/wMu13Mbx5wylvMi2UfeIfoDjo8XlBXg7BF4AruK4itqkLlwXgTWDUC09u/AhJwrfnj7DufzGedXF4AJm3mLr3/x5zjsX+M3v/41Pj6tqJcTlvUtlnVBjEDYyppOy4Lr8QRyVyznKwAgrRdhAjmnmQFqzrftDbLgwlgv7tZBZjKRcV04OtExihi4iwwXSssomZGw4DiX0oy8U+en5gxG0nFQEVJ0UFfYlRjApg4SD+hPC+6rZqAY5nhyK2froQVLdwwnnzFm2UzjTRoIzENG2bXSRCZIY4IXp10puY+N/a05fYxWU9j22W2xhsZdOg5dIJG4ivYeM8iLls3IRhoP55ykPW5OCeuVdO4zSpbgzer6myaTzi1qRU7KTmx72QAX00yz61OmIiq88yB2KJxRs4DpQbu6poXx4XIBCKrXJDfoCqEQwJJQFhAsS2BaloSSityjV3vQxqgH5HbdRIQwWc0/QJpoNGKCMxCWASoOJjJ6uUhCIq+iH7CNAYdDQIgOu4PHZksgBDie5Xz58YLLKo5WWZRBJE3FpJOslhF4L+vFk2truQFPILDG6FVLgjDcnyNqPbWp37LBSkhFzsAyBIrBi1MHBrQXAHKtyNqS+p/i8fx0BJhxOl5wPi5Y14TTUc7ynBgpSzLv8eMZ18sVeUlYLwscHO6mB8xxi8PmgLu7e2z2W1wDsKqWZTtLPCkTe4RIDbzQMTaiyyc+oiWNLDjQEGoABr2TfZEXYexOuxmH/R1Wf8Lj84+4LEccj4+4nM/YTRt5r/OoXJoYai6kYCDBOWFZOR8RXYA17BB7CBC02yMDhR1qFVYJyIi/VgpdUQFc0xGZEo6Xt4gnxnkhHM9StoxcgcK4rgkfj0eklHA5PyFO4nkXXmTdZtUDYu2QChaBeWVrppR6B6gqoxbD1IWtQ1SbJOwuOb+Cru8IBw/vImIUkCJ4OVeJfcsgd1Y0NVvbfGKZKvGvqty7MX+kpCaj1iS2jgOq98JWTCL0XLhqOFUacGVMOGZGjAG1RFwXYTeUMcHXbOgg+nYTeFMjZI+PnwpHenMG+7f8R6lSsrEsS2O8NUZINdCAtHz05fkgPlQDviBxQ1CWWYxB16Xaa664XtfGAiy5YlnXxsolGAgh3VeDD9huD9huDlizNKNZ04rf//7XePfuB0nIL6n7D5jgKMK7PYKXDt6EgMoF14s0q3k+XvHx6YTn84L/4d//T3h8fMSHd+/wm7//W6zroskyaybjEHzE7O+xi6+QzwWuRARsJFbwhEIZV39uwJsBM8F5VE/w7IAMJM744fsfcTld8cWbFfO3O0xxgz/95V8ghj1+/etf4cP7C1I5oyKBsTTpCWbG+XKB+/hRbEIyRsWK6H0DLmS9MvpsoINONM4jqaSHsHKdY8CxlBrN0tWSa0JaRQNH/FOJp5wTo1aygAFpzchJSkmdCwqeFMApk3eooLL1OQLM9qyt41oq0pphJUvU5C/kxWNZnwFg0BjPbIG9ByrvYfs5eC+MIVArQnQkrJ9aJR5uPhEEwLTvqQxh2TWjIJql3b+62W1t7BvAZLa9+WEi2cAKjvhGgRa7s64Fp9MCQEtdqyVzxI8sqUrfgL4ZpaJk/cw1kcTv5pOAhJHNLPtV/H1CJSAj45KuSCljs5mw3W7gKGByd/A0YS1nXM9HtWkJMGDRGKpFAZZms01yxuxFQ/vbDzktvwXEx/FAnKI+b4tIQSRyaG2iSZr35EUBGogOVQgE2nhs9xEPr2Z4Lwk754VttSbptpnWipQYtRJiCPpeOcNkDQkVi8iafY1iMGhSF/Bo4Nen9pdu/K72UNAr54y15IazOBIJhQDNsaIFogABAABJREFUSCqAJo23/iuX0SV1ynIS5D9bZi5VeFeRQukI/SJZuXUVMUrEGUGNtLXttQ5o4wFjcKo5nOI0o1ESP82WDG8bHwoMWDB+kxUFlCWhnZdCBIiQSsKaV6xp0baquav0s5VXjJNmaKd9JRlKoWu1QYc6OfacHNTWeU+MrQICRTIQKV+xpiOqdtiRygipLU6p4nxJyLkgrRdAzVPlLMFWSVrnKY50VcelaA28dZ6yMg4iAk021twMgiNWtFoDlrYXqelhiAMgjpMzp0oXozF6QHSz0G+Bpg7emDCwUBWTZmQAVz1K1U4CrF1AdEOMwWibkQZIdAcZ6Oytz62fm7U0LCgDF24dJ775Re1/cLMe2n3VqtfU77kxqmzJvBgfc97E235xKNiPcw3klICYkfKKNTnR01Bw0RBz2Q9Q3RXRB2EWwfecTRTUWE3KyGJASrvUsJGHowDvQtOeymsSYCoXgFY8fzzjsi74/W9+g7//27/H9XLBNEWE4DWTVhF8wPl0xbokpDVLbXEVI+oQACpSu81DRrFZBHEuhEnBWK4rQIztZodlvcKHiN1hj9dffIGPj8+IcY91qWD2KFnai9oE1ipgA7nS7rc2ZlO3F908iR1pQZv+0bIM5pi+tOzMUgbqVCiXGrOpU3EN4Bnp/H2B9bIwIul0IdkUCyTtEOUhsOz/ts+hJn7z6cP2R3cIPrPOB+fLxmYsW3jZRp7UwH265ySr9ElAMj7xU9EKY1gHo7Mkn9v2uZ0jN3agP2SsNKDWOS1WdgoSZIQ/vSam7kDbvL+44Xb+2MDZ2AiLpjuGRMJWkZIN0YGJscJ5BlUnmS0HmL5vrVAAUcuNK4PdSw2x8XLHTLE6RZ5k/TlokIYWvJqPwpUao7dk1fhjW/dAnJw4HuooOZKOcrUoy68CXCz5okBT7RdI5mi3UqWbpaGvGVie7cn+GksyyB7s61X8oCoMq+HeCARPXtcGbn7/Uz3SKj5UMv8pF+SsGpCpwAUBZNIiP8b29AS4ySP6iBgmxDghxojV+Rak2cMSKf0p29c6GrcH1mcf1N42Otvd/oEB1jNHgvcJiU5Y0xXLekVKq3RaLR0UsHKPyvTCTsnnm4ae6ICYX9CDN1vL1gSirSHSclndW6UWUE1I+YI1nZrsAYFRFtHBWHPG6bJo+/pV1n21M4/Fh8rqQxXpZCvsWgXLDGxmKeu5SQCQnk/tzNTfpq1HwnJxuvfFb7LX9XmxTDzRAK40oOf2dbZXTNOoWsIOQHHqIyjrmVnYkBJcl35ODGdFY/80n7BzoFiv4zP64HqNOuPmFw/nx+1OG8+FW9/G3shQ3ZosATt8v+e+UF8ESzdjApj+oZXgeu+0Y5wCHFC2RsmolZBTQXKyP1v5leN+DpJ1H4yYNzN89ii5IKQA77wE4DlLoyBmOHTfybsJ3s3q+ws7vBTx6VMqWFMGcsEfvn+L77//Ho8f3uP7X/8WKSV4r5p8zjcbkK4JJUkXUlQnICY5eCLAiV2uI+NGRron7ZjAhbFcVhCdcditWi4HHO7usd99gQ8fnuDcBlK+6hR0dG0x5JyxLNIRt6qcCNeq383qH5kFQSuJBsQfaT6WtMeG6L9osK9ABDlNWunXltJthyUDDYR9KewtqRB7DcuZZ2ua+3UB3Zd66a/Y87WoppMz6QK0dWbrroM+PZawvW1sGH5hhpt/YH+78Xtf7h2LZ/TfY7xw88pPzzUGDz5gs+q4dWO6jAGxvz1/mZTZJGiSJLNH9lD3T+xSGWjEh/ExsifNlkPnz+wBdK8RJPFblThBEPDFU8Tst/C0QeaMskD15ypA0i3NsSY+x5Czb2cbTfSmNAyRX8Ewzj2e9MH8pArR7uvnosRX8r5SqoKG3Jjnjki6hweHaQrwqsVJRuow319L/WQtdmZT86WH+HucHzafRi5K12rzVD+zJswG0838AwoiFS23b/enWsKtVJOhkrI/6/GzwaaqQYh18rFaZFZaZd9kQhP1FBB9gIfDPG2wCTM2my02uw3m7QYxRAEqfO9QV68JJRdZXFUEwkstiqBKAF0+c/C2haPgkmjYVIC9ZIuIMQVqdLxlTajVYQoOMcwAGKfjEy7rRTOKBWnOWHOC9wF8JaAQcoYadYdAE6LfgNkOdxEebeVHFiuSh3cewRHm6QBzOKyEwulcXtcFz+cTmBinxydc1yuid9hNUs9KVkrIhKodE8qyouYkjsTlBC6jiNlQEkceIYgxi9F0OYRCC0CDRdMukesLQQ5PHwKmaVbdhyhZIQt0WZkNmy3meYvtbiclkiEMx8vtY6Q6NytAUtMMveZSpP3q8XiC6EslXK6XxtKpVcrrolIpSxJ2F5Ho4pADSvFSCsOmA9Mzk0bD7eUpSuscwUF9fDYWefkco1trvfH+Ps0S2/qsAy19cABsTLtTY+yxnoEjAF3AdPx62ZeX80Uc/cLIadiT5Fqm1PQKpmlSgVOGq8LAiHGCdw5T6MLSADBPM7759lvsdofmPC/LBcfnRyyXR6SlgHMFHDfAipnhY0Ao0ubbBw/KFbUmwElNcsoFKVfkDMnsp6ri1wXZdCgygbNTcFiCrc1mj7vDG9RacLffYZojpnCHyjOc2+CLr7/EL//8F/DBYbkmPD1+xH/8X444n94DDNVh8+qgZwnshzPaq4YPtbkajLU6cgSSVqyQ/QUQHMn+YxiFvjYnvpd3MBxrcQSTtBLVw418Xw+O7PoU9NPsiTmLrelA1rKPMgKLcqmN2dSgD4LTLHAtSnmvVhIjwVNvoy3vawL3+nkGUHQHrztbFlyWwjf7Sz5uDGbknKhFsoFyzg4lEgOQ1/bUi41oXVJg48wyZ8FLFtMFD6+26iaIs/fomORU23fXNApsluENbSs0h9KqKb3qxYXgVfOoO4NCpZb5c8GBvEMuFT5JomOznRFChPfCWJP1clVmYwWKg2O0VsSkWWuxu+aIqO1g02yRTH1pIhW2nqyRAoFcBTlLw8icxegxT9KAY12qar2pI6QOsJWgShOCimUhFAa884iBtfxQdREKoSSx1acn0Y/bTB7hbgKCQ86i9caoWDUwjj5g8rEvv2HSGEBJBS3s1XXYNO4I7Voty2zzRlBQlFzzD2xvfhoE/+M9WuKmmLC0BFYNwzG6vQYm3nkgBASKonU5H7DdbjFtJ8TNBM9BAgKvP07WUC2MQk5ZQk5KXRTcKrq+1V1FP3e4HWPV1m4taqscmAAlhKgPVRpIEqeAulTR5Ts/Ybmu6jAXXK8rAIdUpVuvRI8B5DzmaYNpM4O5IpUFlYswSpIyH7X80ruAaZa9vNt6Xbd6LgLt7L7mFafrCXCEy/MVXN7BuYroZS/UxKJlw4xcheGTlyvSItICRUGkqskasduqrwhhwoOBKcwAzM5JqdsUozRV8U6z0CqGL0RrhOCaKD9gJWIy97vdHe4e3uD+/h7b7QHTvJXOYC9s3g2gr2U3LbAlxjxrR+hUcV0ySs54//5HrMuCdV1wUf2jtl9c73B6OR/lbKaKEAMYE+I1IsYJwCrro1ppfm8+IEtnTELoxfK4ryxwphtXye6JhqCnPcwVqzK/lXpQO5bTtcTd+D6yIeqJkBhjK/e2M64xgNnmkXG+nLEsV5QqbHowN0A3a8OVUgq899hsNljXFeQuAGkTlnkHTAyv9smRhyePebPBd7/4M+wPd7guCy7nK5bliqePj8hrRl0ykIZEFzt4Ep/M7JxzhgqIv1KKgFRprUgrY10YxVd458QGZALDgasH2MNRRAxSUrbfPuDVw9cAGIfdA6Z5xhzv4d0O0+aAX/zyF/jm2z+Fm4B3H37E09NHvP3+gsfHR02CSODJAzuU2AA+BRJqT+TYMjCwg0CAE5YOQML8JwK8li8Rw03SRj5ES9B1go/IKFhiDt01s2RiYUnGQIWgGcpkVtpNA7T7ujO/qT81+C8GfBFAqHBOT6IGhg/r2cra1R/rCe8epBtT78bFARpIedPgw66hr/JmB6wz6BjvyXW49o6GR9Wb7QGzQ6SuvlPALwSnAJDr3zOAHFZaX7L5Sya7IYCjgeQWs9gc9QSBJLyDv9VYs/ERv1bGy1HQ7m0OMUagAiFGxBAR44yHwwPmuAc+JjxfxL+XPS4xovehnXMilE2ArRGnSEnt2lwm7kX2sgbmKNikCTvBQPo4EtS3UifeSkTVugEETEF0eKeN1+uTeFx8KhEOT6nieqlYlooQHDbbCT44bGbCHAkRotPELP5TXkWHllUg37rEv3wYoGa6U7JH5QrNb6Vh3ZgfJXvB/qaljWQ+t93jz3v8bwCbLGjqgNOIUgMWn0jmyTtxHD05bKYNttMWm+0Wm538hGhgU0CIET5EVHSwqVRxiHPpYJO1YW+Oxs2ppeticJRAANWudi8Ha5WOLNVjM3nM8wYrX/D8/ITzcsL1dEVaMtKasaQEEbwFyhUAPFAmOHgEmjG5jQTNdVGhLMlqNIBUHZToZ3gfsN/d6+Ht2qJ0JDmO5/MzMn6QFvAfPuL69oLJB+ynWTIRWvYSQsRmtwU5QrleRTV/XfH8fEJOqVGBoQtHFpVvGzpEYSCJ+FgC0A2bteYlElq4AIER0zxJRmWKIhhe0RhGMU7YaXfB3W6HGCeEGJsj8rml+DL4IxC8njXigDnkXPD89Izz+YTrsuB4PA119FDR9I2UY5CsJUdCuXWOkLOHzw6lEERYt7ROI03vpL5EtH/G46dSeqMVb4BTPyhoBNeAm/EZbFYPBBxp1tPEBZ1BfPra2gIEO2hO5/MAEnkATrsKej1oM5wTRuE0zyLElzKouAYqgidMOoZSjuGx2+3wF3/5F7h/eEDKjHWtOD4/4Vd/+19wPa1ISxax6SKOes4FFXIoVK4NbCpO9N5AItAsbYULUmKsCUiLiF8zM4p6DyUTaiGguCZOvt3c4eH+K9RacNhvMc0R87RFrTPI7/D1d1/jL//6lzjcHTDFHT68e4+3f/jP+M2v/zPAEsR5tQU5K0XfWH6QFsWgCsrixI8zbkvXkQjeyuEpB1plB6IMZkJxXVPABG1Lzci1wlcHxwEM0zlIcIEQZ+twIT3mpCuG7M0QpImCI8lgEkjAwmTaVrdOHXPXR2klYOilZwI2SVlwqeYguEHIsTvz5jCMDn4L8tEBJ25gU3c+7JoM8LX3Stmu6vuog3HjLA32/aUjhbbVuG2FqrTzoGKTPgaEKTbAru1Fuw8Dm7I4y1ZKaKXQ1u00RK8tafvevBmHEOAHsMmCANYy5ZxLC3bIOeTs4VYNVrYbzHGD4FcQSanLdRGwiUkcN+cJHr6XfMAYV9qhToyLgijGQLVae24sBe96eZWIF1UL/cQRigG7nZTCgRNSsnI+1s8RMMQHQDrYAcsCrEmyjHWStZ6yCIzWwshJssHPKYMfK/bbiIOL8LPs/1IKKgOpFGERz5sONjU7pzaSrbFHaUGFBd9tf5KsRsnKVQ2o9ewnAZhrrcicerBMP99Z+t/7MAC21Np0VKBBTDP+rCxIEl0YFwjRR+w2exx2BzlrtzOmzQSfI6gEKTVWwKnmAtQizAINRFIpWFK6Ybs2J7jDNeiiWeJ3Sbc0gkcQyRmwisVWAZucZI/jFFEuBY8fPuD59ITLeUEtAuRerwuYgVwJuco5P80BjiLmzQ6Huz1qzbiuwigqecFSsvr8YovCFLGdd/A+YN7s4cMkdgyhJWNAhMfnR9R33yPlFZenM06PT/DEmHyRdWE6GN7BzdLpLi9XrMtVtLIuq5RftXWnYwLpiByDCP9HL7+L+qbiv3QgI3i5Hisn9l5KEJo9szVaxT/d7e/x1VffYnfYY7s/YJ7FXzRh8BsGiAZrpN/BFiGTEyDBE07nFXxJWNYrfvf73+DDuw+4XK54fnpGLbV1hJw3Ew53O2H62CKlijhHOCedBmOMTZuusfuZWzzwEhBrbs44hm2Tjay74X7sVfRiJzK0LFzmYWR6fe67bWylr6Wc8wYyTZuNNgXpNnxN0k3bdKxqrViWRVn5aDo6VoFhgsmhFvggYJPEFXJfMU7Ybg9wBGznIKV7TmKh/eGAf/Hf/DVev36DH378iN/9/gecj0eAf4d0LShrAa1Z7HwmUHXwCJhCFB63D3DkZd2wxBg5S2nXuhasa8WysDRh0EZHuSgbqHqgBpAPmOKM6h0Ohzd48+o7MBjb7R4hTpinBzi/w7y5wy//+S/xV//iXyBuPT58eI/3737E+fQbvH/HqLGz30oRzU4ih+BsfLWsyNXGImqOk9lkBpxpSFEHm+R4khImN0mTihABcnoWmf9cGXktLeFWcpUGQbPYhMYUqaIrBSbxtVIdt/UnSY2Xa2kEUe08ZLaEGTrYWdudNzDT9oq9poNHUvospeDmQ3W/o/Jtsq7Dum2jNBkN0ffJvVplAL1ug3OAm6hJv90GPtucELUYamQadgWjDvLlLPag5K6rZhfqnDSWIR2HWliTck79oYBpijff0WQ/iiSBa2VMk0eIDsxCSAED0yTM3s1mg9dvXmG/u8dSjsCPcn3eO/goe8biWS7mv1lzK6DUVTvT9sQssyYHVSessa8NbFKNpVwcuMjZKUPN8EQg3QMWqtmYEBGmTUSIHnEi+MDwHoiTR5wc0lqwpoJ1ybhcCq6Xiu12wsPDhDgHAZsmgisEKgQUSKy1JombFbicpukWbOIOZNZqYvpFtaPUH2TfwKTOENSE3ZD4tSRY1fOLa088/5zHzwabxmDDssrW+tUAoZG1odcni9d76YKlavOuterVibQFx7cbxr7PhKqMGinAAt1cm3wh2oIxZhTcEMDr4WzCcXJQyMSknFQwG1Jnr4BXrgVwSnmmCD/t4FzAZrfDvN1KffE1oxTZhF0HaYYjj2naYJ73CCFgtzsgTjNMg0aWvlxbccChLEg5gT3gVo9AhOj06FQH0bsOUddapCtUsSLZ0cDQzdiMNGUaHGxuBzoDsHFzL95zG/jZQe6cgFExRs3Q2zjZ6z+TsbLPaBkp+VtVa5DzKpmlLHXbXtdODBO8q6r7IE5YVdYHU4KDtoNXI1VMY4utHAzD7yHL8NJhubXqL5743P18BqT6ZO99BnCDFfrcHgyt27SNvesCzM3kt8NIvn/cL23+NPCyzIgZjzYmWrTuPaEGp10RgoKO5jAyKmdUzhposAA7mxlEwH5/h+3uIOzAKgZdMtoAFwJXp0zAAE8R5Dw4yP3McYspbrGZGPv9HTxF5HmDktaGlZEjvH79JQ77e+z2B8x6yNzf3+Gbr78Bc8V2NyFEj2neYN7tsD8cpN20MhtC8AiTly6Njm7shtmb0eFtY2+ToXbCVoId+85aejdgj1AKwOoINuONIcujmmcNFdelYdldGGjD3dExIerqpAuYlcuJ061zW401oZ9nn2FlTPpvADdtapv+3M0y7QeO2Anq9/+ZwMKYgjae7Q/oa3N83U12HgaWvtgbN0kEap/L4DZWtzuwf4/ZlA4YvTi7uH8nY7z5lw9q//vJ+hiu0w3zSuO8Dt/bDK462haE1ioaU5JpgoIO3SY4096xzzblbGjZEZsbYRwddMeU27/a3PDwbwMWSBcMvbjBPgcynlJWTe3Itr9A12i2bGcx9mlbyN0GVYjTp+anrfphfNol2Pmg8387A30tyj2qUzQEtP0dNHS5wzD//Vz8p3uMF6L21bR5iEA5N0208RQ3MCOESTK1zrU1MXbjtdO0Z9t1dFjmp4EFWp5t+/xzQZa1gScX4KGl8zpHsp+VnalrWoIPKT8SZ12CR/MP4SZlsE/YbLeil7ndYLudkTLhmiqYpQMZ5wKQJBccBfWhtvAhYLPbC9uDhD1vPhyRAztgrStSTljTGTmvACdQuUqAZzuCJAElNkL8p94QowcINhqEboNshxOGdQ1upQU82nv188bhtc55nhymaYNp2mCzkZ9pmtWv6mUbZo/bOTE6b9DtoZINy3oFUHE+HXE8PktL8FoRgkcMIuReG8gs+zClAtfA+IqSMtK6qsB7GfyRvlds57Vg6ubxUnaAbq97sF+SQHuxP3j4/Bd/6nhF+8f4a/yLXrMwDSzZah31ANZAiT65/hZwQqogCKpmgF6aZeWWojUjwXmMEt9IcMt6zivbtGbUKuVpLhA22xkPDw8I3mO73WGeN/AuSJkWQ5uiALUSuLGnRarCERDAshemPTbzHrtNwd3hFZybEb3X7rEVjAzywP3Da8zzBs5HEGYwezw83GP5+mswM+K8hfcBdw/32O33mDdbgKRpEoPho0OIvp3bn1hMc3jamOtvNXUtnWoxnn6I9x6Ti90qMiAxyPhZtierztttLNi6vFqJW2Wgk3rkvY0t9AKgtAYwjE+W27jubqEe+Y6qdkFyz6xH6u3IGKg22vKbr2cDbo2dNPgqg99uEiNofmLfDD/pvtzsipf38MfPvRsfzeKdl180HGUvn26OqH6AnTGj32QsGfNBmk82nl3q3xCZpqSwwxlaQZEzclmRywpGgQ8ab3jW8rQ20G3sCGKXx+/pARRkTSjLnxlSUTR0Ye3roS3uVuY2stpG0eyW1GoyO8rGI1L2cddUswZbXKzKh+HNHijhvZYKqgNQiw4EtaQE9OSy9cmfm3Pz/7n9dzteaFy1n0yw+Jc6bu6PrKXx8fO70Vl2Qy+kgHFdrzhfz1jTguUqArvNWWJGABCdw3be4rC7x253wLTbIG5nINhivg20amFU1xdaKhmLtkGVdqiM6F2jS9pAmQFj6jX35EQIj7TwVwTXGJeroJlwAXGzwSWdcDwecb6e4NhhP98h+AmXdUFhxv7uAZvNAbvtHl9++QtxEHYzpu2E6/WMtz/8FtfrCTkVXC/PiGGD12++xmZzh/3hDnf3rxFjxP7+DtM0K4AQ9CCTg+u6Lvjq+gvkknE8P2FZzyjrFen0CK7CHKEKFM5IVTJwZb1gOQk12lMABa8LZnCa0AMm53owxKxGulasq6Kd3iH4IjoMYdJMnddWvb0Ua4ob7HZ7xDDh7v4Bdw8PCGHCNG3kUNcW6EAPJD7BdJg7DZ4LluWCXFacjk94/PgjCIT7wyu8efUGOVc83AmYdDqdsS4ras1IyxVcpYywlqwOcgLDyhRyK9VwutENEG3tHH/aWuuhaQdsB9BszY6MqA6S9iDvNmZWI3BjxF/sAX0/sQCeQTPW0zyr0DBAJNe9LlfkmgaH7/YgHUExhrD91lWE/db1ipyvIOew2U2YOeLu1R6vTvfIKeF6OalI6oq0LMhlh/P1C8wL4atv/gy/+LN/jvPpjPc//ogYtnh9dwAvDnmtWE/KeDh7lGVCTYQ43WPndqDZwW3FIfv6i7/EN1/8Eush4X7zLXLOiD42h217t5Xf+4jdTnTe7l+/wTTPOGz/Ff7lX/6lHsTKdvMEBIc4TyAf8OP7DzieT6gugULBNDtstxFTVPC2VxmB0NvHixCi7CEtuhlgB7RD4bDb4n7/AIC0OQJwuTwjn1cA4kwHCJsbYFAghCkgbFWsVvWCHCkrYZA7qrUoa6lguYjQ6DwT3CxeVG36eRV55Rbk24FiwH3VwN5KSeUu1JHWEkoDj1vw6qive8EhutNIThh6LMAaSGwHuQWOSEujqYNkzO07xHakG2D1tuvhsGbbPrNxlwQHGNDL6oc7YfgeQnEZ0Naxxm4dW+begBQaTDinwXRz8tTJVaeLNKB2RGYUxCI4QpycAJlKCR8BLmvI4AODnYcLgIuEMEuG7rKccblexDZ7FRP1gKvi3M+7SQDSoHPqhBHLTHDQUjgNmMFV6M1AG38wN/ax2XtmdGcMkG5yOufCHB3tFbfx91HGwXsM2sDyj5QZS0qohXG+FlwX0RFpn8UaeFcCJymtECFrL5lsY9360B0oRy1RJLbVSVCsYysMJ4ZTD4ycdMaT+/PwvrY5lgChSmOR2psmdIDqn+phdlrWXy0Vl8sFy7I0FjGYUXOCQ21r0ZPHZrvH4e4em/0OfvagycPVAFcDCB7Wir1WcZAtQ15qFf9JA2xhPrFk330H0e3yDGha04p1XcGI8FGyw5WEQVi4IidJSoAILhIKCo6nC46nMwCHzbyHcxGXZUVm4OHVPQ6H19hsd3jz5VeYphm7w4zdfsLz8RFPx1/jujxiuSSs54QYN7h781r8rv0Oh7s7hBCxu7tDmOaWgDINQudJuvcW8WUen97jcjnhfPqI9z/8BiktYGUcppxwXk7IJWO5XrBcr+qzapkAF3CPeG8CUgl0EgqgWmvW0VeWWgjS6dU5j83GwcUA6yIJaPlerdhuZ3z33Z9hvzvg2+/+FF98/Q1CDIjTRoTGfWczWrlN66IG3d/avt05j5SuePv2Nzidn/D0+B7vfvw9CISH+y/w3ddfY10SLocFJVfRSswFKSdcj2eUWnC5HrGms+owyliZNhVYhLGr98h0GxD3Rw9OOuhL7fpI7abd0zzPCCGgJQUUrKymE2K+lPlVBmAAoqFku6n5YD0FYfGE81IG6EPAZrtHVKarABQFKa/SX0fneQTyGBbgo7HSUy64rivgpNEDuYo4OdzfH5DSjNPxGcfnR9SSUfIirNlVKg9KXbHkEyoO+OKrV/jFL/8Zjs8nLMcTAkUc9q9wvRRUzricC64Xxrp45LxHrRXztMM8z5jChP12j2ma8Iuv/xLfffMLvLm/Yr/9BmtK2O/22G638MFj3kb44LB/2GL/sBM2bdzCu4C/+LOvUP/1vwQzI1Uphw5zRNzMiPOEJS34/vvf4un5PVwoCLOcFWMX8Z4kUyU1fb7cGNUBkaAba4PDfo+H+zfKyr8gpYQ1ASVfAbCcDQ6AslqZRGbBGN15FVue1oycK0LpTF5ZB641+RC2TGdPm96pMIPUF/hkOXdfBYCWkkkMQQb4vGDW2toBoXebtLUEsTGkzTtMUDytGVdLQJmfOTLP9ffYOAtVWGAtYW/i1C8fN/ckPk5LXokjBYb6tVrlbM07XjKrLKnXb9c0kR0cCVO/VEn229lgYJLNh12/dyKfA1a+FZsfi6H7tJS5uQA4EOLGA17+fj6ekJaEGL/H6fwR1/WE/WEScNZnKZFjltgZADlN0sCJtI7OvYnam6wNlyK22gmgKOQ7uQ4PEaX3pHp3kK508xwQAilApYQWS+xoR2nBJgoqGKlUlGtVv3NC5oA1V8iqciiVG2vxclqFwZelyiOyA+UAZofIUdm20gDFqR9pK5K8zHdlhtO5dOSlUQv1eLHWgkqWIAoaD0j9t9lSWSTqfw1SNE1A/mc8fn4ZXR0MPOmhW0sT0rMOO+1AYJaGnyQ08CnOUi4XPVyUG+aWqrCuEN25NOSsMovYZ60oBhI0J9iu6MW1spRMeRqETXXtMzQw08jFhwDOIoCeVtEXiH6Co4BcKshJ64DgI2btpme6CfM24nwmPB0DSnUgEiHG4CZMcYPtvMd+d4/7u1eIk4JNmwkmDCnjKgZnzglx3aGUjM1ug2W9YL0840QJNScgV3CRTi5lWVCpiEaTsrEk02fgmwVwNjY9S2ZjZmNrLcCtDhcM+HY2WBmezY9mEwARKZxmxEl++xAUlLJOWbeHt031y4wykRx0uSakvOC6nHE8PsE5j4e7V5jnGTECUyQ9NAjE4lyl9Sp16+uKnFaZd05qFC0wMcHBYa3wrWG+2Sqf/If8GCIu193Ho4M8PYilga46YD79oBgHpP1SJ60JDzoFJV0PRCDMJqbyYj5vwTweP0+/Q5zkoqUo8uNdQAySHZ4mZSw5YFkYDBFPXdYzQiSkvCCXFXH+//P2p12SJLmVIHohi6qamS8RGZFLLSTP63n93vv//+OdmZ5pkj097CarilVZERmLL7aoqiyYDwBE1DwiWdlzmmVFZ3i6m5uqygIBLi4uPF6/fY1pN+H167d4fPWM3RBBVUVgE1ASoWYHlABUwGPC4A4CYg4T4jDgsLvHYX+HMVZEt0MtFdO0xzTuEIeIu1e3iEOE8xnkJGsx7fcIMeD+cIN9GMHMWNYFuWYUMDKxGFhHuMwL1pSk3a1jOE+IwUsJgQ6SscQAtKxAwxJ0JGWU++AaWyD4gN20A0BYVxP6nK/mXUShGVWBChecaJO1biFo89jBJg1cqtTvl6zitEEcJgJg0scdTLISEVZQRD+pUmPAmYSPuQ2297eA2zYreRWIG2CmQFDLOrGAVjln1aVjsNva8Q66CLil2UeumrXt2bvtWHTASS/fJ2xzs7i6PwsOmEWnTTyGerVft3NoI9Gva3Ro2vwMfTz0P7YOtoBEps3SnbertWLPZx3mNENXKyMtUr4Xgmi92LVEyNuyybR5VnkW6Nqq0InlzaDYDJtJsv9QYebmoOoRKg59B+2ujg10kW5hWKF1sTPDxvq5KYsmT84KYl6tLR0vy9qJcqaWi8n4Oerdpl6OP+s6E/vLAgbox1eW9t5sop4EZZo1tfO+RjY+xdaD+Guxm8x22MBUDaKsoYc1GHAazHS/RcpDh0ECdPLGbLJmGCI6bZTz7d4TP03r3mXAejXKJk4xo2gZ9apSBDJWhi4aAAZlHwgITF72dEoJKWUADiFI+VIuBZSl4cM4ia7j7e0txmnE7hAx7SJyuYCRkfOsJTEFwQFjEB9qv7vBfn+LECMON3eIClQMcQQ5QlSxVZAHfECtBdPnCcfjEx4fHE7HjyBPInFQKioqeC4CGpWsLGrS0jxsZgjqPF4Hzyaga52zOtgtbxd5CBujPieAamVWhnMBN4db3Nzc4XBzg91+ryCpCY2bDaYGdF/ZMDF6zWZXrjidnvHw+AmPnz/g04f38D7g1d03OOz3GHxGZGkCcnYr1iUD9YJjOgmIcplxmU/gWlDSIjdsXa70Og1s39hOoO9TbH5m2XZjeLVuoCrzEGPEMAxaBlUaCGT71ADybsT6XmjX1PW3PRg6u4R68KUJ0BAHlU+oKGR3uXmOFz6ZHnvNVlSWpF0uRYS3NTkQB+kqKpqmEZmAkkUHLOWEeb5gnAbp8oWCaT/i7du32E073N2/ws3hM4ZhkuqIUqUjYiHU4gGOmnzcIYYdxmHCzf4VxmHE7eEb3BxeY4gJQETOBbd3d7i5uUWIAYfbPUL0YJ/APsF7j/20QwwRA91h5xwqA+eUkWoFnAPr2VNqwel8wrIuUtLmBUB4uQ63m2Xr335hUbdnuG6GGCMO+xvRx0oCqOS86axJcj2xOQXGzpd4hds5U4omzonUR9oEfOgl+tvkMm/muMebm/vmqxvfhE4KIEC1vLhePzdZDEDtLJIF1D+fiaS8sDIq9QohSyjJ5e1+OyOLat1oKPXY9uWt9gW8jY1Jx78Pbo8PSN9uvsp1yW/zr65CbZvnTXJyE/eYhWhrZbMvzZY4kiQf1T4p7eyyZ4YxCMVvcpXBpSKtBVyBy3xE5YRSEmIUFmm1pFutsm5Azc9RxFD+rWhrgrabXt2GWm0euQ2n+K7b5wOCJ5VQkO6glRW8o+4zy3qUdSx6T1LKJucjqdarjEfzmws3jbEQ1M9kRq1OUsZEWkm06UD7cm8SbZZu1woDTIbFfKIKAQPNnSQY0cL8S1lrdVPBtjkFfoEP9YvBpsvlDAawLDPSuiIl0VcqtQImE8MCQDEzKBX5ig4xREHcpx2CikzTEOCix/3da/zwq9/iuL/Fn9ff4/J8EhZkMwBG/+701S+pu/3FzMhFkEGAmwiWNYJjJqB6EInztttPiCVKFpAZwzDgcCNZkEGdGjhCqRnzesHnpw84zgPwKEDUPJ/x7t2/Yr6cMZ8KojtgN97h7dvv8Or1W0z7CfubHZx3GHaACxXBSycfmUcvtigD1VcwIvb3E+AY8/kZD7cD0rLg6cNnnB+fkQqwZkIuBNGelcUs1FnJygmTYSuCrdl29M5lIk4qxnAcB0DFgUMI8N5jHAdR/FcRQFAHXAyVjq2joC18y/D3wH0bEZrfZtPnnDgDNSWcTk84nR7x8af3+PEPvxMnOidc7l/BhwHDuAeRx+FmwO3dK6zrgtMxoOSM+Txh1Ra583oRUfm0IOekNcWQzG+hVlpEjrQlpQX+mwymOjBy+1ruaEr8DXRyV2NbmsiyzMnWRzXH6ypobM79tUGWRIgKdocgAI2XORHKv82rOV2ikUZUYeVcUt44yFwpOyq4IGUJLmBdEp6fn+FcQBgGAMDpdML5fEFal/bvukjHuBASlnnFMq84n894evyMkgve/vANfCBMYcDNMAIgvE0FS2GcTyf8f/+X/x9qrbi7vcVut4MLvuk3ffPtG9y/eiU19VnGLQYtxwwOu/0E5x3m+YR5PsmaRUYuBdEDrK112Qni4rxDVF2jIQbE6HHijOfnRzw/PUppZilafmQZCL76anMlZhedbUZXC5dYy+h031QUUOZWRgoGmKR9vHNCeyc9LKydrYC23A5h3oh5mwgpb3SPSt3oS2mmuxqFnJURypJ9YbuHzcFpmMSVM2V0ITanqy395pOITa1bn18OdA24JE4TNqp3Hl4PMGegE5xmiRyo9Psmqm0MtoGLAV1ol2NtXywZwt5pUkEFCChXi9ionIrQmr2XoJyEydODImp+l24+nW1WFhDDRLftGs6Zw6vZIQXfpTtKRiEpFXXOt0xkVYFtrwBjUDC+hgofKihXFEipSq0kQvXEGKeAEQ4+uk0HHlZ76eBpAANYl1WZSF2/hGsFaxaUNaFiJZdMDMddU6pU1eOJ2hYafR2lVFGSzgxXAZmcdjlisf82hsxQhpeHrw7jWFFXaYG85traPDfHuy8+mPNLL77MMhJ6SY5k78SxKuooQh3yovV5xAsA0lL2Ps2yhrtj1YOjX+Yk/c96iaYeY55npJSk7Ex1YJoNqiwJpFLgqoevHnAV0zjh5vZG9BoDwUWHgztgLAMur7/F99//FsfdLR4/vsf56TPI27PKZ7JmvsmCeQvIsAkoGOqACzZVMoNrDzDFF5MJjX6E86OUDw1OmW/yvnEc4A/+CiCrXLCuF4AKPn6CNBr5WEG+4nh8wvs/f8TpeETgA3bja+wPN3jz/be4vZdEXZxUQ3IEfKyieRGF0Ua+aDRCcEFsxHe//hbf0bf4/OkOiAWX8wmPP33G8fEJosA8KmAXlJ2gOnSwRjA2IP1lpauy52r7GUAYh0HO001DFZEXsE5zkHGLEYGBcRgwRAEnvBOOgCNWHQ0Rs7czqIULZpPVWFe2IIxQa8aHD+/w449/wKef3uPP//o7KSefMx7e/ITgI4YwwrmAw+GA+1cHnOcINwogsjs5zPMBOa24nE7iV82L+FEFqMWhVg9A9LbIVVBACzxedk8l6rp+ojfkGtBErjegIRDgNbjasCm2Xa7k8zqz6ypZ8BVQwADYGGNjUA0xIoYggKjqljA6ECa2W3QyxRcWlhm5rnspwsQjHAWkNeN0OoGV5VtKxbJmLCkLO3xehB2+rqJpkzKWecHlfMEwnHC5PKHUjN/8zQ+4Oeyw3+1wf38Hrozdq+/wd8eLdqYUFvP+sJPEa4g47PYIIeDVN69xe3eHUiq+X79DrYxxmjAOo/hBk+gEni5POF4etW81JGnv0CtIfAWhgoIw8Uzk3jmHUjNOp2ecTs8imK52W+ILYYzCOXRk7jppR83mWkKjeb1ynTHCFUkm+uLgsnQa1shG596DXNBuvM2it3+tsx/gwKAu3MwqL2Cl20xWS7CBGbn9pANC/UywBEwrgbLnIg3eLW7YfGrrdrhxouqGSQ9uxxfEh5KO7sbONeZRCL6REbaalbY/5HzcCjVTBwsMsNXrEKExXqxRyPbpq54VpQBpXcGhN9746ktZleTMB5CYxITsvf8S/GAFdypqZy+x+m+sOoEmnxJkD3vVj6qaEHMAMmu32QLM80WkbIjBup4LZ5FlgbH2HcZhRIwjSiHklVC09F7WF4kGHkP1YdXnLgwqwuqWhJjEkQb0kDbsMXJDzmjd3rPqIxKpLIkTxjq1btji26RV2KMp9fcaSx6AVh3VK6ZrB4IMxAJe+k+bxWKrW6otvEd12khEx6hJdVTpyCn+fb2aerLPYkjCavOLX+pD/WKw6Xg8AgDmtGLJK9ZlFf2cLEivdXSQcqgMX4CYAb+TriN3N3c4HA4YxgFxHDDsRCT8zevv8Ld/9x9xfHrE8+dHvP/zn4XyBQOaCkp1V2BTi6JsEFpQJJs65YolFcBVRN0wdjwJECD6S9M04XCzx5iGVjc77kbcvrqH9w6jZixAQKoJdTkhf/4TyDnMyxHLesK6LHjUjh/78BaH+C1upm/wq1//Db774Qe4WEFDbVdnZMTgMIwKZDgHdg5h9aAoi+juzT12tzscj8/Y/3SHy/mMy/JPmD8dkQphzkDOIlJWuWeKnHMCQkntDlISUMmEEcGsjq2wJKBB4aA14z4ExCilG8MQmkq91bBCM6nSuUwdJd/1nVzoQuQ9cPzaaurBUwgeKTOenj7h06d3+PEPf8A//5f/E84RyvKMb968wv7mDq/ffIth3OH7N7/F/f0bLPOK4+MeKWWcnk64nGYs6wocn5FzQlpZjGYFaiYN6FQIDlqT7FiQ6GqigRpgbYyQd+Ys9nbAznul229benaRvqoW/ooBcVU+x5tx2Ti0hGbAGh3fe+l0EwLSCsmkNtaAgE1y8Fk2osL7iCFOMr5xUGdJSjedc5jnBZ8/PUjGLwrY9Pj4hNPphHVdcHw+CVtsXZDWFY4CLpcFl8uC49MTPn1+jxgifvU33+O3f/cbRBcxuZ04BWEUkTw95B0RpoMI2pKXUjATxCWw6KGFYWOwbG3Iev3w0we8f18kqC9CTR8GAisFVwSmC1x0COPQnKw4BNSS8PD4CU8PD3Io1QxfvQh5bzJGXSReD2MiVLL2ttcml9T58N4jTqMCNRnOV/g5wGnwwpD6NXGwtatKEJA5Z2Bdi2aRNJCrIq4uYJPRvlnBUWH1JZKuZcEHOJB2tarYZtaJ5fgD0DWZ2LLsDV9pTCfLJgFoHUc6UGzrueqSJXVwuDlBorFA8L4K9VoDBudVOFyDNscmnKmft+lYJzdlQC41UKJ1giKoVl1nFm3fZ5pzNpcEwEeFXsmhEwX63yvvUWywJUtcRYVR8a0MmNs4FO1QV7kKcFOr7Ec4ba+sP9NgBuQEhAliL33w4FxQQ9HqDTvjMkoRIeH9ftAMHaOq0GsFdEy9dMJiwjpnyXqhgkiZAUW6Qvb5AYoBaGQsBRL2SM3wwWHcex1HPWsLI80V69rPLEsKSOClADZ1gF1agUsH0rLI3Ka5IM8JVVv/NkeIFNHY2D3nXMt0tlcLSmzrUTvHSs2gorpCJaNw1bJfbT6AXutH5n3r510nqr7inP07vp6engAA58sZa1o74JQzKnUHfD6dkVPGRAN2bgRCxX7a4dWrVzjc7OEHDz943Pk7eO9Q54zPv/1/4/npEeu84OHzJ+mkWTvQxE3I7brhwdXLbGFl1AzkLLbHabkj14oKEcQewgQfJgxjRNw5+EHBBHKSWPCy372y9rgWXC5HLCtwXh5AxDjPJ5FhmFd8/vCAtGS8fXWLV6+/xd39PX74zW/w+tvXKJxROAMkWWTnKkIoCFGZi54AJ6xWFxkhRnz/6+9x//oV3v/0HrQPOD4/45/Lf8PzUxJGvZsVqVGwiaQRh5zrwqC+Wil6hjNruVc12yT74eZwh3GY5OwdBg36+jpnGGAa4XzAbhoxjgPGUXwogmiRikSER0uGQ0t+qAfBEgwoaEjQEsKEP/3pD/hv//SPeP+nP+EP//Tf4L3D+eEBb96+wf39K/zww6+w2+3x7Xev8M3bNzhddhj2hJQSLqdbrHPGfJ7xmT5hXVas6yesaRYWSfWolQCOcE5AbtMPzTkDud8PgNZlWoLmqH4UtSYXQ7BmM1XO21pRvW8Mv5dJIGDLsK+qo2TLts/U1j8bxhH7nWh9jaNUVuScN2ATQM4rc0jsrTQudBjHHW5uX8H7gDgMjVkupSiEZV7x+Pgk5xYNYAbmJWNepPHO+TyjpAW1ZHBO0lH5fMHpeEYIT5h2E4KP+A//8e8Q/ADvB4QwAeTwH6qUSnvnMWhC13wa56xhjJ6Pyt51JoRsC8TWCTPevWM8z08NaCIwCgHsNVnKUorsh4A4RQGBBtHWzTnj6ekBT4+fkdKisZSdFdBGK9tznNt+2ZpWst8rUAoALngM04BSCsIQkEtSsEJKstoe0JJqUjkMgiRmLNDv6qcybpZIBKwsS0AC9SC6uQO+/C/qjyF+kyWje8zpPBpYY39nfgq8a2vdXttGLdBrymeLf+aoglBEaF5tqCMCBQ/WBBHRNehkumKlbsAmqxCC7Z2OTatrBxC1DrqAHQnKZC0FXAmrA0pxTdKiv/jqe2esLX0quU8PwACnfg15YKBmBhwag1XYgqr7mDJyTnDOYdS1bmLl1kiLdE3nmlG44HQSgD4MEcMkjalSyig1yc819pmmHXa7A9al4FSsGqgTCZwCplk1VbkySpKH80E7tpHpJrF2utNEXhV7lHPFMlfFIKTzawiEEEh9KE1rqi/NYCxLBtaKkkUiQRq5UIurlyXpXgogRNGsGh1ap3Lba63EcjNDG8C+vVc7xdv+ZRaB91qLxiryNwao2bSTJa3s3Gmf+cv9p18MNp1OJ3n4nLDkFcsigFNKSetQZWOuKUuWlj2IPBypOLgGzK0eXQfGB49pL0Lb4yQlNmbArrpO8Fdu6mees2d6NdvLDtsMeuMtUNcxqkVb84IastjKpqgHPymL05PSquVbSWpd4bUbxR7TbpJ2hshCnV2ktMs6QuWgXXWcA3lph1ir3o8aHFK9pDBExDJi3O0w7fdwySOXDHIryPsXyHRv431V2tWycbYxtgbUxkEy6d5vxSntpaUbTftKuxU4W2x/ackZ6GJZgmthRmYBhpZZWHM5ZzgS1Pp8ihK0jRPGlHA+PWMYRqxLEkcoS/lEjCI0OE0TcpaDS4CZiuJzo0/XUrTMUiiWdndfW156022dmLPTBdD7s1xRabftXYGr97bDCXz1O7Rx3MxH63Dj4Z1HdrkdIi+SrujlQmjMM6cOnwSHMm+kmVjTfHCanbFOZCb8bq1tbQ8Y4FZqxbqs4MpwY4CDilXu9vJ3foCkPFkFiwjDJB0V4AAK6kFYtywv3YasbbcByZYRs0C9egmSuQq7p7eGrer8aOBZgXpKoJlwOh+xLgtSWq8zpS3w1L3R5gIv3gNDYBrIsjEife42DvYwiPOk6XEwCb17q6P2pSONtl91G8NYCU7TOU0smvqeg92/BdOMdo/cPpf6YlGv4+pv2u1bZ4k+DlvbuwXjtmPF22eq9qzbselO3NVgXS1etHUPMiYRWotXc5Lkqc0m64FNfe/pDujXZ/rici9p/u25+CtrYPNq7A+wtnjmroVF2s1PwYIeiHbA2fZss8o2Je0Xek7Z/iYF5bB5c7+T9rMGooFApJT+NlfGElCniLdOtEifVHMg9NNrFRZdLfLmZrLaeKF9nmhgFOmWBN8tWAP2ALOCbV1tbZf+zBymnz3Q7Wk299IYHwYmwT6Xv2wY2q7LLwKH6zX97/0yH+o8X3CZL0hrwqoscUcOhYpQ53MRWxfElps9DzE08MbsgVMGx+HmgFoLhnEUVp+mnLlKxvd/9HVloyorK7zbLEeqy+jsLOvvpwYM9G4+PXnI4CTCw6vq2ch57xE8IQ4jxt2IOEaARIMxlRVrXgCgMS5CDig5qQ8lehxhGDRA8yq8KmyBYRgxjAnTbqflaoQ5ncR2GEMWtj+5r09cAxkvQRDzZQho57VvviOavweg2Sjf5s79rK352lzQlQ1F21togWLGslwwX07iR6WEWgjn01ECNyLs9zuktOLp+QFxHHCZZyzLGTkXAE41oyLGaYJzHtOyw5JWZQQH8VlhPnUGWxVD83O+vHeCBoobSYCX/uW1L3PtM7Xn/zfGqgHKOkYvr2dfW2aU3bfdi3OSdPCaZBCGmoBMBjYxc2sARM63+Zd24KTJ2gi2bpDoerFb5kEpBfM8I8aKadjBB+noOI47EAmDTLTanLaHJ8QxKNuDmmaekXycd4iD+Hjb9Vl1YfvgMQwRALVGKYDo6zT/h7QqJS2gLLIJzgHn8xE5r61c1NYdb+zp1ofSGWvn5ZVV5+0/Zsi3h4DoxsQ4AlQBVyCM/e4jv/R15Np9H/bf2X/Yz/o6bcf9xjW6jtK/+ObFOtxULtCX69Xm+aqj3GbN9UO1M5Hk9xuAW5/n2kfc/vfVYShjbb4Ti/aTACHyHNTikWv/zJ7J/tY0Za+TMjoDRFfz+nKEXo7B9djZeLP6ELVpRJYrSYX+qaROi9ib2n2lzcLqCaTNnfwlX1O/nOpTmY0S29H9SxuDq5WtZ6HoZQIw32mz7lo3wcoN5LR4wcoNjRlrvxQ7svX1VetrExfUylIiyH08N0t6E2fqvev42XqUv7HgwP54e9j1v9uusv7di13+ctz/wusXg03/8A//CABYSxLByVIxn4Ui2hEvy7gArw83ONzf4vZwh5u7e9zc32N/e4NxvxNGADFyTRh2A77/za8xX854/+6PeDo+oCwrlqdn5DXBRY84DlIGQB0V7FmeFwYBLAJbpcLlAp8E6MnFy6IGhOHhowivBqHdXS4XzOcLmGtrn920H/TAqJWxXmYwWEsJC4gD7g7fwsHh229/i++/+1vEMeKCR7x/PuJ0fsbz8RHMcl3AaXe+qLTJCO8cbu+/wbff/kaYPuuC+lSQSsY4TAgu4Ld/+7d4ff8NLpcTPnx4j3m+YMkzHp4+S8CdZzhAhbE33RpY2DfruurGFmYTWMXSHLR1twjdCoIrmz9nhvNBsnHOaTecKN0zfOygBFk3gSqsEXR72uo+NwdGbycvoEFaEx4fHvDhw084PR/hmIBa8eHdRzx9ekQYBozTvyLEiD9+/3vc3t1CgEyhrr959QPu7r4BE/CavgEz43Q84nwW8fS8SrnK0+MjHp+fkNYLnh7fSffBTfTTalGbUVDHxUsp6DAM2B54poF0lVkz5wP9YLoy7lerla6+l9pbcYqGYcA0TdruWVsh14oLX1pGhNVoGGvKMirTNOH29l4ztaEBTAYexRhl7Ej0ycgRbm/u4MhjXWYQM5ZlxnqZsbgz9vsD9vsDdvsDSq74+OGTMIgGYU39+je/xd/+5j8gxoh1FU2DdV1wPj3LPa8AVjlgrFvREAdpfzrucBcHBD/oulWWhnYnjGPE629eg7mg5gTmgrQuOM0XCdBVqC8tM5ZTQUor3v/0I47HR+S1YLlkLPOMUrNkWh2JUwVC8QRXNUtl4AV3wOClHbXDv823HkrG6tztdpimASUXPD5JN6BcF6Qqmbii+iU5F2GFVDYcdwMayOGak9Twj5MIAA5DQBy8UHRXE7fXbiy1293KkLIiAFzNk3HqmLKW63XQoF9bxiFEWUPrqvoreqDKXjDqtJbtwsp1K4CKNSX4WhDV6a5gBT7s0DYNLLp6ZmDDIHS9+UMuWYV1qTlLpOUlclui1xN8L/WJWmold9Rr1O0Ab10dlQ1VCyvQ8+VBStRFPCVZUNrvRM+EMJOVAy9wJE0KchKb4IMEAmCo8K1pcKmNVsC1qop7ZcKyFORMykap4gApq6ggY+VZfegspAxlukm84JBYWRfIzdnNOQsDNgNONZa4EmoGlgs3wJ4g1PH1IpoIIQozy/ke6JZScLmsAEvCJeeCYfIgP3aHRidX5lOp4c7El1nFUntA6HTOTG/FAmvZb92Z23jibV49rrPIL+2qOaybmW3zaQmtv9brH//hHwVkSQlrWqX0Zp5Vs4Zg7bM9i+j34Tbi7uYed3f3uLm7wf7ugN3tHtN+Dz9EcEnINWN3u8Pf/ce/w+V8wufHP+LT5x/hWJlnNWFwWxFP/mKtX71I9k2uBakUpJSxphW+EsAZzhcAHjHu4MMIJiAjIZWEvCaUlBEQdc2qQ2tRIApKLkjLKiLkOaFWQgwTvn3zGo4Cvvvu1/j+h+/hgsPj+R0e13c4n084Hp8BSPmZV5V6gpyV07hHiAPuXr3G97/6NbhkfPjwHk+nJ6zrijEO8Dd3+Nu/+Rt8c3OPp+cH/OFHh/P5iPnygIdaJZOrwaA1udna+u05LwwA0xAT/ycE0Vjz3ol+FACoZp73UoJFzjVmUwhxE3Api1CbGrDZrU0ZylW7eLWXDEKpK9L5jOPzAz799A4//fgnnJ+PCE58uPfv3uHTx48Ypwm//93vEWPE23/6r7i9uwOcg/MCYH7/3d/g9etvMY57HG4PqJXx6uk1nk8n1FKxriKb8enjB3z69BE5LZhPH1Wugl6GLbrUCFAf186EcRxkjZXazg4bg14q1DP0YlO24FRPlJgd2BoKYf5Iid44jtjv91p+Kbqiy7LAViMcwbGcO8Zs4EHm/HBzi7dvv21Ak7GwxLYD024S8XEfMYw7kHN480a0rubLGVQr5ssZJS8oacY4TpjGHaZxh2VJ+NMf/4wYI8p3FTc3N/hmN+Dtr17DuYDzccY6S+Oby3qWsVkKKmlSPAkvdre/wTTtpBohiE5YYfUtdA8zGNNhwHe/+haWEAIz8nzG8XKUkfDSOfL8fMLzUYS6H58+YJ6PmM8XnM6PyHkGoyrjlzQxr2X8TrWE1D9gLS9vlShfrIsGT4v/o3gSEeFwc4NX99+gcsbz5TOWfJGznnM7r3OWMu+cSi+P0zjN4tCWVC8CEHIFqjKGwKLrY2VzzfS1hAdvgnS75RcAs0MH1RuAJGCZlc3mnJBzMjQJcub1hLIAHaKbaOdbT6LomGh3tKJlWVuBcwNZzY8KwXeihuqC1qri4iQC7u05iRSIUgmLGEEkvqZ3fSwkHkIjFljSQLqmNXq84RqqPbl5IAUwZF6qzgMw0yI2Fbgq3WLmrltUgZyyJr8qckooRebGriNMa03EiklQQNvWovi5KSe4VViazlUgMkYE+Djq0dSv6chpwme9ZqWxYAsM9bk9gyNhZAF6wVmlhRg5sV5LSnK9d4ghIASPXHRdAMJ8jyTdpsmhFmAcgZqcxkuqVVYY6yLl4zkKcFM10DbwuS0bMpyJcK2VtQWIGEZQMKmh9ofdQupf2pcCTurDfRXo+zdevxhsevfuPQAg1Yy1CJuHtabfNCLklgJAHnUiDHHEOE4YpxHjbkIcR3hlOBVOIuIdPG7ubjFMEbev7nBzf4f5eMLl4Qkl50YFk4VOV2jyV+C3tritE4tkZag592IsNiKMjsGoyGtCWhOk7vSa3WOIcFXH3TpF1czw5DEOB0QfcXf/Gm++fQP2jBVHLPOKh6fP+PjxJzAD3o0QqpxroIKUokkw8d13vxJGlJYGMBjBy8F59+oVDvsbHI/PWGtCOA+I0whWDRjo32w3hzlHtmjl+01r5Y0j43z/kveJ8ZBOQsJSE6pvhPcRTZx0AyJdI+/ofub2BzDl/47WWqbndDxiXVdx+CpwPp5xhpYiaVe8ZT3hcLtHjBOm6RYxjnh19wbjNMCFgDCOAKBgjQhPpzUrVdAhFWAm6+q02Si82TiM5vCBuhaV0cKtZGnbeUqGc8Ny2jz8F7FQW1Mvf0hXouC2NmTMfcu6bdlNHdDq9xmjlIj6IOBmOwzJBN/l546EZeicUM4BIHiP805KZlEZNWfEOLQv6wjoHGEZpItSrhm7e+mWQqcLsKzIYOTLgsJZym2VJrteVqBCgJlBaOOVTbvHyqGqOvxSmrXf7/RnCVwrjhoESQmPwAoprzhfZlwuF/zpT3/Ahw/vEMOIKR5EA6XW1vGrZdi5A7Jtvuxw/JmAbMv26R623HuMEdOwR84Zs5YZM2UUNn+jamt4Zdkxg+p2negBrzaVVNRcgD0rDZRuVcXWnp33GsDLQag3188VBdK2B/8miidq54x1l5AD7rp8rt0naFPqxk1MUfRcWO0ZCWhMZkh0/K42xCaocAo4qUApdLxsfzbG37ZO3joHOunY5UhKNkTXR4DIbUa5M1nFgSMDmduc2ozbz/UsqQJt2Ypg+yU5UJYyMiqiQwV0XTyvbasB01iAMi6sNLFfXzq4kOqXEZhq6yQXSKjvtVYpJ9IV51Sw1TpV1iylKDLEDqSMq8qiT1BVe0/MnNjYks2xlmmpqtVTspR+bsdOxhwKlrHqCWSQE1vYSg/1q6+rllNt+wvt95usXh/6fqrYntzsP7K9oo6/gVg2LS837pWt3fxua7f/Gq93794BED2HrOXQFkTIuEpZ1hQOCM4BLBIE07jDMI3KEB0aSzxV0aaIY8Drt6+wm0fc3N5gGAegVPCSRXposD30YgD0tWVoWhhoAHpVNjCBUF0FSLRCvBM/AISmkWFlgBY4NiDArsvCJk5pRakFhVkDxYDD7g5DmHB3f4+71zconPG0fMRymfH89ISHhwcQoAmYXi7jyEujiUHKxt+8fQvnCOcT47xeGhgbnMerV6+wHybE0ePz8SeACnwIqFUsZ+EiJr1+OUZFASgAm/KEDetS9VZMSN8emfRM91oOFXyE90G0MNUO2FnD+tnWOEdsgrzP2JTNv9Agt5SKlBas6wWXk3RDy1p6gVpxfD6i1gLvAx6Gz/Ah4PH5M3aHHYZxwuH2FuO4w6tXbxAiwfmIEHYApDRl3O1RNmBTShnn84yVCMvF6/nwlVfbxwoKe9WzGiMAaEdhs739PP7aujQfB9gGS/ambmvsbxob/MqHEu1K59wmbFCBYiJ4og0JlzCNE/aHQ2M3eS3xS6uAjiFKolPKJkWja78/YL1dEJzH07hDSUVUhDiLQLlqUs7nC56ejogx4vbuVlnfjP3NDt4HjXtkT+UimjQrr8gs2k/rvIr91rMPpKXdcO1sqazdN7kiDAE38aDCysJUywtjTTMYQKAB5D2WdcaDSg68e/cveHr6BE/id5YqWjqksiIGelj5+nY+WkDKG2O+NcHmD9lMdncAwzDgZn+HUjMu+YyliA6fNT8QnUpu/xr400JhBXYsDqqld53WE0w+jq+Bpm04bYuK+crJ++r7t1UO3e7Jf9ZqGkSA06oD8xt7tYBdofs5IGNp9Xu1cr5mgzbd5yzekNI13/zZxopRxvPLzmFVD1ZCZ1za/XTAgr/w//Sm1Kfd7Cay6pc20zAmVJt39TWylm5JXE3X66CFYQKyoHZg2nQ+t92TrcEJ2r1LvGgLzQgXuSSgQvSTWGQtnA8CSOr9heABNiBuU4HDPebbrvcG1MDKN6FnOaxHjcRZpOXozkkzpWqOeYB1pifWyhTvEAKaFpysJSnTK6Rr3/Ux75PW78t+vC2ab+HtC7/HbOa199tfL7avfpbNv83pX/ahfjHYlBfZNKbfIWig/EvVHD+HoCKEu3GH3XTANO0xTDuEcYTTesHCFcu6IpUFJWesqwgS55Ix7iaUde2bndEO2q0xeeE19v/ebmTXJ0FU4GVAnItwPgKOUJ0Ig5ciOgW0EbhrHw3p4lMroyQpgQOLEGWIAdNexMdSnfHh8c+oXDHnE3JNOB2PeHo6AyAMkeG9HDijduQL8CAOIp5bGa6yQN1kB4cg0wMR2AGXkjE/P+J8fEZaZpj6b6nSf10W+4tlo4iyPRCxbjgyVF0ZItWhlqosJmEuhThgGvcCgIRBaa6i1xT0K8bYSiNfviQDeDU97XAoNSGnFevljOV0xHI8oayLGg/trgOo8SWgEubTiloYPqw4DwkxDjjsfgQADOOE/e09nPdYFhGCBEhED2PAvf8G490N5ssTiI6YzwFcRQ+IWUtAmyNJup59E8etpYLa1pM5sgPDgshtVl7Pjf7fgBikFrR+6dTaH1buelCtUwVBMqQkgsImF2UHwxeZmMpC97TDS3/nvMxr8CIk7rxDzhXkMlwIGMap3woz4jCK6Po6Y39zi5v7WzGcCpKGMIiQJVND4gkeY9yh+gJEdUxKQRqlVXSMolngY9ROgpK5yDmJo5QTGssoK4OnSNemy/mMy7wIYEBihB4eP+P9+59wPp/wx9/9Hp8+/oTd7oD7+1fgysgladckYT0SpERPOq9oxyYLqK9cIW4DtwVKJPC2rliqneAAFxycZtztYFETIiyawgIKqCA4WVt7aEmTXr05zY2NY4BOd57aCd3AR3FOmh4ROiXa2vuaE2YO4fWe1MONqIHN27YthcVxcd5h1ODJFY9SK5wDYtSac9X0YWbp/rSZQ0CyitJlBu1ZfdN7A0jL6Bw7capguiV01Z5YOUptT4ruj05RO8z7Pmwin/pAdi3nVJgW3ZG4ApI3wWDfomTxs5QrUHdm7TmLEzC0Uf0diZZckowrkYl1igAlkelBAOQdXFRbQr45oMaukuprKwfXO1M2roODL5aJJJHkgDiVTp0768ZSVga72mxHLSx6NazdVfS8aI6KOlIyTg4EacObE0BUkRKQsqwVKdkwGyWdd1YF4uaUsbiE4lUI3Qv7zplzT66f95sX6ZJs9rUa23n73h5ItPeT+GJb/MPKbf5ar5p0HdWNz1SdtiWW93jymIYJMYzY7XbYHfaYlA3uB9FsKLWCSxbtp0Xa1ZckDR0KF4z7CXVJyEtpPpRl9O3kkTXNV+PGm4NKydziO0lYqwAug8kr4DUoQ6k340CFCJhfBTZ67QZwFtHd8gHR9B8nyfrO6YT3H/4owsTzM1JZcTlfMJ8uIHJw1SNEgMxJdx6OIzxHeIiWnWPxO7gABQW1ZrF9aQbygrKccX58xPHpEWVZEEid5qbPgi897o2Trk/UgVhoQGOJUWe6i5KU88EjDoOCTcIGjqO0mI/DAB9FH4famMmZ80UpGfcA0muQdT5f8PDwHo+fPuD8/IzldNZyMNdBq+I25fMVl/OMnAvisGJdC4bxjPe3P8KTRxxG7G9ewbmAy2XFZU5tQVB0uP3mHm4IWC5HDGHFfIkoaUXOS0scCpsrNB9ymgSwEfuXm00LIYAgOjGmWcYoog9mejAbx0XGFY0JejVRbWrU5gFNdJhJJKcNmI/qQ63GKmPA6DXWfEMAw9rOdqid9UHsxThG0Tr1AXGUZizDEDEMEbWMONzcwDmHtEakRToxllqwrAtiCHjz5g1CCNjt9ghhAOCw5ASvvghDNPqm6YDKFREJFaKrk3cyJ9NuBz9GwBPWtCCX1ATQK1dhBjffvijLX3yo+XzBZdEALomP/uGnD/jD736P+XLGh5/+hNPxUVnyN42BJmxlksoR1ZKsnjtTl82vFaO8LX022yM2mABU1JqEiU0VIAURghPahjI2jC1cuWx8wZ5wBdD8jVosCafnMMu6QQOOvn6mtH+3+w8kQvjaZawnXrqcRmMYmd2EyDnYBxqzeav/yRD/Jw6+AyVQrUhtylRqVbKEVJj0BHf3eMy3cQ3sFlalJQDN7jP3e7+Kqx3UYnbpGBhYCW6SBO38dCRVTDZMBrQILbTZKfu3AzVXw9/2JhqA3v1AQHQmc65wVfZc80tyFxUHiZ8UBqkUcsHDBeG8OxJ9NZPWIEWXGLXpFzIYTMqohCh+mCkgR3ChdwMWH8G8TafPKr50zsB8rsgrY1kK1mWzPg0q0WfMSQS4U8pIq/hxcQAs8ZezabWWxqgXSQkyd1OwExFTxEgBA3kE5+Cc2JBO/6C+L7Zrvu29zfqnDqp1rtoWKLzaIRr3yjt7aeBffv1isGk9rfKNibUxxInVm3FwcBSwH3aIYcTN/ha3t/e4ub3FdDhgPOzhx0Hyw7XgvJwxzydcLmc8fv6EtK5Y84r93QElrRrwKCKtzrE5leJMWi3vZkHr9+R6VzRZZFKfXLJEUCGMcGEEe0KmisKyWMpaEdnDq0Bd1UyXg4jNllpQFBQLQbqEjUPEzf0NhnHEvJ7x8O4jcso4PV/aolqXDOc89ruCGIRx4/aiTTVSAPEIlwNcZbhatewjSpvVrK0PIQKyp7Li+PEnPDw8YDkdQXqYlJzAihT35WYrTQ7x9juSMNQ7Cc7EA5RDuTrJko+7EcMoGlr7/Y06KyJWNw4jhmlECNKxbxgG+b2zBd4QD2zZCeZACXPMIa0Jl9MzzscnnB4ecPr8SZ000qUpW6eyMOe4Mp4fL+CHk8xxkIxhKQXPp8/YH27x9vvfYBgm1OzBRZDr8SAikTeHbzEe9rg8P2AKZ5yfdiLiuF6QS8HxMiNt2/CCQIgAecn4pyzmxg+AM6qmGKRiAIBlEACQ23bP0BFogszXwa1cTcEqJ52upHwhwPnQxnUcRxTvsaxLX+8NRdIDgaxVeG3OUzP0BPgYWqfFYZKMsJSdZgQGdvuDChoL5X+IAaUkXOYT7l/f47tv38CHiKIB6TBMuFxmpFRahtKRx368AQAMnpTeK8wMOWw8KiTIX9YLsDCWdZES0lqx5hW1FmFZJKlxLkmo2euyYL5cdG2JNtKf/vgn/Nf/8g84HY/419/9Cz5/+oTX37zCr377K3jnseYZFDxqluwkwE3Q3lFtYFPlfiCZOHTbRoBFGXI/ZdVZU0dJu3sxmUipArBqm2qWmutSKmpShzIIaNfLCewwV4abCexCtFwsq8fVHApdT+pYSbaqNFNt2gGdyWVMHXXJCTDQFFBdLD3cmfuDMxgojMzcWjyH6BFZLu2IMESnmgHGFBLR85KKtiuuDWBhA5vUs/eD6EowOsuIVbx7y3ypGvASejZFsnLSwcZSVMSmmaTgTTNJ5gjLv1InHwAwCno5R1Eg0abcRkw3ogA5bBkqWQ9fZuZZwVCohpc0bch6lHqQAr4Ow6CsRbUXYXAYdgEgdUJ0ziXDDO0UKrohxYBLB7hAQNFMpTqWTJK5d0ySTKnyBUCbSXTnWkBu69goTko1e8ik3eqgZ7GU6XIlrLOspWWpSKuUaQfVCaka6FQC5pyRCmGkFSNmDCEgehXHVEPVmKEvnSK1X07nQI420xeg5lEZcEg6Zy0BQHKiWBmm/yuDTWnWO2XoXdj9y/g7EgHpw26P3bjH3d0dbu7vcbi7w3TYIe5HuOgl4KwZT8+POD4/omjCJq8rcknY3x2QTgvycQWqsJI8nOjHtbtRHQwbO3TwV3uBgDxpsqKggoQpyAWgAeN4gAsBuRZc1jPWtACFJWaEalHCApue9S25Ii2iATPto3QJGkaMB2FsPV8+48+ff4+aC5aLyDRIO3hhzlHyGAZGiCIiSyEi1AEBIwIigoQD0g2IrTOjlL3V5QysM9LpCY/v3uPh8QHpdEaEQ+WClKsmMF440Gr/uJg9sfKXnlUXHcgEwANF7P847hG1M5iVcEc/ihTBbqdfE8IwwCsYQ93EfPGqXEGVVGtE/MH58ox3f/o9fnr3Ix4/fMDp4VHYcLuD7GcXWja+avLm+fEI5goXAuL4hBgjUIHj0yN2hxu8/f7XCHEU4DiJvzAeDvAh4M3td/jVMGE+PmKKK85Pn5HXC3I6o5SK+bIilyoNZ3wEOY84TtrgRLq0San/AcMwIvsMVI9SC2rOqCUBBHiVIpB9bsGydtutBdUYs7W2/SOb3Mn5RYTCjFQK2DkM+g7ptDzCe4e0LJLI07OQ9Zxxtu4hzUcMvIIjCezIYXcQwWHnrMkKYZpG7KYRngivX3+D/f6AZT5jvpwwjBG5FJzPJ7x6/QZvv/2Vio9r4whyuCwLnJPulACLXlSc9MYL4MQ/qNouq8KjwoEr47ycwMwq7C4alSmvLeCWsjZGSdLldl0TlkUY30WTeH/43R/w9//pf8PlfMLTw0fM5xNef/Mav/6bX8ORk8+DgrJV1n/0FcEzyNUGklVmLY/jdng2/wkb28cVuS7KVtGkdCDQ4EDFa4cPYUynvEhH3lV8whbMM6Q5gPo5LcLX5BoIrSutdaXbglQwnMgyERDfq7nU2tVV/BqrDFAQwpvGLdrTVa4qzyGvED3MTW1joOMz7gJCVDsJJS+o3l5ZVpRckXNFTtKtzP7UkmYmOm06XHEQGZRSoY1zNDYg1VNsSc0KbqQC7RRJrlUAreaHboAmA/6ISBsp6Yay5isWmbd56SV/lgzfAk6iUtEBNOj9kXYIT5ybbXUG7CTxf2FC6sEhjgHDEK70Za3rc8oJ66oz4SqYMhgVlYpCKbZeCbkKm4lIPtcDGMYArtrsho1FjxbX1mwMpgwiYWulVK/xmWq2m2W/QaqjkrJPxwng6lFzwbpm8a+0gQFBkrBQv6yCkWrFeV2QnINngmPGEAJCJJC0qYEBY41i2yCS7p92HacNKAjj73P7Vz0y+Z/GPuqU68+ukyL/1usXg01BA144YdiAId1yqt2Ma+3aYwiCNmq5mA8BTjPhttlYqZ4SUGaULDW5rW6WOwK7nbvrF3/1pwAaitvYHjqoFsgROd38Wl63ocdty+e+KMMgEe5zLUDTz9HM1pUeSxWsMai+UQyDZPGCBmtKLRbhPy1PKBmcMyocas0oWTz7WApCrXClwJUKqr0MBJsxJWwiK3QgA81IUVtAVyPZxroj161sxfWFaU6pzYgxMBqiQf3nAEOq8vRnuv7NiBC0tjsn/bdIJoC8fozeaV8GGnDJs1tgtiwzzpcTyHmsywKCgyMRufRBxemjZKDiNKKkAcM0Ii8jClVUrHAFCMmjGCPC2fx7EDyKo0aZJO8B8nDE4Bo6vbPWvnboZ9asGmYZ6o5YkzlMX/yR7hUr91LL3ddk+9Cr7EVHmOwQ3IbL1GmozVj04M60yrw6yQaGWKvuWrNk5J0XajppZzQNrLe7kpkxLwtY25NqpAUKE8hLCV3Wctms3ZnsWrUKI6YU63apQYPVdrMBdnLAz5cL5osI71ZtN5zWFcVbC9kePEMD6KrlbF+UzukYNmFvG+YN6GEU6VKKfAa0Fbd7MTf293YDW2fnagvzlc1rb7f7ZQOaXrKb+t/b3xFoQ7Xmze8UmGjPt1k32DphPRB3UD0LkrHvZbeuTWkXZdVyLR3Ll8+5BTFsoNs6tGy2BhlU7f5s7CEgieOGOpgT1fdBZ4Z9scY3TuH2YBFHaLsPOlOs7aDNvrTDdzteL3Cm6/nczo0yoQz0J/TyV50pdWq05I8UnNPPdMo0s/bFW/Fvu8fm3BEpZbzb5f743TbYn27t+stXH8Otl97HoaqDb1k8Qvd1iHUu7LLqPFn2VlihTkAktx1o6veLvkfbotODSr7dDMCL5/ryWaBL7Jc7Sv8zXs2HArfOp+TsXJUzNPggpfPa1ci+nJekQxMBhmZutYtQ0a52/YxAsxk/70P93Aih2YZ+pG/GH5oJ9x4MlmBW93xjj7Vx3bIBXNNPY+5C0QR0X7BkFNWz4pKBUkUrGAzpc6R8OmcdHkNrjw1IZx1yhMzSccsSaagVlDN8KfClwjHD9eMIfd9/pSSgb44Oa2zfczU+fWjNN+pNNl58Obf5+nItXr/f7CA3H8o5Qi0Z63IRVlvO4NLLwq/P980zVEuu1MaanucZp9MRIIdlWcAg1CrMsZa89Q4hRgzjgJIGxCEiDhGEBAeP7Ag5CQDugzQGkrL+AB+kfE4SDoRhGDAMohvJBfAlIycPl8VLKei2dzsqpGvTwcAoW9/dHm0b+5hvvu1m7WjzHpsuFh9sex72IFmSD0ROS5HkPSZ/4a40McXWhah+YYkoOSJ437RTZZ8qM8DZGpFktq6kNl2my7guZ+S6tHJNEAEuAi6I79T8pu5DiXREVSBPgSoFXk2gWPav7Lu0LliWWbQmU24dw/IqQvxWwgSYP7llWztlwb6w323S+gK0o7oWKamVxFkR/0nHhLjbH5uf5qNtbJrtkxfb9MU+QnPIN94cmJW9symF+sIeqn36+VKhvkLpxc+F/a86Uu3irL8TbUrrameA6s+cWD/734Su39R8T7YxschC/SkjA2x8p64htf1oOyBt3F7Ypc03hI1Yup7DzWe9Gh+yO+kj9HKy7Eg3P71KRRETX839do2RkY7UNvbYZ3MObXxI9F9f21Xu128g5SaWak9z5ZvLHxT9zC8kymjzR8oSt/1sYyLP2bHR1lRC58HWBMHIDGYXoD4Uqw8lIK8s5c2YU2fDyq18/YwjUjCN0S3v5lauPav+uf8uYNMPv/41AKBCaoHBmjFSgINUA2Yc9vA+Yrcb5DAHpAXpzQFxHJUCC1jLWK+aRNUJQp9S1qC2U8nsMLEB2b6ugqjKVwPgnJe2716YJ0nF/cIwwIUIRkEuC0pZUMsCLgsoBNXLcyAKgB6MMcZ2qLQAtTLADs+PJ5C7gMgjuAMG73D3Ogjby3fHbL8/IA4DhjFi3I86SdpNbWI8HT/DnT2qi2AKYC5ASXBgfFuBkYHD8YK3bkSIexx9xCevwZtFsP/WvLMciG7j+LUgE9eGQkNFVM5Y04zGkGCok7JrhtKpwGCrmdAQJHiH/RTgHcG6lxBR0wJZTwl5fkK6HFGWFTUJmktBGU2t3EfvkKDAlta1RskWnp6PmOcLbm8viGGP3f4Gb777LV69+Q4hRuzu9qLN4AnsHWgMCIcDhrICiYCUsa4Zx3kFk0MMHkMM8OQwDROCi1p6FgEmrJlRqiDZa0oopeJ4POEyzw0oYTUsZn0kuASIvCDzoBbw2fz1PdG7pwDa+VBFh6W8hxGCB/PQQNvmJCnAG/RzclGtI5l+EDlM3Mvytvuo1rLRT1Kh/P0OBOByWTHPCeTeoVTp7PPDr/4Wt3evQI6l4xubLpJDrhnLesYyz/jH//yf8Id/+e+IQ8DhIGy53/7t/4LvfvU3ov2yqHNUjUqvTtHGwYABJEoXjqOIZadV7ntdEk6nBfMlYxxv8OpVRIgOz88nceSMFVSy6NSAsa56jQrkobSxaBTppk+ANo9mA+bLBR9+eqc2STJ1MTh4fwcT3ZM5kbEES+kUSDUHinxeyVWv0UvrauEm5J2WpMy5DmKXBCmByhttgk2gD93LVNAOBRtLax4QgsOg+6d3qOn2dLA2yz5gN04gIiwXcURF2D3KGoQ6SlBnHXrwmt1uEasI+tpeMHDIb0oFiaBBlzDeKheTohKmBUlmmUi0Qppd2Do3egPeBwSKsKC5OUNfQYVYwQs71mt9CYjJmfJS8+BrLub2VbnPrwXsxixzRFIq5whh8Bh2IwiQwJ2rlGvo5Xxw6k+JRo04v3r2VhJmmQ1FFfFKKNDkKSjDUu61VnNurh3/Vk4IyBplhnMM0eix7kwGsKv2od4VQzQMbTq8t7Ug9ty8DE8O0UcEcijV47QUpAKMQTLrU4zaannrGaLZx1SydoOS8uCtQ0ZEsPBJStRkVRqtnNq+sAcGTBvvr/X67ocf9CYyoJ2gpNRFAxMnWeYpTAheknaOIrwbME477A8H+GHQctuqTCituwQDmjjLtaguVGli9OZMN8fwa4GN2sItUGIgAwFYc0WtwkwddtL1rtaEdUkoaRYAR/e0NBrQhAToxblm+mFyrZwSnj9/gk125IABQJgiqG30KrboIMLMu7sb3Lx5I+cNW/HlBZ8/vwM5h5WATAzPjJEZnoG7pWCfKua14of9K0wcweuK8+WIHk78zMviL4L6UATr3AQWdmFRlqBTXZAW4JGWvzBQqAIoV36qjYsBbw2IImEoTlOA99aBtcJ5YBwF8M95weOnT3j6/CCgAG9iDShYYb6ITrtTgXXvPaJe9+nhAefjEfev32B3c4/9oeJw9wa7wyv4EDDsJtV39GKXgsOwH1F4QlwyimoUijYoYRiFwe9DwP7mBnEY1V7Ic8U4wTthO13OF+SU8OFDAXNCrQXIVSvlFJRlAYhAaGeGnJVOxWrl5bwwZL0mdE3Pbl4W0LJoN2m6KqmryqoCxCbEGLTtexRW9Cqlad4HDHEUHUk2wCBouaTMpZSEAdNuxDAEjKPHNMk1nh6PeHh4xLKk5kP96te/xn5/D0dVmFZaSo5IWC4XPD8/YL5c8I9//7/jX3//z7i5vcH3v/kB07TDm+9+jVfffCsC7nNqwE8vmdeC+k1iytm6hIN3ATkx5vOMZZ6xrnPzXff7A/bTDiF4PD4+AcRYlrWxh0qVc8F7kvMCjKFEmJ/uvQfVCnauBcLtiNZ1fj6d8O7HH0Gb/zEXhCAAbIgOPsopgtxtlE22ldZ705o14IsBhpTR6oaFHQJtl7cye11X/WO/tu11L20DdhHIrkUBQ/Wnm00mwm6/wziNUKpds3U5J/jgMAxBGf9oa938XrB2RvSEqGdiAwoAYd8RrphNIpZNYHJw7DRGFZ9R7kubOTmAWWRKrOGAMR+Z5TMdfANCsX3+jZ/VNM5U9kVicMDoPDZeVorWwGEDsmzPOouFgA7AKCVI16ut7aKAimhDcYt7TV4AEFssroE0aSEi0aMLANgBVcacPYErIVFBUtZRKaI9uN0rRmow/5nbeta5gPl31P0J9feIVIrA/HMFGodhFF+zAMucGvO/VhmPGDRG188rVa4ZyMH7AY48cnE4l4IcgXFIUo3hgjbv2YC1hMY2y8aaMp9b96N3xjbUWKsBVBswcgMgdozll/tQvxhsuru/l4fmIqUwtQIl6S5RsMk5hCCHyBD7R4cYMahgcWVu1DIpYektvY0dVLZiYC+CAwuSvwY6XWXx2oFipR0ZuUglqvNeD1xGqUkcqJIgbdVFf8QOEqu5t7apO134SQ/WyhWXs5Q0TeMNpnFCDAF3uwOGGBEGjziKM7G/EbDJDx7DLoCJkdKMXLIE9MsJYEJmoceCK4gzAgtlNsBhXBJuKKD4EaP3oiWlC/tqnNr/7z9vS6dlfjbOJ7pT399t2UapEbdSsRwCClf4DcjxNQTcOYdx8IjBNRaJbEgFqSijrDNKmlE1Kwe/EWuGBk7tUVQMGF4prOIoLfOMfM5gJrx6PoKZ8JY89re3CMOA/d1exMVrwlIzKDj4YUSYdiC/SpkacdM1cNrCPniPw7TDGAVsnHYjAMJ5zlhXCf7XFLW8STulJWHpdTS5hUDyXO6Fw28AITOsdMrWmr1PHLhuTFkdHe+9iOuZKGsTzeufw0Uy33Yn5LS23lCBzeoQx7RnvZyX1ru1VCxGOX96AruE/eGAt9/+II6BdlpjiJix84TKBWtecZ5P+O///f/C//6//v8xTSNev77Fbr/DMO1x++ob7bKQ1VHv67BFrjb9avDbAcsOVBgJUCp4wTInpFQQw4joIgonzPO8Afwg+kH6+bmooLXWyLtq446eJdK6cTtYRD/HOnFJuW9Q1mYpqVFue2aJdWz1oDYqt65rLoxC9QosZy2VQ9FGBI6QiwDwXCVW5UpQDEvHa8ui2c6pAU12WHZ2gtk1c1yMLQEW4CxEjyEOuDnsVZ8AAKpkrYNXim+3FviavW4Qjh3LPRLarlXrqCEHmPxlzgYUcZsX62pmF5WA48V1SdauCOT3gGsLTOmsKLgivxKKtM5de3tfO7RxvL7+ura34vBv43qbD9HAgZYqiT5AkDWeuZXKkO5RJ9gavPMYwgAA2o5anReidgb0MkGzsfJZBsxt14M5feInbdhHIBBr1xbYPfgmPuqzNqXQeeRqZcQyt87G0T6f1CFzTrqvkgcvwJIrBLwXnZaoDRjMQ2JWH1TNpGXgDSeXtdG1AulqeZEy7vACaLJnlnOwraW/wuvu/k6+qQlck5a6JLXnWnYEgmMvulteyhQdBWFFj8IGtcDAgIqi8waGCgPrV90wtl8mPZq3vz3/O7tzy7yxDo61apdfAmIMci9IWt6QZc0A7exxznfdIie+nndeuu7UilxW5JqEVXERrb4xjBjDCO8IUwCCA4Rxwgq8RIQh4nA74f7NDeAc0iL3wLTidHoGE7CAkQFo+IsIwCXCLgOHzLgbD0B1+BRHtAX1l162rjZAU7PyalvJ9EBkENvmt30nmisbFr2z0hzXZ4Q6gOo9YRi8gk3CDHIeCEHP2ZJwPp5wOZ9Qc2721m5O7q0DTSKqLnbHmtQQkQA+JYNcwHy5IMQBt+qzOi+aU+ScVWuLHzYGhBLBFKUrpJPy3lpEv2+cRNPzcNhhnHYIKqYt/qesi7SuGIYgHWZPAy4Xj5wZuUACnqvjRBLbjqyEWAC82nwsWXvBB4QYmn8IIqSUOjtcx7iBZ8zNu7K161VLTiQGCpZlRfAVjqw8FM1+eEu2Us/2xxiB4OEdEDxhXVc8PT9ini9wDhgmwiEd8P0P3yJGUh9KdCq9lyRQqiuOp0c8Pz3iv/6X/4y//0//G755+wb/8fL/wc3tHZwfMO0O4odeUivpbvscGzuv/5jLJ88HgAu4ZKR1RlbpAoAxDCM8OZSacVbJgnZ2aGkqQXxTYzXXWhsxlZxrNl+qMNAAXd1GWJcZS1rgnMNunDTRIPscZIl6AnXXtz8HK9gEavplplEme5H6hVrMqH4km9yAbRP9u79oBF7GnGhAAnnTT9T95RzGccB+v4ORMcAQUG+R5xI9WGUGKcBSuTagxTv5G+/dJpmoAI76qO7Fl2g2UgP02ousooQAEskBrmgg2Pazt4xwS0LWcg00tbVkS47EVxYw3cbHfHa7H5IueVtzSxAAiLZ+KzaMbWr2dFuBcOVbY8OmYot0pPwtRKdMUDS/EqYH7OTfWghEUrpqchZk40995g1kMh/ZzBOZawtgW4Jpe+0KpATaOWggUF6Lfi5gVQdS7WTjTwDVXkHgPRwCahENTIJoqHlfEGgDdr1YzszGYiytKspwkpboAGlTg/rlB/SR6D7XJk79S69fLhBeRTtoSWIgwAzSm27MJucxjgQOFYQ9xkG60YkIYoQLYtg3UiDIOeN8PGFdZuSU2s23ZWSL6GqjU5vJl8HNFoSqVcprhCqY4R0jl45iL8sRlzOh5BnjEMF11O5PFtxWnSCADTlVyxCjdP0qlUEpoTJj2gUcDlGowX5FRkbJwKoBzCU9i1FyBAqyiVJaUErGEEfRcnIBftjDxQklLVjmE6hW+MI4F+C4LDiVBStlZBZKLGzxoxv07fdt1DSY60ZRvzenUrVPiLTLSU7wLB67gIHUHNGgrWyt1acZ85cLVIyEXtyMnbNMtGSrUxHR9W1JU7tHDSDsumUT0NpaCZoNcgwsy0VL8YrURBvFniRI9eTF6RmlO0fhC8oi2iU5l8Z+K4URnOg+rbHgcAB2N9KxrXBFKqbvIJn8cfRgDuDJ4eYQYFnropkKA+oYfRwtI8esEqwNQd/OmQCmtp5L6Ye+jfbLzW4I/NYggExIUMVCabMeNii1IPEiOD+EiDHGVlNfsrSFfnp8QlozPn/6AO8dbnPGsDsgcISJnJ6OJ7z78494fnrEp4+f8Pz0jLQu8E6E8pZ5aV2OYvQIAY2lI3vOWt1m0RTgirTOymJaMM8X5JxwPh6xrgs+ffqgmhkVwxARnMe8XrDM4igFdawdnKi5aNCfc0XyAhwTpBufZfL7+PQJkUy7nSYmsKuMo5LFqS3KAGDVItisVTiZH7fNBBXL0BgoY7oD0vmQjLmkOk21kpQsqbOw9cm7vTQbZnZS2ShtTbTVcrXejGEUgtcMrwQ6jgjDGAAe1bGRi/XrdiZf14Lpa9h5hwiJ/A1IEcA4NHq36fCxMv4sW7e9X0sgMKBilUoTNh/HsAPXPRoiUemppbZxMH2J7f7oPnnvjmQClQboSUDRFgPcxt6JM2H/rcxX4q57ALTgX/S5KypUHFfyt71mnhmc5Bok6rYgJhFWNuDNq9Pou4bVlTO2deDInCMrLZFBNWzH1rplClvWzkBGBTh6Bs72AekaV8Cyne2sgQuE1RI8ogvYDSOCk1YrnAR0W7JoKHgfMFZh7KjrvnEy1QmuDq3+CdfODkFviamtTRNr31pI2owL83Yv/Pu+Ukmy9tYFeZ1h5TnMDO8yvM/CDg8DyEnWe5xGjNMEryxE2ytgNMc4rQnnk5VSiRaH07ms/CUAvB0HGwNZudTm3tgIpWTRY2LRksilwLsVoLMEUOsKQkapSbrgQTQXSVlxlYs4rlxQDQ2kCvIVriYErHBcQbyCa8UIwuTE4XVZggYTaWZymMsqDUDKgqc8A+SalkccRtHR8R4cIzgErDkjLQtcreBMuFTgcZ5xqResWLSTnu63L8bnKz4mbfx4A8upJ/BMWgGgHrgQNf0+YaxJQ5lhGDHEoWf9YYHvRpNOg3s7Fkh11yTgJlhHw6K6bnULMOoztAYTVjq1sRHeznznJIHBqvszLwgh4ObuFpUZaxJ5B0nUBpUnGBDiiJwuLQhLSbRHyGU4tyJkxjgVOF/g/dDAppw7S8A56FoP2B8iavXYV/Whcu3iyGZcyPwUCdasFHVr9yxQs6x7CKGxzg14ApsWjwbq28nfhBwxRGAS5meIsUmEtIWw8Z+89ygAShLghkjamzPrOeqAdV3w8PkBy7Li4fMnBO+xu8lwgwiO1yJMx+PzET/+8Y94enzA48Mj5nnB5Tzj+PAsvsGaEJ0XPbaIxmiysTDwKueElFdwLaKJWbL8bF2R1hUffvoJ59MZx6dH0SBCxBgGBB+wrBfMqplp3bRAtSniSYfuAu+VMUGAeTFow6NJo63T2sZY77lK18uSE9Z1Rqki2ZDrtsJFn818aTnEIJ2yXdMVZC1LEtYRrox9q9rgF/sam/dtgBp+8euXZ0WzBc0tZAXodXxqbhq8IMAHQmQBGqrG1FZ+ZT4UoesktsSva1eSWGbjQ1myrnd1VCLHBlAz5pWd8/Y5FaRZ6O4AdZa5PgebjwstRxVAsmmes1mtblvMFoGolXdZiq8DVOqbUWdXyRT0+S1FfSXzm6CEA+8bkaQJlzNf+3Eax1EFQFWab6mItvluBNOrcmAn41R0Ys0mXyUnrx1b8Q/d1g+xea/KHjcyDQD0zqKmU2UdhxvEYeAaoELj6kMFaTgRacAu7BAogJcsZAIGlpTBXOAHh+pFuZDYfNcNSKmMUPGJqe1PZ0B5Cxk2fq7Nmd5k2wL/g47TLwab5nUFg3E8HvF8fAYxqxxVdwy997i9qSIYffMKN/sDbve3mPZ7DLsdECzIrm1A12XBw8ePWC4XsKvwdpDAHJ5NVloHoUWCNlkM7ZJwvRikFG8BEZBygXeMlJ2q0GecTx+R+Yh1fsZhvxM2llGydeMCEEPNEr+EIM7FOO0xTjvkUnE+O+RacXc/4dU3e9RacD4dsSTpCJNy1k4U0sY05SyHd+UWnN7e3uLt27cYxgmv3nyP/c09TqcjPn54h5IS3i8r4prBzoF9QAEj1dzELxt6CgOZvrYQqG1uR6bHJAekD1rSqNnllJMKoUcMbAY0qHPlG5AYtLxwcza3F7Oo/BNrHbZmgEgzTpkqLmnBvC7NkXWmd+U089yMHa6cYADt995FgCMcCMenB6zrDNCK2/sR5IIIUUMyeQMcKOywv/kGPkw45zPmx3dYU8W8JMzzisoJpQq18LzPGIeAtx54FW/kvrngklZ4IkQPOA/c3gTspwEheoyTjOFlTljXhJwZ8yzib2sqbe5ztmynzQ6uo0P9CkEYdiklJBXJtkPIxoGofQJMFJL1dBTwjUDWWc8Az01GxCtTrBRCrRm5JOymEYebHbgyvCfknPF8fMTnnz5hGAZM04TT6Qnf/fBb7G7vMIw7ud/K+PzxI/7Pv/8HPDx8wu//+V/w/s/vMU4DlvMF+8Mex6dn1JzgQ8Q0TSByTbut1ILKGSgZazrjMp+Q04pnndvj8Yinx0ekNeHh4TPmecZ8WrCmMzw5HA532I17PD4Dj8fPKLUgTAKOaqwDrhXzcsG6rmAAy7qiVg8aBnh1FFwDhwxwok03NG4ABCOjECGlBfN8Ri1Vs4Ti7JEebM6AvkrImn1h7d7zMltOqC3rIbGz0sMrUPMmK1X7oWibrtkCw1DYWIX9cCd1Gg3cYdassIKzwxAxjFpOECVbd/AjdlMEc5WON1ps3rroaQ1ObaAN5CB2QHQebrCsjwY6moEGqcBuSegaJ0LR916uV5SFZtkqbjZBHSADSozTrMkroQiLI5CsRTuLcGytFd47RNXAaN3y9HrSVUk/zgRreeOTmvf2xUs/R4SM9L39Z2LHJMuXSTpmFQgroULFK1VEHgT4gUAB2sKYFXALiM6hFoC4ojgGUWoOGW8A0gZum31Aa0WgTqUCOcpIggrQGpDvHDRQk6815eYgY7NuiByqdXupVdgmDIRdwBgCxjDibn+LwUXMRfRBChjHNcMlBpxXoNghOukAumXjETkRQEcBo6iQNencqHoiE6huEkPGIDTrSPbk3Qn7GSzmf/rrtFwABpbjCfPzSVaEgqPeOXhSjbybW/gBCDHg5vYWh9sbhGkEDboYdVmVUpBywuVywcOnB6zLjJQSQohIftWkQbmyD225bpat/XbLXKiqBbGmFXQR8eGUE0rNcP6CgM8SSJwW8JyR8wX7ww7DOMBRgAjjW2AiGkqAJJNjIDhiuDIDZZb3sbDkdyiYnAD1eZnlHGvl1cClMiqAs4t4DoNoW7IDs8P93R2+++47aWpy/wrD/oD5dMLjx4+oOeMDAxOLyOoxr1g5Y+WlJbo0ErsenBevtmeAZrOd6WpR70IKkvOSSf2OqOVjYcJuusF+usV+f8Buv0cIAQa0b8/xdidWJsZicxw7EMs5UjMjLRlpzchJQKeigbuBjhQEuJHEBDf/gQgtCYNaBRSsFZfTCUQOcRzw5vvvMC8L3v35HZZ1xX63xxgHScxOe7Hb6wm5ACkzljnjck7IKi4eY0YcFgAB03jAfn+Ac4TnpzOWdYWUTYmvd3M7gvwe3hGGKAnE+ZKxzMJ8XtaEon5T1jI7VmBZACkBJLfliUH92R4ESwJamNjCEAd7sPNthg3griw6YeM0YaIuDi3VDqGtF1JfVRKwA4AVlyKdlqcxYDcOcI4RB4c1AafzEZ8fP2LaTTgcJqzLBa/efCcJuzDAuQEEj5/evcff/x//Bx4/f8KPf/wTjs9nOPL46cefMD/PyP+vBZMPqI7gSapGRKdJEnQlX1BKwnw54XTqPlRaF5zOJxyfn7GuKz59+ITzeQZXQvQOLkbsxwOGMICPFeVZ2tTvdgNiHJVJLnu05hVzWgCSWEYATGEvmsH5QsetAbvdltUsxIV1ueB8fkbhgnmdsaYkjO5mm6oyqBVM0jmJwcl/s9iHzIyaK2CJMTvfG96xcVJe2P9t85EGMzS/apts6skaBquYtGsAUOWCXFaJr3SfDeQRI6EUeT5rRGJVxdZPzHweiTsJUDKAgadkZDqnJYSQUrKcWMtDTRI/AVnBKbVdEjP5BkxZiowUuHXBtdJA57RMtTIqSaI9Z6l0cVrq1bI8pOdGMa0wOXyDd2ADhG2QvREeNK6kXirX2N8sCavcStdkqsQ/VbDJi2RFBVTrqQNOXIGsvimy2HfvfLM3MRC8C3AOrTNmyWWThOm6ZlsgjTXZbGvaWFPGlrYumKUUDEytWZmmSKXp0apr2FW0RA85XYvyAKVWpEXqR29v9jhME0Y/4i7eI1LEhc84L2fkUnG6LFgc4NhhF6Ocr3Ki9L3D3BjGhhYY0GQglNv479u9QsA1WEyWBDZNqL/8+sVgE1u2/Wp3brIB7cfyjXOk4o1B6araJQL94GzGXxF2PzhtX0ht/f6iV4PjumGQjWSBnEycMJs8Uq6Ac5hnICNhXea2uFnRZkFF5SOrAk/eEcCq/F8HmG5GVYZRKRm5rKilYE2LlNqoHlCpGfNyloxCylhWob2WJCCEABs7lFIw7s9wYcA8X7AsM/KakOYFPiWQ8/DjCGYg19yYINdz9RV3yQ7G9uVefO/ks53vHmmzzdQCKwtUt+VeP79m0OiBpudiVEYLfCxv2TbzZn1sHeO20jaXa5udeu1p0ayNZA26CCNpJz2gomiNMeBQq7KaCrcAqhbuJYOlwBengppyfZPwMUCU7DCCIMkxKphWCmr1ACqCdyhg+MoI1WnZS3f+XGWIjkI39Jad61THn1n+L/+l6/OT9LD6mk7XFtRqvvbVDG4PXGE15FUC4/lyweV8wjxfkNIC5zxqHAAOyCnhfDrifDwhrQnWDjTngpwKUkpY1wXBQBDnkFepZy8l47Kc5d/LCefLCSmtOB4fsS4Ljs/POD49YU0rnp+fpIxyla6MbCKIRv/VDJHZJ4Ki+Mayg+31Cue0G117dGprjK4GVUfuaqPJPOZk2gmqy7FxXLYsMssFcfv36qPatRTP+uLflw6SvJl+5hdoz0kvtpEBKLYMvrQNehf6vfcOpdHaDWTq/8o6QTuQt8/tfB9vwIBO7RTTur/Zw6kTD9FQevkc7RnMiVUbsekw3F/2e+ofYEDV1aBsRm8LRMiB2m5L7vcrh9MVTvziF9cBvz67dmk0XRddoF/8fQO5IEE3iODc5swjzbC9+ENuX/pe3hzR7WYsCPi6cdn+xsD+7vjb8PEXf9PH0Jxo6YgXyCE47TwnAyn7hXoJPQB4stz5dlzsCR2MMSh7tDuy22zky9G4ton9Hv9ar212fvu6Nrm9zMc7p2BvlL3TN23fdyqsnVJCWrN0iVKQQd+K6wlH/5DtO7hNRzuTpMwvt3WTtWsV1RWFLwCRaF06acTAaqBEP8MaMlD7TGZJWlipiasZVLMwt/W8duzgTKahZv0y9rZ28mRgRcZ5SSggMHswRGvxfD5hKBlunADvsSyLlIBru+jMjMwVS8lIpSDX3gFUJmNjC352nrZ+1ObLmQC6ladZaY2WBak0w1artNk/2yhf2cNSeif/dWX6aSOAfeU7cfNh++P0885+SJvnsLJHUpAspaTz1dkDtNmDG1PapqdNUxUWkuYiuq0FtHuXGePNGb3xn5wn9aGAnCpykMSIL6rTogEfce8mRQSgsCbNXLtv85+aHMNX5rWPD746r5IkMg2yLvj+xbbanJ1tGtgS5rWJlJecsa4rnHOYLzMulzP2VtkBB3bCJk3rivPphPPp1LSwuIrujyQeJW5iAEmZbSIQnlr34FJWnE4nnE5HpHXF8fiEtCw4nU54Pj4hrQmn4xHzZYH3EcFP10cQo5f3W4l5C05Jkjw6f+JDFWko0qp59Ozlzry1VW4VDE3HR+1OzgmFywZ4MFBksz82c9gZGpuvzT5qW8t20L9l8l/4A1/+utvL7efwxoEjdL9J4korz9AnUH/EbHhjNkEjIxmc9tz42rpUZpOUiMmFS0W7KWNCdX+zn4vqLOle5q98vg2snq1XG34zBjrmzX/k7X1zO4O3zJqvv2jzAdc/F/vSgXir9AjapbnZJka/d70x3t6rjk2FMNzJ6c+utnEfF/MRm821Z9DP3FYIdFNmdvX60V76ZWh+lO4t8735y1GwaxKhNQsJ3iOQv5qrWuVsMx+K2/y6/oHNT95cp/l/Nt58tba534gMq+4Pss/DX5rb/vrl3ej0Du9v9rg9iEHyOoziJ0hpyG4SccvD4YDDzQ12N3uEMQLRDoqN04qKlFYReD6fcffqDuM0IYYRLqiWiLMH3DhHgghcO84aVJZSMS8LzvOM02XG4/MZYEYIomxfKiEXzewGAhwhpYzzZWk02ybEa4K9ekgQkWToncP+sMf+sEMujJMKfL3/KSJEaZeYlaprpU9gaVttbK1aNilXAI+p4Px0FiHxP/0kTDBb7MzgNaGqSDRrJu7p+QlFnTzHTgLXjWWwgMgZS0gzMtLdRujQ5Dx8FD2taZywPxzU4dDMfwgYRunsJoKLAbtpjxi1XS912t9LR6nWivNl1Q3JAFWE4HE4RKlJdR5hkPaflo2gUuFLgaMKV6XTmdfMOYCW3fehZxDGcUCMATkXLPOKWioeP3/G+3d/xnS4wTff/xpxnKTjYSmoecZ8fMbx6RFPn454+LhiTQW5BNnUQSo1nLK5hP4oDosAug6ggJQzTkehS8+XE9Z1xuEQ8Z2rCMFhWVesKaMUiFNMhGEaMO1l/wQrT6xW3kPILGVe3keEINkJKZ2TFr3bQ8SsnG0P14TBI7yPTVyO1TnwykIjSBcbLS4CN6NOYBYBuhCEOv/54QGlFAGNUsK6rEB1qJnx+PkBaVlAqo+13x/w/fe/wngPrMsTPn98j8eHB0Qf8Oab71TU3cO5AZ8+vsd//6f/DAZaaeD5dMLlckbOGafLCSknLPOCeZ5RcsHldEZJGWlNWBfZr6YlJZ0wB8BXnC/PyHnF6XxEWmUdr64CtSCGgGESTiajqoAo4zKvmFfdM07LMhXs6IeoBtgvbKMBeOu84PPHj2CGlAmyZEnGYRDbZxk2JxkwE3a2sr6a1XnOYntIThgzbzB2U39R+2qBNjmIVHIv17QAgBmNSVErN4CNWlaGWrbIAiDRJRMquCwSAd9T1jrzVlK1zUbpmWAOB1nNvDkMchM+eMRB1qjj2sTA7dEaA0uaUumhVmAkBO+6fRuGAGbRFOzgaAFafsdpWVCBdSOU6+h+QgeUTBtFSjw2ZXy0cbbN7mn2ywKm9t6tHWT7PGmnO+1ECPvu/gbDGNtZyAzVVNvcHxiVM2qpSLVizSsAwhilXAnNWZXBc6plUjZl36zr13QXCCxgj2XkzD6j6wU4ZTPafJSsc5tZ5OMYYG0XzETNcZPzx0rVZf05BiITIgMDA0NlJIhgaa1AUv/hNK8gFETvcRhHDCGIPkvwAlZ5E4avDYA0pgHXglU72pZNZNkcK/25rXG0YOClIMi/32vQm5nuDnB3hxaIWkQhor0eh+mAIUTsDwcc7m6xvznAx6CSZwyrVawsjLg1rzifzpKQ2hGmcY86JHgHVJLOrbRZp9CP6d93NgeoIteE8+WE4/mEdc2tZbOtD4ZHZRGTlzbSRRhvs7ZXz1YSb6U9qkeia2qKAd4BBw/svXSFG2qBY6DwiiWLTTBtDFuvFQJaMss15jVDT0UAhE/LiuPjE7wP2N/fY9ztZf6V/XLOGcgFqSSc5zNyKXg+HoU1uQmCZV1cz13vNOZAQejMzommlrSw3yGOI6Zxh5v9jWqcaTc333VCDzc3uNnfYnfYacmSlv0UKSdjbR6iaQrkyjgvSWMgsTshOgy6Vsg5kPrJrPNbTFuLGcyudRT2rRsi6b4SaQvnPMYYMAIg5/H89IB5nvH0+QOOj59QAdwcdtjtRtGWKQvSOuP4eML5eMTlOYkcRXJgGuCiRxwmTLu9dKKLIiYvrA/xRX2I8FGYS09Pkkx6fDzidHrGbhfhX+/gncO6rpiXVdY8edWw0s6MAKAaMSmvyDnJs0wTfIgYxoio5+daRBPUARhCVICWhWG8se3jMGHajdhNewxxFO2nIL6UjFnQ0mInemsAoqIZVU1jhQP5AS4A5/mCx6cHrMuCzw+fcTmfW9xS1oyPHz5KQrkQDjevhUU17hHDiOV8xOn5CefTCeOww5u332OIAQzCmlb86cffww8CDh5PZ+SSpSPvPCOXhMv5hFxEt3K+XFBLwXIRXyqnhFWrKpZ5RckF4zhhfyBUcjgmKde+XC5SoslASRWJCrwnjEMEEbBSRdLY7HS+wDmHw26H3SSSE72TqjGHrwEn+5f1/F/mC+qD+EE5z+rLNOujB78HQTtyb/eoAb5g2ROhJ9MbqKCgpvwft1i0v7Z7n9vnbl+stk1KOV3DGSwAb3IUhcX/9IBD0nOqg47SEIb6NZmbXE3JrDGiAp5BQRXlAvgWH5usAIOydDRsgC7QktbMjJyUqRNg2iYtnrByUr2N7reRoCDGVCq1iHQMkcT/LQap6l8J+9nQMybtPKsag61zuZhkFOamCdzKLQHVRlO2VhU/fdqPCMHj5u6Au/sb2XPqjNQi4yq2zQDmLrpt5bg1M5ZVfCiMHhykDDuvYjfBorMmHTsTuErTlqJ4A+u6MTtmq0RmsbaFEIKItQfv25pvjK/MSKsktZ2XOd3ORdeEoJY0D85jdB4jOQzMCCiIhCYwvxYZ0OO8yvWdw26YEFWXzvugTWQ6itSBV7luqQVLEsmSYiAkzMTaHNfW+MySsL/Uh/rFYJOHrJFhHDGMEYYmA8oEyYJSD9rBYZomjLsJ424UR8m6prHR4VgNSsZ8vmA+X3B7e4vgYmuZSn6TWdcREueBZWFdIXJowFBKCcu64On5Ce8+fALXiuDF8NXaAxcrpdDlDYaU0+S2KEoLuGoVXYpA0l3tcLPD5TKhVOA0F+Qii0kyEBa+ELZeizks+gYB7JQhtOQZ65rBIITpE3wMGMcJd3d3cM5jXTNylprmvJylvjklcC5tsRu1rS8gtGezjJtvTlCA8wI+uDDAh4A4TNjtBGxa14ScMnyMCHGCKejHEDAOcpibAGPdIL3bV2VGXjUy0TkMERgnaKbWibPjxXEtDDgbb0eyOKm3SyYSgJMhwplCIXWIQ8Q4DcC84nw8I+eC0/MRD58/4w7At8Fh3A0oiVASMHtgnS84H484Hmc8P4vYdy1+E3hbcCzNloFNVwFIpjIX4HSW7onPzzPm+YyUB9zdB4zsJctUsoA4CAI2DUHEx53DNEipiAXqlRmXBOQCOBfgXAQzY1nEgHfjT9fjzdAAuLfLNvFLWxtCNY4t611LEZ2Gbnv0e2rGKacVs3YoOT0L2GRTyQXys2XGOE14+PQT0nrBN6/vAN4jpwuOzw84PT/CO4+7m3tZE6gg5/D89Igf//Q7lFJwuZxRSsHT0yOen5+RcsLz6YiUMtYlYZmTsKL0XzvI5Mblm2k3wd8KfDYvouc0LzNykiA5uyrts51o3XjnwBC9jJwTluUCBiPEjFAKvHMYvGu1zI6dBvGba9vY6nzklITF1Za7UGx9FOHLotCeaGeRdM2CE6AFm04XBg5Z1oEsIHQt03G9vzc/ktoi+VnTAhBgwIbLgCRWYMVbxkMPr6bxoUF7KaIuZHMvjkcH4ZvoeOn3vxV8N1zUaW27fX4IDiHI94WdtoPvQTDZgU72uRIcGMuUtKRZHBjVwFLnAthmXHxbK0X1tbbMl6vMjmXmv2CMqkWnzkQiRivz3pZjXVtCcUOKir6PO4dxGjCOEXf3B0zTiGVNuMyi4SO+hrXn1nNqFcpASRVpKTLHxYOj2KUGnEAA8lqr6Lk0oAlKhdfgndCYCpYdtc+wNWvlBzY0XC0rqA7yBsBseAlk/cm5JwA9mOGY4BkIDMTKiMQIpPoBYNQsmnZzSiBOIk7vAVCV7nVOOkr5VmLgUMp2/cv5n7MIY2+3h/rKKBpUNL3NZncZL2fs3+sV9LrTNGKaRgVNtBxVExoOHrswIfiIcdxh2u0w7ibRu7Tb1E3N0hsYuQgon+YV+2mHIQ5YQ9Tst0J+L9CTvs+6j2IBT6kFyzLjfDnjeLzg4fEIQDpYOkfIhZHyZt2DG8jIDGnvXnIrxWPuoLR3DrsYEJwD9hFxCgjUjjABH7Oeb9qgBfo7E7614CItGdkmmwiXfEJapdvY/uER426HcZxwe6M+1LJIkL0uOJ6eJLFYhZ2O6+HB9Q/6YiILdp0HUYAnScCFICVG07jDzeFOfaNWgwv2Iuw67naY9lJuSMZqgmks+nYdKLiGykiC3Dc/iEkZsVaW7fQam3kVcFvOQ3aiE+K0VExyUCJEbe3ZgwIqORecz2e4ZcH59Iz5/AwfI6ZpB3Ie6zxjnReUtGI+zzgdL1jOCfMC1OzAiNKhLU4Yxp0Kdct1SLVlHEHBN0ZhwuksXU6fni44nqSj792tCGynIiwe0eUR8G6cRozjCEdoZc4pL0hpgZSzjV1XyrsG3tfadRkrCUjzcn5jjBiHCcMwIgSJRQxssoQWkSR2ayko5MWu2Nml/ik5D+cjltMznh6fZM0dT1jmi35ORCkVz0/PWJYF43TA6fkJJSdJdI6MtFwwn6Wjr2h87eEcg6kglYyPn34CU8K6rnh4eEBKCcfjUUrmcsb5LH7Vuq5Yl0VseKqtOUlb5q0LA2EaRzAR1ryAmbGuqZ3lpVS4XOGd6Dk6AmoVrdJaK+Z5lYR8iBiHQc56D7XZpC3r+cXuMn9GVm9OC3Jd5YhzWSLdBrCzHFZUtUTCStQ3O1WTKBYbAFtfeXtVbv8asNJ/aSw7uv7c9mu519boZXNO2nsN4DG9Me8KiCpYQZHGbNmYZmZN6pg2Z5GqHGPxGBJDDg24dcriE39HS7I27DoDqGvVzrhyuyhsbEbSMZKRZNbGOQzAXz+LdKuW+F0/HRvOlNoxTWqpLyHujJQ3bjt42vgL6CbP31iUChgBlixl1cUVAPnmdo+7V7dg8/VL7ppdgGr4kgJfUt3EVbrMVdU4BABPA4iDNiTovo1zXrC4SlqxVFtcb8C0HHeGHdgvdN1YfLqVgYH60VUSM6nIDwN5mF4cbUaV7TN1fjw5RHIIRAhgBGZ4knUgCR45Oy8pA1QQvVSUwQERDsFvrtHWm/o/gucKdqJauWg+oTmA/f3cGvYIAMVXBuXnX78YbOqpyzbeDYVkLZi0QMJrm/g4jAhxBHlnKfwW1dZatMNSwppWrGnVkjdtz6hPaP8zitmVZWmB8ka5XmtdTRspNYaRbjoL5qALXR0uMTpmSGRSrI7RjIEjh+h6ZoOqBDc5JRGMrv2e+kD1+97ENO0xTHCV4DEOexnDGLScEJgvFzUcDk2Ija3leNHIcWOvN7fglGsph1tA12oRxycoU2lSptK022OabpQpIEaPvIcfhMEUtPbYHJPmQKhh+NqrlaC0OSPkVEEouJwveHoUgKHU0jICMt+y0QywK6UABHVaC2p1m2Ugo0FErXV2XiXL6VzA+XgECJjPZ8ynMy6nM6gyRh9x2N2AX79FzhmXeW4dBqvVUDJrmR2QM8N5bSMaPPJW+0jF1aHil44s6BVDvyylrcNShJXBxcE7QgyEGM1YymA5J1Ry+75y1Za5BVQIlHsG9GphyaDDqLZgauthS2d1roN4rYNLkN493gfUNh/WVUiYI1xqQ+jXZUXJjIeHz/jxxz9imnYoecX79z/i9//yOxyPT5iXGdFPGPaTdIzLIjb79PiEXC5acroK6HQ+C7OpFMyz/CynCquIJAS4jTCwPQeBEMMI70YF3CK8C5hGwqt7MXHjMCCGCO9FC4jArYuccyK8bIf1mpKudXXiNwATddt7NdZWB22+GzcxU1JgXH9LfW6ZnXTnYCdln8RabtgNeNtVChh8/Sa2c2/U5c2W2zg0rTMXm6Nk4wm1SwpyVMkZdb0ccRbd5iA0bSWykqdmB/rhY8DSy5JbCSxZD3EJm1mREEekbBkNp0tVAdwKeJYgC33/m2Nz9dltDEyosrMsAHFGwR0obIepzeELR1DONt+1jWxeX7yIgK1zawCu7COGDx6DttY2ppdzaJ3eQARyrJp6tva0zTYquGQYmlKyridPurSoXYstI6xOBGuChlmzafjyHttpqyXEpNlOctDugwJe1FKa7190wTcx9OoUfHqxVgFN/VcAFa5K50ooQwMgOJJ1L4BDhXSIcfCuwLrGCRNEs9HcP96AjWqAnb67zfcXc/Typ//+L0LtQZP6LNI9SIE5kAbQQpWPMSAOg+oiChOzJbHArWR8+wWe+l5jC0C6GL74Craw1UFWBrT8XNnYVTQncsmtHXpVIeXGXGxrRz99w7yU/QJYEo/g4KgKS9kL2OScMIQ0TIG1FRAmFqFR6DSMryxncDbxWfQguLKUGRz2ov/nwwAwhAE1X2RPlNrWtiWMsO0Mt/Wf2NZJ1+pxXve/LiDvA4awQ4gR+/0tpt0e+90e+8MNnJPz1DmPSqJ3Qo4wDiNCkE5p266zV8Es0GxumyUN1JyiK6tmoI+nIx4fH/D8/CQ+lDfB3b7qLIgsGjCVxqQ27VSGAbCtxJeA5XLB0+fPiOOI3S3gfMBFy7rWecE4TMANMPoBQxhRc8EcFpRcEIfYWOEpZ9Sl4rBOSCnBe99sch9otEOIWVgh0qUVbRxyEfvhXAZp97sYzPevHRwn1v8mDDG2tV9KwEwL1rReH5DAF3MgAaNr8+QUkRcbXUEugEi6sgqb3CtQNSARiVg/GRVevois+x2pHk/F5XzBmhI+ffiIP/z+XzAMI6ZpQgwRf/rjH7AsC2plTFPENO41MSZsvK1O2+kspXbCbBIdsnURJr8Bj2CJr6wjsoMwfpzWqMQwwlHUGETGIoQR4yRjFeOg4yFnPki0bhyRNipAA5bXNSmQYR3XNowhIq1W2axQA0jUn2ZtzEGbubFGH2b/rJGLEQIsIWUJFjRr2YP47XxflV5vlkMHXq7XSNuf6jyxxoeoeubbmViKdDFWE2PXeglebW257QNqAleSGOmxxUZ0CbLepRP1lp3LnVXVEoVF7LdV2EBiD+8sLrOk1vbZ0PxNAYM25wfRlcyHPZOFLv1sgezDq/nrX9Z5rwMf5jNo/Gdzpv5y05UNJq6+vSf0o5y2vkcvJ3RO2D5wQCHxN4KLuuarVGvUqhq7qYNr9WWDjX5fV1DE5j3b9RQ0VgdMe0tBPtW2BNASy5XkfK/WhGXru4gj15ptgAiOxYcq1H0ogNXNEt0oA+0sTmpDtX0knett+aOsi7/gH/0P+lG/HGyq4gpQDQ300oQymBmuVqX4RkQ/YJr22N/cYXe4RYgRreu1PmQuGWteMC8zTqcj5vNF2miqEUdrIav0OLqeYH7xrwBVEpSs64plkfKb0/mMWrUbFW3KTQA0FXx06n1t4l/SOUSMhDhg3nlMYYInh4EILlUgZyyXC5aUW/kSodPfmtNFBGw+2zbFsmaUXHDY3eL+9o0EHb4CjrGsMx4fP6JWxmF/K/R4JlQEFDgwVUhfUFmIFjiwXs4AoSFGjOPYQSEixGHAOB0Q4oC7+zeYpj2maYebw20Dp7x3qIDoC7EEGbVUjOOIGAcRVVOHor9+5hBnCcC5EpY5Iy0Fnz484F9//wccn5+R1tSCf1smUvrnNcOyApBSxMIafLRFoLpHjrDfiUj15XjCn3//R1xOF9x/8xrL5RYff/qAzx8/AhWI2eF2usE+7PDm1XfIOePp+RnrmrCsQjsuJavm0Ip1AdYlS0mHJ0xTQCkZPjhU9tKZRUuflkXGSXxSj1IKnp9XpMSIMSEOAmTsorR2vr8X6jZVgFZ5+hAJu/2oRlbm8+n5jFxWpAy4pOMLywJcvyQoduhxhWTiwAyKUQRpbZ5DwDAIqLMmj3k+NyZE9QVEHtMExCid4MrlglIr5uMJtax4PD3hzx9+FPbbKCLpl9OMp09PABy+f/s3eH3/BvMyoz49IKUVf/zXP+J4fOgHBrAx7lutB4KI9jtxijYloeScgEwqBBrDIIykIB1j9ruA8btR7ktbIa/rjNPpAVwLhkGCgZxXkIOCaBmn80W6UkLYN3RlbMSgm4tgbBcBVdRZxga4UJFegAWMIcng7KYRINVzgLAo3UIKrCSkyrDKNaAf/LD5JvSvrx2GwCZ7xi2b2fAgFpvpmj00oUDZr6VklLW0IAREGHyUTmLqBAnrUJ3Dqio6Vbt/oDbw11iJiojAMIBaC7IKIEqHMRmbMMg1lrUgp6y6d6KFFbyDDw7wuiY2h4IxwVhtgpWmlpxR4JoDttUmaMEZAQzJgjXhzK3f1J6FmpZgsbHdgJGgzhji2p1MHzyYoe2QJ4QoWXciYbfGKGeN089sc8FAjVGaSawFHjIOaa1YkwDCAeZoeMk2ayNvA5pyln3P6pATaVcDWFAr6yvrFFlnK3KEMMqem3YjxsljmQu4SLbbMrBgRkkCqAqg1R355gOysEJpzfK5lbUUiAA/oLgKsGgbMoB5TdKldAAIWk6tYOf1OpdzNZeCXJTmbWUEG3/DnCfarPHWOu+v9WoZwKpf1ABtA3Ccc8IMCNKddn9zwO6wh/MkQQU7kDL1cl4xL2cs8wXz5YK8JlQ+SEBIDtZG2zqUgajZWwMx2zrX++JaUEwDKq1Y1hXzsqByhU/q17RSSVnowlxQoInFNnpl1TpzDaQqAt45jFGYvT4Kex1gFE4tiCNt52xjVEtGVgmCVAmFgVQdmIRJlVJCygX3t6/w3dtfwXuP83zBklfkdcXjfAYAYayEUZ9XE3ZcrgKe65PUSTm6lqD5GHR/q9j3sMPN/jWGccLbtz/gcHurPtSNlH2Me4QwoKAg1QQQMGqHzzhEZZl7i0ibXwiITbbucQKuAy54FaaWkiXmgnfvf8K//P53OD4+IuUsnZ+9PRt0ngTcKSnpESa+otfMPVo5sgDiQVkUT58/4V//+Z+x2x/w5oeEOI54+PQZD58+N7ZyuH/bytpzynh+OiItqzIJJIFzvswol4Rh9PhmuRXWdJVT1LoxCd3JgZyViXVfgJxDLYRlEZZ4TowligbrMDCcYwwDYRg18FUbFIOX1vNEmHbCynh+esJ8OYl9szgA1JKmrN3MiJz4uDHq+dAz+agkrNw4IGqjFB8CDvsD0pol9rjMyEXZaqr5JPFBRS0yXmDG+SyNAh4/f8Yf//A7jRsqmMTen88riDwOhwO+ef0Wx+MTjsdHLMuMDx9+wrqc0WRJmJu4P9ABALl3BfR9UCDNIzgBiqJWOIQQEZz4S3GMcN5hiNLAxXSBQMC6zjifH1BrkWd30rzmpEDLmgSgDsFjvx+FebP1oTbJGP3I5o/CE8gTmCoqC8gtRFuJCRubicQPIAh4WldLqLS4HNa6qsVdsKQgK7DdbaGdVYSXR4Kyfri7WltmdDEGsPMNKFhqknM9ulbSZvaW9N7lHryADmZ/iMEqP9DNKyHE0IgPkkwR9qn49ib2L01dpOtiZ51LLCwVCVy0TJ4cjP9hpYasZ8XWlRQNUvusDhzZM5lekvkAijbZqOoYkf6N1zUW9LP7XHWgq4M2DaBRkClEj6jMJudEP5CBbiMVoIP9TIFVuS4BkVFICBg1y2wPwwHTeANmxjiIvXl+fpTmPiySOsbmAjaxLOEKuLQXq89pYwcwQomwVmrO+1YG7ltXcSntY9eTyzkL+0kdbbluZVAqupcTiBihVoxOwCZGhKsMoqKC+uJD5ZIxqC6hI2gSB2gNwkCwLqcGAEr3wN6MhJlVHNxAGBtrUr2s/9lgUx9SGN3fEDzLkNiEmNigD1EBCfU4NjamqrBl0cxZUb2FvuU377/a/tR/1KJA+VmndHfD25T00e+53aszdkhnfMDwv82CsgVmJRui0cINcbQaXOcM6dl8Em0CvKuHEgtmOlMAYYhSzsaugB1jTYsseFW278yGJrShbIKrwQLAm3nYClZ2sMkpQymEiGGQlrTDMLbsxTAMCMG3eltmRqYEQtH6dcugvTTRL801ffGtnNcsQunLinVdWyB4tUjsO0anQmsZTN3OraHvTUiTUFLCfD5j3E24nM9wwWG+nDGfz/DwkpF0Hl61XgT8LHA+QYAZEVv0fkUm0X6xMjoDEJ2zjQcdUwlaRQ9H66o1qClFdBTICSuJHZAIYIcmPm7gRO20DDXU8hW0TttV6ue1jVrLeODF6/q9WwSeNsNtjERfhL2WN0KYZNkM3rBTWHQzck5INWPJi4yLlr6WXAWcc6KDFUKAz53uu8xCKyeIM/lye7AGVHIPHqJnokZbOyo459p6DSFI+a1zrYwwhCB7yovml/cepYqGWAVrvTuhVuvyISU9tVQUItF4KaQNzr4MTLcZsyt2H0My0WwZf8OpuM0H2dqBMAuqMeSshdx28W9+0HY70ZUts7fKnH7pMrX36BstGOFNwM2bm7U9RrpGCRtgZWujbWx+5rzp2a/t/fQLmmMs6+DFvdbu6Nh+r1SBolkic3DUhttz2WebQ2iJiKu1T/3eth91BRy1z6KNLdd9BqPeUxv4q8yR2UGSE6YDHaY1t7Fzm881ArDR30EQ5gukZMR5AyosC2WXkSs3EOXlI+DLx9r+oMcC2wyXzVvPLDpv7cLtQbvDjhdDJ9lbM5F9b1AVprINgXyeE9q63rsQpbiXYpE5Nfac7SpoKaTt/P/Mc/Z9ujnb/+qvvjbbmuS+akw4v3WJDb4FLGRRj4IRpichiSDrItjrOq5GhHkzZ9T28hUAZe9rIGpfZ3b+4YrfuBnerQ+lJqH5J7oAu0+yEYq2z4eaSO6rkezMVwfa9KXkok59Am6aodM4SVIhC1hZUZCSdBMOLoK97hkxwuJD6XVfWtkrRsWGhQT9XrSaxG8axx2mScr2hmEQ1tM4IoYRhbN0j0MX3L56/u353P4/6Vy+vBcZ8VLFf15TwjKvWNekwPH13NtI9tJmhlQhcLOrtPGlDDQkMNKyCiscwDrPAIC0LshpBYUBwQeMwwinjJ0cMtJa4Mij5ISSCJULUkILfkspupZd89eNX9LsF9T2K0Yhrc27rlipou0J7owWZgPcNR5pHVZl/oKTvzUguvk+26YaL3wos9fmM2/3SD8F1a6DGrupFPGR+1yYzeoguI21lK2IKPa6XAAARbumCkIbtXzVNdDBynrmy4zL+dzu9Tq2IFgSpQmbwzp/OVm7/hps8l60sMTWi1ZeiBHDEBtAwtx1DCXOsC7GIo9A+lylCABiWrfy9q2tNXunZyTRZq0DV5vC3s/GeDH7otGbgTAbsKmVc19vrA78bK7xknUk55iJl3/Np0bzFeycFFtpiUYtV/PUQPYvX8JiYu5nme6A7fCgMaDIGD9mSreJxKrPtbk97n5T09TU2KU1bTLXhdA/i9sFACudt7N9M4bNdsnF5I6a/7g9cF/aLvvvr43JV+YC3VYawwnAJl60sesP0tlV1hxKYgxh5FnjBq3sIN8YRnaNboX7Ob294et1pZaA0J67+8n93/5MwhrdzldbR5XbR9q8ND8VekYxJDHLUk1gBJrW9GjjB0vsDrSGRepDyfM4kFU1/JzzfjW+6Htm83Z68d//1uuXC4TH0C6alGYm7b1rO2zYCa0PDgghYn9zwHQ4wHnX9CI8SWY4pxWX+Yx5OeMyX7DOsxooyfS0IADS7c2BWjTy0qV86SQF7zGGAbtxxGG3l2Be31Or6jro6In9cxvRUD1c2sZTRoFuJOcqvCMEDwzeal9p44zYxjBByZZEFmPUbl1LoHRQhyHi/v4WcRhAEYAH3CfGh4/vhG1zSQAnOBcQxwMiEeZzQcniBDjvtS6f2gEwjoME3ZsWsD5EOHLY397h7v41Yhxw9+oVpmmPEAcMwwTnfUfJlYZZlaZcg2gkSZdByULVFgRsjTjr4VL7bOmYE0mmmhABDuAaVGyWW9vsSg6ZayunEWE9AXFqAThVUJGOHut5hY/dWScQ5rQiHJ9wPj8ijA77mxt4FzGFQWvOBwTndQ4IoUa4EFBKbZ3Scs543j9hnmfspgLORYR3tWYaVJBrRjKxemVl5SxzHYeAcQwoXDBMAFxFiE4Fb0XElyuwFhYWR2YcTyuWtWBNwLIKI+LmMGIYJLOzO3iEBMwzAYs4jeakca1NBL2VBmwCWTNqRq0FCMuyInjZd7udtGFO64zgA06lYCknfX/SbovS6a/UgpSLCt0xylnLGppRleghBqCWFYwZKZ1xfHoQLaW1IJBm0aKsSStFdE7KIMiAI2UlBhPn1J8LuGVd9vSgaAYaqDXjeH5APwBFjHBdZ0i5SEIOAVwrvBcQq1QPRkEpwOUi68uTUI+N3fKSDm3Bk8VJpEES654HW7dENIo4q5B1gTiWlbiJP7pAknFqThXDWrxv7YbgRJsDbrP+ITFRB1FcD+AY0FLiCqpG0xaAcJmT2l2xfy44EQN1TgMmCZqqMV1tfW0PINe1mOygI+q6CDZPVz6JluTVKgxCZiCvWVp55wJWzaOSlQEzeEQv5awmvlu5NnFi1kNWDvyebWKWYEeaHQgzohZWsXNWYfO+Z750itSBa0CZnEvtHNaJ1phCnXPCNIlDHwcV8K7SsdSaVTRxTgWaKyTj9RLI9KojVgLAlVpZEoGAoMyfDHDaMOGcAbfdk5QgoKlZNbo5IGUVzAJsSYDIWEsCFRX6DOagWOlCTzbF4OFjTy4REcYwIPqASAGRPAI5VKWRFwDsSISefUSlAAKrY8gohTDPGURAJO1ipkAMESGSZCuDdxiG2BtwsAEV1EAdWxNFyRzmyP+1XtKOWoC0RRt75CQlDt4pK9oTAC1djhHTQbQvHZHoM270eZZ1xulyxOUsZU1lFUDGqxgzk8nrbl8GOKAtbkJ/k2Wjo7Khx7VimlT3gpWh+TKeIADctdjQ7NQma6/Xdd7BD7IXmCTR6LgAaQVxgScpDRCAVtZZJNnnzIBTZtOloAEOdpFxGvHmzSuEEBEnj/PljKfnZzx8/oxcMqgGEAdUAvwwgcCo5wxOCwBqyYwtyBQ0+JYyVglOhmEH7wNevfoG3337PcZxwptv34iQuw8Ig5xTYfBwgQD2GDSQ8E7YfMI+2gYZ6idVBS82wdxVWWQ1TTIC4AEOqFW/ioMJ5xNJAJqTnC0lM1LaBEGAdHBNCc5n+JDgg+oSooAc4f37dzhfLjgcbpHWjN1+D+8D7g43kqQMDt4x3BQwTKIvudtPqFnYuTmtKCXj6fgJy3rBOI7KFqhImZErkPIFa1qwrqvGCMJ+TyYb4wNCdEhJyuioYqPzWbGWqll/9U+5Yl4qSnUgd0EcpOlOHJz6E9KkgRywrAkQKVxlAUnpSUoJpdZ+rnO35S0gp1W7FlfRNdXSyPv7e4zjhHVeEH3AfDmqto8Gnc3jlGVbUpGOj8SQMlsRRWYucD4iRkKFw7rOmOcTzucTjscT5nlGLR4x3shaCwYiqWank27g5Eh1Ye1nCiypDwXzL2ABuZ7NYDAylpRwmZ+xPfNrSShp6UG9ajaFMMA56S5eqvjLp8si13VWjkiqqWOAFcGkGrzzrVsYo0qgDELOQF6UXVOF4y5WEgrwdDCkf9Em3lC/kKkzYTavdta/AKfEf1P/ykrw7Ut/VnPVjnxAcTJqVZlGPgQ4F1TvS8a81CKBPzQ82lzz5Ulk95VSAmdubH55bAWfyGmXXxLGc9L9lUxvWDZSLaafK/ddctGSNEm4Fi23lPWnz6h+jGnA1SqNmYydZGtCkutdc/RlfG7lv61D6iY2AUTWQoBh+1n32UJ0iG7UxkLy7LkU8LLIOtXNtG2IW4t0hxe/R0FojhAZjoSgnXwdCMQVtWakJGu2cgL5Cg8Wf6IG1dgytrjF7NyaOjQQVZ2+TTSstlyJKjHI+6lgTSo9kXWtVSl9I4i9l3hPWWFEGIJH9B4RXphpLNpNYq8Bdl747ORAFMTXU7A+FQbXFQSS8nXdg07BaKdnndOy4S1WIrqkVgFhX//PfKZfLhDuzS0VVF2EfS8oOSPGAeM4ASbSxdJpaFRxS7LaVu4Zr5wl6FsW+VrXRRk+DtfBi2ZbWu1/+ymutqehiSwCYUMIGOOA3TiJin6RTViImiCZrc+rDMYGAOIqG2drhByxUo0FcPKVmm7PdcvwTjN0dH299v0GfIoh4Pb2IJ3fRgk2L/MJ1iFPDsaEOAbs4w7OO6zrCcXuH14PCxMB9xjGsdEIjZU1atbtsN/j7v4OcRhwf3eLcdqBfIALksUYRmGMVD0IucpzlKq0TqVFlq03+xW4ml8+OGybSzkAcwDYN7E9Vt0akAgqC7W0grNurFXAppoqUJJkvXwBOWENBaWFYrmAnMPl8gwXCNP+gO+++xW+ffuDCEcOKlrZwnOSNQxhtJQsguyDHzFfZhBOqPUziCv8QMpMsVaTRXWZFUg1LTkndPlYHcJQUanC2vKCxUCXylgzsOaKlCoulxXzkpESYU0OMXp9pgEAY5q8Mhz6wNp6qxJNNQqnZY1sXgw534JNomnGmIaIcdjBO49l3MGRw3I5NXZJKSZ2ruAIS8lqztxbJW+uIbpETumZGcwrcr7gdH7CfFlQcoWnAcEFjGHq7KQggqLDtFP2nXxZxzFzALs96ibQHOlShf46Lysu52c5SPOqOlx9mTIKAkvXFfk8D1odwCK6Nxcp8QqeEBqzw8GbkKt+lgUjzBt1FLa1Dhg1yCn4XKmgMItDBcm+M6BgE4kwdtPh4ZbZMLDdiG/9Ofrx3q0iqWYXt7awWyegyukm60bLxopqLVzZLjjVunKy76oE8FWNaGNobTBGY8IBXS8IFjyKV9syMjZK9j+ujFSyBuIq3N9EM/VnWZyJNEraUOJzUqfHBCGhDmh3krf3EZSanXNtbaMbtbt2x/MajOgZI2NaoWWK+nqgF/aeiDCOQUrnougp1QqkVNTB8lqO3JezlD7JGBvgShCwqZLsf2FXenhtg8tSMdOdPs26OWUOkrPPlnJRqKbOFYNDFqrch5N9hCpdclxV9oklUEjHlzsLTmywV60JefaBAoJ+eTj9KiISDoDJwROjUkCxkh4UEAswVIoI+1YvzRm91gA4vVdHUO27gMqMNaemT2V70YKQqoATnBaj/fWwJimBApTtkaTkRLXphjhhGh08NGlEAjaNuwnDNLRkAqPCzE9KK+b5jGWZkZaEmlRI2ktQwuqMN3tkqNKLZzbHGJtfhxAQY8QwVIyjNUzJbW1JQLzZwQr6oYWBeuZYq3oFU6QhiYAFKJK04CJgk6tSAgkt4zJ9Pk+yRzR2RGEgMINYO+3pDQxDxP3dLeIQAVcQIql/uWBdEqLbIbgBFAPcFOGIkNZzDwqcMbYtAKYGalrJgSOPMU6IccTtzR2+efsW4zji1et77PZ7DYDEOPuo2XQmuCpzbwG3dYoV1oBohkgZo2tBArAJhNVeNqaIsWTUh+LqUU0vjSDBGhMKinT6TYy0bDRtAJSVwSlLAORr86Eoiv3O+ROen55xuLlF8AH7/QFvvv0W97d3WoIv4A3FADeofMSNjJMwm6QUk3zB+ewxRC9riIBcKwozchGmVM5JS9tEv0yPaowxYBgEHJqTslp1jTALg50Z8K4iOLEXl0tBykAMM6bdrAkJSS46TwhRgL5WcQEoSKC+kWpS2rxbupTZqhCg+1dsX4gzShDt0/1+hxAiTscjABHL7qXW23BNNmbJVQBBtckCPmaAK+LA8C6CXUFOC5b1gnm54HIWXaYYBgQvwOc4jE24OwYtgRuNseQkuHSkWlqdXSj+UhIgmQBLICxpQcoVaZ1xOp6USacdWg0QJmNpyKP5EOAYUqliz6ZJjRi9JCL0LPN2aJKCEeRVMqM0Tb4Kkq8spZPmW1oxNZnBMh08jafYkBy2S1wbvGYKt0nDl0bRPsdWxxZo2jhbJRurSNZT5YqiCa1pL3ZLgDTVBt2AdtZp+IsXdY+IwS3Zb1rIoM29tdjV1ie35HAT6zawaeNHlVIRY9XyfacNkkofP7sPjSusm24g6/wrwJb5V610b5uF0M+w2PMli/iK7XM1FHJeAEDwQWRHgnadhezRov5L09GDyYnY/RT9XJvtAEBF613WU4oALuAq+0uaRSRljwNB5QtqzZKcZSE7NBY3c0vmWBRp6+saRJTni1qZUoqxw/tYbZushOilRJTsXBVwKDqPoAprVkxv167OCc5AtFG10a6OpaDUJOspeG24ok1YdA0REYgFFORGyNnoW79Yoi/Ql1/0+sVgk1HnazVHmJW61SnRJpzt4OGdOddBF6y0zGs04CLaOCklWeRFNJ8MmbfsHMH0HzaL2J6UvwScgK534RRRVZdFNmUpQsvfDOCXYJPRIjcaH/o/M2Jdx437hkNBpQJzl6uWOxmIb8w/Pbo0OEpNKD3lFS4QXJbnrjW3BReCULZjjLIQ1XjZmA9hUIaZHiTKEukte8WBkohW2GP2iEXLGYmthEO6htTqewmfZovlUNasvnZFuZqFK3RpE3FfGW75nBgH3NzcA1WECK1cirRdb/QjPAXEacBuUOFTeGFYEADHejCekfIC5qK1vDpvXJFTxkV1u07THrthQogD9gfAhwjzyIkIwYuGT4tUoUh+9ODiUHNnlbQuP+C2FqyrgFFrCSpq56R7loF+jUq9GZgmELsRpbQlnXPFumaI1IqCTaY7crVHN925ti/dJ2aU0e6xA7R9HxB62aV04pN7kHKEnLIE9A24ocY0YkBrY6zsT/QpSmYV/GaM4wRHoY278x5DHK7XLDkNWKVcVZwwwrpWrXzYlvOpyGkLrpUyylKvLlo/VZgxGkiRHqKlcMsAWzlXE32mHqXxJpg29l2nBRsosQkQbOnzZv3DoAoFh1glsQ2gqpJ9tk5oNrYNDNXr9frp9klX19/SlQ34YdJxY9NxsjUHgFgdEYYjbjYrBC+dH5uNtbp+oynbcxCIsSl504QBXAd6uANNMiwilM+bPVCZBcywMll1cIp2E7GBdCpw6shayurP1XGWbBZ30Nq0QTa23DkR9hd70tkFbQ0ZftaOA3GKe+LBEiAMc0S7m2HzdR0o0oYCbuNvhFvnWANre786EDr2piNSK1AyteeyszFpVyXTPKuQborb+2HGRsTjS+fZ7q+D79DsqdoqvT7XfhI30KlQF2Tf2Pk+jlIU6/nKv2/ZfmOuWwUpARr4QwVQq7rd0gWxCc6qBQa1p4J1RnXOSVenajNWtHSvMxFt534lR/Lv8rLLcK2t5E3WhJVVygCJjZfmHQZwg7SMDd1+SOnNgpRWtXmsLAft6Luxk3xli7aTvwF9LdLQ9eyIGgsHIMBrGUYt4EJXQc+Wza0qK/i/efuzJkmS5EwQ/FgOPczMj4iMPAvoxg00Gt1Lu7SvSzPz35f2YWhfdrpB29NoHIVCVd5x+GGmqnLwPDCziJpHViNBBJQlRXqEu7maqhwszB9//DH0nG+X1fsz1ro8uX0l1WaxpJ3dLltMqp9jrp+MYVGAuWQpe095BUhY9xJwSYbb+YoQA+I4AN6LuC+hM2W121n3A6FOeC8n75IEwlgAOWXSSYl8zqVl2uVGC7Q6u9sVEZa7GhNZ+M2pNUPezuoWCOtZQZDkIkCY5wM++eQzRB/x/O4dLvysDFQ5P4dwRHADwjFiCDNaSZUhzwoErpv4UJVFX4qZwY5QHSNvGeenJ9RSWifFECJ4EiaXq11ewHSAck5IaUXJCQxuzN/W6GUHwDSGjC08aPBlQaTzYiOdBD+NcVRZGJEMgIxdzCCneodAK+cqKmHALGebxS9tHbqe3W/reH8etDXeyzitXK4vTGrrRDoUSkITJN3rrC28BeV2tPb4w8tNO+m5HMKA4Ac4HyQpuSYwEw6HI2KUWMBK4AZjgvsd69spw5atmzGp3mm/V8DApu7zsgL2pRakLQtIwZ210tWuLBFZ0HX6GNelUOorWDkXLBHS/TBq5+XOLEEkBSoLo9CTE3a2xRc7VISaJeml2S0h9xMhMdnetpvodyq+jJ2PO7MIfnGR7jbL+q4v5Vj0fOMO7nCl7iMZQofui7dyp2pP9fE19zfGOhbVbKJ2DBaBaflcE5sGWJM0Vkpq16gNSOmD0+ehsZD0W80+6wB0fcvdmFH/2l1kvhozvBwrNt/1emwlfnbXP2NJ0woL1PV1ZHGV+SuQsWg2hAZwKdp1riKXBFcIuSSUmhRsYvRVo0l73Z9djmG/EHY2mqBJYoY1KQBJfI3iGjHl5dj0JW2aXmh7lyC+Ie2pW1fLQc8DYoBdx1jbuAFCyrKyfUKpaksVk9lXt9qlnfp+3omOaNsX6qEJy6459Pg5r38R2ARAy4yE+yV1vU67Mcif4AZEJ+VY8/GI8TCDvNXuygCAKi7rGY9P7/F8fkRaVpQtw5HDOEhb02EYkJMgkTUXrX3dGYeXCxtiyAjSJjEEYYXEIcIX3w43SknadnPV+mKWLKKP6ihR2zwV6sDVCq+aAPoxIMgtOUDKq5KUV9Vc+0JCdwwBdPSS0ITVpbVoxWV9xPPyHolHhOKUuXQGSIzDfJhxc3sLFwL8KCKRIQQE7XpyOt5IN7HuJ7UN2MEmD/IDyAcAAbUQCjHWRTsBOg9SfYh182pUdkOso+xKRi4ZjhkNuDINq6vJsQniKz9K6kcrDscb/N7v/SE+vH+Hb3/9NR4/PApFEB4eAYd4jyHO+PTNp/j3//4PMY0TTqdbzPMB67rg6fkBW9rwzXff4O27t7hcnvH27XdIeQX5AgoZfF7w47ffwoeAdL5geXrAOB3xyWe/wDgdha1RhLl3PJ0QY9SSvQJCxTBKVmxbApZEsJ3pzAHRR/Ok5UiQUpwCEmZT9IgZ2n3MDLVTAUTVKLFSKwKGYQC5CnCAZfjOl4QtVcyzw2mMcCTC3iFIuZGV8xi4Y6Veckj2jLKtcRAEXFSHjZ2AAc4THHuEGFCrtDAGedRKOJ8XXJYz0DIgMsct86thg/dRxTBFE8x7h2Wt+PHHRxABr169AYFEHyzE7miRtQatWtIkwnw5bxJMqT7Jnkkh5UjaRa45M3a2iV5E0a6CJlLdstR6AFYT72ZlrdTdYaObuFbRRQnVI0YtTfKSrWqHIHrwZCFcpwtrYKb2pNSCrJ23soIDJVdsiwpU5w5um/CkgYvMrPoltTsE/Vab8wydc0ACHPLq5Gl2y36PAaStoLYu0GJjpwkYBkJtJC4B5Fq7aDsoa0Vlh1IrUhYg0ilobA45MwvV24nYumWHAQXAARQWOvo+Q5Y2YcyZM0kgsXHBKfVaAX1YAAgQOc3oaRe7KgyuWlX7LKjgpJY9JCqtPW5Vr5KI4YPsH7oqK2DtHqjtERkNnDTHD07uRwJCOU8kM+VUe0MDrp1dDYEQFPRsLEXLSmrozuRQEmO9qPOgYtk5F5y3VXQbHLc6/DgEBAQN5qBdU7vun7TrvnYuYnQ6J/LMtTrkaqWGDppwB7ME1SEAxA45Vy0d7gAfFIx3ELr3ACDAgFIG9swtUhC+9nIOE1CuuaC4rA77qtkugq+syYZ2JCPbea5sL8eAL/qZlQGUxoCyYNUSSr+Tl5VzloycEghyLhBFiHyA2AphOR0xjTOGccQwRiQn2UZScfGKguV8xuOHDzg/naWdMzuEMGCejjiPE5wC9sAumGhO585pbqUBQusjMDwRgpNOWzEGFTYW0DZlap2ELGYyDUgJMh1aqW8LqESg3/SnxEFWH4qAqCzKoAGznK19/TsilQuXdcUlY1s3bIWxbQWpVCyXZzw9vUeMEc/PT9JdNm3C9CCPw/GI0+0NCgHJyX6PIYDDoN1LZ3gvbEfTFhKNGwM8BAQMYZIuyy4I0OscLssiS4yoaTrFUpuYrnWxI7V5Vu4J019kB2LpGtb8ip0tB6vOKVcQOQzKwvr0zRf4j//x/44ff/ge7777Ae/ePmjCJiL4AXe3X+Ew3+LTTz7FH/7+H2ActdvZEHG5LPjw4QO2dcM33/wab3/8AZf1jB8fvpOmGcraXHnBd998jRAC1vUZl/UR4zDj1f0XGIcZ7D3gpT37YR4Qg8e2XVSIW0rCpNtmwbok9X9J8MhalIVYQaRlKSQMeioER0HZQVXbd3Njxu0aBgvQEiOosvhFaqvXLQm7xst8gBnTOGpCW/SOWlmJk0YNw6hM3iqMAN+61gLCxmekzEgGNlEHwGSNiF5XqRUhDiAS9si6ZSyXte2zWkXnSJpHeLgq+yd66abrg0fU8uu8MR4fzyA4fPHFV2onxN9rZZeQEiIT+k0p61ftsFVZS4U0WaI2oJTS9nNLoMAC986Ud05Jr8So6kMJ+1jPxl3CTkrUewIwF+meGbzEiyAoI3enbbUzQwDg2CFYp0yvgIwlF2tt3RWdcTwMsWJlzjVIDFdfQcpqMR/Z7BT38+QK7bDf3/lbUECKDTeqWputfoKsbfFDMjNWSFJFJAG0m5heP2tCvypQdFWyp/drvl9lK23q9yTjtRvrLI1VqpbLlSKA+ziGK5DZOULOudkmdXobcCI+tQ0GaVWP+E7GHK6NFd7D8zadzvwn1jMLkvzjnoTsA9tBpQbA6PdaNYiOe84ZKUu3Q+8IIGE+ijiJ2NRaIImqLE1UjtOIMR5Rc8G6Zol/qKLwilIylm3VEkuJ8wtV8/b0c6RUVPR1+8S0qgNoc5soSZZcSG21siArwYVBczCsjCsA2Z5K/D07K6QTeQW4KABlY6Vz3v4i3w+s+xJo1U5xiCDvxOfPWcs+jbXJ8LXCk5JzdnsAevabT+aVQVwVy7AElPiptfmU/9zrXyQQfsWGAKsYcA8YdPhB0EyRivI2dtIOuShWJ2mU91av2LMDFiDyblDtAvwCld6/WubMWSZCUHIA3YmAE7FZmH8gC70y2iC2zDR6EECgBjDoncizVQEPGoXN2hqaUwFz1PW2nQXLSlGvGUm7YjF5+OpQSgY0S2CMFzEM3NFLklrgEKIAJVdAz/UmtjI7y7YAXXSxVqkhpaJGGACRsM2s7bSNN+/WAnZaLPI7uwjGXE7qWQ+yuYPoes3zEdu6YRhGhDAI2ETi5M7jAdN4xO3NPd68+QzzfMDd3SscDkcsywUfHg5Yt1U6FyXRDnt8fAQzgd0Co+Ru6waXEpbpjPPzAGYgbwkhZKGvGxxs64zF0IANINVH587isnPNNce5/0wuRW3dmLCd6aIQXoj5tX/Le8TR6S3ERdizKOvEqdGX9zZw5AW4aFfm3XTsf2aPa9/HHphsgqgqzk3CAiq5GLXxKivhyKnWCGm759Aov0SdGSVAWNROPRMG1TAxm5CLBP5kzqcyHyrrHrFS2FqbMKiUzHUaLwCt6besUAc2LGttd94ZM9ydLd6Pn9yaZX4M5KqOdzXidjK+qGTeza/dS/9BB7f217W6eFuTe+ZUAwGu7uz6dfXTZrvQ1kb7N5OUBtj5VQXsaS/XwTzLWPX7NDCdepCK/XvliHbNWbXzoq+7a2+uD1S7Rt3Z1MKq04O2Nh15KdEyK7xb15K518wp805Umtt927jaV3s+MGsJTBf/vtpTdD2Hezv3k3Ox+13Lotvbbe4BK6Xhq3mzsQNIs/yQzGhhLfPTp2qlg6IzYFTqJrpvc2BZ7t09cvs5dmOD3cXNXun7dtojAFSLgUDFRrifzU1wmVj7YZnGRl//djPiX8rpYOydxkquAh6JjpoJsKKdW3Y3vPt/YzZX7sexfc5+DSiT76fm79/ktXOuLTghIgVO1V6BlSmqperedDpqX6M6fkVBK2uu4tS58N7KLslmD8YuvL6dPVPv+j7NiW5aeMZUYstu23X7mBo7hM3+sjEcGLXuBVp3tqj90ZKcq7uuV+yD5nRztw9SFiLZ6lKyaP+w6MZkZc03f9Ib051B0CSE+jdWmi2gddYsdj8LzW8SlpQkVq2sgxnNfkPZkkRW8qZ+KHu8XGn7WIvs3y/9WttHsHXPV1cZxwl396+Qt4RxmCTpGwJCGBHjiOPhBqfTK7x+9QZffPElpnHCfJgxjiOen88YxxnLsmC5LNjWDHIej+cHgKHZcgmYt1VYSpfzGZfnCVyAfMwIvurMKJBaC0qVUirTdK1qsJhV8w1oZYn7F5kfAzlbmM22O9U9qcLiUHtad/YbUECPd3aMtflKIQ245fvmX7UEDtB1VXYBr/gdHq4BCTv7vDvD+yLuZ1FbT7YXyXXWMndbJfftlNgmny2MpginiXxjZJVcEYLIY0iHXSlN2y+o4oCcGTJQFpfUdkZk9aGsU6XYEWMP7xNkO4af3qnbHaXq7WvTAK0UafIN2NkHPVzMf3D7GPJ/8mLxUxwTHBh+X84IK8rd+Wm7819Pzev9dnWumf8CHSNun9kBEOzsTvff2qPvhOXboxh1fnctsVMKIhHUt7Hp6vGQNTlgtpL/fvNX3aa5rxv7dytda0AcK3un+3EAN4AACjI2V8Ps/Qt/U9hhPUbu/gyk8cPOP2x+hM0FoYNO5gy8YEF11tT1PO7XRvNdX/hFxqA3m9mnVv1OPderOS7Q5Ct1dlmpRco9uXxcFt6HHy1ZYMDnC3/BfDnBETTBaPXMxE1gvXWMBO9sFV9dx+z9fsrbTtz7m0wf3a/ds/2++VAiHRAAVDDVFleKr452T2wfzmg2jFR/TH60P5s60MZX9/bbXz8bbDqfn/QxlaZK2m3LOeRUsK4JQ6h4NUk5ko8RYRzhxwFFjZ4jFcdFxXK54PHhEct5kewOJPOVSlK2QoGkcN1uoK8dHDMWdl/mdhr1TPO0jTZsB4sFpjkn1FIly0G+LajKCj6pw+S9ZNq984g+IjqHQBUOFVRV5G/LcFRBcHsbaFOIFpvoPZtYq6HY5+cLvvn6G2lFr/T583lBXSToXp8e8VQrQA6s4p8ojDEOInYdhHbP0IAJnQ3hfUDwUto4TycEP2CeZ0zjQbSdwtAPRm3v7bXuu7t59kXbAPuoLLWdITB2UzO41zoxMnei/0FEmOYJn33+GY6HGR/+9M/w6u4OnqSV9zzP+Is//yt8/tkXePX6Hl/93peIQ8Q4TghhQM4J67og54zvf3yL9x8+4PHhEf/0j7/C+fkZv/zV3+DXX/+9sEiKZP6fn87IqeLuruIXXwKnccDr15/izadfoNSK9x/eY9mkhW/eNpSc8Xx5wrptKNsFKWU4x/AhYp4C1rngME+IQUsNtfV2zUXPV5Jghh2iD0CQ4IZVxNM5YTsB6hQBWj4GpExIlpXPGaUCYwa4OKBWRA+Mo0POZnj7ohOBwE2BHgFSDORx1uHIB8QwYBxH7UpoXUi01t8Dh9MRN9sd4iXi4eGDtJDPCaWu2J8ukg0UfbDDfEQcxjbXACno7LrTkwu2bWmHTt05K8WcsV1Q2g880yMjYLC1JHuz5CzZfXBzZJsBhYnNXrtPjJ4hut631L8HgFzPAqacUWpFjGiZrMoOrrHQGWaTG8iuwp/kGBREc8REjFvHkGJ/B6wzepX6NL1OaYGxBYEFuwNn7+ToX/bOQ9uidiSzMIMAYfZ1kIFBldq95FyxXjapNVetPhApYA3s6fUgggteS3PlvkMMmkXs7lrLpLVDT97ftBqMtaZ6Az6IPWidBrWEOAwSyPng4IKUl1HDFhmAZnB2rXqdPmgTqlXdAWao3ZQMrleBcxGmJDittwdBUkfNrqkjbswFIngTXmwuL1pwTArMchVGRi0VY4WKpkLvmRrQZuuHIMwSr91TUt5Q8gZGRQjSBp6cPC9DFrYsR/mMvo9kHXp9FnHcTIur9oAegPOM2FiHDF61OYY2C3GQLooAiZaeruVtywgBCIOKUYIwkEdgB1hZHFt2GbuXzLcDI5AmWFwElG26LYQiFCqsuSroIUBLYQBO+JVWTkysG8kcQV3iEoB1h+t39Vov0m2KiRG92HkhHgmDc1kK6kQgihhHKZVx0cMFBxTo/pDEVCkblssZzw8PSJcCVBEGFfHlTcrJG3thHyhdO/L9B2jvN4a4BOBoWnPOBZhxM8fZgH7vnQgSk9gVO9dsLUkGVDWBoI6rhY1c1b5VkCtw2rnNJApQAXbmR8m9gXc6IZrEe3o841e/+ifpRrclpJyF3ZFWMAPL0yOoFlQwkupZuEoY46hAkor4R48Q5BwZhlGbrATprhwjbm9fYxwnnG5vcXNzCx8ixkm0ehoQpdlpH6zUU8vMfERw/T2gbnubT1sZDGGg7Lvg9VIVRtHM/v39Df78z/8Ub9+8wre//nsc5oh5OuB0usHxcMRf/cf/G7788ivc397gy8/fIKq0hfceKWVcLuLXfPvNn+Pd2we8//Aef/f3f4un5yf8+je/xLff/lr9OinveX58RkoJr159gj/5g/+AT15/ing4YDgckUvCu/ffY1nP2FbRF+IiYsW1MIIDxiA2OwbRF0pDwjgMCjBhp3Eq/3bkFBySagUCK3NMyquwDwI1EPfetbN/SxlOy4i2zWMcHebJwXtoqb8lXKElLrIuU9rw8OGDgkUSYMc44HC8FYmQIcDF0DSQGqjoxL8apxHkCDe3d3j95lOcnyY8vX+LbV3BmiBrkSWAYRxxmMQfn4ZJGLxg8QGgZcVOYqRtu4CZcT4Lqxt6Zlrw34NbtOCcQYATvZa26dX+55yl2kO1fgApUzeg2GyGxDfcfQUL7PV6ttd34SisOYXpzdUqPlTloqZEzhdW3dMGHNhH65XYaWMNjSkq00ed3rq/w+JjcxWj7wlMQE0dUDBWUUs4MtCBmR71tOOJ+3RdPyW3tdf+SQIklCSafESErFqywXsEp5pHq9wPO4CstI16maata2tOAxuX9rFqE6rZYmGoSaMTSwwIyD4MEYfjJCLlqr1KTjocmo2x9ZU2AdvZSvBIO2Fr2VRjTZWqZe4GRnTg1HnABwFpfHTwQdhGuV7LXjRWHmnzBHJavNZ9llqL+I8s8VItIo/inEPNpZX7t9+pBK7CuE7bIslJlvhl3S4gX6Q0zZnd1YYNCrwWZZc5R6rFC2WqQcAaBQRtfTpBwFEVYRMbJedXY3dBEu5V/flxDLqtivp2kFiPoVqOwq6fxgDvCAMCIkkpXvOh8CKBbrGH+lbRi9/KzoMjwKViBaEgo4CxJi2pZSmXLoAkVgCtMNIdYLENUdvjTQrDfvYzXj8bbLosQjntgr0OXhXity3jfL6gRIDvIVTjOMCPA/wQUVhq56vrDsa6LHh+fMRyWcAFICvFKBtyTWJ8uBvk1kjHXBXeo3/th+Ik6Z+WxQRatwZmoEalhnJF1vI4q3O2qxH1zey9Zo69RwwCNnmX4NSRzakgb7JojOV1Nf6768qrNhqdPdJyWfD9d9+Lc06iHWTdDkDAdn5GTZdGkwMRjoc7zNMNQtx1h1Mwj9yuY08YtAV8wHG+RQxSqjiNooNkNGEBIALIO8RhaIKmLx1yO1AB2tWI9kC4PzfwEoGVAEhYJOM84fbmhJvTEevzH+OTV68QIGDT7c0t/pf/9X/Dn/zJn+JwM+L+kyN80G4ruwOuVsbD4xnny4oP7z7gH/7HP+LxwwP+3/8fwvsPb7GlBc/nDaUyzs8XPD9d4OARAByHAb/35Rf4s//wV1jWBf////O/4cd3b5U9sCKXhPPlCefLBSgZSEVKXrzDOAbM04DDPCJ5EXG3YHytSvVnQi0dbCJm5AwRVSc50K0jhdVxCyBEKMamAYOzZEhzItQsmdngCeMga3vbrplSJipvf68acAyjOEDeewzDIOtiMLBJRX0hYJMPDofDASllSGfDGdu6Cp0yrVfrOcSI080RMUbc3t7hcJiRc5Ess+495z3WdcXT0xNyER2tdblIaZaJOgN6QErXBDmcQ9OwCipe77xSzyGlM1JytcHklppWCXWwCUrX7y913HX8LbtC6oCRaqGJDaggkkMy5QKiAjiCq74Fr/qLzdg37MbWu5YIkAeoQrqFWXaxdqCJC6RM14A4c+64MxN6SeDV46jv150e0mCeAGXB7d8vTjrDgBa0G5d6bmjZXMW6bMoQVYFicoABVdqZEAS4KAF0UQdBuoRJN8xSC3ITbaQ2zgaEFBMD34FNVYF457zqhMjZ47V7no9yHeUhSjLXusnpREgmuzMMzcbnVIBWQncVgwslO5KCZcaIoCbMvO/qZlNgTt2+pMHsoq2BHoALUyVtRVuFO4yjrA8mAeNqrUqpJ+2mWkGQpAg7xloKtm2F8w5hUoFwIjBVDTS0e2etMD0f+88ycOLAKYhR91oEVs6mwBmAXDJKZtDoNdsuQETVkr4coN2ZsuwRmKCyQyCHgZw4Zft53SUpZBcqkMo7jTstye10bY9ShBUNUh0WiVIBF9v4O3X4teawAbSS2NWETAvefzevdRW7KeX9YQfwSnLgfF7hEEAuYBhnhGGSsjPvoUQctedSxr5cLqKlsziAA4jEZ8hl6zosBtrD2JhspuLaSWEGlM3bAj5A1wrATL3MQc8rC1SB0lhD4mNJQqXbKG5MFAMTbIfYf1VLUx13fTXUrovIxiRQSj+47phNsp6en8/4za+/bkmWbt5lD67nR5RtgUA5YusO8wnDeJTS76ZxKX+8lw6t0hFNmOMhDri7f4VxmnE4HnE83ki3MwWsfIiIcQA5sR3eU38+AoKzEqnQQKQrQ27AYIUeFCz72rldQMuoNQMM3N3d4NM3r/Hmk3t8/cs/xRgdbk63eHX/Ce7v7vC//K//L/zxn/wxptHhdAwwOYwOqwjr4t3bFY8PG77//gf89X/9Bd69e4///X9nvP3xB1RtmcRc8fz0jIeHB0Q34OZwwOdv3uB4f4/T69d4Pj/h8elHrI8L1u2CbZUO02mVMvEpegykpWIuYIwRY4zCcFaRZzvrUMReEkk3teoI0SsAqRpIrarCAAtLbnkJ+ioDW5IGILVYd7mA42GEhzT+MFYhGpNNhjilhMfHBw3+JRY5Hm+ka3OQ5C2c6DIZaGjMKGvOI2DTDV5/8gYxRnw3zTg/PaFA2QUQmw0QhnHA3f0dQgiYpwlDjMilYEsbmE2uwGFdV1wuz8g5Y9nO2LYVzNKsRWKiPi7BD/JVk4tWAmXi96Z9Z933sjZ5AazEzUquNA5j0Zxoq9V8//7Pq5csbTk0SzMvKnhdDUgUO1hrlU6bXKVUjy1Zo4EeKSORtDxJgY8rcIiaYdEzT54RQb4veq5NdaZBSo1ZzBZYvHgqO6Ys7nxpOnc+V3tfJSEh6PbOWc8zLW8uRQgKpVSEMWhnONXKYWGcUlv/5kMo80nnGXrL5kNZAk2LD3QviLZOHCIOhwnBO2xpQ87QLo2jMjfFtrcGK1nEwnNjBGrpOYCkDVqMZd18TZ0DaQ6izZosGegtRunsnrZONAnoXde0VVexgWjmL4rPKDG39wKIwct5br6PAI2EnCrOz9KFzbsH1LqKBJCT7shGe7ZYmVm6HZt8QUuM2Lpy/bwy4J8YEpOS2hGniXH1vwyDAMm4oQDDEHCYRC+4FnGipD+E+vwlY6sZIwLCYZBOdFWSdQ7U3keEXnWkS5cE54JjtJJ0RA+mICBdrtLRnQtK2mCPxsFrwrJLQJiIjm0NWXLqc2slWg+i/nlH6l/UjY4g6KMtCK5SMiHlH+LQ+iBof4hBs8EOyLZJSN5fK/KWsC0raq6IcQR50rpMyXKJ6GNB9WztSGRMeU/52+1xNTwG3uyRYMul7emtBKA4D+c0Q/rygVuGQDO/5pSzUk5VhNA7whgDpkHKuLo4M119EdDTnmNHadfZjl665wnwFXQRdVaHjwQfVJtCHZBBM1TBi26TD6EHFKpNQU66ScUwNKdJ3msUX7f76kD6d3O6uuFlHUMLltCcuN0s/OTruvwHTeA4eod5GuCp4ubmANQVVAGqFcPskPmCy/YBbpuxJCBwgPfyHDaozpG03SVGThPuXh3hfMXrN6/w5tNP8Xx+wpouKGttmRNmiIBoWgBkxEHaQxbekPKCZTnj6ekJKSUsl4uALLWAinRwM0qyaQ10FF7uqme6pCbduaq19Z2xYUKh1kFDSWvoou+9/KuV29SKrEIF5KTNeLbWd22xUTPScjCbBk7PcksALuCSsY2890IlRRfECzFgHEfUkjGMA+IwgGuCRUkdnOV2H8tyEeenCODFDHhdp9u2qX5A1vsQ4c9AYujR9mwHm6xZAKljIll2BxPqdI7VSdVyk7192Pvwdr8tutQfts/VZ7ESQYfe6YIsw6jZo2rZo4oCNJFYNc26zvbZKL0XZRzu76DZJv3P2DV2mw38goEXu1vebTmzgX1G9P8vo2kzS3ad9htXP25ABYiRi5yh5qDu12RjjjkR0nfeIVNR3MpKFWwMXtw09TJnspJmvHyR2uDSnSgdRw9hVgrAILFZNXqyE+03VlDf7SjcYCi9uutMvPxM0o9uFGp3feb0g4b1oO8smYo+XwyNnTJDq+ll32n2rFHt9XxkdibpId2OCqPmhFozvAu7bK6V6KhDo2WGTG7HZLqefyIBzJjl/bYWmykSZvqVyTensI+HfdbHf9p46VnntQuPOcp2L5Ydd+T6Sn1xXKLW1i1R+YXC3A269jRormAUBVSEySRjIHPE9hCaxeygcn+yf95J+td6WQfNfTZyX2oBBojlvB6GURhkzrW5Mh/HuvHklJHWBFdHYfz6CHISVJWSmy3bM5te7i/+Lc9vTvaeLdDKWLWsrCpTTwRMu77jVSBmn83tqn2N1N3fW5Dc6fmNvm/rE1bOAA3KHXxl+AHIFRhCxDSMyqDX5yBuv+990PbqyqQEYYhRWUaqOaWAkyNJwkkyJiCEQfxa+xpDS6JYMsQ336mXY/WSQVJb9XFXpvbz/Zi137ueDybh7JIx9lDhSHRKD8cRt7cHzNOAGBnOZZwvH/Dh4Xts8wByM7y37qKhbWp2hDB6TMcBx3XC3esbwFe8evMKr998gnVb8PT0HiWLLhjpnsppxZbOOPARMTC8F8blslywLQsulwVcq2oCMjwiciQQeUiHJ1K7XrBn4ImNtDjDWBeA89KBqTL15j625hTgZKjtJw061T0qyoDOmZpwPEgYnqXw1To1m9T9f4lJcsmtK1sIohFlsYQFxaXItQnCjIghYJpGpHXEECNiDEArCe7sY2G6itA/mJHT1nQQAWM2iQ9VVOOHID5R94NwNW7eRRho2n0oA1P74jIQoZ1x7TpC52D9XnNAduuy7+32r/7FuaYpRSSMCotphBkjPgaR+VC12UT7EAFd+nXNW3IkoGMX1u8f23zYdjB12/fxrrqCPT76v/1yjyEFriL9fvsXdaCylZqxCtQ7dMbO7kwyW2gdA+13AfG/uOzOV7tXO0PVZjZATcGl9ixtgvV6em5Y7BlCZzTJvaoGU+1lc9K50bXPlg7GaH7UFYmAbXnsbLizJlbKmqIeqzR/Vn+ZgRZXtzhex6Fqdr7kAvb7Sg6Lnbj56FVLeNOmml56j6Vk5Cw6bOY71Zql5BRdQ6oL5VvZ6LXMAhGkW7SSKMj1eWdIwk1c1t33bTmbD9Liky6vYtII/ZyFJvT6eSggBF2tY4uDWFnp+zWLUsFFqq1c0M92Hj4o861qwhhoPlSLNV7iK/pybV299Bs+PtNevn422HSc5v7RmhHNKYMB6fqUEoZQMB9m3N7f4XBzwDBF+EGyciULpZEqYSsJT49PePjhPeoCnE6vEZx0CmHaUMqK9XLB8nzGeAigOJmv1c3ELtC1r30DdKfIJkpEvpx0IokRVZFMmX/Xh8oCBuZGpxO9GiC7gs2tqI4wBELwhGn0eH13wDyPUmKnIsxtgRBgGVg/SjAGdF0DM/AxREzRSkXsgGWEwGpQNzCkpWiqQiddtwnbNiEMAw6Hg7RqVIPjnMM4DI0RYmV203gQOngITVMnxq4PYZkPr4ySxjDQMYSOF3aL0Qzv7svuJe/zCsCAWYAbZtzMIz55dYdSZgR8jvPzAet2xnJ+QogV7y6/RP3mHU7nW7ypn2IYRry+/xzH4y0AEiotAfMp4HATMB8JYcy4nG/xuP0l3BTw3Xff4On/e8aaVRCepOTi+fkBDw8euT5iOiYkrLhs7/Dh8Xu8+/Etvvv6O5ScsSXpXuhIOpUOwWFdPNLE2gVoa+VfRfWTQhykzCcM8G4ARcbxpCViT1kyEAAcywEkDBJhYIyDR/AOOREcaRtYQLN0BU/nRa8tNfuVEx6fMizb4b03z1wptdLKl5yI6tk8jqNQ13PakJHAVMBOtHZ8EHYZ0RFDHHCeBrx/dwtwwSNVLMszuIqwr5VSPD8/g0B4enxCK1cVu6tgkzAXDWjyFBHiBOdE7NzKi5pmG7ndPto57CDASi9ko4qj4ot0xGNWsM6yYnqIUGl6bG1lEgAI7ZfboSSdhWJ0GIYBIXjICTsi54wnLcUkqgBlRO+QhyDMl3aPUD0WaJcSc3pqs1dG/CUIe0Q6I8mJU8EwzRDGi+CksZGoHe4GoEJBqtpildJ/tzlm+oc6s+TKXdO/lJKBraA4oBYZz2keMYYBkkVTJgyJXQ/B4XiaEIeAbSnYFlmTDrXNmpWVGTDriMRmWUaJTADzGuCoXLGlFaUQchEHJkav60eCQh+8CIIXGWNZU6FfuwLbmrAu0mmp7pwmEwZvRJC2PgSc8Vr6YQ5hVmZSC4gJMPFVIhLBfaAFRLUylkvSDGPFkIOK4AuqZG3l2Slf20mr520RRsDlsiJvGcMw4HCaBKRxGX4Q1olzO7o2EbKeXbXsHCdHgLfAXgQqxRlGA6aLsuo8JDPGBrISwwc9Q4OMCRG6hJVjOdtZ5phItETGIWKIHn6TJh/yfkHVDYiqzMriNAdSmCp1TeBc4MdRQQIHHkaEQIBzWIuUkCR1oh2J4LmIXcoZyoba6fN5K/v+rRDLv+1rnsWHUtcalRlb0kYIiUFFOLen0wmvXt/jeDrADw4UFJyq0vQg1YTLcsbT4zMe351xO414/cknotkTCOfLA5bLM9KWUJIIg/4U0NRevP+qsLczplLrHAAiA1WAGDUwYUKG6Ki1ugS1RcaktD3FDGnb7AK8Azx7OHZwrC3R0YW4e6hkyQ+zXGKvT6eIz08DChyYJCs7hBHzMKvfZyBshYtShkG1AFXWW0pyf2uZkPIIFwLGaW4aO1Y6dzqelNU0YBgk0XU4nRDigHGeMIyDnGFxaPduIuim0QhwK6Ww5J4Jt6M9p4y8zVQLeC3wgJT2ik9WUfMKrlqKBMYQC7744g6D/wK1JtRyAVPCL3/1X/DDu7/H3d0dPvv8c4zjhPtXn+B4PCmbSxjqcfYY5gg/3SK5r/D8fI/n/AAaPX784Uf89f/xf+CyfEDwAWOIcCA8Pv6Ad2+B413ANL/Gsq14fnqLtz98i+Wy4Pz0hNYwoALlMCLQCSV6xKHCuYBtu2DbFqQkpVx2pl0DeBIgjaP4WCkDKal9tibglVCy2EDrZIvsBJhiKacTKQ/XSskIBeMgXW63tcjZpAxP2TOy4rImyELYkNIK7x3m4xHH4wkAtAStIm1r20uEiuAcjocZ9Po1Ru/w9e0NtuUZ5zOQ0iLMAS9MwJQ2vH//drceOgcHRE0GoSfxGCFETNMszxTVb3e9tIb2PpSd9WoPGZbgYDBkH9ba/QXrCi7NV7QJCywo7iCOnXI9aaL2m4EhekzzjBC8JBm3DaUWrOuqgIEmb4PHMDgQh47DYAdcqFwJYGcMAJLSeRsviQc0GavnAFSfjdX47NkaPbRvH7bzh66BJnNEjEXC7fdU5gLUqkOoSaQAlSV+cM6BWeIr0wtisBA34BBDwDCIbEmMkuBMaxYfCqyJO74CRb0jTWaLcWiJaGXZ71s7MUsJ1+VylrU7T5jnWfAI7qwo8ekYwlQFhlEaHNUq7LeazKAr2LBL1HUQjJrUhXfCaDJZGG6OKe/sYwe4KlXVDLajiFqzBueE5OG8U6CVAJYKEGcSFEX8nvPzgk39PPvMbT2j5kUBF2FCCrjLV7a66Y61hIGWvxUp1/dB9ool9ww8BeTzt01YWM6JH8eqi0EELcV22oxAuomGUMGD7KOkTFYyYN07BEciKVABSrX50Y5I5HQ05qlsPpRMDVVGXRI4FfgJwqT1QJwGUAjIm2tSHpkh5ZBUYV2OvQfgTORf7strjEZWznS1gf75188Gm4KySapSSlmdwmLIvxppHzyGcRBmk9c6T0UjzLEvLDWX27LBl4gY59bCU5hDRfVh9qJdL4PEq29dva55SjvuAHUkmSAACDuh4VJb4Ph4IPUHEkCrqr7WNHtHGAdpgzuEAUOI+llWyiM6GuQIYRa2l2gaBF2UBjYNmIZDq1F3jkQzI8rvl+pQWUqFtmqBfEQpUqZigFIjiTqnbCb7mQBKIcYGJDX6pO8sp452W0HrHlfqm5J/2+A30MmyNtiNO6nRF82OIXhMY0QpwOEwgSjBXZIwKVzBJT0AzxuqSxhmOViPx1tM9aCOrVJPg0PwhMoB82kAhYq7V7f45M0brNuKYZjgfUQl64BEyHnDtl1QygZQAmNDyivWdMFlOeP5+UmCVA2MvQZrmaQkyDqnMYzZJEGlcyZub4CJZH4DaXmI3x3+OyBFfrdTsZ3jq6UIiFOTs1xD5tzDuV22wHAF7EDYvQOgDCdADBkzFP0n7WKSJRCkKEBACCAQSk6Ig2Z0fc9U2dxKQF+aYTLA19DxUGR9GTAFEFzsQuJSgiAHk1OtHN80A3brihVUrj3bYNmHXuLRswFtNMiQ+pch1y6TBwMfoGUZqhmjY2C5VELPptRSUUj1jViAIwduAYLNiWSkeR+HtWeSAMNgGPlXexMDV5k77ue8XeTKXL0QrTQAXsSi+4fuh+KngCZbN9bWVrJG1ECJ/bXNPpCTEusYtctl0myLCUfYPO28SULPzDRwfves/VFFTwKgVl5h5Sky39gxpLqtaQ6OMqfI9eey0jm+Gq/dyiBjV0CZTditlR5E7l/WVMLAVsY1iEnKDivWGZD7HjWBVmflpJqgyVlZwFsCOUapXsoNBHNpLCO0dac2hXuWqu1VfW/LpqltuwYFZCDascvm3dtZhfYHClztzwhjntj4C7OJrp6XxGOSUlTWsuKdUy8DZqVUqtGDDqRbsG4BYbV1zVXUhvT+CbsxwP7GP5q638krKPPYRJQZYkeKsSlZzowYYvOhDEC0eRVwTsrocsrIawaPaGXxoIyUpAScd+y5/auHIf3V5kb/Z593nUc1v0bLjB2BXIGrxmyy/ddp/v2j7WfGjMJHwfBPMZvkmjAz3v4dXMAURumK5SLgvIBN40EFv3V/+AKKCQRGLQkoBaUAadN1v0YUDo31LWXs0rI+hIA4StfUOKgUQTB2uJRSNVa4MeavGE16x3t/1fbib1skL48o+1WdE2cBgFoYQgWzdFYaR4/DccC2FayXhMoZD48/4rI+ItcVwzxgmmaM84w4jnCugoP4KDFIWdlQAg63ExAYd6/v8PrNG6ScEcIAwHxemeuULliWJ+QsDHHmjLStWNcF63LBuqxSSqI2MyXRi3EO2tiDYN3qjFlhbIG25o3ZRJBELUlns156a/ZO7T92YvAauILRgvxcWNkMAKGqPwZIAsv1e4Cxd+28qMooLC2pEEPQ/StAljGbBLiQmCKGgHEcMI4DhkFKMU1DsN09SVC6bZssAes2q/4jiBCjJtPUZsj4eAQ/qCbP0Nahc33fXrPouDGnai0wLoStqVbhQd0PrZYx3HkQ1+uzOxMdVCYteVbgIQQFrXxjmjWdwCraL6VK1yvT5bgGtK4/zf72EXOwAqQ96JrdQD/j2/t2W62dCe0x6eOzwc5F6s8otq1v1i4uD9lXYO10rWuI0TTo+jnoQI4bs8l5ZYc7J53JXGmsrv48ynxpZzg1huh+DuzhzX/iqg1+FPiQSgbz8SqMmWcDQZDkNxTcSSr7IPQsG3PejS+18Wy2W2PbDtxcs29s5dg9mn8vgwj1QxjgCvaAM8Z2M5LUJChM2qAUYTSllMRu6IVqKShNXsZiLonjZOz8bk3YOLs25o3Z5CwZg+ZDmSyAXHPHNFfKeCfA9DLBtv/pWt7Bpm5fESCSAPr56r/bWiWyLq0WLnSbxz/hQzl9/uotOSQeVEUfb0e7uHG/GWi3r3g/kz/v9S8ooxOPs6TSshCLfs2pCkLrA06nW9zev8J8OIGCB0z4DBJ85JKQk2SYl3PCaZzx6s1rqVHOK7779td4fPdWWFNa4/vyoRWX1+DLLFwPv1pWzkT1WDa2DLZH0Jp+goA8RCSKZpAeJX3g7bq6iTnD5WcQCkYvbQOH4PHq5oBcoSVoJognNxQHj2GUBSCaGsC6VlzWtQc8DAyxIk2SlTmeRsQxoHLB87ahsrQ5TuuKEAMOpwnBe4zjCKZZsmzjqDpKEoF45zCOY3OavLb6HkYtpwtBtAXMeb863HdjDMA6G10F8G3D94DJHCDJnJjjIClJF7y0avUOpzFgCITDYcY8B5zPC7795p/w/fdf4/HpA969+wHMjDgO8DFgmoUtN00T/vSP/wJffP4l7u9f4/d+8QeIccDD8wXrtuLp6Rm/+eY7XC4r3j+dMZwOuP/0M/zFf/rPeHx4wPu3P+L9ux8RvcOHhw9YlzP+y3/9a1zKhnVd8Q9/+w949/4B5ycRlaPWCcih1oxSkmzE4gAWob95GhB8Rc1JsuzVqMCELRUsqzhXYaTGGjLNGfIRYBGgJxJNgRiFDbCsBG+Cv7pImBkpVXB1mEcR2QxBUej9/mDutAqdt6ZrVCq2bRXHhqXFMFg6MqxpgXce8zg12jWp4xajOtzjiGmaUYq0uWcFj5p7Y7XfVTqfMLhlMBw5acdNJE7vOHcnvR1O+6vtXhbMMnq0Sgz1PzHECJ6mFlwCIrSXS2mOYi29VItIxFodaWtrzVqNo2pFRY95HpUGXuGoImxZxY+DAuLiuK3bilJ9Ezgk6pmu5pywClASN9sj2kelnXDG5mKSrhFShqbdPHVv9TajrP5PM676tUd4bag08iNoxsWQlboDjiBdv0L0OkBV9IN2Do5RscmRttE19phkfERwO0n5M+fmsMihT/D6sZz3Y7APSOWz9llSAJpZK6BMiIMTQWzmFlTsD3Rp026ZqX5+gAjjIC3Qa6lYlqxgsragtnvRr1Yy2Dqq7kCktsfastxliXeAioF1bQEQ9Jp7p9UcH8swAkDGeklYFmFNeu8xTdpW11wtDVwZVbQAAFCR4KTYOm+ggb3fNlB3wJvNBtCaFYiCvWTXgjlWujaZkBJfzRsp+4kcI2iiJA7dUZNxsvCnnxEwYFovZGUPzRljSDOBywqQA/sBcCLYOwyDBmQmnt516jx7kGdQqaBaW1fCblVsrvXPy+Di3+gl0jKElCu2TXRSFi2XcSVg8CPGOOF0OuH29g7TNIPRB5oIqKVgyQuW9SKAbg2IYcTNqxPGccD7yzd4fnyLy4ez6NTAY6+b+FNQR1sL7XjvoNAexLfSenHWxbZ5H2EdA22fdG0yCYj3TBUBqsT5rc8ZNV90nbTI8KMJMYecAVAVNkEtBVtZUZiQ6obKhGlMoGpaS5IYSaXivCxir7VzX/AB8ySMi4EmVD/BB/EzJDk3NPb34XBCDKGxm3zwOByOCDFiGEcM06R6bb4ll0xm4CrZZkwmMg2nXRfJEFSolVuQKMkn3pMHAAgIQagYBznncr7g6WnB0+MDfvnLv8V3X/8Gy3LB8+MjABaWtfc4Ho949eo15sMBf/4Xf4Evv/oFbm/u8OWXv0AIET+8e8Tz+YzH8wW/+fYHXNYNl1zwyRefw48j/sPTGQ8PH/D84T3OH97BeY9vv/kejw8PeDwv+O7HtzifL/jmN1/j6eERXBkxiH+jaXcAwLYpC5snYUkNA46HGVsquFw2rDmpCD7ArmJLCdvmGgBiZe0GSHhtrOB8D2pjFM3JUhkuASBG8B5VQatSIExIT3Be9HTMl+1BVmmAtzEGSik4n59RcsbhcINySiiFsW0J1unNu03uQcEfBjeNyTgIiDzmCXOahKVUEkotAnAO1AN5lsS26Bx2FrIweb0yjScMprvqfQ8GPzI8baOrLyF7WRUIQFrOXIcBk/qvwQX1Tyo2FSSWNvfCKjEBcR+kNLUDQ8pocR4+isC+JB28xnhy7joSAFhYWhXrSqjVN7vjIO3mve4b6/IFY8G2A03t1Q58cpC48ApWsmQgue4p87U9bMmk3dnGu/PLQJj2+851P1tBMh885sN4Xc5sHwZj/cjYjYPGVVFF8Vm6aIKETcPKTA8KTlr+HxDg1ZE2INo/Z3vc63M+lwxKgKsO47YhaiLDe4lH1LvUPWU+vLB1rMwrxtr0iS1R1ZaY2nA7V50zBg+1Sp0ODO7G0HwmS1xCE1MahLOWsLoqPiZBE04659aVmlnwglq5+QFCuDD/XnwUA3EAmauXsjf7clorO7TKHiKCNt1W/9Di9z2gJFcrRQAw51k7yvaf1Spkm/Z5hAaWgVgbLjlEbdBlPr+ATrrDdZGyggisPj15Up+4+/6cMvJ5lYQ7eZ1jIE7C/Hd65hrDvgAIYDj2YgPNBu0Aph02toej/qevnw82aYtN3jZsW0YuFZc1iYAYC7Ur+IDT6Qb3r15jPh2b5omZOK7CpEhZwKbLOeE0ebz+7A3GGPH24Vf48evvsDw9I29ZgqEqJW1kyE+LrbgjeHsoitQpYnNuXAuCYYGgvjVqsA8S4wgiVAWFSIEpIm1FGiLydsHy9D1qXjHUDa4mDN7h1TQB5FEcUDTwyUrbPRwDTifJaK6blHmklLCuG0phpMQoBYhDwVYEnJpvPMIUsKwVz0koxg/vn3F+uOB0M2E+znJQjyNcPEo3lHGEU+0Bo7uP4yjlCkH1BZxDVCAhqjCjBLc7s8zcjK793Tbkbqmh19XuwaZOqe2GTyy09w7jOGAaAj57fcJhkgxPCIRlKfjmm1/h7/72v+P9+3f47vtvkXNByuJ0+MFjmAPmw4z/5//jN/ijP/gD/OG//2N8/uYNoj/iw/u3ePv+A96+e8B///tf4XJZMR1OmI5HvBpG/OV0wLat+Me//Rv849//DdK24MOHd3ibN3y4POHvfvWPYGYslw05F0j/JCmNMnr8ti44r6tufgLYwztgnhghVFwu1jUBYG3Mum0ZXgOvcQ5NNM8HoU4HUxzWrCA5mZdxDIgL4L3Q/h2b5hIhbQwODOuaE4MAV5KAYsMgYI6TWR1m0QRwLmNbV2zrCgkYZH+WLaNwQfBBHUXRqxiG0NfLMGKcRkzzJB0T1lVLWBycZj1jHOGDR8oJy3rp7C/uovXOCb36MB/RYfq2ANGW1c7w7xegOEHyvOZcWGANoGmVpLQhKbBhGQ8DmpycGMLicg7SiYgwjiOGIcJ7QhxVK8IxvGOkkJBSweaT6FIkcTIX7RwRvEdUIU4L0uwAZ9sjtZf1iCagHBqkrAYmySxUUnBOs8i1GsuOd2OkDpUCCt0K2if2bWhfnWbTWryPDq575zEM4igVlo4x1N+hWUjJsI6Tldnqfncqyqki+bVmEX2MURikZlsZKI5VWFqdQNohozpGOwsiYNNWGwjkm+6Q2iZS8IYgOjeMxuIRoFFp6+OAcXRaVrdg4wSqmoXdOUvCKkUryQi79tJGwpEp6INrWVqzfwIM7DShTHzdE3y+zmyB0QAi69y0LgnLRQSlp2nAEAPgdI4VxDdAK6XUgH1rggFGy64b1d5qEbrPIICP3LPtHekYA1QEcogUYF2WLJOXkjyT9+Jvy7MJcywMUt4bggaF2tmsYV3NYd8HdnLDpi+ytwc1Zay5iO2YHFwkPdsGvYbca9o27fRU4SFi6lQYrmrnO2Y0t/LqvLt2nP4tX1ZKVWuVDqelYNHSktkdMXopAzudbnB3f4dpnmHwnDnrpRZc1gsuy4KcGCgRIYy4eXXEOEZ8+/4Z33z9a/BSwbnCa9lZrVVBfwMB6YVp2BlZ6uVsBqCIuezJtJYUaO/pQcqeweSVsS5nySA6GWlBLRmX9AzpO9MDVbmVnwKbVFdGKf2lFGy5IlXgvFakXHGcMwJJSco8iSTAkioeHi5IOSGtG3JKOB5mzIcj4hBR/QSKB+kgpmDTMIyIUbSaDvNRNZtCS9odDgfEYUAYBsRx1PW0C1q4P4pCBLugxhj+pp9IMIDVgjR5ScdExxocEyAMoALngCFKd7eHxwueHn/Eu7c/4h/+/m/wj//w93h+uuDh/aNWHMjtDFG0g47HA54/fMCf/tmf4qtf/B4+ffUKbhzx3Xdf4zfffosPjxf8/W9+wLZlvPn0C3zy1Zc43t8jDAMuz2f809/+D/zT3xXUkvD1b74Fc8Fvvv4Wh//xd8i14sPTE7aUMY4T5umg/lJvzrGuWaeXFGxiHA8HxCTNEpa6wfiKRFJetiXVkAwRvaOoac941EqNoSR+UUCIHinXzvxuYKdIC8AxwiBnSUo96XGd6OB+vkHBpudnpG3D7Z10Qi6avBOGhMyTiYaHEGCJGAGbJFlXSkZOs+5/ABkIPmLQxLf4Uk46Lm9L19uE+n1DbD7UPB9sVenW4atGKFdbidR3Up+kQm30DiiypJJ1Qqs7Fn/NBVX9Peie9CEiBhOZDrrXhcVFxCBfNcgP8E6AuW3N8nxJyhJLkSqOXES+I5gPRa4FuCbWLLFHL2drZyh6Y4gKTXCqBAXqLrnlumzCFZD0Eqa7IjEY69zOUcNGuO1bG2shC4g2Wq6bdA7V5IL9XAAej2kUQDKz+N4VEhuK/IWdTR3QMyF6MFoSsjWaMrewrWHzU2wdyxpyHtjSgCEneK0sMVCUWRLeQ5T7Sjkja5m3NKwCVmwoaZG10T602zAbIq+SLOKvWUdHtx/hNmhXjXsIsLIwAUCkhM17h5ojSMFbp6VwJRcU/ZqTyd4IS1L8eZG1sYqs1gEUIkViY2edf4n6mJkObfOrSYTPDdx2TpnJRTsp7gBQ07AOTsp29XYhvqJ0QZbPot2vyeeGGDBNEb59u0s29P/MFzTtB0swUsNqoCw/zgW5LFICMA5wXrQ/yYX2q1yBmhJy2cBcEViSHajCGJc9o3Qz6nvxGjn8n79+NthUitx4LkpFVX2MUgo8eUQXEH3Qchsp3+qbGSBIiVwTtyOr5fSt008pGduyIKcEQ6HNEHL70yna7VDXoC4rVbbYYoWydpib8dJV0wLz/Ubpzpf8zWqYSy1ApkZBlR+yiG+Raq24Vi4LsFBCmRmuVJAu2rpl5MIoScZQatQ1I+Mlc+2D0BtTythSxroW5FxRiwMhgmBlcAEeAZXCFZVb/h7aZrfaa/uZb1Rb1wKWjxaNGVQ0KbyrAKAfYDt31YRydwc1IPQ/hsztul7A1ePxMSOtUg88DFE1gGq7Tw3DUau23E7iHBB5vH/7Ht/P3+PmeIf3794ibQnnywVbzki1KMtTs4dqmKbjjDhGzKcjpvkAgPGYK7YlIW5ZjBSLccm5wDuHoBooRGh6KLaGqhknCHODmTToQstA2HoygEDWiY1md+/JxpMJJiptjnsIXsqQKqEwqeSOMK0IrpfpeYJnW7O17Rmbt/apei9V961Q06M+kwS5lSpKEVaK0XtrFWFHagCIlMT5EMQAq2aHgAuyNgvX5kiLvpBln5QxRfts725h7dNK9te2NncACu9+UYMbAz9gtfXMiGGQfcxAVYFx7+Rex3EWR4lcq3+PMSAGr4BMaTTjWgTwG6KAjFwT0iaZeoZSwgnSVYKN2rtnUqnVYbM/O1q6TRVf/5xgXTIdGNLG0FhOrTTGUkltr3IbpvZv2nE61LlsPgLQKvX6qhGQBcqC4sZSspIGakCYrCkClLHFWgNvwqDmGPSASYA0K7Wp5shqKeLeSbKve+pxiAHDGBGH0DJG8vQWGOjaMEa+JiXIMkHqZBodWcaklwjav02ccT8qxjLZueYKqFh58Q7cAdSJ0jOQnJDxbN53Pr7oN5mdFEdzn02zsje4j1ZMe0+/n37tjknu7TTUJnMfYxu/auPYagwbFb6Ngfk11BZZA+iYhCBMrTSl34PpDGiC8Som7+O5+/oiAaKLBVykJNQy3RIAONRSZJ+QnMMZFa5lBNEY0PZ/sbs/wQL4N3zlIloruYgOYLYykiJAfNSOZ3GI8FGSE6wLmS2wYW1Vrk0dhlGExBkFhSGZyS0DxYIrMuPTBtgc3P2Rz6Qd5mppYsrQsTUAxEpFxJFHW+tq5mGe056JCwC1GitO98NuX/Sbst/r5xUMdmBuAWKzEeZnVz2TvLBmfXDKKqhYlYmakuj8cHVw0PLtEOBDhCcPT6GxvSWxIqBA8EFZMqGVA3mVI9gzvvYr6+Xa/akFtk+UyvjU5hPL/iRlnvQ9WplR0oZ1vYBQsGCD44LL8ozlcsa2LiAIg8c7D2OelSoBWEIB0QbnPN69+4Dvvvse4zjjw4f3mOYZy7Ii1yoaLrDPrMg1AwQcTgK6TccZYYjSSXMpKHlDGAcMGg9UTepw7CW85FST0Jm9pqu5FJ1SLUHejZPZMCuTubKttsba6HPzM6y7tHdS0tSCM4b2Fai6nrHrgLVbwxag7+MX9SlKEQArpYSk3XbtjC41KxsCSEk1tWAMkJ64tc7PIJEYgM5bsA6FCjZVY/Bw3yNy3+rD07Vtbmf/boyI9j+6jgz7WpWHb/cFM+8iERDjIGWCTpjY0mU2KOg/Iw4DGqNPfShJqGrjKOxKOMAYhgBHwKpC6Rbgm89UNUlRa0VtZ7I9Wt9znRGj68YeRefbtdjYwYFR2ljuz9HrDUoGZO79M/PJdmda9x36e4wlbYwY6yzrjG3CaOwkW2/kIDmg5tPqHDuSMnOzbY7guDM8Uc3v7PuuNxzZlzTqhQlqS23vVTju/reVvXf5F+zAow7227PUWru/ugea9Ou+5F7mnvpcmS8G82+UAbhL0LKxwnk3WOjPZGeFeTC1cnt+8Ql07ds5Va+v05hvzVEyv073/u765iuR/Zj2y7lPmunrgiX2tPUpALm9B03OobEYSaUgPFosaeez3ESHmFzz969Xrvn6bbzJvruLFaqsGzhL3O7Ytk6ZXCRjLuX6IoPhdf20NtvNMrYP/1mvnw02PZ6fwAwsS8ZlTYLKrytqqZjGI26mE+4ON7i7u8XdqztM86i1x2IBPAWknPGczjhfLvB+wOlwj2k+wA0V7Dacz494/8NboDA8ea1f9Vrvupt4KJikQSYAbLVgyUJJX7WNNlMQKjrrobdfhDZkeuBZ3aXoKQjaWvKVmASIM1xeQLWgbBsorSpyWxUkEeojQIgcQHAIlwzKQkk8PydcUsVjAp5WgOEwTxFD8DgcZ9y9OsE5wpoTlncLlqXgw4NQdT1PGOIR0zhinm8xTREuH0Fl0haWEc57DMOEOAijaRgHdTyojdUwSI2396GVoPQDHI1B1s43sqW1D475owWmWJNepzb9EjPSjw8PSNszwAm/Lg8gTri5OeH+/g7rusI74P7VK9QCnJ9UowQr1k2y9vlSUNeE//Ov/xa/+tt/wne/+RFTnHF3fweab+CGA9bKiPMEDqKhlcqGGAe8fv0pnHPimJ2f8f7Ht/inf/gV3r99gh9PuH81grkirWekbcUwEoY5CqslCKvFB4c4jHBOupdc1gTvgHFwiEHKrhCk9Xuw0lECcmFEFj2EECQTISg72gFjhq1WSJlICBhHws2NUMHXJMBkzRklSRt6TwGevOpeOWQPBX9zK337KBhlBqqU053PZ4zDhLvjDUIY8Hx+wpYTslLFBYwZUOuoWgJFtKKi1+9LB0Sh2fZSuBBkHWIhLNsKYmFn1aolrE1HLGhpbs9itEhZARWok9bc+UbJ6AaUoWWaJG2nrSSOyKEMCUOcdoAFtDvMpJmlSbPtIu4s6zZridyG8+WCnBNKSSg5YYger+6OiEPAh7cEUg2HVAuy1b5DGQSuIEBauAc9PRy8HQmwUpJWcqEHE7HQWhmS+Z2mA5xzooPB+hmFPjbwVh6nNCUCKeUWIJYMIQNwurfNz2AGSPX2BAyT8r3DacZ8FKAubWsTV5UMs9dyNQ+busoVKSdxToeA4RDlQMMuaIBqJakzJqUTcoaklFvbXQNorbSMVJ/MB4+7+xvcvz7JYawJnCa6yWjC5c351M933okIZlq1nLHqkBl9n9t7/a5tL8F0F/T8YIDg4a3FLan4YwsUuvDlsmyoZQPICXjgRGCx+RkadHMiOWtYmE2liOMUgpZ0Dg5hcM1J1KdS22oBAjdArhIA1UCxUh2ArVK8OWjtgQmoiZE2o41LV8owSALEWmQb+6qq06zN1YQBOsrYxNEhRC1lUE0lK7F3VYDpq+wcEchpYqqBZujPwiw6H8zgbQNyghsC/CTq6BboOXhsl4yCgpQ3bDXDE2FScNSDWwdC2j0+foeA07vHDwCAbSvYkgQl25JRS0EYA+5v7nB/d4/j3RHz/Qw3BymjsSDKK7PpcsG6LDgcDvjss89wuJlxyQ9YC+Py/ITtYYEnjzEM8OThgmjG8W+5L3Zib7dcsKyLMK6rNCFxPmCcphZU9zKUa1eXuar2FFC0YycriCrvkPNoCAE3x4PoRtSdn1EBFOie6+WiFlTWJMnOVK2rmENNwlafpglTCDjMIw43wg55Wi549/iEZSt4fBJdmMNwwDwGHKYJx+Mt4jiA0gzKk7CYjodWOnc43qALf2s5uZbL+Wgdcak76HbWOkm8GAuieU49+mvBi01I1cYZzlmZuXYQU1tduKBWwvu33+Pd218jrxc8v/saeT1jmiYc5iPWdcUhjvj09RtE94y0OaRUsCwrUpbGMsvGSGXDf/3r/45f/uOv8Ud/9DWcj7i5vcFGDhkO7AKGaQKFgq1sePfhHYZhwGe//yUcOTw+vse3X38NfiKcf/gey/kZYTzg1o+oKCiJkdeMGk0oV5LKxnYjeFBwyJWxrgm1MAYvIvGDsgBsnWoVF3KS0i2voDuBhWXDXWxZTBOBvEcMEfMwoGoHKjlLoD5WUiYrI0bCoALhwSuGjirn035OyYtmJwg5JdRS8fz0iPdxwDBOuH31BiEMeHh4h/P5EQQgbWdYuW8cR1RkuOARhgFDEU3aWguc9yilIISAIUaAHIidHNBEuCyL3r8wcIN3rZu0aYQ1Z7LFRLbcDHToa6/bPX0+QQGBlsjZ83ykc980zgBriTSJrtA0DiqvMKisQEXOSe2A2LSUC56fnlByhhdFFQTv8fruiOAc3n/weFeSJlvsHAe4dh2biirJX+v6Z8G2ggsAhO2ovqORHJw+d9UAuyrIvx+Cbr3s/zbfUi0gYM4OfGxHZj9A7H1Zk7XrVvH4JEyc8RAwTNaVPQIsjVTIAXDig7R5qU1tFw6EOHoMw37fAC4ALos/si3C5Nm2rH6Gdikt3C6pMAxapzIFrHJlpFJBXqQS4KRyqVUhNSQNrfRbwDIRYU+lgJU0UXf6aVA/y8rzpOKBWvMUruKHwzm5r8qAxSpkDRBEJ8xKU4s6kOTIaNTKIs8NdLIzQjawlv6TsKxdUBC7AmAPQxF04UCFvnagIbfKiNLAO2VFWTxb5frVWeLDzrqKbBIGBhiNTqpPSKRFapGtzQrGGTvcB2CY5CZC1KQdM1xGa7wSvIdjAnWXQEFYGZ9Wcq9MMfJkbwCsS15KQC1CChij2osgdplIxPtZSBe5JgQijI7gdS9WxTesi3oDxX6GE/WzwaYtSSerVApSYzUJJZVAGEPEGKRjxzBJbTur4BvpArasXC4FjjyGOCJ4DzhpS5/zhnVZ4Nlhotg1TLAPOftX61oESOYnKeUzV2MNobEd2liQZaP7dWo10IkbUCIaEGmXgWF4VAxcpKypFOmwQyQWgAngAiA3g+FIFgtUeyovGSlVpEJIxStjRgKRMHgMowRo2/OKdUlYl4J1kQU6xQAfRng/IGpZn4cADs51ZpOVPFntumQid0bUm5ClAVDUV8zuzNr/X+z2b3NVbVz7gLIBKOj/3rYN5+dn1HxBPn+Hms/Y1lcgiBA8CBgHaeE8xglgj3VjZCfOKyuj7v3bD3gA43Q84dtvv8G6rTh+4jDdjSjMoBDkoDExbE+YDhNCjDicjjgcT7g8n5ELsG5FNVK8OCLFKJgVhuSSfpXSGmHEVA1qXVRhcjLNAHWWPTX9kbpH8Hcg5x5H4f1XtXw+aJfAqq29i7yhZhNiNXYTNXZV1Vay8jlat2sGaPcqWjMcQ4XX7K2wlWSycjUmi3R9kbrzfRlT1+ZwDtiDTV67pviUNNNljeB7cGzrldRKtX2s/2Zw02bqoFN/fbwSjWnjQeiletaVRRylrvVyOBxUB2fCOAwCGKVN6a0rcl4VhCgoJSNtG3La4GjAMHjM84B1FG2tlDUA0lIs2mecSBxVcwAFzFHdElB/ftDVetBZa0CC974JHvJOAHA3ZDuHqQ9SC+qNNYe+q68OCLr+PQCI0WOcB+lKBymDMGq9dPuzjn96HS155gql0ge5vAm/whCWHdjPVTt9dLCoUcDbH2UiqQMzjhHzQQDErF1yut2xZhXd4BszyDI+IkzbBgjGzOhLifvvGGuq7jKd3NdxB3jQ2aJEO52JDHPerMOVMOHsnnVP69+5il2p5ngS9aymJ3Wc26S1OXY7J9GyhibobmMia1OeT11nuUcVIbBzzzLM5lybEKkBYGoi9KudK3odhnSq8+rHZW5nb2M27Zx6Z0ue+vfECFED6wUw1Q8sRTKDwbX5MQ2MtImos4CVWpbopNMRSIatsSD0IWzn/TMn27/aa0WHCfQAAQAASURBVN2kLDIXIFej4CuziaTsfRwGhDEijBHwaOBibzAgJfq5FIQYMR8OiDEglw1AlWA4FVkzw27tK5jHfaTtW/ZXabVerGxGgyvqgUbrEAq0X+yBGLfgP5cOHJek+h7qA5VxxGEa4OA/8hGabIXeYS9Z7fNWq6TzhHwnwFQIEc4aWERBQFMueL5sSKliS2J7aAiIfkTwI0IcEGNEQkAmYS1FLZUbhgHjNIFIrt0CPtvHTvRAjc15NZi24OnFqmrJEXuWfq5ZYo7BQKUmLit/rPkEsKwLHj68x3p5xLuvf431/ID7u1fA6zcouSA4j3masYwFMY4AMrZUQUVsrcxJwdu37/H4+IjD4YAfvv8eW0rwpxu4aQarTl2FgoZpRRgCpuMBwzBgOh5EXHxZkIsEu6XqxtfgvqqtsES4MZoERFR2+L7cRW2mlUGpxW/j1RtV7BOjHQQA1IZWaGJJ2F3ei8RBrSZ6K8F8rt1eeu2A64iU/XjlBMvZLX8BoEx7LkjbhnVd4HxfM+RETFk6jCY58x3DDx4VUsJjerI+BFAhRC1d8tq8R/w1GSeXfNuz/aW+Du06GhJastd8irandu4fqR3pieF9DOBaeZfJDDTRaxCIgRhFBy0OAdM8tuqJEIJUpWxLE5NOKEBhlJLUtyJZWwRMQ8Q4RCyXM4IXjcHEliQSdj0gwbkAHs3B6cbq5T91j5Cj663outbMFVvp6jt0/b3mr6ndhQXWu/XR344GfmlCZksJvjoM1rWMJSYAlLFkG6OdSca0VdtHcq7FoRVSyT4BwbNUfdh+LkW0QwWA6bal3eluKSufu53/FeYnKQPLaFfc186e7Q1obKNMpFoA6uU8ba5sPzXQSpNObY7a2kOr6hEtSyfM1FLhijKXbQyd+Q5Qn8l8leupgNoTK3NrTDKQKQbo9t7Z7Y9XU/MRXpbV1irNm9p5tXuuykZQUWBQ12IbC6amcdv8Zq/+jgJOgN0zdwyP2SxnHwO0JSRrnayFEeQzdj6VLVs5XxiMAgpeOxo6SLWJ+FGOHCqpbIudS60yoQN15qfb5/8cwfCfDTZdFumUkIxloWJSNRdIO9gbHG5uMBxmhGmECx6VizrHqmGhAmg5JcQh4nhzhA8ez08PQM1IywpXtfqddo4Q74+f3astaMK6bfjw+CBOxnnVTLm1dkZDH/eLzP4tDpJmxqs5WqwHRy+Fio5wDB6egDH3Vstey43E4RLggk1jBaaJJJmByA6naUSIM8h7HOYobT+JcDkvqMxYLwXbBpQSRKsjEm7mI+Zpwu3tiNPpBsMYkM8elyRmI+UNrgqcWlkRfq5ysPkA72Jff1dBVjtVGwhqGfweDPWOZ3bov3z1DdkmB0attc+ptWBLGx7evcW2PGBbF2zLAiIRTXVEOJ2O+OoXXyDngsfzgnVLuCwLHh+fFOBL4FKQE/Dtb37A+XnDF+MthttPUFgQ9MpFQM8QEIYBkq1KiMHjdDiAX73Gn/7Jn+KLTz+Hjx7btmkdfUHJjJwK0rqKUa2SWalVzwgifQ8jBiBGEVkLnuBI2B9+b2h3DrQ4rw7DIPXPtjalE5wACaVwCziFBaXdh7JqDTQbIn9xXlqMeyeGrpUi6D2UnwAJCd0AmkPhQ0CMI0rOWJezZKbSgmWR7O26XFr5hnXzsmfsYJNrYoB70JNIBA9FlD629+799H7g62Hl1bQaHXcXTFsrWDSglNpf+xMScgb8qp1uatZ9kvD4vIKI8PQsQWsuRdqglqItYBNqyVjXs9aMl1ZS+/R8RqkZcMDdqxuklJHfPyKvIrhutiPv5sLr/bFjyWowmk1orixJ5tacQCIW1oZtOjvUCOoYUx867kLezUvSffwy5vl4LXRQBSRrkVGxrRvCIpcKgQD2EkQU9M+yfQ9z8iHZM7Mf5qBQDzatpt4cpVqzagLIOqwsjoIEljKGMQoQH4OUXIMqTIy8d7TpAt02Jt0uWbbXwKG+8KoBVGwJXi3BrXKNBl5BgiUG1LmrHUDUz+nd6OTZwxAwq5NE2kmtspyZ5nzJ2eh2AJVpaljZkgFfWta302RqK72Vh3fTYAzg3RZ5caaigTXmoEuVOKtdUkfDwJtcFcyWEnoitLJnMOkaEQ9fAAbAFcj3GsXd9EDQb8b2ss5b1TmqGaJRVXfZeS01xJaAiwN5hzBbebhkZxmMkj0qaem6/q5lHOVD5FwPTkuO/nk/6V/llZN8fCnSxrqWKonVShjjgNvTCaebE4ZxEP/J7QTUdT0bC6bkghgDDocZoITHD+9RS0JaF3gFgu2B2397cAf74EvKXC7LBW/fvpUStLU0yYQtV3TQ/zo4M0DYtCsquvB1YzYp2AQmpGnCPAwYYpT94oMEv45QKiETYHK1Rcs6rVGFYOay1oc44t4dpPVzHAAVin58lAThsgKleAAB4yCB1M3NCXfHGfNpEJHvwWOtDmWroJKR8gbmoiCCMcUrWme6GJudauVgrbRAXhI0qhWn/TjJ9/rv4sr2W/nJvgRcSpcs8SAlkstlweX5jHdv3+Hy+B55KxL0QfbWOIy4u/cIw0F8qKcz1nXDtm24XC4KXgqMt20FP/z4HmuquKWI43AAWPcTgBAlqRmDx7o8I28Lhhjw2Wef4eZwRKgVy/MZCA7n5wWl5NaEo5aCbbsIy5k0qWznIEPPATkzYrQzv0O/FuiKn9SZ8g18dwSwUw1EqJ8qyTbrGMdc2rPmYqyZAstFWEm/91qWXXZMY2WxEVm32dqOV0lEyRnGLPIP1nBnGCaUnLBcnnS+LgiPD9jWFevlIr6E+hMMYYWj2WEtYVJmkwBQwm6pRT7TRysB3TUi2u1J85PgqDFj9+AJ7dedgVWaeG4C7ICyOyr8xmKDK6MU1ZnNhHV7MrwAAIlMxrbCOokL4JxFt7MUeEfIypBdtgWgChc8TrcnWafPCzYVTUZhafXuqroR0sHVziMDS672lg0BdWJD20e63ggSq7WzV89veNLTXcC+Wosw4HQdgKCd5Kp+SG1gjH2uDyLX4kMfR9MIBgkzBOg+9942WLMAEMFHa6jQKxN61Y3Y01pM8iNrokL2gwhok8azwgT1qh8Wo8d8mCRhNwXEITRZBPO1yv6MtM/VcyMl8dNyss6R3NaIGb49EFJrRdqSzoF256usMQraeQY9P1C778ncdZm8B6rvzo75a1XLVdH2K+kylnUvovyuJdOKAnFCIqkwwEr0kBRoY2rleICWDMKYVHzlPzV/CtolFxq/OZEcacQCVnkdSCO1nCukQ73FLBFuIFhi2XzYnAU7GYrTZDHafe3Hub1I4tMKu1cSBhRdhQ+oKWuZqux/8g5h8I1I4byDZ4dSpAwWRMJzAANl17VOM0HGRvs5r58NNj2fV1nwcGA4mbQkjnMIAae7e5xu7yUDcpjgo0dtFHBtO10L1nVF2jYM44Db+1vUdMHjh7coeUO6XEDFMsFogVY3JmYudxGUbuZlXfH2/XusW8L7D09Y1qTBlgxEzrmjoea4ldKChKyCXpU7y2CHt8hBHgfgcET0Hg7azh5CHQzKoFL930YJrXp4EEupxeAI0+mI+/vXcN5jGgkhAE9PC3788VFbXTuULIt4HCO887i9u8HN8YCbmxG3d7eIMeCcNlTOkvHlDBBJtikl0c2pBT4EDMOEaQxa/roLznfBKe+Gk4Guj6cHuE7Fbtjp5UxcveyQ27d1LFVEpX/88Xs8f/gBjx8+4OH9e8Q44PbuNcZxwu3tDT598wmYIWBTSvjw4RHffvsD0pawXhbkLSFtjH/6x29xOD1hfvMV7r8ECrO0hK4FpyHi5nRScKKAc8YYPG5uTpjigPkvR2zrim+++xq/+ebXSDk1sCltSVhpzqHmog6ihyMRqCuZsa0V0+gxxgiQAE+eatOzIR1Is6uk2agYPMbRo1ZgW7WsyIx6heh5+aoBuIizlZKwJRFrJp0kcbq18844IPmCZdmaYW80ZAvQzAHezw11DYEQIoY4YmNgW0WYEpwArPIMylLIOTdAxa7jFdCkHbsjBBGwt/p1QIC5a7CJsWuBBMvqOOcRw6BOvoxZO0TIMnvqSHnzeCpApRlqASMA7zNqAdZtEeZkrtjOwtRJWbqF5FxwuSyqNyFBtQTT3eklSDb24fEZ27bgeDjikzd3WNeEh/MFl3WDZbaIgESldfoLpNRpiax3SQBqz00gdfpkrbATwLi7HLvfUCfRQA4GgZ3YG/MoLY/cfkkPjAbG7Pa7jWVlKcMEQzRAnjNilHbazjnkrSLrKbNnfHZdMjvw22xe3T2rsyRijlnBS+0gpow4ZtfsjWl6xOgxTsJa8EHBIC7Y1qQOEl/ZarTvmMMp91FZMnhi2/T3aml6hMYWlKBF7tu668nTmIOPFni0UrumK0JNsy0OAeM8yrNodn5d5bktOAIDIQBu7zQ525toQZjQ9cUpYaC1tQftRYXlYaVbk3oErQPLi6CYBLwKwQtzpRI4UnMwNancSuFyqgKy54JtkxKZELWbjaPGKLF5DUwI1bfxt8SOzQ/t7sMWpDGLZXo6bR3qEFtLcFbWqvMeiANcFO2VEBxAHiWLswQIIbTqfBc9oFm71YxR2Ag/6bz9G7y2lfWepORMHAQB36Zhwv39He7vbjHOI9zgVX8q9UMEUuafNwWbhojjzQGXywe8//EHpLRiuyzwzoKbDjRVWxftdS1sywDO5zO+++F7pFRwWXIL0G0flpo00OhGzM6Cyrsyy9rBqZ5QIKASjocD5nHCNA6IEN8RzKjOgV2FA5DVRmXdM84LYC9NBsQiTvMRh5t7MHlsTMhMuFxWfPhwVhaeB7MwdmdtZnB3d4/XdydMh4DTaYILDk+LlEkDjC2tqNUBS0Blcf5rZZEc2Gld2h9LgL5M6prOFoCrwBe4ZgHbWbl/X256aQpeVzsTCCllnM8XPD0844fvf8Djux9wOa/Y1owYB9zc3GKaDzicIj7/YkSpjIeHJ1wuK56ez3j79h1yTliWBSltWNeEb7/5AU9PC/x8i/lW1oX3AXAO8zxhGkeAGZfzI7hWTEPEL776Cmnd8Op0i3VZ8c133+LX3/wGpUgZPhGh1IRllTPMkwj7C7gNgBVwVXZ4HBx81SoZNayWZGIWf6tG7gwoK72pFcxOyjssAV5EZypXJ/EHuk+QVRaDCNoiPIBcgA8Vwxg1ySeJRasMAICUspZ+y7Q6SDlrLpooUYbPEEdM4wELX3A5L1iXC2pNqGVDyQWX80U01UpuYKwA5eqHadBKkMDXBynj9C6jFHmeGCOClrALEKYlM3o2mLaoc046ETrfy8KJEKz7rjMwDTAnw4BtZkZOG2rNWB2jFOn6tS2LClgX5Cq+ZtpyS0Kuq5aoc21JA68lUo7EHyml4HIcwFTgo8fdK/GhzmsBb0XjJxVbd9RYfaIB2QFzCwcNSGJFf6yEfc9IMU1I8ek6mAtoF00txY5uhiOPdbtgWYr+3OLBndxD4+R2Wxqc3C85wDneAUrUNK6MdWy+kj0HK1DvvEMMg3ZJQ39WtYNVkxQli+zAtiVYBaH4GwNC8OJfrCsYLH7TEDDPI169uhctTgKM7iKSHqyMtNzW0tU5wRXrtkrnwGIMdlbhf5bn3gPrCnikbF3rLGlC0lwJmuzWYbS5yFkADYtHpHxf4udaK/K2tT1etKrI7XREvXakDFFE2F0wcBEoCmKVUpHWrGOeJUZ2DtELg7VFSSTSJyCIL9GqXDq4Bogv7oNVEAGp2RgGVJe0ZLnqtlbRB4bJbTjEwSNCNMwQNGZkFRBnBxSpkrIujNREqPDiZU4+N8F1SdR0kBPMKEnKd6HSEM57BD+AvPqDXsp4WckqDCDrcqmlwhnAoeWaAw27KpX/+etng02tWw2ziAiylYKQluIMCEO8ElBsE0JWbslXtbaGVKaUUJLUb8s1f/IOXtwP72A7mQjLmCcVerZcNGOvI2CObzdSgpb27F/ll4HSHmUxofF9kLz7Max8AX2DgQEtYQvOg7yOkXdKvWPtLijXdU4KnIN2EBHtllG6Eo0DYogaJBQ4p4vbsmVkQTsaONfuj62kon+PiNQv6pPVs6md1WXDwPo7eBG02qR9nNWTe7DspzDihPqZUsK2buAKpG1rws01SN2+80CAlM4cjjNyjPDkkFzCOEzwLgid2Dp6QQ4TWRtodMKiDlzwHqfDETmOiOyRt4Qtr7isZ6zrqutyEZaSczDRPKEXSqe/llXTcNr+Lo6QGV0FUWydofmPu6wFQK42tpTNVytj0UDW1etxtUC/lIpUpNuMoNF8ZfD7tOjYkGVIO0MI1FkZBC0F0vXt4ERwtmUOAWuh3X3n3YHq3NW1DYQCpJTVWrgbMGViuH3lmQGldti4K2o32h+g9j3WRkUymVaqK2CTZHRrzdi2DTlLZi5blkadJHt/qXXnmFjZo+0LNKd1c8CQMlLOSOpw6vbSgbKgXcs+apUDww4gYsEtNP53UAFVnQ9HEC0bsjLC3YNe2ZtuR63LHDNbA0iAuy3lFhVdO0lt6M0mvAj8wf0wb3O7S9vsKcZCkNEgVEG3Nme7jzU7SwRlhAKtBS9DAETuyy6q8K85rlLy1W3sHsSQ4aLmTO3nZc++bJmlxjLoz90ySej7Vuah9gCaZb5UJkCOIurC1W1crX5Db4701pjRyhnsM9qskJ2ZGnSZXeE+hb08juS+dkdVqywkXS2ui2Y2p0T32zXjhTpg1uy5gU4KLGipJJx9DzuwzZxQ/QRWK6lfXxzhclbuQMH9G/o92J8dO4crUKqAD0W61XCVMhXH2nZbG4PYZDHQwD15et51kPndvAxgF8xLgCYrVwlBWoOb5p2VDRCsvKff6u6xABjbSQBcYRh2EGP/2o/yfr3bTjO2hgXSOVcVlO3rrVp2f/f9/pXbNTsTCvr+3TjY//tCb+wKOKeJFPGZ7Cs3Q9JZnbXKnjNAUY4qDW59AOA06SG6MtM4YBwGxChMFOcJ3pcOYOwc8/6ndwTt42jBLZovZd4QY1+mZPNOV19/6/eJRHS3zfPOCLKd+72zaikFOSVs2yaBTspwPiGA4IJkyb2XkuYpDzgcZqQUAUhb+RhH1Zfq5TMwEWKl4LbW2kU2/jBE+Jsb5CnBM7CtG9a04flyxpZWPD0x0rZegXLee9HccUEDaWOf2PTKc/fhYfWddkyW3ZhenSvtXNv/qgL5akP39t/siGM0f5TZQEAC88dzZMG8nRf7kun9ZwqIE5TxqQm1Kv5GKaVpwZjP1a+/+9PsHYFUH7Hot6hgp3fp4X3UdY7m8xurxpHTrngOzutZAsCyyHKG6mjsGCzGWMlp09K4FVsSsGxLm7C+a0HhjFbK1XynDjR1UEjPHp1P6Z5qe062ftmNS/+fsmqpolRJQHXfmvWJTRuV0cNBvvJr+zz2KhTW52fuDH+vnaC9Cygl7UJLBT2xk3ZonyX3SkBjiTgP+EggD5VzcG3tvNz3lqCS5PC+YZP5G30szMJ0/7v7YrY+g1dJDTgEFh3HED2Clqd5L7FHtTmCxhoWc/Dus3cb6iqmszNzZ6MaU7kZq17Cb/GMSepw1TNNqgFl65ZrMW9d0G0/6LC/eO0Ow90Pr31jamHF1T6GrQ+9BwDs+Oq3m22xx1XH7afmcX9P3abv7me35zszT84urvszFG0uruKsXRnoT73YxqH9Q27ApFy6D6Vv2O1zJiEO1VKAKnqz7AWrYFYfqtY2XhW9PLqV+f1MH+png03OSavhvCWsaQMxI/iAwQccDkfc3N/jdHeP8XhAmCZQNHQP8KrkGhyBa0YtGakkbCVjXRc8PT6hbGLQBEDA1YK2sWyHBVuNq2WHVRxNWzVuKWPdkpY0iYJb3U+ehH7KECBp7edKu55hYZZtrrpIYogY4ixip4XBSrVkW7UVUg5VIUyQyqioYCfMhnmeMIYBZZiQXUStjA+PF6R1A8PD0QlDdHBDBMHjcJzwySfCYjrNA6YhYpoCjscZzhMOk8c8KfNEN5fzEd4LS2Ac5tY2U5xJyT4A/dCitgBlzBtrgvsBb8ETNSfheoMD+Mlt0DeslLelbUPaEvKWkbeMBQtqlXVUKrTlsDiHzjsM84AQA+7uJ9ze/QK1As8fVqznjGkccXO8wTCOmIcRVBICgNNhFsNZGeenJwnmNXv86njCv3vzuQgGZkHl371/jx/fvcPDwwP+y//vv+L7738AUQbcBu8cjsdZ27hK1tyGC2AEHwU8JGCMAdMYUAsJCMTWBYVQM6NkoBDgnMc0EXIWsIO1XM5rNzQBQ4pqeAWQ0Ydt/TMDXPD0LFmmENBYH+Exg1y+CtLIWBK7P8GyjZAa4lpFQNBq8KdRMjyXC2PdFjAMBqUd868foE3HScUqWdfXOI4KMjmklDEMEYeDiLDe3d3hZMwzXT0GCMvasWBXjV2VUtHU9rm0iN2StA43/bgGIqnDJB0QC0pOqDXLWuZOlZeD0WmZqQBB7K38aH/oAqUynp5XuAtwuSQ8PD6jFMZyWTWbb8GKjIGr5sCrOQtVarQNhyfAQ7vbsWqRAEBja5GWXIkOhAGpV4eLjtUQA4gcSiooEHbSXn9SvgEQOhhriESD1tUZg+oMcAE46Cp2TgTuyTcQTJ65t/AOsWdbL5cLHBGGMbSsTztlFbDwPuBwlLlonSgdgVRgn0wHjah1DQIxtpSEgWbsUV3De0tEzjTTjem2dxREDFVYUglp6+Bldz50q+m9WkDPzKrIJ9cx3M15++NA0Unuk5RtB8hk6LnlyYOJm54bQB+te+cJcRDAOwQHF5ywFPVcMQZRB6o0s237Rq9sLYf3LqQ5DQBrlp06K87Wqtaym3OUk2TlajXxeaBmIG+MSgU1C7jIubdbN6aYh4dH0N2he8+8QFYmTOXGvCUipf+7FgDXWlFTAueiS1k+Z32+CHis689HOeu8D1JunTcZL5tItsBLnCpqbYL/7V8hTAAz0iKlTR6EUxgwOo+bwwG3d7e4vT2J5mUMsK4wcpaIP+V1TLhIacOybliWDZfzirxtcAWSRUe3nwIAmsNYmw0wv6FwUVZjQa4FqWSsOSPlIpoZMD/IbKfZOTSAhsHwLYAxUMpeJHIKlRDigGEYMQ4jCFUaSDDDRRF8dy7A+Sir1WsW1ZPKKkqpXWUgbxWpXFDhsFWHzBKtxOEEgugdBu8xH0bc3x8RY8DtfMRxmhAHh/kQxCc7RMxbgiOSMl1yGIZRutGFgHma4FWXpp1TuaBq2WaIXvdH6jbItO2c6TwJS2YP4gJo798DFwZWt0ANnQGZUsW6ZKxrRtoq8lZxOa8gekAIETkXYTdEjzCIhtk4zjgcI6b5Bnf3r1AK4+lxwbIk3JyOuL97g2maEP2IWmR+YxykE14uWLYnEad1Uur75s0bvPrDW3BhLOcFOWf8+ONbfPf9j3h4+IC//q//BT/8+ANiJIyjgKi3N7eYhlGC8WAt23t5siUZrWsTq68KAIUduBJqrrD27eQYPjKooDFQVRxHBNW1UgFO5lJKV3rpmgEtl2XV6zOmKYp/+VyQknxG27eqZSIdoyOcF301ASek8UTaEog8xvEAAuE4n+DJ4ekh4+mSULVsvKP1PYA3QM4HSb6x+g1xiDjwQRO00pRpHEecjieEGHA83WCej3qXGrDWonuP0dgrRUS7uTJSWlTIuGhDDy3LrUV9QTkrJTEnYOZykQYhpSSwygmYHiYRwUGYcDF2e9VONhtHPadSrvjwcMGzX5qGVdVqjA6o6C+UIscmGDC2EOR88uS0EY+y/M2HanaunXYtCeaCdBquXLXShaWUWiUf7k53iHECEfB8eQJBE/MEMBy4saZMaLyDXOMYMYwRYfAYD8LKcYHhfPcrdMJb7LptUi0UgvjKGqrK2lcA0Mgczok4vchpVGF6qV9m4K2B5qAI0Cz+npNzYxgDfGCQy5JkT6mBGwzI+WD1peormh1nFlvnvKjoc5H9mFdtdFQZbJpke92oqsLsm659BQjNbzIQj5183jAFDMFYpMLmbv4zgNyAHAOGFZipWTSItGGNVVQRS6MoAikJBiAUlE38hwrdK8a42gNMzacyna09emT+i559ak8AiaHAALnawKkmy5PFh7QEIpgkeb3ukso2F4zmMRHE7/YU9rfQXswdsAX18ySEKIQWK79E7fpNpUrTjcLY6Iy8bWAiDDGCo2AGVqZZkjKaa236UZGogbfuX7uMDqqIz5yQc4EDMDiPQHKQDuOEYRylU0cMYFcAKs0hMSPBldWgyULOpWBbN5S0gbQF8B6Hs8HUv/UJAbSOVrOWtTNnxLjKBvgtYCA6CqlBjAbzzAzH5qirY6yOsPMezgd4H0HsGyXQbtKC8GukEhpkSICDOCDFgOIcuFSsS8HlvCEEcXCIPIIXhP0wz7i9vcU4BMxjwBAchtGrGKF0wQtBSwP1NpwPmtmV+xT6Zje+teRmjG2cre5WsiLifFfWrL1tKh2jPQjwUxm7jvhfDbWW0KhOiwqQ5pzBK5B9gQ8XcZZiQCmbdNsYCcERhjhgmk5gdhhowzIUDGHAYTpgGCKi90Ct8ACGEIUtt4o2GCrDFWGWTLev8ObVK81Uytzc3N7g/tVrvP3xLX71D7/B89OCyisqS1eqaRwxTgPMUDLQg1enYCYxgnOI3iMzI6UdsEniHNcCVC+GMgQxUCagbaUzRJrNUYPtgzGWbInJoioV2FIB14J5Dp3m7y1DdjX07XlNT2kv9GoIt6x3ap0KgxehTdGSYqHKtvW9uz51h8loqKyfGUKvQSbqYpIxRszzjJubmysHXErasq4/XdfZ1gwDWTR+cl6xqhjlZV3EaSpS6lOZd07Uhm1bxHiX3AIt54xKLmUWFqg7sDCOGoW5O4VyT6wlRFIKtq3UHChzPuTwAbSFhGT9TOeIBL1wQRgYZIcZCJUYdd+OVQHG3hFjt88aSNHn2EoTUSXgtx8Qum2wiTOWzF7QiRTcatkryGEoB70eeCbSqMGPhEI243191SIsC+cMgNrbhF6+Iw5F77giDr3qFjiCC9TwXQNqQNBs6nXmbC+OKQ6w3j5zc6D3GWQRPe4tt/ev7vD26a8VqtEh82xB9g6jMexOxkTHkdsYKwNVHUizpc0ut/vbi45TazzQD0WxAa3lce0imZZNN6Btf72G7ahDQu25OlOlAUCEHVihH1lZ6eANUhUQLrNWFej8VIijbFoXNt7obAZjVbaXlUHo5zd70sAmm0ydX2UFARVlE2CZhgA3iJ0OIYDYoZBoiTBVaAIXKjuK5pD0jMi/+cuRlDAwQ51OOT+idqIaR2Eu+xAEcNUyKsng9xIgc4NKFZZLzgUpFeRUMDJ9xMSRQJR3i5S75tsuKBCfzLRvhLEgEA71xb27rpwhrgVQ7XMIoNr1d+z3uDmncmaBPcCyWMlrpzJDbQG0CM3pGgMUKJWOSmvJKEzYqkdhBx/EN5KW7FE1rSbc3h0xxIhDnDDFASE6DNGBHRADI0ZZz151K6wpg2nmGMtWH1EB1yqgsyZYbCxtfAEBSPclrlcJlN332r93Z+EVm5yNDcfIRcvKtIw2p4x12ZC9luHkhBAdQpFkoiSiBjg3IvgTagU8rRhixvE4YZoOOmZBS3KUWQ9GSQll2ySwD6JnczrM+OzTNwCjlTEfjkccjjd4+/YtfvnLf8TDwxNiBGLUQHoYMI6jAPFBk5klwcRynSPU2hkgzLi2i450/1oAztgNe19hO+CzsZOtg5PtBF3fqCIiDyrw3gkIUQGiuptHmxaHoImEGIV5GDQotuSKBdPSoTcjxlGbJ0kCqAHq6sMZSEGwMnbX1orG7yIGrZqg2RF8kdLZOAgr/Hg44HRz0/cxs/pQAtxUZR/lnKXjKaueVRGm97IuqLVi3bbG7q7qJyUFT3PK2NZNmS+igeXIIYYI05lxjuAgjFLxTSy5wZBWot3u1AqsW0LSxJHNt5Xg7kM9SxAZk68qGEnATj6hnzHFxthskV7H/Kx2DjKptlhtgtaWHB3HGU/PWlLF1I+Idn5x/37bt2gdeochYpqlazVTBsM0Tq3csS1EFE1eheBbeVtB2THljf1tCSNqNtr0X0WrqbPPnQJ4XqsGGKJV6gMJ8EdQHzp/5ONg9zxovpVGgXamqK2XKizqv657itmYbGggW6mmB6WepCZjxQ3SRCEBsfqdj7aLPdHnrv+ddmu8s69sb3UbIu91XgAlYdPV5n/ZvbYX79hJuwlzdvA2b6+9XT/LYminvj9114J7wseaFRjoJnFw0efaMZqq5GfsUXsP334X3ZfuvnCLKcj07ZxYxFp7d2obJ2Wt5pRBtcKF3qFOlishw9ZK9wfN1u7//JzXzwabchaQIiVBRqPzGA4jphhxmGYc5gMO0wHjIIj/WjIul7MwWtYFJWe8//ABTx8esW4bHBPGOKJoXXHdZWXbJJnjrjoBQqvsJUEAGjUVzE3PxTsP74pS1I2pU68Cnv1LDL64oZVL33vVnAZZLAiS5QjBw7OH082ht6hrTNlBPogGgdeF7qTrQkVGdZIdD87heDhiiCNiHDGNR3gfcHM6YppGDEPA8ThJzbVzIoKqXY1MqNIpxdxLdKHaJ0GBsV7aZLXH3jaP9w1Ykh1TUV9uPJ0MEy5s5RzAR1/3pRh2EfENFBn3AcN0QNpWVESk4pAKA2uCcwUlBYRQhPI9jXDBYUuMMAbMU8HpZkTwETe3b/DmExmf25tbadd6NyH4gC1lbJczSqkYQsQ0zYgh4nY+IIaI+5sTTjdHmS/T66KDtKSNHv/xP/0Fvvzqc3x4eIe3775DrVqmuOseQSBEbXscBy+sNQKmecRNqcgZGFZFutVBn8Yg1H3vQZ51DgoIG1CLGipzFggERhyF8RKcMJGCryIiZLEhF+Qihsmy3UPwGAYFHTTrYoeDGWgBuOTvrMEfAxr4BDADQR2cYRwwl1lot1nu07JwYKHot44lJphqE7+LJ6VskFWQEABYtSMuzUGq6uBYiVspu0OkSrZi2xZpZ5ysw0lF0hbCbY8yN+6EJ4fgAhTTF4PbROt3AJ+ejLJyzUkCLDrbHS0KRBByTz5JdolISwMHsZPbJtlEZtWx0N2h8TMpMOhaII4WtNddm3IRAwccSwZPqLdV9VzkXg1A8z6Aaga8Hm7G5MCOrYmeZLsyh6RstBiFVTM5xNGrQ9OZPAaCme6QCxLk7csADDgS2/gxOBm9ByLamjeHyhFJtxO/d/LQMrvMDF9c68xWqvlHbfDamrGgQoK0F4ckSIExjzoy5jq2QKYNhwKOVQWqQ3QgF9qg9RNEf8ccYXsOc2Swz8D1eYCux2Yn0W4QBrhcCXYpiBZCADsgbea8ShBgII6VA3ljhYEhHSE7W0Dep/6hBq0CHNHVwmCWjJiNIQzkZACOlX6tQGSQvV2MbUZalqvdp5oYLYswp6sSxHXRy91wVrk2GRDSyt01a00dUOcsoLsDwKpjEpyDH7x0Mi1edG9U3FzKS0wM8+fn2v41Xpf1AkB0wFhLB8YhYhonjPOMcT5hmA4Iqmu3bBd8ePogDSK2FbUUvHv/DstlEV1B5xDHAWEJzRGV17V/Y453+0N09Q5jj8q+8PCOEVxEdUUdVCtf7UFy+5zdxDWrZZ+nH85goCojCwIUOA8UbeMtBknK3piCin2TavVJQLLvOgkGPA0Y/QwGYUAAQ1gsh8MJIXjc3BwwzwNCcBgHAQamIWIMAS4Kw0YSiFX+kJQxOieA1TAY6OdVi8U1P0j8qutSKjlT9LwwW7srJWu+086vZZaA1crIoD7W1dyBmx2KccTpdI+6ZVQOWDcFF9IK5z1yDgiRRStuIjhfULYLhqFingm3N7fwYcAXn79BHCbRcbk/wceAGgOqlhBlbX89DwOm2xlDjLi9OWEIEfe3txinAQbq11Jxe3eDoNp+f/VXf4EvvvgU5/MTnp4+AJAzoijbJaidc54AFfE123k4DLi7nYUNUcxfl/EYx9A61gXvMEaHRIyVrTxN/1Qgb0WFxx3iIGeQV2FxYrNJ3AB07wgxCvs2eMARd9BJ5xYElQax+TEfSmMLyHUoBnCNiNrldjwccLi5RckJl/OzJGGsIQTt2G9tT+5AWkLz5cg5WStEIsLPBcu2gM6qZ6PgUEpJhe5ZmNxWMqWAx7quqFnYizlt4mtlYXgYo0LAFGObqWYZcfuZ2/lQtkaFgVfbujbf6cqwMwBiYaq1YdREvDIHXSunVwZzMaaVJmWbX1DhXdUzxs5MtLL1/ZnaWIM63qUyijpCTn3i5hdDmWYugFCEndziGXmm69hHfmadi6Xa1AMkZYLkPNgxqpZQZ00KiE8j16sK8rKNEVvCqWu/Cm/CAPEuZSPAhSSxnMp8WGmdjICsf4tjia7LR7k7JIB5LOp3GCNG3iFgqgDsElvGKYB8Z2GCBHTz3qE4tP3o2bV5hvmIzbe2UkibOwNTOhjD1cB1EybvbKEukK+amZqgsy6TtpWsQ6YJxZuGrrMur7pmBPiTEuswSOIul4RckviybUF3O101CWni7fKset0i55z8nBpzvuqD1sJaSUEaRwAlyfPCkv8voCY7EyQJRQ18ajOp52/NBew0IVVKnyeIa2mkw6paXGDWzoAOwRF8DCIVoQQROBJmo5OGUo6czj9+1utne1vrpt3o1g1p2eCHiHkYcTPPuDmecHu6xc3pBvNhxjBNuDyd8eHpEdu24P27H3E5P2M5r3h8/ywiuiAcpwPqehEhRkqwbGibS4KCFdLyuHJH56CDbKKhAjY5FfvyKAoItAVRLbC5XiwtCDTdFDXOYNV4ADcmjgXiQxzgOIJKEJ0U84NIO0oxQPvDKwAVDilJcOwcw88CGt3eSovdcRhwmOVg/+KLT3B/f0LJBauKolVtkex1M5CTunvnEkAeYRi11CXCxy4C2L86DWp3wJHyFEsx6jYaQ6AJeyvqb0b7p9BMG9crhFl+IIsTMm7z8UZAAgzYckDexLEhcngODOcEaDocpXaUwhnkGKdTxidvjjgcAn7/q1/gq69+H8ebI15/+glccPjw9BbPlwcp8Xx8Qk4Jh9dv8Op4g9PxhN/76hc4zDNEuE+Cdek+VjEeRtzc3eB1eYXXb14hrQn/8Mtf4r/9t/+GZVnw4eEHLIvcRxP+jVGzqA6sLZAPpxlhjMiZsS5Fy3tYyy8dxhgRPKF6AnsCYYOUgmSLNiWITwVcgKkEKa8KhCF6jAO3Q0MOrUUZVkDUQG4aA7Yk30sq6O28hbwGNMkfJqdHlHyuHFQRBAlg5ACYJSgoBcv5jJwznBPQDEADm0ysUk4ydUoga4cYDWQyhw8QCvH5DOSccL6cpZvJumFdZb1vKWmJoQKqzCgKMLF2iGuZC93OZnANvCEXBHhRg8vOnEe6/mqmxhykFjjtS0HkR1U/r1QASQ63IYqm0OFwwM3NLWoteP/+Ay4XceKqsVqqHKChqp3QjL45nkYNzsgoXBR3cAK0u54tbA4ddaZI8BEhDHDFgTzAVFFYOjca+wY2NldPx7YkEAeP480sOh+TRxxNWMpYFfLbBQVpE4dp8mNvD66LWAJ5K7ezElBZHhIECHOglCKHOHpXCxGR7U4sM7SrzapMAaU1w4EoopVlNT0cPVRRGsOrx8a6E0jEV70C8jEEPaAN9BXWrThlktXxRBiodwAy8UQDKm0VmV5hc16tQ1vp50hbba1e39alOPZin9vtNgfLkYOPA5gJ26JrA4p6MkuZCmQ9DTHAOUgZNzQgs+yqE1CsFkbeWEtQpSxOAiBdWxUi2mlOkT2q3rs0CYEEJt6DnHSrTaUi6Nr1FpS3ElArWaxaTWJWCM0OggHOGUzU9ECYuQlH0y6AKFpOy0WZot4hTMKwTkmYTY3dlCV7N0yTdJBtzufv5vV0eZR73qQckHzANE04HQ5SEnO6x3S8QxxHhOixPqz47u33SNuK8+MjtmXFsqx4fjqjVimrneYJ62VEa1vd2wLIq60fLen/iftq5UlECC6CHUGqEb0GJPI+s2Pt0lcIoZ5h6NlZA1nlBxVgp2eN2L/Mck6hEsBR7tU5wKs9PU4IwSMlKVMqzE3nIsQZ43iSoM6LnuJhnnF/e4thjPj001e4vTtgXROen87gWjHFAUOIIsQaAyoAFyqCr/A+YJxmkYaYJgzTJEFn8A1oMpvmNdln5x+jJ3xq7R2ajB1lgNN+ehjcAj0qMphEJCycnW8F9cmcY4zjEa/uPwOnisIRl4VBnEFc4MgjDgTnB4zTgMPRwznGo3sCuTNevw6YY8BwOuAP/v2f4MuvvsQwRhxvJoCAb969w9uHRyAlbI9n1Jrx5osbfP7mDQ6HGZ9//immcejzXCtSCKi14nAzAbjHtm24u7/B+XzGP/7yn/A3//1/YNtWLOsDUl4QmJoWoQ/CwA9RtW6YcXMzYwhO28ercHEVBt9g2jMOGKIDUYBbC55YA1EI66YWxrYmoFYEFxC1DDx4Kbuy0FyCfGFmDREYR0mgxQB48xNVnM5Ku9UwwhICZjhYYxQfIqILIGIM84xKhIMyhbZtFUAol1Z5AF03Jm/wMUOAGnPOwesB6lBYBH7PyxlbFh2ly/NFfahV9EfZAszaqhxqlfuopYNzso/bg7Q1J+vVUAd5xqodqix+sJ0Ps+dXYJP8lEw/cQcUV+6/yywg3ThEEVkfAsZR7vX9h0fVJlOxfJIzkuRIFWCcGeS1pGyXRDHmM9BLfa1xApFDoR3Yp+c1a/MrIomxpGQ3g7XUt19P5oYVYCZIxUjOFT4zagkg8hiiR4zaOMpL8mtbszby4XYeT1PXFisqQCd+YZA1Vqlpeobg5cwi7ICWqs8nPiT2yRiDorTTNQD1RSy53WUQmm+kAFBt3dx7h/YhDghDADvCSAMi114eBvHtgnNImZoPFcjDBfO1243tloTXdegUjzSAzGlyOV/dq4FgaL5XB5tEdsAriO068KLi6lxJGcYSb8pbJBEnMYokG7w2pSEPLMsZvIoER32RPIUyk5p/pM62Y1koRS0Os/hXupTke5VRsqxZKaMVzKJwBmcGKckkkINvUJOe5xBA3Jneg5kj28KFUVgculJLa4CmkRkIgFffvGwSb4Q6SMLOe8QhwoWgTeAqiiuinabdSsMsPhRyFmmDn/H62WBTKdZK2Bx4pyyfIILVXhk1qr3BEMSv5ILlsuD5+Rlpydo6UbpUkNZCm6EAdn57W4i4BjBgyOf+X2r7PwJD+rt6SQF23/846MRuUu1+zHEyg2NGtV2rIedyGEiwrbtpXxqj+8I5zdr5ACLRWhnGQWj0Q5T63yEiEbXuHkalJ+cbA0kcb9ccleu/X49D+2rCo/qzPt77p7YDtWfj/iV0OdicUaeIW0eG4CN8GBDCIMENCgCHGGYEZSMdDkeloRYwMeb5Brc3dzgcb3Bze4vbuxtMhxnjPEng9EzSxS9V5E26jnh4jKoNMQ4yrsImqqgKfJBMD+AENDjME3KMOB4POByOICI8naOAM6ppQaSssOq081+n+pp+mB16guQbA6j5Clo5IA6QD64Fk9SX0m7+rNxIxSutPIH72oQCDqbvIpVo3NabXaetgxdAoXUOsT1k7DypB7fDzfaK/O/lfrNr7sOO/QG9/zxjM6XkkLOwlKQbRupi3ZrR8syi17ErkzWdqf3res/yi5/go7X78VJm7O9+f73+ju6MtYvs9glpAGLAWlBqvtlOaE38tU3p92l2QkTjGdYq3n62s2b9H2y3IqBcVXBOStB1z+9P9t/yanOvmSGj4MoCsqc39MMCydoCppclJJ1RqqyY3dg6tSnspJwQsDXurubFhEb37JaPxGCh3+O+tlqwu7dn6L50n03W/ay/X3fvYZ1azS4RuoNdXQXXncgkoHP1YlB3e9SyatjdH/Byf+zXKu0nXH+sNr79Xd738RU+/pfdq40h/eQKt2+9cGzaM/RLvrw1u659Rl8t9NH7rBTB1kz/tL7KbXx2CJesjR2b5OXDcVEo2MA3mBO/6yLW9qoDdhpxv4uX0eXFB5AuSMFLmZYkibTBitaKCCsyYdMOYst5EeevAtoWaxek6pzqUL5Y+X2dXYGbH6+WnlE3pg52c/7x+b8PamTMdU3u1nWPB7r/VHWzWULLxSAde6Nr3YSkzbtHYQaVAqqigVKpMyqd83BBGUljbD7UMEi5tmlCVqoKLnuw22kPKuvOmEe/9c/u5y0R14aj+1g/9Qc7HwqAlNbuth63QULzmfh6cMEsDU7GacY4zYhxgo+juE9ZAqdxOCIOkyTsDnO/ZxCOxxPu7m9xOp1wd3eD29uT6MvMosVqXWKd81oK4oUdPo6YhgFRS+ANVKhwcN6YwrZeIw6HGc4RDscZ0zQBxFg3p+eABHxyT8KsyASkLYNgGoDy3E5L5wiaIHF99Rmb2vuKEEiTpWIXvb6PzY6RJU5l/NsRBbSzhe2Ia/5W//n+3GpzfHUad6YB0Nls1pnXOakgcK4n5Pa+9NVasX2k1+Ore+hrpZVkZdFSyTlLk6XSvwo7XDSqsGNqdVbLNXB8vVmBq2YiJP/+KJaw5fkTft7uF3d2g3f/342njinp3FojENMg6ucQt7mxsuimxUvXV7aZsdQatfsxO3fta+9Cnqv5aHf+E9ffW8N+j+KbugphcBmFS6exsZzN58fOv0Ffj/tl1wF8bkx3JuneKe9xV/dtZ4fMjdhaItJOydQ/f2+DdhujNfu48k+vzwvzm6zbO6tz4NpYmq5XbfNJ+0GzW2fs2N7qg9G1f7RfX/s9yVf31q/dzrCdL2H+l9mFq9mzuYGxnswXt4VlKd7r2SfCTiahz+9+rYGNWc/6c9qrV/RnYrND9j60JE97f7uk+ldMvXnI/g3tuvZwuzFS8Pf67NfPrOJD2VluvytVUa6tw8bwVPyAf6YP9bPBpqenJ/lgeAxxxDhOOBxOOJ1OOJ5ucTzd4nC4aS0LCVb6suK7777Hd999h8EJ9dk7DxeD1MPHsCtn2Q9Oc3f3I/dbXtyC9+IV1AjNAgEAShFKaL+2fO1AkxglVyqKtcVuC8QC5IJtvYBqRswbYpXSJnEaCRwCEIKADqofI+CGIc+yyE/HCfefvwL5KAKFTBhH6RYSg0eYBlRHgFK+iYW94pxD5YLzllAqI1XJ6vU0uIyFaQVYVu3aEdofevrkDgBXk5m5OhD/OYBpbwRaF4r2tQoDBAIuHk8ncK14/cmX8Ih4fjjjqT5hGCb8u3/3B7i9vcPtq1u8+fwTkCMs64pUMr766kv8h7/8CxwOB7z59A43NwekWnHJBVvOeDxf8MMP77GcFzy+W4DKmH/vhK8++wrDGBGjB6gq4KPicyRU8C1l1JzhCBingFg9Xr2+w+/9/pd4fn7GeX3Gsm5Yl4tkSJkRh1UcXWJ4X9AoolCtIidMj+C9liVQSxI5B1AAxsnh7tWMYxqEBVVkDEvKkpWLvjE8hsGhFI+cGWnrhskC+ZwZ3otIOQ7Aslasa7pyAAjUHSHq+000koQy2UsxVbMhe5hh7pfqQMJVmcCVYyyAUMkied1KXQGs6woiwrqucI5kT6VNSuGKHbrGtNKyVR+EjaZGrTLQSxZY1/zH63LvUP30Mt5fY2+wWfYAuk1qPphEx7rnLdNtAB3JOvPA8ThjnAZcLhc8PgpLy+jNtTBKqmBHKEytE89PBubVBJf7PTbQo0qbcAIhqhYWVQa8dOJkIlNM6Pu02dfd9drMVoAyoKW6PshcOyf1/9Y+mvXvBhD6tTufpHMXgjaUyNIprHdx7MCSh0NEVMfFKTBQmy5BSiJSXI0FA6edDD24AiWbrpVqeqFrfTGLIKyAREo3bntG7ov0vnyQrLZofhXVrJHrRO0QJgNkAYB1PrQMKlCSaihpRtlxBVUF/lSEtZYK9RR3QAt0rUHZql6dbHWY+rl+HaRgv992NlcmuwUkpearzkFsNh4CXjvyYpQqg0lLqbyUKgIyB1yBlApKsjbfVvoi88jMSJtoreUk5QHs1eaAtByu07gNjGo77uqcMRCvankBEJwxKYPGQH3fS+mlCJfWyyrMGFZqO6BJsKilEcoyUUA4VSkl+V29zucLQIQ5TjioWPXpeIvT8YjT6Q43t3c43tzAR9kThcV/ulwu+OGHt3h8/4gYB0zTrOKcUvJjIJqjjx3Zq9dP+FDd51IdEC8AefAMZk2EaPbX6b/lUj9xLZ0XMv2VK/dNM7kp4XI+g4swvEOIiCHidLhDDFFsjro0zmsJ+7KguNo64wSWDPowSjeuOBzhgzDDb+7uROg7DsgVAEUM8w3AwBAjYgjiO6SsezdgiIymicLc/hAgDAMvZ6N3wnLyjb3YfS4LrvZnoTF+qdf+9LF6Ee/sxxDA1ftLFaH2w+mEYRgwDhFf/OKPwDwgXzK2p4R5nvFnf/pn+OSTTzDOA463E0CEwsJu+f1/9xX+83/6CxwOM25ubzDPM1ItWHNCKgXzecScDvDOo6xyfr9+/Sk+/+wztQUF23aRc1ltdYzS8Uo0UgucY8wH0cR69eoWn372Cc7nMy7LE54vF2mFfhE9odapCxV2Shnbgkj1+kj8Jq8JEAl2aNddy+HuXjUTqzUvkAYM4n85YTYRQ1xzZUqpnyHaV/LVkn3eO8ToUCqQsrAZBrIzBK0TnLNyrSpapFai7FsCfkCJDOcvYHgwG6ucWhJP/EGx9y2xB0lcWmlgrcbw0nMtV1TOPTyCMEzTJhpYVsYMEtAWEBZZUCax03I72hXU7/f0y7Jm1vItkJxPzJYQ2oFtL0yBnbUN1LG3X2EXpFUaHtY1q1aA0Ssx5sMBPg7Ytg2Xy9J+TgS4IppbfQ3tAv8GDGlMok4QsYeQ8lnjALSzznsHHwg+QIWk9Uy6erYOBNh4tW3MLPpEuWBdVmRHKCUgRIu/BHDNSZharGxcANLQapVzqLYyGQYUkDXwUGI6J0kGPXeJLK7s412qyFRUZmw5IZcM5702OiJlCPW5El/AYoruJ9jzEllJs1UxyIdFrXipVXSnWmKQxdeNURo9VGWbS2nZbq2x7L+Uiib6KnJmkadBBpFrfuY14GT3bnpnIplBCnZ5b8B4Z3CZ74rqRE9Qmdkla6wPLTFU/xOlYtsyQNyS4Xu4qftjUMDdWH0Wb/SKDCPYFO0e3jta6t4yn9R8qK1IfBC8ls7KRuwSP/t1DgX3rhO1spa6jxRDbHtCNmcnLXiy5BsjX1bACSvNlwhmLS1kj8weGRVO4wquVdaZNh37514/G2xaNEgcw4gYBgQflTUyYRwmDMOEOIyNamwLqpSCx8cnvHv7HsfxiHgapSMFOdUe8jtUf7+zd2BRj/Sufmov2/DCynDNsXz53pdo7k+BTeZ02G92VBkaNCR4MPxO20kcDQ94LwARQ6mudXcVakZ1HCJubg6gEJGyBJzjGHE4TkKni16dEScUUZaD3QePLSdsW0bKFYWlfraDQ/055b70ULu6T0LLjuvgCdW1lzD+HKDpp9hmzSDoH1ns2uksBPgozKXj8RZ5zagpYn0iTOMBn3zyFT799DO8+vQVPv+9zyGsojO2LeEP/uD38Zd/9Z9xOIyYZyAOwNNlxfr+AbVWLGnD0/OC9Syd6ogJ0Q+4vblTp0TAiZbNIEKg0A5x0sPIR6HlHo4T7u/vtFRuAjnplne5bKhcEXNR41pQIYdEUOcpxoDD5LsYt5N2qC1gdAA5RgiE+RBRcmhgUy2MFWIEjeVBDgieRFS8AsnKUHTyDAFndZRGF5BLlv3Eu9PdgpH9vGpQKs6sF4Fs0oPMSoF2XnE7XG3P0MfgFdp+4eYo7T/LguD9e3LJTR/N7tWyzU5LESoRyHlQ1dpsMgDs+hBqq/Jqr9t+eJlx37s+uNrPFgwbBfZ6paOBFGJzsNt/cm/DGBFqaEKMlbnXSLfsIqE6J5l66iDS7gbb4d2yc+ZRtLuG3o8EQey8UMSvWrmSzczVY9Du7/3hha7uHLeSNSmbJA3+uR2OpdQmUHzFjHPikBvzSZwbhR5ozxJwKqQoQYWAj5KkAEv3jpSsR58CVeThXdDiMKvht/GUh2oZa80Wto5ZO0dRHG5ua1h+18oLOljjlX0LQDNuPctVKwMZzamRmEkAwqpOsWUrS/nYkd+vPTu7zBF5CTDtx7dPY9/HfS0zzHmUUl51UmrvasVKyzcnmDTzTebIK9hVrcujzmGtYrvaHBrbgCGOHPQ5zZ/B7kyqvUtQ82O5ZxJfvqzEDlCQUm1C00gpXX/KHrsm0dgg1eMh7+GiCF5Kc4A+ziDRl0raMON38Vq3BCLCHGfpeKa+0zROGKcJ4zRjGKeWCWYWwD5tG56fz3h4eMTxcMQ8HtRvYrQGE2TcgD2MZ4OJtvA/sn97G6jOu+z9vgb3mXX7vY/Of+6l9C0asQ9nhrEPS61I2wZPwDB4uOgR4oDjzY2KSIvsAMAoLNpBmQtc3kAaiDFEj2cY5WwYpwEhzpjmGdM8KRjkxf0iAb4B1aAIHsgFZWGkUgD28L4777a3bZ2afbhK1LhrDTIbO/Mn92ei/Ezt70uAieybuxQAX2edGRC74URD8TBPyCnh5u4Nnh5XrG4DpQXHww1+8dUf4hdffYnxEHG4GwECUpEy0z/6o6/wl3/1J5jnsV37siX8X7z9WZckyXElCF/RxczcPZbMrJVAgUSzyWHzm54z8///wjxNn+k+JLtJEABRW66xuLstqirfg4ioqntmEcUzBL1OVERG+GKmKipyZbvy4fkI3mTy2TAMQAbG8QAw47C/wc3tLZgztu2krUwEaS0DXOXJK9L6Q0AchO9kt5+EH1Nbg6XCt2hQWpJ0zkmbTFZCa0uEhugxeJlK7atD15at8tI4wq4ERNVNwssCCS5ww14eGkBwGvjW82DDFfoiHyNcLkkSCGa7P6pcokYbYeT6TXcaCX4GkdhOa2dSzxA2CMlVDNXx83CPj0r9maFBslLqz2b7ik7pNElyaoctuO50Ulf1tQxMXJ3plpTCxfuRCrnsf4e3KrzjTp7bfplOsl8S16dIYjZEtSF9AMSpLEXp5CgM5ll9MLmHXISDD9CWd64fqGdNLk6CHXov1ILltvatclFyLk4o2mBBMrv6j/Spfu8rHJmttTxJsQAVlGKBRHG1K0dihzFyzq3qVfdI2p5boKSUghgDXAwXF9HwGbqkrgRoMrNyeCU4n+ua28ttJaiKQV/51rC+BLR8TdIYxrWAsNMWf5l2KJ0JINJpv9KuVQWbWiEHM5CTJelMnkSfOFdAZD4DfySf9nBaPGCJ3Bb0F/wJwz5KYwBRpbr+feKrw472tySFBLmkOpUPdU2afFsEodq6FoKUe8zdtON63c0+2OdZKVPjlyqVLlgl/UL82qNdT30wUL0YojYxjpv/KF9cg3QSGEtyTpWwnmrLr+kv0/lABqvs/jwM9bODTUUJJCk6hDggxgFxkN72YTdh3O8QpxFwjIIE8sA0jkjbhN24wzTusJsO2O9ua1bD2hZEuUiGlbuAQC2DQycQFwtqyyXvIQeCL4y9gYLe0a08AvVhnyVR0Qgno0B5UYWizyKAuCjoKUApYGLk4pEK6fQYOThZJ+IFiHMsKkCqMtZMOK8OlAlJR/kKOGZ4X5C5ICRp1chZPnwtBJ9kGknigEIOPnpMuwF9ZLO1P/WVTd196rr2utmI2S7LJC+B0k89+mDCteEy6jIb801ZMio3dy/hXcT9bcEvvsrY7/f42//6X/DFF5+juILiN6SSkXDChhVPyzt89/p32O0m3L/Y43AY8Xxa8PR8xDyvSCuDOOKwH/DZX75A8B7TYcCHp3fIJWNZZhQueHF/ixf3N/DeYzcO8E7GoOaSsa4r3r59i/N5xjwvtYd3mkYcbm6Er8gHIBfNlHswWr+sC7GW6YMGMBG2pFOHiDE75eAJgAs6hWAzx4xgLSjOK8m9TudxxBiHCKKAzQBaYWyrVAUNg0MBCzdSkAj/ugoYNOe329SLcvROJ3aOGCF4IYZLcdORzVLJk51XwsROwTKqc0HophplmWZkARMzUDUwVTWvATC71A5o1/N9ef77f/Va4eJUd6Co/qxn2QyrvUoAo14rW0bg4s3qtdVsBjzAQd9BJH1dCcdjavfHjHVliJq1iXVib1OSYE4iHeXuCF7VeVF2lXbfzX+rmXIAXsuiiYBSEkreNPthr9HKE3MS7Kh2lXgEyRx7Bb8lMzJJkIfcBiKH7KTzfNsEFBnZIIDa8ljtLICchNCzsHGjZZkaGYJ+hhp97yQLjWZ8bcADQThpPHUOjeouqZdp8L1hhQZ0Czk4ktc48jXAZQC62h4wEiRxYJlTeY+mN209GVJp0RNs2jOMK8BeS53DwB/ZG71oaueijvu1dXDQwJPqBCcytW4rOLfKMiPNBqDZfclYGw9Xq5RAdWJy4QtbyIZz6mfrwAkUuCLkno4AtiCEtmLXKq0usMfZ9sIcnh6YXdoaKXUHuoWsU9KctjpZFW5F/9B9dk6dCTTgrM/jUgAF7065VoJ3YD/oLpoj0vhb/iMezWH1iHHEMIyI4x5xPGCYdojTAD8GwQpF2r72+z2YgWncYRhmjOMeu90Bzjlsq/Do5Szt9c57sbGVi+Wn7fd1llier1UX1DL/vZfVA/4+aWCvhZb1Bw8Qe5SSsZVWOWZQ1TGDuMBBqn65ZDw8PcIdDeCa3s9gFKzLgnk519agUhjT5LA/7BECQclKsCbCaSkyUCWTcuCViv9DAXwS+c+KN0MUD7MPEg2jTAaWqWOxTqmziUysXi9JdEEcAvve2bi2bm2hzcdvtq7JcP9zdZ64c2jUNoU44Bff/Ar7/Q2wZtCacdjv8Tf/9S/w+RevcF5OeDo/Cq7REfavPwT80+8lGHc4HDCOE07nBe8+HLFuWSpHUsYQA7786oUQwyLhhx+/Ry4Jq2Ko+/s73N/fwTuHMcrkPwmIbljWBW/evMHpfMLpdIYPQBwD4iBTvtbViTPDwkHkVEkV5XGUwTbG6yhcNxbETkla7yUpIwEBqdzQSW+qjwiS+LVAN2vL6RADsBO7G7zocO+kAjIGq+CWLP4wanJnyaIjruTe7IhVM9fECUy3CVk9wWEZzxjHCWDl4xMSTDTOPwuAsDqH4tzmIhXBNijFCKGh9//R4W3SozhGz5CBjovndTrg2onvdSyh8gVdvLA/0J2dK8WqO1plE9egTfOxCJaY9BAybQAsdn7bgNNZeBy3JFNnZdqvVmJp+ytbcJEZjiQ5RY51eq2BkUtkWBEVa3AEXO1XSQXbtoAIyHkDQYIdRipvPMM16Qc0UncCPJwERgFwhhKvM6Dvo26c8vuITFdfrEhFsGCQ6hTXQJaZP8PWtndyH776fqy/d0WmurtSqi6quMqCpLpG5gsbiXwLfPBF9WbhAuSG4a0NrgbGFA9ZglFe1lXBUSdvaHy2zIopTJxru6b5RpcBJlKlaBVutobiM2nxCuSLs+BQG4DSNGlXkWbnBSzV0RYnYEnAARqQ7tzchplaUo+5BXVsQItV3TEpWq1T+MxHx8V9Zi3BMztigWvvnE7UFNlXcotm30WMm4+CS4x/GYm6xGOCgFsSp8qcVndBbRtIfQSHWs3JzCiAyPbPgFA/n7MppSq047DDNO2x299gf7jB/vYW+/s77G4PQAA2XuEj4fbmAAJwe3OH28MRt7s7vLh7Bec85iTkdpwJbeStWhFCA6IALHuA7t9159WQC9iXDIoQM+qkAo369hkC41BpgiwtBQRCDBOCJ6S8ouQVmUpz8gC4UuBKhkwASijFIZUMJMv4SiR+S0UI2VwBXAGTQ2JChsO8OjyepGopq/MTMrAqEWRcMoLXI2Hgm2TkKBMBJNnaOHmMOxG9nrmjKhgdh27KAGQtUJZ1l4dXYjZ7bb/On8w6f2IvWvbl8mepHLapAgmOPD7/4hcorxj3hwNe3t7i9vaAv/0//zO++OolfvuH3+G//8P/EKJDesZKC94+rfj73zxjHEf84ptf4uWrlzgdV7x9e8K6JKznAldGvPrsHv/lv/wFdvsBHx7f4ts3f8DxeMK3f/ge67Lhr//6P+Gv/+o/YTeNuD1MmMZB1q1kLOcTfvvbf8aPr19jvz/g9uYO5CCBJi2PfRfeISHD+xExBhROyEKOgxAnGZGsqVkm4LwsSNsK5oxcVrAaHjMeXrPHQhjptdxRQFgIwuflCTjsA3ZFjO9uzZodjsi5wJNULoALxiEgDg6byWI31Qxo7Uu98hGn0BwBkhaqgUQB54KSEjZHWIJ8nrTauPpaexerbCpF2ohKzpXYz1poHElJ90W1Rh9U7hSmRdwt0yE8ES3I1DIhV3pOjZuZFK7RpaYR+4CTZL4aqJNqEHsj+bIpl7JnZrwjwLFzWIF5Jsxny9JqICMxuEQx7CxjaCu4JEgpqs+iv6JOXyJZZ2a0nuwuc2NBjVwKfBYAkfOGjTRzpitFjuCU5FcMZ9s0M1JESkKojlRO2rLmViEpV/kAgJSkBcEyNQDVbLVkRXS0q2vVQikLrwRwwG63A4GQ1hU5p8oTQiRZcgHvANQRib6AvbW1yEV4cjWjTlyqM2Y3ZuSd5ACGln4H4cWTdjwFV3oOc8koqVS5qnteY01qI4iBGpTSkuzuDIRKIGsgWDkLNRDXZLDJnXHiOC8tH0RUEwRW4VGJiD1hWwvm84acGZu27XFFQqwB7CwtJ8QacCr1uBtALTpYoAZq2OytrpezFl4PdlIBVrStThxy39ZH1CdStvUQOTXAFbyDTFxmPUsiu9b6JQtmjpTpA0gAoDvWF4nr6tzZyGw7I1qBlrKWisq0HIKDHwa4Icqwg3WVfQfAF5/yp31wyQLavMc07THuDtgd7rG7vcN0c4vxdo9hP4FJnJIQBrx48RJDHPHm5j3Oxw2Hwx3u7l6BALx7N2M+r0gpS1VjiABvNRDSZ2CvK5PqNWm1UAPsTjGUVbK5mhVtAcpS2wpaFlzOpfzEKI6xpRUpr7AJQHZSHRd4FhL56B22lPD28Udpmc3NobLgT8oJm77PtiXkzLi5Iby4PyCOBBoIFAfk1WODDBHwATVYxtquIGfBabBvgAuEIQCjAnNzroZxQhwnsctRWjB7I1M02eicF2pbEuLhCt/rol+tPbdrsf9fPw+KBz1R116N6oylzBinHf7mf/+v4FxwMwbcTwHTFPFnv3qFm7sd/tc//SO++2//hHmZsa6rtPZ894CH9Q3GacIvf/krvPrsMxyfFrz58RlpK5D6A4fD3R6/+uYLxOjx+9//Dv/zn/4JW0qYz1JZ8uu/+BV2uxFDHBD3wuV0Pp8xzzMeHx/xD//w93j77g1ub29x//IlJorY7ffYnRPAHuusU0VdgCcvxLPqhvghausX1BEGUlp18mmGsetKFaYE/plEN3vXyNhj1FZkctWW73cDpjEipYJN7dS6OCUIb2B4GCP8EABKOJ4YrFUGJvNZOVRFF7ZWYqOrsEDGftqjDAV527Aui2K6Ec6tALbadlfYC5piI/AvyMWm7WbkWhktSey+orqKZBUQeR+RIyN+1gCL8QXWc8+1EuYjZ76XTrr0FS7BlgVv1Pak3GyM6hSvPoy0hwfV7cqnw1GwUb0HxrJknJdZ10aDb1mCTazrCxY6+E2pMbgUJK1KigPU9re1YequVu9V9suhMFA2RuKE+XxESgu27QyiAq96gSVro5NXFT5Xcy4H1DsPT9rWv1mkTeysBMh0mvsi0+gsOSXYDVgWCZpum+ClUgSXOu+wP4yI0WulsVa9asDD6/Q+ooZ1mRk+t0omC1wEL4OlcspSTGF7VpNhirctCERoVd05C/pRPUdEoMzaWskVh5TEajckB1BlStdK4JAOvJJ+TxlA5WWjDPObXb+uZOplsvchpHVuUFwRIMGmjG3OKkcAsau+y/XDJjznlLE5aZ8TIbaEr+6ttiCWLEEvwz+sZzNGSWzaVL4EkuBj4Yo5zd+ToyZdHblwxVADeUQSHRa0XdgVBxTpomjRou6M1mCR7aScOwk8Xa6d/d3eKme9R8XfBIIEJhIQPChIUiCGAApBMJQmfTKEd+9nxJp+frCp7nlVrrJgXkdu+6AlyqQABp0wQAyncHlEeOexcYBHlqlAIcCngEwW279czIvSzno99qx2UGp5P7Wf+8oei77Xtom2A/XLnHxsVjLcNqbek32yAvVSIKOe2xbCSuKakm4HTu5LlJ3dL7MGZMBwmQGbIaWHm4lRqHTgj2Al3mplLq7RgDvqR9a/VkPVY6JPQe4/CsM/pQj631X8pfvBsifDKK2Bt3c3+Oyzl9gfdhh3Av4KZMT9vJxxno9albSBecMwjkpoWbDMBfM5IW1i9KdxxDBE+CjlnptOOTudzzjPC9Z1w7wsmJdFsnGq7GzaUUoJ5/MZx+MR3gXsd7nKivTpG/m9OVyiuOpYXCMatf3iy6BIJTgmK08F4E3G1PEkoGibSilSIQKiShQHfZ1VDMDgvb7hdRAHJnI/pQn48o+1dBYiruLoSjmqcRGULKMvzXk242+Goc9G9IFHMLfAz1UAswfn15eq74xWXcIf/b0iLbr6PddLq4f18tXmHMgYVAnQoLZdWbbSSt1ln23/PC5K5O2+s6yLgGELXElWzkLCpjcAAVRUGIBw+5BmeS/u2BwOK/uG7W2vi0oN6jV9oPrDHHhDSb1eo669ErDkoU7v0ECDrlbW6SQ9qXKvC/sS7JqBK13mng3wtVJyjaip/FxsqhpmB2i1qH2OrfX1g6quab+40IFMTX7qteDi+ebdaQFOu8YG0y+u04Ki9nL5G9kfmwx2j0tw38S2ZTL78FknvtYyYWvXLVaVP0jbgLPeWm5BrX79LKPZLoXRjqFZBO72QW1GV6lU388WuL0VCFatpjJi7RXdSl48rnQCGpZrv7j4c8symy1r1Jy29hqM6wBYXVvDJb3T9qd+mFxD8ZPzcGZbvLTJOy/JgL5iqI0ZdxVDOUAqUL1xUclrOV3fT8NQ12fmozN0BeCtyu0aQ1nSUQAqw2pdlaFLJg951RwL6j5Vm2nPVd0DWJKitHYHkLZSEFIp4qQUVv3DEkssABfFUiTOaNFzAq0uaAICtZVyzXKz0kLqKnZ06NvmajWkGdILPdAtm+mdTyAmvrqGpjPa3vTC0WOxPtBkfyACyDvsdhMIhLv9gJc3I4bo4KNDYQnMzesZ53nGPJ+RtoStrEicMI4jpmkPJsJyzpjPK0oGhmHUcdZAYakoWdYZx/MJORUsq1SbrNuGdZOK11IyuHjkJJXhy7LgfD7heDxiGAfUKdHaiuF1alhbf90Ds2e6/qJTzNlsyy5vZ+kdtUFOk8G6twQJfBCx4rrS6eVOxZttYQtKNrzkqAWzbTN6PdlXOvUIpcdAdm598IgxIqeIOMhXzsEUFlpwCNriZ0GgcvE5Fz7Qx8e2fu8u81q0YKJI1HNwfvy4lEruMFQnz/pMFf1aOSOOPeng+sal412Ad1K1ydX/cPWZtnaWWLLAkAS07b4bvYEFRUo12XJdhQmWV/uUHmw/t3/bmuecIK1bkmRjIliSxO6Vdd+oewsiqjqE1eA3uW3t+/WeFDvXakpc4hobNmStmf3+VU6n/lxA7x+dTr/Q467K80c66o8Zv7oG7SKajLFWONkZ0OdrgcH1qn/6Mzsde/U37m7wI+Rez/HV6+21xSrBtFKLmoZ10GScBWPs6llfwzZoRHSLtD9fYTowjHvTBkOxAZH2rcqJ+W24zPVfKHxum2krU61qv14/9aCrp118zMX7Xpijy3eub8LCL2XtfCT6SSpeW7DPPvinr6o9fn6wSQ+ccwEhjFIGHicMww7juMNuv8M4jWqEoAYqYVk2nI4znp+O2I+32O0OiDFioIhMG4bI2M7vsZwHfEhnbMcifDGXLfE/EdewTRahcN7BZVejvRYQk/UQwbBAw4XRKEDRkYgvXnyGw+EOj0/vsczPQnKsyVOHgBilqoWXgpQTwA4pOYA94jDBxb2Un21nDXkqIHJKtOsixnHC4eYA8hHrlpBKURJpOdglp1r2x9pXKCSVQUJUkVr/uWZIKt9LV7lS1DI14Hp5SHsJYbNiBvDrQe/hz8ePXmB7o3gR7IBwGkUl2hyHAT54/PkvvsJf/fobpJLxh+9/j7/7pyP+8C+/x//8h7/D+XzC27c/4nR6Qi4SiXfe4fPPP5es2d0r/OIXf4nd7oBffPkLfPaX32DdFvz+u3/Gtq14/fYt3r7/IAp9EFLV52XFP//hO9zsd3AE3Ox2OJ1OOD4f8eHDB3z/w2t8//1rLEsCkTQ1MRjDMGAYB0y7CSklDT5JOxtlCbAGT0I+yAWlLHqYdRIDAO9GsLVSqdxaGXDJQFLujc0BjjLO5wzvV1jZqFo68JXiIadjPgUlqcIXkBPq1ClSWWp7VEojQi1qaDtvU068c5h2OwzjoKPqE47PRzw+PEiWT0v0mQDKlxMoW8XFpZQ02erO8PXD/AHR/ijUBSf6uyfqHFJzqtrfc+Z6LZbFM0dJzlSbvuOnKN+Dlq164etyzsloZkfYcsLz8zNS2sAlgIsQ6CUlGNWlB3PBlhaUkiBBZHWIhD0CDOUKM4BFDOd0oICDtAJ7WRtrkpJqkha4J9ZaAm1Dy0ZAXcja4muWwjOheF/BG+va2WCG4KWSRYJMBShS8QPl1yjaG0UaIBeA4JR0VeSv5IKVU22RYxb5iTFqr7/DtkrVl5Fley2hZwi3QIXsKqPOOQyDx5YS0lK0cqcAvFX1ZM6B91SDIkSiz61AjZwKlFb7GKBjLTe3IHHwSh5dHWwhvs45K2DQiqoavOkQX0MhF+dT1oo1w9mAGSDXKtdHlntQLpIGYFGEnFv4eyATPAtATPAEZHPOWCrdMoq8TqdtarNvA7ho57/PbgvnoDgKKcnQCmvHcyD4KE6D8TexSgRDk09SigvOCZwzCIxADgN5BDhtfETNMnIpwsP28emvK9cDIuI+sNTcK+ecEEejC7LYD4WRl0Uy6RWUch03zjGC+0j+n/pRrBxdHNA4DBjHPYZJ2+jGEWEYASIUPSfzPGM+z5hPK5bTBtw63BxuJSvuVhxuAh4nwnZ+i3UmzCljXVY9C7IYbarlx48W8GU4JeAvJSN44UFpVRuovA6FnOhkZhQiScogwNEI7zwOtzeY9hM+fHiHx+cP2LYNg4/wfoT3E1zYwflBg2wREYzDFDFErWDQ6828grkgGK8fM6IUiWJ/uMXucMAwTtjtdtjtJtRKVogOFtJ7cw4J5EId2mEBdmZp1iMQgpNKcMNQDKWPoObwVLfzwpFD1Xkfra0+/7raSf9wvRuon2LOEMnvCVrFED0cAYEYjhgv70d8+dk95mXGf/+7v8Pb9+/w3Q/f4p9/8xuc5zPe/Pgax+dnGLF5CAGff/k57u7u8OL+M/z5N/8Zu90eL+6/xquX9ziejvhv/89/w7LMeP/4iIenZ4QYcXNzixgjnuYVv/vuR+ynESUXTOOI129+xHd/+BaPT4949+4tHh8+SPXeuAMXwX6Hw17akzyBrSpAdanz5piaDhVibAmUo1ZZomiFCWdwEV3ct79LYImxrVJJ5M8bfFg1ptXrGqqrLfrWbIDqGbVdzjsJ2nd4WiobpGp78wnObdi2DSCpDKttXnqshiHixct7bIcJ3hUs5zPevn2N79OqxOIFpSQJGqvcGhciG79Gd8XUlSlU7MNNT7Y/tiABs45mL60IwBGh9I6lvkf1p40XKlmFOmCBsUrzQJKct/YsUr5eZ0FwLxOhvSX3dY9O8yIcRezAxdUgCjMDroAoAFywLYtUnKt/BgYa8aWuB+maEcMXOf/OAdIla3hYl8QBpBU0dj0SuBZOyfNZMEdJWWgNWIPXzPCOULzIX7U+5EQ2ibTVXe1a0tBICHDkpV7NAogWMCXCOA01mdsSeIoNSCqyvQ68ij4ILcG8NuxKNnxkE9ucraXU8J1H8AMAXyuQrDKnJRMaD5adDQve+NrSavajCRwz1PdsRR2OCMOo95wztiQts/3UCkua1M8CaaW6BXpyDcyhnqOGC207SYNaLrg6gKkwA6Vg2xKICtZlwzJvNRgkWxIRRwl6lyC4KmXGmkTeXV6BJElfp+dIqE284nHF5VnaXeVnkd0QXGcXCOQkNkG+gDykQkj3uMgodjjPdR+iVX3LAQSB4UmoJhysGrBzydk6jz7uQPqktWdU7GpBVHEru8iY7rfxTHAWfkPRnx6OPBwXBLWhHIef+LCPHz872CQCJyX0kqWICF5G2At/U0SIsQl1kX7JlDKWZcUyryiZtX97xBA9ik/gPOPm5oDgGM8+VH4X1KVoCvVTq9cHOKyHui9tvc7KGehuGQOtOCiAcwE3hxu8evUK4Cxln0psKRvl5L5DlFaQ4pDhkLNE6AMCnN+BkUG0AVQE6jMA1jGo3iPEiGmaQD7IRm8JWjgh91SMTBUK+i2+WbQntAXPaiC7A0BmHM1A6BOq4q2BpovoM6NmDrjtAerfrsXh0nT3TuJ1oEkyGw5DDAjB4+ZmhzgEfPHVPX71F1/g+XTE//u//gf++ff/gh+/+w7f/cu3OJ9P+OH73+Pp6QPO8xmPxycAwP39Hfb7PX71q19jDDu8fPkZbv7TX+DP//wL/Pj2Df7pD6/x+PSEN+8e8f7DE6ZpwhdffolhGjGnjB/fvcd5WfDy9hacC47Pz3h+fsaHh0c8fHjEw8Mjgo847G/gnAcz1exUjEM1MKTOJ7NMbpOSalGSEmSQhRHeCGUdrE5e14qgU5dkSRkZWfe2OUFCbmnyF9TIKyZ2jYAcZNlcMRRZiTL7LRTDjkp62bJHBaytsran5AjRR4CDTikSh/98nkFpQ0qrgPFClbPFerYvgDc1Kbs4vZ9wgOjqZwsGt8Cy6gaiepavhbP5Ty2owLkFm6BEh+QDPMno8XGUSTzD4BGjVA/s9geEEAAvIGVZV2Rm4fRKQb4KUCsoatWHlMLn3M6vXLNwETEkKwfSlivdNyYGFSDUl1j4BXpurXoSOjnS1QoDqQYosHaW5hSh9u+zPkM4eEyOqfJklM4xFdAiLZqZk8q4GhvntGXUKjRcDcjX/deWYDdOiEoCKpMPDbCXCxm/5h8SuQ8CqLi7rlyQuBHVyroKkazEWKjKG1/0Xl22kxUtI7cghlUyWNuaj17lJ9ucB9VpPVi6TKG2bFendqlV/7UMoP1RwVzVx+gCZqLzmYUoPacsuYvc+DCExLsDZPqhTJAx8VA9pddTTwqjntGcW1DY5KtYdR413ROiXGtKBWW2aTW+OmwhCJRIRdqriKHMCa5mfXtD3uxMX33W2fvu0V83Kciq2bQeJHevkSXXiZgk5NCcEqB8VAxIQL6EnwzE/Ls/lCTfkUxhCkFK/0McEeIAHwf4GCRpwIxchAtn3VZsa0JaxUEbxx2GIQC4EX6ZPOPDNAElY3VO98buqasS6O7z4p4rvjFSZZbBDNyy7wAqLjHOrhqoIpZ7ogE+BNze3uL2/hYprWAwUs6I3sFRhHMRzg365bUVTYam+KxBBXgUztjyCblscMWrLYa2cxLGaYdxGBGHEcMwIMaIwozU2Z4LvEcAxValalltcx6cBXecVUl19qdfN2hlsWlYupa6j+0ag6tDVbPXQGfsruWv6fwaAYC2CUXBf4PP8I6wv424e7lHedjw++++xf/6x9/g4eE93rz+EfP5jH/5/e/x8P6DJoeE8/H+5R0Ohx1+/Rd/iVf3rxADYYwO93c7nE6P+N3vfouHh0eshbEVYLff4XD3Em4YcV4T0vsHzLsJh92EXBIeHx/x/v07PD8/4fn5GafTCdO0w3w6Q6rxCMM4IMZwleQ02dHbJRYnB0UdWb1vw/CmCIpk15vz3nhsAGlYkgBfBjnBND5YlZ5N1OoCqY5QAThre7Y6gJYQMHxblJRaBmMk+CQ8hs4nJOdBtF3IRIgeIe5RpgiHgm1dsK4L3rx+jcQbcl41MSdyVdSRvcBQHcavdp0vl6R/1CrlKj7mxHdcNdRkVyhE7F1YHVodDKEVhxL40j87c5ClYkna4YWbyzmPMESZNB4C9vudBFSycBWt6wZ+eMayJpQMSaAwwEn42UAe5AJQMgorhiqGo1iSaU6qd4WS0XwOXS/bYwIuhqRU+9p8I/P/hI9I7rniX/NhSnPm3cVZlwSXtDQ2/E1A7VARaxpAsIBoV1GmgboQZYgMUvPl7PONd9drQtSoKWoiKrg2PQ06tU5b04SHTia4oiakDHM17iWT8/5hCXLDIXa/fZVmrXjTZbaK0GEQWdg2mYJ3UZHUoDDo6j95dETa3DC/bdhl1RaqDBpxuVBtkPI1ClG7TLrrfCkKlRheilGEs9d8l1wykGXyKsgpx6RVZAJWLS7TLEvFiHpZ9VpyKa1hT+s/ZFmNr1cDv56qryWfwnAZ1QdveL7JXo+Fqk/zrzwuXnl1JOS69RokKi/PLLrmFqR2Dj5mIGS9F61YDAHhE4UAn3r8G4JNWiKtWbkQInyI8E6+O5v0AQuCZOW0SVUbhhCw2+0xjgNOZcOWBUjN8xnzfNYyxoYfLZPUgiBAfyItAsq6cqR92rXK51/Zg7ZBrk3mgYxrnKYR0zRgN40C4FbhXhmHHfa3L7EbR2zjAXm/wBFhClGyuDcHjLc3SNuCeV0AG70N6fstkAh+yhvW7QziiJQ24Y/g1sZAep9SzTDUEtXK5+FsGso1gEQD5PVG0YEb+0MncR0QbQ59ezMzspfLaQCU6vpfvEd1yuyIkJBVbgu2jbEtT3AE3E6E+5sR87pgW1cEHwAG1jVpVDphPm8omTD4SRREieCNcHw44fe//R0e3n/A7c0NGIyHp2c8PDzjPC8AtCpnGKQXV5VwYcKyJnx4ekbaNumJhwCaOAwYxgmFGc/PktE73L7AME44HU91nCYj11Jnk8eSzaCIkyC/l0wXwOhXnlVgzWFuWfdeAVztof5Q1MBum2b9HMOKkvwmmGldJFPjnBmZ5uxd+Biq0AsX7We2PTT5QxfJT6q0ZWxxrRLsL5Avv+pnXemhjwNGF3/Vd6yRgUomaCOLrWSFNKhmVp6uFo1LxhhHgHVEOqhmeAWAxpohMi4pRwBTQUGWST4o4jIL8sTN3T2mQ4ajEQ4T0pbx4d0zlnlDylmqnphAFLWyKOk9FoAlhy6YSaqyXFN2tWy6FGqVnWAFu20xrbKpdYQoECLUiicD8jUwQdruZ+ur62X6lhxJO183oaNAQEQMw9UetWA99DkyYTGIruuIH71mXoQfoH2uOZpVQ9j+AK06oQiPhYytFSJk9q21pwZlxOqqsyj3xCA4Nghd68Pq/2vJuy4Ao60/iAV86n9E7bWXuhKQOFxj7hIQ1rcydTJpatfWwDey7fq5UABcSAcIMEqCVAMUEn1SyBB4BVyFpSVIpj+ROKXOkKHqdXUY+hNnboYjGXvfKoq5OmfioAm3lATflZvEtQSPZcy8d3DspYJE5bImbPpH9aM6sHSlCwidg0dNRnqbVOx11EBrD3Crk58ZeUtS5RTlvbxzQIj4j3oEJ9xhoSbrBEdFxVIuiDzY/WVNSMh0Uo8YZGLYNE0I0eP5xLU1fN1WrNumdk4ezVk1XfCJgFP/hbbG9vd/Dciaha9nlyQDPMRBq4122O/2IAbGsEP0E6bpgP3tK0zTiDg6hEHOKQazbQLyU1pRjgvytjX9xGpJ1aZmTvBlQ8oLtjQItjK+J2s5dgHeD6L3NVhurXyiN5VnilrV5oVjU5sEUXFNdVaM/xJN5i6Cvt2a6nzKZqd6x7fiOHMw9Lds/I6ytjltOOcFJSdspweUtGE9PYPThuPphJQKhmEEGDifzjifz0irBKkJXvggnRj1tEqQ6He//Q3ev3sLAJjXFR8+PGBekk46JgRPICfVpVgWlBiEZ2hNeDyesG4blm2TKowQ6zqmVHA6L/A+CKn9fsC6yr+ttbqwjsJgZWNMRag0WAhoTWE22Co/FLbxGZ2DZB5Y2y3YoBxbb6OryFn5+rK0S+UikzfJ2ukgVdGCzRi1ff3qLFB1zGQgCnvZv6LXXzSYwSWj5IR1W5HSBpC0LRIROCeZBqyyZcmPiqO6+6l6jc3T7P6uNrjKrg1xUIUvOK8bbMEEB6kstmmMl2dfL6EU5EE6NJwzH9BVvqGoQSWr8hOlUFDKpuTeHpn1zHmHMA64e3mPXBhchCA8pYwPH55kmEgxDAUwW4kS0DKyfHn7TN050tZaMKiI3bH7oB5z1mejrk2PP0zm7HMMazoijTWYvqTufDb9QLp+wncq/zD/tdoukw1uUwwBaBLPgp1iw7kUpE2pCQzvefMHOwytthjVRkIw6aadPIrWnepTs/HMdsa4+gRoR6EXRK0yK/UzRF1SrR7KomykGr7iJnMI7N9Qji9pV3OqGzPnOjG3x03X0KEmSPVcA4LwOGvLLFmiTta1q0fVajALTloCunFbkSMJADkZuGQVkeaDQM+OyY1hMAC1wsvwqHAfynRLmP4gABnwRV5jHU126Ana/0CKpVAh40ePeg643ysT6raGhucv9pQbKrbKMVnIKwzWBWQ4F/GXiQAtuPDOgcPPCyP97GCT9djHOOiI2R2GYY847BGGCWEa4cdBhY+RSsKWFqS8AihwcJjGHV6+fIU4RpzeP+F8PuP5dMTD4wcsxyO2ba08D6wCaMTdnW7QteR6iIV4uWUq+pHsn6yeIGobRFQVk0PANE64vT0grTd4eX+LKTrMJ+EIurt5gZdf/jn2hxuZuJSlZSEquW3cjxj3I9b5GafliK1sIDCcRlyzHsYlzTjPj6DglRTzkt/J8mYxTBjiDpXrKgivg3A0uOqcFLZo+scHU9+wfb9SIGbYi1UZGFAyQkEzUDBjpEaWDUR9HGyiyk9lBpmwpRXLsiKvM47vf0Razjg+vsbT8weAHE7nFWMYgAKcjwuOxxnPTzOeHhcMccBheiH7WwjlDLz57h3ev/2/MQwD3r57i9/87jco7JBKBJPDtN/j/sVLyLhsh60UpCILkPOCf/n+RwzB43Y/4X6/gw8Bu90BNzcLctrw5s1rTNMOn3/1NT7//Cssy4px2oEByTLruF4TyLRuzUkvWR04mxTRZ5Hathh5vTjN7urv3RM7IyWcQCz8PGCA6w7UiisRJyHxNeNBms3vfE+5Vs6aIXIgnQhi487ZKnYUMBnpZBxHkPdY5hMqFLLWra6SCh2ArrfyCQemndFm1OyfRTNPXKQlLueigSMFw8Ey5FRLuy3g4NQxcESY4iigyDm4KEAJGqwoLC2BhQuWZca6LEIavjEoOXiM8G5AiBGfvfoMcRiwm26x393hfFrwm7//HR7eP+H4fMK8PMlt+xHBD2Behdyac83SXTgwzgs3opImEjGKOvgSV9D9rv9pkIqb3iJAdYI4YlRcPbdiwKhyUhlQV9WnmSELWKCO5i0swaYQA8ZhFILqbavBNJOPEER2vCOMwwgOfLWFDYTkLcE5h/1uQgyhAlY5A66+ygDhuiWkJBPt5nmRzJ63NmmPYbCAk54hy3I5gApQvIKanGpAVdJMXO1FZcdX56OUDFeokqMDUqptwc7OL5dS6pWlt71WTlErRUZzKC0jpoIp16pEttVBILFlBQAnCSiDoYEmaTlA6fvLNeAcvPDRuKJBP8K4C3Ae2OaMtGhpusXGrb+wOtGM4L1UyxBqeTjIIcQAIb4EXDCQqvrfiF7JoKcOOPAeo4+I5BHQBYiqZDTb88cerAEXk3Gr+rHKTFU7dT8rvlVHIChpddmE3NcFj+AmkHeIPmCIsZPWP+1jCOJgDmHEGCeM44Rx2mOcDojjCD94uOixIdfJa+u2IaWM6CN24w6H/Q1u7+7hA+GHNwkPT494en7C8+mE9XyWSi5ZufrdqgJbQENtSWkJEiHxbsHD6h8U1jHi7S17Un6q1ZQeDlIput8d8OLuDttyxmcvXuI0TAh0A0873N6/wKuvf41pv6+DEAiEvfHjOXF+l/mE9btHrOpAGPkuW5aeClJZQZkxr0dgZg02JXHmg7TpBbdDjAc4HxB8lGp1p845IK0/zpxJw4yNl851+sn+XqceXQXm+kfFTebIFk2OBJvChk5JWmgfVbkIX2QGs1e75nA+H3E+PeB8esa3v/lHnJ4e8fUvf4kffv1r5MJYl4z97galEN6/e8R8OuF8WpE2YIgBu3GUe8+M5bzhh2+/w9OHDxjHEX/47nv84le/BjMhFQeGQxwjhiGCvMNpnuHWFcM4YRhHLGlB4beIgUDbhnEcsW0bnB8ACliWhPfvHzGNO3zz51/h/sVLpJTw3bffK9eW0EcwZNAOIEMPjJPG1rOfLH2xvmBdQ/+TzpjTAGP/x2wZe21XEwoO5XsiQhzELklixMN7xUbKPWT6X3gedahGzqCUEEKrkJjXWcaCb6sMiSkZ27pK+wwB+8ONkIBrwhMwW27BedObWgFh2lPPZF2ODmczWVCF0RfMGjepBMV0iAc5eNIqee81MEeVM87Ve0bFUFJBGDTgRNXUkSPknLCsM0opWLYFW9qQi0dBBjmvem6HMUS8ur2T9noa4WjC6TTjH//nb/Hw4QnzfMK8bGJf4IVOoFjVteEZC9xUC13PXFIaADjIgDs5TNUuGCauczs6xWaE722Pu+odAtjJ33INdnbJOrKguxrZwljXDUibYNMg4+MtmVe0VVQK4mUQgQR/AmzioVxLUd9C8YW2tccoiQerPrfrB0m1fSmCnbc1YZ43SNWQPC9GoT6QyqlQA02ATZTrMXtDnpBntIQGWTId0t3ABWta4Yr61x7VD7COJfknIeWCbdUgplUmEio2Mz7Udt4bohRydatOEv4lVkJ1QKraCILZvA9aWSQBT+eo2kjR8aUGTRksGCdowm6SVrFtLUhradiJ233VdYcNJgv63pKcDyEgjlGDYILxSgaMeN0q6m39AULUKqfoxao6TSzbge8QlPgTRrPS/cXOg8hy6yKwBG0prPq3ewWRBKyB2mZehQ7SmZBKBgUHP4pdEBqN62T0px//hmBT918N7AhBuPO+ZmmLnuScJJIv7PoN3IcomTy74VIVYM/xYqvVFu36d/Lj5fMtW3VZIqj9oHqAe2ehRvtYInXS0y4ZoDgETGME5xElJXAuiHHAMI4yqSRKdJIABJZCtzBGuBjh8gImyWZpsYBWNTESSfntus6gHGRy1xVZqxkxR7I95kD3hrc3vteG9nIZ6aPnaE5IQc7FQrfvXfCoBpEqH9Sls2CZuYuyX0Y7AGROQ8KWNpxPR2znZzw/SduaCx6FfdtFDb5I0E2ykd5pCba1f5SMZZ2xxAUPHx7w7t07+DAiDHdwXhwI53ytcrNyehCQmbGsG0pOGENAHo1U0sG5gK1IYMw54SGx/nNpewhI2+XaSxumcliA6+TEvhrlo10iqr8x4HKxF22zKkE0a596DRapMrFAoUTylSTRShSqi9eAsf27Kc1u0/rz0WVfatAJuk4Xcnh5b+Zc/rHHp9o61IRfrZMCGw1ItOlwVCcAtmATPhlsCjGI3nEECr4iMWk5KmKwFARkzXIa6aTzHmEYEIcR034vPCHTAfvdHoDDMI2I4wK/rBooadd8vTbXOsv29+LfEIPMFxJk+2O8DZ381J/7n/oN6Z/bOYqEi9/Xz+d6EQBwUUVkz2SVmX4PJYvUhRQ6B/eiIgi4yJjYOjU4gQp6chagbCDZpuoRxH6QoBW0i2oAUW/94mHnVfZW7qedu6YrrL26VtNUQHb5bhd8OKxG36oZrz8c1MCUvbcjcLk8B/Yl7WwC5ExIqv3SRaLuHp1yFzivHFaNvk+frrqjvyJLILjmQJSLe+ouXZ0L4RP7WHYI0tvvGDVbV3e135MrUHT9MNnpFsV+qO9n2biLrByz6sru7Jn+YJZhVo6V8JIkaV715J/+Uattuu9CSaDkyc4BTnjvEgvnxbYlbT/ViTtqh5yaS+EztNblZosvH/05vNK7+EggmmzWr77FiC1eq9viQYXgySM4ubYYPGKUQN40jRI44aiclxFxHBHHUfCRJhVb1USBcwVb0uEpXKrMy35L1a7xDBIRtm2F3wJyyUhF2piMVNX7cmEv9Cbr94YRqX6ZXFmy8l/DWgDwUzruupJMF/xfeVwyMrbgoDkIGeu2YplnHJ+e8PzhAfubWzw+PgFE0rrhOn4PkpbN+qX4UTiPGNu64bkkLMuCx8cHHD58gAsD4nirukD5q0A14SgDVUQPL+uGnIDIjMgErrTQDjkz1mWDc1HttGCn4AOSS8rRU+qKWvCzctdUiMoX/754VPNxjT+gR/9TNvgSP9WWJ+XMdNl4gFArw1Groz7G3k0me2vdbIhMEEt6b7nen7SWdZ0KVQ+ZhaaGhUjwgNzKx1irrcPVMtnvyTiaZNw6kXHBGCWDr06vDR9qraaXGEqqmLo1p0sOQ2tLyyWjDlpxDj4GOfdxwG6/l2mQboCjCQWEOIzwYYZzQdcPwNX2Ndfj8hBxXa32JxmSQU1x1DftF+9Tp7m96/WDrte5myzdv1XFMeoTgL0do3qNLeBENdBX98qSJvWyhT6AvLSlm12VChr7zhcXUTFEHdqiVVQAsidNMFuwTO5IKpxaJbdUAva24tPr0pbW/BGuC0a4Xvb2WawYpnIqufacGgCr98Td31qQr8ELrniwKJ+dak7B8F3w1IJp/b3V8+0Y1j7revyk2Kn5TNevRcVz/RLVH1WdggjOgqEf6bQOi6HTM59YcotlVIfhE0+sf79+ra1Yh53sUnp7d+nbaeykFK2sZ6BwTdT8nMfPb6MjI01kcNkALhinEfvDHtNhh2E/grzD4+kBy7bg9Zsf8Ps//DOW84JlXjCNI6bdhN1hQoiSYUKRnt9p3IMKY3s+Ki+A6+5eVu2TWVAS8l02Q+eU2DcOYCW7tLHXvUJva6MCyQ5UIkII+OzVPe5udnB0h5z+DMsy4/FhwfPzhsPtHfa3EdPOwYWoQQ3AFxViFBTaUJYFj6dHPDx+wEAeo3L/nBKwMfCUCO9nifiLn0HKhyNtd0McEELA3d1L7IabSmhpmRqJ0pJmHLWFo2piE6VPLBdQDwmrcrIgjCkYe4/CqWbmrCf1Mst0Caikoqmtq12AHeJUCuZlwXI64eHNW5yfHmQ/nEccBkz7A0IcMA4Bf/7NNzifZ8Qw4OHDI7Z1xXI+C+9OUb4QcnB+gIPH44dnfPe773F7/xLf/PpLjLsd2Dss6yKGTsvHLSsnWYcVaykoywnzowCu+cwo2eN8lqzc6bzg7du3CDEipw2vPnuFdVnx7h3h9EwKJkp1csBZW5sscHSp/Ot6wAyUq8r+GjBdIghdTEe1HJidncUCUrJMUs/TZAWQIJi0aDoFTUqArUpCiHoBz63KJHgBWZkLkhrrYiTbxnRMhBCjzliDylIbuW3T8gCdJtLx81yvxfXve5A+jAOGQUaaBpsICB01LZElVbzCMQSWyrLCUvK5rWcwM9btGYAYwqzgMGkgQxxR+cxtK9hywW63x5e/eIndbocvf/UrfPnNNyDnASWORy5AygiTw8svXmjAKSDlDWlbMa+PyGlG4RVcZpEVJDCMbFruOcMIGrXlhwBka3mTjB6I4UW3q0HTPm7vdO/NTbEqBajOLE1vEgQYSiJXggZoCQTIn3uvTt6vFOS8oSh/kMgM1ySCkHO38nqQZEBW/TsrV4R9PhQ4JZcrVxSRkCYzEbZ1w3w+IxcZMGG8f9ZCKRPyMpIXoOaM2FWBgQsaZLHqsOqsacUrhPsF3njGLGChtTmmB6sqtYCTBSMZdWoVFzjH9RxakE64J4RgsgJ2J5k20s6ACkws4KVgZt0ysGl1ima3o/cIFJC2gnXbWtWhEXhHufAwGJebDivQtzfQKET2Ddw5IvhRnIxhCAijkrVCOLhKZpzPi1S+aVWt0+cyM3JSMAuLPJCS6yuHArS83WzElefQO08XDtyVrbeEEVUHyMCW8SyUC+fIqlTscwx0OjCQC7Z5AUhbQOK/gUng/+ODahZT1pbYYbfb4/b2DtN+Bz8KB8f7D+9xPB7x448/4ne/+z1yKhjyDjeHA3a7nVSbOJZ2PBLuzGGYgMJY5hWplFotWx0HFodVDyIakCcY9y4pnw2DME4EF1gIarU91qrO63uwIihmBD9hGu4QQ8TLV3e4OYzgcotf//oXWOYF84mxzozD3YDdDWHakegUyDVaRcW2zFiXE5b1CU9PD3h8+KDJBCEOT0lUbzjPOD6f4LzH8/GEOAxIJWNLK8gR7m5fYL/b4+a24DC9lJaIalL7ltse1JtD0WTWXxGaFGakvIG0d/0i5E+oMglAORlbotVk9jqQK3LrmtPOXSuVOuvkHJZ1w8PDI44PH/Duxzd4ev8ewUdMw6TToCPIedzf3OEv/9PfYJ5nvP7hNZ4fZajFtsySmNKzUYTODIkKnj48IoYfcLi5x5e/fIVhnJA4Y9HpvSEGrcQWsmQUxvFpA0qBzwyfGfO8YVsGcNnjeD5jPj9itzvhy6++xv7mAOccXr54hXVdcTw+yaThkpDq9GU06Ng5d5b4sZbjLr6CztvsVLb9rpf3uktiB6t/7iCDWyz5IiUxjmQ4BWBVmVINJO07OuQjZ1CWiklyUqVhLfpRK0K5KMG2rrdAaaEiISJM+wNcCDUZa/woUjXaXEEjqu6DoxXDMVfOzP5hmGscpYqyVd+gBqBM3kzcLFht3Q45bVi0av886xnQalNowKRWQmvAOxVJWOxvR3z5iy+xvzng5Rdf4tUXX+h6y/XnLK1UxRNefvECYQh4eE9I20mGu+QNXFbFTEmFgeu6MDX7rZ3WFQ+UjbCZU6zWPfsWaLRAIjlnrQB1aIUFaYAOk1ZR06BElbZL+ZKH8OsWq8gqLPcAQi5yrTkVnI4znCcMccQQWWWkJdOL6g/OCeCCAKm6cyBwScgJSsI+gMHacZGxpYxlkTbGZdmwbbJ2ht1zydicBBkBVzmaoEGsvkCjBmZUNzlyleja1rIGhlj4OFFsAqUGqjUQazvHpG2AAeBcUDYlLUdVTRcBKu8aSQEgrWlOB6CYzBvROwBk3gA2dKt8yt7DuYCUNsyL4PHKveuocn3G0cFHpQ4Idla0krqIn2ByD2iV1ejhvKxnjF6w2WLTmzOWmUFeqs1DcCK3aisE12oC1ci7dbJs5WPlAkiYUfeJbLsajuK2f6YfubacUo19OGf3pPaGtV2fe9oLdEEks3Fd4DFlpLM4ET4W+OHfubLJADuYwSWDUDAMEeNuwjiOCOOAgoLzfMbz8xPevHmDP/zLH7CtCW4NWvYXMUzSjiJVI9I3PAwjOKU6teDT5fV9BA/NyLMEm5rjKdwhBVL1EAeZkBf1M0VZ25vIQfIU4GlEDAF3t3vsdwO8P4DoM2zbinE8YZzOGHcHTAePYSQMU0QcJyl9VbS2bjOWbUHBiuNywuPpGaOL2PyAwsBpZfEjlgI6rnrN0mpVskxcIQD73R7jMMCxR/4ig4e+r7RSBDcnX5WwLswffVQTxpcGqgFJ8zf5alIC0MCZKeOOPBCmesUzJqlBBjmZmrBuG5Z5xtPDA07v38GFADcMGKYJL19lqRqJHl9++aW03CXCNN7g6eEBr8+r9nlrttGRZmYcTk9n8PYOngYMMWK/2+OcFsxpU4cugrkRVZaUMZ8W5C1jO804lhVp27AuDC4e65Lx+HjEuG54fHzEbr9DLoy7uztsa8LpdMJyXjUYp+10F/WVtor0k1G/ls29eLa8hK+re7rfWRQdGmxyDpTzhVEUElRJfRfnQKV0wSaqlXNkMqD7V5WXeoo2reSi7NeMNwEuBAR1NmT6jxlieR/nunZVtPe6diyvz3wvl9577Pd7hBBw0O+OHLy+nwWOSslIeUMpBdu2Slk3J6QiPADbJpNNUs5YVtm7dU3YUtJgszhUiaXKjhERhgn721t89ctv8Jf/v/8dpTCOpxlbypifHnF+eoCPDjcvDhimESknPD09YV2ANSVsOEuwiRcNDggJpuyj13tVO8GQ/QEhF8uu1wHPMMoe5wDy5vi5q7XsAnWShriSORUfNhPSh5rsTXAB0GCVXgpCHRESy8SPUooa2CCGSoMRW2JsaWuOF3M13k2WjK9Az4Hqig0ywVQCVkJOKtN5NGipr3OuiFPQBZtAgEvQfnuHEH0LwKr9InVuLShUOQKaoMJiJwbKq7GFZcEl01u8glXuBjp0dorrWdD30SCYBMaak8vUKqSyEdkbVHIOQ/BwPgBpQ9qMBFQu0FHr+4+BEAZodZPtewMKpQM2AAMOCINOrgwyOp0ZyDohKOeMLW3wnjDtHWyqTfDWamTz51s1p+h75UQwJ8nWrW+v7nXN1aN3yvvq5Bqor/elwePSEwRfrW0TfwBaPr5seuZYmuw+cQ1/kocTWwgQhNKCMI0T9vsDxmmU0fUp4/npCe/ff8Dr12/ww/c/gpjw1Ytf4LCbMI4Dosq1dwHOKf9TGFBCwmqBdyZIsL+1Olzaoi5wpPYFZOTpJJ/hGDGG6hgH1ypazSuwtRvjHvvpHjFE3N3usdsFEO1RyudY1xUP7894flywu4mY9g7DZJlzBftBAtU5J6TTEet2xOl8xPF4lIquEDQYq8F5OBCd4cjhdDzDh4AtJSybBEfy5xn5dkNwjbOvLgK1jL453xfASfUWWaCSmhMOoCbfdBUBtGCSJehM95kMV3nUtkTLgNcZBqZntPIR1MC9TUzbtg3H4xHPT894+vCAx3fvMY0TDocbDMOIw90d4jDisLvBL//sV5iXBcgB0X/A6fiM98ta74vIpsfK1KPz8wmP7j0cBcQQME4j0nyW1rguSCq6HCiJsZw25C2DEsMlYFkz0haAMmI+HfHu3QN2+xXH0wnrusA5wt3tHdZ1E8LyXJAzadsuQev/q/6tIlt0z3qHqn+0mIzuV9PZvc5pci+/kJaqUuVQ3kPOCzkvXIUkFWNFA9o2eQ0sVYWuyH2Qs4Ss2LGgg1zS5tt+Flk3Amm7DWGYJpBzwt26KOrR9u52n6wTZgtqSx9dBpscSxdFA5Ha9gNGHAbc3NzCe1+DYJbOsmSy4Xy713VdJNGDhHU7Cb7aZN9SysqvpK+t/FZGAD8CbsCwc7i5f4UXr17g6199g6+/+Qa5MI7HGWmTQOa8zCgE3L6Q60vbjMcPHrRJJV/BCkne9OygBmLUsmTZeEckxM4gCeoZJIfo+TKYjdAWNXTtQrjEohZsuhQyAl0EKn/CfhmqMhimAQMbBAMQcmLMvMh7TQSC4vUi15FSwratkMCzVCQJGXnTMyUn+OCkBYyBbZG9SFvGMq/IRVrVcjZMqMGmLBnHUiLioKTopMUCzqqAUJNavXPXEsnaqlcsMC56jXOpZ5SEYwHGDsRoZ1GqeoHcw6/mPrX1rZ9rZxc1SQmgJtON0F5uU/gqZGiF18Sj8EimtGFdZcrpMBiVQxssE6NHHBUjOr0gQicXuSYpDU+HaO1kDiEQuDikVUBmyYyVC1wgjJOXzxFk3c5PMdyibamGiUG1U4a41jm2c9DbtCv5kzXjy99Sl3DRz2GgcrkBqMmVS+9A9SWrhi6Mkjf5HTlQyN21/PTjZwebhmEQwBEiHAnAGYYR07STCSp6w8Hr5K4gAAjFwXHQCpNQWzJkSkNQsvGAHEUwzRjKEvYAAC0wor8uhbHlhFwK1i1h2zZxSszxZtZS60aWWkuewZX3htjBYUEIAS9f3CClHbZtwbbOWNcF23rGup5BDpifP6CsI5AWuLyXbdEe1WU9Y17PWM/PUnECNQzOSzWBl5i+jxFhnNTayWYWXxCyGKbgZXwkSINvRurX5MYQUF13caDMeYEGEq5WUdeQ7FXqiEjFgQatjFn+E0G/i8AANWVq1yTvpuaAmpBWp0GDICGOCOMODMKyLCjMOJ1PWlptQJxxOOxA5DAOEcE7pC1hmc8STOCCLW+6XiJrwUcZE2kBOXOq9bNLLtiWFSiMGAKi89iFCYe4Q0oJcRgwzzNS2vD4+IAYJSC6rhu8i9jtJsSQsN/tsS2rKrhU5UyqrrpqGV1/ccysz7kFY8yZvSi9t+DNFaj6qAqo/0mfa3vbNJK8g9N60FoZYBldXaOLs1XVKCyuJSXU3oOdEycfEngKQaL40MwSCMr/0yqjqlK7Cib9lIPXtyQA4tCmtII5Y57F4KKgcorl0oJNxjWT0qaAacU8C4+A/M5AFdc4jMnkEEcQHFLxSMXDUcA8b/DPM47HI07Pj3KOHSFEhzgEpGFAyWgjyucT5vkZ6zpjSzNyXgGjUDfjjQIir+SGTZ1zd74ILFPH0M59ycpBBDXwrj98BnwMX3EF3rDAhe4BwRwtEZTrbTCZNPktRTJmBn4J1Iy6BiTWdZPgSxLdvW1brYQzh8s50/02rjfBB1/bM6AgLKXUvX/LltppMF4pMMkUICXTlEAOpNqrM5DiCNr6aLZI99+wTZNNRs1wmyNK7exVvditloASUh9J9KJNmLvggKAWbKlVTfaptdQdNUtskIQZWNcNxTHSau0nl9crgTGu7y2AUv7enN/rTVafxpNOnOuBiFWFkU5YFXBYg5lqI1IqyMn4BkW2iq5PZuEE8MjwTPBNrXQOYRVefPS40GnVxajPt3yRcw6OtcXbVqXq0ksYZlJRawZKQUkZ/1EPC9rYoA+Zfjlg2o3wwdd1DSFIRafiKLBydGjFs/E1+hAQFD95JYyV29Lkgj46aWkXow5TYcaahKR4TRKM1+S0Bh4LKCclencSGIUEfgGVB2hWfWXEGHG4ddhnj7StWM4nLOuCdZml3W0mnJ/eIW9jDZaBAPYSbFpPz1hOR2zzDGKC97FyJDELn5NhHeHgcDoNeYDzQr5MzgkZu1ZQ2Lkyp6WdhWuH0lapk01WW+GgVbz96XcXsmvre508abqkOVstKYBmaD95Odx4s4hEvwUvlYZRxqGfz2eknOBCQMpSKcQo8A64vT0geIfzfsQ4BKEyWBdJzOQklWBECMoPOsRJnXatfiVCz9+RUsJyXuBA2E0j3OQwuIjRDVjWFSCH4/EIEON0ehJemUIyjhyEaTfBB495GSEk0h4xSUVfSlut5shZLVkNOttaXiyNBosu1/yjyumLdeWPfqbL/zV9qg8J6rQJdg1DNc46ezerJi7d9TgnnRrDOCi2l1ZZ5xzSFu0D9ayRnuW+xEPxk7u0R3Y9hRlkPE6qo3tBzzlh3Wa45LAldaRraxUjJ0lgNAJxwVA5S+JuXcWe59ThJ/VbHBHIszrzkukoHFE4gAtwfD6CvMPtqyPm9QyCU+LlgC2vwCK8oct8xul4xLKckdIi1dQlC6eobXz1P0pL2sABjmsCrVXRtvZ4o5yTSiptfYOta5MGO6NZJ/va3y5ljy7l4EooG74yZWN+qPIEKSk+kSY6HMSvwVoxCoC6D0AL/kDlq7BTbIXKw8UQMvBtS8JtWlrwxaI5xXh4JcQAoqyBX6nQJqfBt9hkrE6CdB+fPcHTup5WMaPV7Y1ypeE4WyFbw/47IDbcK3ay92GuB7Lqz3asO+7GYrIB5aaU/c2UUIokGYsSXMtnNjwDtntoX7IH1+/d+78Nx0nlN6GZ3ObvisPfeJ24aNIviV3JWfZP8Jh2M9g9QbowkqEWxVA9Kvq0F3Wh2dCpqPYgLV5hRlb6C2cKBM2uK6ysb1Ll27Yz/3wM9bODTYfDLYgI07jHEHYY4x639y9w/+olpv1OnShgnEaAgMPhBof9LbYglU2UhSA8RIcwOEzTiMPhgLLOmPZ7gEt1RIi6ighui3cR6CABSsdlwZYSzvOC47zIIciyPFbJIBUWCc475JTFGeJWAVGKTPyJIeL2MOCwGzDPj3h8eIt1XfD0+Izj0xnrOYKXB0QfcHd3B7q5AaCtfGAc5zOe5zPO5xllTfCI8F5GGjsmRGI4BqbDDfb3r0DktKeWq4FqARwh9c0l18xDk59L0ak5EPEULw5jX35YwU33FnrMYYa9VOe9kYfaG/YVTvVtrErGAEn9PdUNNCc3+IgYJ0y39wA5sGM8fHiADx4pbxjGEUMcMI0TnPP46qvP4f2AtGVsi1QfvXn7Bs9PT3g+HvH6zRvkXDAOBxx2N5imgwQ5fQCl1srmSUjV07IhLwlDCHhxuMMYB3zx2Zf4sy//DCllvHnzDufzGfv9LbZVCPW4eJyezri7H/Hq5SsBRduKIUpJuY1cNZBkXBKFGdu6qvMslSBVGbJllMwRzGrgqqSrIrMoc3vwxU+9Em4BFN2ApvxVQzst8TbgZELDYnuUeLLJi7xeqkJsekpKBTFmbRHQM1vJDjPSuim/jsiViM/HQY1PBZwMSDTgyEhpxXmW557OTwCAbduwLgaAkpbPWhamgX4566l7v0vZd+TggsMQJ9zt7uFdxLI6bMmDvMP7t0c8Ps24efU9bl4eMO52uP/iC+ymCY52emqOOJ5OeP/uA969/xFv330rk5TyEczaghAsqGzX2MrxvRfnMeWM1TLP9byWGnjwYHgw2DESZbBrQQlQy9AxSgVXV76l/F2wGSwAT2pA+udIq6bT9S9Y1xkMKO+V73QWMM9SZk/QChtY6xpfBCakAkrajlOSscbkgG0THi3hZmIBS5m1BFmNMptjpwY6FWTiOlXIyMGlOid2IEfuJ3ivQVBfp5HknCVrVCs3JWspBl/1Wgfse/1oPXtEkmVjYpRsmVJItqxrObbAaIGUKjt/af0l+JYb745EQvSIZ6wl1SytMyefCJoqFXBFco3ktHonCdhMm+qZjvTTgJXzQIjSfmdErygKjFiucxiDVIp50r0rWGaxmTm1VhznZf2yZ6l844yzUF2L7rfWeLsAO4Z90KmutMoquCUO0JxIB2grqQTlXXXMmm41W9U+UnWgvRcA3rK2GPzHPHa7PYiESD/6gGEYcHt/gxcv7zBOgxDZl4L9fgIIeH56wn6/B5hw2B9w2B9kEl3wgOOKofJyxjCOYOUwytcY6l955FLwvMxSdbxsOC+bBpm8cHdt0kpDBAQvcpJSru2c4pRmOApwkJbn3b7gZu9xfn7E+7c/Yp7POJ82zEvCtj2A+BExROymPXbjHiACK+B9fnzEw+MjljXpUJlDJS1nMJy3ZAGhJElg3t7cYLc/YN2kRQIgjMMOgSIcRF/lwnCaqbaKDjJOl2sJrDiMdSInaXCr6Lm3JE7XilSdQb5onwMsKHCZWRbMIByIVjn0iSsROS0yNIAcCXfgOGDYTxjmHdac8O7tG4QQMC8zhmGAjxFxGhGjxzfffAXvI9K6YT7P2LYN796+xfPTE46nE96+fQ9mYD+9wP3dFzjs7hDJwzMQSFrXrY0PICznBfNpwWHa4c9+8Uvc7g94cf8Sr+4/w7Ks+P3vv8Pj4xH//Jv/hXle4LxUQJyOQovw4uW92DiXMU4ytMISVja6PetU16Lt2hWjd9jUqi7k/Jb6d1njZj9te3stY05U50ldOL3yOqMmUO7PWk2k3zW4S91E1UrAzTKdzgIM3ktVxW4c4Qg4nyKcI+ViY4QtIKZNickTctpQSqpXa1GPUnl2qF6X9x5UCooXu1+K1pGwiTFjWc4oZe0wpyR70raBS0vOtUdzY7NNoGqGSdcugCBVHY4cYoiYpgOc85i3VoH43XffI75/h7CLOLzcYxhH3Ny+QIgDUlnwfCrY0or379/h3Y/vcHx6j/n8iFISCs9gJMFJmpi36ioXhP/XkbVUkbTnr4r3YJCLpcsCwOILPMQPjMFa6RrertPf2JI1/Xr0ARjRH41vq3GaCdR2Ut2rWK+wBHUk0AQ984APYodTWkDnFd47DMMI771U/hXlmwtBq5edVBNDKgIBILmCLSSUAizzgvN51Ql0Wc8EVHZkwI60g2UN7hYNNEkA0HuhRGAeZRKak4IQkfcWiDPsn3PShJ/TqitSPkHFt84G1TBSyjBOXJMuS7g6cmAnA0AEO7Vgk1RAyjl1VtHv9BRXf6uAtWqbiyZmC0DM2FiC3AutNVAiATSR5ZQynIcMQHGSePMeyIWRN8GYWekHalKwsPL4OpVDiWlUR4q4UktQF4hils9LGyMtWdopFZsRkVA7EKE4mcq5oWBWVsOJpFLLplU26pxre9FAPxE+AQBE3kWuRP+CgJQ7/cjaulc0Oa3VgjDaC+1iYTDKlsD53znYZH373knVjfeSVYvDUDNqgEa4NdMmBOIM5wMc2qhGVw92O6zX2WPzpdG+1Z9JUVQBi5O2JcnKpaRg3XqtTSBlsz0ckpJUS2uNBgOyjJbMUcpDU9qa0k8bcpYvh4JtJsB7pCGgRK+RSAEKaZ2xrWeZPsGM2tuhzj45gArUAZUWsJIlayWOjwUuzDmmZmt6wSED47Y4rKC9GU9RfFQNBJtjaj9/CoV2YP1fe5gRg11Wl6W/cB4usJxkIokcnA+gEFDKhqRVEMusfAJclARV+5HHEUMsKMMgFSTLLP3tRcb85pQxDAJyY4hCVn9FWlYzEBolJ1AlLz0c9ri9vRUnak0IYcDN7S0Oh1vknODIxuBKVY1n2TsfvAJO3TPv6kQEl5uDCbC2pTQHXb6M+NQyd72xb+DnIpuACofqEbl8TcMD9RddILBxnlD9jiZmnxIH89jr+9ja2vh5MgfOKSAXMqCP3rBdWx/t5Ku/d4ceBrCyGFb7OzOWdcUyr5CRsKnx5dhrFdQLUMoXa0LqVDedQ/AKqr0LyN6Di0OBTh0sBfN5xul4BBNwxxmtPFUcum3bsCyLVEGmBTmtAAsI7tDs5Xqg7YnzHlT5gwwMd5kaQIIsBVIOXlqQs76X/fdHnEuCgDDqDykuwbhtVuP66Ynh3Ueya9NxdOptDf7ILvZ7IgEcc6qrgwCZTlKBQ6f/my7qjSFUNuzMOMkWS1SqOXX1o9tnk/GemUL4ifW6CDR1DqJq017UemyO/pzU1xKqTHbmoK6hvXfnVyhuUd2SINWedmbRrW2dNFZ3F4DYkKxVUpbLbGvD9f6uW/r69bPssSU3mQEuNq1SJ/pkusgGKrbXrJxk5gqZ094tE3fri3btF2qDrr7relkVFkErx67a7y9s2JUdMP1PbC1+l3r3T/kwPhfjILK2ljhEBfly/857hOi1LdVphY+vX5V83bhdupabqrMvMBRXubKH/En2Z0uCoTatbJI9NHoCc8YAQINNOdfqxW3bpM2WE8AJuSRsqyTxchaHNm+Cn0rekDfBUBw8BiIUayvUati0LtiWBdnGYl8EfS0oKs3IcC1gH0JEYYZPNlRFsRf/hHH76GGy087mBSZFs7+yFFdy1f2OP/GBFxi3+68+n690sL2f6QjT9eqI2VdtGy8ZYQ4oJWNAgddWyxgFQ+Uo7XHblgRraftGjMJpOAwTxmGHIQ5tzWG2pdkYBgB1gqdpxP6ww83NAXcv7rAsK+6eTiAXcHN3h/3+AGkLdMilIEInZxZpmzQHFsoH6Jw47Tboo05TJePro4pd5XdCKF9K01H9WluAudc7H0HbC3xqz7HT0dbAeJL6975OokmlhQRzzClt+I4+8n28Oqw5N1/I63mWaqgmSdV2XIlH1eNm8OgaWSnFgCUfNPmZNmnTug42NdwpWN0qmupn6v8bjrRr98qL4+Fzw8XzvCCVLJXfywyQ1mWovc46BGFdFyxa/VhKQilJHeGGccyfaEnzDpdaxTKjVtdWSCiFIxJAUH4w9i3Q1N/cJ/2iq0cLIl+dfaveqWBXro9Zea6sCs/eh0naI9HawGPkageq/HbBl4oRuQ+2WPK6C8Rah8o1brp+bcooThJohpFaG3aTLZugeemrGybi7lz2OOVTD27y00p1YETnVa5c+3zDS1ZJBGrnotfN1/ECZm4V5/o85x2C8gNaYpt8p8vr/3BRCHL5zg07ObLKR+hec32j5ncZHjUqCFZKGAtgWUuvLkU131zb6IrT+zCT3ON3w6cQbHOx7/02dL5F391igdZL37/HlBXCdqtEeq2sE9L/+ONnB5tsmsc0DLg5HHBzOOBwe4v97S3iONSLDMEBFECekEpG5oLdMGF0O+x3ewzRwQWgQPggzvMZHx4ecH5+xrpttcQc6IC3fhVmuMLI6midlwXv3j/geJ6xrBvO6ypLoWMTqz9BEAPmOvI3ZiUvFSduSxkMwvF4xMOHD+CyYggBnhhD8AgEOGawlZwuG0pcwXDI2v+eN+tDZ2SWBpq1yGsYwKYg3a+LlCJ7D0/CQZPSink9y3srP8nucIBzAqRCkIyVgdQaTbd+dousoxWBW4UBOiFi1d9WVg4oiWtdbzkYrA6as7EzZApPcsNWc9MqKtpe1QdDo/tmsCU4d1oWPJ9OIGQQZaxbwfPxEYUL9vsDbm/vEELEbveMqCPrxyiVNYebPW5uD3g1f4ZXn30JZsbNzR673YjD7Q3ubg8Iw4AlJ8xbFq6WJAf+/u4O97e3mHYjvv7yc+x2O+x3B4QpwJeCz9wdtrRHGIHbuwPmZcbb19/j+PwEsMPT0xNSTnjz5jXevXsr2Ql/7SY1ACLVBEJEF+JYjTMpl1HJpcqjVJLhAqAUJVfOxb6XRhrYByOKfG7TLC3T73TKkRgs5dDqPN5K58F8CThYsorzPHcIrR1IyWzIoADmrABBxrCqitSv3rw2p8cZNwUky8OgNuGo/iBlz6W0kcJg4UownimnHCOm7PvrlKJU18l+A2PtIZUA83mGpw2ZI0oJYCYkFvLI1394h7IRbu5vwDnicHeDpw/PeHz3hOfHI7797bd4//Y9zudHeFLjxUqm6j2iD6K/sl23qwDBeTRDr3tS9J7bFQJbkohD8gQgN5J37e32+h7MBckCnb3hs+CHAiJuh7iBbQWO1mPGahwlcFHAeUVak75ft9xk5eiyvhIklpYhUp0yjlHJmBmBozhKDJzOCwDU9udSxHiJITZeJwUIAIgHeHVetk0AqXPi0HjvMESPMHgtpUY15kSMLQvHmmVuhOfIYXSD7o/oZwHEnbFWn1WFSNe1VKNtTxSVqgqW+rVn+KgwyxkQR2uPZtYR3QY+STPjqZ3vevR6B1gysLwxXAFC8gjskBKwLLkSeBsQjINxWAGVP0rb4zKEF8A+p4IpL+cxs1SZJe2XNbjBhoA1IIzipK0cDptaiqUwHGd4chiV4NSBdKpiW1t1A9oZ7jkHOpAMbvLsvFMQJ5VxvW6sSYYKYk23mey6j53PP+HDKY/LNO1wc3uLm9tb7G72GG928DFqgAegIBVs5EUPODgMw1Arm/zoUbhgzRuO5zOeT2c8PR+xnM/IW6mt5CgGVw0/WeuMw5ZWLGnDeVnw5v0HnM6zcLRstgO+oksLrhs3GHcgXJwSj1QggSUGjqcZx+cz0pqxH0dEkmrEdVF7sRWpTHIJhTbAEdh0ZLKgc0beVuQtg8mIxFXfkUP0A0KYNJEZkRNhXTKOx5MeT0IZMnY3d9puOIC8q61IAFB5PtAwivxBJBSQM1rXQYN8NcmiwVhdJPlyTvl4GP2UycuH7Ei1Q9Ymp8C/cr3Zs7nUykZSmT2vK47zjOAdYpAz8HR8ADNjtz/g5v4ewQc87B5rtfegGOr+5Q3uX91imVd89uWXYAa++OJzvLh/gTBETDsZ9uPTBipSXThQRPAeLz57gRcv7rHfTfjml1/hsN9hGCbQwBi8x9ffvMCr9YDxANzc77CuC87nB6zbgmVbkR4lKfz6zWs8Pn4QzjlP9T4vbLUG4UCADzKxzGykOVWiI1sST16sTr66a+BWbSbcjka8rBPx2Bw10dUEbWMqCYXdRWUT1b236X6afNEAzrosmjxdlBz4jHk+AyiKeYC8bdgWSXinbUXJSQKxSQK0xKycQlplZfak6kMby6KV6k70v6RtGodNCypkbFvuMKcEXqDVwlJdfVmJVx3KztC3oGfnYTDXfVjOwqGWWcj8OTus54K0Zfz47TuQ+z12+z3mbzKm3Q7ff/ca3/7L9zg9H/H+9RucHh+RthOIM1y9xyCdCT4ALNMlxR1xUl0h0Wf5N5XqnJuzbo4NAVi3DSgZ3ksQzTtpc6IuCNh4MFk/5zLoooddf2cBSFRcZYESgpNWRT3plZcRnaxaxYiRFTmnlTBO8dwApxhFro2rLpbGE53wvZ1lbxPgKMIhgTnVTgeCcPFQjIrrAc7y922VjqQYPIYY4bW9u/K0NVGo62J+QhwG+BCbTiPSKmuRVWtXb7xYnZ8DwyCsZ7VxGJEjBKC25nkNYjWOMtMPUNkFChVklDocxyrIWiJO9UopMGRd9Q1p4gyEnACXCGkrWM7Kd5W1xcy7qqucJ00UG+8RDMCITVR8Xadky4crtlUdZf6eFrHX6BU7gB0KHDYFR64UAAmeCEOwitrLQBOj3edPPrj7MtJ3DWQ24n/7O+m+u4/epi92+WPFKfb4NwWbnHMY4oDDbofDfo/dYY/d7R5haMEmFzyCckBkJRQehgn7eINpnBCj05IyIcSelwUPT084Pz9jS0kn2biPlkx1Rp0mlVGwrCs+PD7j8fkoZeDbBpCVvYqjUymYyb7UoSIpT3ROyOS2LM796XTG0+MTYmDsJ4/ogcE7BAch6coJJTvwuqHMG5gcivMoIGnvsIwyRPlvpaAkISRNGlzw24q4LHJQBg/yBM4Zy3KuhHtFwZtM4YrwIUqwiRoTP6AZPuYrHsTqkqCKYT10AMxBYNaqqm6VFYwTOTDpWOLqoAgAddTaEXpQVMt3+/czwQWBSKbyzesmQMkVBCdluh8+vMc8z7i5vcM8L/AhYBye4EPAbrfD3e09hmHAZ599gdube5QMfJXkwna7gGH0CEPEeNiDnENcNgSXxEZnAhXC3f4Gv/jqK+wPO/zimy+x2+9kQkgCAIdxfwMiCTR9+fXXOD4/43/8t6ylucDz8xHrtuDdh/d48/YNvAdi6KoA1GDFEBsgMSd4HLTqT7k1VJZla0iNB8CpaC9vEl4FLli2pU4+2cxS1eAUtfY5M4zmHZMpRG2bq6zBTQzqTnErQzcAIRU7a21XYxYDLY6/tA7CAJHyVTVCQVP0zVMmKHCu16oZc8sEEVADTV174ra18nl7mthoC95dgwGos8kX93NR+dBJackFa55lGpwrIFdQikPOHgyHdz884PndjLtXd7i5vcd6XvHuzQPe/PAex+dn/PDtD3h4/wHOrXBUtKpF9tg7j+AjmBmJPDIywCSkmgrcavkI6boWrlw4No7eKn9cJkD3YYgR4+Bgo70dOWSdJHat/y+qdMzQVCDRAJW1UAlQYi31tSyYXDM5ncBhXGCqfCRgIQHOYRzF0GoQLQSnHF/aLqxE/2dtfebra1ZDDCUR91aVx9IWm1ISvoFS4ENz/kL0iFECLmnT6hX11bJOqwJQA7AhegzjALC0BJYt12waqLW29FnWeuDUIJMj1CnLdg/UboSUD6H/PUGDaRp8tIEZ4kTJ53JJF4GmXrdaEJcLo6QizkZxWnHEWBbZL6tikpY55S6sIILqPcp7az9eBZcqkqAu4GsyazejuibrC4p8MTkkJaheCkClYHDAiABrPKHunqwApQanqa17Pas9UFJb5bosalYY2Z/168ppQPEcSziBqWvv+xM/zEEdxhGH/Q32+wOm/Q7jfoQfgrbAqDqIABwrZwkhxgHTtMMwDvBR+J3WlHCaZ5zOZxxPZ6znM0ougn90HWxLpeOyVJ285YTzOuN4PuPdwyOej2dpP1Akfjn5z67fss/NKfPew5EX3pUtIbNMMDwdZ3BO2MUBg3M4nReRRWZwKigZYJ/AbgWcRwnaQqAcFiVn5CQOeIFHgTj8MXqp/PIDdvGgWC+iZGBbM07nWTCWpopzTtLGJH0zLWiMxpFm+2/krBYgBzrRUHkXZ1KJ0hWkt7MgOMCT6jnkFnCyo9IFmex7rWoEy8APtEU3h8miTeZsLWnDaV0weCGkzTnh8fERy7Li5u4Oy7bqfQ9wOmTjxf0LDMOAV68+w83trUy3XKT69v7uFoebg0zbU1vriECF4QkY4BHdgK9efY6/+PWvMO0GvPriDuMUkZK0mng4fH57ByLC7Ys9Xn3xOY7HI/7h7/473vz4A9Ykk1rXdcW792/x4f07eE+IwYLgemZVrmpbjpNJUqNiKO+9TLOuji8DsMCP4DkJqFjA3igzslb2bGCUGtg2vW1ur4iOYJqqr6lVk/VBT0vMsWIka4VfZ+maOJ1OeH5+VNyzAtrm7ixYlrK23yX9yqb+OgWpwUhq+lESl6rbdc0ARulfgxYIynmrdhaw5JDTAJthsU8EVKTnXvRGaW39/QmR+0jYkvgL2QfABZQsE+d4zXj7wwcsC+Nwc4BzEYebPb77/ff453/8Pdb5jKe377GezwCvABJqohAkHMFOMJRzGZZYZFZ7U21aIzxu1U+o52jdMkoS3UBgBO/ho1RkXexnXZ/LR6voaTi7BqNgFVvWFmbSRBdmy96XWXEWUfur+nY+yPQ0a2GrkzQNT7PgQwlcpNpy6XyAo6DYAibQ8jfjQ4IkD21YSFYMT3uHIURt8/cwzqX2FpfYGgBCEMqC9j6oOpUNn9s66WtbNbrum4NQAujEN2QJUtl+OpU/CzYBpPhWrqxWHAoPiJCUl3ZmMi4BVGEIiTnQgk1O7R5BqgyTJLlXTdh5J9OvSdsNDbJboFJd8JoQYMOFJLjPSLcr5i9Un1uBo03/KQQUp90VDknXyumGRkcYoPqy250OIl78dJW26AWwPkda49Redr+vLSoVK3YCbEk7ZhhFyB97/OxgE+kFeucQg0wHiTFU0m+77xbpLtiWDZwBt5cglfe+KlHvJFodY8Q0TeC0oRw9KoOCAkqLUFeiUwW8NtGojmckBx+iCqU3WHCBBQisSsUrkLa2LmiPqtOR21tVvEbmq+dB5AIs2ScNvggZXadUuB1k7xyKAlozas55DENEjANe3N9jt9vj8ekRG0vZ+aokb6TraoTn/YabUu372PvyXwB1EpCtpwSOWpTSyu6qM6UGrHkaHU2iATH7uhBiXVuTu0/Jj77eG4F8HFDygmWRtsVt0zHnm5Thc2EELxUQaUtYlhk5y6SekmW/CTqZLEQxbsiA9yDvEbzD7WGP4LxkV73Hy5d3uL3dY5zGCkwuHESVN5la57Ft0uIQhyjG3mW43FognKuCWqPndTy7RvmLs4k0DuQyUqZ6XtoaquYCQHAa4BaSU+YiTofKk0zlkR5om+hl2SqgGQczgs57HVkM1KihyuinSobb76lW1Vk2ohjJoQI8AyDctURdBna4vic6B9Dk0b61jFl7Xa8T7a3k5/ZCk9lez1lwqd/P7q/1g6/l10zgECPiuEPKjDRLMCO4nfDNuYj5tML5M54fjnh6fML5dKrcC/b5MA/aAKVlUtVRb7JS6ljknJSbzdrI6n5069StRy1f7pzxvoxZXttAZAXNTpypi5JlO88Wka+6tzc8TU+Qrjkr8GQF3KYnnfJBOW1zcVrNZ28lPGCNn09AgFWc2n0LkPbKbVW5Ea6CZD9Zsm3ArJCuf0t+EKCZzNYWCpIWD6uSs/c0U26BZAIrJwDXFh4A8FrxBai+zgVOORBacAda/SfnyTJKrJkswRyaucuaVaaWeW+SQG1/uBGgliw8Sjkz6tRONVx1n22PnZkSvuR6M+DDEs+Wic3WjldUP0KlwAuxs96vcF4FAfHk4BDg2IELkEqBgwwNEIzp4K/lugqIVSSJQbHdZWryUWW0vp4bfqKmJ/qz1LKi7XZF7j8Wnz/FwwJj3gXEYZD2uRhau5zadsM2OWcl3S9CJh4jvE34UXmNSmUwjCOQM9b5jMxcz6QtVdUZhs+0ZTWXUh0TO6/o5ERdrwvdYgEnA/ti20ptE8pFhwYgwzul6VbwVPew2hghHTfn0YLRxgOYc5ZqJOchrcMyUtx7h2kvQ0Gmww3iMMIHwmk+S0uZVpEB6nwWlrNUdeMlOCay7LRVNECdHU1Mkq9rAKjcKA4zx970vdm6ogkCBoMSqg7hvkXk6loKl1rxZ38XvhP51BAiQhwwxAlDnMB5xaxVNMLTIq0xSbkKSTmXbIhFShlxeNYhJhKoIucwrwF0Flyl2RuMo1QuxDjg7u4OcRhwe3+LcRp1ApYGE6zVhJqT7rzHNI3IeVMeFy+cgyUghKwBJF/Xs9lxsTBWUJZzqWeWaFUZ9SC32YrJ59n7wYKhpJWZHjKJWLnxsk02LJUL1ap/TCwJ4hvY5Dmj/xA50HPRVSNXm9xhIOcdAgUMw4jdbo9SMtaVpT2MS5uiy6Wd95LVRonMXFSw93ZeEwJN7/Gnn38l4/ZgldvqN3Z2vmHCqki7JzZdTB/hgLYuMUa4OCIXxrwKPgzkMLgRjj3OTzPKWnB8PGE5z9iWFf30N6q+FKsdMgyFihH65GjO8u+c2n7aczrpUmzT8Pqn8Og1hvpUZdNF6xw6vdg5P4Y022dcJjxqe5h9tGKO/jhQL4/1Jrr3Iuh4e/mMnLPY6oqrNNliPVr1HDUfwfRKT4uhzqWhd+kkguCmyi2rgTHnPEox/YSr73JtNmCoFAaTnGcf9ByDkIO0yEJ1fuWqdVQDVm2LuJ5JebQuDnZylU6H5xTrqqEmSw0/dW5DPb/dV+5lxGQbtagAVpVlmMK6CSwPaRXlheuatRiG3L/shdFimNRLtXaMAYE9qHgQKw8ny9AxsY9tH+22qn7Qm76QN/2fxYXqUsguVazfHZH2A7f9r0/46Oz8cRD1s4NNyBKlG0LAYbfDjVY27Q97xCHKGhfJxGVOWM4znj48g9ghvAq4ubnBNO3qCg3DiP3+gPXuDp99/jnOuxF8fsLy9F6qbRREFyPJJSW+LCTTFXISTpUsxMQhRIxKDitC7GoARFabYbMdyZmSMMCTAXJwICxbxsPzGcwRL+92CF4m7AUiFIK0JoAABIQwIiuwLWBkImQGEsvo721bwD4gcBQ5ZOF3EuN9g8PhBn/91/8bvvjyC3z33Y/4+3/4J5zPM56fHzHPZwnIlFKdVUWjddqZOKcKMDSDI8RyGqZV0CCZIOF6kEykq4BOhEVLVuupbtVOVZiB2lcOWCalHTKuTqvJ3yXYlyyVRxwibm7uAGa8f/sj3r17kAkn84ycEpyb4eNR+JdcAJHHOZ+xzAuICB/ef4APEeM44HBzQAgB+2XCNA1wPmIYD/Ah4tUXX+HPvv4c+90OX3/5GXbTgN1hwm4/gUHIxWFZpMqErLy1mCIk7McIciMOdzvsTzcoJSHnFSBg2k1Cal8yuGxAdZahzqiuv8WlHcHNs66Ltgap0yHGOSDGQSsHRwlGugDvRwUVFtxBNcrWT2y8GQJuufZrm4xIYLR3VftgDOretL1qYG0YJkQ/IueM8/mMnDakvCGlWUGNtfelygXQyDuvHMFSus+4dHzql15zrYgyZW+6Tb+KAfqqNaHZZlfv57rctt1yr4QNdBEyAHaEw/0NXr78HKfTGcu336OkFTfj5/j8s6+ENPz7I979cMSbd6/xw+vvkbeEbT7DQ/iUareaZl84sQaUWNvozPBJ4C5tSQECOqDUdqs60cQ1kJuZAaY28YuaPjMyTXPaRG20e5YgABq4sJ/JJlK0AMenRncT+ValY3tBuZYLOyd8HEFHLEcX9L2lxRKQTI/3qBwcIjPCK8EKuokIcYgYYlRdHiAVYaVyqDXg32TZlu9isk7WFIaVd3uSatXoFTCJbh2niIGpq+RrWVxPJA5WkVG2XEqtGBBnjrHMG5ggk5cImHaDtq5RRWHLKjx1MmVzRNApW6VYplvBBzuU5FCI1DEx8WfVN7o3rGqbCdvKYJJsHGcCiutAKzUuECtHh7boQjkaDFtYyw5BhykypG6NZdTyII6WTP8M0m572gBmDEPEboqIiBh5gmOPnBaktCJ7RiwZmRgDQYJVUP4COZpyvTa1D407xgJI7OSGLWCXVc+U3HTBZbD2458/9sH+OFD693hYA+E0Tri9ucfNzR2m/YRhPwCeRMuzVpSuC9Z5xTqvGDxhHIRLcBpHiFviMO32uL2/B/KG+dUrLNOI98sJy5OeX0hyryh3lyTThNE9pYRl3aS9pgBghxhHaVWqi25bYjb84zWzKnIQVbLZdd3w+HzEGBl3e0vkARb8ZeX3c07a2wqkZbmwUBqknJFyUQyV4AeZ0AsAuSTknDHcO3zx5R2m3Q5ffv0L3N7f49s/vEYuHsuygrABMMJ0qRJ2ZI4XKmG+VaqILVWcpXxVzjmEIdaWEkdBA4YK0Hs716lt+71N+SIibMpPZJPGLPAk69oWm4rKfm7BYQk2EQCH/e4Wec24u32FNGd8ePsab1+/1muXevpl2XA6nRFC1CAd4Xw+Yz4Lhnr//r1Ujo8jbm9vhVx8ftDp0AN2e6ExePXF13jx8nPs9jt88dUXGHcjpnHEOA7ieCbZK6msVdktACDTfl++PCBGYLfbKR2CYPRt85jGnQwdgbUGWfBc1lE4gcV2moNITkbFGzm4VbM6Igm4DjK5cJxGCXj7CO9jlVWok1ay6lCtpq0DGhR3NDwiiSAd1ymf5yXYW7EwiayUIvyxSEJoPY4jyDlM0w539/fY1hXv3r3FfD4j8Vx5Xa2VL+nEuJwLUhYSbIa1eVqbcBGvRgMCXBiFJFhlpM0ymt2SW/2wFZjUyvvVM9CEt04eQ//ry6BVC1IIdrAqRPIBLgpX7/72DvsbadP88Po9tpRxcBNe7mTAzut/fostb3j3/j0e330QvJxSbQ1iFse7TQNLyhtlwy6KBgTkujaY3JR6z/VMmc6vNyBB8sKCkV3FV80K1O6XXtt1GKj6QFbppm/roHapd9j1w4kUftRK2xqrqjlgq6x0ZK1nTf/W5Jf90jstipH9LszCLayYxXvZIx/kTEhiU3zFypXMDKGckaEmIeg0U8VOQgIt617YKistkWgFE7Hi/opx1a+05HQIDt4N0r66CkYaxxHDMGLbMogX5CSdPUIX4UEuKqebq/7quiZwYU2wRAlKKk9XdgWb8nZBeSIzoJytGkSpcm3ebZONIreJtMnvkpGCG6xw0MomCzwLlmSWIRsS/7BDg3b2FNvK58rZC95jnGILVIMkQbCuIADDELDf7+Czg98iqADbumFJGYNnDEUSNN6CQzCsr+1+F8FEtVbVt2u+uVWZWYxF1oV0XaEDbaxHi5Vap6IB+f9HWOqnH/+myiZicUpCCFU4vbLHg1GDRMI7JJMBHHxtLfK+8QA477Q6KmIcR5S0SgVGF8bso/XVweTG69FI+KAHS5nz1fVrzBvqpRpqtVMOiOFgLbtW0LFtCSkr7xNRUw7olAhRVTRArkJZ0Ds6egiJ62cayIgxYBgibm4PePHiHs/HGbvdDQCvJOWS/alGo6nL6pBy9zn2WTa9The5HlYLALeKBqiwc4tWot3bR/tPhF7hXghG9+OFWeoCCxL7snuPGIYB5By2lJG3VKtzbDylI+OkKigMJBaHcduSOneSyYwx6DjkAu8zCjxCznAE7MYRN/sJL17cYr+bEMeAOAbkDJzPMuK5gmluxhWgSt7oY0CIQTJ4Kss2iUTkvS+55Q50WiaKoUNsQCTOXVFnOrhSM9pC0ObBoYjsOmhVBGDtVbbYzO0r6wjd3lEtpcCpki2wTBkqXfVFPOOTDwXGxiNDDsHL5BLSDFMLEpWa0bsONPWP6wBXn3lr79UJkO0FX75HL/v1PfWmGD9drfVT92kLYSX1LngMY8S2SUsclYzgHXbjhMyM47xgyxmn5xNOxxNY2xsvL7R9t6xl1VvVI7G/5xr05f61FyepyZKNui8WTOrWEbgERea0NxSlpkRBTTVIZjj0b/355/bSS70gPhkuZN7AkjMnoLUd9HtrgY9SuH6yyZTpTtO50nIqjtalUPVBMLr4vXzrg5j6OweQN8ely+Tpy6VMW1sZu4AkFKxYebzxJpAj+Oh1YIbcq1X/QIFA5RmogVBxlrwTcO+Dr1n8FpS1e3Mgq8aoMo4KaC5umSXAmZNUXsl69+vS7zOqsmZYa1x7n5qDsM/RfbbSXqsKExAp/Byk2UTvCME7ePbwLJVNEjBTwnAUOAYK3EUQvL/K/ntFTmZD9DRc4AM0AFWXpHM4Ls9/J9ufOGt/ygdp2NQ7jxiiYCJtqy7OFt+qWFWfZgkyy2tCy+jq2bAq4WEcUNKmMtj0RAWa3NYKaHbCWpPlTNjgEqrr2U5Xp9T6OyJtqzcHnKjyqQUt6nPUvwc3OFadVqqyWm1btSWSaq6+o+E9Lxxk4xRxc7vH3d0Nnh7P2O9u4GhGTifYWG6Z6plh1Ugf34f+hq26UtcPgC+lOvcXlqVul+HTy7fmuo/CQVKTcXqWPgo01Zdyq1ypMtwcTR+k2niIQuhNFLBtgimctpO36urcOezSqgUI/59z0no3jsZRmOCTTMEKcYIlBw+HPfaHA+5f3GHaTVW3cxGe05KlTRi+P2siDz44xGCDgbRN2DFKCTUBqogZUoXblViy8bhYaz601BJakZQ1eGetwcb9xAAHxS0yFcrktO5N0MoZ1ZE5C3bsAzSFZTCJbLNWjFvF1AUW7iTbZJdQMSJqUbkEv4g2GI8kV+zed2rk9ns0+14xl3nN1GQP3fnG1b8/wl31eaoz9Wfq//YJHflxgrKXWMUnRJAOEy+J8iRVrB6M4BzGMAjdyWnBeZ4xn87YlhXMRRzny0+4wIAVI3XVIea8o9r4Tr9cnW8bKmX31M6sacTLe/sUjmx/b+ex/qxy0sWN63Vw/zp7DTWfoL/ln/5sru9R9YLrpI+bPrdWXsHwrtoMoqwooAUhDO7VBC26IAs3HmBro/ceAF0GXA3PSXJOgrjoZI+gVYZM1ZXxXhKSzFpRzlf33WFJIlIuS5Mz1HuySlkubZKw02RGIbMbtmYmz9x0tb2eITo/A8Xxx7QO3TU1zCjXwtbWVyGS3nvR9zIC7Y7H07lWHSx6qMAGwnmNjThycFm7m2AYimqMQcIu7SzYCl3gPNsB6s6w4Sm0s9D0gFJCoK2L4U6TPZjs1KP28/DTzw42TVFaj3bjhP20w27aYZgGxCmiOKnkyZxxXk/Y8op5WcQ59ZLJu7k5YBxHLZlmkPNSEmx8RCHCBW81+iq4/XJ1hr1IJiDn0tovoMYAjdDOhMwAazte3UYwpCpCp4ttOYPLit3oVPE7EBcZs8wSAZWNkMycHc6CIiOfsxAQ1swzObggveZ7rbqZdjtsacG8OLx5+wMybygl4q//+m+RUsbrH7/F4+N7hGFEzgXLsuCQhSgXFr0vLYpsRqrUE6LOSi1xb4axKmhcRv+rSrwCURU/MdfyRl3sBkTJyt9tjZsC7ytXCjOc97i9v8c4DVKhNi9I24b5fETW8a/By8RD64OvI17NuJO0xpxOJ3jnsK6rtnRGTNOCEAdMux3IEZb5Fvf3OzAn7N0ecQhwBAxRxp9enhPRhCkXzOcV8yyE7Y4I5AOsI2YcR4zTiJwcNi2D9qViAFRCNerXo1RZrA42xPHcUgbzCnJOwKkGerwzhQqAuAJ6c5br+VAQGwcpgSclVQSkKqIwY1N+j+ZcXBpLI+YXouWosiZXa85/yQnL4nE+C9hbl1naMTTAWXrwVFqQha11yISiHmhZm779rspiE7wKMP41EEXojRVdfPVGpn9YIKLuDxKeT0+g94S0rIhlQ3CMVwPw9QFY1oTl8RHLeUY+PiLNJ3DJcKXIdKuyAXkRw58TpPKrVWHY2dPtrNfQHbtOMuS3dgZblWbBlrhmV4gYwRekEKuO9N7DArxcM21WBosaVJLKpg6A4fphYAGa1VDpVa4IoGvVVbBgk1NsQkfhrFVbQiJPRBjigBC0UkEDdQJcutNBaI540QyVVn8Zb1Ab+lCwrlkdGSFA7oGzVRL46BFHSY4Mg4zozblgnld1robqsA2D8mxtEvi35SDIFKZpJ1NXx1EqQXb7qWuBlOcPgxJIMpTsH3rWQg0exBjqUAkuEH4nFlAXovTuE7U2VcsWNjCgFZUM8KYE59B2aa9g1gB77U0h2JSWbG0fplu4cV4oBgIREAYPH1DH/YpTq44RCsZJghSH/Yjb3Q6+RAxpBBUHihkcC5iAcy5YS0HxkOtTfW7n1xxyNnk3mUNzRjv3pp555wjk9W8VSHFNvPRVuc36f1qX/KkeNulrGkfsdztM06icNDJMZUsr1m3F6XjCcX7GuiQEGhDDiHGcpEJkED5AkRVNfAQP54XSgLQtTVr7P36YHc45S1Jtk/NppKU95upe9Yn3kd9X54qMS5KwbRnH0yw2HLE6NlJBLe2zxcjZDXCTBtAh7QK50/PMJodyRomEs+r4/IicN3x4d4uSCsY44f/4P/4vbCnj9Y+/xePjG+z2e2w6OCZiRKTh8pa4AFVfGJ5plUeNx0USYUSkXIF2Tz1uugTwddommx0iMLu6D/Z17bxyP4ELrZpZzrXHOOzx9dff4O7wAmMYgJR1gvKMwhnOa0uuBrsMU1hy1GmAL20ZT49HqeCKomuHYUBKjDgMGHc7eO9xu9zh7sUBAGMcB4Qxgj0QSafImfPUycc8LzidZpyPgqFiiHDaZuudtOgNw6B2Iatdd3U92pAgJVtnSzjLOnQAAjZafZ5XDaJZ9YaH90ddt+bom92rzr+sSrU5Uq0X4P0egFRZFV3PVdsTJVjmQE7OHpxDiIMM8tF1NPwGSCXI3e0LjMOE8yng+VnIwOf5JDxW2ypTsnORwUr9UBSgJl6Nf02caaU1YOlsqAGri7PTWvXkvDXdaHrPPKYeD1aJoybi9jrZD2r/ZiEcX9YEcgX8+IxlS0AqmBzDDR6vBsLnA+NYNvw4P2B5fsZ2PiKlc7WZxAzGpripaMVOH4BsjrE5xObstmvk3pe2i9bzy2L6GMAm3FwGxrz3CJ1/09q0Lu/9o0CT2qd2lRbMkfetuPPqdRZ0rjemlyLBIeVsUo5L61ppQQiCXTwXgNYMIq30U/k2Hio7l1ykStAoMIL3yIVq5Y/Zgz75VoPlip0kwSRT6AV3ZWzJzqvcV/CDQIychQ5F39taxaZpApzwFoYYQHAoO6AMBSEA6+DhA2EYA8hZB0cSHWi4k7gmD+x6JQguCMFp4DvAgTDI+bAWyyKcz5f7KlWahcQPsMSBEKVbSEJ8fDmXTfcwLOmLej0iD4pRFGfJMBrBnN6TNh0pXoUUT0574WQ+7Efc7CZQIoA9OEGKa7Kc/zkXbIUwekjy0+QNXSLZ7H8VPcVVXXDTlqHuuRhhEKSIQpSrVetpZMWSJOalGO/VJ9HG5eNnB5vGMMI5h2nYYT/tsdvtMI4D4hiw5g3rtiGVhNP5hDXNWJYFXGTjp2mUYNM0AiTtaBL5t0lrofZ1k1eJyU2RVWiozmHJUvaactbxzqJibApdjZtwtyxX4OvCnJP1gDLSmrHljGXzKFn4cggMr0TaMrKQwHBwPqhiz1oCLoGD1FV4gBycl2lyt7cvME07kGfkvGJeCl6//RGn+Ygvv/g1/vNf/S0cedzd3uLdux9wXlc8PB/VoTfyZlQugIsvzuo4azSXWvTUyn1RFXRbCeqsSc14mBPeOchATdJcRKDrz0Qyvv0KuPdGj1mcytu7O3A5oKSCbd6wrQtOx0ds66LBCinNFg6SDIptAh+jORGn4wkgwJ88nBcgejisymsQUDhj217iiy9fAQ6IQwT2YlzHqEAOWrJNberB8bhhns+YzzM4K0m6l5YbcsA4jRjGAZsDUtrgCqlVlvXwNjnLDj0XFG5tOak6iiKHKeXa17s6abcjQxWEum/eOyXTlKyjKC4pfSciBYwOwQ+Y4g5ETqZIMXCeZ6wpYds2GNFeA9R0EWwSg9FANjOL4SsM7wmlbMhpw7bOSm4pTnDfusT15xaA6g+gnK1Lh7DJjJ7QK9mp72GBJ5W7/tEMeb/+7cT357/Gr6yuKTOeT09Y8oKQCsayITrCq5Hx9R54RsYP5weUpyPy8QFpPgrwJMneF15RWDJ1nI0w/fpTG1SW31wraXOim9Nie0CEmiUxoyuGt2DKMu0LsDJvMQAWDLJrsfZXIxXvLqsGGNABIdOPhFbaLbqkBa0FBGuFnrcpTa3MnjX4lnPStjVxbiSYI3wC3nmhClJDDIK2Qsjft2KDE1pm03kPYtW5aYPzl0FOWyevwGscB0z7QR0vMSwpZSyLDJaY4BGiVOsMQSLReds0oKK7RoRxmjAMU61QBYDdfgcje2SW1g9yBXDaGrqVyr3nfUBwMt4+BAuiZxRikHo2zsvYcnOyc5bJc7XVp5eYrCCC5TnOOYRgjkPHr8YGfkrVo8YP4rxwlIhjn+tZK0VAubRAawm9N+c714ziMAUE53DYT7jb7UA5IiwDkB1KzEhRnKU5LwCM9F0rpdGc+upkajWvOUH6AyyAWJeAGsAyfFQ50rg5a31GuAYPVFb+ox5GwDqNI3a7SYNNosc5F2zrimWdcTye8Hw6YlsyvBsR/YRpnLDbTaBYPaRWTeS9cGd6X3kkKwzq4yFs9ASSUEkpKfdfcx6bs8kX33st2+slGMwmcagBiENeFsQQAdaplBAgDxZi26L7SM4raBcgnRVH2WRBGOYr0FbdAd5HlMJ4Pj5h2xZM4wFpK/jiy7/A//Zf/i8wA3//94TvvmOQj0jbKq25Qavf651QNQTNPpkz6Gr7nMlODTZZ8KKtSOc3qm2vlWNWCSl6jbk5sf1ADvveJwBQoRnXPSfyGIcdvv7qG+SXCQEe27xgW2ecTo/Y0ootb1iz8OAYD5CMpm9BFoI4ms9PEozxOvFqGCK2LVUeMHKElBd8cfxcnV2SFheySiKqlWsauwEBOB5XPDx8wHyWpLN0NgDBS/XjOAzaguOQNsOJpa5BSy422c09n2HFpqJf05aRk2DfRZMHTXAbzglaUdEwD8H7gCEK5jGdHELENO5BREgqj+u2oSge91YF6Dx8HEHOIw6DELI74ahteymfcXcn7TDeAet2wrYtKKcsgaZtxaZtlxY4ahiqrU3hUltljM+qKBF6rXYuH+OmPnncf/UPuvqZr37ZAk0tAGr7UUrBXBIAwpqe4E5HTM7j8yFiih4vRsLnIyNsCXx+wPz8QTo4tlU/qWgbmk5SU7/qCkB9hFUu8FMVjf537WxanY74KfkCQ4VQMFggB61Vrr/33ocBLoNz3YppQLpdi51eC3ZeBpuas0owIm8PH1xrf0uyv0SxVfooVYxUj8nBcyRJhnp+OmoJMAvVhQViNZi2oZ2tpBWPTrPqJQtFh/dS7R+CcNgOwwCG0BPklLQ1WK5tiNLBtK4rctoEs2mbZ4gR424SXRQHnSQn/RacGTE6jGOUoFKQDJp0+aQG95Unly0AojxtxapoHZQTjyXYrN1BKza5fxQxMvVhut3+LcNWiAg+SKcVU8NQNdikW6caCAxUPCPvot1IZltglcih0uLZq8W3I4yDJCElYTehbISUHAqxxjskaDxnmdYINP7R4JxyI7bCkv5hASfjcrw4VWQhUlk7ZoZjpdLhVlVIRB/piNZ+98cfPzvYZETgPigpuJconQAlEeQ1LXh+fsZ5PmI+y3QnGVvpKwlmF+YAkQVBbHE6a9U9s/ctGRrJ7ysnui8RMwsiXd0EtfewjWKz6ArWJTugY+YLkIu0CYiEtN5IUxMFZtBTvSY5YMLRpC6fimQCkKRiJ2cACcvpCCqM9EKqc5wLcEGz0g5NgWj0uHCvrHpdLOvmtD1B2gj1eWwnwwSNdak70M5NXRI1oWzBqD6Ixy1yin67OiDQo9yr6zTi2xADpt0E7wnrckROpFUQQgIqRlQypvWDuDkONVgIwMhFpQpBOArC0yOcI7x58xrLcgZBOEV8jfzLuHI7Klkrw+Z5xvl0xjwv2LYFOW01yp5TAkGi3ll5box0uF2LvaOr8mZbINfsqqhXinYT/c542e+ZTKIJpciepsyg0rLS5Jy053iP4oXzhchVGewz/O29qQsqNRBat6oLdBiwY3A9ruawWjVBCwhxf8MfA4arR9tPdN/b31uQqXdyutdfrL4e53pt8gzhItI7N4JWfWVhRsry3JIZ6yxA3etkjPOy4un5CcfzIn3l66wtCeZAqT6o7IINzjUI0j8+sR79fVHLsrdqQq43ZqDP+LmKZj2yZbdsDztVWgHP5UrpfnM9/wKU+n379D3YuvbbzepkgVqm25bDjKDxezTQ1YIF1g7KmsFqbQud1dDnu3pl3f4z1c/r1aIBKOe6rOOFjrpcIKvQAqM6m7JOdg/21D6YIXxGQnIp47AtaFbFtzPykvVqzsTHHoBep3IFOJagnt1xA9rVirU9685evcfSyHz74t+aqb06P/LV/dZG9Va13mRPdHLRNl2pkvIk4AusQSUnw6xZ+XBSYWy5wBPrvnBry+wk7ELg+PLfF12C5uSzyF4lm74IJl1DJfroY/6Uj+CDZp1Dl2Bz2lKasSwz5nnG6fmI5+dnrMuG4AKCj5qIa7pLbqGdIVA7Gxfgx2S9ynnT07k0XjezUcwdNoC2dNkiUf+Geg0VGrQNykWyzjk7rQi5qNUULgh1jIv+O5WETatkiwaXDEPJdCLRCd4BwQPghLQWOC5Y5xmLn5FTRhgE0rqgFUKO62udOiNt3/UUq76r92znn9rf+0oQLqW12VYc1pJz3fbU9zXdV3Vetb/tOfJ2vZbuNXVvH6TdGwwM04j9zQHL4jCvzzLNFloVAq7JIAcHanHIq0fbTy6S4AOtOB6fEWIEc8Gb1z9iXs7I+SW8JhSE/xMXFe1WhXw+SbJunhesi+Ao1umx2ci4HcGmkrbKpdZGbfbagsx9wKQGmaslMAzT7Iatm603QfRCztZSI1UbRatKxT8hrTQVMl5yDUNZZWitErtoq+vOAzdeSdvFGjBCqYEk00+VSN6+rrFU9+glAjCZ7KSDr2TFflcPYH9wUatHPyER+oPKpdo96L4Z3yNFAjFpMI5rBVguGd4XbM7Dg3CeZzw+PUkQPS218tuSIdUvucaQP4Ud7cxe3H33fLUlrZINQG3JJPQYqvkbmtTH1SHp3xLtfXvj0agOuudd6INmp5u/ZJKrpcnQ8+mA1sXQbrdVJxpylTerFYtOk3DOadXd5VT3HnM5oqrDTG+JzKrc67UIdlK+3Ri0Shz1PBi/pkxRZJTg4VjPpBJ8y1CEFkgnEh2adVonAYJz1O7ANY6lFjwxjN3p2U7W25lBtV/Q9200JhYX6Hlru0o4xWqtRa3Hz4KhuKD6e21dr+UDcm5KUwqmjdBdL4DKr0sQ/80Rw0G6kg3/FS/tkMZpZu2fW2F4yvCdbbnATjIS8PrKLh5cn6f6286V0wEurPy/dq9Xr6d/5b2vHz+/jW6/F+K73R7D7gbDbo84jQhjRFmOOJ6ecDw94zf/+I949+Ed1ueMgIgx7DBNE6bDiDAGGW8LBpyTKibnwCRfcB7kAqTcOl85OXoYirSqLWnDkhOSTlTJWu0kmVffQFk96wa22io3kZFDxiztRtuWsawDltWDEFAQQT6CU0Yq4ohuXJAAbJwxbzOWtGJdZmxLwrbK1LGtOPhSkHmF44JcnpDzItH7dQPgsB3P8DTgxc0XmHYBcRjhRiC5DewKghftE4PDEBwyMUoSSWwyIGTTkgm+NLTqF2hWjqWqrH8eoYI5VMMOaUkwI18/pwMC8rEVtMnz1GE3Y4pL8NXeRU7R/rDHl19/jmU+Y9uOSGVFXhO2Zavvn7IREu+qYIsScrXlpU5cALAsC9Z1xXmd8cOb77GbJrz+8VvsdhP+5m/+Fn/zN3+DcRxwd3uDIcZa+WHtNCllPD8f8fDwjGVZ8Pj+HU7PzxX7lVxABdgNE1hH1eYspJBEBBQ0AmMddd1n4ACNxldjQpfrWddVg1J2xwRNDAu54bIkKT83KSZthfOucnmQVtU556V0uH52l+E0GXAOJhnZeGM6xShyX5CRwF73Wqv9jGyRaz+GgggDCxaw7P0Wakqqr6Cy75/8+VKVVuCnP6rSN94N4zWS949hUGfPIwbJOk5TxDhErNuG56NMlXt4fMbT8xGBHHKYED3hX358h+NJqjffPHzAvC5YUoJDUgVt7UQZzEkvsFz4Zhf7e3ET/UOBl7UFe4dhGCsPSiUN1UAXkewRl4LVb+Cs5f3aoiZTyFQ2rsdEcttfK/olGFmlghk20bs0rhaIEOdCtryQjOOFAqFh8BevZzJnT4CQV7BjI8qlrc5eIFOKrLXDWrmM3DuSF1uQpaKUsrRPi6Ng3GVyH845xNErd4iG4aqTLbLSgBXgvX5pwCJ4D46x3TxZVYNW2CrRK4EwTQFcpM2xVpTVUDa3bywgY92ECFbW2hAcAJ24TUFbWYnBXohQ0yaVwR1uaXJlZwwt89dPKS1Z7tVHhzBoRaNz1UGzvcwbULJUYghJp/4+S5DAjnPaZK2JALcxsnfAoWAkWb8Yxb6n6OUrA1vxyEw4p4xt2xCdw91AUjZbekDe7HcbVay3rbqs9y0s6w8Q4hAQfEAupU3lqhleTXYYyP83gKX/r4/9tINzDvv9DvubPab9DmGMcNHjvM54/eYNjsdn/PY3v8P79+8x+Vvspxe4OdxhmAb40YNDWxerorXWVRFgJ0Gp7nOLYienVeGAEDtvSaq4K58WF5kaSFK95jWZUuWqRrJK5coo6Dj7tFWUS8FWFuwGYNmkCjyxTpJkrWQlQuKCBMZWEk7LEUtKOC8L1pWxJUYqDom9jp0GnGcMY8EQCzitOD7NWFyA5xHLU8KLl3+GuNPq+KFgcysCEQZiOMcIWhnMoE6WzNGFtqa7ardRdaAmIbWyqbg+yEAVP9QEGFGV0VY9o8MTXKiT7axC8KI6Ql9H9u/uG2AQguCGAAoOt5/f4xf0S5yOTzjOb3GcZ6Qsw2mICGmRZhIfCT7IO186oI0z0qtePc9n0AIcj8/4w7/8FvvDHq9ff4v94YC/+qu/wl/91V8jxoD9tEMIvg4mybngeJKJd09Pz/jw8IBlWfDu3Y94fn7GMETsd5O01bAMWEg5Y8upC7qrld+ELNfpQBsLzpvS813V/mWCDoCSV1dPkaQSBCSEwilpsDVtta3I8MMwSAWHDwHDaNWrowTdIOfMJmk7nfRnbYmCz5S2QOXJKohlqNEZW1qw5Rk5bzKFed2w6kTmvKULvtc+2ESA0P13QQ6rqehqZ7q/ca2usFR3tRksLcqO2/MBaFJTf9aOEWLhwBWbPkoLuPcIUSpZpkkq1M7nBe/ePmJdN5zOR8zzGVuIiHuH2QdsP/yIdx8eMW8bHp4+YN0WSeiRBQlUBlA6DMUXgZl2f73zboeiX5Mq3fDeYRwnOHJIWknF4IZxUwFIkrYhJGSWKusQzEbo+nfUAW0hxYZQ/ZflcQSNQP1VYlj45uJa67da5cKKQQghBoyjUI0sS6tYj1GIpW0wlHPCWyuDWhxcKfBB2jhBMlwgl1L9A1J5NNJtFoIYpFKwpiR4zFnFrMMYIkLw2B92lVqgMIBcpBpv25BDQIlR2s6IgCj4I3iZvOmIULQKkEgCNmtaNbhCdeojOfE7ZcEFn1pQW6phlUohF2RIUNAmmeZckJOtrVNuKAmQFtKqWMV01zqwD85mMJwdO239K+YDE9dkqveklZ3mP+t3xXYlS7LFOYYLluQoKLwJ/5QWfqybXHfxBcQF7IUndnQAe4AHQklAGTxyjjrpNUmRS9qwpoLoPG5HwVAS5iC119Lp1ap25dqubt6OmuhEtfVR9WBOGaztkC0hoppW1/bnIqifHWwKQcqhhVsp6JeWgIOR8oZ1XfH8/IyH9x9AKcLRCO9Cq2wywmMzqOQq8GNTpM1rvFC2fdaoKDBq/ckdz4Q5VVeR587z0QWuP9S/GWCViW4FuQBZW+bISTWORe5rVo6lpzYbh5QaXmvtU5iPAuHlaT2oK5gJJRGorNjWVUonowc8o1DpMvwSdtAgbXUy7UFqWeliTS3DiO4+dSF7R9++M+Fi6SDZPS7F3OZqqAzr26jPi/JcvvostH2rERv9kBBkPC6QlQdEXtOm7YlTnavD1JwNCzRZyXvfGsEs/clbkZ74kjdM44gvPv8Cx+dfIqcRu2GANRvJHhYs84x1SzifzzifTljXFes6Y9tkCh2p80aQFh8ndfE1mEQ9OAdkf7tAXU261JaRVireV4pBg02dyyXvQMKRKWWfUo0jlRRSEux8rkYipayErwVOp96RjpHvK5lawKZ90kfBHe35L5wrgDHfuN6vBYX6r/5hHiquf91nGS4fNVPxiWvqZfgTL+wSXOZABHgfEbRk3jmP3TRiGgd4v2JdpQS8FMYyryg+YNNWq+O8AFnKhs/zSfnpAGsNkXLvgj7ARt21fvJSVda7Ve9kpwHMoONlOSUNttdbVCdPAsg5FzjInvesdRWYdVmPT4FTu166krn+cu1z7VXc/6VeupWDk+J8DSBoVq6WgaM/v+i+Q5wFUm6RS9GU5zjSbFXNZ8N0y4Xo6Rt6L20iFowEUJ0CqAPTf37Lql9z/QAN77Nyygm3hrX8FSJQka9uo/ulhklGUT3nyMFJT2n3nFal4lirqmq1hT2POn2uu9F/hukm9TSMbcB5rujYWjL6tRNAx+Lk6+oy5Pfc4WUuXDkJmKUNQoA1tLqJAN8qm4hZEktg4UHJGehtN+k57z63niKmTt643TvM/rACIs0KazVsvhiucC3ZJjOf1j//3o+g1eHS5h3rxEZywkFolU3HpyOeH5/h9xPCrRCJW2VTz5N/kTBQga3yqweyWU1cyINlVGt1ExrGEqxqrSJVgwDX36lb++6/XAAk1knBXWVTvSwNwzJXLJdyqlO4WmUTKYYyfQF4J+T6GyekdUZxAet5hudF+B0DSVWTMwxVYEH3DlrW96yBJqBO27EnV/nrxMNAt+t+BlD5cohcx9Fkeq0j0u1sb2/7+3Xtg6m9yLJiVQZEFsghjhG7mx0ybyCvHHn/f97+tEGS5DjTBB897HKPK486UWCDxPRw2P1p//9/2Ll2Z9jbPQRJgKiqrMrMuPww02s/iKiaeWQWWD27pANZeUSEu5maqKjIK6+8UrQAZkV3NKdEUVFJU8/tsvV5m7bAUppPW4Iwks7nI85Zpt3E29evOB6+kTY4YyB3pKTxSEycDifmJXA8HDmfTsyzsIHn+YQxmdh7ZQihrFEa6F8Z4ZUFBIJBF1u2C9DOAKP7vLUKbeyzea12NEhcnDbtaTEVcmWCaVtVzhnvI857UpZWnCoWb6wORKox9sZPtU9sOUrWyYKyZ6UbI5JybDpVjdWkeUOpa9AccXvy7Qyvf19tpXzWf1V/eMmm5eK9zYvvv/h7c/Q1flLJBt8LmNH1WCfx+zD2FCzOHami9CFEbDGEmDBYyvHEcp4JORHCQspR9qCeydJWu2GGb+L9F7tj3QPVjuu/Nceo1622XRmlOUWI5iI+rFOdk6mi+hVAlsJUvYp1/bdx6GX89tJL8pmvtWdQ/264JJ9sQGzZv7Y99i1LKyeNqzCN+WytCO1vJyVi1rb7+vN1oMO65VWeRVt+W+xsVwZjHQiWcqboZMDSOnky2WZdT21NL5VhDMXVOG6NTGWqcKJo8bHu022sXDQus8aSdUIy1Uw00Gl86o2Ey3oGrut2ySgVq96CTKXuB41H7HbARpa8q5I1jNE4qOWgm8/b4hUZZWyZ9ubbjpxK0MipkI208mUjV2ZN0eqsIWvx01or54yRsDWWtcCWSsGV7R0hhlVzdFMvSi202eDmeuuaa6wp2n/rGVdj4ouP0Lv5NTHUrwab+k6c7Dj27PY7xmkEI4CG8479TgQEX716JY70bIhHyzSNdEMnAmNuDdprX6lT7Sank1ZE3LbV+NvBWBekIv8pRRmlqEZmkIpDq/LVU7V16lbntB7a2wioOWetKsSYOJ4COWnLknFghDYYU+Y8zxxOJ0IKcqCmIChvlGvy3jMUg7MFaUpPxJPBhEhKCyGcMVgG6/HGYdIq9FXvM6bAPJ+gGB4ePpCsHFIxyqh773q861oQ3oKUusZmpVHKl8zlxquJYP16aaF925TUFg4uHUH9gcJlgvPytWWtlCLUysGLiNzj+ZmPHz5wPBx498M77j9+aM/WYJgXEWEUAW3ROumHQYFPEWas7VH1Cdd9naO8zzll8pLw3vHP//TP9F3P1dWe5bffsb/a0/c9fT+03lNjIMXA6fjMeZ55eLjn+fmZ3TRxfXPTgschiF6Y8/fksmrhiLjaWolfW4Aug08Bbl17BnX11j1rePHw6PuRvt9JoKO7I6VIWIIGUEkP7VrPgpxkHKixufX0tmrgJllre4bqiNe9sX1+IiQo/c9VG2UrSLmdvvZpIHT5ftv3XX+twSCsh9dfAqRqdRnkPqZh1L73jq4XFtPQD6ohsi6y9xZsophEJBJLlClHY48zlqitGIcSCUnu/VwSEWE1vgx+XrbQff5lXnxtfciXx5/o5OymHc578THLom0mC3XCmtGDI6WsQYtRir/YYjvndJvUWmi2AoFvARsjoglU0GsFD9tityuudma0suY7x/XNRN97hrFrQErW5BFEKybDZoxx0URMnrEIVBZq20suCRtFcHieAzmvoA4mt0PCeUOPox880zTSj15bcKRyZpRdKGOTw/rE1N95JxoepiCV7xLJcd3Dzm1YVwgAH1Mg6zlRA/UtAy3njHXKGCxGtQnq2VU1i4SFsp0K1uzcaNKvVSoBUWjioEXbvTErgb/57Lov9Prb+tdd8iJoa0UFjfVjTKSgE6KMkcArG3ASpHbKQssxKVNGA08j6ydTa6WYYIqj7zx9J1O55pTAWHIU2wgFjjEQcqJ3jkEHdRjzy8DnNlhqvsFUTbE16LsIlGqCr4tZ9+6/F9AEqAC9pR9Hpv2OYRopBmKO9EPH3d0dXdfx5s0brLHs+lv2405iqE4ZvmZtfb+IoVTaQJjitKAZVjCv7glKblo+VaAUanJRRzvXc5uLNargwGqn5hOPlnOmpEyMmTnU52Qx1lMyhBRJJTMvC6f5TEiJJWj8lFJLMupEHmegxEX0fU5gwsJ8PnE6PONdT55yS/mb/VM0jguc0hFrHCEH/PFJ2SnCSum7Ad/1uq5Z2vaskSozBvvCBj9ph6tnTysC6L4BLtq5NvZaY7XallvfV77R6NdLu59CuQgHDIh2Eoafj8/88Y9/5PnpkXfvfub+w70k0CnrRF9L5xeGYREA2Ym2kGvFY9vOgLofaiycosQWORfKT+/oup79/grvO/a7Hd9+/Q273Q6vmqQCIhWMhSWceXy853w+8/T0wOFwwPtX7HYTAMfjNTkXjsZzPgaE2RIVZKoJb9UYU3vXxG47Bcup797GStU019PKYI0HHLtp0Cl+pukJpiRalvWz0fXWDJmULCZqgdMKS24FcpQdazLGCUC/jbNrzBRjJKo20zLPnM9ntfdL5uvLvfSLr9L+cxE/XcRfqnu3BQAoG7ZQ2a6RLFxtkRtHYTF55xm6AWusaFI56aDI6nONzcQ0k/JCMRFjE95bhmHAW0fUPREKEjvlzFIyClfUtFv5NfVc/qXW55crUz75VdR2nAIlXefZ73d47zkY1fPLqYGOleXYBvXoZ2xb7o1ehlGt06zDfozRGEqT8wogrJdXn8v20jfxot7fMPYMO0/XOZH5cJZSEvP5TNVolEJ3IYRwGbujcX8uOgxAWUxaIFsW0QJr8eLL/E9jINFrq8WQOnW76uRZQpB4J8VEVH0w6xyD+mnvq2i4SOqssbF+ptW26KQttFQxdNcmoOaUSG3vSTzjrMF0jmQS5Rw1ZiwCQm+s45M0Az3PEBKF967lNbbqiJYa6+pKrh+9PqeyAdDQFjoDxjp8baPV/5UseoO5xlBR398IYy37Vc7B+45SIMaFOs2+6q2t7kdyxGINfZfpo7xPzB0xCXCXE0QMcxVAb1M+JZ69yNmrMW/wFKDpM6O+tdpXZVjWs2mNrzYr9CI++Euv/y6wyVoBj/ZXe6bd1BIC7z1XV3ucs7x5/QbnLPNT5GQC07STCRadV1EyuVirVFRX9Qv0z87JmHnKZVBzcQjm1JLdOmWhMkWqqGP1qGUTXVdHtF2bLeBXg7Gcs0zvOi3kqFUx6wERJQ8hcZ7PHI5HYo6c55mQAiHIdWUVRLTWY/ICScTSQ8kUawlhZj5LAOSnHV03KNgk95GRal+IgfN8kkPxY+GwPFMDe2MMN9d39PsbMTpq0LLeWQ0i6oaq7AJZK0W22wSaTYIJQsWvCZhOCUE3q9kcdHWvXtZPLo1vW8WzRqi3zlk+/BR5//N7np4e+eFffuDjh/c47/C9OB+vG3Oepb3Ne8/N7R3Tzqqgrdc2tY0gsDqXkrMESinzNAdJSo3jfDpxd3eLtYZXr+64vrrm5uZGgs0sCVkMC4fjM6fjifv7Dzw+PmLevOHN2zd47+m7iZRk9G/netEtESOlJuotcCuXa7AVv6xgUw2MwShzaV271V4NfT/x6u5LnPMMwyrEdzqeSTkxn2cBglJkCedWQUsltcNTKuMFY0vT5apPrR6qbALshjeUlfU3L0GYfI1ZuFaALqbQvXRC9QPq9/8C0PQ5sOlzr20gb+qhaQzTbmIcRsZxYn99hXeOoZcJaDEGPcQzKQXRDjCRWAKBgOkM/agUZCti7gsRE0UoOuWwSSjq8bUNdmrA+plbX5/qJ/+V1IMtcttGT/d9z8EJcBxjIMwv3q2gLIJMsQaTooIZ0v+NVaYRzQtSTFYKrMEb7QfPQiNu37d9hmXd4RWYLUDnvQBMQ8ft7Z5h7CQYrwFQrtPjFJDJ0qos0y5W3QsJ+CuDUPdylFM3xcx8DhJETiPOdbr2wnx0zuIcDEPHtBsZp761UDaKfhEBzLAsYuuVXehsY+1WIEmGQMh+7LX9su5nEOpzVKaZAK6rxkJKGoxloTd76zAUnFPmG1mnJW20SlJuwu+13bXahOA9RnQMmvB6Fk22zXQ22Q9cADSCK5SL9TewYqIgbCNlMiVl5cYlSasJBuPEwn3x1HO707bCuCxErYS2qY5q/tYYOuewePrOM/QZkyxdymBlIl00oitzCBFHYdd3wkKr6NqLXVMTsfavm0DQWmEFtwBaHemazG9EXS93D/9er67TISvTxO76inE3gZVkt+97Xr1+xTAOvL1/EAam3TFZAZt857BuKwOxniWio+naNDo0ya2J+nbYRwWXUqoM7lWEV9quxRdsk4VtotRa0LbJUy2YVJBLAdcQE/MitpeLsEszAiqT4TzPdOdZzqt5YUlawEDesus8xRVMDpQlUIzIFhRrOJ9OHJ+f8H4k3aW2n9cjZmWdL+Eg/vr4BFZaY8dBkumrm1d0Xd/AuBW21dr3BjDanuEtptEztK7YlqHj3Bpb5doKTI1XZUe+BJuqvEE984v6AP2iJjraYmzhcHjkH//xDxyenvj++3c8PTzgnUy6NMawLKmxeEuSIujV9bWCNKzalUn1bGpmXER0e54Xyjzz+PTU2sKWeeb29haL4fbmlqura66vXPOPxhSW5cz9/QfO5zMPD/ccj0eurq7Y7XZY6zidRMOJ4nh6OJGzVWZjYFt2aXassas1yrSoLUFus+croFeHC7XzWCb0GuvZTze8eSMxVG1/k9YvmZo3LyeZ7JciS6jTtMQHOl9k6rBZc5MsBi/nbVltpNpG3Qsxyvsty8x5PnM6nUlRwNVPQ+Yay5Zf9E5rkrzZ15qsSgucxmGaL0gS+2lsLj9fzxFN0J3j6mrPOEwMw8B+t2/AgLOWJQZO57NOIa6FxxmIYBO+cwxFprQGg06XVE58/b1diTKTtMV2q320XY0Lf9T+/DL2Wgu9UsQydH3H9dWerutJMTLPMymhXRMVaJL3CzGS1MFWBrarDDoFTNp6IwBjqeeKFa/Rpni9iH1XIGobL8vPjWPP7Z3kz51OfYsxsaRlJVPo5MewBI013AbMlGddBw2VUlrxW4qUgaoVuM0BjV2LtPLZneozrfmX07btEAJLWHSohMSXwzDi+74BRoDYQkjrhEpT9VIlv2rxUpVT8DIoxRhDjDVvr77SYL3Foe1gCOC26oCqRWzz0Wor6iuttZLzZC/PC4ixgq9bYsAv74taIIQiLXAVvKoxZBUFz5kYNIYKSTQy1R8Wh+YMFdjr9fkkKthUsjCcKuBkjYClpliWWAipYJNhSQmMIxaDXhbnmIgUTAd9LwW7T+cpbsFsRQZKPbMKRofE1JafOgBm9WmbDqIaW39mv/7S61eDTbWa4LxOXfAeNGCmBsSGlpCC0MY7bZ+zijRX31Af0pbutl2RlrQX2u1cIvh6qG/uc6WroRtxY7mfXQ/z2X9eq2TSE1r/Xt+uIvsxSSK/deYi6K1tVrZgkoUi1bned/TOYUsBHzBIMmI12fsUVdysQSna+pFIIWCMMHCKRjGlbcitY36xtuXTf25Or63F5w1HQBE246h/4aXX/4tMFIpWdCCniNHgb5omlv2VvHcTQa1aAELLLQXmecFYp5W7OkGtJhHKamv2IdfgrGy+nDPzeeZ8njkdT4xDT+c6xmGggIIomefnJw7PT5zP5zYNIYTAsszknHFupOs9fd/RD/1qc3q9WUfPX+RLuhwS4Nj2b82uQQ+olhJSKxpdP2Ct4/r6mjdvXgngNXR4ZwlLlMAlJU7nufVRC0iZWKLoAQCNemrNy8syDehcH665APHq06wHZgOKXtjLL9lFPRjbN5XPu6iXAPNfSga39OD1uyrQkVprb7KOnBLOOVJMzMvSGHQ5J+aQiNrugVLGy+b9mz3nfPHvBrFVp0y9GA0hVtDsBWrY1nV7b5f3sd4PoMwOqwF+tYr6nIxZKw01OZEqV23noPki8V01rJBgj1aR0QRyA5ttLuyz624++XNNMtTH63VIoVjtuL5lDdS1B74eeOtSr8naNnHcMlT0KbdrlaRbK3KuViOlX1/e22pwsl65rLHqF9QqeWXGGlmTtg8b2LnaA6W2C0qFqU5ytHZ7OK+XLKD4moxchs/6OZs12vqOqj8giYB8QarpL4Kk0t6qvWv1jdXDt+eg61/TjKytVavA+/rL2TXo3n5m285Gqp91bPM6Mp62Rt47MlLNzEV+T9pal0sd4a2aAVRWmgJe2wNn60JenkNtLcrFn80n35JbevK58OPf6uWsW6fwdgIQgVbKTWkG30ZOW2GRdZ1Xba2XLJv13KtgUvWr63KtsVM7U3SPrZMdN4F6BVDqu2z9FJ/GUfXceukqTEVFsBQVAaissvqtlYHTJveqfpqz2jrniurICDvQWUPvPb135BhZdJKxMzWGupwel1KCrEADtXKcSRRitCqeXcG2bVBUzyBDG9bwwlAu/t7CRSMV7Cy7bVtkg8v4VT/mxWvdX80ftqe4bu2cCufzjCmJEM5YI9OMxmEk7SJ1t8vjE18RoxTfSi7M8wJGdGFqvCWhQfVDK7Bu9LqcglKibXlm6AdOpxOD6vh0viPlzNPzE3NYeHp+5Hh8FmZFWKQTIcp57LStaRxHljkwDD11+E0unlKkELT6/U3Cj8HgaFMONjFUjZXr99d1dNYyaVH37u6Wt29faeIteyosgeN5R05SRK6T4U5alCqVyaL+94IdwmYfvvDbdb+9LMCtQNiFQem2WwHKz56+n+y/crlH6/uX8mJdtufEZ3KDzfVSctMijcEyz2dtvxJNnpAkhkpF2Kkpq04hmocYKWbKO66M3Yy8d/U5jTmk2qIGhPkVkl5u/T7ac94W49azb13T7QKtz8O059IKMyrmU/0FGx+atEhmNcHepK0UCiImIUzyVERz0ZWNxttnX2U9tLjsJmlfb/ewxh1F7bkVC0vlUln1+3W/6hprK1zNwSujSdZj9Ud1b1grLYOi9Vp/XzXlKltJzKJsLnFt16tgU30eKaV29q97w5LJLSatcUITvjZr8YQqmG5Ky+EN6+etLFBW+9i+jOY4bS8W9c/6b2uk1SLgzz2uy3XTN9b3KLDGYNohkHJZzzK99zrYS2Kptf22Tapu/krjLbcpZtQhX/r8vRf+n1OmfraWbGS9cpFCcSqFWEqT0rCs8SilaMxkNutm1oOl+vyynnvVbwjOI7YpR3Xe7MlfF0T9arCpG0Rcd9rvuLq7ZbreqV5TbsFGSpmn52c+3N8z2R1Xuxv2+z3TNNAPXkYSFiAjk+oUaKFWkjcnbBWdRO+35ExRJlOKkbhoy9rmcFkNW43DGoxxcn25LtjGksq6zno8Y41TkdgO1/XYroMSKNmJqLlqLMScmOOi6L4ATs4YeucozjD2KkS5OPLZ0HnHl7e37MaRZT5zOku1zeQrYGDwg/RDu04mYs0LKSZMsRquOSyWGGaeH95TcqK3nrEbMc5h/IioesMqaif39YlTUydlalBpTB22h8mf2Xy6uzYh6K9+bc845ywpBu4fPxLDmfn8zNV+YOodU/8/EpbI8/OR+/tHYZYdD6qbBDGdsNZwOsvUvq7rmKYJp0DVMAxNDwMjrTolFrx3XN3dyAQg6zk8HTAZ3v35B05PB06vTsRZgouf3//M8Xzkw4ePvHv3EzFG5kXaNR8eH8BaxmHk229/y83dNYXIcf6CEIK4BWO0fUBoqzGlRm1tdPQa3BdhbMhhXFti0EqdMuxSpu963r79kqura/7qr77jP/3d/0Q/dHSdsDlizCyLfMbpJODY+bzw/PBECJH7+yeenkU74f7xUfSG0kzKsyaCIpxZxcXFQuQJSxyu01NqwKQJ6UWS25K+WvmViQkrqLZNWApb87oEXba/foEd9RcMTYJUOJ2OLGGGZ4v5+aM4x8rCwpCLiElLa6wj58KSHKWIaKJz8l4xLgJ85KLjcgXIKjoxolYeXt3dMQwDT89P3D/ca2ujMMvW5I2N21nXYAXzNiCLkdTMmoITzV85HrJoQ3kvlS3vLN7Vqoq2yQTRhagC6F615pKCTUF1t2wxOJOEZlwKHkcFPVsRtF3z5TOQQ0wPXllcKBnhV9aJUlFoxWXrX42yaNCKiUxsq8BspVIHmYWNcTXIsviubwHHxeSeXBimnt1uwPeOrlsHB6zJiG1nQAxrZc1YI+N4hwFjLV0v08EoYPT8OR/PzMssh72TUbgmS8LurMMNvYAt2gaelJ2Rc0JxKAyS2Dkne8ouddqSKvFZ8aqm+gatnlWxzKbpZCAXL/oe54W8CKhoNs+q6gRYDWAuQIp6/OVCXDatqbovJKmGrrOYAXxnGQYJOrvBN90raTlBwdpM50WEtfeOaRgZugGPCJmaUhh6AQG7IG0UIWa8QhAlJxEaz4lzypgQ8MbgOnQqj+ollo2vMOukHmNzC2orUCajjbX9Jm8Wx1QgR+xLzouNHte/8WsaJGba7Xfsb3b0uw5c1XNJygZaeDoc+PjwQHc3cfV6p+xGL/ZUahyuWl9Kma8AVZ1QWbLuy1xTJD1TSl71mqKMi//En4MKryIxT01+yib9ay36FcQuzXFY6zBexmEbN2Csl0EVzku11ESdQKcCqTmTY4EE3lqmXj87CwhSgqHMha7zfPn6Nbtp5Pn5iY++w5qO/ThJIa8TYK5Yo8z0E50bmboJayxLnAXESFDCgrWW3XRNSVnuV39VgMAYg8mi3WJYBWFfvgxVCFzXJK9fAdr7yd83zCZFS1cdO0N68d4FqGPA6rkRlhMf3v0z5+Mzj/cfubma2I8d17srYkgcDkceHx5JMXE+n4khMM+JnA4YYzicTqLB0nWM47iJofrmh+vztMbhO8/uai9tjVg+vv9ImAO3N7ccD0f2V3uenu6Zl5k//vmPPB2eeHx44uOHj8q6EMb24+MD33//Z/ph4Ob6lpubG6ZxBGWdGit7PmurvrRWB42nEJ9VicOqFReTDCOR8z1L22WnI+wTlARdP/K73/6O16/f8u23b/n9778TO9FnFFOSGCpnTseZZQmczjP3DwdCiDw9HjgczoQ0czw9CRvQ6FANa9qkbefqxCjaxL2YojBmomq65rpfNGISCohOD3bCYE2l7a2NMTUbWM/mTSJY93mW9uZSD4MLoGnz5wY4beOvQikiE/J8eOJ0Osrn5QLFqCSD1X5uHW1ofYuhQhqEmWEXcIFSEinOrACTfob6G+cNnbeNbdd3HQ+Pj3z48EFzqig/+8mG0JXYxE6wKfKZgjFeLtEWMImCRVo1AyB5wZZZDSgTGzGaLMNIhqED68gkvRYZaJBLJhRLKA6LoS8eh7uI8T8XuVZwrYGAaLvqHMhOYpfiBCzKrSXO6QAksfcW29i1qCeAciEGbXULQfIgja2E2aQMIs1LSkkyTIPCOPaMkwji+04/T7WBc87Ec9KOI6NFfkfnO7q+o6sxlFkHkqQoci+UsjKpish5AHRdp2yotVg6DCJ1kUsiplnsJ6Gtc4Z+UNkYjcmrjyotn5X19W47yU/tx2ZwGVIFsrZElRcgXK6C3jT/3IKxZiswz1FNcf23OnDGOiP23VmGUcg2fe/xnTzHJSzKQEzCVPWWadfRe6+yQx6XHS6LBuCoLY5zjDrco4LvlpKl22qRoAxCwFvDzomttTPcmIsOkKLrbnJu1ioxlDznBtjnNX4AIXJIy6nkj67fDND5C69fDTbVw9R3nm4Y6Pq1R3N7ocsSpPIxjnSD1+kOFuetTq5Cg94qdqYO72Wwc+FMqiPMUOwqTJY/bVmpgSewGhBcACb1/WH7ser8jZXxg9aKer51q4M1K7KZiyj41+BNWrCk+gZWWgaNCDQm5+mdZz9MXE87ZmtxppCzIYaenLwIqW+ml+XWfmLW/xlLSZkwn8kpEIOMEBXjrtyENblj87d217rUtYLWlqaujamwm3691PfaZp/m5bLz6crWta2HY33PzPl8ZDkfyHGh847OWYZupGSD9w/Mc8YtC/NZtK5yEnFFDKScWRYrExhyatNeWnuaOrbq9KyxjOrEUkrEJTK7hcPzEYOh73qmcWQJCx8+vOf58Mz9/T339x90ioNUwOZ55nA4tJ7ovu8YxoHdbiKGrrWplSzi5HUvhJhE1yUZstHAutKbFd2WvEDBP4cGvDUJN+x2O66vb3j79g3fffc1w9DhO3GIKUMIYi/H00n23/HMw34vo7PdgHfPHI4njucF2qG77pF2GFxUYdenvVZP6l5fH77Z/mEL9qpdNWNr77u10c8dx1s7/aWv/8JPFQnOYgoixJlkYpZM/hInjfHgejAWa3us7TRoqqRTOUiziq+XnGp/bbNnQSuEAVOFU3fTRIyB52cPpRBYdTc2Xugz17t5z/Y9st+21aEaTIGMZa0tDS1Q0kSk2r1zmVycjLfVKpG054pegTOawGNwlNaO3O5xu9/LelX1q5e2cqGwB401AVWDRL6vggKwDlr8NNHNqgVmlRFhdZ1rYNgqbbpmzjn6ocN5FSC/kHGTz5dHtmmJaRNXnAKtDu/lPWphLafEXM7kmFQLZx1iYHQNvP6sda4FOFKdA6PMLQF9pKJ3ITje1tBsLri0vVTPmpqI1uoj5BZYrb5883DqWyig5TA0Rf/6fNKm7aI9c51C1kug5DuD76rGgFXByKyTJ9cqnjGIH/ce70UzwGKFck4RVpR1FOT7KJC0FabO08yIyGVMstZV8LJp3rUjSKuRzcds/NZ2fxbaomzyEz1bVQdDbWWz+P+mL+87ZKKQpxuE3SSxRNWQkLVdwtLYl6J31bWpgZdupFZBK9h8GTNtE80GFOnfa/yUXyRzm6NaP8FcrP1lvFTfe2tDmzPFugboG2UfGQTYqefKCo6pW8XQKXuvShOWbCnWMjjPfhy53u8hJebjCWNEQF1iJ2nzyYbWVuJMbhPNTEL9zSpOKyPY9VT77DklG8zovTdTK+XCB5o6EGGzXtszrK5PzlBHlIsfMZs1Xdew/rmxyTbPIMbA0+M9z48fScsikz87x9DvKcXi3APLHKVQN8uI+ZwKSxaGc0wR5wxd11GSTK/yF61p66VYY/BWQGTfdcQYOZ9nnPMcDkesdagSH6fziZ9//pH7x3uOhxPPTwdKAe9HrPUyQOhwYEyJuzvRb0oxst9PxBix6r9TSlqcy6u2kVCPBWhPa2twKVWXSLXprHD8V79vsNZzc3PL2zdv+fqrL/ntd1/Rda6dWCnL9MOcM8fDzLxEDocz0/TMsgQ694Czz5yXE0ucIS6ax+RWXNsOvmiW0+L4F9IC9XlWJ24NJlVGU911plrfZ19rbL6ez9XnNQbVZr+brWm12G5zLe19BRQNYSGAanSKNEgKjhwN1nvcMEpbo2PtRDBeY40ENkGqhdR4+bl63VbPxc47dtPIMI6c51nP+ZoAq8bZy62x2SGXf1IQQZmikvbVtVAwilqEkWpQPT8rEJhyxqSCw5IRPSl5F2GFJ6SjxYnyu0x7RECBvF3X5kzL5oh/ETcV5CxNSXxMdioDomcrK4vugrVmVWOxsD7vXEXOpZjQCBd2nThpjAEFPgvCiMTYJgAu7ei+tflTBwLV51Zqjrxp497oLtVrscYoM2tzztZBEaA6TwI/1L1cMYZcDBkpzm8AA8nvUCHtrESTuiZmu6VMu/66F00FmExpLP+t9TSA/YU1Gan8YsvlkBiKyh80P7/atjEiTVEH08garQWJ3AgqdX8WjbFcm8BsKks3K5fTWTojEjveW3KxuCxpS6aoNhrEXAhZwNVsy8WEyYtXLUCa5irXG6j5B2zWEHU1cs1J193UnPtzn/Hi9avBpqEfcNYxjiPjNNCPPYa1Pz+mQIgL59OZ0/OZK5fpbwf6fhRtmho4FCjbPgGjuRx62FtLMRJ4VqV1EFQ0FTBFpnDFKNTgGAXJXZbA6XTGOpnQ0QJ+Xb8cN33NGmCZzUEuTknYDpKEdBgnU/dKcpSsgVNd1lIoSZkGIkMhAVMuFJLSFw0eGIeBse+4vRq42Q+EyXC1yJSLHPeU3HN3vRPHrBTEGpT6nRj5sBvppwFDZDlOpOQZ+g5fqY7VYDYO2VRrogY9659zRW+3G6V+XykXgddaHTZtQX+p/bE6x+oAcloTEmPk8Hp+PnB4fmA+HTg9P2KMZTfuZSS9M7x9+5qcM3d3N4Qgve7H81ECSJ36J4JvHRTL+ZyI8Yizlq5bRIOgJF3P3Da0BCVJQYFD09+qY+/ff3zP6XzidDoRKgPCFa0gyLSVECLn85nj8cjxeODwfCSGsCa4eniAMDjq3rm+upNg2MtENHk/bedqbV+R4+mJmBaSjUQTGKeRb7/9iq+//povv3xN1wujqbBq0qhMB9Pg6b1h9JbBS8vY9fXE8Tjz9Hxguu44nk68e/c9739+akkBNehfXbNcf52Yktcpi+ths1LcZfKUJVso+n7yjbkF1RsLWrWiNgdlCxw3rXufGPRnXs0ONyDXSm+1KoTquLq7xvcTzo/04zXGeoyRqlxlLOWcePjwI08PP1OK9MenFJS0X3VQ5J7qs+w6y243cH294zwfcU6quJIk16rkS/ZEPcg2yZspF1NJCiIy+Hw44ueF4/HEsixt71kjzFDf2rPWoEqEWi2xJFSygqqF0EYra+hkqaCVhyKtDPJoqn+2zbZXcHp7kIvfSyFzPkm1xthCncLR9z3GWFLMxCD6FMbZxhIoeu8v8AHA6IjpOr5VbCbWALbUhOMywHBKzd6ufq3SWOdFnwXVU9ED3ipgXf2l2TCDfOfx0eOcpe87AY6SaOpZ5+kGEX2u9ocpDH2va5zkV6HpEHrnGIauJSJJ2SBVs0naFWjTQABKUpAw5QtAod3edrsYrap1tSVQgupSikxeKlCygSzO/yV4LKAczafUtoI8q+hnbX2kApub7V5WkGvT7SCfkiVoH7y0lFMcZE9yBkpHTA5yYo6JZDOdTWQLvRcK+sZa9MPMZi+YDTBrNpqNNevf7rlV8P1iyuC/w2ucBqyz9GOPHzyulxhFxrEHluXMMp8J54VwXqBAP4z0o7CXC8g5n+ujvnx2Esvow9Mzvn7ZoPtUgdKYhVkUU1bWRWFZZtzJqo5Z1UOkbcxYmVPrMPXLILOICKtU4a2ww3X4i3Ue4zy4rHYvZzM5Y3LBlyJ6bhRifWZ6/YNzTFdXDH3HzX7katfTsWc0BUzH/vqWfrjmahjIKRH1bPLO0Xcd0zjoeG1JxCzgSmEdJa620XzaBjDSNa7FmVJ9iRYfBfjcPgA2ce66V62CmmKvrEE+ZU2a2nln1uT04giURYkhcP/wyMcPHwjnE/PxKILy4zXe93Sd5e3bV+ScmV/dSdwyz5yOx9YWRinqWz0lW47HwDIXjFXfaGiJ2SpZIWzSFCPLPPP48EBYAk+Pjr73zMvCxw/3HI4HljkQFmFhOFtjQWF4W+s4n84c+zPPhwMPj0/EECTR8sJcFQaqrI21Hf2u5+3rG7En47HWk0sixJk6cS/V2O7wQAgzfujYTY7bmxu+/fYtv/3uK169ulrBBX22BvC2kA1Mo6f3lsFbhs4RY+LuZuR8uuPh6Yl//JfA6XzicDhwPB0puCaanVrcv2qrlZTIMar+yRqL1ji5JX22xmJZJkNnNZIiMfXnEuGihlbPki24hPqJZjafC6OKefEP6lU2/tLajn4UsHCaXtP3e5zv6ac9xgqQXIwQAKqO7sf3P/Dw8Sd53mGh5LAWxtpZWDD9SD+I3uNuNzJNE89PHqvTu6HqHF5eZ7n403pz0hAmZ3BtkV3mheenJ5zaXErCfjO13Zv1nJP4J6/XSCFm1dTKmWKUtVPBQyMaOwZh+xjMqvtLaZd9UQxi/bfKVpJJ2EGKZU4LO9YxTcNFXCSgk6sZ8SerITpdSd5DOyRaN46xhCignwxjEMC5HzuNbTzeWS1i6vVhAEsx0rqFLVqcs61QV+OAEMImBjdNQL6ZFcIQ6pxv151S0Ke25qV1IqOpeYU1GK9aTcUI6ytCMlpQWHIbBGN91cKVMywnnRbcnpmksjVOWc18zX1q7OCcwfe+tS9S5GfTNp+s7r52TenNGlO0UGeQ8FV86LIETNAWOmW4Vr2tWlzVMh22CHi5ApcFSsaaovrZUCcNZusg9yq+XphjJplMr1/3QOde+BFNGsT+bYv3akxkm28qm3NxfZydcxRUG+ylcf/C61eDTbtxh7NOqvhXE93owRgFAAIhzSxh5vh84unhyN2UGfod4zgJ6unAKK0112TGqOiXbtBiLDhPMUHH8tZRlLopi/QThpRZlkxYpHoVo4gjpywCiBOGrjO6eIJmRZ2cUyuzlJqoapKi+gnWOpm643pBeDtPMR05dhgbGkBVcibHhCkFn4BiZJSqgislRQow9j3Xux27oeP13Y6765GSB3LaQ7FQbqCMvLm9hqJURVAxPqkUW2Po9yN+7OVQPF2RUmAaenovVd5kauLW7OgFILQBgcTayHnVDqoGWPVJagXg8pDaVF9MTc62X63xbj1YdFJCKU3zI6bIx4dHHj5+4OH+PR9/fkfnHF99+TX7/Z6rqxvevn2rwaFUHp6eD/z8/gNLCDw9HTidzxu0H07HQEqnViURYUBH13uKS5vNLQHJEhbuHx7pjifef7jHKAPtdD6rwLt8nyDU0h6Zc9JpWYHj4cDzMPL0+MTTw5NOiMhgZPSxU/E+Z3us8YzjxFdf/5Zx3LHbXbPbXbWqXRUUTjFyOh/48/f/wOHwSHALxhiurnb87q9/y+9//9dMY8/QS/IfsySBBtDuHoauw9KLfb661uco9vjx4Znd3cjj84F5eeLdj99L4OuFwp1L1gjJtJaCpAd2Sw608lPKESG0AAEAAElEQVTZd5WXaFBWWTaKuoLRUnULBTQxzGoXNTCqTANYWTmXyfRnQM0LwzT633VukAi2CxjgugHfjXz57e+5e/U1/XTF1e2XWN8JYzEbYQkuJ2JY+MN/+3/z/Hig5MhyXojhJO1q3q1gUyl0fhCwabBc30zc3l5zOD7jvIr2tUCproB5ce1r8luKOHWMadotBVhi4OHpEWssYV5YQsRZw9A7BVVE860oEC/i1lKpLSYTUiK7gs2mgWUpKz27aG+3Jk5Nw6CItk4VDqpszRbglvX3ehBWBtnpeSGcE/3kGCZhGoyjTI88n2bCEvUglwpOBVorfNGACyprTKjacijLuRFClFaY6o/UhdXqsojHCjOmgZxGwCrXeXp9DlKRRQdUuNVnIQGHs06Yln1HXzLeWYZehMSzAjDWObphAGObIKu1XgHAouKpUqHLUVrAa/Uw5cTxdJaJqlqtb9Ut77RqLO+zJBmQkPOmYKL3XzbPxFgwDqy3Eig5EXt12nq4zEGZAYaMtgtqhbOulaG+h7xf1igrzFF08rRaZ6httmjLliYQZVUaaJauyaoxRdrLi8WSsaUQswCDLmXCPHNeFpyR4D1aKFg6p0L3myRIbri0NssLsKnqIrSdVg1LflaqsDXB+AX38m/w2l1NMi58P9BPHbaTtKom4efzkfP5yHw6sxxnKDDudozTDutXJga8/MPmJqwkUkLRN8q4FgAxa9CNMcSUWbRYF7XSPZ/FhzgvbVW+EwCaIr4jBK3Iauu35DK2rblRFrC1Irng/YDrerH5rsN0HrSVMqVIyQmTMqZkek0E5JxRwdQkPuF6v+P19RXj0PH6euJqN5LHjrzfY0xHN73Bd7fcTsKUiUh7cOc7hqHnaj+JILbNoothoLcWZyx919H8cztSNulsqbsiN/ax2P0FYtSYLfX7t+1CAnSrtluNmzbHgUwNq09S30+ZA/XclOuTOGYJCz+//8iPP7zjfHji9PRA5zu++uIr9rsr9vs9b9++1sRBSiWP90/89ONPxBBYFhHA1psl58LheSHGo/ogAXiHqacfvTLPhOWbNVZZ5pmP7z/w3D2RcpQYJidOp6MMgMhSFLbG4r3EKDlllllA1MPxhHEdD49PvP/wkRgCfS8TuUpBYxtDP4x03cDV1S2/++3v2e32DP2OYZhUp/KgAtzSbnc4PvEP//B/8PgYmMaR3W7Pm9ev+Ou//oa/+Zvvmp/PWrAAKUx5ZXMNvsMgfvft6z2g7SOl8MPPH5g5cv8oBcGnZwEianErhdiet3E6+KK20MVIUcCp5h7tzDGm2UgpkIto2W1j9poo1t8v/lcyqST14cpoaZkwL3zcBtBsf1//XDVy6pni+45uuqHvJr7+zX/k7tXXdP3EtL/BWKekgEIMgfPxRFgW5iXw088/k0IhzDMlL63lX1qsshY1eoaxZxoHrq927HY7Hu47rEmYkjBarPk8tL7dLeudUEGSXMghsaQzD1HyyLBEUsiS3/XKwDWiDVj13OSoqN0HBpcMxSm6r+sdFSCQyxJfU1vdynoUtlyoXm/Ny+qrNujGmDkeFwWZCrlz7PY7druJUgrn80JMqQmD19tfWXJrIT3liHG+aawJw1TOf5lKl5nnhWUJjGPP9djR955RpTloxZot2q0FmmLoB2mZ2y58TJmUJV+pRYpcwYzVRSqQJi1XFfASBo8XgKpKI5Q27grvDMVVjUoZymKqZFsypCUQc6JzHV3VgeqkOBiIlBBbsTylWtTT6KSCRisEo0U+cF7Y8tatsUVOmfmsrDAdcFPUbi7ZVYauN/TD2sqXVbogp9I+Y7UleY7OWLxxuOJWsKnUPEkV0SyMgyMVBREppGQ1Ds/EJXAKM84UvI1kZxhMwdfzqqUj6wNcYyhzURSpvqIy9KvhGWPoXO0gWjGDf+31q8Em7wQB9c4L3VWERDYoX52AUFpLWZ0yZ1rbwGWKWPWP6qaoC7ClWavnbJvYlDUpaROhapJQTbQ6byOV7mIKvkBWZNopY6qpyTewCXIy5GS0TVDbNnTHlM2zKrrZbQFvDAaLN7kKueukJ0msei8TeXrvZWx0geIKFEuJnpKFoVCff9ugpZBLpBSZcmQ0upeRwGgrTBFnowdN9QL1+moy+/K1Vi9W5HbzVf3/ZdKvT2Lz5+2X6/vUJHoLbF2+ml6JilcmI5MgQhAh7hAWsoJtVURuGicZr1tEkLkmyaVACDMxLhpUa49ybRMqqB6GbShySup42+0raBqCJL8bJ06zNTmEVlZF1V6owYtsOqM/Y4yl846hGxmGif1+zzjt2O327KYdOWe6zgn4tSwsy0IuQZ+XTFca+p6+HxiGvk10XG29Orb1XGjaLEYSvu1jNRZCFJHzKh5YnWN9v9J+wqw3Xb9IPdx0z7Xj4JL8vQZI675sVqVBUw0ILu1ra2nrQb3a6acH99aejC6GaV8XH5I1QPedox97hknGjjvfUYVGUwjMR1icxfUD1g+YuGCsB+Mvps80EJbCKnC9ZWWtB896N+2qVru68ITl8usU9ZWVpSTHoTU06rmATQoEKesna03QVJHRtrULdQx6dWDt6FA/0SZXlcI6d8G0azGsOm8N6miXWxRckaCu5LXlbQsKt6A8Z0wyLairLcNtKEK1ps3PyvfW33W9TMGqD8kpk525oCZfBtXrHgFUD4hPbHQ9azQEMZtzSt2WrUCctZoAVL3B0s6tWpWv+8MaI207uajOkFYH7VqZXjdkaeu++VuLYNcl0sqT+jCjApPGmYtrrslzLUCUOhN3axMXHr0dQM0+pG2u/fMnO3ebsqz2Xm9Hk24U9KCOPVagyYm+YbQi2lJMbVMvLZkBWjtDu4i2DPXc5/Jz67Noj7asyf7m6/9er67rpRXSV9bZesHbvYD6WWvWNoUKntUfqPFia9+pIFv7jjVOWYE12SsYVn8AF/u0/c+u71mT785XNtia1NbCitFWOWNqfVa0fmxlmUnApzoRpfkZcaMGr5srmKLNKxoHGpSh5FWTqVO9HUsuDoOnczVO2CRImxgqpSj+UavScjbX1jvVc6vtfboXaqzz+TjmxfnDZk9e7I3LnzMbEfj1HKjfuvkpA1WHZHXBNcarH7DaT536GUMkhiA6R2HZMDYlFr/aXxF1MlrKVR/QaEI7i3C46u6J7o2lFC0Gp0yySXXBajeBTGuLKRJTaK2LKW3Eb+vi5E3r5gs/D3KGbadV5RpDdT273V4Kkdf7FWzqR1JOdL0hZWGbn09n5kVZraXgvGM3Tex2E33f0SlgW23fbC5xNZta7V89mslZAYTMvJyZ5zMpxZUB8uIIKZSLic0CKawMNtSu1sItmzfR/WfWWGprTpX/xtYuzaX3rjfzadRfjWm18/addQEuYvuN/zcF33vG3UDXD4yTAOe1A2Kel8a8dV2P9T2lxFWGhG3iXHTP1TOzUEpq3Qhl87XLzbVx8OuStOd3cdpvQoDSDq61KCWFKVEVNUa2YtKkO5cNa4Xqbet6bIMn/a3GakVACNkz65nbHtPGVjbyzHK/CYotm8Ne7L/pXaVMVubbdi0qw/tizeAip16LumtcwsV9sYYesPFL2xN9C47Sfq83Vr/e7KX+TlnXmNXMNpG83CMr2ASrf9iEOtT4Xp6dMnCcxebSunuaRZWN/VDxhGojpsV2LfYxVRqBVnyteUX99xo/1WEGNaZpr+bT1aAMFzafNYayFNGvfrFDzcUv/VO5/ACjz9YWzQNUVsE5yaeNTdQ2slQKMYOve649yU9fZut/PvmGtnAtB6i5Zj0nf83rV4NNN/tbEbfcTQyTx3WObOWB5pyJOWo7kPRUdr7j6uqKq6srnPfq5CvqW6T6irBP+qEnhF4AHw0YUsmkUrCbBGdJiZINS4KYHZmCc55SDF3f0w+9jIXvBnzXtUkubdIbsgGlVcHifa/9kTQRxiro3HWeYexFDLxYYrJELDFDTBBDJi4Jbw23Q0dvDXZJKsALWaurV/sdr2+umIae6+srrq4GwGFwlGRYngzpDJ0RMTHrDL7LOB8Jp8D58UjOBT+P+H6gs4bduMdZg+96chL9nWiCjuFcD6mc14BREPECTad+NaQ1UCotjs9tw6tJbX6rzvWXDLe+jFmrczVhNtYy7a8kOFoix6cTUDifIjE88/x85MPP77FWxLi991xd3fL111/jvAfrqfoPgrYXTqeDTBGZZ54fH4hRprEty5kU4fB84uTPevAUjA2EGC80WxoVWQM8YWatd1d1HkS4T1qunLXsdtfEEDgcHzkvM1IFzjjrefPqFV998Q03t7f8h7/+HdN+14TxjC1YK2yo+/tH7u8fsPdnYjpyON5zc/2K12+/4tWrO25vrpgmmdiSqEmbwW2cYX1+1UVn/XMqEih9eHjg//z7v+f9h4883j9hNdCuAXemJnXrsS3TI60KItf1EGBVgtJ1WgIaXK32Vm1LK7z1f+7yQG2HQimg4KFmm2KtNlNav7RpiZMxq9NDk6NG/SxyXbFkzsszyUT8mNi/suz2nldvJ7p+ZLfbMQwjx8OJd+8sx+OJ8dUb+lffwOmKPgTsfCTHR1J80oM/6X1ZSnGkvHA8P2O94Xg+sIRZBa7BWhVAbEGSsAKquGnz4PXLZU0ADEbZYZGCCBn3XoHXwa1jY51MAQnBk3LBJYeJQnk2VgKYQoGoCVx9lmhCA8ScIUdByJMw3MQWrK5zqebVnmkuqdlaPQOWOZJiZhg7eh3zTjFkbaFbZhHnjDHKVDUFhnMuLPNMWFTBx1btEGnBySGxhKiTq1ILmnKRIPJ8PuM99MHjO8hZ2KmmtqGpyVUGrRQhnLbSrbBsyqmx9qM081AsqmGAtgbSBGFjlhHf0jFdE79MmKWdsLYOWAzD0Mvodp1saaxlnEZJFJckrK9SgKyTcFyrbLW9QgvNdTdo4KEtiX6wOD1DXCcMyJIzUdm29fpNMSqifWmHtmpSqbNPpWiruJpF1nO0uAZiFaMsDEwDOcUfVM0G8YdoJdgYOWq7XgCXmArFOWIS8CIj1zzHyJwjWOicTiKz4vPKmnJt490VnERb/wrNVmrAuK7kXzq5/m1er169wjjLtNthvAHXomNSSszLTAgBVzyDGxg6aS0ZJmmjU8mh1h7nvWfUQkTX9aIJpcAUqI5T1mek951Dpug2x8gzcK4oPb9XEVbPMIwyBc91eC9i785o24mem8bItLwa+NfPrSBS33X43ogPsRaMpxQn8VMslAB2MXTWcOUHnAEXIpFAwWC83MvV9RW3t7eMg+f25pr9NJBDJs1JbNFKjNcroy+XhPMFaxNhOfLh5wjY1kZxtdtxc31D3/UsGUKSz8sW1WUrK3Bn18BfwBfZ41swoOUY7bV+rbVhkGVPbG3vM0BnSxmLnLBbFGubDO33V9zcvsYUCCcZ9nE8nglz5PHxkZ/ev5NWnPGKrht5dfua/+k//Wexk6HHNlFrOT8+frzn6fGZ8+nEh/fvCcvMvBxZliOUxLM94JxMo0s5CTszJgWMFawrqmOqbdxG2ZM5ZiJSTJzPs24/GfrQDyPTuMfbhZRmwqzPAof3li+//Ja/+u3vuL654re//YZpHJvGlKHgdBr0v/zwA3/8/glzXpiXE8fjka+/+oq/+Zu/5u72ht1uYqv/YzS+ufQLsvBZ23gqQPJ8PnKcZ/787gf+/u//Tz5+vGfqd0z9JLGo0kCtXRkvNS5zxpCto9jcuiEoAtIW90KOQv9oq1B0MVpgKa2IIqCG2oWhae7JOSEtYq3gUn83+QLwEGs0l1IZFUzQ+65mK4z/J7JJ9FPi5rWn6zumnTC7r66umaYdH+8f+W9/mDmXQHd9x/7tb4jnZ8iJtJwgHynppNdZAcVIzAtLgKfDo3TGHJ+JMQhA/EKvzwC0OPRFUa/5ONvi4xqp1oJM31lhNHnHOAn7x1JFsIvqhRVSMgTN2YtRpaZCa0uUM13yqSzChMSUgUhJhhKtPhMErG/6COt+L6WoXqGcd7kkYYRqgaEWy2VYVGSZlc1dVBtYSRxB46q0YVtZa1pheglRWdG5saNTLqBAcgzSHp9Tx4qvluanisoqCMChQG7O0g7e95o70XKlWjhMddALhc5bPbdNW0TRrZYiRlRGYEo6HZSCVWyhMv8EE5Ln7Z2nG4Q8UIwVTdzafUHGxETSRNU5jzWFGMTutjmM+FK1IU2LfW9xXliGRpq3dN9K/Oy9pRRLNIkSUE2kSz8u95LkjNO8Up7lmpNbnNpsQdhx0hRisxQzTZFgaJ36JiCcdNvoIIpeSBUpZRwSQ2kjF5TMOS3MKZENeCfPwJtOGXgr8PjyGNr+fZXdkOW3ChCYCjpRPhEJ+aXXr9dsGkSpvus7CWi9pZikSW1WWmrWyQWiaTL0A30vSUe7/gqSGRUjdU4n+fgViaU2oYjB1Ypm1MVJGUEWERBFpsd5bYnQ353H+46hF02NTqcFCb1bhDr7fsQ734CUQhFx4aqbZJArMZZsrNR8yoom55ihc4zOMXnLMYE3Rb7PyfS6vhcB6mnoGIdeNUw8hl5s/xDkaDVSlS7OYGzBmEwugfN8JMWMLwkXA7thoB9v6bz0iZecySaRTWpjzqEG3itzawWOaGj71qhqBfjSJX76uoQjNt/7wmIb/dcYfX7yoUIxHBjGSSnSo06gyuo0IkWnae2mHX3fM4w7rq6vGceRYdzT9SNWq5OlwEEnZxwPB2wxzPNMzoWwLJQM87JgNwKMAsRlDbRdE6q7WDuF41sVQA/0Op0tl4yxlr7r1XHZFtznWCje0vcTNzevub275fWbN+z2O+rEFedgGOuBFpnDkePJkbJodzhrub6+4fr6hmEcmqBlBZG8MQ02rOetfF2ceQV1UxF9meP5xLuffuKnn36GVIWKN2M2y2oX8lwV1KrMmfoB4vXZMmfWBVqffQ1eNstK/cnCqpdSA3f5vLWiXC+mttCudlXfv6zPai07NLunQCmJkBaZKOQz/WgYdo7pqqPve25ud+z3e/xoeTg8E0j43Q6/uyYV8MO1gEr5rFT6tTWuOv9cEiEszMuZEGZSDtIGglT726Vv9xqbSoOpIrFl/aay3qO0H0lw6nQCXefld/GdttmmTLEp2DqRxSorqpSV6tqEoteHkkshFpl8WSOgunfbAzQrg2adrLQBQnJpk63aIW81YFLtNKHPZ53mI8GddfVnk+rVGRWKrWNuLSBfi9p/X6+5VudjiIQlYEwhhl6r+VYDFlrytq5/rY45tq+q5XcBvsMqcKnBTj23ctRpkzk3FmxOMgkm56wTMKWAUmntpWRikoCi817ZukamcVGAqIlbBVUqILTazpp4yh40qo9VB3FI+5x8rbb3UUoTMaadE596+raXdB1qlTdnoyDC6nFW4LdBTApKt+WDVlUTWzFa0XPWYDqLsZmugLGZmBIuysSyRenvfcrEkinZ0DWNpeYl1g8yG3+jZln9cb3WbZ6vRv7J/f9bvqbdjjoBsWWjba2qdpKO0jYe7zp8K07Y1p5Rf8apQKt3rvkHa1p61TyVABdorl3aoJaiPtpZ0V+Q9xKA13uvBbuOvp230iJqrcf5TgCevmtgUysoKEtRQF1NhI2h9j8IU0bcqUlSeps6R2/hlKFLUvk1XYdxlmEYGEfRvRyGkWHoyVZbh7K0ihm1KeusFCitsJxTXAjaumWcDIQoReLZcRhIZ5k+VlSbpO0wFX/e2szKFN869XWv0P5Wz6I6KKB+a1Hb/LzdrVunanU057p9cwyGvh8Yx4m5l6S/aCtmIpKJJCLWOq72iXEIvLp7w5dffsW02zFe7el18lTXdeRc+Ondz9x/fODp8ZEQM6fjiZgT+XwixsJ8Dli3Ah5GkeHGXNOtmVt8X1qLcy6ix5WVVeV0CpUU+lRHL0OKs7Zpyvzl4gxXVzd89dU3XF1PvH37mnHq6lGPMzA5MKXwePiA/SmDkTbrEAN93/P69Wtubq7oOylMtvXVQt3LRKmoLpU8NGG5zCFwnM88Pj3x00/v+PD+I1+9/Zrr6Ups2ipksWFzt5PTrOLhsCae1lpsXvOd9dlWH2wvijs1ZiiKehQEVskWSl6LbqDPIlddqKLXdWmvlWG6RWtWULVFyuSSCTHhksP5wrCzdL20yXddx+3dnuvrWxIZ28kkbjeM9Lsb8S39TpjSYaFOAahFtVJkam3Khnk+U7K0iFaGU4s51rCoXddFTGrWf6/rZzANcKqu1uuADecdfVd1IzUi1bPC6MqmhtBv+EJt22qcauqf5JyNGRSxbuzwT5nT62XrIqzAYK76TyoJoS4gxawasvo9Zm11Fc1iHdpRC+V2bW+uwEdK0jLdGNe6OVMSUH5l6fyCdzKmdShl1RUT3VLf8oIaL9TJz6mKnjsoCs5JdrwylFIqrYCYlBVZi5vV/W4fsqEOSvFYJ626xloBKJfY8AF5Nk71O2uMvbV31hzGAE73qqvxk23x1drRUKfcmSbVsbGgiwe7dnrlFRDOVly5VSB+Y6tAneMjZ1VZ49bKBKzPp+Ip3omdJGvISd4reo910vIcEhSNoZJO5XEbjGD1J5+J99vXN0zQTU5fbffz1v35168Gm4Q2aenHQXr5LRznMyEGHp7u+fDwnsPTkRgS3nV0XU8/DXRjj7VuBTekV4OUFkI8czofeHp64PD0SIyhJRn1ZkXTRtDSOQqIsITSgKVpHDEGumGgHwcBuYZe6ee2jX622t8I8n4kQwhnwIiwYIq6QYRiLHmFoJ9db/FdJ+N7vcf5zO3ta756/SW7oefbuyvGzmMen0iPj4ScmbNOfRp6UoElZu4fzpxPEd9PdFOHNZ7ubkd/12H3A4fDB5ac+PjTO97/+CMlWkzxdN5xfX3HdHNNbw29czgDQROdbMzKYGhGQdu0zRvUIL2sHrywGvMl1c5KovrCnH7JeW5f7T3Xn2pJtbOOoRsoQ2IcJoZhJOeEzCPSvuMYFJ3vcb6j7wd2O9H/6sYdvu+bKLV83oTvHcM44L0nhMD1k2jopBxZwolckug5xNicWMmCoFcthgpktMl2GohbZVLVQ6AmlCUnOu/bAZdSpu8Gdje3DMPIV19/yTe/+YJpt6PrXDs8a860iDfg/c8/84//+A88PT4SY6LrtGJA4Tyf+Ic//F+8f/8DruvotJpwtdvTdwOG0tqBhl5b7ZpTLBwOB55OJ95/+MjDx488PTyyG/ZMw06S0SQr2JhNcjOrHRgBjjvvNZHJ5BRIlMaOksBcPs/W5II6+Wsd43oBKhnT1jpnA+VS/NhdVErWnuAa8LOx9fb7NuDSQ9tbhymFjz+/w1C4ffUlxvaM0x7jErjM0+GZD4/3HA4nlrTgBkeXPcOux9nInD0lKEOvapqp/kRJhY8/f+D4dODp8Yk4B9G2qYejEzaG5B+dAsnr/Ts93DY5ftuuxloRejYGtNphlelR24HqFDlDkYPEWYzr5Fi3gUIm1QOjugFtMaxuoOJoJRdMzRa2+/fFljdGGSZmO8KXFiCllFkW3WfKqpnPSxNrRFt5jFF7YT3QrLPSK2+2PeGXz7q1Y2rTckqwzImcwfkTy+zop45h6ikYDcTQkcBSje86uxG6lGPQ6uSVRk1Hk48q2qpBhVQQk7bN0kQSazC4tdUK9OWwgDGNEVlQIBcDOZM7CVBTbWGsyYfRCqBWWS+q3LoXZLIeMmq3t5vkuAYv6zVVP9f2uT4+a2uLAXgvwWzKhZLW78lZAt+on9kCNfXrXiuzplbmTPUhZiWJmpVNIOZq6Ds5q3NOxNyRom36Jxk4J2EQu4JE0qWsmbkGcq0z1axBb12/6tYayWQDTv2a8+z/X6/dfo+1Rs8pRyqZw+HAvMx8+PCRn376meUswMcw7Oj7oenYyGWve6229BxPBw5H+XU8HUXbQwsJZNWDqtp7BUJWjZVUGIcd1oC/kulCnbZtS5zXKcNC2tPkUevACB1NDXA8y8I3/bWy+nun47FlH0ec63E+4n2P6S2v33zBb7/6Lb23XI8Wb6E8PxOfDsJsJ8o0KGsFEMqZDx8eOXiP7wYZ+NB3TLtrun5P7gof3/+Jc1j4+O5HPv70nqHbcbV7hXMd/TjR9T37aWrTkwAtDojMQjXO6nPr1MNtEr49ZdqroU12lY1gDdgbLeIXXrXYV4Wla7K8fW/rpH3aGsPQj+ymHXM/0fmBYjNemWcpR0gLzjmGfmQchCE3XU1M00Q/qUC9TuAEePXmjmk3cvfqhmk/scwL9/fveXr8SIoL8+mJlKQNfwny7LOeG8bq/kMLnLCJoaxO7NR4QP1hikFiqJJFN6sUltmSUmG3G3n99it2ux2/+eYLvnp7zTD2dN60c85aQ0mJ5/NMjJEffnzHH/7wB47HE847bm5vwMD9w0fO5wPz+Z6x9wzTjunqWoYdDQNd1euz4sfHftCYTlvUc+b+/oHvf/6Jdz/9zOkwy4S/bDCmo4AAAfKg5JdRAEifq9WW4a7rQZPQJS7Uops1VoSmaxeAIsorW07Ex5VCK+yldp4Lg1Z0Fm1LcrGOouPd66CXTQBQo7BmyRUYsRUhrP6zGEzJ5BD46YfvKaVwffOaL78xDOMO5x0xJe4f73k+PnE4HUgl0vUOkg7QIBCLI0VlxBsBHuKSOD2fWNxCnmWy9PH50HTmnHH6XGyLB2pbr+JxGFNBpE0cWO/KXOql1fuS5yFnXclZtLSKsNCsM8KUdNJunl0V1N8CRJvfrRRqK8AuuuamPZvmJxQoqW7C1lxMQfii+VEMSePkhZQlp5jnKECRfob4UzAmaX68yqt4I63GF4WXvGX2XsYqMrSlMJ8Cp058lx+sFsZqS6Csk7RgG9FeLrBo66TYjWuxUbVNq46hDt0C9PvlYpx2G5VOc31rVeJDgBzBCXJjPVcyivhAedbeWkUxMiXr4A9TGsHhsnVzE5PpLiilgnNGCkHe4ntHVQhbYyyr/s1p4CzAGBV8xyiRwGA1fvKdIUUjnQNFBzrl0mRcJPxS324kDrXOU7WKxZ6rTlvN6dtX5Hyw8vW+kwK0TLR1pAg5iaZawjKnjLdgTW6gUR0qcIkuVoyguoAVXNrmyGJKlXRw8Qa/+PrVYNP1zY1QwPc7+qknpMDx4zOH45EffvyBP/3LH1nmwDIH+m5kHCemqx3jfpJJKmWFOwyZEE6cl2eenz/y/v07Dk9PLPOMd46wAZtCFHBoXiIfH06EkNntr5h2V/R9x6u7a4a+oxsGunHUBLa2Z6SW4OScdLNGYhAR6NNJBO2WsHA4HUWUPGUde24x2WOd4+vffMmbL15ju4Dpelw2fPHVb/iPv/s79ruJ33z1BePYM737M/bHf+EcFu6PTyxhocsQEqQ5sRyeMRmmu8LVF3v60fP1t19xfXtD9o6PH7/neDry53/+A3/8hz+wG295ffsdY7/j7ZtvePvNl+Qwkw6PlBQIOpa0WMi+vCjTlBd/1g2MaX9vvaTaF7wmcGL8Lbla+aPN6Orz+dxru8EvwAAEJNyNe7zxnHcn9vu9JOdW2nVijIQg+kvdMNJ5zzjtubm5Y5wm/DjgeglOjFZIxl2vzxjefvk1OWUOhyeOh2fOOo53ns8cjwdyOoiTUXZFqgi1EfG62nJYx1Q6160tZ8ZiscQQmM8nrJHJUt6rGGRK9Fcj3/zmO6721/zN//A7fv/73+ma67paSbBzzsznhRgDf/zTn/hf/7f/p4yYDYlx3OG9AxKHwxP/8//8R0I8s7+65vbuNcMw8NVX33J9fSsJOzIa/u3r11zt922McS6Gjw8P/Pmnn/jTn//Mux9+5P7DA/3XPePNRM6Z83zWMahrkiv00RUMMqbQ94MGLAI2CVDiyNqCaKweeLWyXjLg1EYCELl4tZgmk/OG1kkNqFxbU9FxuNT0WXPELShSkwdx4tZYeucpGb7/pz/w/R//kbff/IbsLPvrG5JdSDbw/uGJ73/6gcPhxCmd6a48xvfs5onYF0g9+axVCUVmckjMIbIwc346il0kATMwovnmNAjq6vh4TaqlstZJ4jl4/bqwUowxxJDbIS6tJBAXqW7JvpXfY0ykEOVgV3DLe8foezKZORdiCRQdXiCHre7dTcaUE63H2WhMugU8Xr5sRUxrFl8TJXXyMSTOpxlKISwyiScsmTBHfVoyyUWCjqIAj3ye7yy7aZBqVRBtkKxfXP2OXpwehmHJwoacxXc4B9d3+6YJFIIESiGK73feMwye0kky1HWdvp3sgqh+FbQNNYlIqXMa3erQg5yVrm+NjrKtApdQA53K9o2L2LDrZOS9LqTYesmULNNTSqgC8+v9yshfK8BdXiuHNRCyHqyTNrpuVMH4xjJbk5bGNFBQKRfx8S2ZtTqKurN0gyHEQsoSCIvWXWn70FihlFsvAaP3XnRwjGttrGaNjLTQtCKqVqvv1ilLum5fI0LUYQnkAtFkDjEoa8VQrMGWgk0bgKkgcxWbxl7ZxBsrkHuBRWui58wlu+3f8nV3d4exhv1O2qnTcub+/iOPT0/8+OP3/PFPf6Ikw2hu2e1v2O32jGPPMHiSEWYIBQ0WM6fTgYfHDzw8fOTh4SOnw4EYA84L664U+ZmTCq+HmDkcF1IuXN/ccn1zQ9933NxMAmr5ga4bgEI2CYy2raYoQXIQgdkYE0sUBvjxdGQJImAruoOFOAdSjHS+Zxz2eNdx9+oV1zc3dH2h60e8TXzz3e/4z//p/yF6epPBuEL/7ifMj+9kAu3hnhgXXCkczzOmFJ4+PGNy4erNW+6+vaMfJq6+esPu9pbDcuTnP/09z4cDf/7Hf+CHf/ozb958zdu73zHt9lzfXjFdTXTOMvS+gQExJjDoPV8WQ5xxa/tptSdMM6OauNRXBYfb19Qe6xCMGnfVr7N5H6i8WXQa5srMAPDFYbwk3PvdHnJhOZx56h8pbfiAjK03s8Qwu2nPfn/F9c01N6+umXYC0Fmdwum7HmssN6+u8FZaMeaztN68//kn7j9+4PD0xJ/+6R85Hg48Pd0T0r3eUwUkKkZnVp3NOurbGO02UJaBTswKYWGZT5ScGMce5wyHZ0sMhf3umr/727/l9u6Wv/0ffsvvvnuDNClBIeONwRuYU+DD/QPH04n/9g//wP/yv/yvWGN5/fotX1xdYyz88O57coo8PvzMcj7x9ssv+e67/0A/DNzc3jJOowoXy3V+8fotN1c3OCOgVimZH9+94+//63/l3Y/vefp4YD4GUjBY25NyFrmGnPVstw0sQtfEWtG6HYexTa4LcaEWMyuIUgdCmApSFKsyAuLMkvr71kJchMXXMmZoYsUGML18X9Qiq9hjajHWqoK3+unK5quxlikFmzNpXvjn/+u/8qd/+gNf/eav8P3I/uqaOSw8PD/x4f6RD/fvORxPpLIwTB5rOuJ+IPqEyR1lsZRstGgCyxyIswCXD3oJWSoFAn5rHO69CPkba7S1V8E77xW89/Rd9eNyIwJ8a75jBTpYliBFMF1BwzqNEwzeijh85zzFGo2hztJRgw5/oj3aVjgBZOhKLJCtFuxW0Mu0/6yAkzG6+vVbjbCdw6LDGpaEOQZKlilmqTFkqtRCbH6jdllM40A/9Bc+ZQUlUUHy0nxMbdGLYQVWfW/ZMeC6la1X93ouRbpxlPWZknQeeO/p+44a91efWMXMt0XpGAMg+oVehwE4Hb7TJrOpfq6ImQdO54U69Mk6A97J9Rp0IJSCT82aldObDDmUFitdFuq4iBFq0Vdkfbz6KAHDHeIrJS8R2Z5CIMV8ASg6LQ47D8Pg8IMhGMUgkLM4RY2l9BwXhprkO953UoixnlzqpMTqSwSoxZimC200XivF4J3E9sbIFOQYDDF25GyJpXBKGZ8Lzor9S2xQuY0ahzaigOEihjKVhbWx5VqQsZuiyL/y+vUC4V13wfjQHAPRsoksyyLJUFGKqGrhOFVzL4r0yi5Af2Zmns8cDgeeDweyCg6uIAja/ynJVwzabpW2wrK5Bd8VZawofp1SQRMeXP8t58Q8n2V6QliY57lN3Mq5SEtJLvhchVFlzCfqqox1onrfddihx/YDpusx3mNLlnsvDhMLRQUTUzaYXIhJKow2F6IRYbqYIucwczodiUsgR7mGzvV03dA0GXJJZGsoNXZ5gUya7aHxS9niJZTZAvTVef7yz37Orj4BnUr59N/qz0NrXet8JzRuW8ecFpwr5CQJtmutNEarM0kPy6otUhF76U2zmvzJJJRRknJTGIaRggBZtZombZi5teqsbYfbCor5zNfkQE8pyfhUYyl2BdWcc0LRn0b6vhcx00LTTdH9SdbrWZbAPM+cTjM5yVSFSpMMYSHnxPPhwDwfKcXS9SMpZQ7HI8Z2UBIlB5nc5Rw5Zcahx+335FI4zwuH45nzvFCKrE/X9eymSUZZF2lfkTO+rLiYqU7o8tmtAfCWGaBh+AvbWGOuSxstF9/Axc+2SoJZg+3//ldZr1eT6RijVBRPZ06HZ4wxHJ6f6MeR4/MT5+Mz55PofuWwUOIMOWJKElK/JhCiQ6GArZFgxmntoXNWKi0vwCbva9XEKQXYtUOy6xxd5xoYJZzCRFSHXiod40KMfGXM1Lbl9hSMVMApBtsmg6HMnJevFQmQR3+pEVR9wed3cg1MyxpIVdBJfXUFxLL679L8jJ4djTe8wuGC06xV4Usx2fVza0BdKz41EJQKoABeUfUxYlS/rgxZWzWfsgr+Vw2WisrU38ql3epSyXU30NO0QLFgJAGwWc+MT8U57cXP6brZCuCJnZhS9xarrb18bZLczVu1s/ZlJa/u53Z2/8IzpfpVc8lA2mA0cuvKwGrgbwWX1jzr02f2yb9pGGUkcJQEVdqRBeyXM0G7v7QlWO7L1hxre9n1Dy+z/xdrtH7r/x3f8n//1amOhq3jQ9G2g5IUqI5QLKbTQSzOtopr3e9ri0thCQvn85nTWTRqTqdTG3zRWv31d4mh5HNElyS3f2/t3xtx3qyCvTnp9MdcSEH2ckyJJS6iMzXPzMusU14VjAo6fSsbvE0I44J2htZDxjqH6zpc57C9BVcwXSdabVmYDiU7TJGJjRRaJ3PU3M6pXcRSCDFwOh45H4/kkLFYrBE5hc73Gsx7ERKnmkn9bzXsjT+rX6kaOfVVSvtqzdMb6PTi27atClv/DXz6++Z9iraCN8FZNu9VpK3ae7k33/WUnEWDztTkTn7JNCpJAkOY8UFHmeMoRVudrYi7O2ckxh0tPmV2u4mwXFFyZpp22lVwZl5GYToknb5WwTiztow1PceL+GnjfzSGopSWV9RYz3nPtJvY73cMfS9FmKK6OKW2Gsl6zMvC6Txz1glb3vkGcGWdjhdj4OnxifP5yDDtOZ7OMu3OO5YYlNkgzJDe95hiRB5htyPmzHleOB6OLPOCs9L21/c9/TAQU6JLEZOSJqySChZlDdQztXnJF/HTxowu/VbFCNQkV4ac2qoaWAOWftHr/PJXasz/r73qPcQlUEJkPh45HSWGitnQLZHj8xPz6cByPmv+EilpgaJdC0YZuqYCZlIEaY3RKtDsN/bSdb4V4SqwtMZQtoGrnXNanK15D9hEK9psOYVlXVBZX2WdyM+udowTm6sxVNbN3Y6XYqhaTFtAR/Z4zRL/4vJTWSGmoPpZwm7OGleKtlVp7G45A/QztnFT/U+Lxy/P/q3t1AOy+bYsuVCMWQpsxgljx9bYSlvxavyiBbJSaMzuqtNU/dsaJFyu+0tf2K5IF6r6jmwMLtk2SKRqX25Fu2sbqFFmWZUEWWN/yds/Wf9tfLT5/PrzVTy+dv+Usq51BQpb/KN/Wc/kjf2Y9b7W/anvWZ9ZPVs29mCagV0s0XYlL96tnlcVdKpAbMnaSmkLGGE1Z1PjjbL6kM+8Gl5TP2MbQ118+n9fBPWrwabbu7tGAS96g77z9P0gQs31DX2HLdLSM06CtJaCVorFiZRSeHh45N2HH/nHf/wn/rf//f/F8+Mjr6/33OwmzqfA6RwJS1Qtn8IcCiEJEn04nVmStA/dP3zAGsNuv2N/dQVG2EsFGekbl4VGFStQKys5Z5ZlaUlo1MqTUVorVMFUjzU91o4YZlIwxCVznmeeT88km+iWHb1d+BCOPAeh9RoMnXFYI1X84hy963F4jB+YQySamR/fv+fhfGA5R46Hs6DYB8tt/wV3V2/56stvGceJ3W5H1V9Jev21H5QqNGi0n9Wq+FhDJNeD/nMgUGk7aAVNPmeK/5phVUezpfhWo66byxgRy+28Y7m5Zplfk2LkfD5p+5zV6QVGWUOOmE78/P5PdP3AdH1FN430vmMaR0W1PRYVOzWSZO/2A8NgmXY91sGyLJyOR07HIzFGjqeDjv/9pFFQNqnqMDnrNYgQPQtrLTFGzqcz42jYjQoaOAHPpnHizZvXXF/f0vU98xI29w/GOrreEk+Jh/sHng9HHh9PLGehm17vrxi6jhgXvv/xX6R6fDgQwkKMDt/tOXWJ0/lf6LofOR6euf/4Hii8vr1lv9vz1ddf83d/95/xXce/fP+ef/7TDzw8HLm7e8N+uuH3v/89f/03f82yBO7vH3QMqYwizSkzh0V1UwLzsrSqdspJBS7L2maKw5jcApKklYmaqAjLIrYJeKv5bZx9sxGxFwm2tdqszCbqe9ckuh4q1QFqgAK01i35XqnndPRgIDzP/Mt/+we6vuf99+/YXd9wOJz48ccPLPPCcj4R5hOkAOdnSJEuzvihl2DIyoHQedsYSUOnkzo7AY+2QWTOaz99I0Zt7t3rYeqsaRMpix5kMSaOp6BjySPzLCLStdWtBmjWGGlVMFKdsM5QikxrshX00ACvkpjq5DlYE7iiSTwXz2iTWG12ygpGbP2KrHmYA08fL5lsOYtAImxaqkB8GpBVSybF2oInVb4YNr5Ok7waHCRdh5yUbZMQkN4CZiZGQSOqEoP3Fq/AXkwRsyAsDf08p8yztNGHsqbqT61+MpKhSLtS1/d6pvkWGIYgbKw6HUras2UNrN+sa6lBiQTRuViwkLOV1l1lBKeqtaCVzaottXkYYAQ8r2dDpd0n1ZWy1uIH8V+JLNNtsuhiVHBZQAa51hASKa8gmLNQnI6714ijZAHNc9KqqzKvqgB+0YrI1t5F8HI1AAuarFqK99gBgkvERdqwYlwIMZHRASEl0+m8s0rf3waj8qYaLUkWqWZW9dZWm60+59/rtb/eI0C0bwWxoZdzrO+EVWtwjP3A1O0Yh0EFS2EOkZBj06KU9uv3/OEf/4l33//Af/kv/4Xz6cS+9wzeEc6ReRGfvoRASJGQcgPsng8Hzou0q394L1XdaZrYTTsKmRDPpCwM8Bh1L2cw6oejMsXPyyLAsjWs7AqDiGB4jBGdJGN6DB0le0KAtCSezifeHx8EbFIG0cfzkWM4k1PEOIc3PS4lrElYRAPTGofrJ05zYMmF/O4n+sdnDocDHz5+ZFkCO3fHb78euHn1hru71wzjKC2muo+SxiOioXPJ+JY97xQAqK2zBZAWF1O/9hK4LbI/cxJ265rkfT7mqj7tIglTu8ym0NqF9GciEvulnITl7RxxDgRtJQvLLKPPjRRAJCkvQODh4Sf+6//nf6fre66vrxnHiX4Y2F1d470TDU31ZdKGbRgmx2t3zbTzlJI4n888Ptzx+PCREALPj88CkDaF1QpY5lYoFFZP18Trq6ZqSon5fBZQoZev9arxut/teP36Fa9e3eG6juMcENBgC84YwhL44cf3vL9/4PmwMA7XeGf1M+Dp6ZHnpweJL49nUoiM45Hn5zPHU+DPP/7EEoVhdTw8Yq3lqy++5Pbmli+/+pq//bv/hDWOH9995Ps/vycn+Obr3+Cs5T/89e/49re/IcbE0/OzFuzEflJKHI9nLSZKITunrPGVjk6XSnqLu2vRo5SiQxmUwdpin1psrYNc1nhJdpsmsk3YbbWlGNOG2bQyT2qiW9uTWsGAy3YoX/V2VCz6dP/IH/7+/xC5h37C+YHj8cRPP71nWRbSMpPCQkmRvBxEbqJE+mnCCo4jRU8vk7qtMwy9VwDJtrbhrPeSsuozlsL29uoZ2oB4bYcCdMw9xBQ5noW9v4SoQ0hWMEgU39DcQWQ1jDUYZ8nFkIrHZEMyWdSbt8l6YW3xLxsQ6iJmWn3D+tsWYECK1soyyynLOao6vDV1rT+7FneoKHd7Tjkmog1y9io4JJMnk+6Y9dyr9hOjAEbHY2aZRY+rAL6X2KOqAmSNOYaxFyY4WsRTsfeXcaCYn/jHEITRI0GrgI3C3E+Uzf1Ja6NqQHWd/uYZRvmzcUZjJS9DWnQLGastqKqRalXDMi6p7SWZAvuC5aRL4bxnmgact7hOGNQ5a4E6Z4wWjSW2WxR0D6rxpfvMmubzJdbNpGT0s3WYgRP7QLt46qNYc5XaWbA+vxXdqn6i7ns1OnWJArRZ+r5jhyH4RAzCZCo5kPNCLIU5ycAoh2maT9Kxw0UMJRP36r/VNhTx7fWWjV7PS2Dxl16/GmyapokqKCiftlZXVgFw1bhRh991XrQJkNY06UsUZ3Y6nXh8fOTn9+/505/+xNPjI/abbxi9Z1kiS8iEICymlAoxlhYo5RBYkgQJKZyhZK6ur5iXGQzEtGiQFAjLIounScr2cA8xrHowipr6roM2FK+yWYQSKhPkIEUxtnM4U4Klj2e6mDmkhXOKlJwaSm9Naai18wPe9hRnCUoVzIdnDuHMfFw4fDjKBp4Nu+6G/XDD7fUtwzThexUEp7K+NhX/drYoOqv98VtM9S+//rKxfA6/vKigcwk0vQQELt7fGLquozjHOI3s93tCCKQcKUUF11QU2XthfeQceHr+iO86ko0MZUceJHj0xiuNT8EG3Xy98zDozxeptg79wDCMhBDAWpZFRv3WAzgr+8K2ypy9qLpVDQthbgRy16vti0Nx1tF3PVf7PdfXe5xzxJguHLw1Fu8MhszxdOL5+cDptBCCABh9NzCOI4+PZx4e7hWIW0gx03Uz51PAhszzUSZ7PHz8wA9//iM5Z26vr5mmiefjia++/SvGceL+4Zn3Hx4Jp4VpumI3wRdffsG3v/mGeV7o+o55Xph19HGMkcPhqI62MOcFlBVSxx5f2oXamTHUCVRZtUJqgNNajH4h+G6+bBNEFJ3yUWm16/PZ2lvLszXx1AQyZ53IUK1/1dtK58j9u5/AWp4en+nHHcuy8PTwJOD06Zk0nzAl4XPAUkSAV5lIvZd2gKH3jKMESNM0yKE4eKZdp4eprFWImXkJpLy2BNeDTO59XcWqw2RN7VJLMqUtJM6nCjZJ1c4gFFqvE9VoVZm1w030qqCYItMzapC5Wf+VAYMGLtVWN1W8FjyV9pV2ONWqjqFNT4shkTWos66C99peqW+3foxqI+h1psoaNEbHaK/T5+rzhspsqq1q62Gcmz0EoZfXKqUxMHb0vUzjyLlOl5QkwFpLT0cprn1Nrr+ODy8rGKpCp9JKumoMir0KcCLVyEwMsrYCiGlwWtX49bA2RtbJKEBSyurPVh+/+v5tQNeCSH0+uehE2JzIaRUH3YJ063OvBwcN9KsaV9L1WhkJNCAf1h+pldYKhNFsaT2XXlbQ6v5v72RWu++cxSD+fFBGaCERohEmqJYqLejUMK1Iqt9fE1EFyYy5dC41uWpnI1T2wb/Hqx97sRlv25njvFORbWFNS1uCDDDwnVcNEdNADBE2ljby5+dn3r9/z08//cQPP/zAfD7xxd0d9uqKENehGzHppJ7qRwvCdD0v+ixEyHW/33F1dUUhMy/HNs6+7YVqZWUN2kPIpFy0JavbTHe0yNRYj9HYSdqqLSnKNLrzsnBYjtjioPPgDMc4s4jghLQlGLXwIs+56ye868nOsYSISZlknrHHM8fnE/cfnsgp09kdr26uubq+Zbfb0w0dIjZSQRHaflIDERupZtMyAZodV9FzzWaofrGuCWwTh78cVf0lsGmNF8Teq/dNSadlFpkc6K1jt9uxv7omhoUDhbIU0azuivoteZ/j6YkffpjxvmN+9Zr97opxmig5SlwVF+IgYuN+GLHW0XWWvhvxnVNQfqHrJa6f54WSrEyXI0FJKiY9k9tUSgFPrfUq6LvGUjlnQgjCOusGjMkiSN919MPA1X7P1X6PsY4lJGVorcLJBmE63T8+8/7DA/Mc6fwgQxK0m2KeT3z48LO0YgcoGU6nhfMcwUTe/fwTT4cnDs+PfHz/DoCfvvyZ25sbfnc689V3/4Gu73l4OnL/8ZlpmHhz94ZxGHn7xRvefvGaECLd4AVI0j0WQmgtRhcFk8rwzVUomzWZVMCk2UWubTeqXVdZLmVbeFGTqXZT7XAbR1EFmOt7rwl+fQtbBHDa+sLKVKlPUc5c+f7ldOLn7/8shXk/YKwnLAsHjaHScibFWRJsZNiS6I12OGsYOimuDX3PNIw4Z9nvB2V5W8ZRfH9YpJ0zxMR5XlohJ2ocGGOqm4mcs05nVma83mSK0tIvU2CFuAClDdfptJBcIxRnao1CxOG9VSkITb5ljbRNa7vBy79+ilyAZDV61vNPZncUQtICjv4CNvHFJm7TN9y+5dZX560ttdhpFaVe/Y7E2SllFqBPjm7o6FRao95z3XSVnQtoYUpAo9qNcgk0aWNb0ilxRtr9a/xWpSLkB6rOm7Ibm5wLel5KMVK+r7blIUMLEPHrOrW66jSXZLQNtXZbFYy2tNXCJRpDdH2H76xuBrnXup7eqk5rBe9UlL3VKD5TvJKYD70Ho9IFogFW7xdtJ81rFbo9y6qztQWa6ht/kkMZmm/0ztF3clbOfWz7JCiuHXMBHXrmrV3tT+PDFsxTi4obDW1tD90yuX4t0AT/PdPodqOKX7k2Vth5j8/iRLq+x5DxqQNNuq0TCm/WiTIiFG5IMeN0vO447BiGHXO3cDrN/PTTB8K8cDjMpBgbDXwJgSVIlRNjJdhEdHsMgrLOs7BIkk4zkLxY6ZVW9DlMqwxnXO1xLKLWXorRnmJLMYYk9oDvB6b9tbBcfl/IMfDVl19KVWiQSSAxRK6mPd23v4GccTnKZ4UAS8Aay264onM92VlSZzZuy3A93fLVW5nKcTzPzCHSjxPjtTBzQppJx0QJQaocNA6IbmKH0ZGZf7mF7vOvasDatKDvX/9tdSBr0lnbI9dgKedakXmZELVPkX/XKpAxhm4YZOJMFJZSDDOUqIeF0vaD5Xw64cJCMYZ5mZn7gRSCjn+ehPZsHM71YAwxBO1VF22uGBMxS+ubNx3Xt7caHMj0u80lYozFtvW7QC2Qy5cWoZSS+iurExC7VZ/A2FWAj9UJOSsg6TxHTLE4K2yom5tbQBzD6XxiVvE90UmhJbdVUDKlvGpt1QrCsmAKnI4nTocTpViZ1mA8XW+4uXXiVJzjcDoJYIYwQfqxx3cdOSWGvielxP48sd/tpDp0EgDqfD5xPBgikcUIGCPjyRPFZizaL+8s3mklWXVrNkssQX8pKm68ttpuYm7QAH8NyqsN0eyrVn7XwQKmVQUa2GpYJ3xYpDXNGPww4DtH9h03fi86XslDmkQHK0dNXNf2Sq/gg/eOzot/c1qd6zpLP0gV0EadeKhqirnUinluvd41SZex8mKL9b4NwqiZhoHeFzoXGfoKYtcmBeHsWGuYxl7os9ZRnNPqmxX/ZixdqXoIGZNX0KQA6HCB2r5FQXTaNgfJBj/AaMJqiuiPaZS7ghnFUFEfW3ss2oPfvrY+qh68RbWpTGvxKZ+5jvUvKyi2ITOTM8SgFaSMnkNaIdVJWCvAVhogJKKhUNvXSlbmVclQ4mpzpiaMVdBSbqdAAwj6QXS5ci54L3vZ9yJC2dYEpc3XCi1rW58xyoZixVLW9lUwtrTCjohSWhH2NoUUZEMVC0UTdfR8y6m0JKZN/GlHxgrK1Ocin1u2lyy3q/GaxeDrNDRt3SkKeBXgk+Oo1OeF+AGT2nrUynfnhZlXiiepgLBYpQCKScN+x3b0bj2xtoBabUlYnYtZH2+1PP49Xv1O2JXGW2E7ImCT73WgSjdgcQx9L8MeVK+tUNpQCgMEF4gp0Q8D+6sbxvFegMlceD6cSEsihcD5eBaGaoyElIgxs8xRJgBpomIMeOlC16RupiAM8pKFIVn9qAj16pCHWqDJymwxYlcm58Y2K8mSsozMHvfXvPriS/b7G0Y3kGPkiy+/pBtk4lxBkofbmxuuxxFKxqaA0BMyJgpbZjde4X1PNLAYKMZgnbDCrm9u+OLrbyWoTiqH4D1+AoywSnJKFPXfF2YPKnpfk/ZqN9snKPFaE1uujoCibcJyFme79m+s3mlNWNazbE386qt+XcBS1fDZJAAVYK/X5bxnGAecd6Qccc4Ql4VQz5KiU6EiooOWMs9Pwkg6n8/ElPCdZ391pUOAPH4YV8A8oQWocxuh3g0D1nnefOGEtRwWQpihZDKrVo5R9qFRXaL1ZWWSZ4gyRdE7bJG2KO9Fb7KybVKGJSgDU+Ow0jnx78kwDBP7/TVX+2eur28oJTGfF5b5zPl0JifIuWrJVCBaH21LxhFmPKI3dj6c5ddpJmcDiHzBME4yFXkYyKXw+PSk8am0j1pjtChluLneEWNi6B1D70kpcj6ddNR8YT6fyabgTIe3UTTn1E9lq0xRnym+aiytxY5qfzUeMkZZ0VSWj36/WmDKKzt8LZgooGSENGCsllcrO7GshVdrbLPigrBITOdkr1iPMY4yOl5PRoG0hZKD5mfKvLICOloDnTcKIlSygqFXYL2KfZcC2UsRoRjoi2/Xa5NRndEN0ygqo0RcEbnIpFvfOaZppK/tw1liK69FPmcMzoBTHTfvLAlLQorUXSkYvDI5hTWUTGKrZ1vPUZ0Nj/agoeFF3dmbfElWM6MdAqZGcgp0b89fPV9pfmLbFKgxivoHKRLJdfHCz2xf9VgsdXE3+U1OoqWVVM+n6MdIO5awrLMIDskOr8CO3v6qJWla+1nWCc0y/Vvi8RhUwsRKwa6xZ0yN49bs80KyQ3Nd64RJ7pW5L+a9gkg1R8g1/zBiL9Yh7C3NPYwx9L3D68CYopGFNdJKm1xWnSbZLzldFr1hcwy0HFGld3Jd57qO62nQQKkaXyHtoJ1VprY+qAb61s+oz1y/XvQYsibrMyk4I3Gf94as01pz7tRiKw9VcnwJ915iBWW1x1L9zWrMlUm42uSvi59+Ndi0f3UtiOPQEzVQ6voe4wzDNDFOE8kXrBkwyTONE10nfeBxTpyXoILC4vz6fuT6+o7r61turu9IS+L+4wM/PP8g96SooOhZwBIDp/mktECIpQjDoJNpd+c5kPNZHoWOvBbBU68V6EHbEjKlSKBtrSTsMUbCfKaUIk4RTzKOZMRx9Lsrbl59wfil5/Xf/ic6a4UOm6NWcyIpLrx5/Zq3b17jLHibsKYQlpllPmGtY7e/put6FTuUFoeH9wfOh5nXb77gN7/9a5z3zPHMkgLPhyPv3r9n1qrB0/Mz1kAPNDE0nejkvcf4yjr7fHJXncD2dWHApcg4YTYbpH4ZWCvupn1EAwlyJunI71rV377/JfNJJzxZy7jfk1IEKwDRcnzmFGdJ/LO2dZVESlEc09MTxlmhW19d4b3n9vaW/X4vk+uGHcZYDs9HjseziOAFETiVUc6e3nte7fZK555J6SzAl7L0pLlVRH8Pz0dttwwyhaUUwhKIpjCOkwqkOTrfM/QTQzcweJkgWFJhPokOWT3sw+I5naXiZfD0fuTm+o6vvvqaZZl5enzP8+HMfD6zLHUt1Z6NaZXBOQgtOKfcGAfnw5FTPvBwd8/9xyemOROWgrUD/eS5uhPqvfGOD/f3elhGjDdM/cjQDXKAFDkE52URYdkQeHx4ZJ4X7u8f+TnJdKDFZhICcPhBApTsoz57CTTkuq0Gz6stiWC/2IDzmqBuD0cVwa4OVQAjPXRVi8SofUkwI4wBcdJyiFZwTn5s1fmq1e0amHnv2Y07vIVhyAx91n59vdZkhBKLjHvF1EBDrmOJAlbLuOf6nOXZJJ/pvSeXzKxVuRASpkhwMC+RoC1bpUiANo4dfe/ovWO4lt0edXStc4ZpEIHEGGSij7OW3U4mXM0B5oC0mBlhVpkUwUiwZkMQMJ4iiQFQhHTAStsFNnanp07FduqXoYCjoJPPWz9/i7mqEzbiO+oBeeFU9Pvli5kUCqcsbRNN96D5r/Yn2iQNKoCwZXIakoqLS4FErs25RNdr0J2BLECQMKkK3ukRrPYvoFWt8CVinIFC13llXCZCXFYWjdqbjIW3DEPXkrawKEOL3Fh79V5SLBhT29oyUpw0K5BqBHCy1Y4tGCe+33lHPwgFvBssXS8C83mRdjkR69YJN1nGzqeQWGYRqPWDxTizBsemBqHr9RlkwosIJdVzAJk4lwsWR+c6etdrq7EnlUTKIvIpwaG5PFS24LEm7gLmynMce7FxqwFazpmQFlKORAwLBUfGF0ttL1/fvCGgTQSTItNO661VkczPBeP/Vq/pbpJgujOinZQlhsLBtNsxTXscjv20Zz+KXg1WILYQF5ZZRsPnInT+aXfNF198w9P9E9ZJEfDDh3viHCR/0PUVnYZMCpnjYZaqrCZKzlnGscNhRfdGmbiVbWaMF9F3PXtc1aTRc9yYhZSEyRGiRNadspkKniVZTHHcvPmS3/7Nf8QX6P82iymZCEZ8UdS4481XX/H2zR2GQgpHik62k+l2nv3VNX3Xc46BYxCx87Qkcizcvv6Cr777HdZ5jqdn5uXMw+M9f/7+T8zzTDgElnOg6zoGP61M0HaQqL4RpQ0FuCzciY3VYutWcqAWRiXcqcGR/YUkEY2hVp2ZlnxUJoIO5li/d8PGK2sBsOt7rm5vSDHgHMQwcD4cOMRZk5XU2l1qi93pdKZOH9zt93Sd5/buFddXVxjncZ0U7M6noAVco8VdSz/2TFciJj59PeGs43h45vj8CBR8J/5JfKsAkMfzmRCixFDLWfSXlgjlJEU6ZUv0Q990LusU4BCKDMEpRlsfDXNfGPrCORiuru4wticu0np7Oh1498MfOR2fmZeZGNZzqyZt3snc0ZxFKqCkQmc6Ss6cn8ROHu6eeHw4Mk5Q8Ay7K/bX17z54i3TODLHmR/fvRO2nepsjkPHMPQYAzdXE4CyxhdCiDw9PDHPMxbD8fEExtLbgeIKOAGWoDT2WvW9QNNuQ/dyddgFmkaVMaYNpJA9uolzWnKrP9q0CmU9rJ5dvrJf1MfXIl7TAlJ/XXKdwCf22HdGpz6C7zLebwKFAikZktZ0a2yQyERtw6qajqa2ZGoSnbJoNjlvRcA6SJt7iBGjE2jnRaa1mU1SPgwdXe9kCmXXyZlloOqK9Qpy5RQpSViU09jjveV4zhxO4p+hJ9vCEgOkWSJmK6zpXDS2qlvdVv1Iub+qhac7XvasIA3iY1bEWYoFba9rTFv0ZrSil9dRTfUtARkQVIAQMyGm5ifqs2mfr+FdBeXqv7dHa4Rx+vw4t8KhUXak67SA1gmzx2jeU3WWpMC7Mvql20HuNQQ5I4w161RKtSPvpcPFWksZunoZjdUFEttjpEiO6kFXsAkTcSkT4zqUoQ6VkVw0aQtgApuwHYyua7ZtDPSDZxgEq6jdB85apmlS/U85O3MS3cIUkw4RQ4E4VM5ZnyuQkm01u5UWUh1R1uKl5s8a342+Y+x6OqNNsUX3WSm6brat6focs3ZHpNYloTUqht4qC6w+/wwpEZWg44oMQfCswFdd9sr9yxSKxlBNX21ru5vn9K+9/jsEwr0urG35iPx9eyCrsCde0Ur556w6SQZDNirSauwqFN33+K4n58z5PANGKw11Ag2ULErwzsqmMylTMK3CnpK0ilT2AkbodqK34ej6Eec8OQdiRUFNVhdg8ElMolOWDMZj/UjXD4z7HcNuYup7rvd7eueY5xPLMmvSLHoZQ98zTZP0JLNgyMioQUFx+1EFsRG+VQyJvltIPjMMI7urPb7r8KljSIFYEuYjFGpL4CytM963yQIt2dJkvNS/NBSymVELji4pf2ZzGG0RZTSpljep6LUc2C+RUDbvp8l8aVaLCsRQKypbyri1FopUsyiZuGnzKFnp2QZpH7AyRtIqMGGdo+s6xlHamHwurcpZJ3BUp1M0OBThet/EQo3NYGM7sOvoborFJcvSddTqYi61agdQR34KKl9tuVLEKwU6Oa/sFdU6ioCxqgkj1+R9xziMurZW11mBDQxYcb1mc/DXqlzO65pKUJ50xLscwGDa/fbDoMycrH3cAgRh5RqEnWhwGjQXY7RybBnOA2AYx4FplCBz7s+t9TAjekLFSYuIeAR5zs7YTauL/FtWcXJjKthkVrYJGaHErja8BYyKIv41ETcI1db7lWZ/ATZVmzdyjOlIjXYw9p3lanJ4Z5imwjhqxakIEBIDxKhJuDq1VGprigJ22QCp7ZlamcYWcAaTLd7VhEIOWZsFRMr1WTZW+Or0jQI4AjTKGPL6uzhGq/3oUiF2GawyF6xqGNhS1JYy1lidBiP+02wwgO3u37j0Ki20niub/Mu8+F2+bNo/1Krb6gz+wqsCUlrBrD9a98PGrbX3+9QTKXDSUHC9B90jDWAoep0b0GMNDtc9ZViryVLtKziXyVkq9yklcrWzJixJOxurnlD2orVVyjbtVP9rRSuC1radP7ml6neN1YpiMWB0mptb9VFqAm2sVUaXiJIbzMrSyjVQqmxJ9e3tDKgfWtqabytrLxsGDLVNXSG/9fFvTKaeVy2P0jd+cZus7X6uVroV4LVFGDCUtRIs+UxpAXP5xFDXvbQueaGUTy3n3/plvQbEVf+L0hIgqNtK9rd367hogDb2urYpF4m1ul6Er52ymmNMzPMiNtJYzmvw6EwHNpNLXJ9HLuQ2FVLONacVVgFWpV3c+3WqUNa291x9vYE6MGFwOzo34Pqebr+nH0fG/Z5xv6fDMBUR9g7xREiznBfaAiEx1AglEUwgJy0uJBm+0Q2dFI2cobMFlwsRS7aFcRy5ur7Geo/xBTdbzssRjNxvzpGUIq4JyV4an6nPopnMykJYvWONGDcAUfUrCkyvTrH+eQVDW6Hu5cebbRymvudFnHURU1WbsgICUuRMKdkpu7TocyoaJ2cqB7AyoXPJWGeJ0TOOMvlXxNllw8+zgE3GWKzvmhaKqzFU3+GtowvyTIwpcgZbNfIssVDMeXN2C6BS4xhpnfFU1nBtoxHdvNjO04JRlpGw7mwUzT7nqmC3yA/kFFsMJROeejnrtJXfbjoc6rlbh2xQRGuFLO1Xoncn8WbX93Rdr7mKZ04C/GLB+HofcgZv2adt4JCRVp1cCsMwMI0jzlrmedA1qVlB2ZK4GuB4MSigrMwmKZqbtoar1pK03rXvu3CCdeCOgE2dDiLwVhiqYFqxpbaKVwgAg0olrNPQSikMveVq7+i8oesLvpM1LQll+EOIdZ3lBkNOmExLXLO26bTYp+Y0ehZkY3FZI8tiSV5a3mOyK6iT18S5NP+6atZKXmi1/V0Ak1LPG69tnk7OTaNrSxFigjUiWm20q6YOBVm3umnXXTfqCqys8cz6h3Xvt3gHKLUlry6F/nArqOm5Kcf1JrbSWKa0iZqb9/8k9Fr/oQJxFLG3nNd4z9brKNWnaDsxtsXyFKnPU3OQRjRY2+VSypshNWpL+j05KTNWz7Zt7rDVV2yrtrmX1u1hs7LI65qUzVqv6y7Tg53alhVCirMNAF0fj5HpmcaQYxSdS1ksjQtpZ/dqW5s1/XSVW1xUNjFUBRbrezT9SS5LrYbadVAu3nPb8VGNqB47tuYKrrS2w1yy5CpmjZ9KjcNa/LRd7ct7+v8lavrVYNPuZgQMrnd6cK2T4JZ54fB8gGQZhxtpaxrq4VRISSoa3nVimEWMy3vPtN/x9ss3OAfP9x+Yw4xF2osMFpN7LEIz//bLv8J5z+H8zPEsY35Px2fmEIgmETbOBGPYv3nF1199LaKIN9cM48Dj0wM/v/+x6YKA9hMPI8577t6+ZX9zSz+N7O9u6YaBb775irdv3+BTZpgDLmV87NhFMfC+F52qrpO+0BgWHu9/JCxHnLWinWIty7xou5vH+h6KrMHuyuF7z5IiyUAoiQScw8Lj0wcOhwMPH97zeP8o9PqbG7xzqw7OxiCaX9kCTqyByi8FMFta4MUbmfX7arKxfkvdaKWJ8+UsyUtVzFuBpdXNtP8aI21YptA5EbWcS2aeZ2IIzPNJRh97j+97ZQ14AYz8meNpxjnPsiw8Px+l1/9a/i1GwZiNFRaUwbDb7dntdppwJZYlENLCElW7Qp3k0PVM/YCxhpvbHYa9UpGD6j/J2Oer6xvGccIYy/X1tVCEO8eHD+84PD9wfXPDbn+lzkOCrSUa0KAhRqlS73YjX3z5lvPpRI4Lx66nXKnAb0qcjs+EsLDfX9P3A7lAWJ44HYXqPZ9l1LRA3dJSGmKkT4lxGnllZVLd1TjijCWXQM4B75wARzpBr+9HYRCcZdJQcagosGG82tONA9e31/zVX/2GZVn44c8/8Pj4xLIcOJ4egMzYd3TOtads9NHXI7eo9kDSqkO1TXkm2jJHboi+GJ9pyUC1xcqc806S677vGAfRRCkpCzNnG2hVh1wkApLqnATjfW+5vvZ0nWGaYBrl+7OKLJ+OkfNJqhnLItW0sKh4OivLR/RyUrN7YfhY0YBzkmzWe725kUsJKSvbKXI6nER8NwSWZWkHtVSMRLjZ2MLhkPWePX0vRYCQIUdYEtL3X4y0RFgwSQDFkmvLsbb4pc1hYuq66mTCLIKsUnWRa7beNE0W06ova0tgamyozSnf1p2Gskj+tvqRteJXfcLar7+CYdvgaJMYXn6FqnMiQJsODfC29aXnmMnG0OYNY6jTssKcSCGrTapmmALMMnVV2rSjtvRgaMWWYezph141AsIaBGmluAbUon1UEy352eiq5kDRYE/aZMOmjTwVaV8YRh1tbOrkJks/iIC5dwpKWkPn5RpzdhLsx8zpcBaWQ0z4TvQTh9HhfBVFF9CrTZTSyM5YQ3E1UZazGWjnj+/cJmhSmzeidVYUhDPaXllbOCswbozB9r6BwXVdhqFTirywsXLOWA+peGwqEGXCStAKveiXKRB/YXvNvNuZs/5+Gcj+W7+sjiLP1Mpkkb0eRUT4eDzR+0HYKldX9EMvdqO2EJagyaU8L+8FJNhf7Xn16g5DYT7OPM5PGGPxdlCNwB2dnfCj56vXe6yzPB0+8HT80CbKpTlRJ/IYI5V/Zy2vb7/ku+++kyTaF/E/z898vP9AzplBtXS6fmDYX+O7nrvXb7m6vqGbBqZXN3RDxzdffsGbN68wS8I8nyEmBtNhyTpyupPqLTJBLMWZp/v3hPksSX4n1e/zPAuY4CzFOTAiQN05h3GWZZkxKapuTmSeTzw9fuR0OHI+RpZTEiH0ccD4bm25Lmu7xmUs9GnaQAVOy5psr3qGa1JbE8Sa+hrAONXAaUzbzeeZOlHp0ySrXU0pzd/WAqEVCr+ARTlzLpn5fCamSMwSszgnMWYDi6zFzZ5ZOw5SLpzOM74T5pK1TsAd/f5xnNqUuGk3UXLmdH6WOGpeOJcg8cci4kjjMLIbJwFZxp3YveoQVbyhFNhfX/Pq7hUYw3I6kWPEmMKPP/6Zp8eP7K6umMadMBpsB8ZyniPnWWK4buiw3vI6vMIYw+l4JKXA4elZn5p85uFwICwL++vXGD9RUmSeM8fnmTjPhJOI6/VeErQYhVHVxcTV9TVff/O1CPlPkid0JZIpdF3PzfUNne9Vo1bE/+d5Fq2UZIhZBnN0w4D1nv1+z29/+x3LPPPHP/6B+/uPEkNTwR+vgGhlAanuksY9tXBZJ0jWP9eiSG6aUGm10xd2JFp+EWtgGDzOyZ4fexmEIjqbl/ugxmRyHvpmswboe8vttcN7Q9dD15c1XkoiG8FZ2N7LLO2ci05Aq7ZAqTFgHbW96kUZZykOOgdZ09Z6dUuQNsGwiBC8AFCR+RgoxaCqBa3wXFvmnJP2vb53ZCznkDERllhEjN4aiXmctBr3CIBngkofGKMTeFf4oADG1XjGaNueXq2hFYbk9lY2DrnGUOnTh7Xd7+XFoXbxvaZhLLahJ5dFW/FJa0v8y7SveixxUXZtdavFtATLOVyAFTRfhIC6Laesd65MPKRl3iAtlDJ5VrTXLBJzyXAtaaU30MgiGGQiqdocek5VkLWC1lYHKxQnCFjymWQqE0ny7b4WT5wVQIkqp5KUsSqMID8MGCzHciKEuMEIlR1nDcaKmLp1lTmW2no51UErpUiBSdIiaR3WdoDaRdL5bgWgKgPMSm5dqCCZkcJarjFq3YsCBq/FPonTpsGKnqINFLSVOGucmXVITIFQAURrRfdsE79/YmK6/pfw3yff8dnXrwab+kmotXjbjKuO0QshMp9mLA63swzDoKwRAR2koiTUbmuc0o2FuTEMAzd316QUcJ0jpiDGUkSf32DIeIZ+z+u77xjGicfnD/jDe+b5xPFwIoaFRELn3SnIZXFux93d14zTyOu3r5j2E93PP/J0lHGotZd82u+5efWGfhz48rvvuP3iLdP1ntfffkE39FztB6axp5xm8k8fRIMpW2y29N5zc72j8445nDgvR5YceHz8wPHwyDSM7KYdxhhmZsDi+0HavawT0XDvsZ0jZklko27PEAPH4xOHwxPHpweOj4+Uacf1tFPj2XKb1o2wPv5/3RC21bT1e//1AHyL4tdRkRW5xUrfcesfv4zTNEk1m+QEOmtUWLK0ZPtwEvaY6HtJxcr3Hc57YRMtoVVa53mRtjYsvuuw2kturdFxuE6n+l2RUuR4eiLEQEiBJUVtA5wFxJgmxk6qd9M00PlOnYYc5EKLDky7HX0noNQ0TVDkIHt6fODoHVgJzq11eC/gqXaat8UowDD03NlbTn3P4ekRoAntpxSxzrLMM8M44X3fRH+XOQhgtiRJ3GTpJYlRUdiu79l3PZ1zTH2PNYawSMLsu47dtBdRzn6g6wedXKIVXZspViYr9uMApeNqN3F3c01YFjpn+Phx5HgceXiUw+RmvxfQB1obnVFEppQsrTVlFYLOpWhSLUFG0va6lFbtB3GkzWLVaVYRealQTWPPfifBrYzdzSpgmJqNV2CkjpRtVbnBcX3r8d6w24E8Sm3PUFArpUyMwJKbQPx8PgMKamAgSyKv/9iSDeccTRTalDaVByAVASLmeeHRii99fo6qrSJtdtLqVenZGdyCMYXr6x3d4EVfTvA1GQmu/fjGKT9U6V/CztFx1Q2M3m7OLCzCurGpvB55DM4J07RWcQ2mJVk5F/Ky0ehR8OQCcP6llwZmoLpRm+Ou+gjpLCjN52yKMau7Ku0/6v/XQKlSjIVBZjf+UYOxUkT4EQmOapBQBxfIL3m2KSq7kvV6RC+uUKy2kFqDzZvD365BQB1HXlsfIAuDo2TAi/4AESEL1qsBrCTlAjI5DQYNzrf4S+6osgVTkZG4QMmBZUksc2jAjPMyfcZ5gwmS0FTa/LZVWmzWkE3BuzotyCidXNgR9Zvrs6uMi1Y12+xfkIJTnZIna7iiycL2dDhkb/QpkbKyFYqDmFpwXqfugehVvTy7Pv+3f3+gCUC7ptQfio+JyuBYwsK8zJgiGlzjNOK9vwAzkk45s05YodY6+r5nGkf211eEsGCdJcQowtwO0WszE87eMPUTX7z9QlqVPnoy8pnHw8yySBuw4BYGmy04zzTe8fVX/4Gu9xQfKSbx4cN7DqdZdaNGnO/YXd9w98VXDOPIl7/9jru3bxj2A1df3opuircM1pBPCyEXyhIZvWVwRjWDdnjveHr8yOPjB5bziceHe+bTgWnas9uLXeR8ogBuGOhUY6jvBrzrMNYQYsBo233RwtDpeOB4eGY+ZsIs2jopZRWXXX2guTDUbUz0EoDSJKqsArwtyW/BvkGphWzh8qrRchHQmw2DfMvE3b42n98mipWqkycMV28tRnUSw7IQwsIpCOgkQvQ9xsqAFu89NgSxFSuMyhgj/TiK3qLvsLbHGhH2lva2jnEYGIZBBMkPJ5Z5JmbRZC05kZaTtCV5GYgj7LtBJzJZje1hWaS9T/SWrsHA87Rjnk4A3H/8wOkorCRnrRROOmktjEn1Nw1tEFG6vgIM4zByOhzpu0kZWI4YIx8/fOB8PjNM11jXS1EuZCnUzUFlDZD7taiunZz10zTx2si6dYMmqrkjl8zQD9La2Q/KlJDPO8+JmAopC9hUMMIEKx2311e8vrtjns+kfMJ3omFkjUzYHvpe5A6MaYwLmUZcBX9js7k2iKRJWKxi4LWwt7Xm+peUhOVnLYyjx3vL2PfsxwGgFVS3QEdOkapRWKoWrhY9Bi3YeQ/dAF0nhbKTTtPNZGKCaAr5HKWNOGTCXIcPVBFincAHWOvBiq5SLWDgPRhhddZum6jMmfm88FgEwIrHIBplWUW3c9GBI0IQiDrchf1IP4wUCkst7ImEIgVJ+gsGb6o4u22sTsl1zEXhTEK82nkgbeBUoNmIjo7z2hIlatnKolNWT14ZwPVZtRjsL8VRFxjUp+xjalyn57HEUL/wfu38l3hFdLtcY0AH1aGtE+q2AGeNKVdczOiUOdtaDwEGBYhkvbWtO0sHgTV6BhnJK/+/xP3XkyxJkuaL/Yw4CZKZhxSvrmbTPRx3AciK4ApE8OfjAXi7F3sXdzjpruqqOnWSRoQzI3hQNXOPU927PcDOILqzMk9mEHcjaqqffvqpc2Irq+wDWdloll67gctXFlaX6hcmn7XxBspGz/VsdVab/TjLEhbOwyz3YMo1q700TpjCV/6Jjo+VhF1hc+YsZItaUVFsuDqqpbjDeyfdZ0EDgIR3Xv6t50Op3qma05u3QudxG8OsyVdlIxoDjaVUs0oFhZwTOSdySKQkmr1RfSmXksTNbK9bAK8CYpb4/fp4+uP8qD8abJKASZyXSmFXgxfCwjiOeCOOcNNIa8JyDSXIMdhKAS/ixjFGbbs+qyCstIFMOsK3N0eOh7fc3t7x1S9+yn5/4P3Tnt1jx+VyZp4XLpczh92Ro7JIyib6/Isv+Pjjj2n7jpvbI23fMseZT8IXxJSErdG1tF3P7uYG13pu3r6mvz1gG89lOePSQAiO4eRoIhyNxTUtNlpsUqefghbLIm2ahv1BNK4a5xV9tRgrJV5t19Pt97KBaQQUMYZxHjDBSdGlGrmKLgNSZ3TdwaQE3iklsZKmmDYq0FMCpzI2V7REszpH68EkKHDVaanIuAQgBXjBrI4PBb0uJXP1Ooswpr6P7C2Z+xAIyySlX+OFFGaiOswitOgw1gOSaTLafjQTMVYRX2uZplnKgzC0w0ATAl23o2m9dg5rcU4OqXkeCDFKPX8M4ET3IKck1OoobIJxHCWgNobYBIrDCHJGdE7q8zvtMDQ4cYQk07dgFsPLsyXGRYNz0XEx3mMVaDBakhWCdsYKgaZp2fUHEcpspEWwNZZlmdnvDxwOR2KK3N29wlovmmVJxrKALF23qwywxopYOVlE9nNKjMOJabyw3+24PR5xrqXtHP2uIUUn7LyQGMYJO4g2zTwaBb50LRuLa5yM8WyKRagBi8lraUtdF1APrJwhWyBpRg9V00v6XWv3CwOlBq1iUHQfoG3XIQZLDFIOWf5ukgjZlmswdW3nOp8GcXDmMRKdvDbMRdWvAKWGtvN4L8KBKWaaTr5k6cs9Scee9WWyK1SUmlz/RxBNJxARxYw4HHKoWvrOQ24JWisdtYxEYpmsHakSKRuGYRYH14GxjpQtWauwt18FCZbS4owh6l7ajEMWpwIyzhhhD+jBjoLK29KemnRQYK+Uilwl4D78Xv+Zr36vx+SVo2Q2TzDlHvRRryOXMu0t+rQGYQUM35av5JwJi6yVqKyfAoyv4IjcS0yxgkylpCEjYt8CZBkwa3c7JRdSSmxLZxShnSugllZxRaGRl1tbHRVnrYJRFuuSCHSWMTSrMLgwSvW6UhQNjKSZMCeOcM4G61J1ypwz+qWlBE6AMa+CrFtHosyEdSK4ak0B6taEE1nF762tNPBcmWPbiV/d6JX+riUamXV/6z1uXWbhK+n4OCcsoZzJeRZGoYEirA4fONuGdU3pOJf1+R+JN60Z3/V3ScGmZV6YxwmXXQ2irTrKwsIUhkZxQiWgTBW4X5aonZqElSjltxL83r665fXdZxyOe7788jNpBvFdJLeBcZjIuWceZ/aHG47HWwqd3xrDJ599yuuP3uC8I+SRSCAaQ3Tio+1uj7R9T7vbsb+7wzcN/es9HC2LCzyfH7DWMFtHbxw+QedFTL6x0v1JGE3iK9SOxymKhpW1NE2nySP1t4yV5g79Hmsdje/xtoFsGIZBpB5ImmxyqhkoZcRrJ7Bc9WRWu6W+S/m5zlXxmUrpyMpe2jLltn5VYR2R15qUckqWOTUfLPo1AfD7HpvnaeMHTGnHHUhxEYbaLP5U03ggMUUrDRFyJsSASRroslYAWCudeSWwhqbriT4JCNGJ/+q8JL/mZWE5iQD9MEyEZcZ6LyVi0ZLDXJM84zgKCy9nZR3YmpjxjXQG3e06+r6jMPZSSoRl5jKcWBZHJnEZzsImaqVLntW9UWwIGMZpFu1PMv1uh0F8yMY3Cqo45nnicHPD7nDELzNv3nxETpl5GBieX8gp0zRSktrt9tpBT7ostprYPQ/SBXieBuZpJB4Sr42wLlstOY1RQJKwRIaxER8qRpZ5lqSgdXqWGrXjVoChFIRRg/pQrD5UScpmJBAvLkwxs0aBqszGF191CX7PalqLdFJKxCCdsoo8wXUeShMICj5kVs2WUjmUYmYaAouDZU44r8kATSg6K9pwMQqsJEykRDcJgyrX5IFZdbbUlqdMbWhQfKgYIstSYhCNhVKiaUSjJiXRzooxY2a5Bu8dIuEisgvWCuh8uUyy92yL8LgtidX2okNRS5002ZYMlA5oq8eyjnep9JDyeNU+3JRHl3tapT6uwe8PfahCLvjQHtR/V0Dgx4mUraWxVjxuk8V+SFnYhzGhxCclBirvn6L4Tqj9K59dZTIK0x10LVOXogIIlGRkiSOsXTv+lkYkVyXgaoOLX51QDMHmCrLGUr6Xy3o1NR436rODlOqWy45prdAyWlJXEBXx56X5Rc5ZxMOTglelkY4xm31cYpTig/zYtq8+VI1E1j2as9rHTclnfY+yH/LVGlh9qDJO19VHV8BUWVd6ZhlnsW2jFSALKag2ZmnuoA1lPlxu5Tcfumt/zOOP12xqhb4fyURkUmOMhBgYhoHnxyfapsM5y34v4paSsRFEPIQZsmQOUs61HnpZFi7DhfPlIoLI0ZEw0rnHGz7+9DN+8Ys/4+1Hb/mr//SfuLm94Xfffc3vvvuGp4cnHDueH575yVc/4ec/+xnGwDyPxBT56KM3fPbFp/WgNNZwfPuaVz/9Ets4PvrqC27evBKPx0vJyMxCIDBczrx//70cpmPATpHX+1v+7OOfceh3Ik+QRBzX6SbzzoBrcM7w5qPPhXG1LARFRpuux7qGfrfjeLypuhpkwxACTy/3ZGPpD7c0/Z5sZHM0Xro4mBiruttVNi0lARtKe/ECHKXVaGXyykjYOEiwBm7lPckSUBVjt2bwi9HJpBz0UNqwRkxx5IQFsNL8SgAq32OQ10zjwDicSWFhPj0SZ+mO0jYCzAxNYElWHPIxgIEmZ1zU7hlBDUlKTONE143knGiallevLX2/p2k9N7cHvG8Yx4GX87mu2Zgiu5sjh5sjOSUma4hhIc4zT5eLOMnzSNM0WFeYHY6b463QxPcHXt0dyRgupydAM6nDmZwjzy+Pdbyt6jntjzfsD0eERi8ocs6QVY9gtz+y2x1p25au74AsWdokZRNN15JiousPDMPE5XTi6eY1YV4YzmfmceLm5i1tu6NpOtquwzQN4zDwcH/PPE28PP7A6fmB169f8emnb2k6w+HYcHe3Awwx35AzvLxMPD1PLPMsWeZpxPmWbDy4RNM19IeWeXFYbSvtbJJWoXkFnHLKKtovde5i8+TwjTlhiAoKSctrAZ1KyzA267A8VsBoCQJKOTJtKSOi+PdraWQxv2UdFoFgyMQZTnNQA7pgWEQ4t5Osbt97bm41E6GO3DJ3LPOOGLMAVTExDoHLRbNpIUoQuCmHCkFLoqIIS2fyegBZQ9s4TOtpmh37Q8cyB168E0HfTA1PknJdpnHi4eEitsWLSKlveylb0PKjCiVZLYFShl22Cw7do9rVxRiLM6rNtzmcSnq12AEpnQ7EnDRY1rbMqdgCc31Q/XceGr5d6f58OOMl47/1nYvdEvZa0ZDQvxl7DaaU0l4gx8w4TMzzIo5slOtelqCZz6Kvo9lhlGKsehw5liyZw/UtxlgtRxpl7GYZN++8dL2yBp+F6Zui6AuKI1SYVy3et9Le3WkJmmkwzkvGdhJWXdbxxhh86+j7VmdXbOx4mZjGCeuclA5bJ0BosuRoaLx0O/XO0HhqB0URUJcS5atZycU5kfJg67SkLaaqQ1dKgf1Gs650zxENQVsDhPUMkLPIetUoqE6pRFVZg3vxG4vzrdm7LEyYvhctvDFnFtUwsaoL6ZWxXP2uyrpdnbLycX8otP/3eIRUQMu1vHJeFsZp5HI58/z8RNoLkNjvemkzrRdaQCmsxcZYO0xFBaqGYeIyTMxLImgHGozDuoYvv/qSP/vTv+L21Q0/+5Ov6HY9//BPH3H8p1cMp4nbwz3jZeEnP/mSn/78p2Ayw3gixoVPPv2Yr376JVjD+fLCvEy8/sLyZSfO6t3nH7F7daNlAhIEjMvIEmYu5zOP339PmgM3tBzw3O5v+PmnP2HX9iKumxZ1voEsweJ+vye2Lc4YgnZQk33p6Hd70ajqevxOEnaNFebyFAL3D/dgLMfjUfUzG7xtcXbC5EUFx2NN0JUGAChoZzArcL45ewpTydYm6aaWxJb1VN6vdHIiFw2nsvY0qK4ReqoB9X+XZaeAaQWksiVbsX3DMBCXmcvzM2GSLrO7XhpGjGFiDhJYhUkSHJIglv3sNwDmNE20XUfMRjWKetq21a8G5zzPpxeeX06yHueJlBM3dzccDrcqtrwQkCDw8XHCWkO36/FNUwF07z1vXn3Efn9kfzjy6vYoYvlOQJlxnJmWZwyZ9K3qk3lPv9/jvefVqzfc3r0CLCkp+J0sOcmeev36DbyGpmnpWgGyZk1mW+8w3ktiCssXn37J+fmZ++/fiZ+lg3336i1N1+Objp2W1JwvF76/v2eaJubhzDwOvHnzmi+/+pR2ZzkcOo7Hg/i4yx0pwvPLhcfHM8uy8PL0JEx932pC1dK0lrZ3hDkwzZPYw16YZ2L2VCfQJErX2NLxdUF1QEk4m9VnL92jiq7aH7JwSVg3ORPmSDTgsUTfYMxq4xUqkQWIaOel0myhBL7q7yxDYVIFMsJua3civNz1jsNNK/usnB9zlM8OotUbQmSZEtMo3QYX9ZeWmEiLgE5LjMqAT+J3IGwh6+Q82+06jBGB8GWJLCFyPo+iGaTJjQKCSQwycXo+y5naCQPPNR2+FdmYVP0uYR1aY/DJq1+rzKUC8iDnjBKWKI1oFFup/kvOkkAM86opG6PGTpuYTb5vDqkt0FD+u5lfPepqV0EDWkmR68/GqA6rtUpGqLzp6ocVsEn2alM+XMSyZyGHiA/ia1mgc77ec3luIRWUhj4l4SlfoqpttOpD/LOo69LUphSw0ZrUsQtJcAdjTG0CU5MCWLxvayOltpVSaWscMcQK5uQsFRU5S0dx5x0Zp7GvAIDDMMl1pyxl3tYR50y0KuRvJOHYahldSuCSJGfFTGuiQe1/o2x0RU81Ro9kTXY6u9FqNOt6KvF7kf0ogNMq3r+uiDpXV79ZG+oU7TfnHN54iXvPmSVKPGJixCJJ1DWvvFYhrQDWVsL9j3v80WBTPQzzehslAySHV8AZrxoBBb0tqJxklLJZD/dKzVTjI+iiw/uu3l4RLe76lq7v2R16docd/X5Ht9vRjQu73ZFlytzevuLtRx8BMIwnQgjsDgca1fop8Y/1DV1ncG3D/vaGw6tbkpF2lilLh68YIkucOV9eWKYJNwTsGNhlj/lYOtyVoNNoy8vCbLJYklXF/ORFqDmqoxzl0BBRYSHIGXXOTYQQg4QOaQVoKvMIqlNU2RkV6FkzdaLjVi3V6lhvxnzLbrr2ca4zeuWVmXXziH+ktNBNALFtUZ/y5ueSSSzvWeZdy6rK+kgpirNSBHBM2UwOktZQF8OVEkYKxjDWqP6WxTnRagAjDmXelLRYOTCEPhzrNcrnuCqEnZMlAiFGbBJ0uwroogGrUmjFZpraAlwOE2H6xRgwQYxyycYbazFOM3PGYl27IsiaorJGSgSFHi6G3rsiiL6ChV3XY4yDlFiGidAsmCzld13XV2PrvMM2nmV2dT6WJTBNs3bZ0/FQBocxFu88GRGEdc4R3Sp6WTr2GP2+GtO6QMsP1DyuWbNoFa83v+errtT1tdv/bpbp5uCWfVDFBY1VY78u7O3eKSDKCjihDlDZGyJK75wYf5cgtcqqUF0ynSmM8SooKhm5GKTFvbA3k6ypzaXnXLDiwqaRrkw2owLzRadBBTG9pfHaRrwAZWRCKgERNbAxCI3YuIQrbEIKC3V1UqxmNTJSciFgsBzoZZ/I/67BJh01Ssa+sgC29udqngw/mrftBOq31VcyV4fZeqiJk1Kdq4292rIxf6S1UtfAJpDTRZNZqdsyJ1shS2lrjDSjYptttLpW0tU96yXVtYgEkyaTbGHqrn8rzmUZACkbjKsjuUa3WAs5r7oJpJWFWnWQqBiaOmSiP4M6jGVzmZqF05JCQ3UmytOKjbyKT4ptK5+Z1vmrSQiojvh10LyugXqe5HXSi/g9pn6MjJMpv1jPmXotMqMVlDPWogMlovibtV6eW6+/voV6cGbjyP8HPHINSqhzt5bDJC1LVB0rdeLXc7uw71YB4MIGSPVLSk+apsPZwkgR1on4UB3dvqff9XS7HW23JwXH/hDwJnD36g1vP/qYTOLl5JiXkW6/wzbqJloLxuLaFn/scF3D7u7I/u5IILKkGZIIK09xYpwvnF6eiPOCY4c1HTsrZ573XoPjkuku605LLqyV881KF6AQEzYbZRTqXlS2oKw91V3TrHtlFrHNFK/nxRVLoPhaxb5t9naZt/XnwuS+duc/mOlitvSfuvIK4LTZ4+uiuH6vD0ECg9HbLX7batvWoCxV32a7351TIWXFtioDUH8GqoapdU5KETWJ9+F9lUqElKIGyKV5iZHOl8pWSDmRtETPxyj7lIyJhaGTtHRMXmvrfhQQO4WRTGJeFkJY8L5hUf3OpmkliWYsOXvkdPbSVEj9l8KQa9tGhlhZU9ma2up7v9uL750y02XUhK3MT9t3yqy3OKQLlnOuCpcvKvUwLzNBS9JS1rHH4LxX9qgmuqOWTxfGRjmSiu9E1rFc14ipiy+vz109mI3vJKB9Mmbzfuuc/b7HdsnljAICSW2ouV70v+e1W3evnIWSRNZKCyI+GVyjazM7StdWA+BErt5hiC4So7IbkySjxa2StSXl6OvtpKQMm1CAEtF7BYvxOh7W4pVdJYkSYW0bK2yeEnfmLIx0jMG4SFL5CFvjoC2TRL5LbGsVNHbr4ZZZfcQyhKpPXG+gyorkq7H7wzO1jvmP/r6J8yo4sXpK6xpjW9FS72ZlxbHhWBaX/g+A4DmvwM726gwrYwmk4UQ1f+urN9dX/OjVN6kdi9lY16vYUYe5MOFMhhhr58Sc1bbkVJP3xW9xNmN8sZ3r+5T9WvyXFdzT6qtUJH9kvteGaGscU95TyF2GDwoh11EqpYGGtdte9Wm4ivV/9Ljysa/tQYm//vAq2n6WjGwt1dPr2tqCpJFDYflfr4F8/Vb/hscfDTYtOdafy1BLfW3QDliZ7Aytb9l1+6pzU7QZ0rIINdELAJBS0ExIwmSHtz0//cmf8OmrXyhyvegAG/7hH/6Rd+/vWcjsjwfePzzz/uEZUubVx5/w5pNP+cUvf8ov//TnLEvgN7/7hpfziXeXE7/9uwdZpMaRMbje4A8W3zme8wv7h55xGHl+eiEsgdPzM+NwYRxOPN1/TwyBO7vjYHvM51+RPv8VdmcIORDigreGrrCFTCaRmJaJr7/7ltPpxOVl4PR0rk4hZA43N7x6/Zq+6/jys894dXNDCEvNdMW4EBal3GoWNKmjJSK8rI5njGQT1i4c6Kpn40gXY5YySYWkBbhQwWJtUS2ZahHsE5uY62IGpGV6WgWct+stq15NofvXjgQleDVKwdWAK2fou46b454UAmdvWcYLz8/PPL88k1Ki6zv6Q09YAss0k7KwRGIUJox0+bB4B9mhLADpEnI+v2CdoZ97rZFtmUMgIB1E2l0nB5lzzPMid2Id1huwCzHn2o0NpQ7HKPf2FJ44PZ3YH86ERcZ9HEak3C9yvpwJyyIMlOp1yhhcLgO752eapuP27g1N05G1+50YvaiHg3AIhXExqTMom89aS9vtORxFH+n2eBTATrWn9ocjN7dHyeztdzR9S28hTzdMXUs4vTDgmS+Bf/mnr/m2/4F+37HbdXR9x5u3b+i6lmGYOZ9HQoiM04llCex3jn53y+xgWRbO5wvLPGtmwhBDYByFEupLCZHWNpcAyeSMTZZkilijdPxbtHwypURc3Fpym9LVWluD+7QeQklKLZPNGF+Eglm557r3JLgrW+LHhwa4CgoNQ8aYyDxnzucFa6UTmbWiXeO9I5NxrcE2gJMyyZQS4yS6WHMwGC+ZLGcTccksRkqnUk7EFIT9lAPDSYTqkwIcTeN5/WaP85Z5DrVURthmEbKpgGRpnRtiII8jpWwXLYtD77HrRFRR1DOkA+Q4LkKN3jgr0i1QrruIeMbKBhCWVk4QU7E3Cl7ofJQ4ZRs0XYEyZeDVq1jLUlbtoTIOBsShKI60Tpbs/+1huBHuLaC0Qeva1gVkFAQsQb1vnAaEmu0zWbOTorlRrjcueXP+ra6UZD2lzfLWGXDGVQZLDIApNlszdSLORHCiH5Kh6hqULpcZ8I2j30m31qLNZkgsy6xnpCxoay39rlNbm4GkovWQTaLbeXyj4Ljuh2UOzEvCeUT7qeyJOo+iI5EyQlxVrSFyxlsJJtrWsWulba/TzPH6pYm8Mp/ljdcpq07vFYBX5jWLjTcIiL+kiG8zNquQddfIOIVAnMVupywcX2stjdMOlZpNXG+ufP4fAgz+HR652BoNjDBVu46U8Vga4+i8NKhw1hLSIkLPYRaWtVU7mlE/YYScaP2ewy7zyz/5hD/5hScsC+PlQk6Jl9ML/+V/+1/Z3xz5/vEHul3Pd9/f8933D7S+5fOf/JS+7fnsJ5/w+c8+ZZxGnv7lkfM0c/7he37z/r3oys2itdLftuw/2uFay3enb/E7xziIxlJYFk7PzwyXC/P5wsu79xASP339BZ/dfkzzaSR/+QvM3hBiYJlGKZXbieZNTIlhnhmGga9/9w3n05lpnJku0ozBqhTB7as73nz8MV3X8dnbj7nR8vJFA8eg7K9Us8sC0MeUxIcC9U8jMQVdI6j2BivDoPxH12zK0p00xZJwkWAzpqD7U+cTrjoKlnfbJkWM1bIHU7LtW61CeUgSTZgUThO5gCjo5kzXtLy+e8U0Dny9DLyo7ziMAykn9vs9++OBECTBlLOUwcQQRbcoxXquOSdJtmm8EMPM6eVRNNralpQD3jfEtND2DTl7kp7bCTidzpCVRaHNa4qKZNPutFNcJIaFFALvf/iB58cHbm5fqV9smFX8fZkDT88Poqm5LCIabJDSD2t5eXzh6f6Brt/x6s2ntJ00NskKxi9GOug1zUwIosVyPgu7yHonmp/G0nUtu33P8Xjg7vUrGXctLdwf9uz2neiNNS3WO1pvmC53jEPLfVhYzmfGlwv/8Df/SNd37HY9/W5H13W8efOWrmt5eHzh/v4Z9CxqGrAuI001RUdongI5ZtVBzCzzRE5BE/cluSDraes/O/VhUpbyrJylUqSAiwZbS8y3dhVK/CBnV46hntlBZRsqiLkJcmtiL2scood9tfUqCZCMAAchGoaLgJjzGDm/KBhm1y54Xlp30/Qe11hck3CNk7K8ORFDYlkSklfN2DljAwRDva8Uk3ZeDpxfhHViVC/VN46PPj5ineUyzIzjwrIkwiC2ImeDbzodE2Eth2VRv12rD0yVKcda2B08zjU1DspZmN5BtYzKWRaj6j9pMqEk2QvjJyjYlbWzrXaU2fhHeetmrD+zxpLlaUAFQuwGsJCTszCa5E3KEWzLXG3fJAskVPy0RFSGkNfyu1x1l0zpErtJfJUSsXW96Jte4daFKaPl2uUsjJEY5bVXvdhqO2T5XnxQDFW71ajjmEhMadL3tzhNNrS9+CbCiFsq2yoXOQQv+z7rfa9NTTImGUw2zFk+LyibSnNcqocE1okfBSsLq+4RDCarXiCqXZWless5R9s4Eat3XsZQHadtQqn6Rx+APBUsrHMmANqa/DMVcAxLgByxTUvTObAQ20buPUbCHOp0OUQeoSnsqSIM+yOU6Y/zof5osCmWBaaLxAA5RWWkSPaJBI1r6dsO7zxlwRXqcrJBg+j1tRJ8Wrxt+fSTz9l9cUuMgXm5sISZ3/zLb/n66695eHxkyZl+v+P5FHg5Lxz2e/7kF19xd3vky5/9hC9//gWXceT74YmXNPPw8sJvfvOtaJ+Yhoxjf+O5e9vgW8Nzekf7ZHh5eOH7375jHidO7x8Zn0/M88D59AAp8dnxIz7aveYmtaQ5KAIaCXFSI9FX1DiTmcPMu/v3vL+/5+XhwuP7F9VzGYgxcHN7x9uPP+J4OHDY7Tjsd0rrlExfCpHoRIxvC9LEtJaqoAu/zkGK2BTJxVsqBmdruLIhxYCI5ShrKGdQNoeUOy51w5V4vARzonOkWS0VKSx/zymTFgmeUmWqmdouWepypcCpBKLdrufu7pYUAi4uTN5zuVwYxwsZuD0e6Pd7whKYJk8MkdPpXAUSUTS9HL4pJREFjJFhOGMtxLDQdS2h7YhGa5WtpWlaDeZEUBWUeuqtGi3ZU1mzMdUBTYnpciKFyDROCEYl3e9AAMFxGJnmUealaAup8zoMA92pp9/tads9RQy/RFzlkM8IEzCnxDhedF7ESHnf8PEne3a7HnfYi1NrJCiV1sFySFpr2O8ko90YiOOB0Xue2g6HZ5ki33z9PRiDayy2sRyPe37xy4WbmwPTNDFN0t1jnmdtUXoQZxPp+DGOo4qMStQYtUTBWQtNIywdL+3ZxejKeEg205CzpdUA1ViDjVYzphYTk5bBCei2mjQFHrJVdloJvtTYannOaghXA72di/LnNbsOZKcHWiYs8rnjKB1yjM00jTjn+33L4Sivc43sNaHGQ4wGXGZZwArRTjLyKWjJjwghxpSIc1LxcVlPWe8HA8fbntu7O7q+YRgmxnFmuMDjQ1LHxihDYL0nAYlGMBbnM9auJt45ox3sxMlrvdc6dBgHKlCUs3SoQPfxrNcYo9DXZS/ocJXAuQBBuZiclfW4fRgUtCh/131mnGaQDCqqWWzW5nWgaJRRE7dl4Xw4zwo2WbnWYhbLc00SB6wpOiLGYIzTRKQiKwq2xyQZLnFo0bJHeZ/KelJdtnrdFJBEHLcqrFrHONfySGOTMjJ0XIy2eTfSvdV7sZtylpYEQSKGpd4nCAOybaRUoWj6pJwUOM+0rSN7SwpZvnJkXgSQajH41q7jo8FHzHqXCfVOc/ElVa/K0HpH1zR0jThKRY+xAk15db7K2FD/uwK+4hfoGBdkvWg9GC3bDwvRGtU6FIYM1hOMFVAUCX4tCY8RsMkYadGIAN1Xa0bPyv+Qx3b96f2llHRPCYDmcLTO0zYNOC1VTIEQAikspFJeQ2m8IgBC43t2veXtmy+5u/mI4XLi3XffMI0D9+/v+eabb+j3ex5OL7R9z+kUOJ0Dr+5e8We//oyP377hzad3vP3yFafTC/l3hiHPPD1eeH9/Ut9Dkl43bzre5B2ugfwwgps5Pb3w7pvvWMaZ8+MTw/lCHCfGhxcchuanE7vP4Oh6coxYnc95nmm8J2dhqsQkbJbzOPC7d+94eHxkOE9cnkexycpA/fiTj/nJsnA8HLjdHzju9xJ0aplpLOxSUj3DC3gey/qs4E/EYIURmDeg6Hbqis+FSElkY4SlrH8vIJL4YqH6bdauNq4Em2Ux2Fwy71l8jhSJYb767FX3zeGMdlzEYCgMZwE5hsuZh++/4XJ6JpMZ5xGM4fZwR7frpdTSj4QQuMSLAE6F1aqC2NLpKIoMRbQMlxexKV2v3ZZb8J6mkzNFm6KRcmIYRgzSP8g4Jz5/Fp+q8R1du2OeJpawkFJgvJxJaWGeJvquF0bVMgvYtASenp6ZJvEtQhAgT5oHZabLwHA6cby5Y7e/w/lGErGqy2IRsClGT4widP2kMgCiFSVi54ePPuFwOFYwElA9KKvgntj53b6j61q8yYwvRwbvGJ6eeU4wXkZ++y+/lbOkFQHxw/HAL34ZOB4PPD4+8XD/gLOW2xuRR3Aui8+CsGvCEjFIMwcQnzUGKeWnlRKjUqK8uvPSeAaJF5HQMFf/UapFwKSEMUl1I1dTZwo4lJLKb8jzY8xkm7SzZ/msVX+1VqNcMfw0qDZqww3kbGW/DnKOjsiZamzGt1Kqvt+1HA6ireRb8YEFcMqkmDE+EBbpCIcp7PNyLktyWcrRRK6gNG1JOdF20LSGQ7Pj7vWerm+4vz+xhIUYtRQrSBaqnNtRu+3FZZFGL9bgnDDcSjcwi2XXN3S9o8R7KSUup5HRXJ/vIaxjOk9rI5UqI6pnQT0TKIBQ4aNvz4xVwzDrnFCeo8+zlCTNdfhfcRpbknGmOkM/YoRT/lRYzhrHtSW5WhhnRhnhVK2jgguUq0y5yGlQY8l6ZfW5VMCpsNoKEPrBHWhsY2pMJbetYJO1dcxilFjJOYfxLdZIx96maSWOGiVeLlI4KJBtNM4T8FY+r4JNEelknGTPiuSDGPeoYFNjxZcGNClHtftFNqR8lYSCtRZvpMSucZ7GOSxm3WsbwKm6T7AZ53WM5O+ypyUecZu1IPFZWgIpBVpjcV3WhhEOrCEshmXRTt36P28MRgFv8c2u18ofCzTBvwFsWj9EncMCaJQJUhaCMBlUS2dz0R9e1pbGKAenaAxkI9bT+R6M53jzmrcfJdquw/mGnC0hGsZJDumn00jC8u0Pj/THHdMy8/B04eU8M0yRJRtiXkXNpzlwellwPnOZFlwbmM4z89NEWiJ97ug6x5AdM2dSDuQFFhsImtmTTKOwgGwhcFpLDJFxmbgMI09PLzw8PDGcZqZ5lkWDtG+NEYbLhDVe6tPHmYRofKCibLaWJfw3fGGzfrsKrY35/UvgKquRtOtY1s4Tem+K6teFrZ8vgYB4FxaDUTBxDRYySUXSDBZrpMStdNWQe1LRPT1UvXd4Z4l5DVarA5izZLJV1NoawEmnQ2nLm1dtBNB61mKKqXRv7311HmsnKM1yFtQrGzFUuGI1rXZPEUMyLwFnpCuGDKOpRjqEgM2ZnF3tMlUBuooqU0XcxDhF7UCxEJZFsyeu2uJymJSAsQBh2YjBsNaRVO8sKbxugHkRZox0v9OuKY3Hq/ZHv+tw3vHRx28pJWRBne6oFPCubVX/6cL5dObldJI5164U8zTL1zLXEslyYGx3uAAgwtQLmumVg2c95LZitxijAnlyGEb9ngGTi+je+ig4hCldSnROC7qfS5exP/Co1OXqvBX2lGYhDJotzJSSWUhVqH6aI24UkM07yXLUGvWy3dRBcSoeT+fxLuMXmdOQEikHYo44JyVzOVtxuJyhbRuWWRyg4TJzuUxMUxRGT7Gr4odVAtfmLNfuNqmKSTunXb50ny6LHGQhGlK2FQAR2yzZy3LmV4pvSTTY60LH+qNZB3V9/urQ1NFZvYU/aODWtyqHbRY2Fpvfbb62j3K+mCxBQ6acujq3tgSDph7IW3bV6pXrXi97ms0qv/rI4nxsBOFzVFu3Xn95XXUkcnG4NJjV6FXAzkCx7s5LYiBrti0EaSMNrFlFJ3aLurYzpSzDGAkiMoaYNYBTMEpKRwqAtwH1yoRmuZ4YtFxLs1sOqmZAGb86dn9g65WkXZmHArBtPanKhjQGE8pYUiJbUKa06FJIA4RkpQQoJ2WIKHsk6n4sSjtyNq5AqCyvP2wn/sc+Plg/rHsE9aFEJFv2aTSx2uU6oOXFZU6kBzfWeKxJ4lCmDDi6do81nru7jHeNNDaxLSk5lpAYJ8NljDw8vYAxTDYwmoXLMPB8mhnnzLQY5mS19ET8qGFceH4IWJuInElMLMOMGSw+NBz8Df2uZ0xnFkaImbxk4hSIcxBpgRCkQUhcdTSsFWbwZRg4nwdOpwvPzxfCFIUFkKAwEENIDJcRa5xqrYn2RtO0YE31NapLvvF96uMPTfvv+30JjkwRSl6TedXJ3+qf6MYWkWAowqsl+WaMxSkzALXjKRookhN6IdZY7ca17q/iVRQ75pzF2dVXFIaUMLpCCDgFa6yW57eddKVNrOzQcs1Fp6cwDaTDoWiZmI1NLJFwCUgLi1SLsOowppxFfNxaYdVryFz+J91oF2ySLHrbNtIG3KwlZ0XDpEB7JfklMgCLlL9daQTKWS2sTiOJWL13Z6XUDox0gZxn6sSSiZMwwrxzdG2jDX+k4521luPxQNs2hGWhbXyt3NhYdzrfsIwTl2x4eXzh8f6Rxns61a0SnbaZaV4UNLKiWQm1JLrMhzDdZEas1VIoTWK40h8+l0YN4rP4nDFWbWBc4zU5aq9mB4qGjdH5VABydfzLna3/rezUzRkMuSYKiiNSfCj5/KgvSYRFEnezi3gvjH1Xz71yrau9s1YEvY3NtNnjvJWg2Gjpe4rEJM9pO0/Oia63tJ0wAcdhZlkil/PENApDvJjUWrmRWeUyjKklq85KckkYfl61bGwFJUpiXRKdpVHIBijQoSrg8yq7oj5JGa+6pVa9wiLPsa7qMu7r+qiPD32TzaOCWEZ/VlZNBS507SdNwBVgXcAxkRko+zAh5BDyJi5UW0DOlUSeNuBkYb0VO2zqzZa9LGW7pVugJNW0PFfXYWFrG1OkCFT/sLK5ck0wl/kpwJTZnK31evR5XjublxJPKKV41+NcK4nS2nUUJN5YmfisMbOu/wyQdA8mSYUlZQWaLDpjzhZpknUeP5hAXSCrv5+3f9L3Lut466sX7a7ic1ZGY/WhNHVhjfpQtgJ9IsSuzMnttWw+vOpx/REu1L8BbNKb2jjOpT61tJiNjQRNbeex3lbacglIt2MWQyIsgRQzlk4E8ExDNA7jG9rmAMBXP33Nl19Glhg4zReWGBgneHzOnIZEyPd0/RPf3D/zd7/5lkTmPE4sMXIZFsbUaEcoS8Iwni48Pz6T4szw8gPz+ELvem7aI41r+OTNx9x9fMPD03vm55kpDOTJMM4j42lkHEfGaWIcB6ZxgK7F3Bxx3jFdZh6eHvjh/T3//M+/4ZtvvsPisFm6r+x2e3zTEBb44d0Lwynw8MULx/5It9+xv7vBOI9pOozzms0wFcDIGwNRDOWHQSBms16vbFGJIuRgWEIiaWt3yWSJ4yclMxvDxIrCSgcHcZKapq1AY87IJnRr5iOrE+Nt6QhlNXNjquE99C27riHYLPRDK8LiIQSh018u0rbXedqmFaHBbodQrRfOl4sIGZIr1ZosQs7LPNdSPxF+FCaTbxpxgIIIOZeOd1bLFY1FS2sackoCrIwTbePZdx1GgR/j5J6HYcA6R9cdBNipTC67BlH6GnQ8pezMMQwDKUPrO5qm14kT4CslCFq2I12e2g2QIN1jUspKwWxIKXM6vTBOA03Tst8daZpGDLaVrMTrt69x1vD5px+B0kEvw0AIkZeXZ55fXkRv4+XC+fGZ7757x++++RbvHR9/9Jb9bkfrO3aHG2nFuywVaKpdGnSv55QI6nzEZFmsZGgb5ysg7axqSeSFpJkI6xzRipGLNkNcnZ5qgTaGE+uUZWv0ANpk/8qh9kF8Ub62ZT1XpQugQKnXw00y1tJhZyKmyLxkxlE6yO13Xujg1Wkv84S0RdWo2u7EsC9LYtD2v/YxAoGUPI2Xg+Fw07Pftywx8vIi3RNPLyPn0ySZsrS5Tg1Utvo38tkZ7yLWZXa7nsOx15IOuft5ipwvUbUPDDFJy+ZpDNVJKveSleJtnX5OFsdKHA1pa7w9zCQDaFa7w5r537zp9aRsHh8et8XpLgCuVQbStrNpWRdlqYgOWZDMjbHYbBQMlolxqkfmvaudVIyiElsg1GrJjTWQC7BbRauNZLC0Vt9ZYeUVB1QcnJVaL5dftAGojpVxdmU56FcMgWkRkLXf7egaX/+WswibBg1WSqBVxHdzTkQ9L6Qww0i3kbSIGGuMXC6iiYKLYLKuqTWYrAGtznOYM8HEun4MsrYl0F27qFw5S1vHpK6FTcCqPyZly5WzzhrVi7OWOZRuRbrwYyLNi5b/WFy/wzUNeEvqGhHln2bxO0xkCUHKj9D33wRCQZl6/1GPtZPj6mw755QFDsssJUPeO7quYzIjUxRQhnL9GhhktCPTFInR4Jy0eo/BMA4Bsuf25hMAPn4bsVYA8vfPI+McGEbD40tiXBb+69//K/u9pz3s6I57Yk4MlzNLiAyTYQitABN62cPTCw/f35PCzHS6ZxkvHHdHPrr9mLZpuLk5sHvb8cP7d4zfj8xpIo6Z8TQwngeVKejFlxqFEVO6+I7TxPfv3vP4+MRvf/uOH354oPUNne/0HBPx12mKvPvhnmGYOH9xZr67xbqGmxtpvNJ2re530Zkq67IERys0sJ4BUnqU6z4tzwdqaUoJQCUgzBsWX2Gm6542WiJiVRdPmd59t6fvd5oAEDFmAY6l7G+e5fnlfQ1GwSaDt8ImLAxQg6FxhtZbgrc4l7FObM6ySFc4N1wIKeJUiFeuoQMM8zyLD6WZ8BTiWtZiDMs8c84vdXysOHIYJ8k+6dwroEZQtprTNVrg0RAjzy/PnM8nWt/QN6I1ma2UcKeYGc4XrJOk2M3NLUuY8K5hsYt0uldbLAxPWfen5xMGx3C5SKdf12inXFBhOaRTn4AcTdtod88S9FuGcWAOs9pmQ0yR5+cnLpcLh/2et2/f0ratNvEQseQvvvwca+HnP/uJlJ2EwOUicgovzy88Pz8TQ+L88MJTeOSb333Lb377NbtdT+ssFhFPHyaVysiIrlTMpFCjxboe5znq3l/EJ/GNMsEMNnt8RuUlxN63zmHa0snWVkDXhGuxcJlTbRGvgscyXwGbDc6BVbZU9ZEobJp1fW67qG1ZqSWAl+ZGRsshF2KKTIN8DwssS5FSWJNgGjLKFZmM84ZeQavdQWzlPEf6QUBzjIihN9ZhDzusgd2hpe898xx49/0zSwgMl4VhCOo/FrizxKUbgNogepvG0LYW5w27XcvhuMcYaeogQGxiHJV1t0CMAoIv86KAQrX8eq6p72BLkkPtUSkLQ+xOrnst61wpALgBS37kNG3m9g8BTqt/Kv4UG0b/6u/lFbgI5VPETjnvxL/Pq04gCpwU5jYF0Cj+YF1ZZYxtjVVzQuP5kUoGMFIlE1XA3brC7LR1fEIIKl+Cdi3XPa12yzVWgRDVAc6WmBZitFLunFeb4GxHWdlQTlat1FFyRYqJtEhTnxAWQlxE03ORo6XB1UY/SdcVun5yBDSRF0Mmm7SW+hsBeRrvtDqlFBT+vhmss1jtQ31WibnJ6otJpYvo+64l2jkXHyqSJyX7OIPte2zTQHak1ksSS5vlGCBEOW8cEotuff1YGYL//ce/GWxaH2UBffDPmokw1wj1FoVVA1aQ06ztmQVFUzUDq3XV+x7vrIA9TwtBM2xLkGDxPC4sMZCtISp6G3QwlpD1PQ0RpVGHRB5mUpi4PA/M5wu2t5ijqOvv/J7b3a0ADK4l2iDlOjHXrigl8AwxEJOjzH9KkXmZmaaJy2XgfL7QuJbOy+Fe6u9jCqKV4QLTJEKDvpP2vs55CWpMMQS/Z+H9yIGv//jR87M+x1z9RgxYKXmSWtn1q6LrhvUQMeCy0U4HylQydkXvjcVoBzpbkGzdTNZoBk4D4sJ8E5aFiHJrSLqCmbqQrepWlXuV12h5ifNEYqW/1iFAApgQSic3DYJNGYtSdy6lSJZMLgdAeY4GBimIrliyJbtHDcZAO2FBdTB/9FXCNt30RTy6tEqPIZBs6fiAHurF6Ker9yo3KO+TqzZE0ANqmmeGYSTFjHet7gFh4Tnn8I2n8Y7We1rnWEKgPbW1xWeMgXlemKeRFBJhWpiGkdQ0VY9LmF4LcQmV2VSCz7LWyl5PahBTLKK24LQ1qDXbFblC5cawEdJM9bsiiTJBG4qtUYCutgWt47fdBZvXUsLl4kDpv8oBrtdlsDVrYkq6AqO2OivDKZKSJfi8Bin2OmNkkOwFgFdAEwMhWUzIGrAbSvtXDLSdp+tb8jSLZsEcWKbIPMX1wLarrQQ0qKq7WwHejDVC7W2asv6ozlyIUgoRk8xgynJ/xfHJ9T/rvpLds/lFNpi8aiWt84KCP+b6DT6YkXXZ5+Kr1HlSHG3jmBXvrLxmfd31m8urVqbb9d8qc6Y4MeXSPrwoPrzmDZh3de1crbmk5c5Js64YZf6ZQjnfatcJ+yyrvSmWRf6+MvrKWiyaSDUJkVGR8bJvio0tQp6q4+dWW1Kdzer8Xt+3qdNlysDrlit7JNdgt+oCVNv6e4eOkrgoe3wzxZsgSP9gtuyRcg06yEWrQZ1RslLGdYysvl6eqmug9uMx5f8b7PrDxfPv99ie1et5ZVTXEMokyPqUey/Jm/q39Q2qLploaBnIlhRFK84ZS+OFwdJ1lra1nIeJx7OU7KRkCMEwzYnTZWCJliZE/CLrVTpZiY2I2WpXI/mYtCTCeSQvE9PzxDJO7PKe5qalNR2H9shxf2A4DXjbEDRqyVE0x5J+L/5GBaGNdBeapolxnGrpsGktjdU1Z6SkLOXMNC00fmLR4A8rYKtxa7e/ddA+WJDbaO/HM/WhuapnljGrALDIu+UPGm+a9b/17F7/6pzV9uxyHpe/FUVU75wELMrQE7DJ1jVR9kUBv2rr7YqnrUyjnIvPGtn6ESWwyVm6SMaNf1Gvm9K1LlzrSF3d6+bMzRqk6RrRvwIKphlNuDXUfV2YoCFGnPqFrvHCht/4AAX4z7l8JlpZoAzxGDFGSsrWExBgZelsOzyh9irGWC0DFk0mjQzDRYDuWbpIB/0M70TnyXsnenUKonTKdCIl4rIwzQvDMBOXSJgXlmmWedU5iQUwVwBIfO1VVriGVBm2jGujZYnC1ticqx/EA9ZaaTxijQjtp2vbf7VWzfq3snayvrcxVMbTj8GNAibkK58dqJUVW4ZqPWuR0reoAt/LIr6sxAb2ao7LNaBnTTl/jcYlIYrkgQixG6wz+Eb2g8gFNAr+lDhLAuMCOJbkQ10WWtiQ6+cIsOysvH/jtfnMQtWtiiFvfCqJY4ucQ7n4XPzH8hmbMjZ1ktRl2cQwuUzAemaaD6ZgPVP/wGN1eX/8++JPfRgv5vU5W9CoXGNZDuVczps3rOyfvP623E+5nc3RXzGAoN2anSsJ6BXENHp6W5u1lD/XOKTECjLGdVCqP5Lr2CvekNNm/ec1GXC1fjdO4DYW0/O2+BzFHTEIMJVVVqG8d11T5aLkZSQtny1Df8Xi5vrj62CVvVB8b659ieuJo545W9hqTapnKDIWCsQZ9feLD1XOgPK6nDf+0wfXWNfHH/H4N3Sjs+tFV6dRgvJd3/Pq7pbD/oaub7GazY9KKSwMglLaELOIzs5z4HKeuL9/4fR8UbGsQNs4bo4dbeO5u3vN2zd3XMaBxYz4i6VtZsiBnAxx9oRssbml9zd66AYwiZecWKZEKM5VNrAk8pTweH7xxa+56TuOhyMfv/2Irm159fqW482e3fdHHuZ7zucXminh5sh+d1AnPlfBRWcNc5ixDs7DhafnJ55fXpjmmRgjXaPtep2n3fU0TUt2TuiGjeHp+ZHffZN4++mn3L55i1DEA5FFS5VE58oYLZP4QA3/9090WShpNWZ1EYlz7pxQ76X0MRNjQ0yR1ocaJG4DB4MiwRvmTgFPSsBnGhUjrgdFKTEytTW2KUCVNbRtS993jEMkxonLcGYJkwZBqH6LgRRZZhE9zgm8k3u4OR7IZNWSUVZd45XlIZsrLoHzWbsT3t6y6zqIiD5V6WKnB5ig09KlyxReL6VMTRlNmyAp5USOUkZXxUgB7xtxoIMhp6jg3LrVCkgTw0JwDuc8PgqV1GYV3TMFlBOAsnQOqHvPrsagMCTapsPstZTGSJvyYRgxBrq+A5vxjWfXtfSdCA5nzRzevr5lf9whulcfE2PkJz/9gl/d/wkGQ9e1OCuO6TBMzPMk2lTjRI4i+kkBGeudqrFWgb1lnjmHsKHqU+8VI5Rrp1lToXKqg6pjVw2nLU5RlixBgpyKnpCylIwTY+u8BmZycFsN1FOyZJPWA0X/Z8q/U4aQV4AwSbmR0zpoEI2olDIXFuxUnB4tK7JOgIXN4TTrvSel0xqXOd40dLtjPXjLqM2LCLNL9smz3zu6bqcOi1xAqve6ghnr4bCxBjkznEcyRllMoi0Wkug9GesxZHx2tK0CtdphRzp+6fsUOrBRxwpDJNfoYpNauLIBgHbh2DjIm/lc7ZU4N8WRUK+GypMywiSKVxk+VgcDOeaNgiwYzRw1jYB6jce3oiMmHWrs6jDna6ZbEaosc4Uxa0vjcvYZ7aCSYBpn1WBaWzuXgNoYo2UAQmfPVjKZyyyArW89jTHCqtRbskVXTtffPC2ie+bX5IZI4FkavbACTsi1qpZXTDVJEqK0mZYqPwFonbdYD76xVRNhnZmkQDHaPRFlfkLWsrWmla6ZThMImaJ7sPo/1Xdm/c/WEa1rRAOS0hWmCKLHEGRsk2pAJNVTyZk8zsKQVsaFtQbfNKAaPLGW95eMagH+t0yj//hHWbvOORrf0O923NzecDwetA3zmiEmF92rXH2qEKMkF0YpN3u4PzOcF/rO0TbQd55Xr0Wna39zw93dnvY0cP98IkRwNpHzQo6OsAhbqHcdt/sjmEyOo/gdOTJNgZATS8yEnLAh0iRH0xz41a9+xt3hyOGw583rNzStpz842t7hevjd9//CcD5xvLuhvz3Q7HqySYQUWYIm2pwTYWNruVwuPD4+8vJy0qYnUm7fa4fVdtfjvSTsQpgYR3h//wONMxzuXvOqP2CNZVlm5lkahuTCrq9Br1mXeLFF6peI0L+re6EmHCrAs55dpYmslIpNVccyRQGJSle00iHNGEPbeA2sEynMcg0pIe3rgcZq0CoIsLWWrmkr86tpGmrHZyPJt6bxhMUTwsIwXLSD7tppqNiQaRpljzYN3gmT5Ob2qH6k7FEp51bR/ZyIQZqzXC4XYso0ux3NzmqQIZdvrcUhLHzrip2T1CEZsCKTYa2vOiJJy7tSlJI455KU0DUW5z1d25FSZAlWtJqMdhMzEOagya6sXeEmChu/sq+M2CerMg7W+tVe63UX9lUmU5DUXX/A24a2aYghMbNwPp2IKbLremFn+0Y0Vrz4Kng561999IbbV7fCyh9nQkh89Ysv+bOHX2Os5XhzwLcNl2Hk+XRhmScuw8AwDJAWiNKopgD5Ffwp1wfM88zLy7MMaxGoh2rbnPcV2Cp+oZQLbVrY64QLKGnI2SNVqMJ2d9ZAW5LFVlkPcp4V9lK00klXml1swAW12+JDiXCNQVhjJVawVpo1pZSZZ9FvSjFvgNPiQ1mcXzUKc07EZdU+sjbTNoZXrzr2R7+ZTQGBLueJZYk0rsN0LW2byTclyrcV1FlNQQYj0gEr00h2e1giT88X8eOWQjpAml7pWWydHJDiF6p+WwVpN6VzChzlTGluLZ+Nqf4n64iuQLDaIIk9jPraG2+7jH0W/4wCxhRjldbgZU0OFgToxwC7syJQ75xoRKQYiQqy5awawvlazLuQMUr5ad2HBTDW8rgQIvMiIHYZI6u+rci/lr6ypmpcJcmPERbxhySxLclaYxLWKajupEyTXPbI1qdZH7GsUxSIYvVBUxLbl4vgZBmqAuJYXUNWWfLeSJMVRx3vMo9JdQZD0n1sM9kJJb50zSyabCV5XK5jC0CtGJS5up1iC1CfRuLGMsfqh2qnW0rspX4UGdK0qDinwRtDdga8J2gWMijztQ5AvQYjDRc+XDh/4PFvAJuuF3X5ndWuDne3N+z7I23baFti1RQomTeoBjDmJJ2V5shwmXh8OPP0dFYKbmS/9zi3kGnYHd7y2ee3vJw8z8Oz1O22FoOATWlxhAwmNXTugHfQ+BlnI3GZeNGFVMGmkGBKtE3DTz//JT/77HOOdzd88vlH0iJ47/Gdwx88v3v/G3bPHZxmzHlh1+/rwS2C3zPeWeawYJ3hMg48vbxwOp+knlz1CLp+h/cNTddLeZY1RCLGwvPLE3G60PS72pUghIk5BRbtpFE6qshBrvC7RJYrYsmPt1MBgSwbzSBdnk4PZZADOmk9avSxgislqCoOWtM2+KY4wqV0ZRUDL/tsm3XzXgCypmlo2lYDPa9aA0IfJM3EuDBOFxWJ1KDGmNo2fNEsE9mQXaZtWw6HPcYqOJeivk7WWoyhGoyLdiJxfc9eh06c9oC3vtjatYxDAxcZ1HVzyexIZZfs41SFNZPS6DHgXIP3cmhZDXScOj01k4WwrsIy450nNYEtVTRnp9kXMUZC8S1ZbmqAXFkKGLxv8b7Vv4uNHMaREBe6ZcZ4S9NKl0jKMtKywf3+SKfz41RKYp4C8yQZxOEysiyBd/ePfPP9D4zjwDhOzNME2vK6LDb7wUIs9mKeJs4vL5WRRZZgS3S41Og2XuY4r2PhjPmR/an118rEi5ROPmvNMaaUL0I2UYXzMiTp0aEnTRlN8vagzwoI6ZyVL+ukfW7JroCAhiAspQJi9J1TrYsiqJ1YYlQdHoq/w+EoNP1yTyllnl8unC8TS8jkbLA42r3fdJ6j2tdUmB221LOvWe1lEQBuCZnxMhKTYQ5OM4IWY72s1zJnxtFkKUdMs2QgJUjTMZHEJAZDUnFE6RKnjjE/fmwdJVPK0ErWqgBE24MzF+0Aysmu+67odayU4VyyRJvPIRf9CQkMRaC2wTeWtm+1pbVRB0XKPOYiLF2EGNUW1kWqwJdRTbeKgxkL2ZISTNOsJUGasceoLpto17VZ9lk2iWwNKWbmKVRmpPNOnPecaxmCU3H3qF2cfKWMoyCg3IdvxakL2r3HIGCTjNei51+sLAe5TxlR58E1WhJXy7Wp610An0xYBICzXhwS1Im8cpR0TSQ2QGBZBygQWKGn1XkqoE8JzMtqKh1Si6MkzUTAJqqOzTLN8nltg931ZGdw2YMRkeI4jgIym1SZX76Uc1sJYP/jH+vYeOsFbOp7bm5u2B8PWO/WTqZ5bU5R5qMATvMsa+58Hnl8uHA5LXStp/WW423DzZ3oX+6PDW8+vsU2lt23jmk2OJcgBSnXDga7WLztOO6OGKMdE9PMshhe0LN0iSwp0YaIz5697/nzX/4Vv/jJz2l6z+6mw3qDaWZwC8nMvPmnO06t5Xh3pD/uaXZSkhejto+fZhoFm7xzDMOF56cnTueLMJutgE1dK3qDfd/hG88wRoZpBiL3D/eQIh8bx+tPvxBtwRBYlpllXrUFV2dc5n8FPAtr0GG1FLUESs67GuRVNm5J4kndGEWvaLFy9mS3AomScJMuq9YYWu9FQ04TluUhdgO1MavN9d6z3+1Fa6ltRWDaWNq22XR+TIyDgE3jOFawCajnX0qRJc56LxlrGnzTsN/tETHtJE0sdF+DIYRJpRUWLpcLISV2zmK7brOOdewUZDIqjpYNxJxVd8Yq2OSqFqYxqz1f5oXoMk2TK+jXdi0xh+prWuskmYZhCAMhRWKUjrjiG0qyJxsLaGm0K6xh0a4UrU9hoaSMZPY14BRfwNB3O3btHpAgbUkz57NhDgtLv9A2HW2T6LpmZRw6AUVubo/s+l7uS0domRfmaWEJgaenF8ZpIqR7pvsHprHIcoyYHDBJBNC9rtGaBtv4H9M08fLyrAG9r3IETSvdHMsayVeAicX7D/0nHdeUqg9V2PblQF7Z+fKIFIBOuwkn0G4f5dCoMUlxrXKSnoTb3xlbRJCluy5kwhwrsOy9xzpD14nOZE6xJphCkM65RuMH4wztrsM6o53GpPzn6XFkuEzkZPCuk3Oysfi2+Bx2Y4qz7jnxD2MsneIyizZHWZbI+SJljzFZUrYKjDlKS3t5Z0f0RoHSWfTqEDCphBNZfyhDZ1RztHpQJZgruJiOvzWGtPGnPjxjy7yWzzDGqL6u0YCgPK/cdx2ATSKoPHTfeJFNycrUFnH4chbpe1F8OSk9iyEKUKXEhFZJCjFKiWGMBSTe+MJAUyTs1KbUa1RALpmMSQo2zUGlTwS0MVaF9g1S6mezlh67K5LA9rEtAU0UkE7BpigyPzlnbDJXQyP+lwC9tuigNgbvwPmCdaxjXBLMcRFfyriMaQX0EfDaVzmHIjq+TtTveRSUtM4U1Td12rFTLiLWKpoUReOzJjMVbDJk0hTIS4TG4/qWbET8PWFBO9SjfqnVknR75UP9cUm7fzPYdJ1NXsGPra5JipGcV42J7eushZxWSnLTSo2/wdI0t3h/wDoRLB7nhfuHM01zLyKQweBsy93tkS8+V3FDVaO/PTbcHSWDLUYqM+eZh7ODYOiwmGiwTYvd7dm1DYfDjv1xx/7Q0e1anLOczi9MjyPv3v/Ay/MLw/nCAc9u39N1TQ3uC8Uv56wLXyi1UYXDRetnZGpHpnEguoVMxnvPNE8Mw4C3lhvnaDUwKQNb6W+bxW9YM2xXqGau5GU5BKqzsNZXFm0tgdElYjQVbQDnNFA1yK7GVIMkcUW++r5C8spAchIgeFPAqSL2DI0GSN6Lro2xqnmgAa6ujtq2OKa1VWuKiWgFSClGaJvxDstSaZACNK3MEgwQwVgr7AKlg8dNp7za4hW5nVSAixC1bCzhrMc0ondQEGOTo7BiKIZ77Wqz7aJQADtZ63azH8SQxiBda5Zl1vbGRr9bATpsrkBfcVzL/EsGT9+XbcBkVMQ3XR1UMQYu5xfc5EhhZJ5aEcHshbE05ZVRUtaTlI5Ke95hGJjnhWkSfS+hrwet8U8F/qzrdaVfV9iy2pFaHlOcfycHWi0dMXUH1PeQ18J6RwXQLNoaCZucOmliG6wx4Na1UxaG0WD5Cgj50L6xBt1bh698dgH7yhUCK52arEBR0vKTLNmrAkSUjiMGPayMBn3yWmOtCn1C2yZSBKv7CN3pxTYkBYRKffW2u1UIAiyEUv6rIF7VeTLl3jdr1gqwU7tHqlO6RmbU9VvnMlP3aN4OyHb2PjitpXRgncds1sGsWTd7DVatg10cpI0DzaaUs/y0sZWVnWA/cDzy5msDkpT3Kzp1heUAAhRJ6ZIwfmQ4EiBln6Lpsp6ToMmxKsZrKittW3IH2l1RKpmw237BZvNVR0DAyJyyss02gGkquiWrQ1XXnBXH21g9O3TvL0sBsrZTVUp01MayZXlsduMmMCnCpuXfMZfx2S6ia2cJY+p71yNmvdG6juS5+q+82ipTqFRZ2GzGaumXZmUzEvzWLJyWUNjtzf47P2qgwWYkSjkkuTaOqJpfZZ3Xta8MW0sNdJxr6LuOu7tb2mah725omz2+gcs4s8RAf38m0zKOE8637A+ZN68NS2jAisam847bY8ur214Co5TIuWWKAf8sLJk+W3zKtAb2Dg5dx27f0e9bXGtxjSETeXx64DI+88MP75mnRVgLztF10gUs51xtlAQo0uzCWvWh1MGdxoFhuNBYT+d7nHeELFnzYbqIDlDTMI0zy17O9wLafGizMxs7/6EtqclTdH+s+lildE2GX/aUEcRd36Pse9azp3xmjsrgkYAlFwChLEEtdS2aIxQfixUUc84LwKYano0GcEXTrEhRGFukA6KySOQapLxwc84BhX1prDa5MVJqa/Q8dt6rbxtIyrSWxJj4t1nFx1f/sADsouOUlU1Z9nPjW1rfrj6UnnFGgV7xVTbdA2sStdgfp2u9sJRWAG0aBwEaYiBFAdm8E2ZWGwPktQxPAHgD2en4U0GvbWBL/rDjleyHeZl4enoQFmAv7HCrpXXO2cpmwihLFtHBikG0UC+Xi3T4HUeSAuglOeR0PRS/aHU19Kwsa09tb9ZEZCk98natOFjtzcZX2iz5K4un/rvUIEo5t9F1XECR0s6+2vjNV2UsW7uycnTu1lRQ+dX1XltdrbW5S0yikwjCfskogJtKsxJZN9trcMqoW8u+UICxEb+rAK9u9VFqeWItjcqIvmKuZX5ZNb/S5t9r+FsOOa4fm/VprWPbVexqXvRMNmX8il1QRtLvBRrMxpdl4/9c+QRQ3KdiA00y9TymnOEUsN1s/LNtKmhlyYhsg62TVsc5Ja1qX+PBIq8iLEyv9kTlUnKmaNjJmtAryFnKSDfv/aP7yknZd4I1bOODXP62SALOF9vtxJZdySWYNelZxL5zzkRiHbfq9xtK76HV73G2kj5K9UKJN6Im5WSNbeKJH62RdR8bndMr9251ZNe416jPabaDs/5crm99rODuj5bRdmBNrh16ix5X1vv0xkjHUY1HE+JDlYpBo+vV/ZE+1L9Zs6kYCRHxbDFJaL/TNONwTOPANFzwe4t1B5zyXYQqKFkea4UF4K3j1d2RX//6Z8zTwvHmFfvDkfvHJ/72H/6Vh6cz370bSctvuTnu+PnPPuWwv+PP/uRj/uIvGqZp4od33zJPA59+cssXn93Qtp793Q7fevp/djwPzyImd/GExdG2Pbu7Pbu+5YuffMwnn79ht++5ed0TwsL/+r//DX/393/L89Mjv/vXfyGFhT//2c/49IvPuHt9Q4riBMUQMcaTIpyeTwzOcno+Mw8T43ng+eGBh3c/EMeFPAc5LL1kfy/DwOlZHKXmp7/AvH7LeFkqs8mq9oRByl1iadGpWYwCksiCUlFKBJV3XrIbxphatpZS0HK81bAWQ51zroYgxUi01J9Fq8movqYRI08UZzRLROStrR0avLOVudR4r4KGbtUZsKuBACTYUR7pNC3abWupWYVxnHFLxDeerpPWyGLgZuYsYIe1Igbq20Zq6nfCXFhCZFEGzTQvTEugHwaWYSQbgzMO622lukNmGYWOvUwT0zBijeVmf6BrOrwKuZVDIqEZlxgwRVDNSctUk7NqW2kG3tqqQyBlNXKADcMFO1nmaWIahyrkbYwwkNpJGD99vxN6tJc6dGsdTddpSaPD2QaMqQd6DJFp1tIBK4ftOA7c3/+OmBZab2m8ZX848MUXX9H3O5ZF26DHyLwspBTp2paubVjmhccfHhiHkXGR8tF5GpXdNOBdplNEPydhGa0HHrXbgtWSQFnj6kx7R98LPX11rNTs5muB+sqLMBKK55zxpoWcCFHQSwOkZFjmSNMYjJb0ZpshFaq2rcE5XH//sGvF1j3LedU7KtlR+b3R+1WnyUjG1WBq2REGrPG0jdMOYFIi0qqeyrwEpiUSUpLArN+TE0L9zqITVYDYsGgZViidVRKLamhJC+hUx23N3GQyVoEsAYJFS8pUhhSgmnGZBnEMUowitp+3YMHqyG6p3SvsrUddcSCMEK1FY8hgc5YMXV6Pwy3Yl7SEzWqK3Cj7DoMceSVju6FECUgpcVXeeNQ1+CwgixewqVDxBaNQqnZCBS/lXo0x7HYdXd+u95lhHCQrJyDsIsGCRzuLZGy7Asur9pvMgbEG68T5DEEyyWGxLE6ytQmhZAurUUFx5xWMXcFxAbiLbpHcbKygFYQcFESSjFZOCWOTlB70BmM8mURIkgmOY2KakghetlbFWo0ACMngUjkrjNp87eCShfDmrDr9BVRjbR2ciTqn8COgScdoq0WTyzrI1K+cxZ5i5fPQwMbkjMsIm0TtvelaaBrCbMlJ7j8piJONsMGcBWekk93/fx7ihDonNj8laTbhXcM4T6KL5yJGSIgVvLRWWHDZICyM/oaPPm7587/cE0Jit9vRdi3390/8zd/+M5dh4l9+c6LzP3C86fnqZ295/abls88l5TQvM4+Pj8zLwpdfvOanX32s9mohE2n+yXH/+EJYEjdtj8HT+8Sxjez6lrefveL2YymNS3ZhnAb+X//1f+Fv/u5/J4wz08sZh6H9ouX129ccjgdKB6JSphDCwsvpmWH0vFzODMvMebzw7v07Hu8fOR9PDJehBjzZwDxODJeBXd/z5njHzu+Y36horJ7niUjtD6f+S+mKWy2H1MxgsuwNbzPegfdGy9Tk7BKh5VDnTZx0IMoZ5UzGOkMymYis35J89N5jaJWd4xHmTbFpIvpc5AkaLza6U4aKtcKG2gLeVn07a6TTa2EyLSEwjBPjNEsXX907dg40jYB9xhpNuAkQOS/SUbXre5q2xXtLv5dmEuNoMLNczzCOzMuCa1u6fqfniFyDUzZKDIHTaWSeJwnSssG7hsPxFYfdAWvAW1j1QgEDSwhYXQcx6pd2prLG0XgpSew6Ye/M4wQ2E8LM/fvv8c8NbdcIM9s6urbHOk/XtXR9r0DnDuek/Xnb9TrWUoVRk+a5lAFJgmdRwe6cIzFmLpdnfvuvf0+MQRLVux37/YHPP/sJXb9jGCeGSXzIoGevNwZvpKHNw/sfxIeaZ2liMM/EZSEtEeel/NcYpNQoS0K4AJ1G5Tuc9TS+w2XpHNw00nVYqgYUENiASx/anC34QzYCLpmGnKW5wKJvIbq40pXPN1qqZ5VZCjgXK1hnos5pvvahQMGczWeX5HjZk4W5uepEyngbA0u4BoAFK2jwbUPt6mbAN3pO5UxcMiFmmqbjeLuTRjUhVoC7JuKisD6kUZUkicOyrMmfyiTNdaySluaLzIap14Yp55X8wrcCqGMNNlhh587KJDMloZrBpBV8trJfFAepY6UnRQUhClBitXvwj2Z3MwfyMHpulI5r6JknFSoFFN12YxN8RMTd266RJiBqn2IB/lKuLDLx/KSKZ7/f0TYtTePpd20FUzC5guvGJsy4aGK+RFMQgyW4DxeuPCemLIL6ab03U8Y9iTbaOEessxxsT+sanPfsDyJ9ox+le6UhJ2EJLoswv0tHSaN7yKAleE7wHZsl8dh0nmzBWY/1DTknQpxrQle0XNckZdYYzKLFH0mxE4sCcyoJYNa1LhMm6yGbIkuQSKisRt3fGx9ck1biG0r8VdZu0g6uxkhyTcmnlCDNkHARSczra23TkVwj4xqidABOiSUn8ZsUgPTGbjpE/7cf/18JhJc4Yc1oSJYhatmSOBHp6u+wRQnXr8Z7bm4OhD5w9+qG482RJUonjXFZeHmcOT8lPnoT+erLz3BWmFA3r49Sn748MlwCt0fP7cHTdC2H2x2+azgcOtpGOhfhW1J29I3j0Hv6vmG37+h2DW3naVpHzAsv52e+f/c9l5cXTi8vtVV7v+to2mZdmArY5AyLZili0ExFFKHAZZ4VSBhrpswYGC4Dl9OJ0HTSuaBkyrdjrIthRXplLGuQt0F2qRmDVZegZL+knXCGHNGGBmK8NqhqFVLLkK0+R0tUtltfsm7l9+r8GhRsMpX+26iOwBrcmav3yQVxr9eP0rhLnXlBimNFw1eYWw2k3rK1Ft96vfeVKWOz5mpSVifRVDFJCsvIrtr/OUsWSkrvJDAxmlls21b1owpS7TCl4FUBnkIz3XY1g00WyG4CUJ1DCQS342tIqYBf8v5FP0Kcj0zy5dTNa4bblY4DOjPKNFpdC/ms8+mZJcx4m3EWQlh4++YjnHOMY2DUsp7ScW3XB1KSNXo+nxkvF5ZUgloVeE1B2QJ2hRr0wLta0XqAWbW8he5Z7q+0V96M3CYuLWt+myQoh6iwdWy+zupJ5uXHr9pmh9a5WEu6KgYCFXDaOm5l3ZX3zQWsAExibf0aBUg1FlzJivjC3MirLVQwygQ9UOQ0lvsym+sxgbSs/y6gTNHjWZYiuKtZODKFN50LIlDYcioMvd5XrmODMQKWWodE8b9nDFmnxnANPMkPCjRx/ShjzQf2YPsotqGM9XptXO8f3XcGc7VuVuaAzuvmFsshXS6zAO9bD/zKgVMwtG0lI17ApmUWrbeMOKtS+1/KiLdrjbova2tqUxhwBdBEbUdWoDRBFKcTChDDqh2DgU354DZrWrO0bN9f92S5Sbsym1LSZhqpOCZpA44qAFRZEYXdem3D2IxXpb6bH+/TOgn1v+bqp3pvm79Up3vze1vnXF+7jZ70S9i9llz09xTclB2xrnU5L/7QSvz3eFyf2eW+i1hzCMoYLUGRzVdbr+aii2NqHc56uhbu7gwxZXa7jrZvuIwDw7Tw/DLgssXkxEcRfv6Lht1uLz5P5xmnkZRGxhFuji03N52WIwkYud910mkzQedanOnYtZnjLtH3Ld2uwbW2lv1lIk/Pj3z77bfYBG00GNX0arsW33g5a0vTCBSYCaWzmeoe5SS6gNNI41uGtscYo518pPRquoyQpASn+FBb5ndlpepoF390zexuLdQKldfxLYGugahBcN7MQw0CszDsKa/R98kpaqLPCFOsnjU6n7rmnVMNJmcrG6DrOgVXDE3RUtPX2crgNliSlHmYVbZCmHGy92OMKr67ZtCLzRAygoBNzUajxqnGSukOm6FqUpaSVgtaiyF20Rkr5RchEpcgyTxlJImEQifnHhGSwVjRxyrJ0gJQrN39SiBUgPdViqBqFqbINI0sYSbGlhgWSZakLN+r/IRY5qJbJOCfwxivLNSVlbY91+vZq9c0zxOPT+9Zlol5PjBPe0JYePP6Y6z1DOMo5Z85E5IEr42xtFbKRM/nM+MwEGIihVRLg7NmRwrrVsrXy0G1iT5JWjHgMFl801LC7J2ndO3bLuvVn8mb9comqi02UKQbbHR1fSepUGI91TZWvYJa4vunVBKFV1tK3qmCJh/4hPU99RxEWDjbFvcgZf7CUN9qrmWMKdIZayJbWMJIIOy8rCv1KVIo9ZNFWmVtjpSiCInHuAWZtmNp17NwYyeqKdncjymsWRtFn7fGiuUFJWnKakSKb5RXn+HK8dQP2dqO63HO1We+YnTmXJnPZSYrC2Z1rfS167XJZ9hrVlP50sO5dolFASOjGoRtQ9OsGr0ovz/pPOVNFzy2NrrYJTVU65CstizGbXxFnaOUJXHmNiCcEGJUwzcWtqeUzqfiG+dN7MaanJfXl9HS8bAG6y02aTWGE11c4uqPhywaZIWtXKdxO5XVjyrz+Xt2hTF8GH/Xyf49kZAASdtnbX1o6vMNG5+pXEteE3dG56PElblo8GXtqprFB8Os68h+uE7/wOP/h250aBccvXHdIMssdeO7ZSfOoVm1GOZlZnr8gRAiP7z7gcenE5fzSJgmYszM08TFNwxjYJwN0+xYolC3knEYFzF+ATsimc6JvjcYGqyHKc7MU+D5h5lsDd+/f+J0mXDG86uff8nrmzfsd5abW4cxmXk68e77b9nvd8TlFSlF3ty94Ve/+lMe3/9AnEbiMuMaR0gLSxTwyGpLwbbZKUNE0N83RGzj6NsdP//pz+ibXoKREKVERru1tb7li0+/4LA/8hd/9lf85Muv+OizT6p2TQqpdliRWK/Uz/r62fWRpe1nmAdMDJicMDlijSUuRcRbxX5z0s5ta1mMbOKFrFnyIsIqXabkoPaNV/2kqPWZ66FhSnCYpI1izqYa8ZSKRhFr4LIJgKrguTU434gzYGxlaeQsorw2iG6A1OgKNuscWOuxOFKwBGO0+9NApcrbcvhIiLHMC9Mg82ebFqwRkdJxVodRNmNjHf3xtma/xPkQQwLgvMd5TwgzSVubS7YuKH1crzMj42m1paXZglvaKQ8tIVwmcfSU2bRlMU3joI5FQ9u1WOfod722821o214OBucxRkAbZ8V9XpaJaZl4fPiBf/z7v+NyOZFTIKfIzc0tD/dPHI5H3rz9lDdvPsao3kHKmekyMZ0GlnHi8Zt3jOczyXtSK/oQKS4Aq5MM6livmkyyRowGApZ+t4OMannZK0dhe/hWmnLerrb6btXkFixEWGHNBg3SoCQEHW9JK+RtEL51+qvBXA3n6mxcfdrqDJTnafCbgFJhUVi7OaNi00lbhOb1IDVSujkOkXkOnM5RxX8NMeqaK1m5WIIICEsk5bUjTxUd18Eo7JByWhurJ5HeYyZBjjp/Bmqt+DrSzvm630oXqSLEv973BsQA/VyzdnakQKar4wB6ECsq9yHIvs6wgCBlD5cSz7QBVH60Eq7eanW2QghkEm6x+KUAs/KsqLX5AmBLGW3Tevp+j9WGA+X9kjpZpVzXxbUkz2w+tQBLW8dbfDItH9I/itMlYrshREwypCxafm3X0uxkr7fatrt+UBaw1uCkm2CQVr4lIwtI5nRFRsUR9AZbdBsQip43CjoFoYDLH8v5IudOIq9zYBFwNSfJwMc10RJMpDTvLWO/7t/Vs13n7Xq6CoNWrreU761subKvZZ1unEDApEyeg3Td806yyjnTdh2pTSzDTMiZZC0hlw5oVlox/gc+VrC4BAhbZ18KJ5dlYZwm2bLdtvQzM45nTvOJeQn88O5b3r+7JwVLXBzCMDeElBjGhTkYlqjsmYI02AB2IZtIYsGYha5DwdPAaTiRc+blMjCHwPuHC+DY7Xb82S9/xcdv3uLsgnMzkAjLwm+//i1d13K42WGy47NPvuDP/nRiOl94+eFenFhjqtj7PEnPaGcbDocbmsZxOOxw3vLxxx8zLjOPd694uT9x0x+VdahdX3X/vzrecPf5T7g53vAXf/7nfPWTL7l585qiPxS0xFu0HPWscXb1OcpJnBM5LcQA03jCuoaUOmJsawLNGKNdXRc557N0by1BF+QqAvvhvnfG0HrY9Y3oE7aexm+SZ6hmnl2/W5PJKRAXKb0z2Vc/qQT25RzJqbAlpWzINy3zuKw2DdFgLPIO1hhSlmoE7z3e79Xn9MwXQ/QJ4kVYDHmp456iMC/DMos4tzZBMMYQl5lJF7a3Dtft6Lqefb9XoWDReCrgscHQ9Tv6rmWeZ4bhJMFoAZtMrkBVlSbIayJRJPEEMBjHAWNgnkYFXhxjK/5S23X0Q2E29TgvzKau64UB1XeVVdZoNcD2cJYkHwzDiXEaeXj4gb//+79huFyUve+4u3vN+XTm5uaW/fEV++OdjPs8i1D46cLz+UKYZ14eH5mniWhgQcAycsIru7FRZpPBrOwN2fYKWmaMdRwOB/FTm/VcqAxa9AXrq5FKhLLa8uqYFF+klHMqUKDGlgyEmGBeMLoGcl5L/7ZgTA14t8ycOul5/ezNlcmfFNTRwHzVmSpljoVNXt5Rx6UmRTLTIqzdeYpczoskrQkktGvzEqu0RAG5l7h2Vy6NPXKRGDEGu/Fh5GzSuMsYkikASFKn1QDl70gsZNCmIF7voYDOW4BG7snUqSpgTCk3q0EamZLs1nS/Wf+2uczrRxb7UICVpEn7sp9WX3E9TTfuszShmLQKSdna9bXi6Ii/a8Eo+8k3nqaVe17CIms3BwRQ3szl6rhjWGVQ6lmnX6WEsgDSRQKl+HBJO4pjBER2Xvb6bidgfdHck49MdT9hhAFbGv6kJOPtnK+6coX1LH5OwjhDt2vxrdc1mzAp4ZKBJAzwGDLJili4EuFwrmhtrbFHzmuCaVlmgheGfLaJrSxKbVrDKsGwJuY2M17iJlPik2JDSkI8bUpGy6IW4Kl2D02RtMyQNJa0FmcyXd9JifZkSMtCMqKPlrXcPrFhTPw3Hv8msOlD2p6sBlOD+4x0SxgvA8t81PsxFY0f5wsvl0emeeaH7+65fzyJ6OQoi3IaZ5IZuQwL42QYZ0eIRowGHirYpOwNG9j12vXDZ8Y4EZbM4yjUr+/fP3I6T9weGn79i6/4s5//gsNtz6uPDozTwP/z//F/5+uvf8fN/oiZE8453ty94XB7y7fffM3T+3eMlwu+8SxxYQniBBrn6LsDXdfTtJ79occ3Dt95Djd7DrsD3//8e479gR9+uOe7b78nqtBiipHj2yNffvYlr1695q/+8q/55S9/hetFQDwj4MiyLNqNSsbQadcyZzdaWGoZcows8wBmBu0ggwI8qFHMKmAd4qzZo1QNX1hGYgrqfmn3FNNgjcM3AuTZ7CSLVo4zPRQpQFNBP41kwUrnqpRK9q4c3ptg0WTQkhHvPb5pBWwq7XYxuCybxy2ib+SNV60noTEanHTUUWMyjhMYpEtS67WDj4xHmBemy4TzntY0WIfoEI3asc17nLV0uz03h5srpkzKWQyOMbRNK0ZsNtUBzSkTQ6jGsIqmZaUe6x6wCjiVTi9JAcjClCtZBO8dTcla+W4VL20E2Oz3vXaC6tjt9kLRb3c4L51rWhUKH8eJcZ54//57/u5v/4bnpwfmcWSeRo43t7z74Qdubm75n/6n/zOffPSpNEswYmzH88jwcmIeBh6+/p7p5YQ59Ni7nWQ6FchxVii3kkDQzNLGmY4KiEjb566y7rx3qtU1b2i/1bIgiz9XJL7+jhJzF8dJnC1XfqsloBLEa+lDgT2KuGtdg+b3fC/149TvPwbvy4mob4tmrvRavVFNopyrgyMAndCNnZcDeRzlIJ6XyGUMlZlUOposQQ+hVAKtDT124/RJsCPXJesPPXkyRrssyn7Mdc3FlAGL8W3NipZxcc5jnDooMRFdJE+z2KQKHKxzAeh7rIH0Olu5jqmUmGo5XP4AuDNoadwKHmUt8YtGOo18CA2UQzdrO+EPQQwpZwnEJGCL6BLZKsZY9DQEfBRAy3vPzc2N2qtFSwxz3aelvCbGD3XYjAabJVNblwelw2Ispbem6LDJmMUCRAZZ8865Wp7StqJ1k1IklI5F1mKNJ2QROBdWg1YYmgLc5KrMZ4wBZ8lWyossQsPzxpCzsH+XVILlgqAZKRdAM4chYqw65eroCdglnT29iSTnVSNmHa8a4Gz2Wd1/mcry04+UWbW6l8y281VdXNXf3ZaDswQIRmp1jARPrQpexiR2IRkIOUknlrSK4f7HPLaQpNxL9avF2yZjmDVh1/iGzrQKjgA5M4xn7s8PTNPM9999x/37J5zpaM0txjhJzC2BYVyYFliCxXopccwWjI0Yu2i3MMBGul66WGUTOF3OTEvg23fPnC8T59ME2bPfHfjrv/w1f/YnvyCmgTmdGC4X/sv/8l/4+jff8OrVHW37BdZ5Pv/sC3a7PQ8//MA/DhNhmRUkEdb7PM9gDIeuZ991NK3jcOzw3vLpJ5/SdC1PD0+cfzhx2x15enri/f19dfpzhlc3N/zZr/+UV3ev+Mu//At++tVXBGMIxhK0W1+IsneNNQI0aZbeaudE8V8i0pUvMQ2AdaTYk1KnvqvMj7yfBNtLHMXHUd+HvDK1qm2xlr7rJRnkYd9LWUfbeJyyhXIJempZ51pSQYrERcBRNPh03tZEY4jl/FL9EOdwvqFpOowZWGp1gViA0mQgGUtKnpQd1nicO+KsJy5BG9ok4jRgbcY2BuvFlkdlCYVlFWhO2mmznEPWWvb9jqb1HI833N2+UvAvV7C9RES7rqXxjsv5xDCc63sUpTKr/m7eaHhaVwRwJXBLKWrHZgEUy9i3batMuo5ey+haFZgvpXTOObp+p6yrhn4nAJRvBRT0vqHvd6QEl8sLDw/v+e673/G3f/P/5uXlSfSWYuLt27fM08Dr12/45a/+ildvPtEklySBLy8XHn73O+K8MJ3PonvlDLFR9kSKeCe+XlMTG0aFutGybhm/GBPeO3b9XgJlrWBIWZlUOWM1qN8+yrDXIBMFoMo/NUAVNpqsN6nSKHpFC6vvpOz9ooBc7DgKhoBov+rnpXoQbsrnPri29as0wJE3MMg5lqrPoyV6SdeCjuESZmJaWJbEOGiXwpwIpdxrUdYj5ZJLqd81A1g6uFkdn5KfU79QNXoyUDrjZbKWglqNy7QhjAHDWpUgLpSwrMK8VLYVqvu6PRtNLoDSGm+XbpplUCtbukz07wOc9IeUkpRjZTBmbXiDjrAQlUydSqMmDSSeySaTkqONTdXFKseX0Rp3Y9WGeUvTSuldCKE2Z5BmTQr6G199oxIjFAHvtcs5laYTszAEK1iYElXjjtUXtr7EkJ6+79ntdvhGSAEg5f1bHSWbqQ2qIpCslr0qkUAjYbH9eSGmJI1/di1Z11wIUtbnMphoCXNiCZIsSK0UBpREgKndjRMmmQq+hbgwL5nQ9HVtm6tCHrV/4iyLb0+JUTYTrYNamIYy34UYYtYkbSp+xxbkLGslkpYE0WK9X7Wp+k6ip5wrASZGWecp5So6/t97/JvAph9l9HXyQZwV60WPJMRNG3LKAIhjf345MU4T59OZ4XzBWc+u1IB3LdaLun9MbA4pYQAM48z5YnDe0DYiDN11PW3bYZy208wi6jbPgbCkil5P08h5OIML+D4xTQPjMDJPM6ENlZrsjSVm+0GHqFQ3dwxBOkq1uQrz+UZats6LqZoZ+13Pzc2RsCxSn13BpsSru1tubvYcDjua1mKdahdtsjtXZRarj02hFF4Df1k6a5gkddfVeF2FOxpgKjiSBWgSCmEgx0ClY5BBwQO7FQfPeuCsn0phISQ13BLsaocWTE2Sp2KcWA1iyZgDdF3P4XDg5fkZp7TnruulJl2RaYMwoBrfst8fef36I+nQpZTsEBem+SLsAAUqCshQKJopRSm5IuM0c5mU7tk0Xtt9+lr2tgY55czcBrQKJXN9OFgjQZ3ctwbLSqveagJtjoZ1TPX3OZm6BgyBbLO0+gZilPWZclTaqTjQMYFzAe89uYlgDNM8Mc0T8zwr2yzpWErb3uE8Yo1juAxM86Rgo4Kb3uOaRoA+58hW67yDACTSQU6yidVG8OPuBIX2XFdN3qzhvBlLytgWz8jU9c7mWfWH+jSjwnbrkNbMR974WSiYoWup2unrGai/2c7Rj3D2el0bp6180/a5NsnPhclS6csbMKtke1LUr5r9KSMgZVTJ5I1Twgf7fzPW5QkUmveGNq1/EjYiSp9VsSJttV2AgULtl8DfqoDpWsZbMpH1c8seVYCtJB+uRUPz9bjl7XuYq4lYS11Yr2fzvvVeKU5EVrCqvqRuT9HpQkvRNvfwwfUIcFEySMU5yLW0o9iAWupRPtOsoMcVvV0H3GzWSVlSdc1c3WapvUf0+Zx+2RJgWdVqSNWjNyV9Vt4lr/ds9LONBnBVM6uwJHR95AzOJ23gwFpyo+O+ZsMKMLLOidi2xBICDkNjWnBl/X44x+vcbueMD4Zs+6hnHnlD8zZXL6uBiv7SxQxRAu2yqp214lvkrCxetLPQH+kp/Q98XJ3cdVnbWr4kQs8BF219ttHyx7AsvDy/MI4T0zARl0TTWna7Hms9U0rMWea7lFXFlEk2s4TI+TLi20y/b+i1GUXf93LOWFcz/WFJLEHYmCmK3zMOZ87nZ0IcmeML4zgwTxNhEbBmDa60mUFZIwVIyNpEZgkE6zC9oVWdoKIBZsiYJELuh33PfHPE5CT6iEmvJ2dub44cdh27vsU7KWktOn4liZbqeZdrkFnWbMlMF3ZBzpEcZ4iWYAGjXT51rcXC6MhRE3axBlvifykgYuWclODbVB1L1HeSZFRc10GWErukNttGSMbgstvok61fZS9V+190dIzhsD9we3fHMs0CaFlL13c0TStBexLb1nU7vO85Hu/4+KPP8V50GUMIwqiKI8I0WkT3KifI2jkqIUk3XGWJWWNJNgnA0wjbujQ8Wc3h9T4Tebzr5MD2rK82L2cFdqxq6sTazTYX82HUHmi0LNl2YeKEoA1MrCFl0UYjQ9RAKit4UlgVMYm+qm+UMZGRZj/TLH5/ljkr2ikxJC7nC41vmYZRfGm9ptJpqm1blgyTsXUq1y6y0pDjOrYqfvXqvFyfL8Ui/v6xLcvt943rivVvfIQShHPlUomNLqyoqy9DZuMv5HIGbx+bv23eoAxfWcM/dmOuSxilCCNv/mqq4S+xQymdK3nEKrNRXmHYnMvbu1z9Fvk5rxdXDlLK+vqASUsZ4wzKEv5RfdLGU3HKlknW1o5yVRg8r9dXS8yKr/N7/LxtTLi6qzqf9fpWaE/8MHStb+cpg127v1bfyeQP1s9qO7cstPLuW5mQLQu/dKKv85zFj83qCOVyvWonDGWtmNoD5Go4N4m9MhvFT3GlM26zNtIBavJ/m/gqZ0SZ21KiC6u8B5l67QKYpbrrJKmgmqdGWeYmk2MBgFdf2VBYVVdRY73nkvQNqi22EGkaeR8qE2ndu6a+w4/3+e9bJ+WHMld1F+pCMWiMioCtklPQICRGYWf5jM3KOnPi3JUz1Nb1999//NvL6KqnqW1HQ8A6y/H2FmccIUXOw5nbaRTmg1nF/b7//sI//v0/cb6ceXw4czpPfPLJ5/zyz39N3+94CTNDWHBPI2NInKeAmQ0mwHjO/Otv3vPDe89nn9ySPrllt+v5/PMv2O16Hs4n7k8npnnmdJo5X2aG80xcItNl4J/+5R+4vLyn6z37Y0cMC7/513/l8fGRXdfTH3q6riXMQg03NrAsI/M0SDZChXKH84kcI8fdgb5r6fqG42FP0zgupydOj0+EaeKzT97y+vbI9MXnDJfpCtXu+o7Dfk+/69kdMpEncu6kXCULarosAmqlRTqjBaVBOydjjFUDYaVsKSyTZDhGGDRuKwh6CVzEAUrVCaybKeiBq3X2Rluptq3TTmHSOlro5h9Q5owD40SvRg/QpknkrOKRJXvPStcsTLgYMykvZAyffvYph5sbAN59/46UEp98/Bk3x1tOpzP39w8k4PjqDTfHO7786Vf8H//zf+ZwPCI7wnJ6eeGbb75mHC483r/n+emBJSyEMCgTJxPmCUumcZm2MXS+J+8E7GybtgrxWiM6UJL51A2pzlrMGZOiCv7acl5I4GJEINAmyzAaceByBnPBGquA46IgkjizGFO7t2lSQbWrpMwpoDpT1tYyymEUwXnvvVLALdY3tfSv76W0bpgX5iXw/PxMztLN0fUdtDIPD+8eeXk48d1n3/Pu+3e0Xc/h8ErYFK6h73rG3cDL0zMzMKeF6TJgTKZrW/b7FpsixEXGw5gr8CmTwWU5WLOIpgLk7EnJXTtN1a4WkFVB3qx6GurUGLse/kYDlFScGj2sqp1V3aYKKGRk1PPGidmwy1YzV3QDygGYrgx7AaL1Hxo46HP01I5Gx0PPvtJRp3Y3yZkQhMUUIsSgiYekRt94AVPRrINmL8OiGei4jpUEWupspfUwo4ItK6phMFJ2FAO1ZM2ua6yMl2TFslyD3q/MRySERUfCUgiANXtiTQ3C6hCzeX1aQc812C7ZqrRxdta6+lTsjl3tR3HQtqBJEZUvz3HO0HYW3xi6vqFtpSw2bnRNisfmSpmGgRgXUjLKMF1b9MreXIFrY7MA115tnd1c1wZoFw28cj/ahSlLYF0ydcYa1bVx7PY9u34nDMDW47wVlqh2OYxBmQXWSLbQqB6KipBKCa4kP3LRx3H63Sb5ud6UCCJ7FWF3rcU60XkTNl4Ck6R02YnAubUQc2KKmcs88fTywuQb3E1D13RyFsW1O2d1Dq++l7Li60DlKslSHNaUlY2kmjVGnOSobLGs44kxGL/g0LF1Hqyl9R6zc8QYmIdJ2Y//4VV01/fJqlVonYiZ9l3Pssxczi+Y7sCOrjrTvvG8vLzwN//b3zAMI6Qeckt/2PPVT7+iaVu+fbjn/csz2cG0LAzTTEoNKXnM84V/+Jfv2L9zfP75Wz7//C191/DFZ7d0bcP9wws/3D8zjgvjEJmGzDwuLOOFc174u7/5rzy9/4aYJkI8E0Lg6f0Lyzhhcmbf99IlzRtCDixxYZwnlnFiXmbCsjDZicvphWZeeHv3iru7V1JC5mcgkuaF+eWEXQI/+fQTPnv9WtjH81RBzZgSN8cjb17d0fc7YGa4PJNdQ/Y7SXjOM8s0EeZZyo9jZAmBaZmlBD4vouWVF3IWv6x0npouVvyael5kSmOFnDMhS1mu0f1bJxNwTtlFXpjSexWmzkGy+0uIhAIEWyf2Ny41WFv0e9t2wtDJjsZrIBjVyWc964yDbKXj289/8Qtubm/5x7//Bx4fn0gp8emnn3Bzc8Pz8wvvvvsBZy0/++lP+eyzL/niy8/5T//p/8Buv+NyHhmGmdPLia+//oZhGHh//56HxwdiCqQ0CsNisaQp4FrDbt/StI3IGai+007XgJTAlc1VGBTUIyFEKStaUqzdZ3NGOwpC13hMTszDmXm6EIIlxgljDeMw6Hurb7spOxHTm1QYGjLCqFiWWZImVthN1lraacT7Bu8d7aWtZwYYmqZlt9uTgYf7e55fnhnOI43r2Xe5BvmOhu+/ecfz+2c+evM5w1dPON/S+I7WN5hXr2itZRwGpiUwRmHp5iTssKZxWlaZCMssS6loQJYzTv11OSfQpGEEnzHGVf9kfchBte1EWgLk9WxabW5xa1JK5A1jzrnCWiv3a1eQaoUoyJrMSFqGXhk5lCA71wB1/f11SfxV1kF9uXJuVtBHfT8QWx+0PC5GQ0qOGFBGuNE1JQmWwoCqXe1ShiyMMGmCpOeHSPtfBenlEDemVIqg7y2JD9GDRbRtFP0sY1zuT/Zzqz6/URAhEfWcM9U32yTna6J5AxHk9T0rEQNTG6UU3FBiLAUszQozFJD2qlR93TQap1RcZ/OVq1axAEibZBuSpPBOYo95VpH1uNE2lhWnPrqKsUfRcSpNgopmWlS2ZNFLKotTqmNWGZJy/c7Jmtjtem7ubtaGGznW7s7AVZfzev0KRDVNiZdMxRpDiIzTUJnvYREQGe3ga5xUz5AzjVdf3lstu4amczgnfuYSw3XlgZXrtk40CKcQGaaFp8tA7yPHPeydI+mcCdtJWV+5zJW+12ae6t6q/tMKEK7ret1vhTGdtNw8J0M2VrRKp4DLBqOlyRLXOpLrSCGyDAM5J2GI/ZE+1B8NNhVEXa1gBTOESqvdELDKbAp1oQE1axBC5OX5mdPpzOl5YBhm0pvI8XBkdzywXE7MowxsSNJVwClNK4bAy2lkDpabQ8c4LrStlBDd3Bw5h0A6nYkZliWxzJEYhC6fYuR0esabQNs6dueGmALn04l5Ehqub8Spt9Eo5U1osIUCWETEwrKwODHwwoJx2pbWkZN0Mksxsut7+rYl7jPxVrtIzUulwjat1Ec7n0h5EiOeusoQKuDGVaZOA+9Ekrr7TRZeuu5ELZFRFpNS3rzq/VhTxLxXo5VzJpfKGANFxE4cXG2zXBfzqvWkESIFS88YKIYiJqyJgppbK7RCPQ+r0S7BfhQ21G63xzrP4bCv7ZEPhyO3t3fEkDE8QYa27dnvb3j9+iO++tnPub27I6u+/uPjA/MSdV4XLueBnC3GSM05WdZCzgnVHMQ4oZMb65R+7TXgV6S3qs6shqsAILLfDUZPiMpsckXEmxpcxyB1u9IVcBVHrYa/DGkx4XqgGJSXkKMAAVrKF7PFLmKoQwiiCyX0DZpG1rcxlmmJzEuU0gWQ+UAo/TEEpuHCbGaG84VhuJCN4XA0K5XUWKGKdi22a8lTYJmkTfW+b0WAP2R1UrZg4mo7rJFDVA4hOfBi1Cdc+xgVuNkaS9g6JVnGeztu9dXX+T59NiszozDkylyVV5v6bMgfZAyuP786zHldC9vrqI4VlbQro2K2X7pfc16ZTQlSNpXVJO8pHShLaC7gV8LaRBHk/LAMMFffTO7L6AvLYVSywFmdJbleKdMTQpqt91sBUc1+CVhm11otrh1YtmNvQE7uDU1rMyt11mqmzVx9GbN+Rs7rrF4zlz649zqTK5tLHBIpQSlMIQlq0tWaKu9TWHlFDDFGAfrrLVLmSxywVTi7vP6adVNvrbpm+ou83ki5bmNM1e6QIMjLtdfSkUKRtiRTSmSE2SgNC9bxEOBM3jyWEgL1JCWXrl5tqfZNlkb6KMjrrDjthZFS184aj5ERux60g6VJVGHcfLWGyvq7BpU2+cl1ZZR9mT9w+nOxL7IGSueVMk/lbMTkqiVlnMPqa521taxVuF7KOMsfXtV/0GPj4OekpZmNMEJSksRWjB3lAstaXuaFx4dHhstI376h9Q3OeI7HI23f8f5ygnMpZ0+EmPA2EkxiWjLPz5Fptrx6dSvtoo1jtz9w2HW8nCbCUthMWmWoYxnmzNPjAyaPxDgT40UAmkED1Jyr9gzwIwHewqpNMUoyT8HCtu107UqQkmMkzgvExHG/g77XUnh5v2kRhm7fdex3LU3rIAeWMMnacD0oEFx9t1z8qcKwKr9Ler4LcyqFSe1CYSrLfwwCWjq9t9rjLivbrkypnpeFYuGMCn8boza2lBLLXFr1pRMZNPCJ1WZJ2Y1VLb1i0kt3r2q7lPlhjeX25hYwvPv+HU3bklJifzhwvLlhmkI9Mw6HWz56+wlffP4Fv/r1Lzkc9ry8DFwuEw8Pj0xz4OXlzGVceDmNEBaiiQomiIYfSZn9rpF161WTquvUxpZkpoxMWfLlFI0JklEgQ23DyjjIKppuMSTVCjLMuheiCKAqmFBY1JsDRg/5lCI5qF6Y2sloHU5L2TFSrhaiU22vlaHeNG1lzoyjVkCEiDVeunCXrlDAcB4J08J4GQjzjMHQNFq+17WY417OYO/J1pKzgCTSiENsfNkb8tD2tQocYFYRb9AkkEGCZrtq2q3h/zoi2wRaMaNbX2D9W+WarnO1sY3ru6jdqhqP+pcKJG0P+pKEKwwNrq51e13VV9Gz3qx/kFeUBNPmRSnm6kNlLRXL6fr9pHRLbVIdoUQyWTpv1SSX7Mt6Vlcf7NpHL9+l2kJZ4ej+zpFrpvE6zkWSI9hFSx/BRKPn6OoL1zjAmJUVvpmj7Zit87N+nnplupZXj6iexdtr++A6y6Sv62Mz/3nLCN14M6aMhwBBYj+1yUPc+A16zSmucW15FKZ1Ruyb1LyVRLT6D5QKjlzXRZkbaUTlpBul+i7leoucUImp63Xlcv1GKzQasRO5+HWxAmZiI5KOrIyPY+OTGb2fmEleNKAKM7OAXGkT70miYd1j4kMl5iVgsmVXyiy3PpSuiWpE62bd7GFdSdVd2sZNuf5nXWsV0ymfgyYtDST1oazVfaLdw63Y9mRYm638kY8/Gmxy6mGWLmUpGsISmCYRNt4fD5AgEhnmgTnMpCDIZZmwruv45LPPOZwvLOl7hvDMECJff39P8zTwcJl4GRe+/2Fing0xWnII2DlgnSMs0jr95Tzww73lMi64rmd32PH+5cS752dyyuwbz/HW83FvSXceZw2v9z19a/He0DaZlA39qz3TznK794ThkTBbvv7uW759fOCH777ndJ5Z5sQ0B6Z5xjpX73eepMXrMg88PXxLzpHnp0dOTy+ajS3oaaxdyoLqr2A8hIaUF7779nvu7x853r7hzSe9ZLsyOCeZgvP5wjQMzIuUv0HGO0PTGNHLKHXUyiMtAuEpZ0ihFOBWLSDr1m5nSYEL44TNILXq2kpV2zIWbWFQke+yQSgGTEs06vuwOSR+7MhnBdEqjFOCIQPeOfb7Ax99/BEpZXa7Hc45jjdHPvviC5qm5a//+q/56quvePvpp7z99A39bqcmAHwPtv058zTxyecf8XT/yDhN3N/fM88zYRlZlhHnLPMcSWmi7y3dXtBbpyKAJiUVdV6DNCkLWB3pHKQWWWrrC+RmKrMo50zbtrRNqwZ5YyR1o+eKUq+GaHuAF4e2BKZF96C81lhtF7pIm7KaHfWeuMwYY1lUyyWGGe89XdvRuA5vW1m/00DKohE2jNJeOiwj3gtjyzpwjaU/7gg5MtyPnM8nIJFjQ9tYGgudW7OXWb2KwtbaLoaixSI2Iaz4wta52ow8mz9nrTeOxVGQRQlmU25XgtQStJaxLgH+5nu5Thn7tWuiQeqik7IoSqcuXcHlBTKPJcjNpRS2PGe7fj5w3DTIMLDqghlDqw530A5nV66enguFAVSFOIsjVx16zXhpx7mtA7N9FJHrnCn5PLlHiUDrR5brzTmLgGgjTDYJ3OJ6qOe1vEwcilTxlAxaWiP18zULk1fm2LKUNrrqKH14OG7HTsdk6zyVLF3SPWSdsP5cI9lj36ytaHMJ2rJS7mt5r3wvrdkNpgqw5w1YEkMRqyxMvnJP5dAuizrXi5bnbQPSDEZG3qnAvveOvu9ou4amUb0Sg3YXtDV4r0FZRrVJnI5lVLaVJmSzBGbLJEyMojNRPheQ8h+K417mz2iSJlVH0ql2U/m+jrmBBPMcwMHlMoiuHgZv3MpC3BwE27VYrlveS1pKbwOmAjTklHB5q3Mva945h/ZEqK+xADESp5mQMlhLahtoPNZC1wnTJ88Jlj9O3PJ/xEOAY7Vhei6nKPR56xz7ww7vpPnCcLnQTx2mao0YyIbd/sgXX37F5TJyeo5choWHlwu/+d0P+Kblt+9eePc48P5hYVmysLdCJKQRZy3LIqyTp6cXvv3W0/cd0xzpupb7h2fe3b9AzrzaN7w5tMQbiK+k5Pzu1rHrRWsiJgfZkjoRRj20iZfH74jA19/8ln/95hvOT8/Ms7S4nueZy3Chy5lud8C7xDhceHq6J4SJ56fvWeZRkx7D6oVnKGBRzpLsiykyW0mcLSHw7Xff4t7fc/v6Iz7+4gbnxSEubPTL+cI8zcSwCHBkVJDb6Smw1aLJGx2vrMmRYts15vWa1CGt2XFhyzh809J3O5GVKNpMpsbKa5BBriVX6Not9tVoSWHR5fEFJFefqSz/jHx+1DNgtxeG9pu3b/ns888IIdSM/e3tLX/yq1/R9zv+0//pr/j1r3/N6zev2R17fOe5cTv2h5b90dP2hmmc+eKHj3l//8Q0TTzcPyjgMhGWCWMtyxzJecIaR99pNzS1I9sW5cXupaIdSq62KhafWOcrCB2hglZd19N2I5DrtBTNq+sAamMBclr/rWMTQxTgykSSanbFGFUbSliD4kPJ+VPZrBiWZSbniDVGAlojQZc1jhQD8zSqdMfMNE2Si3EN1jVgMk3f0aZEe+hpwsx8mnh+ehJGbujoW+3c7MzGthW3bwM4FDBGWfUpBqZJf68SGMaILmj1CExJtsl4xLBCBQV5ssWHSrn6WOW7zN+GGVR9rOInKIvcOqxpAA8mYlLEpAQEsrFVe+sKAjECyFY/hjV1LT518aE+jCJkMIy1kkzYjFHbij+2pETYglWb81hACvVFUxGklj1uCiCRViFqyvfyyfqjtQZXEs2UWGjrua6BfvExnJOktujIKii+2SurLmeqndeMXrDfSFbsdgJIFpAy50xQqYwy71fs/XJFHxy+q+eo96R7AGNwDfhOmTimFBQXO7km2UDL1TDkRd7RbHx5dFRqh/HiutsVhKsXUt4vy/utou7UhNF2/JvWVT3gEAMmQQ4yD9aJ5uWa2KFeA5mqxyes1kVsgibX4lLIMqauT3VyKaWlWXWJiy+WcrlXtBGMli7rSHgnTZScyxQmYklwppwZxploE613NWlpjfhEdrMGr315/bwKSKnuWvVFUTafJAgM2h27XJuRhldFSyutE0BagjYHSrKH2wbrPc4Zmr6V3y+RvPxx1KY/HmyqQZEMegqb7l7WcHN3lHKvIRCmhWmZFEE0KiC60O93fPnVzzhfLjycF+7PE6c58E+//R7jWp4umdMEDw8D42iI0RGXCTOLKPeyeKyDp+cLS5houpbnZaHpWl7GmcdxYt80/Oknb3iz7zm4HbfNrdT8L0GZNwg6CuT+CByI1rBc3jMugX/8p3/gb7/+lvHlwvPLCDExTAvDNIG1jOMIGaZxVN2nM9/85h8YLieckU1Zg2qDiHUjbBY5WCMpt2R6phnu7x9ZlsRnn88cDx/j2xaLAEo5Bk4nEeJcplmDq0zTCNgUlsyCHuBJRJENcqiSEibMQhOVVS2ZXittiFcUX6jf0iayoes6jDE0voBNporMWmTRJ3LNsJV27cYYnBrFyiQpwXHZFuX81yUtLWLFkBR0+ubmyOeff04MEe96nPXc3u149eZjDscD//P/7f/CX/71X+CalmZ/wKhAYiJzx4HPfvqWnOH8NHF5EUfzd19/x+Vy4ftvf8f3335DTIFpvDDmica3tE2jRlyC4cSaZRKMzughjoIBS6UyF7DJQm253bYtGCMlEd2kz1u0HKwgypsArAIG/Ag4gQJmoIdZAWPK88uepB6K1jrGRvQ4srVkYwnLRNs0OGPp2x2t3zEMjtPLM2kRoc3L5YQxMC8XKQuyXlhxrWV/d4DW8vDynufTMykE5sHQeMtx19HcHLQVqKAUuVwb6jzofZeAX8qTlnoP4rC7qtfFBvwpfkLNrOjawxgcW+2FNRNQAoOVO6GAkxEwYMuaEtBHAkExc0IntRlSkuxqAWzk/NkwuBDERMpQNwd3XpmdW+ex/LNcl2iVrOKIspei2Kv69HX8ZE0aUiqAU3EIi++YMVV4soAL9RLqQw6xEtNlDbZWUGWrbVQyvNY6XOcqYyAmW3XoioOWs1CkRUi8AKAWYxSosirgqtnvEpS8vJzEtvKHDtUSW5RfrloL1hS7tC46Kd1ucY2l6xyu0exZysoezdW5vs7+CAAwT6XcM28/kpwRMDAIa9Qas3GASpncBnRXm1HKKY3zGG3LXXQNvbP0vTCZ9vuOtus0ltVg1xhKF6DSea5UTVjn6H2jYyYsjZgk8JFgThJCErBLoOe96B6ClqBl7cqjJRS5sA2ysKcM0DSO7KRLj6x/OQ+cgnvzHIgm8WIvpAhd03C7P9Ty7TqHpU64/Fs/G8TpWZkKeoQUYCbJHnR6HpWyEKc6exWkJBPDTFoiMUeWy0S2Bnezx7od1lr6viNjWFhY0vKjvfHv9WhUF4KUa8mG6CNFnHMcbvYYDW5PLycOr/ZUwloS5/Z4uONnP/8TzpeBv/27rzk/3pMeT8R/+RZsw7cPA/fPM8+PE/MibMmwLJADFsc8tUDk/v6ZeZ7wTcP3Dyd847kMM5fLxKFv+IuffMTbmx0+NzTJgwoyZwqTTBocWG0kMufAw/uvGeaZf/7nf+Tv/+Ub8rKQxwVnYJomTpeTlMJHYWFfLiceHt5xPr/wm3/+O87nE33b0Xd9PeVKUFPOwUWZTYXCkDNc3r1nXgJf/TzxyZe/EOBAz+lpmji9CIN9ZVYL0OSc2Eux31GScwqcy/JPpLgomzSDQ0tGJOhLMREVPG67Ha7xtE1Hv9tLuZZ3dWlJuaupjLyUsgqO695LiaZpaXyjQYaCTaXLk3OrDmoB2TUoDUne53A4stvt+eTTT/nJT78SGxCkc9zrN6/5xS8+4vb2lv/5//qf+cu//vMKhAEcb1oaZ8n5lp/9/GNiyjy+TDydJk4vF37zz7/jchr49ndf8+3vviGTmKfAMgfapqdRjaYUi7i07FtjDLhy7q/dkKdplPtXoUJjSjMPGR8R544M+z3TNMp9xkDKog22bcAiq6OATXnDHi/lSFRh+S1wUJNLVhp2YI12GnZ4P9eSnmVZIEtL877vaLywm7xrmKeJcRhJMTJNM+MwiD2zDucjbdvQ7DuizXQ3O7q88Hx64OH+XvyisGfuG/q+43DYobSMem9XxXGahCll6MWHKtcvjVe0qzNsznANhlMWvbG0goFGQQxnbfXPxUZtgmEFOKT7lIIqaeMvaFfV0sXLmCDaV5owK4DBekLLvi0B9fYckvKvvF7DlROwHsQCGlsFFeQvpet5yom8LFJ6XwCXzRleQcUkwy0pk5XpXTvkbkEms2ogreX7Bl/BBQGOqhO4za5sfBXnPN66upYxhpiWNXGn5VZRWTVlfqyRJHarHcvbtsc5T1iWqsd6flEgxRQuUHH9NvfPBnDSJE4tFUTslDQiMLSdo+ldwRTFLuYVdNwyudcSRYkHnVb8qHsgcxylVLme3Qqq/76H+PhZGxtI9ZR3bRUTL0m+rhOJAdGEXsiIWH5KCd805K7Eb9qZPa7gnHECOqeciLOszaprW+7xasxycWBqpZP8fH3NZE3w5wIyyjpqGifNS2wEZgW8xM6nlLlcRmYj4Bk50fiGfb+r/s3VGs7rfpDqJJHHKVpRqwnRJGKKkCTRIj5USaAbKYX2Ku9RyjRDIC6RCCzDJGDn7VEaY1mL6XsSWbv8zn+UD/VvYDZtwCbVIsnFiBjL/4e3P+2yJTvONLFnD+5+hoi49+bNESCL4NBVXaWW1mpJXzQs6f//gBZVzWoSBEAgpztFxBnc96QPZrbdT2SimGupyQNERtyIM7jvwbbZa6+9Ng4DBc8VLT2zjlCsyLVzksEdBmlxXxrMS+XT0wIOnmfPOTmus2bnm5OszhCYhoFpHJhGAZws43ldMhnHZcnMSyUiXbJaycTYOI6CyFYvdO8eEPZUE2QaVye6RGLEpSuUZOKtXEEz3vMMDQ2ULaj1mv0VwfBtsC1+UqM1E42W7mLTdBT6XJ6pNRF62USgLIUli7DzPF8lWLBMaJWDupSgVHs9sPthu9q6tcxmE1zfxFUdDehjoefx7d/1Z0PY0fEzap8xesSZ8j1wlvIbMUjr61gX5ib6tkBeOj1FDXLEwA/jyP3Da+7u77i7v2N/2EGIuODUsArz0gwQwDg1apEMz/2rO+IYma9nlvlKzgvXq6fURAiD6udUYhBjG32A0QLNTZZML74zDNSooYa3M1z8KrIdY1T6ugbjxq5gDWK3NdAmgLuNcPuBYTOnhsaC7+5o6VwTGsWxAZtE38UL0koMkWEcyHnQTgmenDOXywXnHKfnZ2op6riMpJSZlcknnbQazivgovfcGS6bR8fPMJSm9Xvtost2S2pTbD1ZO14b+172UG3smjoNSDajG7t+PLD9zdo9UUbO2E52DbXZunfrBnAi/LcF9G5wG3tji2Jutoy+dgtWsDnoN082UMzYObZ3+/Ob/d1rOUDdHLj+5j07WHZ7MfRMyurK/fyjWbar9b213rTaEbvoDkqpvok6tuKsyEHuVYQ4RrH7rtfoez2sV9Dvp4+fQclY98J2ffSxfPmKDio6i13XAMXs4bq1Fcxk1TpoLz6vQS+DNceVNYg1B9W5VffKLuh2iejcgQrt+r7mm5Y1Wmlj1UxjB8jW7dTXp16hXSAdlK3rnjMbUyuiNWNgX3tBbXc2zk7YG+uQbT5HgKboA6EFKW1t0nlqWZKAf7VSLch+sS9tnsQZvZ012d+bjKKtSdvD23dSoJTtZ9i99vsCXyraJhOnJcIumODlT5bYv8kj2Hw3Y1DqTVRxEuMYcdqyOCXVR2yNtcuhBMYihJqpDeZUaHPGPyVwjdO5cp0bSwKaducKgdF5xlFKDYZRnfPSwFeuKeMbXFPmmgtD9qIpUzODrxxG8X9KNbstpZxg4qgecmVWdrXoVIiEQQyB4FY9jpy1DJsg3Y5aU/8hEn2Ujrvazt1ahIPYI1+bskUCcZiYtFvYktFuk5FhCPgYSDlxPp+5Xq4ifp2s2650ALpczqQUesekHmC227UJ9L380oeiv6P5N2sZVs8qb+19fz+vNlwy0FL64bvukQnFb8/D/vp+ma1/35qx5iThNQyiEWMdJqdpx5vP3vDw8MDucCAMQ9dVQ1/X1E+zzPi4a+yb+O+vXt8zDJHr/Jp5uVCLaJoKEBe0xMxE7h3VN1xdgWNjpnXQvGQBQanaPdkRVM9IxPy9JiDl3Kit4ovvNrX7AWpfmzbXWdmuVhql9tHyL5v5WEtU1Pfy6mkp4Bj07CpZuig2LR10QTqWDnHogABIJ+7n52fGcaEAMQ7kPDLWiXmeWRbpzFhrUd/YkhNall0b3ldlTNikbnxkQITyizKFlMlKw1evDXeC6hA5TLfnpoS06OvaCja16jtotJ6p9n3LZO3/oQc3TdcNqx3v/KQbH0HOstboc8LmU7a/6ACZ951pZNdy6+eZH2cumsyha5rgYmVpmyPjaFTvcFV8R0w+QP09Wu0AlN30z8MhduG2KVe7sPIPbe+u/kn3Qfq4aGdZH1Zb0aTRQNTGRXEYFEiMRAUVjcwgZ/9mjLZH6c+7Tz+9hfaCPdbdpfXstfnuU2FT6PpF6KXra2qTeHdztm/9PHXfu93C5s6tOlP0EXx56q/33n0n84/YlFeWTfWOs/WzsfWAdW6zMdx+bVlt3Q+2OayN6urGp9wkwx1d4NzOAzsbdKf08z/4wBAivihTrWlJnQLvtVV81+SyV2/8tBfz288fHeO+ndv6ubZ07Hern9TWF734uXknh6zaDK/6WcVLl8Zf8vjFYNNO0XJBGCrFB0ouLPPCECNvXr9hmRfOn06cLxeu80zOhRDWgD1Gz34/kWthafB4zVznmcfnT5QyUOOB5ncsVyhLINTI68ORVw8HdseRt796YNxH5nzhmi5U5/l0rdQlc14qz3MjLZlP4yfi5YnXX+x4+/lB6akDzqhiuticAixLrZxKZrhWog+kGiBMHO9eE4Bpt8fHwJIS3/7pW4IPvHn9GQDjOPL5268pr1KnBYq2wKyUxoJQs6FIgoT7h9e8efslrcHHpycu1ytffPkVn33+luYaf/rtH/mXH/7ID99+z5/++C3zdeb+7shht+d6PfP73/0IrTIOnnFQQV8nYJDH4ZuKcnt047qeEbcscQWqob3yQgqNVLOUMzQp5xNHUMohlOaDQ0twcJ1S7pwEkc45xmFgiEOnG/daU9t81ZwCL61aEaq/ZLg9026vrTPFOf3s7Wf8n/7n/zMPD/d8/Re/YjzsKcj1mjihGEJDZiGMgb33TPvI4W6g1MJf/OWXnJ+vXK8XfvjuOy7nM4+Pj3z6+JEYAp+9GdnHSNgNxGGk1MrT0xPzPGM029IqaZm5zrMGNeqYOEWNozi7IUT2hwNG069VdAa2nQ1z1pblJUu5TlszPNVJqVzTz21uYwjZ1E+rNsbWyS3eU8IgY+JWgxO9x/nI8e7I3fEVcYh8ePwAwfH0/Mg//9M/SjnFux8Zp5FpnJimHaUUHp9OLMvC5fmJ/T5CC+yCJ3q551xKN7BmA6uV7WjAK78t/f4lEN+EoaVSvWQxQhBjX1rpjIzOoGnGJHLENuhhE3CEjS+0Ceg2YI6BVGII5JIq1l7UAgEBhh1e/Y+qWTZhClgQIZkpq69WwMnAz16i0bTEdVNa1rZUazk8PBJISmbGE/TALgaQq4C01+DB+3bj6K6UWels1LrTh3YUYnOIOHUi1oPRY7o3upa8wlJuPUyKitzKWIlooGRUVwcC6C1oQ5D20yEG/TyZP2NDzWVW4FxLKnVCtskumS7rp7Y5Nzf3bAGCzV/w8u+UFmrzxIz2EHB4ZbXVsgpP92C+qDXxrpMFm/3P5rtp9rG2DVuBrpHknCP4AZyT4KJn603csoETsddxnPBeWEPjGHHeSUODYoWNaPbOEwctedSyQwGewPlKVaa4BCFF2AUpq40pa+mdATClkhZZz0UzkdSm2TFtga2lDyWb3yF71SNBvwuwH0aO44QrHp8iVMd8yVzPC/v9xDhExhqFCRCikaL7BK4+vjmswuRqOEpzKwNNHR8PRKevc7Kyc85UWs8QOoSZZjanJRV/vc7inI4DYRxwwdPagPMD/16P3TTI/aZKo1C8h+ogO8Zh4uHNK2lo8mHmNF95dXpNXWStSH9mWWfjbmQomee58P3HC41A/dMjjZG5eVLz5GvEM7KL8MXDgbf3e8Ypcvd2Io6eOS8seSY3x/kqdvc6Zy6XJE1ePr3nrgzcPUTePgxawmCaMWtWV3wDz/NSqBfRknQhkAjshsj9dGDwDh8Cl2Uml0ZdHGMcebg/Ctvx4Pj1N39JWhYMta21smQpmVPCHjSw2bq/v+f1Z5/RGjx+euRyvfLlV1/z5rNX5FJ4/+Ed//Df/hvL5crpwxO11l5O+/R44tOHb4HGGANDNJZlfXFWOPVf5WBLqWj5nZz1otuj50VV5kguXK+zgC5hJISh28UGoh/jg+z7KOs+qAirldh4L1o/MY4iSm7nvUZ4jnVfGIhTWyPlSmlS8jAd9gKmNsgp8eVXX/I//1//L9zd33N885bnxXwGMbYZCJapN4xoDByHwO4QubsfKbnwm+dveHr6T1zOF779w584n848Pz/z8cMTwxD5+ou3HA978ema2KTn05klLbSWqGWm1ML18sx8naXkt7MOhOG32+0Yjw9477l7WLrYs11WKVnZU7WDhdIIRlhosv2t858GjtwmfcTea8UBqufjkLPOeeIwkJNolpSURCfKOaZxwLmJcXcQNtvpxMfHD+RW+OHdD/z93/8vDMPA4f6OOESmace035NT4sf377leRNfp1cM9DhgH637lSEvufizqJzRNyBgjTDqRpu5XSCt1AUksQeuRZJ1H2Fo1J2W6VhYFu/p69E50XLV+wcbI2ULDStsR38aLvIAkF8wv5Ra4bMhsNWUQNfOPzP9Z4wDrzmxSBUE7okqSWjVo+vNaBwsaBh2pn4We7whAFb2n+ih7BPlAAcY1KeycNEmpKsnQxF9qKhzu1KfGAnZWoPkmFt/822xjw6oitKu1asoCZG2yJGsyEnzEDwMx1hVWcTAOo+h9Oa8d1jzWzbPVJg0XysKSZq7XC7UUSs0rimBrXZ1xc3nXX6qTVZvGiMqIqY3iJF4leZoXH9OanxiAA7pvNblJUQikNjBWoXXWs8/soJaxy7Wc2YAjBz7Kc62K0/vQS+trLVREWDs4h/PiZw6jgL6pSMl2UmZlLVkJeq4Pi/Pim9u6j0MQf6lYXCIyFt45hmjNeSo1r9p/xt439qSBP1b66DQJJ42xTGBf90Br+Cb+iQ+Ou2HHw3SkJEmatAanS+K6LOyniRCjdPj0vhN+fqL/xDq3Ta9B4kr7Wf3q1ojOEZFSOtQmLkuiudQ9VHEMS495WqmSjJhnYffGyDDsIHhaHWnul/lQvxhsiqY3oN0Bgnc0pfqJUR06xc6ycoac2650DhHiHoJk5Urj6ZL5/t1MSoW4G/FjoyVoRQzHbvDcHwL748irhyPjbuDxUlnqTMZxzY1M5bI0rgliq1wvV+YKLnv2w4ExOnx0smhr6x1oDJmNpVCWSipey7KEpRPHQASiZuRLzpyeT4BjmUWQMoTA4XAnJWyKzNZa4CJUSVrBNalTDS7QqmN/eMOrhy9FxJORMFw43j2wP+ylBCItPD898vT0xLOKmO+mCfbCqHr69JGaE3d3e9xhUhrtgJU84ByuCUjU6tYh0ZI3s0XG7nBSClJZ9WeaITgYuuu7E9YXOk40ppTFZGBTb9etWbJbKqqARBZUOufE4OlGtwC2Acsi3Q92hx3f/OobHl49cPdwjx/EOcy59o1uJRSGaXjv8aPHEdgfZTPk+wfK0jifzlCFwTNfE/P1R6p2fInBM44Du8OBnAuXy6WLayOjJYZNu6oZ1owxDFrtnWtkX0x6QG5FM+U9vPO9xvoGVaeB03bIHcBxyhwyq2IOVFvZQvreTUvF5Mrkf957otcuLMPItNuRcpKsSU7My8Knjx8YhoGUE+M4Mu0m9vs9pVTOpwtpkdbIMco6i94Tbc23ykajeHWQ1WFqZmzJK0igp3Rren9OHAnvG5322grFBAdvWFGKsFdd897hVFNrW1/PC2CngzO2ZjSouDHgrIa8YXo7Euw7Q++MfSJvpNHvdr8o9mRj0KPsF16AQUIdpHO6byTvaawtq+1uvnVAu2spNNPxMtjKDkG5fm+Ct3bjTXeNXcImQ7LNrrXtHjXgqrb1AFf20spCk99P08huv5PA4bBTdp+Uktqhnprsn7wJHG7HZ50v2+Pbv9q6dhiDiA5o21hIOUOj1rhS+hXxbnpWbd9UfmfvTf/Mitkn00taL8bGx3SSJLtvhcfofWm52WZdOq9nYbRSGXUkipS7rfevtf7OnGG5zlosiAKnjB0pb6zdIWy1iSaT2YVuX1b9JuuKaBvyFgTdVDJo8OOs120Th2oXB1lzOdIcXPOVlEUEdclJx8WrTgEYuOz6/W28YVZHSiUGWLOhlpW75UiVKq3Zm3P4JgmQdfLUNtKkpCIl7TYoAE6I/sUd/9s+ooIauXp8UaCyAU3OzHE3kV3mVM/M8ywdcAprRIOMV4zCgEnasTelxPUqZfZtmCAGSA7vRCftuN/x5v7IsIsc73eEwfN4fmYpS/fDUqnMqXLJhdFX6cIbF9zdnsMwEIMzBF1BSC298CqESmNIqjvjHRXx6sdxZFRNs1wKrSy45UQKibxkKTcbHHd3r7QrTiVruVVdZlwtqBIBoMGHc+yPr3h4/VbXdCAOF47He3a7HXOauVwvvP/wnrJk8nURJ9/J+ZfSzOnpE7UWHu7uuDsebyfKrX6O1xIHsCSlnV2rH7Q59ESDy844ZaPbCu6+mdOyT72XYRyJUQA9Yy6EEHsJsnzmWiS8DX5XBpXod2YDjONArJUSpJTueDzw9Tdfc3d/j99NzKVt9iC00sjVCUVcfyci3VJOc3ccccDD/MA8N54fn8lz5nF4ZL4usv5qI4bAbhqpiNh5zpnz5aKsZLFttWZyXliWa2dsOD0z7ZwPcU1W7PIeBwxeQqScpUNoKQWP6122TD+rabdZGfRNMpI+eN0GomBHbvY86craWiMoWJBTouREjJFxt8f7yDhNjOpDWUOY8/nMjz/+QBwix+uJYRyYdjt2+wM5Z56fnljmheg80yjd76IG2a2x3kdbbbKV/BQru2riQ5lf0e/G2POlUH0R8CiI3TAm2fZ7X0xIUqFrEup3Wa9bS+v6Mnc3Z5msf0v0rg8pTVujfCcl0h2dQXM8eq5h/srKDDYGxpaB3h83DswKppgmqHee4Jqe3bX7Bd6Lr+b96gP5umGHt4ZvWr7YWm8qsa6bdb+1m2sxUHqjVeYEcLOyc3C0yqrH6YJ2o24CuCDJBOccu/2ew+EglRZRgJ6cUy8jXvJMrVKuaCCrSVjcjtE6hutjnTtjlrIBo8yvEJ/N9SoVE9ntLMGg4MTWuTSfSk7dG59n9ap0/pX03Xzr+997fXmxKxQ72RPxfb14cK0zQdfS0PVLLrisY9GEde83UjfCbGr96gwXapvYdZVpEEacJOzaTZMZ80dNKqXbe1s+Nj7NVrnskNEP7IeRpTaSNkxIWTqIO+dJpSiLqFc7biKIzZ7c+LCyFtgw1sHiIIeU0W0raGqtCrY7os2XzWNtkjVwTVpmp6RJVnqVQmjbtfXnH7+8G51lH5XZFOPAq1cPxBiFYhVcb8uXU2ZZFq7XK0OM3YhuJwUniu/eVdUsWQEP72E3RiKOX33zwG++PjLuB45f7PGjp34/8zTLQOScSFVKMnxrBBy7YeAwedXsGPHRi5PsoDmlv2GC146SK3POXJdEWhbSkghVWvo1Y0Ooo1/KSp1zGlgMIeoYCchQasNPe83KVRUzdng34Fzg4dVrHj5/K07Tq3tySRyPe6bDjiVJVsyCbXNaTB8oZxnbWhKljuu4mqFr68ITTx/Z1ZXO2rCyP0OzrawlhKCMJCmLjCH0jJsZA/pBIMwGTJPFm1HSTbrR3tDBknlv2168MAABAABJREFUpnMiApvVVUKIHPYjVVJLpCLliufzlXm58vT0yPfffcvlcoYoB4jzXkrpnLaRdBtNHllo6wFhxtGBD45xN/D2y9fcv9rhB8ewm6BVxiCaXtNu4v7VPTlnTpcTKYvw4+n5iVwy58uZeV50vKSeOngIXtZArYVcpNZ/WWYFmzQ13QG7KowIZY746NQxUKNXqggRq8OxdvcRRxZtR2o5PwEc1iysRYgmYh5jZNhZx5iR43FPLokhBoJ3LNcr6XrGB8/5fCbGIJ1s7u5oTVqB1rp28TNjIw6xOUhs/G7tYrU5XwTIibdzBGLMNg+xjVquYZsN01UCbxk+fdRWCc2vpX1aStk2IGa7cc5WW+Sc5py8Hbybh7N1JSW4mOOhDowBSKvT0TbvbOCs17ltqhlUNte0AmjyKpnN4B2xeQrKUmprieH25y3wK7+/BYxrM2u7gnvb4MQ6KlpgL22E18DK+YArqleigCIehmHgfnrVNRrs+ZY9dc5pu+xCehKgtpQ182waA2kR5+lWgH1dK2ZzWZfVzz5uaM8KfHkTsrbDV8uyDSwUQGZ1nOSNdN20bXnlOs+2/kSzTj43azbajYHgRcHBgh6HrXlzXLwmO7KeHZE4KDAfxMuyVrdSP29ZRWhNRcBtPPoaWEsnc2s9a2o3FofAjrGXt0nmS7PQbj0Dt1TxzjwsW2dF/mj3DRC9YwqB1hzVSzZSHGwp0bpcpIOTO2hpNJKkMoaXjray7lp3TO3zhbWtLFhb99AbVwBEF9UO6lvI4Mi9ERjHFWhtqdB8ooqYEc5FYhi2Jurf9GHOYfQiC+Ca4/XDA/txx/NygeszMzPG/kspkVOihbABw9HAyQ762sGzZjajZgbv2B/3jGHi179+y29+/ZnYoR00X7n+cCY/LyQ8qXoyInbsWyUQmMaJ3W4U9l2ULj/NOrc5p6CjMZvENixLZllWIKA6tePaockCvZwLjoxzjjGu41+rZlBVd2VIM7lWKXkpYktF9y3w8OqBN2/Fh7p/eE3OC/cP93KdSQTNh+ghO5ZaaKWSs4j051SUVSx7xfR/ikUajh58Ox8IvQTDdR8pDgPmPznvGaZJ9/PAOIq49X5/ZBwmzaZbab10vvU+4IMkCGOU0sGtTe8sxFpJuXbfS6kEEszY+aR7ahcmKo7j4cj93QPX64Xz4xPn64WPj5/49ts/cXd65vDqFdPhIODWOHQ/1nsLHlsPpqse1EF9t6w+8bAb+fLrtzy8OjDtB6bDhMex30sHxWk3MR72pJR4Pj/jro15mTmdPlFy5nq5kJbEMAyEKXYb6BWIK9qYYZ5nrpeLBHvGTFG9TGHCqA/iB2lqQqM0SfBZJ9Et26EzwWuloJp40npTxlU/3zeomlBMyywdFHc7wvGut0rfHQ6UlAhONFCv5zMlLYQYuZxPxBg53t/z8KBnfhJNMBtv55z6UgIUWan79mFl8s4PSIKt4dCy9Zsgz908X0pxF0CS39LEwjP5cV1bbWODa5E16c3XX0XBczafszt3N9+dxW9t9UPt704TcY2iHYvBlKha7/S8ScW1pj1KmsRt6mdGF1YfpzPEzUesuo9XF8x7qb5wPdn+UyvvnPmI9eYM6CxHuE2+d5+gKa5ivtQG5GjCLpQ38no2G1tbDuthFMbjYX9UoKSs2ok5d9/ycj2LT9BWwFH8pcq8zKKFnK0q4qf+bb+ffr8/9aLMF7Q5MxMj9kVtgluTpy9f+/IzugfdFGjraAhQ17krrRlxBlfAV4ePntA23T40VsSSh1XA1uAj4zj0kt1+XZs5Eh+vUUtSH1DsQIie1qKUGo+BGsVfFB04Za27eusXOdffumiytWQV23dWymd+kQLeGx/TpBRkDSljT2PW6B2DJpFHLwmDpQiDPecqouG5ctiNxGkUX9LOph5LrpFIF8loWkZYb2OlDjPaeQyE5npXVQvhXFTfvjYGBexda9RFmPp+Eh/K41ctyn/l8cs1m4IdcnJj4zjyxdvPef2QWEphLtK2zzVpzztfZy7nM3mMIgTYX2sTomCTVzHs5qQ0qomjcNyN7Af427/5iv/5//ANbnRwhOIql/rMdx+gJQlc5iKT6xpEAsdp4P44st/tieOeEET0ubVG9bWLc1pmKZM4L4nzPHOdF9I805pjqIHaoVYNLkx0rqnOwBDZ7yZBpGPEBamF3+cqXdaMMuc9035PHAaOxzseHl5r96FIjKIflPMVzo2gXQecE1HF2qQcIiVx5q7zTMkLd8fdGtwryiS0ULUMLmhJiAY+1m1NAx3vpQRpGAbNYkWlcUtwEMzQrCkN+aaHuzFDzJE0UKrrDWzWz9YQWstIcWLAucC4uyfEkWGcaM5xvpz54ccfuFxPfPjwjt//7rfc3T9AcJQK4zRxuBfBMh+EYSNgtrtZa5u4SwzD4NgPE8e7L4HKmy/e8tWv/oL5euHdn37H9fTE/rjnsy9ek1Pm6fmRJc2cL5949+G9ijJK56xpHBl7JtIR1Vkygcxlnrler7LZm2h8hU0LZYldHdGZwK+xc+Q9UpLa/GWRcgLROfDKImrUmqkeBe9bZ2oIaKDU+nlmSQvTtONwOAqIdNjx8OqOUjPjGAkXx+npxOnpURMuAh6+enjFq9evpcXxIPc5jZE4jZ3B4UPAGWUdcSD6+Fs2thttT/AGkMh/JKumNOam96DOD6yOiXOi39YB2LZhc9VKo+KCUli142LOhaQGNyvotrLtbB2LM+Sb4+VZbcwh35D686qsENoaeNmpqMCNgR5emdPOBcn2A6FkWgudbmsMt96JpMm4WTMGh9i7bTdd9+IQXIEmdYjYMsDWbJsd2AYWiOadXLNosayt0sX5qOCK2gv9rppm427HF19+xW7aY15BzpmnpydSEmD2er1oVvuke2bRrj7r9cnetOPN9qjRgrc6AnYM2k/rRHWgToPEfgC3W3ZRKeosV3UEtFOXsRawO1Ewqq8+Pax98H39ldZE/LGIPW5UPJMw/hxIuYAAKtbF1bRtUi0q6hqIcc80iS6Id16DIbEtZu9l3is5h3V9Osc4SnBlWTdA2AkpawZLHNxhjIxjJKVCSpI5y6kxLxKATLvQ7bzXjL6xhUoRx18GUfeEToUDxhDYD1FYDGp/Z4JeLzw9X4hBWTvTqK3S5V4dTbPzTtgrG0fRaOry+VnAu6Zl13i8a/igWj/WIbRUcdT1IsUOOOIgY7Mk0QqqQLlcqUMkTjviFG7X37/hw2C2Icp5O4bK8PlAyYV3z58oj/Ic04ac55l5XohRbIalJp1v65drkrQIntqcsIJyZTfAm4cjx8nzt3/3Df/Tf/41mczjcmIuiQ/nD8zfXknVMzfILUAt+FqILrDf7TkeD+z2A3GcCF7PG+12aLorxmxuJOZ54XKd5bwqmeLEeZYtLj5NK5BKFhvjPdMkPoxpCIVhJAwTDSkVKa3im+iCBR/Y7Y7EOHK8P/Lqs9fCRB6ktC2XxJyutFYIUcRja8padlXxSQIT6RyWBPivYm/l2FnLfATQk/K/fjajYNO0Y9CmIibMvNuJbzft9twd76SzXBzwXpoB5CrULB+s821kGHeYsPLaKXMNDDroat2T9LyVazFmmXaKcp5pnPAhkpfM+Txzen7m2z/+C4+nZ3748Qf+6bf/yN3dPV9+8yse3rxhHEf2d+JD4Yd1Hxjontfzw1mJszbk2B12/OVf/wpP4/OvPueLb74izTOn9+9I1yv7w47Pvn7LMi/8+OEHeKrM84V3P/wo4IUCeyZ8LOymdZekLHbser5wenqWsuPBADEwPaIQvXS9dMrs76CcJvtmDc7npGUlmZQXWqsk36hFzsVYLQEmc11bpc5XWmssl4t0o1ZwdNrtOB4OHO7uKSlJyUyD09Mz8/UiPvUkTTA+e/uWlpSd0LU8nSZytYTNOVoruv42wMjGtgtYabe2dgn1GiNsy4CsLC0lK0u3jqmiFyssmdxBpFoyuVSG0QuLRs8C5xzLspbg2XVt2Wh25oJ0Ku2xfk8O6IndnDKZKihDRTLghiwAmnhoRSUpwjaBLaX4oejc1HXuSmeyqPAxFq9Kd7FcN3uKbSyinuoLx+/WR1n/3lnU/fdWziqsTdMKKk1qN4pXPwpx0p3zTLuJYRzZ7/d88cVXTONESuIb5Zw5nZ7JKXG9XjidzIc69/mSsvzb5OmLPN3tY3NrK5DNzXdYWZvOI4lb9S1DBx9dP3/MHbslNtjnWXG8Z63H3YxrWX3PaoBTlbUSosTCohWpb6skCPPhWxPZjkljbr/FJWyu9JpKKZKsqeIXlVIYxkBjJMTAMHlpHIMI62MAUTY2kzne67jlLGNVkvxsoGZwnua0RA55n4bGYdqBzyohvHO4UaQKRu/ZBSc61NGTgZydNGCj8Px8IcZACJ7dbtQkmhW8reCvybzZhZofl7PqVjXTrzNWrVsZU00jGitXBdUPlORoCLLWcs2Ua4JaqeOAHyphGInD/85gUw+ILNhqleAdNQSig+JEq6OzCvrFr4yHZgOhz3CWoVthP3qNglsD51wrrojmUXGVJTWWDEkn3kRTYROIbphAaMbP0NFcxSn1arSvszhK87KWeRhi/ZKqvKLDG4MEcjCEIE4T0EJDOhwKVdf7wLjfi0D6NBHHSNSWq8MQaIsYkqTZ/5suSbDelx3+eqjeBJ7iIa3fvYhDNy1P65OgY2UHim0sYyStSPafc8L/Owg5Np3tp89BDyZ3+zo7RL2XUoNpmkSIGqFIX69XPn76SMqZ+w8P+CGw2+8oCGNnv5+YpkHn34KHFdRYL2U1mLLRPOM0sj8IcOBjoDlHriKILcY9CVVV15LRkDuTRx/SZvOFuKdfA16bP+eLlJuxsicEfPMbQEEZN17oosEcDT2ga3W4GpSRIqBta01qr9WJM42kbbbU2tUL2ylr8LCtha8qpC3Z5JwSeUm0oJnVEKi1qzz29ccGYV9dj3Wd9CwBuqYMiHTgnKd2MebW18ZLeqpju6baZh2tJ2etkpGovmr5Wb35EnDIHCK3Eapc99rNnmO9Bv3/zT5suuh/SvG2rLTDBbt6+t58yUqyzIl9iO29nlXajOV/9+FeXsef+fnFtW7eACvFdd6D22Q5Fezzwwo8Om/2tyhAUVgzyplc8rqHyk+1gzYeyk/ur68my9z0dijrCtvaktVBv73dn07N1ra/sFNNkh64nw7lxh9ej6oXZwRV/KuX62FrRm1fW6mkZZdaM3D85Req27UCks5BjYGmuhlO39j1sVkZel73mN+IWb786vf2YokJI0ufo+UJtjadW5UobC/jTNZP7Y126zLtACeekk7u1uHffL5N/Ob+t9fj+oe9mCC9rr5mFEQWyG8NKqypiffiBDprFf3v8GjVgPjV8wzegwoO2/khZ1bbjMHLjbz56t2bbFFunqf/LLWSSiFVKZWbc2FJjZQbuTaq0yRgXxTmf1QFoIu6Mau+ijEgnZZAzEtiSYmUNmU6PxMAbBnSEnwUtTWy70IU/6jRIGi5cAvyFQLjficdZKeJOAzE4IlDIwZhDBojrNWG9dH9yT692TN2fsk+kTPT979ZYmItm7MF7LSEUAKBEFTc3ES+e2Jva8c2W+xm0a2gzvYcau3F3viZl/b1bXZFy26mcSANURJOKXG+XPj44QNLWhh2E6VVpv2OgpSsTfs94yhARO8Iy58/NnDiq3kP025kv9/hHTw7yLWQtBPgsizKaM2dZd3bs29KEW2svRdQvydcOmAhvg7V7I2BzWscYWT6bcMK732/1nXtmV6kNDCwLlpbmyiSACKk3V/X6N2xTGewbs+0DVu56j2WnEmLsOCDnpvUFR1YfXdP06Yi9n5mY4GfZZg409m5YTitr6/aOEiATPExzRu58e9tfyjjC+eont6soL0AwW7WZvvp56Jn2fYJL/0mk1gw9nt/hf7HKkqqVYX0M8p8qM2esn3c94v8XY6Abafa7VPazy7uPx/z/MzjhT9qeIx30oVSWJ8BOymdk66BUjYrQovCRF/F3q3ToAAFucsMdLZoXWPAP3tw/ysPG6rVD90wyP+7b7XGVW1z/zc/6/x51yDcHvPd39o6Hf2MX2Ns+ir9+YfFq06JIP182djL7je/sP03Q9f9Pzv/1tfKpd2ewf0cqetnbn3BlyNlXq3Egres9H4P0P2owLpezZexTr2liKSMxOk2pJtrXkd04zP/NDbpMdjPPCw22/68tTc0VmmGUmm+gC9rfd+/8vjFYNP5/Kyfp+1va8M0XWOIhHEkLYvQZ3dSf15KxefKdsXJZsrr4dBET6FkR/MJ5wKtJeZ6oebKb//wHSWfaSGQpoECfPv9M99+Jxu1eAmymy7W7Avn58pz8XwYFv40LcTgqU6Al1zE+NdWpRa7FE7LlffPz5znhfPpKvXOSh/FOQ2WBMnf7/d4NdqXyxO5jDgPwxA5HvYcXt1LaZkCDTlXimY29scjwziIcOpu0HKyTKqJp9MnvvvuT5xOJz5+eOR8Tixz0QNZ6qqzUiyHYaAFx6AivLIABxxeBOecOAtFHZ2csxBrcOIktoJ3EafCc06NIs73fViVLeLxneEhbHLXa+9tJVqdtZXQBF/E2YJ1QykA01wTZNIZ+FF1XUj72P3Osz+84fl55B/+wTEvM3/69o+8e/cjcRz48h//noc3D9zd3/PFV18y7XZ89dWXfPbZG6Zpz+vXb4nDSAzjilarca0bg7Zoxj6MkfvXB8JQ4TtPDo3v3n3Pv3z7B1kbzyeWJfH0+IlZy39CEATemXaOc+x3O+6OB8lu7g+Ao5UERfQJ5ussaz8VUtqyc1YHXLKcg2as1FHySCtnHK0NtCaOuJUAlL6eGzkV0Ywokrk1ttEQAw3H+XTicrkQx4lSK8/Pz5xPz8zzBVpjGkdx4rwamlaZLycRg6+TsN1cpUaHCxEQZpxHWUegYoNtey71g8AyZmoJxJC7imlPARv9qarrsPS1Zk5q0DptaxRHa5SSSHlGss+xM0WqsiZM76q1RtFgoza31mBvy9maOQ9yYPVsYZMs4La7iwVnsB5wYmckkC1FSoyck/I4rxo2FoXYvukZbOx5Dl8cdXRYG+nO4noZqG9OGtl/XrNvyhhRd93htITY0bOo/bhzGrhZ97hBOj/pxnfOsb/bszvscDhyncnnmfPpzOl0wsRaS63KbLpqCYgKkjbp5NPYHPB6eMEtw0hvRG9x69Dpveje6J1Z3Gp/Uk69fDDnSlQQPcagYygldTlLJnL9OAUqdLxaH9gVGOx6a1neu9ZKTTJ+NTlyBO/XPd2D7oY68Y0Yg7TDHgLjJImGlEUDTrK1a+vdWsRYzXVhUeZaYy3HrNPAMAwMQ+zzHmOU9dg00FBHR4BBCZRqaVBVcDzJfXkHPphQgmY1o9fSFNOIghgb4whj8AzOCyOgiX5bBZbBUwhyvtZKro3T5Qq+MQ0jw/2gWnWVlrUE0YWudyjJqkptot8jrCY6+Gf7/SfrBaesD3BBVEdbbZRkdrIo86nhzjM1ZMqccXHm3+txPp0AK8200vqIQ9gd+8Oekque63JGmuBo3dim1rtQZbzPVJdo9arBpZz9KRceTzPXa+Mf/vFbTucLuTWeUiPVyvc/nHn3AZoHt2u40AR4q4mSKqfTRx79GVcGKMJ2xgmTOefErKwP2QeNT5cr33185nkWJkRQBkpJiVy9JCnQBiKjtI3POfP4+IiPgbibcDEwHva8+uxtB8l6Z8bcVB/znnEYGcYobbmBVGdSyTw+fuL7777l+fmZy3OCPEHOlOK7aKr5KOM44lpliFFZEJJBb0g2X3628wz1UYWlUKsAwHEIDFoyZ+BXCFHWXavUmlbbIcYesWOV1jKtzWyZTdtH97kc2tFzo53SVkaFJTsdEGgEVznuI1+8vWeIlZRn3n38wGWeeffuHeM48ubztxzv77h/eOCrX33Nbr/j8y++4vWbz9hNe169fsMwjHrOamfAbUmMJm1yc/gKcRq5f32Pf3Zcy8LH8xMfzo/8859+T8mZDx/ecz2fuZyfldVUCXFYx1kDt+PxyGF/EMa/Ao7X04n5cqG2TC1X8iYw3waaHTT0jhiHriPqvSfiifupz0NrB6BRcqLLU6SsbKCibIRMTuYH08sMP338iA/PnK9X9s+fOD09c72cKGkhekfY7eSsj0FAjrTw9OmTaFntd8QYiA0YRiAQBll3zkDOFw+3PetXISpZm0WYyLVVLZ+28038FYsXOjjlHTGHPi7BC1u2yAHVk0KWtHDOKcNUy9S6hpiAaLI+FQjUsr2XYILXiL+UonIQrUtBmDSEnbWtWXJEjrA5ZVwWjZkhrGzVoLp7xuq2pnO1aRDsBGhuzuFrVdb2C3KAuajOusK2Dnr137W1nK7Ph3MCRDYNzdTHjmEQHQ2Np/COEMa+d52C04e7A/vDnlorj0+fKLUwXy8s14s07rAyuXlmvl7lHC0mOL5dH8qgqWuZlozi6ruIT2Px9wowOLfujXEcbwD02lQPasvy1P0v4736AubXG1jWxwTBBETTk3VN0rq4O/2KnFQMOLGpJanO0yYJV7Iw4bzzuOA0/pJxlYqPpr6z05hT94cPhCAATSsyv1Ftmth800RTkFXvTT5X5qC1taGNSZuUorIaVRZSzgVXq/r2rHPlRKdZC1lEY7hKU4BpjEwxMDiPL5WhyVlccOQYev3EvCScg9M54AMMIXK3PxB86GVyMt46pxttZWkwJNUxnlUDra+gXlFh5ayuxyaWABJ7qf5orpTUJKl8nsXPigni/85g07yYU6Z9wJqDKo6S9x43DozjKB0/VNDMHObuFm7QbXGExWyaeCC1CMWySTa8ucL7j09QF6qPLMOO4jwfPy18ehIHetg3XDDWlXxeWgqzg9O58fgkTkrzkea8ah7N1FK4Xi+knLgsMx8vZ64psyxZkWjt7LMJBgGhwAtKxpKkS1nKk572nmE/SWYrSmlUToVlEbBpd3cQVDs4YlT0sYjGwnW58Pj4iefnE+fLVTux1Q7kmMNMk/vBrwegaAZJJi2GSPBDd0AsMDZQqNVKNcOOsZv8xuDoODY0u1OlDE83sERSYPXSGDKuhsgyDBLAOPCy+U3QuGfiWgPLlLZGq0KRHMeJ3eEACHOulML5LAGt844PTz9yvD/w6vUrHp9/rYZ7prXE3d0Dh+NRxHdDwPvhFnVWY9gRdoRKOA2BXAZcdBTXeDo98/7H72W8FcW+KtOptUYIqwaDBbYxSh1/HAbGaQIc8zCShgFaYdZN20W8bT43DxFZFxacGUXnV2qz1OrLwzJDJWcWzQAvTkpwXMpiiHQuvJfg4zzPtAan52dCCJzPZ23Hm6BJIAyyr5ye+DnNtCrZW0ejFk+tw4bOLkh8sLSOwpVO537d93acKdjUHDgxvrVrj2hAow6BCN2te2/VwpGAwA4Xe27Oog9US+lOkQXoN1bWHPTa/3kDNvX5YD3wts5R/25gE5u31zEXQKupndRszKAZYx2z7iyzfr/JPAQn9dTOqNt13YN2rdsUygZw6sDMzdG+PnFLwRXHJGhp14RznmGcBKx1Agw67zgejxzvj0Ltfn4ip8zz6YlPHz/dAHbLsnDVg9oOMseaybHOig5ofvOzAkqbbrkdlLNf2Dgb2LRlEtaq3ZheMKi2zE/b+6axIEvOxmIdLftoNp+6AmNG42+0qvNY1FFpDueEISjsinUNgegcDeOg4uBBtKWylq4pxdy65HVhb9Vxsv851aPxXgRFbXnbOdBkQ8iVb0owtxl88wo7aNOFgV0vL3X6foCI97dGjKIhFUIQiLKqOplWmw/BMTRPLk2Yx62xLJkQkEy5ruFmDqpby6+3X31PbudjM/96pG0XSl8HJirX+mfpfddKLY6yZFxoIozg03ai/00fyyw+lMyiaLcMMSjQJ1oewzirBoTatrYB4u3L9r+rwlijKHjhlJkquoGXeSG5yg8/fiKnhdw8pxLJzfHpKfF8Bh9hGqSbqhhj0VZZ5ivXIRP9wBCygE1BfKiUZi7XE6WITlPJled54fH5zGURDRGvdrBW1cbRteydlOjHECmlavJjwI2RgIDdu+NRAgljP5RKTXIu7u/2vdTfBzmjBEhcuF4vPD4+8vz0TJozrknX1F7CUNc9LMkRv9HH9OAMaI8dZJFuqA2qozrRq5Dkhaw5KYuPIsgdB6yRxI1OhoKofT5rVbNWcE60Rregufl7YrvWwLAzdRpd+299SEmlpzENAY4TyzJSigh0X84X3r97R/Cehx9fsT8eePPZG67LicPx0O308e6ew/Go0gDGtnYbo7yeV1UBqBACu/3EkmZSzZwX6fh7Pp0EyFmuwvBJS0+WuL7vV5mKaZw4HA7EIIB8a01jioGcmwZ6uX81TSZtjYScXaOUMQ4DIUwCUmw0sWy71zLI+sxFdQQr3ifp4JmBlqnVMej1lgqXy1Ub+1RSWbieL2Tt8BaDJHtlnjThUArz5UKJUk7vGah67ZLE8d23WplXN9Oq/pN2KF2jfCnkb2viq5fB9N/dsgxlS8p5OcSBGKL8Xt9XAm8Fkfq5hc6zDbB8vL3vCjaVDiSuc7FRZ6rGyqn9Z+t+Kw85qGqjdykVdpiwnKThkSOEQbAIleJYfQxhjFV1IExjuGFnWO1+GWz8DUcXFTfA6SXzfPvYRLNb+AbRu1I9tkG12IZpBYr1XD0ejuzvDlKt8fhJQKXLmfly3syB+FBrYyK9J+S87+FMU50qbq/Rrtv8qvV8E//P7i+E0EFlO11LzSRtm97jpO3L2+p+mo+yTZTqhyugLp9nvpb59c2eIwZRvEN9v1K0wZI4wn29W2zp9JwPPoCTxJ/pt9lcdB/Rykxd69/Fp9mC9pVWRSOua0yp75a7qP5aomoNWGwSBHyrXT9t62uu7KDugFFdk6RujAIQoT5UW5sFDMExIB2+kwJtc0qMs4ehUXciP1P17HPOgeouu83/Vp9c8Tu9P6fjaXuzI4dO2XjObdYMfY81TYKSq2g3BU8rGRI3z/9zj18MNn388AGAXBZyvhJ8ZDe9IoYRVxZogcvlmevlyvUyC5sHT3DamcSxlm2BIPa1YFnY1hy+SW0hTZkzLXOeC/HcqB7KEKgusCxWQoBmj4Qd4WhEHIdh4GEXOAwDg5NraF7Su8IWCZQGNQy4CiVUhhDJxTQppPStFtHMKEumXDMhDOx395JNjmPPsLSaaNXJ95aE/VBEnM+5oA6lo+WFXDOpZc5VheDyTGuZj+8+8PTxE8uc+PzNZ9wfX/Hu1StcrVwvF67XM2m+KrNC7tcCHhdQDaZADIO22229Ll6QXGUdhdgdmHWBbIKsn8SmdvopEND/qPTmDlZp2Q+ub+bejtqxZuVYA6+tGE1ZrpTUmC9nnh8fOZ0vUOGwOxLDgPOR5hohjLTquF4S73/8wDg+U1Ph3fc/cnd3z7sf3rPf73n7+Zd89uZzQhzY749Cd0f1d0AbKzSen594enzkfD7x8fEj5+tZuygF3ZzqJFsWzkAzJ0hx0MB+ma88P8EwjTImXpkSKgjaalNBNQSYw4F1xNg4Sx300FJQ5xzJ6v0xwbwNrVqZT601nI+ScR2rlHPWKhpkaaG5QsiyZpYl8/h4Ii0L3kXGYUfzli03gcfWafnSAar1fdFKpTp1GLRbQs9E0PqYrWBO605+q2vNOVjgayU+tQsyr2i7iSvq+1YlxuXV6bVsvy3gUgtGnJYgwtby6uybAbb3WDsNtQ5u3OiWqzPSs2NGOTfnGzrzb7ujKnKGCatPxfic621M0ZfIOOtdunULBtlics9Oz30VwbbDce08iLbxlXID7x21rmtYPuvWc3DOqbbdjhAG4rDrQB1OS3CyZH1Ppyeu81kc6HnWTFzCyk+CFyA5xsikB504oEUHn/XG+j3qdXkZrL4fNiCQd47oRNMjxKFn3MdpWoM0tMuLD5RatJxm0ayWo2ZHqw7fArQq3NRO4dfLMwTDe3z0/Q/NnHE9pEuV7h12OMsleyzu8W1lKvb72zgd4nCLULFzULLsKXRNBtUwjFEYaiULOGEgjQHg0DTzmfAt9Owx5uj1M0A+q4tts2aQ+7a25zrROXJq+6zMwVhhwmQUJ8k36dzjmnTTad4xekfxkJqnqLB1rTDPBUfifL0qiF9wVUqogpOmARjY3INtQEFbB3iq6EJa6Qy3SwqzBVm2hjm4gLSSH7WhRpPgeQ07/n0e7z68A1ovJRqGgVcPnzGOE9frmafzR05PJ5brrBoTm6y6gYDOWIqmB5nBgMrawGudkTqHlcrlCiE6Co4rkdIcOUcBY6qjFdGyHFojAqNzHIfI/Tiwj4HhBgiU8766QPWy/nNwLH7VD5Pcga7PWkXPKzda9vhhZH94YBxGwhBJNavgRMERqGUhzc/gRG+lNgjeBLQb83xiWU4aDMkZmeazMkgemZ/PtFT41Vff8PrVZwKwRMf1ciUtZ3KexR7Vinfr/nDeM4yqwxQEPJIzTD7HuQJO/DhjMJkv5bAscoXmKJSfBKzbwMO6zHkfdL8NP9G7tLJK+dn+tmasq5dmHTgRmW21cnl+pJbM5Xrh+fTM45NUI9zdPch1KNgn7KvK9Xzhh+++ZxxH5vPC93/6nvuHez69/8B+f+Dt27e8fv1Gyuwm6S7aaYZNul+W1vjw4QPv3r3nfDrzdHomlSTJFq/BlI/SyNACGVZ2st03NC7nE61mxnHk7u6oBqoSgxdQvzZhkjSJJSSR6VcfQE1Ibco8wIA9R9poz1jzCPNXnUMBRvDqQ5WSCKqV1q4zzWcojZzUHubGckmUDON4xLtJwT7Zs95rudpGwFiaM5h8gcQtouG4lh83ZO9Y4gX1R6rGROKrqKKgJSH0LJDkrtP3c7RmZXarv9OqlMZ2q9c27B31a8DsqqxZfyMHUW9APgMzejkhL32j1a/qZXSdEd5WA65Br/jm9ktlozs5D0W/qlBi6wG1OQtSKi7SKN2uNznnTKZCAFIRNW5WJmjIsTP2qF2vJabsvldn0Bkg0fe253A8ME77ldnk9PXI3kw5ie/QFp4vj+SUuV5OwqgrebXrCgB2cKY21f9ZR2V77qE2V3zbPhwd0LVGTcagFHsyCjsoRHa7nTK75PWlZCoiNSO6iPKetThdP76XCRb1DeQ8VYiwx4ubzrC32cNttKnA1OqL1NpUn7FpLwSzm3IhDSkpm+dF97dUWsme02XkvNphqMpaCzGq/pMwU10B8HgXpYtnFl2lqKXQIrsj665V2e8vG8qITW8deFt/v9Urs6UubFc503phJb4ZF1lsRQXxoZr8PZfYG/dcZwG/p2GhxtL3UPczN66MEEZW27BG8a1P0zYS6D9U2z862k3v0weGXSBO4g8Xp/sXpc3/gscvBpv+9Mc/0mhcLyfOlyemccdXX/4V+/0dDJU2Fx4fn3h6fOL0dCHNieCkPbIE9pKZMrTRURGvMEBTVLEVXCtQM6Us1FZ4PGcuS5UZGQeaH8hplrK2lnCl4shEhEI8MvDmsOOL+4njzrPzQY2wCFnmBj5UqguEApkIzXGJmVq9lF20StP2rI1GugwswXM4jDy8ectut2ea9pphgVoWqm/UcqWUCwBJO//s9/ccDw/6uzOpFK6XE8/Pj9SaKflKrZnHj0/8+Kd3eBf4zd/+R7746ld8//13vHq45+nxkX/4X/+e3//+A61lBSFUbC1XoZnGUZ0WcYRqazSlBtOXGyvYFEIvl1qX4Vq7qyx/aKuj1G7AJq/AkomZm4CzdFgzkCLEVZzQgtKq1L4QA6Oi6efTE8ty5XpdeD5dWJYCGd7cf8ZSM1NelM0jjvrp6cLzp2dojX/if4NWubu74+tf/4rD4cj/+F/+C3/zd/8Dx7s7vvnVX7Ib9t2xaHp7pVbev/+O//q//gPLPPP49Cjd41LF+UhwTemSjRgiwxCptUqGykm5U9CfT6cnLqdH9oeDMAxi7IKnJYtyf8tFtJ18oLlGcZtA1lgTSjHO0LMKTofcSuu8d+x2E8MgbJRpEICrNgFhJcgXwxZOwpRzSyJl6QR0Pi98+nSVuNqN7MYR03OS0Uk47XJkhtM3xPEuhZKSdCbImeY9zQVtxUcHjLa2b+28Vig5bYAk0XEx6ue2pr81QfQtsJSDaO3YUbIMiruJOsUA5rxgtO84xPV4a3SArAfjespWPcioq15a0xI8W7/YnNj3LfPCWZbRNBFWa57VuocqDKHoPWO0jNcaOLvg+ri1Jsd11Frv6p10pnPrce2aN4yvO0W5GcNw1TvoGapml2pZpYoP0tnp/uENYRiZpgPOeS6XM/NyZUkL+XShlMSH9ycul7M6ERZIeZwLmOa/OPGSOS2lcL1cEBzFnMntmjYgxmyUOjx6oRZ4Bc1Sex/Y7fYMwyS2YxSwqer91VoYZ8kyn88Xzu0sjJvspXurCwLeVRX4xvQ6dL6dlmnGiPMCbuVWewbZmKWmkoNz+Djo+ENKEFojROUguq2oq84T6qjnxjKnXvZqmUFJhpi9lKxgK5qFqlUZPSsYW5sI3jrnpXulBVmK3OVUyKmRUiYnAbUcdGq3rYuijL21q6j8zVhiKUt5SfBRkkgo2FTk/IlB1sShOQKOxTlq8+Qqr13mRM6NIT4zDIEheIbgCASiGzrtnL6ela6v7DNP005pFlz0bad7W+6jIbT2osChU/Bwd9gzThMlFZbnq9oA/+8KNv3uj/9MA/K8kOaF/f7Ab/4qcHf3wNPTR969/5bz84Xz80kD2YKVNVvnT+/UUW3gaoGaaCV3mj8B6RRXMy1nSqs8PVfOCzTvKWGgOU9JI9QRa5eOa3hX2TnHMXje7EY+P46E6Bg2AvLOOaLzBBeo3jFGT/aNlKtS+Z0AkEVseG4iRVDmA3UIhLjj4dUX7Pd74jhxzTMtVBp7vCvkdOJyCuAgabOCw+GB3f1rWq2cnt+xzFfSskiZSSnky4WyJJbLwuXpSgiR//w//EfefvkF//z73xEmz6dPH/njH37Pjz884VohUBRglvM9RMdBmckuSKMXW/e1NUIuxCiM2WGUjnhxGIXN4CSAIVea14DJOWWea4cuC4hV58n5IKwH7xnHiTiOAmSF1eatHez8GpBh2XjZr3GIhGEgzVfef/cDz08f+fT4yPc//sh1lk5Mbz//qgcmjSY+Z048ffrEx/cfgNYBsFevX/Gbv/4Nd/f3/Kf/9D/y13/zdxwOB3ZffsUQVJPVC+vkMgsr+ne/+2f+P3//913TsrOyYsTXSigNnMeHRdqlN5GdGIdRErFeIuWnx498+lg4Ho/4IEkLqIxDoFVhrrRclNlgoYvTGEl0bqDJfqCRE8xqGkAMRQhr9+X9bscwRKTRzw45GaVBSy6JeVFgPF5o15mUCrmI0HiaG8tVyiAPhzc45yh5oeYFqHgK0ihCAf4m5WMg/kkuVxqBUjw+NGgB7+SerDzGvPKGdhVWRlDOSddU6xi9JXXRRIcATUHPG9cZZaWkDnqlZb7Z1wZQN+g+UIyDNlGg2xhhe6Qbn8KAEfHPkpTZGWmA1kHGjtKs/1K7bZ9bO+hj4uiFRlLwJJemDYGEFSrkBfGDqneErgWlPpTuqerbTQBuzJ/amrB2MUWrzf2of7iWG7UO5ijkpAzAyMObVzy8ftN9mNoa18uVZZlZlsx1lhLS64eZWcc9GBPFWeMcjZEaiCSKp5bCcl06QGiekl2Gk4tQu0C/AwPEjPntQ2AcBViapgPDMHV9XO+9MqsLuRTCGGR9aAfhVleNrdY83o00LXUX4N7AJrsgA/ecbbv1mtgMIXQQ3cY3p4b3wvr1zSGKMK4/V/ZP5vx8URxK/KAYPcOoovVNWKtO12xzaydh3JpYdjUQGCk1sVxn2XM7rcxyQPW0AiVDTq2fFei6MkJBj29a60neEIKFI30t5VLItVCb7xpNAUdollR2cn4gYzKXQK6OUhspSTnfOIg0xBgjY5Q9IAtm2Gwmva6mTYCakByspNUeVrnRU+bm7yFlsqVKfBAHKXmeppE4jOSUOJ/OIinTnHqD//rjF4NN64CJCKN3odcDpmUh5SvX80UMut/QY9u6+FesT+fd8DPTMNjwnZ11e1K9ElwzGQqrENC3b/J8JxMXvWOKgd0UmQYvnaD8+oWKmldXIUaC8ywtExavi75tDE1dDUzzxDBwd3/P4XBkt993odxaCsUJTf56udBaY1FHiOYZo9SLL/NMKZnr5cz5+UmYUUWYTWmeJRCIgd204/7+jsv1zKtXr3AOhnFtWarWuYMUTdFH0/rpKLnzSNe/je6SM7r2qgmwGs/ta833d/1vbYN8bAV0X5ZArBnQ278Z5fMmy+e8osdF6+QTaVk0MIns94FQM1Rh6szLRSjVJZNVl6hmYZPR4OnxkZILT4+PPD090pCMGa0xDgPjMFKaMDJyKVwuF06nZ6WtzqLTVcxK0Md7W5ZjGZz13uWQLFo7X0rGaCrWVdDM67r+nQTZahh6N7Ht4W3XoOhDM9RFyyRKEZMqgExlK+gsiT9HZ55pxrYhOgvOSWnEoKCHgU3C9hDgFyq49ZDrmRYzrJtsj43Htuxja2y3dmTdvS8fawZjc7Lap6/7/eZT1apsQSDWOdqWoOgTNkCTOkj6Th0QMYell9ZtRPnai/eBnrjpNoPV3vWRaYBqoElZiZYEemNu2WG63sM6KhvHYuPs+NakVHI7gnp4S6y9ofDqG7m2gmD0/dmwNur0e1cR+bIKu+Ysth9cX9OmQ8XmbS3rTGvSpcN7ZVncGA2ZZidZRMnMWInt9l58B5tCCMQoOkVSqqyaTRsGi2XKLWu+Zp6ge+ZtOz82qa5nlG/2nU3wxmno129j2O+8bZ67mbybmVzfxwS011KC9b63IJVTI72yWjZv11BGUu3AmTMxMyeOkDBpVhBVXmovXo/pvux+Zs8aBR7W0kMbQQGM5afgHNEJuyl4zVlUsfutilaWMAAUdN+O0w3YtL3WzVdrff33YdjahJ+ZJ9fWLK/39WYM1735b/8wh918qBiTCMDWzDIvnE9nrpcZmjAtvDMwdFOy4rY+1DphHcDXwNbpZFqJTFEyQbGkUWd3rb6OdzB4x6Cl5dMQuw6FJCa0c5b34kNVh4ueUBuDlVz1gZVrqSpFIOVCA+M4cX9/z+FwYNrRA42SM8kLQzicJUhesgiTexeYpgO1Fik5mS/ia50vtFLI8yzAWrJAwHM47Hl4eODh4Z67uztyTsQYqbVpUNl0q27srAKtq2C5EyCgNsmJmp/VW8T7vjd/7vHzfpFb944lXo2xtgEUu4ZZf+4651aWQwcB5e8pLSzzhXm+sswzOReGYeR4NKa7AAXXS6YqaLLMC2uSR6QZnp+egMbT0yPPj5+otXD/8IBzEAcRP69VZCjm68zpdOL5+ZmiLGfnXJcX6mer7cu6nr1u02TEOQWM8nreWLMhY8m/HFv96Wast3YKLFbY+FbOKeNaGNC+eJwv6jv5zZmoWqaACwIMxuYZRk8oJv1QtfRc2MAlB0rW5HmVUqTalDGuLspagl80WL0xunrlG/u1eiZ/5tFWO3xjG8A+9CeuFOKv1s3Y49wNE7S9uJY+thsQxg6On/h0W/+qqV/Bi33y8oY2htjYVdWtPk9D7HzprK9KqKt20816cCj5rt2eHdz6WG57NmBlRS99qJ++5vayW78tG6tqPnJdSz7tK+dETovs+WCakyB6duu8mS2iNdX29atvq/fSug9ltqk7h/0+TLvMkuXeB2lSpf6U+VDafhePyrQgAFNxEnSv5ff93bsNkxjztuoFXHer7Nk3QBhwu1jX94XV37Lywe2CabWp9qjZEAHB3Mu33cydU5+hy7Zs1vBqmzY/99/Ty6+NkNdvbLuc2+3P678VsOwxo3x5O0/XkRR70JTEoGV1Qc/rilZ9VCknzmTpaIqWVfa94rpu7jaGXHeH+dduMzcvNuMmRrJ7FdO5wVJuZvqXPX4x2PT555/TWsN/gGW5KotGgqV3333P7/7lt+Tc2Mcdf/Wrv+L1/StSnsEVCQC0DMgMozfWBJlWZ2rN+DLQXCS0RPQJT8bHhIuZ5jPFZdUbKlqaIa0NXUkcp4FX08Cb/cTXn7/i12+PxFgZR6WMGso6RlodZXg94Bw/Pj1yqmeWlnFOUfuSqDkBEPzIfnzg66/+gv/n/+v/zmefv2Uuzyz1zHK58uG771muV969/0D859+Tc+Lx8RNpWfj8i6/46ptfqyiqiAs/P33i4/sfaa1y2A2K0A/cHe6Ypj1v3rzi7WeviAM0LyKav//Db+GfHBRjH0m9ZkqZEEoPzPomR5hG1cZeqQcm8hdiUBFDr+i36AQN0dhJami9tdvVdahziFsFwLGF+MKZ6pt9GzyBvF8IPVSx+uBajA4ZmSbPr16/IQx7ioPsG0tK/OEPv+P9+x+ZqzDFqjICHIGS4XKaqRn++bf/zNPzM4fjkT/9yx/ZHw789V/9hr/+D3/FcrnyT7/7HZ+envjDv/wLf/zjHzesBaCYU6T8rQbn+crpdKbVyjgMognVwE/jJrgWKu7leiWkxDgdmMaJlqUbSd04shI4WXX6CnjY+2wdhzVD0Mil4Wqjnme8n7FSKuc8Ydzj4yhHcZMSnJQhFXB+4O7VKOsDCTacczgNzlvRbGktApTWTE4LKYuweV7kd81VfCz6GWLFahPU3iHicdI1Zg2StiUC4zjpXVXseDfg0oBS018y3YFS2ksL3p0fE53cOj3OrZonkrVfD7ptcNuauXIoG+vWGe6gQAed6O9h+lv9vaA/F1Znzft1XxrAVBwUbcM9qJaDBTGgVOYOItPfJwQTrdQDMYQeVJqjaC1/vWrwVA34zCGxwzS4wOhGcI7n50+crye9CbEfS0okrVnP6lznnLtWwmrHXxw2uuejj1TvmabGEIsEQmnR+WHzIu3AY6287aadYxgG4jCwmyYeHu43opNBA0EhIDctL+iMAO87PbzUwjJfSEvWzxXnPGjJsYjOy+ulTa6slxyEkdEUuDFtJvP0nN2s3UXwch46FUM18Qld09a6ehUptnp7CNETotplFa9MFOmti4jNCnuidjvq/aqzIBR3R1oyacmE4Bn3om2R8sLpeSbnyjKLmKZ1wqOtDnbTPJdr2kSiS1SuazwEKemJITKEoF/SkCJ6ZRA2JNNcG7kWBu8ILvYua9frwjzDYT8pm6l151qcVxncqmVJTZ3tLv9mG7CaB/VyJrS0RqerqjZKThnnEy2bvoN6kfWXukr//z8+++wzWms8f3riKVW8d6TlwuUC33/7Lf/w9/8NqueLu6/44tXXPLx64DpfCFnXew+6de/5hg/a4bQlnUwj6GfGmKRUTP2n6hxaP6B7ptBKpi0LvhSmu4m3d3s+vxv5/M0dn3+2UyAi35yFLY60SVkYzolP9snzx9MjIenaaQJOX5crgw8cdke++uJX/OovvuH/8f/+v/H6swfeffiODx+/J6WFdz/+SM5JdSSlNfvz+UTKma+++RW//su/orXK86f3AjZdrlyeTzhgN0rzimk6cv/qM3a7Pa/fvOLNZw9c0xf8zd/+NR8/vubHH76n/uH3SBmtQN+1yD4MddXhMM/dgejWIULtJQoTN0Y587c6QNaJToDxraC3U91FdbUt+NHstwFNMinyHzlLavfj7HsPppxjnKYVRHAS2J4vjzw+vmdZskg9jDteffU5YboTbcclkZaZf/n9P/P+XaJLMWxKQEqunE8Xam38r//1v/LHP/4Lrx5e8Td/97fc39/zxZdf8sUXX/L09MT/8r/8f/nw4QPfff8DP/74HlqTUsSgpbZOguWiAruX65XnkyT+Yoha0hdUX9OrTy925zpfiVlsxrTb0VoRpofZU+e6Oe7xk46vd8JYXLVGLXiVgLxo4Hg6zTgW9Q/Ehxp3e+IwiKh00ZKXYcfOj4QwsBuPa+m27sXqJInXcqbmTMlJNQ0Ty3JlXiS+SflKzRkXMmFcGGpjvy+ANHWw8ri1Q7DaKJ1zWWPG+Gq9HFSWgIxA8OZDFcG7miUHf6pJaX7OUvLq+0pUycqsFTKBuukd8OhyEAaAbIL0zTLHdfCvf2gvRVrj8bVI7LZRy0aHR+c76ZmYvSOnjHeOcZDO3sIC9Xo9azmQHCkbn1oD/Ybq3qofaHEIweOINO20KX6xJPb6fcpla/zjeP/+Bz4+vr85t7KygbdstKbaXh3k+1kYUVj5fhjEx6v00uuU02aO1rNZqpo6fQNjuO12O0myjyOHuzutbFFtKWWgO6dailrOZ00TLI7LpZCWRM6ZDpCrf+aAXERqoe9HJz74zS+2qBgWF744t7WzZ2sqiVCrCLxXi1VQH2rVfZYku6z7VoURa5Uz1klyM6wqFl+o1ZFSIYYiouTq36UlaZMWsYW1SuOlvJSukdQ0+eDbqgvbJ0I/p2h2x/Zfaw1cxXn1o7z4T1H9KHD4JsDR5PR88I3cpBpLmq2ITublkljUdRpikCq2LeCq12N6U1Y+7W8uVvdhDzI3d+BMNF9+Lq3iqrDjG5IYMh9KutPdag//uccvBpvu7u9prXG+PKs+UFSUq/H0+Mjv/ul3BBf59Vd/y8Nnn3Hc7yhFus45b0SrDSLmmgRErtJa0jrfLIJTLhN9JrgCQb6q0y54xoJCKZ8lQ82EKXKIkbtp5PXdgTevj3hXcD7JSGYZGMsCOe8IY8QHTyIxfgzEpGVetdBU/0KytpEhHnj1+jP+0//4H/n611/z/Yc/8eOn73n6+Ik//fOVp4+fxCEphWWZeffuR+b5yvOvn6gp48Paienp00fe//g9jsabV3ccdjt2+wfuX7/hsD9yPB443u1xEaqvHO4OHKyG3QxUW4XZhHIrB8QG5lbBsNuHU8DDOqAY68mCNAsKtBlOf749xJCtivcvgP4OLvXZ3m4C/fu2BhzAa7s4C9SF9jnw5rM3HO5e04KnDYHrPPPp8SOPj48kl6S2Plc9YIXKvszS1emH73/g8fmR/X7P6fmJw+HIm7s73F/8BXm+8v233/LDu/d8+8MPfHj/noaIv68CnHp4OxnDJSfmWQQuXQNio4S4uT8Hmn1YtNXtOB6IUUobbzKm62hsdsX6u/Up9r6m0SNgDrVpNxChNbcidbvjwREnaASakzK+XEXIM4bAbrdTev6A12vH6KXVOg5kLqczOWXm+UK9BiiJuc0SqJZGKhUXajdGjY2OQDMRyNrBQwMBbK3J/W1q+rfz7qzdrmk7OQwS+omzxGpQ5bPl7zHqXoAurH2zRvtPrb/uBsl/AV7dMCU2/+5Z1HYLNrWb19pa3zj0NLI6bA4RsZUsk6ylUl6cABjAcKsjYAdDY71HYwrUJno6NrYrcCbvZw5DbZXr9UTWTmV5FrZg1kNSPDPVJrnRjKE7Iy8fW5Ylw0D1Xkq0UnrxRLtNh8YlWJti50TLZBgGpt2Ou7s7ZSYYbVmuorHS3M22tNa07M6TUmK+Xm4ELL13Iuqrh7z47FWXYgPtomolIzZ93ZHezEk/pLtdW0snzAt03m+YoCuTxKCeoUV8HHWOvTIn1rk3Oy4AqwBO5uRumVQlV3IqN9dTSuN61XK9pA6GYdxYTsuuVUthq9bkb8Amr903DfQMXkQ6TZTcSgKGEIzAzhgqvkJ1wmCqtbIsUkY7xEidLGvOT5gLQgFXrRHWL9tsNjq2B14uLO89xc4UdV5dziIKvtn3ptfx7/E4Ho8ApOvCOUh5fy4LywKPHz7yp99/yzjs+Iu3f8Xnn3/BsAvktFCqZxjGXq5uTBfzoZyKhINuolrxPhNDwXvR96mu0jQb3P2oJsFqK4nWCtFN3O9G7vcT93d77u92wjbOcj577cDTAXTnIASadzymqyYfwdZ4qYWWEs5XxnHHq4fP+Oqrr/nP/+V/4PMv3/AP/80xp2dOz5WnpyfOpxN1SZR5IaXEh08fhHF8vjBqtv3503vp3nS5cnl6xnvPq1ev2e/3jHFiv99zOB453h05Hve8ev3AV199wTgN7Pd7tkL7a9Kg9vN+a8/WBID4ub6Kdx6V2WR+zJaBGWPUuVrPcfubrDmLFVf2gtv4bIa1234Rm++2cVpnKngn3aOKMpKX+cr5eqJW+bww7Pj8iy85vHpLSkn0VK8X3r/7Af8hALmDTZ3dUSrzvCAafc80Kq9fvyYOjtevXzPEwJtXrzk/n/jD7//At99+x7Mym3Aw5al3CY1eSklqzlIOpKWPgJSEjKPIKQTVUime1kL/e62VwUsZR0xDB3gsKbWO5401UKBQ7JnTcp7WA19Z95I8sRKhlb2zB8ZWEfUlnd8gYr773YE3r96qqLL4MhVHktwaqC+W5hkfJubrFXc5U9qJUhLXJIz9mCtLkqSGlcttE1U20cZGA004+Fufu5Wspf61P28FwTY2jtVfeQlurLqKta9l50T+QoBOSTaZBXZ6GMpP68hv2Wt2Hat/S3/W5vbW37bVv7vxxfpGlE8EuhZU0eot0xVd99P2yjZgDBo+2dCsP8jeQlmkNH2PVQtM/JGtL7gy6Jp3mJ7lkhc5Z7OJa693v71GAwTtr7enj1yTCYo372lDU+AWEslCgvXGNuNEs7hLG4kMA9M0Me12HI9HlVgxO7PaJZf1ehxS3tvWe2htTf54T08MGfvW+dL3kJ2uYtNY2eG2brax4Yt1IfFBlDWXVw0wiUNV59St0gdys1UBqNZ9BRP9NluqC6iviVoaOLkfAQTXOEMqU8paZKXAkYGGK/tPxRTcZkf1zaAafh1sUpGOICxh0zIOTsXKFdz1mlIb7EZoTLERauvj1aoAf4nGNA59fty6KG7iEYlXTQplIxqg47GNTNzme/el3doJ19UC6Tb5bgz9l4y/n3v88jI6G1TdBDi07jfhfeTu+IoQIsf7I8e7HcMYpX6bpoevBn+mLdCs5liRwhpodQYXwS04t+AQ8W1qAVeki5Fb0UKoUBWcorELjl1wxFAJTkqAUO0Kt9ng/Z7U6c8lc02z1Gjn1I24Vk8So4jRjuNIHANhkCCkKBX2+HC/dgloMM9XKlKitd/vu1MRopaz1QO0Vzgad3tBno93d7x6/Yrd4cCoQqaN1ul34tcFEQn0vq+Q2/ahSJB8Y1DXxcPmu9WVChCwdjpZ2UkSivxkDbX+n25M3PqHHmQZBZpmAY7p5mzphGtgbIa95MIyL/ggNaqpJHwYCGFkGCfevv0S14TqPfiBZVm4nE/aillYUcEPOBdwBJYl8/33PzAMH/nmy6/55stveD6fOZ0uLKppMAxT3zy1rpGM2SkD7qw1smQtTKhdDxJlKW3HMATPECMpbij3zWZWQQMTIqyalXDtdojbltK5/mzsFk/QQDDg44SPk+poyjEW4sDYVD9CM6kWQMvnmLaJ7BEfAsM0EeKAHyJxmig5EaMnp1lLphqlBpZU8PPCEANhFI0b17yCBp6mAXMvaWI9ZJqNg2ooyaVUzR6tXVUaTZ1HC7ZvD6wtwPDnwKHtubbhi2mQ3tQWIbTkzfltn/fyXNxSysEO1NVsr4FB++m1bJ5ZnbTklQYHjhY2Zl/v2YJxcbKVkP5iTzocTYMS67DmYQ0Igabzsr2m0lbNrOCaxKpBkwC1UjQQNyaRrROJINQZsd+5WweqKQJi+yBqxr9nWTduqm00y14GZU+VWmkpEZaZ6zwz1CqadDFibpoN7S3F/3YtjKN02CuqQVA1UyizIO1/m66BnEIvb2itrSBRW0GKdc1t5hzLlrpeuuFAdbjWjK85AnJt5hSs+7tYdrvYGK2faXvUOWUT5grREzdjUUujBhWzbGsQzeYzTdvBHHCxb+t7C+NY5j4o6y4MARc8wyCMTlkuoj8mWTPXQxGxiTAEj/fiyDm8ZnwNjHWiy9ccy5L0NUGD69vgqGekbRBfeuj9KNG12FZGVBxiDz5Nf291FvWNbofo3+zR7Zd3vdwo54r3hXHY8fmbLxiHkeNxx7QLkmyyYDS2fn4IkK/7q1WcluOXXJSp6mkuQZu14UqCVnD4bu9X8F5EKVwrRNfYRc8uOoKtge1O1fXRnFOWlJYGVmEcpGUhLYt22ypybRpgDUNkt5uYxlHXlA29MDVev37N8XAgL4myLFLe5RrzfGU3jXL9DtGNCI4xeAYViD7eHZimHYe7O+5fPbA7HBmGYV0bujK7z9NMQ0meYvaol2Kx8WOwwGnd57YXvfcd1O7aKBuQyZ4PCmb3cwN62SuSvX/JEqG/DpyT4MlAFikjKRrurFIPkmUWZuWcCrEK2J6VDTKMEzjPF198TXCB0+nEu3c/ktKi+jJLL1sMIZKLMIevlyvf/ssfefzwkWncc3f3ik+fnkiL+E/eCUsUZHnlVKTbstJerUuSiaqjuo45J2qrChgI0x6qivRGgvcCNIXQ9YXMZvZT/AWY0vSvctTJmbi1sdtzoxQJJEOI0uEwBKbdPeN+L4yGYn61LlbnhO0LhGJgE5Sm7Cn1Hat3DPudaFaNA3G3E9beKJ0cQxBNoZIdKVXmORFiZBzEh6rIudM2ds736gRb1Jt71lJp840sKfETv0P3bvfXm/kV7qYc35JX3ctyK6i6cRx1/Nduwd3+OqeSD67bvNsLofteN37Ai4vdvs795BmmS+Okg5mr0tBnW9pqgFJzYNqj6idtWVg4uZbqhP1Ru09CB55qrTQv/rrEW2JDRQtSktLRR6TXd+0AjZqRfoZ1/7PZOLc+Ts6tSVLz/2g690HsVKzxFsCwodPPsOsy25tz5qo+7C7tqK0S4kiMBt6KX+67vpxdlwAhTRmZ5kNJclfsVfC1l+ntdjtaa6Sieolt023biQzONg5tG0fIfC9dQXRxdvVlsbhJE2XNNjTr6wUMk32RlyqJcW/sU/N31nHGocBg1u6TWk2w8bmodh1r589mf9brQ5Zc93/Nh9qCrlH1bF2UZMwQtXGC+lBrFzl5f/G/KsFJZzqvSU9XJa7LTq6zVLjOmaHCMGadd32fHj/pOtZhdCpZ8dKF6pusryc585z3+Bj7HFgFjK3j/j4v9/jPPH4x2CRyvY2mASnOscwLlMYYJz7//FfEOPDF12+5u7tjSdKK1kRdjTEigqWSURP2TIacacnorg3nr3hOeFeofqS6ieqiZOiQRSXIZoG64NzM6He8njwPk2OKlRizUEmNhuqlBEOo80K9q7VQgTnNPJ2feDyfmOczNc9QKk4PwmkcOR6PHI57pv3AtAvgK0tJuOj54uuvaLkQtRb2ejmzO06cnp6ZdnsJtqLneLdnGCIPdwOfvz3g0LbRwMPrz/nim18z7Q7sDwdd2Kp5oKCWtJuO1BoUQ2ud2bSNZtZ5b93R9hosmpcXfGDQDJSw1BRlNeDJnPFuHP7MgmoGAK4bbLuKTUPEI1oPYic23TAwvSBZxMu88Pz8jA8Du+sJt58Yo2ccRuLk+Zu/+Y/89X/4Oz68f8fvH37L6fTM7373W55OJ4aKgFJxJPgRWuT8dOa33/8jOSdGPzDEHTkX3r37yPU604rnuL+jqH5TLrlnS8SjdKAbbhpGii/UlEi1UKZRtJG8w6tIsnPS/dC71cHOaSSGQHZhAw6qbgaOVr1mXB3FAFWtE25AK+0ngWnKwlIZx8h+PEh3id2RYZzIpZKXRKMxjnumyQ7bNbCvva5XjIjNPTGwnyadGVmdtWQuz59IaeZ6OfP8/ESrjdM1seTM8TCx2w0boxluDPs2eytdTGwPq9hkzi80oBoNAwPWA+rn0HN77y1zxbKExrKza9l4qN3hqGoLOqDlnVC/t196MDZzQprtM2MNyfjKNcrIuc2e2DJvnLst6ZMuGIUWWs+WynMFvHRuFSkHp108aydk9OCIrXMmnxDcqutkTp9RvK31MEgG2uMINPwoLJRQqmrlsTmaaneQSs1r0ISWjUQRZhSfwEooJbsMspVqrSI6XrSNuK4YK/UVJ0ZUVa7zwnJN5Kq2dRx49fCaw26S61GnxNaAjbN1TWut9fKVUgqn00m7mAg71nvHbtpzPByhOeY4yvlUEnO+irODOEoGzoDslRDi6uA0Y+d41fKQY8bH1ht1iPDqqpPXmpMMIypmWuV7aonsrLGDrrdeZ7qWLedSJBhqjnFUJ7pCLg1SY1kKPqzg4/pQ3Ysizrd1SvXBEwd5YkWC0xgdwxjwwTHuBsIQGBr4Ar41onMMPgjgbeeKczQHg3McRlkFkcDovJQA+0ipsn5O54U0FMboqTkzDCPj6HrJQClVq+yk1JJNqdP2/Fj33PZvIiQ77nbgHWUplCTlIuaSi337ZZ1U/vd8BGVreBzznEmpcdzf83d/9XfEGPn88wfujpGlFOYlI53Sxh4UFXWOXS1EKq4ulOWZkgM+CuuGlsCfERuyg7aTUWkVAZ4LtWVoGZ9n8JnJ3fFqF7ifAoNrOJRNjgapeiZ2gBdINVNq4zJfOZ9P2gp+hioAlrFaD4c9r17dc3e/Zxg84kKKLRmnkb/8y7/s5XNpyczXC/vjjvPpmcPdkVYTPnju7w8E76g5UZZ7HI7d/kiME68//5wvf/UN027PtN+v2KRz/TpijBLAVSkja61q2YQyBr12MSpS8uB7kqQfE/39hmHo5bor2HTL/oS13FvGzBZppdQsZ2X1GrHI3AiYXM1967YndIZUJaXcg7cOQJVGTY15yZwuiTAU7i4X4v7KMO44HO8Ax2F3IP/mb3n/7kf+8R//G+fTiW//9C2n5wu1QIwT4zCJTl+pfPrwiR+//Rbv4HpN4Abm68LlPNMKRCflZbUWlrTofXmICmaEARdgHEbG0bo4V5Y0U+uBECUR4d1IDV6BF2kIMU0To4rS9kC8H3MNrFxq41dV9V6tk9QN2OQc0h24MmcRgD/GPYfDZ8Rh5PD6NePhQM5JBOjrRuTbOS6LlN6tDKMebeJ8AC+g/OH1a50XtBQn8fT4nmW+Ml+euTx/pFU4nzM5V/b7PdMU1PfsUXgvjzMiqwX7dKDJ5DQWPf9WO2hdumwP6A/qzzi1De7m/DQmaHNSQi5C9hoKOytbl4oSA7pMqsD+7ryIdour8tOw1lyoxsqIt7jE9tc2jlmTjva3FbAQX7hSqnQPHLWdPAoS0RpO78l7aUix9cm2S8nreexw2GU7PHjxtb02ACugGpSYdWQIg2qZNWowbT7Rcd3s+s3nmf6UVYRbYk5F+Jvr/kIISonRa5LudosAjN04yfpzxiJX//aq3V+XnIjTwDiN3I0Du/2obyYxmZ25rTPtpKP1EAI5xJ5QOJ/PnK4nAdhUqmIcp25vz9eLSDCkRJpVyD40nG/CgI4SG2zLOi2hKkNlwJKsrWbby0Lcte6/+6Ig3eLSIr7y9SJ6ddM0bkqd9XOakmWaMBtrSZRcmWeRPqj6ns6JBjQNadTRDYl8dSaVVx/Xm5SCzJlJYQyDZ9xFvHfEUQgnexcITXwoYYZrWaz6Jt5JszMXHAdlTw4EluYptXJdPLVKhcnj88w4qHRCkXg+OC+4gCVR0C6kDQKty3m/jObbZqcKcCYEhTBNAlxeF/Ii52boC+9n3ujPPH4x2LS5ih7AmW5JCJH9/iAU4nEgDoFUlH61yQgDN6ikc+ixUFRpoODIOHWCQHUFtHRuRcINWlTAqYnj5anaSa7oYJfVmPmAdGnRIFEDRposjFwyuejzqywuY/ZYRszKfLboqPOeOA6gAmzjOFBbZRjGLiBumYJmB5cTR5iO6CqjZBh7pqxnqyzgZhN02+CxGmIDgzqybQ44emh0J2cN3Nf7WP+2PUR7XL356eceFoqZU9R+8tw1uLd3ta5aP/deAgAIPTyXQmxVDxrPOEZcdBwOh16WMO12Mt5RHBTnpaMImvWwrhDPzyeenp40qySGSYC4IOCLWzHfl2PTKfUNmt9kbXV8+nhqNs/BpnuclSB5dXBtRLsLa7Pa90hf6c2AhNtxlmAVmvP4KGVxPkTppNMKzmU1hqZh0Oh6HfbfDb6zzSIZI0YANE/1XtqGO6G3ey9dYiz7VzRQliG8dWK2a62v6ZdgjnqC/WdnV7mCTd22rXjKzePngKit8TRH5QaIXV+9zmN/lX5XHKnvof6maxa8f4De9xaT7Ydc36/rs+3takW6Wdo4bN5v+6NbMa2boMfsSOu/1+f3321YR5u9vr37NXAxkGvNZK7Oob3nOglifyxrr6/tz918hu0f+5ztGG+vUQUIq64T69aWcgJ1iG0unJa4urLNDP40m2pgRd/Pus6qOnvOMu8+0ALUVnQlmMO7rsU+cTZmZvVsL6lDZBnL2322js0WyGx1/ZxWbVw3e3Jj92UNtj4+q8bYmg200hjx2bbrvPXzt5mm1GbNdEFeuytlakhZs5Ov0vr2tCTGOhp9QXX754CI66LUwcv6KcV1an4uhZAlsK9tw36iKQV8Xfdbfft+V+1mOW8elmn0FIoN/GYef/Ljv/nDlk8PCHVtxDhwPN5JV50hij5F3Txhe51qR10HzipOwXn7HWRoSddERkBhK6N7uVhLB4e8vlfT7kTVQGeQpMv2EpqUOtpXrRawFOhdqGzvSxewsNEosjPCOyes8RBIKeG8MLjjMPRSjaodeNsmCFvPXDlfQxD/03yo7Zjf+Dt2mLh1L94Y7S2axk9ti62pn/y++050/6Z/3Prm60z2A97OwBeMi25b2s2CabAKIPcgXYJru79SGvjag8hY6yo+Pk4MIbI/HBRoh3GatOQ/aom1oRsCbJ/PJ6iV0/OJ8+lMShlqw7vAKtKsyUS1ed1imY3QOTK/aOv3ONTvaAbYiTaM9wGvJc9d32p7hjlNwNz4UJv3Nj+zH6fqi7P6ej5ExmlHHEbiMBHiKGVxbtHX6V21la1xs4aV+Stj7zp477UBglftqGGUjnclJbwfcFTVkFkb/bS2niu4G6tqN9D33s+zeQ0usUW0PRP5+YfNTzeit5/q1GD1o6+xYUjdPEuvcv28LTi0eerN+27HU0pG9R7Ud+oOzU9GQz7TuoBZoxDzl3/2Pm/cH/fyz+vxYNsOvdfuD71g23QfFVwT9jnqb3tr+sOaYNS7vLUJPa5d9475MLZ2Ha6fxS99utbvbWMH9P1Ec1PiqJwzPviutbqdt175Y/T5rQ/bP89v5mldgzgBxFprfe/a/Hfb2m3ci2HvrqT5ULYPNj5Ue/HUGxyA7kNZtccqL2PA0QufXF8pDNGmZ5fqcul7e5wKbW8+2a5/o6G7dmV2/Zxb1z29tLP7Ud51VpP56H2vbFaBu/GhJH0vDHZloCFs16oVCCbhQ0P95+0Zv1rHn9iTPsTupunX9p62a62fPz/Z///64xeDTUPUTHFYa2RVBpA3b17z5osv5GxyheQyVWspxRiI0G9rVR2DQPSe6ByjbxyHhaE1QjwRYsbVKzV/knr0tqPWPTVEWszgI7SCa5lWF8gnaGeWU+X5w8KYJ777vuLzYd3gzhOHCR8GaAUTvFRvjk+Pj9K9Y5mp8xmuT1Ii4ISq7Xyluta7lzRgGicejq9Iy8JpeSIXERZb5sb5cuXjSYCNaUrss+jP/Pjhe3HIcibnBe89d4d7pnFH8/d8/lVirOPmugXpNibZivDLAnSsi6DWoiUYTo2jF+0a76W0yUpiugZB6Bl1jzoi3al1fe7k/NTPaoL8us2ytZrchugJ2aIt+gxDUQ1kWU8svT8vdfpxHIl5IowZN0SaC6KR9HSi4Zl2R9HXmjM1CwL/9TdfkXNht5/4+utvJBOXcs9GpTlRkpQPeOd5evzEH37/zwzTjsP9W+72dzw+P3GaZ2qFOIyEIfb7lhuTDRnDwH4vumVGEBrHQK2iizLEwBgHXR/ikASlcQ7DyDgdac2R80wpCw2nmRRHzeJAG6DUjZtTjbEgBjznxJIXWnOgjte4P3D/2VtCHKQVc4ikZVEDVCglkfKyOdAawsm0mZbv1XtKNqe9SYDWijrAwsrwfmB/uGcYdtRamOcTJS8syXO+ZIJ37EbPEKBRsRilM05U0F4OBNMJ2DDoWtEAkxur2IGJnzhWt3GBs/JStzGt5pD24EDfuukBbu2Bb4AedfKdGmDvuxC27beg+kENKwNlc42yH7dB87pZNs4yejgiwu/XOW8cVa8Ri+1zswmiKSDlFebgN7Fl/aBe78NOtK73ZFoE5jSx2jS5FhXOXX+LaURt58MAcbEhRQ4+xNainQ/BsnaAgqK0IGK8GKtHgOQQB5w6LEWpQbbP8pL59PG5NzJowDAMHA93UqJZAjUIC6xUaeN+nZeemV7mRfeCCOe2VilF2glLkiFJgDV4huggNQpiR1IWcW0BY3Rtme4Ra/OEWhvLvKwikhrQBHUWfa2gzKfa6maNSLYteskOl7pm0S3jLCWwQmGn6NyqI1VyYbkmnHPM88KSEr5kSss4nLRNvnG8VifRWdTqHD5AiFJOF+KIVWBuM+otVUJ1+CJdXwOqo6AqTc2COt0ng8b7HhiAxTdyEAcqNUeqntrg+XLlMjt2ubIvwhbLtei6Vqq5belKzz7eOj0rgNk2NkOy7rqenD1/c71/LgD7N3gMwwCt6V6sOBeYxh1DHDkeIp9/GWlUUjpzTXMvC4CGq/rVWndgg4foGlMo3I1XsmmWeAdtIc0nef1wB0Oi+kBzudta1zKuLYT6jGcmnzzP7xthnvjxPtHyRKlim3COOI6aJFsBwaTO7ulyISdpqtLmk/hQPjCGkXFYSzQMJAXxoe7vHjBWylIKl1lKui7nM4/PJ2EjlkJqwoa5XJ7JaVGzJkLTb15/wWF/x7B/rTqBTQEQ02fTEi2Hlr43gl91wkqVgD/nSgiVptogzgsLLYQAYQ2iRSA8CDhaDbyQPe6DJ2pwiHVChtWGOmX/ehPkR30MFRJOpQdvXsE9W9lmqcVvCnotkRilU+/+/oHD5Uz2J7hmmoP5eiE8f6IWKYV3zjOfL6Ql4VzjN3/9G3KRbnNffPmjlJ4MKnjdxK7VoozYUjg9PfHu++/wPrLbHZimIx8fH3merwgbIhDQdtnGKs3SeCHGkTdvvoImXUqdc+zGiZIriUwMjmGcFIBUEeJxZH84kNPC/ni3QQTUB9AGIcE3Ldv3BD+Kv+JMZ06SZd4HLucTT4+flBV+YBwbr99+wa9+8xuGcWBRvcKlzJyu5940whgfaGLCkojeubUkqRVciLQm4HzDi45elr0yToMkpIfAYSc+VMpnUk3MxXO+LIQg3bRjUP3Y7ueIH1qKMINrbaJxq0xx0xDbdpRbzbElHCu51pU1p/bPIWrDwuZXFrJf12l3FOxM0AYsBgS5otpcHVTQj3drubmAcmLErcSu1EYwbaCND2JC3U2b9nSZDTOkze7N9bEprdFygdniChORX2Mpr7GT4AWebfnWCpCyjreOofmUAh6qf4eUqmHbtwMlW93O24qTzbsLgKA+mdhEiZhqcT1hHbz4ph30UltWmxdShQE/Op5eu9uVWiWmaJVKoFGZl8z7Dx+JMdKQUuvgYy+P82pLeqUBMM8L83zVNZe6btE4yjlWayPVRFSfCmwviG3LMSmLMYtdDq3LNdj+xq0xpGg6LuqfZfVRZB3Klq9IE6ZVTN8SZGLvxZ8qqVJzpaiwt/cqFYIykkyLSeeplCJxpfpdXUZB94I0hzFfodk3aJ2aIJUB3mmjF5j8pO+FdDQFRIuqUV3E+0ZEC2fUpZQqXAGUQFhPo/pXvkFsjeQaxTsyjqxxdi6V5/OVMAvbdhwGAZ96PE/Xa1o/Z2snVoD39iGM2ZZLnyMXQr9CW/s3SN5/5/GLwaaonZCsdtjpEHs8d3f3PHz+hlwLP376kcv1TN1QOJvWaEu2dM1mCQ2/sYuZUAtxcPhQKPnCnJ9l4bsrlURriRaqbuCC02xcSxdaPZEvhXNcGNvEh/eRoV3pWS/nGXcHQhxkUzcVDVfW1el0ZlkSOWVaukI6CyAWR4JmbjrQpJZliCOH/ZGrCzyHEyXJpLdcucwLz+cLT+cLWTUzSsl8/PiOeb6QUmZeEiFEvnj7FXfHe47315+UxFnWJChAVG+M1+bRWCmwm0BWnB0RpxXhfCesFD2Ee4mFEzHhGzaA/WeLYDorOjDXZzXVMs9yClQFnEzDxJnRb+uby0GmgXUT6nQYBnyMuCjOzrJkqrsS40BaZrz3XM4XlmXhsD/w2dvP8N6z3+/4/PMvOD2f+NOfvmOeZ5blSs5ZdCx0pZ5PJ374/jsO9w/cvf6K/fGO81Wc+gaq79EXrRwYOffDfJz2OByDCX5TqE1KSb2TtuwmqOiQvRJi0BKgCeuMJKL4mkBoSDv6F/RQGW4BfUKUbGMFWk4SbHmPa404TezvHxjGka22TphnGo2UK0k7YaxrZwUpvQZgrXqq8/IeOJwLPVsgr/O44BjjyH7vtY1rIaVKyp7rtYizGESrpR+2rIdwyUXmtKo4LcIOiypKb61cfw5wAsuUWBnYzWLSa/a3r3Fu8+X7WvabBe6MMVnyz8SdTp2MFd0P+uKG60KLpa5gla0bGVOxV6UVHXpDd1x3YiycrEUAOOccAwPRLh9jGtG/ixO3Xt/tEWHAVus/O6cTLee8stDci/Fd7dvaptWWzPpe69DquJrgspUs6JrdbvemFyGAtlfdDnPwxMnyCjbVWiElepdFHCUX5jnhvWfaTcQhsN/tOR6P+CBgTA0STPoic1NK5nK9CGA0L72sMsZAbY5UUEaGCuz6pp1axCkf6rCWJ2QNXKNlW51K3xh4Lx06apGESlEQVei6Mh7OC4RXa1udHAWbgveUoel+zcoWlrI276Wczcoom1WLqpdacyUtUpKYk+xJoOu05Fy683uzPmyGdUM4DyGiY2xdYdRxRtYmrdGqx9eAR6jU1mN2XUy6Jh19r3icOnJw9bLwi2pE1Va5zHIelwY4r2NU+hr0zolOFK4HJcXK482WKWj3cisI2KRX5lfH0P6+kd36N39EBSa9U7DJB4Y4sBv3TMc9+4c7clr4/vsr1/Miom7I+e00CJMjWcbX6xgPvrCPhaJOIw5KWZjTs57xM84XGloOgPhPvlVhNJUzvl3IF8/5yRHryKdHT2CP4puiu7QrhGGg1UytwprKCjhfZtGMqll9qOWEGyaGcRSNCr+uEwO7h2HgcDiQc+ZyPZNzYUmJ82Xmcp15vl45Xa7k1mheWLU/fP8d5/OzsF6CZ4gTpU68uve8+mzugqj2cN73bo8GNnmMidPUjkuwagwtCfa2pWtWimGdfEfWBhTIvkA1XRzUJissOAuGLGusZ5R+7yCSoDo0J12H0JHyPTOyunUdiA6haxqN40Qumd3hyHS8I6aC809UYElX/CXiHWQtPz6fn7leZ+7u7vn6V9/gvWcYB+7u75jnhU+PjyqeTS8Dq1r2frmcefz4gWk68Or1PXHccbpexaZRiTGobETExyC+fxKgP8aB3f2dFOeriRwGYZ9DI8ZJy15WBbgYB8Zpx7jbMe728jkK/tRaqc73sZO4M+D8JOVfXsomQwjsjwfx74DHT0/y2eOAD4H7V6/54ldfE4eBj0+PnC5n2rlxnWfSLJ3kLHNm7CrRoRRdKTBGR0PE+gO1Crs+F/H1vfNM4058+XGk7o+UnPjwCZb5TCpwXTLRS1wUg56h5ofqkpbOYGtClVbxDu1whqzDusZe4jPI+dPZU+o7iYtlq1Bttm7TlZmxMmnY/K2XH6tvZb5y63ba/mxAk++MeWtK45vYltagqGi72/hQqA/lFBDYAlkGAMkeFP+k1UZLcs63DYtyPZnkPLUwaRtKbROa9oebvytwsOpiqkxDv541Bup6WRrgG+Osb2zEg/Ro11SLj5vDuQLViwbnpsS7+1Ah4FvrTCL6vAjY5LyXM6/rjXkanpQKs8ZQu92B3bSTbr8xSmLJS9MUclYWspTNnc7iQ+Wcu+2RUuRG1tLNVS+M3lmyqhaaA2XIyj3X0LqeaF8POialZHK1TmfW9GddSyIn0jbEClT2RUBd7ww8qp01XbJoHBtzq1ULvIT92aqAwTnJPVg86pzTmFkHf2VVrHOtP0rS2hptia82avOx2ue2UWsCPSe8G6Sb+br7sKoV+lnj1L44fBXihncwa6xU9DVSxr4IyFW1fVpdgep+8uq5W6EDuKAVmgZcbnaE/cJKwMXO2dXqoxr49q87Ub8YbJrnmda0zlEz06UUCmWTxVcjp+CC6aF0IARFNL0dspUQGrsdkimNEEIle2iLo1Q59Hv3uSb0bKfdVFzLtDxDuUL1eEacayrapwNQqmhO+IiPE6Us4ohvgr+6cZi9d8QgKGUMoQug9olQYzsOA8f9QWtLJaBPi7SXvV4ugGTAnNM63gYhDMShiH6UH1SwOazlBElYTyKMtmrKmM7KxuPoC8VtNmtDBe16yZ9sRFnwaxlJ7yrlfA9ezWnfAktu8779J/1cAROl3KXq6LVNUC5GVsetub4h+zVDN8g5C82z0/Gb0ItzTZCDtE2/XjSTKFoFpWQul3MvUxyngdb2fPb5G9Ky8PT0yOlZnuedHPwpZU7nEy4O1CLd3JxD2RJNatO9ggS1Qq2kVKg5sRv2HLX9+uFwZBwmluXM+fmDHPg+ss1u9J+hO01lKLQ2UJsIa9qhHJrWg8vorEeMk+dYJzdyEtHmJnpQPgTGYeydSmot1NJISTMSOZGWhZyX7riAmQqZ32rAsbPOhMbikCzCSuuWR62S4ay1EmJkmnbUsvB0OhFcwzNCiarDMPZ1DOK4xBjVt1amo1uXtTNQSEIAemByA4Sq8+JlZHshqmM1eLqeMSPqNuL3di8NvCCitFbx1ashtsDcAoPWP7PvH0SLQL4ai3a0kEFeUUOH3E8Iut5XGSoNUNjcl+4jPSwdFlAaG2UzRptHa3aFaxB6Gz3fHgLbf23n5iXQbDH4S6dsnQP5ySuIZbax6RhYpksGu7tygLDCvDdtH10Xw4SPUbt5JnUoVEi1iCYDTbJtz89nam0cj3dyJiV1GIpoCqScOF/OzPMs9jNJh0qvumR2Ttn9p5y6iL04cYFY1gDT7s/051oV9kMzhxN68GMZ6NsuLOv41s3zWjXniQ6eGosAHCFIMLydo9u22KYHIkBpzpLRw9H3bSv6OXU7+6sTwmY5maOcE/3MaVbCHJrita53onu5FmHr+7p1PVoVFpLU8DSCvk/F9UC1VJiXrPbB9AbWohg9fG/swZ8t/diclf1b2949P9l//9aPZVn0vMsaKIujnnNm0HntsvAaFNZShLVhNEoNYMS0SNATo2O387RiYFwj50bJUIujuapAk8gSYELhlrDLC7XOuJbX1ulNNCFk/XlcC7gw4oeJkhYtQ69UVWez4j0QDYtR2Rldrw8JqlZn2jFOE3d3d1wuFz49fuJ6vXA+X7XsPWnmfUcIEROZHyfRBrGujQZOZO0Y1M9um+umZSS53Mx1Z5yqX9VBSycJMLFRoQeUWx/oJXC7PRvMMG73xhYscK17S4pUOXwpGnjRSce2d6qWSgh4q/areopz0HwPTFJKpCxSEKUUZYdKkxW/XIkxsMySgK0S+VFq5nw59fKO492BcRoJ0StYXclZBN8FUBCd1uenJ2ptvHrdFFwSP9bhiVE0fnDSMr3VSk7CMjjc3fH5my+JIRC0RL+UmZxPiC+mTSxao21K/p2W08VhZBjkbGhFmAjVSdLNVYerct46P4Jb7bmNbW1WYiwGaX88sjscmA4H6caaGqfzM0/PT5zOz5KwTEm14qraMoWqa6WVSvWyl7xzuBLxNVAMTPGBWuksm+AFHC61ddHhYRhobk9Zznz69EhwEF7dEdyOzm71VgbkiAHqKHa5FtGllWWnLAu/BU7Uh+pnBn3vmb8nz3b9NeZLmJ8D9CYg21hDD3uZG2eMwfU96O+hPr8m/dc9Ir5TLrJHl2wxooE01q1XrneIYl9qkSC6X8Ym8F+xoqZNqNB902Fd3Vv87MNAsaICQTe+T9v8fPMiWG3N7RN6KZyz+Wvra1YvXPWxVi97y5B6eb7Z3IQYNX5cNZRDHHA+kHPB+1lAlybjVWqhZWE4X69Xnp+fmKYdwzAxDJBSJqVMzpnz6SwJgIvoL5kuWGu1g0S31QVV7EwHYCO1VMZhpHjRDyp5Pdel1NSvk6ZnxzZB3defjkvrc0uPl209Oi+s397BznwwfZ4JeePWc9X8r7WLnbtZQwZgbsOK28c6l27zK7k+SKngitUHyHsZqCM6TV7B0PXFHeDd7FGve6a2ilPgVetgCF4FiPQsE3ymYhIqtbW1mEKH0jVj+60L9zbCe3mbrY9fZ8SzifmbJS3/zOs3j18MNn369IHWGqfziZQznsrSFvBI2U5KdEE6zU4uKeGdZJmNFheiOggeoDIOjTevPLWg1ObKPFd8caTscK1SW1bKaBITVBdcS7RyhfkTpI/4QyP6PcFXCo2lNWqGmitxCBzigXi8p1xPzBrMSMcySFWoieAZg+cwimj2EAaGKJ30mmYM7QC4P95x2B344CO/K//M+Xzm08cnPn18FCNB4LC/F+fShFynA3GcsFSyMW5yhiVJ148Q4k0r95yS0NP1gGw66W7rPWPbQozQMA5C9w0BhePlmnwj6sFtgbAEtCs4ZbnqTu9rqLgt3WOvTTtwNDQjKIw162pXaxUHBAhFWQFube1oD8tO5pyFsrlklpyl40cDlot0/HNNGQxSkhZiYFmu/HA54Zzj/v6O+4cDD6+PfPnNF5Ra+Zff/Qvf/ulboVDHiZQKp9OFlBeWlPkP6YprIgYeh5EGxEmcrpozJUl5zXy6cj2fufv6FX/5l3/D4XDky6++5uHhFe9++I7f/uN/ZZ4vtHyllqRZQCk/q6rThQ9M+4PSXBu4rHOmGgcOU9wQbbFubNSYKso950wWEgN3hzv2+x2H+zvGSairp/OFeZ65nE48Pn6QdWPtcW3xyAbthnzbPc/arZY8SEbYiw4UuO54pyWxXGdwTsRRj0fev/uOP/7pT9AKy9t7Xh137A97Xr9eu1Aag2PU7GIump2rlVKSHO7eCeWVJoyZJkLCdessKQhk3e3soJKh0uNbnaO2uWUrB3JNMmo2HH4TyNVWccVR3C3IYhiY7H15/1wgJXGon0/i6Osn4hyMUyQEyXDsdgMOhN6rGeKiz7fAsp+kCBCXvbSZlbJl9ICyUrVV26NugJPOmPgJSrw5LV+AdzeAQVuPnA4UtNvXN1s9doBpRtdiJ6PBl5LFufSxz4U4f45hmnTfRcZplC5n454YBlLOXGcRePRxJJxOLMtCySdKLTw+PvP49Mz9/ZFxHNntdlAdrXiu85Xvf/iB63yR4Cstcj2qa2TOkBODhA+RUiuX65kQoghKakYq+CCdXC5XZnXYLUhzrKUBzlddz0WEJHUQ1wN8Zb/RrLRVgQUNvmuplCx/T4sExkMzJswaINVSKVqG2vRzpIxOEhTLUnoZjk1k3zeGSvZdg9pl3RuIU1GUyl6rnXeS+Rr3Ah4E59n5kZ0PUkLXJ3adXwteowrLFgXufa2EpsKZPkAYKa1Ss5wxc2oSEGM2T5yjiEp5O43Guy1QoMCvLADbr/ZY24k7XHPdibRM7J/zsf4tHk9Pj7QGl+ulJ7yWeYbqCNPAUPIaICDJvDwngg+UqSi7YuuHNEKsRBc4RCllydrtd0kN30SUfaGS6qK+U1J64wJlgXylXh5p+Rn35sA4SDOTVCvXnEFHP/hI2D0wHo5cT88sZ+lcRgjgHZWoGoIwDYG73Yj3g7S191KmUxB2laypwP39A3EYef/hPf/423/i/Yf3XE8zl9OsgfiBGPcSWFexJw/3b2l3FRPlds7hW2BeMikVbV29MvlqqVoOMlNKUZsm2fGG4qCbjeC9ZxwGxt1OA0HtMlwlESHrsrJ2buwLv2tHee+7zZOST9ZmH12bZ51OC6ycl66P3pvPLGelfU4IQTq1eU+rVcCnJL7T5XLmfL1yma9c00LSBg7+8kzKiZKzMuGC6Dx6x7Jc+OEHYTvc3d3x1TdfYMBayYXf/mMgLwu+OR7dSK6Nx8dnvPsDr16/5etf/YbdTroExziBa8KKjE5E3ucrNVeW00JZCr/66jX/0//0f+Sw30ugGwfevfuBf/qnf9B9n3viutaC9xIcO+8Jw8huf8S5oH6WJhByVaFl9eGdx7movo2wrFAwJBfxLeck5dRvv/qaL776ChcdlzyTcuLbH77l3Y8/kK4L56cTNRcC0mwDVhNqJXrCzNamOlEF+kMgjXvVEJsYpx3BS4l28NCyCDY34HA8cvB3fP/HZ377T/8k3sx/+DWBN8RhYLff63oSX34YGtNuR2uQ0qyJRJMpaYTWhDikYJQ0nqiaDNPEqneyn/3aqfMGzIBuX+WcMhFve4LD2NnOGEutIJGXe3EWaJfirvfjpFGQcyLMnCqlwPkiJACHxQuO/ShnzhADu0lYMimVXs5VOhtdQS61fw5uAFqsCYYCd7rp+/1tfSFJNre1O+QLoOElS+nG19y8l72fJcN969DFasMN5NsAitYYpFb7LCdArl/nxznHbr8XezAMjLtJqyikVHRZEqeznDEWA6a0dBH5jx8/8vz8xN3dPdM00dpOQP7rzDzPfPjwQX2urI1cWr9v7/3K0JWrI2dprhRj5P7hlTTF0qYzUl0iXetblQZhTn0or2xT8dFXrSXndU+pNp7ZS2E1Cls75SzPc6q5m0WiwxavU9u/zIsCSeuZ31mpHXTS6zE7X7U7tDcdEAsY2IBHZpc3m0bte6VxnRO1SFm1V7bTtNOuzCEyxYHJh5+UeuJU0wkhuYigurCLXM241gg0aSIVAsRBsJZFmfqlMC9FY/jQt2xwTtm1G19+ozflNbFuYK09q2IH1WZ9Nzbasa7HA//a4xeDTSkJbdpKveQgrisToLWbQZPNJ1ov2zriHtTq+3oHMWrg56SmswbxYWpzuAJOBcJpKtzdhOnkWEvqgrM6fJAA1NhVGms4By7Q8GgHZKHzuVUoECwDYQwny4xsUH5FQ72TzRK09ENKLhKXyxWAQQ+I1lQvA8SZsayClsa13DTjUoXhk0sfY+kGkm8ojGaw1tG+fTg9ZG0n2L11QW4DMbDvZjBfet79jntAvP1rZ+/Y3FZ6q3srcxKwqmnpzmqkbc03L8FWKaWLJBr9T1p7C5PHe898HUW/SkvTai2kZQGgHg8SkMfAOEkLzmk/MY6jiK7HkRQFoV+WhaQgjNX9inBx66w7LIiyAKaKZtPheMfxeMf9wyseXr9mvl6YdgdokFpRw8y6YVv3JfEhEqIEvCaUbCKV3gtjAnRdaCZsCzj1wFVmjhACwzh20EXGMWsrT2nxbloJ265phuLrxPd15dXhdq1SEAfeGE+2jiTIrj3jsjKVKpfrFWpmvo7M0ak2zi2gYWuzZxHUOTEH0+GV2CTWzA5b+tKx91m7tq0KYj9dz422wddWB8EWYQdTbKy7A2Uif/bEmw3W56FWqEUYJSkZ0KCgWalib5plEbUUSvUSqnoo637u2wPLaoljJp8jdd9ucxlrtswcLgMQbh/tv/OvF4++1Jwc2DZAOva3V2D/sEK/benj6pzILKyD7nCdbmwNJbyu5RhHnA9atiNlFyFGQtHgrjpyyZRaWJZRysZihiqDlHNiWWYNLLMG9M08QRkjZSP1NdLMMa26FDSj5NtqR23vbTJmPVum43DrtNJf05+0tQkvAL/OcsLOl3qTfZPMtHYLavXms+1M7q8zu7UVt1RnzcbB1snm8vt1wEpDN5B1uwfNVpjmgm2hm4Xl7M4tIF9HQkj9TQNfKd+18temgtRAB6qArt21ffx31/H2rjbD0F9rY29n4r/Tw9ZjLRZQt850M6p9s/3iVk0zV1U3bxsU2bg6qUqJDum046A4lFEhNl9KU6yjjrEOq+7oJj4VBa+NS0yEdqXhq76gCFDQnFM2nsMFs7Vrqby3AFyzt95bYFc7u8TAklHPsJwzy7zo+bwAqlfpHbVmpKuVsMPl+5pwqHkt8zKh1KJM6axabbmsPlTfD+sP63mAnC9WvlDaZo3rE+WlZuxaX+C3TD/52Rz3Bpt9b6Vp67OthEM6kXtJshU7z27ftTVPyB5CkESfE2aB3bPZiNok4VuqJHqWeSdsnzjiguqzlITzniNHYSUpWFZKZbfbMY1iZ2MYKEH25/V6Zb/MfQ9ZAx05+6wSQED0qixdr/pkDw8PHI4H9tOeYRiZlyvjuJM1UYzxw5rg1AHwzqsuZaG4hity374am0+bwlgiVxOZPqwsjG2FBU70oHb7Pbll5rSwpIX5euF6vZCXpFUGVZM4K/sCEFZrVWaClt1Ig6KCr1GY7rVqybiusxtZAdX08wEXAqVWTuczrlWWedZGLGslgPlbgAITjd48qZW+pw24bBtApa9FvW/xs1awbC3meXkWIM0yqr2+3bzfZkX+1ECbzX8ZV2ycFANcS2ndhzLc1ztHCV7jOdOQ0uSg7t1aN/fVVvtjUYYsT+nw2PT6bxlOt6xhAyV+/kz4+RNne77d/t7d2hu3zoYNRL+Wfg6tcBSajDL9I2OUmI/itbOmaIAJo8k0WxuOIRWxY0HKSEsRYL4qWFNKZpomjTXl3wJIJZYldXa5xEhtM/es3Y2d2fXN3nLm3wVlpGoZpzhJP2HJbEf2JVB3kzTdxGP9tZtqUfOVwGQy3Bqf0vr5Kn64vUbXSV8RayJAOzD82en/uXmX65KEVjWmLYg92ryH22AM/fWbxWHr0Pay+Fmtf4kPpftkw3oE+exWq+zosLKl1mf83GPrCep5tvWb7AzbzE9t7Wb9/rl33j5+MdiUk2RKcsq95WLW7m+iUSeHc/ADMTSCar40pzXWRSoMhxiIMRCjCFhX34TKra1mpXsWDFG0klIrpDrjWqCUK9RGIBF8JQ6ew+t7YnN8+fYNbz97w2E/CdIbI40CJdPIXC6PFJI4M8tCa/oZQYztquni8S2wiyOv7w+M4477/cQ4BlrNvH/3QWrcp8gwRk6nZ67zmXmRjmdS695IpnXTN1Vbg2qlQzuctB13Qk9+fHyUQ2aMPF0unC4n3n14x/P5mSXNTNNAcYUlITW5Wm9acqNVx/+PuP9qkiVJsjTBT4CqmpmjiyIiMyMrs0ADot2ZH7D//20fdml2dnp3u6u6KlGgC/w6MDNFIrIPzCyi5jeyOmhoqsaCPPy6uwFVASyHmQ8fLtnhiALInKM4AYYues0weELosO5LbTGHGlXNusekA5c61cWUmlzdYN5bAE0WpPdWP2vOiNuAeXXWdEFajS+abZGIrHxOViA2LwufP3xkHEe6bmC/P9D3A99++ze8efNOgKRGsp8eH5jHs7TM3Qv9uO8iv/7NN7x+fcfhsGMaRz58/ImPn35iWRKPD5+VsdZzc31NzplxGVmmlfU8MR/POOf46vU3dF9Fvv2b3/Hb33/LTtsqZw+7m2u+/f3fM08jn95/z/PjR5Z5ZFkntsKazkeubl8hLdlBmB+JWfVZUiqkBLiMDxrI3Ti4rVtVJkYJtu2v9lxdX5FK4v7TB3LKIqY6TsKaSdJ22lp/SrZbMl3LutQs75bZZF/WkSZUJoini51kEAr4TkBWQlhT5/GZx8+fSOtCzCPn5x1v3y7c3t1i3fAExMbKLBGhwkJJmWWWgFXKCzkLfb910SqAfF70Yq6s04uMiDpUFey3Q3t7StVjrRRlmbD5m2bTNnXyW8egARj5LJxkc8Y5sayJ85yYLWOjLJF5GcEVDvuB4sQ52sWeIfakJG3pS86sSYNt5iRsnBmhmcu9ZQW9Ztdlv9oB67T8wgIlcv0mBNrucgM/dX4rNdZpuUb9u+liuRq4uAAILzGkayOeC1JmQFEmvwUm5EXOKR07QIgq4BqlbWxxgcH1hBTop4Elr+A9u2URFs/imJcZ6VAl1Onz8ch4ksz0vCw1SCkZV9EKKxpQQunXrsiYdSqwK2MhQKwkc16LjmeUzHEWwGTMU5wBBkcx2r5HGReynlTSQzJEm45xgJb3ymCmVXXclPadU2adV3W2E35SdtWqFP+g6yIJW67k7SK1NbtBSCb0r0bbOqSg9naZk7Cr1CYE5/VenJbowjpncge+k6y4ddmkUNs427bNRUS+ne1P7wk4dl2hK4XFBVbnWLMj58hCFuHLtNbXSAnXBuRUJIjSy1EbqQERQ5G09boFeAbijCkZ3JbG/m//WGbRplpWaXdOkCRL2lD5HZ4YIl3syYuwNvAi9pk0At51HX0va9Y7yVi20rFmy6KKYvslUfKMlF2NOJeIJLpOSlr3wy2Rjjdv7ri6uWI3dIS+l4xfkWDPmgvn4wPLMrJMgnNA3VQvgQYJJokdDKpbcX27o+/39B2kdWIcj3y6vyc7ZfWROZ1PjNPINE/M6vCI7TuJpABY/FsY7iULK7Lv1cmXkTuPIx8/feR4PvF0PtIPA/cP93z4+ImnpyfWdaGLkZKU6WFsl3mmi52yCYS1WLLiIztTFIA75yqurZ1m63/yqOUvZq9t2W4aPljVHDQ8ZOU/FqCqAV+197I35D2fbWGrIZ7miWka63ssi0g6PP7wnvM4cX11zZs3b+j7nndff8PN7StSTiyaIHt8uGeeTprEGnA4bq6v+Ie//3tOpzO319eczyPPTw88Pz9wOo48Pz2poLfjzevXpLQyjo+M08wyLizHmb7r+Zu/+S13t3f89m++5c03rxiGAZzgiqvXd3z7d3/PPI58/vADz0+fYZXS/6KOrteg5KvbV6zLwng+Mp5PylJSXb6UWET0rbI5ggbBSslMypbNeeXm9iDddX1iXI88Pj3y4cNPzPPM0+MDaRQ/IwYHIRD1vUw7MFc7ao6jJZN8ZYcv44zzgfF85nR8rvcQtIQwBEnGTdOJVBJPj/c83H+ilMT7DwdcSdzc3TIc9pqgdJXpISWLsse7vtPGK1Mtd8o5iW4q2nDFSeJb8qiGlVrCrnbUogU2FTrgi6WS9D8NcknwGpoTkKkJtexUmmTj0Bveci2BmVJmmsSfXObCsuhb6avXZcV7uNpLw4rg1TZ2oqdo5Vxr2jDikm249rnrqlg3+6qhBko0cK2E3eazssSd2yQBuDyLaEEfp76QNPFo+KAy8qHq5VRWcsWfl0EAcZuKasFBYSNJYM8qpTG1DFupjbBAj+H+3W6gkAkxkBT3Y4XP1oSpwNPTM8/Pz6SUZV11HZIb2TYzUYyj9071IxFttCisw3k+iySMViXYOKHJhrLFUDIR2EAYuSNE+Z6r7WwJGSh1LXtNaAiBRPCGCdkL1t98jq5kqwZoo14XcnveFswUfrZTm1U5lFxIyBm9pPb34OUeLDFXkpx3uCIN0nzTrar+BrQ1V4RpLvckpd2Uwt5LDdlUHDPShzbFCLr2clqrLpMFKlsi60VYyOnu3jAVNex26S/Iiqlrtyi+tITjL3n88mCT1kPW+ksnADoV7UikZQXBRaIvWpNp2dmsYL8oLVICTSKmVXBJnGNhlGQ8KFDKhDUTmCgliDaTK4Sw0LvM0HneHK7Yh8C7V3e8urtjN3T0w4CLUeobQyG7xDg9M6eRvBbWRQapCyaGbM69l2ATgT503F3t2Q17DruOPnpIiYdPjzg8++uB/WHgeDoyTSPzMrKsswrFquBYbsbExq4U0b4Qh9mx73t8jCzLzNPTE/O8kLzj8XTiPJ64f/zIeTyzLDN9H1lKYHWF7DSTh9FK0WBTIHgJNiU1BKJBoDDFRb3ntim2HScsaV6Zg2XD/HKuvtYb8yQ4DTZJGZ3dr3yv3vdF8MQEcq2Ti+iziOCy6eAss4iBfrq/J8aOoR/Y7fZcHa64ubqW7jF6kcenhROF0EX6/Z4QAzfXN9zdvSOtK3e3dxKpL5mPnz6yrpnj0yPewdXtW66uX7OmxDiPpHllHmfG55G+63nz9Vtev37Nr779Db/69td0fSfU37Wwu7rim37HqrpI0zyJyTp6zQqI0xpCZLjay5wsM8s04tzKvJ41a6sHngdn2gWbLV6Dc0hJaIyR3X7H/mrP8/MTj58/sywz5+OZeZp0H6oIf4hSEsTKPK+qoSBB122wyYC1GUkJOlmpgifFnVCvu0joO3CQWcipME4nnp4+C+U+j5yPPTEGlnUldhGvAYWmhaFtjZ0TTRInnbaW1bGuaDalaSdZsMkCVV6z5iCHQC4NJOii1UyQjJlkq5ICBmMNFcx8AjL2xcSD/ZcH4sbfBRFynRYp3RiXlXmRYLnXYFNaZkx3KPSBvovsuj1dPxDSqs5TggXW1ZyLfHGoCZAqFYB43a9dF2rQ1y6uaiMo4KgZ3ItHqaeHscxKKQTtltEYCM1u6ZvquFkyqZjvVQPKhaJBLh3jFuWS/xW1Bc4Lg8Jp2XTwus5U28oHivf4lOh3PXNawEGad5rwEDDttFQ7rZnj8cTD5wcpF8gmjCXZdAFra5v3rbBnFg2MqNm/kpGgj2ocZaNX6zjZIWtjayAA55SKbUEP+6KNkwHVFi+p7MUabELtgAad0prIzkmTAoktKsvHifZRcJX5JI5yAwdbUGy/tN+0TLl48MKKSixaVjwMg7B2vZwbIHtyzYUStOxaGZqNxXyZ/SyYrgI4As4FQigMOpbRORYci4MpCOO4qKMh72fvewmW0DE2YfbNTWH0eLOViqQux4HN+1X78u/zMIZyUvayU9b3VjdCbHZHDCuLWwScFpSxIs5a7KJ0+zI9mqxOgZk1nAaTVdx3zZBnKQlLE7hMDIldcPQh8qq/ZhcHXt3dsL860Hdi5wm+MuZyLpxPT/jpWLO2ONljsvCl3KaoiLn3nqEP3N7s2O0GugjrOjGNZz4/PJBdkUBz9JxHafphrGNLhpxPEiAIIRLDVpQ20Q8SHPLeScDYSxnt/cNn+vOZ8PyMj4Gn4xP39585nU+kNdHFSCorCbDOkcuyCL6tXYeEyeJw6gi1YFLVUCvUILwFhGRxWZBI5sq/XIOYzpJisI09Mda84MVE1jIO0/owBlzOmWWeNUmBapOsVVfVym2n88j33/3A/f1nbq6veX58Yn84sNtdcXV1I2yGddbXLJxOoi253x8IIXJ7dcs3X33NOI4cDgfG05l/+ed/5uOHD4yniePxWRK73Y7Xr+6Yp4nx+MB8nljOC+tpYXc18De/+Zbf/s1vef3Va169vSHEyLzCmuBwd8uvYi8BzGVmPJ8rc9TG15zf25tbcko84shrpjBTyqjYYWWcpdOiUy2b4D0xCRY7HaUxTwiBq6sDsY8Un5jWMw+Pn/jzH//AMs96+st4R0uMqUMr2FWaMGyZEsErLikqQuEcPs7yuxgJURrKdBogvjpcc3N9J7po5xPTMnF8fuDx8TMlJT7dXIkSmnd89fXXtCCNBrT0ugIB5zI5JU2+2Fp2UKRhgNkCO4tEwuSFzdsknC6C76V9LmZSQYM6dgaa/6Rlyfqz132yPYuKvp/CDVIqqhOUWZaiwQ0LxmSmIoLKlMx+CNLxue9FC2gjNQKFVR3mlpil7qnVtEFzrni36rGZA633Ag1DlVKUgd6uvyYg9XkhNGaJ2cktq6l2YqadOTXYsblOX023nQU2Dh5j/deUqbItLanvNtds32uwaRiQ4IwQGoRdq5rHTkruUiqcTieenp5wztN10jURsvoxGdOkdDhtRGHXoKQJZUWmvEo3X9XgKjUIKSx/dN1sS53RoI10w5Vzy8roSNawBgk4KXa34GvQgI0EfFpgRIZXsJHMla/ruLGa2TzbJqRNSpWPMiir+KrZb/FLchHNqJSyllo7hj5KF+EtA1xL5ImiWRmtrFP3zTbIBBucqZvSqzSNs/2q5/2KYw5BYjJFPkdwvAWSWqDz4tHcJYHnhUvbsHl+vXcbIfMRdE//kscvDjbVzHWWutjgMiW037fntYVv9YYmcrXZQnqvpYHgLagUhImjEH2hi4VAxvuF4hxDXBlCoveZXfT0PhA7X1tEO12IYA6GMDucS1WhHmD1BVdiKzfKLTrfdYHDYWC3G+gHAcqZxOl8JD4H5vXMaYw8HZ+kvlXFEPXGNPJLNeTbMazOiBol67TgDTzCxaJDx9B767DQOmJ0oRPjELsKQC1zELynqPE30RrrNmabbWukDDQ5aBRbbypOdg1iXC3fkXHq7FvggjqhNdNhYE3n2tog24YAybCih6F3cg8lo2MjANDhOZ9OHI9HYYdFZXDp3BXAhZmUPCcvXRkc0so3BM/19RW3t7d0XceyiJjw7uoVQ9eJ0c5QUqGPPbu7yDAMvHn7mtdvXnN9c6XClza3RYITIeBjpN/t2B8OUFYRMkeF+ZL8HDsBHLv9jjQfmOeZaZlVHFecD7IC2LRl6rRsZ9roGYznEyE4Tqcj4/lM2opFgk1CPYyz6uisq+inieinavy0xYDDkV2q68dYRJ5AUZHgmCVbOE7PrOvMeDxKRL3I3lpD2oi1mlijAzIliGMslYrqDHmZW6c6CB4osQhNPZu+mRrbTVBMt1pLjJjxrI5B87BLNTKbn4usYDlJ3OZ5L2yevdb2pe3JIOUlMXqSBbccFVBYOce6SnBpWRcWL+DhJWhhA3AuL6TUa00KGpK2x912lCgSGanOebNDW4f9S7tiTzTgZaLoXsWt7KASUFlqVyULKWDjXH+qH10PaGiHuzBLmgOLLg0TkCxO68e9sN/6rodcWKJ0sBuGAR8cQz9URy3rGF9cga57itobRM8uxsgGaVRbZHa4Mhd03bag3RbGKGjRuTY7CpsSM6/jdTFC2wFylfVXndXNgV7XWkEAqM5BoJWH21jWlmqC0dt5+mIu7Iw1p6A6EyBMKbSjSrSztNkgGwILiPjtlZbth1zc4hcLwm2ebnTwQCE7SG7DTiqWxFKAvllL24+xMfL+ZZDU00pxaXajbGxHXfMvJ+ff5lHZw8rIk/4yNDBa55uKYSzwf4mzZG27zSQXTQEbdrLIkwc6XxhipvhECaLZtAuJXSh0Hvo+0HnJfpvGhCyKFpBxDkoQlqPsN2E2uQWCy4qh5GJCkC57fd9zOOzZ7XbEzlNIrGnh+fgs0xPkPh8fn3Q8bF4UlwQvGjTKxigYe5oNi80C4fLZtesVXMz9tix92yAlBmlkYezGi0yzYpbttr+YApuJYuwIaziibDvDORdnCvWctUCtBA3amMv7ytzK9jOHuK1vp3ameHPoxUksFMFS9mbFJBpWxlEEwkctFWvvaax7uRfvJkJYOfsoyZyU2e8GYvBcXR047A90fS8JrtOJw03PMPSy3nyA4jkcrhiueq6ur3j15o6bu2t2+0HWf2lj4dXOl5zph55+twcy41m6gtr680DsO8iSaEvrIk7qs6tNJNZFkuAuJTk/vKd4X9/DHFXrEPv0+Mi8zhyfnqSJREriADpjpLVgiZWrbfVna9OdIrY5A17tSy6Cobx2zvJVd6ewzDPLeCalxPPDA+fzifPxWJ3gnJPitNZJVEpv1QYqPvabzJSteR8yXhnJMXZkH2qgAN1TL+2dNFvaLOrLv7bPfRFsMWfWlaKO+dbPcYrNSwMh+rBrca4Qo1y3fZcEnbyTlNumqtEDEpzyGsSpWMawchEJA1fNX/vMGvgyYWnbf5vyZF2VP3da17Oz/VCfbtBZbcqXQs9tL2sQ6iIc0tZZu4JqCXX8C6bFaa+t5cj6WlfUT9AublGZQTFGYhImmAWgrPwqhqC+hZSMppTxrpB8096tTCIvay7GxpoKNJtqOMm630pVR2MRv1gCdU4uzrWNL7o1tg272tM2WEvZTbk2aynNiS0WuKOtke2j7vMvr4uXT/25rbGdL2eNAAT7BSXT1LOcds5f+DB1SRlGVmzJixK46tw0UQrBUIIiRMcJwVHe3jdfYP7SPuaL+7XKCQsIU6/vEt2Lr7iR2KhL+V8ZIH384mCT1V+mXBjHmegLdBK8qBlFgaIEJ5HV3W6QD+m0brRoxsKEkzdfJWu03DLXJeFLYdcnuj7h/IwPTzgf2XWFoS9El9i5SPRwOPR0QyD2ki0zZ2yZF5kU73BFBA/P57M4KnNHFwPj6UiaZvK6EJxj6Dturvd88+tX7A97fByEIZXP/PjTdzw8fiKRyS6xrAuPx0dhNdXSJIfrAhRrvyiZaa/MnxC0FW+RTLq0/YR+GISV5b3S4pueTuw6hmHA5VXep3iG3Y7DcMV+f83V9Q3Dbk/sO0IUgXAfIk0Z2TJ1JuvWFvHWcZeWv8JqaYEiK5HctDB2ZvS4WIy2eO1nb5GAIhu26IGwZTaVIlnOXArjPIsI+DRLZ7VZMu6ljEz9xPv3PxG8Z3c48OrNW0IMkgldFlg8fp7AiaC9A66vbvjd3/ye3bBnGn9D8EI5v3+45/PnB25u33J3c2CeFj4myOeVt6/f8Ouvv+Zwtedv/8Pf8vrta3wUhk5BxdCRSLIPEnS4ff0KHwqPnwPHp/csM+S8Mo0nQgxcXe/ph4GhK1wfek6nE+OyCP0zz5ynUY6embqZm7GR76uusZRWYX19dMzzwul0ppSiGlWmEZCrgU4ls2oJw7KsIjpvbImN6TFHsGo7aVA0hEC6SnRdhys79s6xLDOf/vxHHh8+8+npnnmRzl/TvEAuTNO80SCTDgkhZnDS5af4gvd6CPsgNGnVHCilEGNWoKyAy5zpuk71mksTr68aI2b9s2VFzO6UalgppepZNTtph7kF+yTw4lwDWEnLDpyHYRAx1DV3hC7UwJI4k1KeEaKjP3uWORALpH4SsVAttZJDymvHF91TqQVPTTAybYLh0p4b2PTpymnVA8rX695syHr/AmDL5sBTe+UCOTupnClFA0s6XinXw1sCH5t3N9+WS8deqqscyRgX2vEx56IdHjPBZ9jJ+07rmVyK6GhcHSB6rvZ7go9MoaPMidQlvD/Q4hGFdRatl0kZfVE7M9o8y+8kmNx1PX3fyxpToOccUn5QCjmPzLOvZ1EpohuH0rMtGLg9rK1ds+nJ+eCJKvIrCMXW5xYca/ZX25e3Bb3RTyuQtcNhUZaflGiI5lnbEw7pFgYlJ7KC7FYQ2f5/kWHWvYYDggRM7br7LupZZQDF4bM6Uzhpz62OU1LtETMgDqqD3s6VzYgVgfPBzogCna3jIGXNJYsGTUmZlcJaSgVV9Z30H9UZy7kKRgcd16z3WcGjgWwXvgS6/w6PoDp2a8ocTyNDV+CusQ1KaZng4AOxE9F6OY9DC0plkSagiAWopRt5k83MGa/7+GpIHHarMC+7I84Hhm5l1yUChd5HovMi9jyIqDe+kJ2Umc3zpEHGgi+BZRo5Hp8owJD3xL5nGo9qtwp9PxBcz92rW371zVfs9ntiP1CYOZ0f+fOf/0g/DKSSWLPYSQuEWBAoBBiGjtJp99Ikmfwu9pvAkRiClIqW5XkRZO4HEqWytKNJN6gGJ0W/e9jt9txc3bDbH+h3A90w4LwThqQvhOK5BP0gGThXz6pUCkW7QJrzI2eQZvOhOpsheIKTQJS0Bm+2KOXEvMw1aGfOUvGlOjseKN5LOaDZ9Vz0fm7Y5cTxODVN0IKcx+PI/aePnIaB16/fSIKy79lf7aXsa1mkqQOOsxcJgeeHR7oYuTpc8Ztvf0Pf90zjmfP5BM7z9PTE+Tzy2/2e169uGMeeDz/s8cz8+te/5h/+7m+5uj7wd3//W16/uaW4QC5aTlIAHD56hn1P7Dw3r6S07/jUcTw/kFZhnE3jyNAP3NzeEUOgHwYOhwOPT0/89OmeZcmM48LzswbQvNgWKbvScnvdG8ssjV9KKXy4/4nsijSDmUT/0/V9ZQRa2ZCxC5dlYhqP0qGOpoO6ajLMmKc4VM8GYVnpusvc0PUdZV7hODJPE3/+07/w8HDP0+lR9r53zMvK6TQxjrME0VZjekOIHb0mBYpriYPY9YrZIt5LqWnpel0jyqgoyj5sHi46OO15FnSUq29rDE1wZIOXrtoZK7+vzCAvFS6SDEvNgdW/mwyL97DfR9VlFe3LeZZGQSkVnf+FKcLpJLInorvaCS41dqvuS6f7rpQiesJZHeligbpU7X5QDJRVO0/vtu3xuuXr6VmxYjZNQy1rtLPOMKMkPuz8NeZTC660YEaLwGwTo3YRdglSCUKtCGjJihXnPZ3OzzJLE4jYdRz2+3r5VmpmEjj7/Y7dIMHi5+cnlmVhnEbWddHAUao4M6tg96BNXbrYM/S9vLXo5+C802QfaKPtyri0jqpOx7cGnZpZbCQEZ5UU1fxVtmfRhVeDNYq3YgjaoTMI2xbbE7YRC0XP0xD8JSy2704Y74Zl2bz84nm6Surrlc4uCXnwXSB0rgabJOmgLNmClM+i35025CpUbScHWmmt++jCB7R1QW0OFhWJr8DikPM+FGEw56Jl+JlUqmKN6lnRMLyeXw7I3gvGUgxVKyQsOGzXiMMFK+3cjtC//vjFwSavpT1FB6cW+tSdaQNkz29Zyi01a8tc+mIU7aJLm9bgJWvpfSbGFe8Lux52PXgynZOSoRAaW8heXB0OoKRM8VK2k1bZEckJsymntR4sQSO+XRcZdj27XU92XpkqK9N4lsxDSaxFxGpFSFAdZzUi4u9JZD/XxaNZuQ2DyYQtYQtUXoB3pwKJobW7tHrVqBTz2HU1O2dtRiWbYg6pTUxrWb1dxhap3FJJ7bWmimDioXKLrYzJ1oUt4VLau5s/oxPL1vWQshtlc7igTpsEL53XA7+yIASET+PE6XwSTa6Sofh64InTqLTVLEyfLnY456SjxX7H9fU17uTJnz4xzwLsuhgpuRC1w9J+GLi7u+Xq+sDd3S23dzesuTCbLoutc82iEAJd3zHsdvT9UOfInHsRipSsQNf35DRIR0fjNqtxNMfewMBLFk/LNGTmSbo/LktiVqDUaae3GhgAdVSp3VikbruJo3+xA0ttBKeBCMgxsqwzOMghivFZV5bTmfHxiWU812tLWQ2cUeF1vzvncJts1JZhY9ko7wPZK3BRrQBhN2nnoHyZgauMG4oWzVyuvS9sYcEiIzUQ1zJ1an+cMQ7lBU7/XUFMfb4ym3CE6NWQZnJ2lX5r15y0Q0paV1bvRAci+AbQdH5rMMM1R8bWRctOFLTsexMQa3XetRTui9nVa1KbeGFnbP63ged6qFkGsNQgSUNPLw5nqHNax1Of40oRcGwnnX53RQMrWYLuoVgQTpmbEXJMUtKAOY7STtcYpSaorZuxWjtzzltZaFBmk1YE2HgWA+Mislozwbmwze7VcXHGtCjbW6+Boloe54wd0TLkX4z3RUnD5X7fBoeKrnY29rZ+enVoHVwET3lxhXbPxuaxOZW1bPpZPoqAZbb9YvNZtsXmbb6LDUyx+9re48VqsFMBR1ZmkyM4NswmhxVo2Mfnzetfruvten6ZobbLsIywXeJF8Gt7i//Gj9YyWrp9JZ/Vtuh86x0apKq6HLiL55Qia1PaINs+u7RNMlfyQ/AFFzLeZ0InGGroEkMn0gadduIxzUXnhcFUaAzNmunOjpzWymxa1wiKq2ADVJHg7rDbiUaPFyu9JkmOLOvKmuWrNp2x884DWfV2vJSi29qLlgRzzW42O6Tj5b00kdnYLO8aZsp1jzWbEGNUjQ1fwfgX2WybmI1DYFn7Kj+QwW2SJtXWcbn/BT44vT61xQnc2jTy6qPUj7WDqK5pYTaJDYixw+VW+r71mnOS0jvnHPM0MY+j/Lns5NzM1iHVATrf68riPV0XiTGw2w3s9gO7/V7YqWti1sTN0HeKpQSHHq6uefvuLVdXe65vr9hf7VhWGGdlKSIDLOvFQREM1Q8D0yjddUUzp1TWtHXf6vqOtPbErqtnU3VsyboWCyUINmxuElo2uZJLYlrGqhFnZf1bl7JupZzJTlk3ymxic267F8GmQjPJ5IRLnhyjOPPeEQuspbBMI9PzM6fHR+blXM/+nAVHbRsrWfMHwVDSMMJEpw0HVN9CIpQi6F9agq2UAtpsoJ4MNfCRNUDWLHWpFkn31xfG91JrxsoPnXOCjTdO6ksMJeQrccpJot0o82O6r+1jpDw+45J0MRatwbDR7ZPPNTwol9ZYRaUGnRSLIuNo2M72WEVNFuipB9n25jf+a9lcJPWlL1YPdc/+tZ8bMfnLg0jG3hp/uKq5dem96TlZJDGF+VEoXgqRFBJRExZ932sXOtWGVOmXutZK0aYSzc4EL0GdWNnhkgBAk6KWHE0VU1U4dREouhijZr4363iDTUobkcvh29h5s+9+M136nKL4VXw2JU1U/dHtLDnzXC/n7WJt1HfGvbDPzokPYxhKOrNTtS6t/NTwfvvP7q0ZeFdcw8mbe7mYaH0z79DSXWmPYF3NRXtW2OJ1/7bLoGzuvI1vwW98su3NXaCqaiO3a/iXAahfzmzyndJGA6UESnasKUubejKoYClrUcCbVKDW2AmedZ05zyfG8aRZFMk+DN1A9gmskwSBkiULGLpAiIHgHUOX8L6o3hMCKBKQJQq7pAVc4TSOLCkwjxOjKnYtzPglSJ16FcTzJBzZR3bDgRAS7m3gcLjl5ubAWjrOqwMWijvjZjidHunSwM3dHW9u35HSyvH8zLouRPdcs4teRber02oT5dAuAj2lZObzyDovDLvIsp7xobCPogdVaDXLQ99zdbjGl8wpdqw513pP50XHoRt6QheJXVQRchFhFMxjYNV9YezqtWGAxn42oObrwqu+Im3Rv1iO+r0B58u/tyxdM6Sl6hE45xkGCcYM/Y6+321KkQLn8czDwwM4x6vXrwCjgKupWNdqNDywzBPvf/qBx35gnme66Dnsd3z97iuWNfHu7Vuurw9457g57Elr4vb2hjevXxH7juFqYC1ZHB4ljATd5HbmOA/d0DGkHd1uwPc9Lq2kvDKPJ8YYeH5+YFpGjo+fOT4/Mo4j5+nMmmZubq+4ffWaeZn5+OmecRoVHOghYyAciYrn4ipjqBQqrdXhqtNt9illyR5P88j5dGSZRWg5p6T2XE3Rxm6YKF9BAgDee86nIyFE0s0tu7uMW1beJccdPd/lwKe1sGoGsDip0e66gb4btGVpxhMU1G0Cp9sDInhCJ0EFK51Iq3T5E2HztbKSjLFQO4MVpZrbvejhXUtbLbBlWiZFMh4lu3pQg5WCKnjUCTcas3WIq+NVZI31XSQGWGPQ7FvPro+iRxUcoRP20jB0DH1PDIGh63AgXQNTqQd12yU279rlR/dWgSr87ZwE4UvRzK1Onm+RgPrVAn/2pxbkNpahdcBsrMNSP6/oWqnHcbG9XurHJBOATBJELwXWLJpvXefodz191/Hu9TuuDlcVeELBeU8mEwikecE5T3SBMER8geVwIKVVRF+9Y5wmxtNYmQBD3+ODp++7TaMCLS1QXQGvgKCCdoyOriwmDZTaeF2O22aPqJE0iyo2WO2DM8DXQH1lcFJUskWuJXbWWVPZY2YvXwYBTUnMtRJqy0DX9WLr/SVotYDVZo+brx6CZ9hHQueJEWIndiZG+ZyyZpZFmGlFhctdgc45olNx1rzJNhrwt/83X0A+Vz9cHBPR+gkOMp61OIJu7ZwduURSFp3EdZUW152dJMUwxuXcGPAsuZCKKTiU7UX9n/oIsaPoGZcSmw6spkMhwQp5tGCPQxiCqUhzh/EsGIpc6FwkhIzvlM2X1JnD4TugQOw8XQQfCl2/4nwieGUWInoTIKzNaZlZk4ghB5dZppV51jK64hlDZk2F5KQrXCodpEgIV9zefiUZ9+xwGQ5XO3L2zEsGNwuIDnImO+Dq9or99YFlWXh4eGCZZ6YwEZx0hzW8ZNPonDRUseYGIQp7YjyfWZaFEB3zMuE89PuBXd+RyghlJeeFoe+4vrliPjvS9KhsKUvYSaCj3+0Ai9M4vOrxqLlH1rVno7JiXkT7qlNYxEE0e+EkMYKeJ6lImb/3wpTySClcNuZaTUJelj4VjCEgrMLsNMiRHSV7QujZ76/ICXbDQN91epniRI7nI48P91ynG66uDnhi3d/NXkASmivn85kff/yRvu9Z1oXXb+4QjdaA84Gv3rzlzas7KIWbw55lXnj95jVfffNO2NChkyCTYZnNEGlyX5oRdB1dvyN0IiBeyiosn/OJlBOhE4Ht4+MDx8dHzuOZXBJ9H3i7u+Orr94yzzM/fXgvXaGzuZClTowrEJ0ICofiydmStpqELSiT15KtsKwiujuOM+NZOsXZGF04hVtf1RjAGuTwIXAeJ2IXed1dcbW7ZZgT70rg4Hrel4XHtZCC+FghSiflYZBgrWgbJWFrxdiElF/oLzkfCFGwhaWzUloF85XMus563iWsi92q53bScksJyDQcb4F6tERSjJn8fV29SDLUEbHNI5PqlSktWM0wWbrAJa5AHx3Ze7zvCBFKzhwOPTlnoi/EkAnB0Q89u0EaA5idWBNqRxuO256Cok3oReNGf9sSKZtNa6/NRRpH1XPmxVljn1D0XpDAiwWzck7VdhsrORfDSbq/WuYDC6oUkI6Mpagmra0fuZS47zgcrlS/7BW73Y6aiFIfryC4J60Lzklw/rAbCB7WdS8JeGlTSk5JAs/zhHOw2w3KAO+q1lCtblF/0NhVFrSzNZ703mftiFk7yBYoKYl9odkXC5DSRp+SUbkbWvmy2tyamCsFH4XZackDwx+G69smpI2xBpu212B42IJifzVm8iJWKEE/6Z/ho6ffBULn8RHRRnZO1o9DMNSaFDdJQDsglTGhiE5orpUsLwAT23LxdjG1TDs4godYJJG7ZnCKV7PzEKNs15RZlSAUwdRdaV3KNQhbik2MBruz9p/YxAa2A2uahX9l2F4+fjmzyavgNpFSArl4CTatSYJQwVbIpiwuJ6klzYlSPMs613pxM1DBe4a+lw4hWvbiCJROAOQwRIbeE4Nj3yeiL5LAxQndPoG0hZauBIWMGyEs0hFi0S56LhVwCec2GjUS6yT7jmE40PWFYbgiZ6Q8i0haPM6tOJdhLpzOHX0aePf1V3z99Tes68Lw0DHPE2TrOOMIQTR6TPy20Swhdj1DP5BL4fT4yDJNDENkWUd8yMTuFYdDz7IGBSeZvpNgE2khxkhOS3WmnHeEXjI+Ub+cAiU04GUgNrHZOGowbLFsr7ExHEx/5GcofZvd+fJPtm79Jp5qmZiXAalCCzZ57+j7gWFJ9L0EK1avc+il40yhEDsRVTeqnznFltUyAbl1nnn/0w94Hzjs9+z3B2IM9N3XUBxv37zh+vrAfrfj3etXok3QBWIfyQWOS2bRYIAlfsyI2n3m4kSwtEiwKXQdfonacW7BR8fz82fi3PP58yceHu5Zl5XzLCy5N69e8e7d15zPI+N0Zl1n1iLrWeZXGWZF9gsJFbrP+OCEveUbA8VRmj6Atoqf5onxdGKeZrK1GN861Q1NY/Z6yStL1q5DytaKy8Lr2DPkwrsEAz1zCfzTmklWI4zDqRZG1/WwSAbbORHfl24sKkJra4NCcFJW4F0rh1qWRbsTZfI0SSMBLcN1Jas2AgiraKVlndrqvMwoNxBZcNoAvGBCEjVbAtWfyFqe5D1QxdpRBwiGTtrNphxIqwTLgt+Lk5gX1iQlXv3Q0/edBJtip+8hjsVWGajYJizUA9acn0JR2q0GmrT9b7I59KXSbOt8blhmlwft5aG7DTZdBqVsjbw4jS/O9FKd57Qm1lnWQspCI/ZeOhx23cC7r37F2zfvOB2febz/LI6ED5VNkZYV56TTTowDHseqrb2tXcE8L4znkXEcAXGqfPAMgwSdJMOuZSqVPbWSi5Q5kjNZnS87r5Z5YUnWZUduzrK127EzVhmW5XH2y6LApPLsFCwq0NoICvvgayKFJGco2YLz24ejwYNNByFXoKS2ZvgSDNsmKHWuNvvAOwVKkW4I+FAI0cr4ZA+kTGUool/irDmirs+1iNh7tMuyfeHBxJWtC5+B11Ko7K/gZT8mhQ5rFuC6ogzKBdYsZeYDLXljpR+t44+xHF3NstYgoDn5NTj611Dlv+0jaOkTWgoh8QQTUtXSVV8wjS5bO6AMjyKaJefzifF8hpTpnAjqh16Df2sirZngHNZZc9cHhl6CTcOwCHts40BZMHnNiUk7PSa34MmsswQcwTGnBWcBKrQJSY6QIyEeuL2R4E9AlmcInpw8SykUt1CcsBKWaSI4z9XhwNe/+hXTNEGB8/lMcKEmo2LnsW4+xsQMTuxI7Dr6YUfOmU/3HzmdTvjoWNYZH+DQ7bm6GphmCVqUvNIPHTfX15xc5vjoyUkZ4146UnYqY2CLWJxsX8dfRKtlUTXkpLa2btpNam2zzFozABmcYmwNV3Ch3WcsskbySu0mFF44HEXdyoy7JDVqg5UabMqFoR/oYoclgKEwnk48eWUUrq8lAJxzdXQvwE0InM9nfvjxB0KI7HY7Xr2+kyYBbiD4yLs3b3j76pa+7/lP/+FvpVQ5OGEWFZhmGGdaQJ4NhtI9WoIkzWI/EGIvnZTxut7P4mcoU//h4wceP30i5ZVSVrre8+ruFa9eveb4fOT56ZHxNKrjtdFy0XUpiWBYssdn0XYSMXAqFnXeV3bNmhLztDBOM+MowaaXLMLN5Fz8Q9jkoo8ZTid8CAzXb/Ds6FYJNiXXszDyh6T73QV86IjdwG7YsRsGSh6loiR4uiiBVhNHlksQjBr0ky2I6p3XdvZzvS9h2y8SnMkOWPWsFm2kUoQE4E1GQNe6xijUjmtAuAi/AETTtmIW9JzTkuWqaVZzf3auiD/WxQBIV9q+lz3ntRQ0rRPLdMJ7hJWj8iwtaS3zLMF6tZ11kSmjBUvAWnKOeo2Npaj/8wYhNXGE1Q62L7nlXP9kOdCsQWRLUFIsoSCfV3MJen2lNDtSShPOXtbMsmkaUoCrq2uurq4Y+oF3777i6nDNOI48H4+YDpbcdyYnqXaIIdLHKN0U09KaDZVC1hLpaRwlsT5IMHffD5XxaV16RfDbzlsNomFQSfUtS2GZVxYtm5NOqTrHJneh91276LVftXXitrhLv+Mr5grB0/Xa6Erfwbsm1m7lk9sgiUnBOMP7Fmiq39vXy8fPoQVvukydYKjYS/deH0oN2OBkPlNeRSvSC2MvFEcsgYBE2nMB56VpSv3M8lJKxX7ntTkXdfyy7r+kGC1lYTVRguqxJ5a8EmzdVizU/IDLPdOqaJxzONXetpe6GkX8mYH5Vx6/ONhkjxCCtN3VDWw1wLZpg/fkbUmbawdtzcaoM+g0KxqCF40J1QlxvgFDa6kYtMbdKNTCSrCyFc2MK563+uQi6VuZ0BpFNdoyJHVEsp14yGfbQq+tqkvBOe2apqK/8zwzjaOILm9KOZwzdf6o+gBmaJsj4b22NC7ttJUNnVh9qhsbfR8Rl4ZSW5luRb1VjN1rhyAt0WslGs3wK86xnd0m9UW26aW7AxuHvS7+8uL79id1f0pRSiBYZv3SF9oY743j0K6iBbnqxspNeNnavKLP87haK2/XnLOIVhevOjrLovMfa1nDuq4SqBQkohFzoDiCcyRnAU4qTboNhaugJqlmhXNBAn1aQmVzCUqRVurqPE2kdWUcz5xOR87nkWWele2SLlqoyt6hrqdq8Is4hb440Wkol8BXRwXvAjH2lOxIbhWNi1Io6lxfCC6a8SlynuI025dhWmaO00gqjmu0htt37LV8KfogxklLEoxVYkB7S2e+XHGbeftivehxoTX6IldiDn17jnUNK7bf9L2cgvvLQCd66LkvHPF6RTW46PEUclYAJpImAr5w4AKFjXByUYqrHqqoAGzQ4LOVTzpQBqK0hXVFqKx1DGycnAbFkbrs7Fy95wsq+ObWKijEUXw7tGrZTf2U+mH8tYeDtq/0etrh0z7cSmCE0eahOHIRwNj1vQYfOynXChLQ7/qOkAOZJOLDRYKJ2HltneuCCTVlBZbS3WebnTGad8141TUn7Bzr5HSRDbTD1gJJ+j/TXCh6j2aqbBhsHIuNhSKviyAeFsRtY+lV58EFnROzIfbvek6aM6Osti8C/W0KL1hXm0kzYFVy+6V8xMvEwebFxdg0/mKfBrWL4oS8oPK7Fsqp+2Y7lgbyXux75ySArqaW4GrCXDWhVBvHayZWicwKPev+raDIm7Xj4nPqMWtBge0W+D/hEbwIaMcg9iol6RDkNQNvnV19kP0kdsLkFtX266RKyQoEfF2jYrDluQ7VzIxRWJYqHOuLvQ8kZ+V8XnCJV80v5yhe1qqU7eg8V/CvHW+LfpzZNKi2Uzr1QHFSpmPn97quzPPCNE3VEdY3r3vXRG5Nk6omCvR39uW1lTzFsy4J760TsAZwgjRPsTIpuT7f9qLhKBMX1w0td6PsSBzZl40tbGAd19Z83c822T9rm9WQ6BrNOePypiRp6/ls1vf28fL0tLWwxYRbJqSV4FKU7Zzky5ogOKg6Z1ZiXzb/FsZLZl0DKUjGPHRWQihd0HxQ/RrF6MYI84qfLq9W17L9xmmwY5lrW3s7z9O61k5MXnH/uorupLDAE6euo+sCp/Moyam0UjayGhaMMaxpHTjNhzCdGgPpW5RbMXaIxK4HpMmHaf2UbHov1WVTDIXIAWhAIa9yDs3LynlZ6FKmc54+dOxcpC9SaRG9r2L9F+tK14LsqdwkQ2TyvxzfUk+wZh8VQ61FuyXb2Yb4LkG7PhpTXhLzudpUs/EWlKz2oBSqkP32nKxB1kx2HufyZr9RE2vyeR6JRvn2WsT+lxi0rDi0Sgv1MYTVEr4op7bSXPsuv5NrMw0v+xybr4sRLIL9nDP/tv3ZbdaTveJiqzsbfxsDHZfNurKzcutaeQ3QDqGn37VgRAF2w47a1Tl41VmMlQ2Z2WIPZUVufcQg5IOsup0+BPpeAnchRrz52TFU6QFoflTrHr7xFWg2q3Zfr/iw4czG6LpYoV+u17rG/MVfDSs7xX62Bi7c2C8Qvs3RBnuUVhlQjImfX4CBihcuf/Xlw+7Skl2X91Gg7i8jAATVwW2soIbLL/DlBqNtMc5WY7ZiORQneyd+ia7XbEkKn+vZLXJAL9Zf3bNuM67ND3GytS/WtW6CeiF/BZ1ePH5xsMnw6m438ObVnbTxWxLzmsh5ISoDptfAyDJ3rdNAF+i6wLQIjS0XodWREOpw3wshqmigaHNgm7hj8MIGEDDgqyZO1+fqaFjwyGUFrSHi95IpWkzUbeMoueIhi3pE9qiRzfJl9ZYKymTDOKZuJq1w/+kzxUWdmKRBi4IrEhwzuuPpdOb5+XmzoAt9X0irXMWaHIWOZXEcjzPzXDifFnb7BYrn5vqOvt/xQ/yOdT1TykwMHjRzH4PU0A59z27YEfpQGSM5m4EtmPC317H9wsHixeaqeKhsFvqXW+7SgSgXvxNMpvxEizYXceSKlZkUsabGtkmrivNmuQAfAt7q7gusywoFxrNE5B1O6O9dT1YhXwn8CKNHShbkYM5FMsMhdlwdrgmqRfTw/MCcFq7vrnF9pIRCLOK2dAHNBEsW34w/ReKYXRSB0s/rxOn5mXleiHFP7gVULPNKt2QckeA6SnYs08r5PHF//5lpGjkeT3z89IllWfl4/5lpnDcHWStpMn+0UFiTUqBFJxDnHDs/SBZURYPBqNSRofPc3UpAU0rppCRtXVcFb6tmtbIIYGYtay2+lqWUUrh/embFce0j79wNV1dXvJpHfuV2jCUxDjvWQ0+363V9Bla/4pLM/7Ku+JxFHNmELlAjq0a+lKLZ9EaPBk8XpePNMs/MqQgjKMmlOtf0eIymXbDDsO3Ri2CU8xDcFwe1bQbpwCGOSXF+U7KW8QGigkinpR1Z6arVZhiQ0/Kk/TDQ99FcfgriCPoYBOz6VQ+/dqDXTJRqmNm1utK0KJwrSKJRBrBpwFm5h1HB9T6TBVuKjlM7pKs2nwVK6tyo42N2QgMFcpuJ4BwuSLbp+uYVNzdvkO6ZA86LiP+8THRdpB8CPiaGfcS7OymRTIs6QTPTqswtJ9wzEQsWSr0EYzNd1/Hm9WtpWV5Sved27aUyupZlVbCU6jqwhIQ5vmbvgiYnimaPhHGb6zhUZ15Gvp0nRfRAfFZnxekJpvbWI4KuotsWZPzC1kkMwkozDZakTgwvGRFqaXPZlCWY3W1rtzqnxf7XHGQ21y0JFNmHXgHSqqVzKSnb1Dn2u54+Rg59L4DUta9aZqRBUZwC9MpiUGertISC00CCM5+6QEdmQPRRXOdJxbG6IsyYnJmXlVQyERi8Fx1gZS4FH2qrchOqruP1AgnZvPw8W/ff8KFH4dD33N3eiGOUF6bpTE4HuiAi+rsh4n0hp5kYZfT6HvoBwkky0qmWu4idClGcyBSlHEZ0tZyKascqpBoHxVCbs9pK73zsWFIiFQedsE/x4DtNyiiGakEMCf6REqlkXCgyJ5rmz8WpMqmrjKBlWTmfRtY18+njp+r0ztOsAq+O2Pd479jtBkLwHJ9PPD0d5azvCjFEwlJYFrkHT8++73Cl4/lppJ8St7cZciCGgZvrO2KIfOh+JGfROuxiwNPVlt2SyQ+1PKP6mxtSgzf7WplNggn1mRV0uy/226VDKe9bKNqxzOy8zQegZW3NSf4iOLxxBrbvCygzWHWotJuslBiJQzPPK86P7PaTNLFw2pVvUDb2UjQwL7bBuZWcRYzY8EPXdYQbaZAxTic+PXxiN+8Y9j1OHeEuRIqDPjiSF9yUtveg1+28lJKcpyMPD/dM45G+6wgOUlbxeB/ouo7YCZ4/n0em6cyn+5+Y55H7+4HdbseyJD4/PjHOS3WyKcL4yyXXWSmlsGoHulQ8a1nw3tMPg+CIDSAJIeB6dcReme5r0kRi68QoCUI7tzV4iscarqxjppB44Mx37jMHPH/nOt7s73haFl6XjrU4Dv1Av9/VCoXtzEuDDWX59n1jNm0Wgb3CmPGlSDLeF1flO6SjpAYRUqFkJ6Wk3U7XZ2ryBLoJUk4t4GC6WBgucAZX65HjFL/LPeQaaDI/LHjo6qKVpFTOmdXJe1vZWxcDLh5wzjF0AzHEGvRwFOnCWJp2X86XAZHtv+3nVStyjMULbAJVLUHjQ8DjSa4ASc/dRKoWoG1CW1s1yVXnQ/1RJ0lKq+azv1tJnSXQvA8cru64vnklAbhiCZREKatUZvRSvuUUX+VcWNZZ2duyb0spGpiRZkZ79qScmaeZdZ7Z7fa8e/dOBdtbybYFMUXfbBH7PKuERcXJcibbPKRVdFWDBYlzpuRV8YmWBVuQvhRJYuiabbZLsYyvyFYCkhrYiE46lndq20oRrGLJfO+CrsjU1qDhpbW0+8zmW1hpX9tfTgOmF7JMF26vGfl2RoidlCCp07N1WcRvWU0Ly0mH+13X0XUWwCyaIPPV3pRiAV6a/bLLUHxm69g6hTsgauykB5LzZBXQT8WxAnOSuZoTJIqU8nn5rKD3HLSRgXMi+J6MLad+7zbaWq2SZdV/weMXB5vsEIwhsBt60poYtT2nRMXlWrx3BCxrVKdH/2HZtJbxdciAqh7wRvhWgGAMAgS8Ew0ibxFXu0FnToZE36oeV6G2IZSzea2byZk3oAEMMdQmed4c4Go8S6GgmypJQGrSrnbGWLCzSWhukrmU2tepdi+wMfTeFicKViSava4Z75QNkwRJd10vzqWHXFZKSS3D7Dc0c10o3kQuMZBUqvNTdLxl3Wxv8q/N+SWI2a6Dlz+3TEfbvC3TU39RgVvN3uns2SGAOXPukr1lwa6cConWUl6ywgJOyV4zoWrEc5FOAwp2nQpgdnpMOKcdYOZZAk9pVd2WFmDzuhZTVto6Ta3BuaLUTcmSLctMWpM62R3gKrPJ0boPWKZ2niRglnNh1taj0zgyaxmRgaKtQLrZHivNsW4NzmkHwzrWOo4aNAs+0nUDwQtrYXVBja5m6ZCoeMkZ561rh3U2y9VRWtbE8zTiQ0/ZeSkJDR1XBLyD5AM5RlwIjdFYjZMGUmxtlC9ZG6V6h6WtEwwM6OHtNSCABS1l3zk9wIqztVbq2roAHht00AIGbmuo6hoUmwYFr1kxOwDsnqxTlCe5DYMjb9e/CVRvyqDM1HhhTeGQlsVaAmQZue2166gooGrApo6Qc7Uc0O6jli35Qi6tvp1iYRm7mAaMNoOjh3YLNrfPa+Ui9m8TvO37gavra4LviHGH96K1Vk5FyyMBl6S8uJcuOmUBVkdBAjbyWQW0nbiVIq+urYV+6ImxMU4L2rWvNGBhc56SdR40ZhMXYyvja+DGRqLUJIsOwxf20CkQqueER+bAXyrV2Voz1gquMUWwOdE5dM5tRIK3WbPLD79k72zPrp85/Dd2dXtNssdydZqrjU0akFM7GYJXbTJf1/1FsObl94truNzfl0Fd2WNKKpWsHBAV9BbvWXRdmeClt03u2rhtS73b+FV3oA3BZqx/3pH/t3vYfYfg6Yeu2gprpW64R9aIiZ7qavRtP9h5YPvSOobKgGRc9tI10DWGUNTGISFYyXW7ruRzdX4kCCtsb2MSOa0rEQFm2QQSlG7YqOjaM/aYjH4ri5D7l0RSSgm/JsVQYz0T65lbM/dRGY1Ouy85ghedIxGxNnwQiEGYEWlNrC5UrOOVRbZ2vdowYU7WBiovmE11HelZYyUK9eGa3a/zysu1tl3v9WUXP8vekx+aDuHFYqm2d7t2tp9Z6ihf+kPWfao2W6nXLG9nHc6SfcXUOmPqOjR7ZrgjJXA5sxhTWeezaMfCcRpFtkCTfKHIqSBzAEYNTxvdHBvGojp367owz1ItIJ2jAikV7fAqQe9gbCd1hEWW48SyTkzzmTUVpmURjRIvSTdJNi+qB6MB8SJBWwtYSHJBk0R1jOX/jRkiTJCcMskrsz4lFlxNDJTa+UwSpt4VgtOATZZk1bImTusijDzfs3eRne/YEVgQdriPceNobm3Yxlk2W7rZzBXHlLZm5Cl2bkrwy85z8yPlb4Go5f05OWEjlgJ5U0Zeu3Zt/DjntNGHLXLqFqg22fsL364yU+2JvjncwTu2W8q55usEvzl/7KM259AXzvlmjKy7rlxXvjwqnVz/NvDRzjhUJL7IQeW24uINLYhtKJvlbZiybJ7fmLx1bmwrOFe1THf7PTc3t4K/1Z+Z5zPjdKz2yXsRVu9yr7g2SbJT2Xo21nLGavdLl1i917MgsNtJKbIk+tZ266VU38USdVahU+/7BX4qNv5OGJIvA8tfGMPNY2sfL/W3XR1b066rulG2Qze20bm2NraPl1iv+gOlBfTre1wIv2/ml7oqLv5a99FmvxmGarfcsF+NjbxgBv0cvnx5D/b+NmiG5Z13uCzspqBnX/EeVxzJ4ivZWRgO5yxZvmExui+/7HMv/Iw6IM429L9+4fr45WV0GhzZ7wYO+4FlXrgv4jDntHB8egIH03JiTQuf7z/z/v1PlCxZ6OADp+nEw/M90yjlQtFLFslFr7PouTi0HUqdtEIW2/R1ewq95MW9Zz00TO+AGshQkUJbTLXMrJDNiCrHzAFRKdUSzRaAEmNP3w/cXN/w9u1brRWVz12WzDKrhoykeBmGjqurfRXfyznT95Guiwrge0IMWk6QRUD3qzd89dU7zvPI4/GBjHQROx2fScssgaYuMAw9u34nNfJ6ABPAKSq3Wl/Rh1CXRcfugtnkvtyc9thuzJdiZaW05wB189vvXHWUNieaPiqgsZ8RsHd1fcXVzS3nceTp6QnvAg8PD/xw/EGFrUUo8Pj8zIf37xl2O+7uXqlz6xuwdtpSvpiWTK7R2pRMaHFUhnNhPlxxe30lmdjrPYN1ZnJBy3ictuumOmbzMvHp05Fpmvnuuz/zw/fvcTihpHrP6RGmaWLQ7IAcAEGNvhctgHlhXhKn00QumXGaVaSYOkDm9G0fF4EIZYGltBDOQQ2H35yjUmqaFhNSl/p2adHZUYA+9xhFs1xkhRTWmqhjjNB1XLnAEG8IfuD6fM2v9zecy0rpe5YgAvV2UNUAjfNi3HOpnVl8kG43lwbf1UOjFG9bvN17yqyxI5RM9BaYsK1cKNpd0oRWizPdoazgWzMI6thqZVxd49X50H/nGlCXjLEAnCZAUYGOa+9Tim2QVm/u4Auh7todA+rnJaBkCSp7BcsWOBFRTNu/GRNAbytEmSNQDzXvRQA650K2VtBF/ldcqbpPFgCpe7koDVtZVa6Ypp7WmbsNmASw0jUSaxpZ08x5PJIzjOOZ4+mk3TpGnp4Hrva3vLp7h8MxL8qkSUnmDMuM6XyvFuy38tlcxzKlpjW1Zgkq1ffSsbsAM66xNGuQG7RsQYFSaiBjc7bDC0up4Yo6XhWT68lsgDN6OWpjEJZuQQTJhe1jGhIWUHQVJJodR/eiJSkE/F0yrmxdOf46amnBWwHXOQnL1nsoWRicy5JYl6IaBApUrbQYYaGmDDkKoKmOxcvP0oioBF5d3V8tkO02C7cQSqGnSNMOMgknrYJDkHa+a9Lfw4rsteClXa8321I2c2sOeSm1HNg2i63XLwU4/+0eWefusN+ziz0piR5NSjPzdOL56ZFSMo/Pj4zzxNPDA58+fKSUwm43EGPH4+NnPn78KEmKUrQlteiziF3QWCeiyWMBTivdLdga2TqgygitjonQ7SuFF8NOsi9TsqATG/uljnpp+AksWKWaR8j8H/Z7ht2eV7d33L1+1dY6bLp9GT7JDLueq+uDrB8nmdxuCOx3gwaTRGtESkAifd/x9u0r3r19Q3go3D8Ii3peRk7nJ/Ka6IeIK5Fh6Om1aUMukqF3QfFmMXu9cShw6vtZSYPaCd/G0x7NbteTGO8bg8JSQ80h3JZ9advxja3agv/aWKW0Ug0Qe311daDvO07HI+9/+IFpHDkdj3y+P4n99p6UE09PT3z48IFhGLi+uWa/34MGLkMMpOQrU0fYo+DcorYo8fB4Tzx3ZFdIvnB1uOL6+oaCiBJH3V/ByVr0aClodSALT0/P/PDhA9M48dMPP/Jw/4Bzheg9rotMU2GeZwbtfijncsvAz5OIdk/Tgg+jnDVzIuVyscYt2WCONAVtkqK2cpE5mJdZArdycGK2Us5uKKlU3CqJXmENmhNez3Vj729YNqviK+mo19Pj2C2BXfbczie+2l0xe2HuFduPtm6cSGU4XO1wnEJgtUCYsrHcxhh7bfVeL6kUZbcVYtez2+2xpE7dr06Sj+syazBO9mApGZ9LxcsSPGqOa8lW6tm0ZpxDWd9QSqprve873cuanEPXMGiHUpkj61S79WcNQ1mXTFsTTSfKAu9cMLyLvqedPajIdcVjSEK42p1ayu90LB0RYWWVXLSKJlcTaftwMwPmelYM0M5ptaqGEbZ7X4/mZZk4nh6hoGWhWfSV5pEuRvrBsSxHuv7AfndLLtKIYV0WGWvFTrKEsgZnZ/V/jOlte1s6UVrSo+GqhOmV1qBbkfdr49Tskdg3IYUkxN+hlLaON+bxIunUwPv2Ce2fOqbeWZdvRIs5w7qk6qPY6y1wkl2uJXOmMFU/t1z6q1vbupm++v/2e0sCNECZM7hUtMRXsNy6CGYVIfEg/qNhKFdIecWXUEuPZe1fPrbY9AKnimHTETOMI2evL8IWFM2mpGW5RexDLsLs1ShgwDQBJfjrHBefZzPSArY2HgXDqvhQmWj/o8cvZzatchHXN1dc314xjSPTeKTklZwWnh+fKGRO0zNrmvn48QM//fi9ZqTkMS0Tx/GZtC7M01QF7Iyt5L1ovbTOT81JoCDCyDX4IUDGWiC2JxXpjpc3+j/qQAtwN2AvM+I2G9wcupJlAqgUSytnENHjvt9xd3vH1199pdFK7SSThFWzrisPz49ySO46cHtSyozjyLqu9H1kGKQM7vbVHfv9TmqB1kTfd3zzzTu+/uYbHo+PLGViTTNrmjken3BFgi0+dgzDwH63Zxj6ahxcciriuQk2pVL/rXUHF5vdnFxzQ14+LGBgEU4wW9Deo27cwuXvLFCyAVzVaDlq1wLLflxf33D3+g3TNPP8dCL6HrLjL3/6nmleCKklQXyQNp7WGncYBm5vbsShK54ShRaepplSShU/XLx0ZAteuhOmZWa6uub25paSCp7CYb8nBth1nk5p9cWAhy6ZT+eZj+8/cDyd+NMf/8Cf//Q9tze3fPub3xFD4B6YplFbtFuAwxOjUGVXze4uS2Kek67drYNUPdY65ttsaFvfMt/ns41wM1xbjSDrkChMOAMpodbyiy6CiDk7pYRajb8Bi7nAVGBXHLsS8cVzM574m6tbTmnhsXc8RnX+cq7ZRBMaXNXhWsMqTngR56C1BS/VFsCXEXYQpy1GcUhCPwgbpZjQbSGvk9alJ9JqhlJE87yOsbMOEDRGjjnD24CTDG/TRzGKvRwgUe2FUuedY9VAkAEX2QWbHE8NMJh30OICPhglXg9vpxo01eZpmUmUF6wbgFDXh3P1em2ftOBZIWcLNjlW27/e9rNksHWXYkjPuobU7KyuMZuri+yll+zusp7JuXA6njUDPXE8nfHeMc2fGYbIr371LV999ZU4u88iQpmyCdlmKcOpGmcSQLKAc07bgGiuZRKrjkcNxphzYdbHnDf9soCqBeVCiOJgKQMufREErdNa36+uTUOQm7/bc4KXfWYNI3IpZGUzGjvP5kDe0mPBegO45tDI55mAo12Dq4mSAi07VzYwruGlul4EKKkOWnHkBPOUmadM13sGEy/2olHmUA0VV0jOVybSVh/QxqMoI1LjvDoWvjrc7XAXoBQQGngucoY7HMmJnkROmdWLo78WVL0QuhCqsGbJzXbaDZqQKcUAqZYWW4D0F8Gk/2MeWTHU1eHA9WHPNI18//1fWJaJcTry9NCRcuLTwyfO45nPn+55/8OPpGxtqz3jdOLx6VHK6HJmv9+39eXU8juvzVzsxNLPL6jD25wih9dSFwW9DkDLqLYOgdo5+27sYc0h6PNsgZlz4VXc2oHuKe89h8MVh8MVr1+/5u27d+0cciLwvSwza1o5HZ9Z1oXdvieXg+zzJZFToRsih+sdMUT2u4OUXamobd93fP3VG7766i25zMqUSMzziePpgehFBDeGyG430Pe9rLEs9sMXTwkaPFA7nTdOYk2hlbxZU76yjg2Tl1w2gam2Tw03WZbZPGnnHG7jKOcKVNujMVJytV3JcIKugZvraw6HPafTie/+/BfOpzMlZ97/tGpnRynFopgGa8+6LuSc6Pqeq5trQgisaatRKg7qsohjOs+OeR7xwTOnhSktXF/fcHv3GlTk/bDb4SjEKBn3SJPjEEjl+HB65l/+8R85Hk88PxwZjyO73cCr2zu8lzmZxlECI5g+j6wXnGOaZk6nsyQItKw4v3AkwX5WRzrpZJpMhtuaRpsTNXho23dlU3S+q/vNqgg61UltQTCPd3Gzp9Q+6Y5cSmEqhSHDbsrsl8LdfOZX+2tGVzjGjrnuxZb4CqFpWGXXkmEhBGlKUysaFENhLKB2JDltRtF1PSiro+8CVn5mSZ3ZwbpYSb6VSykO8RpAdU3DrxRjkhmGap8r61YxlJeSTe9bmW8u0sgmZymhFmFpaBw62Aa1bW8k7eDqg8ebbMRmDKq/sgnYmuMR9X2XVfaEK0XV1W1v0c61GujyeF8gFxyJXFzVWmuM8o12j9lYff3GRarjYgEqK+czEzGvI+UoOOd0OrIuC8uyqkxHIHSJcTrw+tU77u7uAM/zswSUQA91LEDhWda1auOtqyXr8mYspTzW8NQlA6itQ6wJkPki9TyQRG7wKmdRMusqa9ht1nLdj3aeOAf+RRjCfJ9t9EV9Au9F4N5w3rq0hDiK6aPuR1JhVRv+cx0FKwu6lBasVNR1ET4pl7ak/dxwh8UVSpaf11mIJ3Hw9H0khsZWxomvLqzHoAmUssFD248qF3MiOHUTs6jBM1lVQcfKkjsOSAECUQLU61qDTdaZLrq2X7dnju1gY3s2rSfaut7GaP4Hj18cbJrOIzjHbicMCMnKHTkeHwSYr3Jz5/mZNS08Pz5yPp02teiwpJllmsVByhbk8DX71a56uyjbRs122lfjbdv2JYpu173Vs7iMpLbF1hCZ/btUkUNztpwGwozSGaLoUIG0E5XMj6dkL1TitLLtQiQlVx6QMpKcV1IuzNMZSAQnXX5ylq5903zmfDry8PCZp6dH5nFUsJfB5Too7mfGrHlC+k+3+fHFwrDbt787BZvNNriLxdSi25vh3mzGcuHdUDcBoPWwlw873J0TAFLyyjydWJeVGB2Hfc/11YFXd7eM08SaJlKSLNc6S5ZtPJ85Dz05rfRRjJ0ZplI21Nos7aMtICbgaVFNAM/j4wOFQtd5bm6upGzEgdMyKMvcWHvV83nk8/0Dx9OJnLK0tY8CqQxcGvgwgw7QSh23xkqzBTr+baC2DmYb62roN86VOHhoVU/RuZKuZeDad82iOOcJuQWVjNnhtdTOAI68xgyxE2cGNVSImG8XA50v0g7UC6ho9Oks9dS54DVg4rZrY2v867r70g20tWeBAYp2HdSopS8OSqa4QK2J1jJA0xiBgvelGm6n6ney9pVx8eUnV0eh3teG1VS2O0jH6dIAaxmKHdzVTJUqON8o1+1m5dLs4Nts5M142DW0CFAbvApekDmRs121pyzQ3m4RV4QFIY5kufibjkJ9jYWmvdU/1XsW5ssyKbBZFg2KpToG67LiyFJGOp21tAf6vmNZF5ZR9PJyWshpJhUh1kqVoZXDlQsTU8e1UMf5i0A47XC+BB5tj10+r5WlVsBoe1ZBq63HOi4vprF6qJv3NbZApTYUoJiGgbyHCPO2YJkBvovAYmlrwqnYrgHsLxMD1HspmzEr0qleEiWrMQDrgfji3NwsXtfux9aqaSRtz+W23t0m8Hk51vV3BQ1qaxCYIrpQ3uGKJ3kvzniWcklQ59XW/+XNykXqcWRBfNtnF7GRf6fHMkmn2tRJqdG6LpxOzzw9PWJixSknHp8eGKeR0/OzlllnKX1wThIXGnCFlihq51M1Cno+bEyDBjlUXeLFYjVo+uXjIohXdBRNkEuPMZm/y7Fv7E8nMTBgW7YWg6frxIGep3N1fERzJFUcVZByddPFk8/JrGmhlIybYF2E6R3jAQhM05nn50eOz488PX3m6fmBeZ4u9vwlkLn8usQ0+t32/MVvt8Db/t2YO+0J23Eumznh4n2w128coaJ4oGGvjf2y65WJAudY15lxzMzzSN9Hrq+vmKaR29tb6aSmz885M00zJWfO5zOxi/TrKgLBVbdIp3lbnqRXnUumJFjmifNRNLWeHh9ElN0Xbq52pBAoxbCFA21XL1qvidPxxNPjE6fTmZJL7dYqwQ1dOspiKrlIkoEthpL11Tplbcd6O8alBQUs8Wrr2UyezXEpFL95h4JWVHjwBY8n+4z3ImRONpmPQE6KFb2WeWrSWvZIkGSQLQsHwTmilyqKGAPRSSc4p8Etpz6SD4FQ1Afa+C/2Rrbu7ECys9qYQxVv2XO9JfnluowdJOXqScc3YQxwMBao6H/Z2djszqUOTU1eVyzagmMWjDIkUffM9qvuozaZNQlb1339w0UAYRscufD5NmO3PcYENrnW+p2GpyouU5hT9DNMtsPK3ev+LxpA0w9pQf32sS3wpH/3TrUefVtra2JFuzCn9RL3lMIyi98yTRPLMlW/1ALHiwaWctKug8qUzJRWuWB2hBemu0WTLuyg7Y/6tQnitLsrF29Tx7n67O7iveqaZTPv9oT84vzKmjzK9tmX68cwr4nIJ1O2vlwtL+7nwszpL1+CuHYf5t/WBKG65DkVsitkbxjq8kMqd9DWSQOUL9Zl8y+343bxcIalNj5A9c5cJXB4xJ/0CKtKtKm9sNFVOsVu99Kx19s3HMkWS2/+RoOEvwRK/eJg0/d//A7nHGl9Sxwcj4+f+ed//i+8f/8DndvRuZ1sgrSQSmJd5nq4qxt9CURzIcb+wqBI9qhlbDZj2xzyQm3DLuOTLrRqnG1v5yipVP0dowZumQvGqNoGYEqwz2ysjuCl917X74ixk4zY0HF11XMej/z0w184nY412IRz+ChBhjUtrHnBORj2EefEGIzzE3nM3N9/T0orN1fXvHv9hmXo+eGnyNP4wI8//MB/+d/+N56fHvnx+z/DPAug95oNV4BKKRpACLTRtG4Pel8VxBs6bA536y7U8FHDrA2g+83irpuvGpSyebF+xOb9trir2aZSXxcDZA+n0z0fP/1ZSgQ6x6++vuXq0EmwaRz545/+hY8f35Nz5vT0BDjWeeLh03thNt3d0nU9t3evubm5w3vJ3DnnmZcZFglU5ZwoLnF8Xjkenwgxcv/4mX7o+du//Vu8KwzDjtvrawGxIWq5IsyzZF7/9Mfv+H/83/8XzuPEV+/e8Xe/+704k8vEqtno6+s7hmHHNE9kCqlAHHbEfocPEecihZWs9dIWeHVqAEqBVFIVNL4Yu82BsP1yFUgX8ub3lQ2lekI4i5LL4Wmf7b2UtQmdPorIbC+lsK7vod8xOM+u9NwQidFRrg5QVoZdphsKse8JfUfoIkEtbMmFuKYNIMz1Hlwp9cBs8HmDAuuSkwBT10XMyrlCAzgGRByQVIyySItpCzJ506Qi131Qsm9OhY5vXZ6ow+t8Bb5gNu3STlVdKTPgAo1lXSj7psDFgdKsdgNdlsUkIYCm+NYBJZuz0jQs6uh4R3Fit4w8YkvFuSyaSQ5cVoHP0g7irPfV6vQ3m9a2uNbKe9Ok8tvuLzIf4/HI6fmZUoSFUvQAjUGyRtN5ZDwXuviRYfgDu2HH69ff8OrVGx4+R46PR6Yx8fD+E6eHR8KuZ/f6Ghe9At0Ny2rrMJgd2oBSmUrbC9Z9JNdSPBN1NWcGXxDh+UVfpyWndU7l7BJZJicliDpn1j3Ixl0c5wzFK9XYk6Yi1ECZIaRQzJItXro5+sCcZpY06jw0tprdYTY9AF3X24lqDrW7AHzVSUyFlYJPDkfAB0dZCnmx0iFZV5TCumYoTmwQDlzEB+nSWbOBBQHqRTLFOa/VeXGYY9gy9NC055yTvSsZbmPdSBmNF8QELigbeSdM6bQyLxO+iJMWlMkT8mW4xMLaBbREUG2jnne6E/n3enz+/hEcpNcjiTOPD5/5r//1f+XDTz8x9Hv2wxWlFMZ5FlbJukqmuhRlX7QyOBCn10ebA7NJ8v9SpGynoUNZF6thpSACvQCpSAq6BtFdc/Sydi6rDl2R+Qzdrs5xPeu3oKDacxXDV0Aa+0Gd0szQO26uIs/PT/zxX/4bT09P7PdX7PdXZArjOpFyJnhP14e6H1OCNU88Psv+mE4n1nnh7du3/P53vyOXjj/84Yk//gl++OE7/t//5f/F8/MTnz69h5Kk/GIVyYGURQfTIr9NAano8SMOoPZ+lbG2NaSvcE4ShbVseeMgGDDH5sV6vzvFmIDRW73tfyCHIPqjWYNqOu9OPB22JYtqEaREohSen554fron58zNTc/Nze/55uEdX331NeN54vvvv+P+/p6SCo+fH3DOcTqf2H3oGXY7bl/d0XUd1ze3XF1d4byn7weccyyaPChF7L0j83j/wOdPD/R9z+npkcPhit/9/nfg/jN917EbhEXWddLEJqfC+4/3PB9P/OEPf+S//f/+iWVe+Nu/+z2/+vU3rPPC+SiJaucC+/0NXbdjnha1hZ6uPxDjhPc9znVQhK0u9sbXshAJehSWVCrz07Z8adPc7KRR2FyuAac1S1Cz1BdR51/OYMNNqsspFwGulSQ6J/qrPgRcjLiuxxXPvnTcuMBDH+ivdyRX6Pc7yjDQ94N0cO17CJHQmW9k5TT2me17W2sWEHYVNwjbSfZxCBF66r1kp+X2nWh/SlDXSZWElpyFqEHAlFhXTy1LtHFRvLP1jy0oHkxvFwtoOQ2uN8aTr3ZH5sJbgrAgTNcizXiS8loljqBnXKbZrYrDhEHMxj+s02cIyjntBlxAA2hyZMvsVgauMlJKzhACSc/3oo1vnJNOwlk7jVkzDAtgmVfWEo6GocATKEHwbEqZkgrrtFyWgBXpwNqFDgo8Phx5fjqRVuiGjr7v2R9ecfPqjoePD/zlpwfmceJ8emIaz3S7jv3tNS54UtGYa8qawLP17xTvGgLPFUdlxXu10YpKYRTFicJSkmRAcmtNiJQi5ZB1LVZTWAEbLmgbIx8IQbFyylU+pF6aVtg0P8gRfASt3rCAtiWEU5oppI2Mqa3NDSgCSnG12qnFfPT+65zp+lE8nTOkRXzWglQ2lZApS2rXph00pZNqwfSZnYuiZ+oEu1jZqHRipna3d14aLbQgrOyHUBNM1LJCrwk5sgTxhbGk+91LN8ecCy53rD5AXqWhGdppWINSvlykzuv+ajayXHR8z0lYfs1J+OuPXxxsOj4+471jPF+xLDPTdObh4ROfPv6EzxGfxBFfy3ohLGrLxYyd85dtwMtFpKcFmZrj4OrP5qBtuQSFvF03VCOrJ4UFmbbvuy37qPW87eUvDLarQMCHqKVIJmDpcGROpycenx7IOZCTCq8dDoQYtT52xTnRVRB68syyTqzryvHpgXkaIa/cXu9xLvN8emRh4eOn9/z4/V94fnri9Pyk1IRCcYmSm2aALe4auNNhqwEkNcJfjlN7ntvc//bfF/+s72OQts1bm8aLD5HXbn9VXj5N14okjViWkaenj4Dj5uoVw2FPCIEu7jiPI58/f+Dp8TPLsjCdBQScWFmmyDT0QJZ6+H7HYX8FUSnPIUi21K1yvQj4SArqcXCezvgYuL294fj8TEqJrpP6+b6ToCPAvCzM88rT45GffvzAOE589fYdtze3zPPE8fgk1FwvYslSmpNAs4ohigigNxZNAaMq+tLm0YBSMrp32ewNM9abYJJRU9WlhCKdibJ2lbL2xdmAlwVl7JDWgErwtsaDtsr27PIgP7siukUuEEh0OFan7bWLI8SE91kDwhKcqQvMKZPHrvWF0bd16kAYaLo+LuMyTbC4Zir1dRag8d6TvTAgnArZGt2zCYCabflSMLouT7M31dBvAtSbjE69C2dZPqPlNvvlnCO5Vk632To1ICTft4wUnR+1WfaDZfhaVrG9mWUUbTzbuEIpvoIwyzYaaK7X4qWM1IJTL8fdMofZbT9rU+qXC2ldmKZF/hYCTdtK7mVRGvd4PvP8/EBKC2/ffsP+sNOSj0BaHOPTyNPHR4abPeHQEUrX3EFdR5QWLKtztomwNObS5X6pLIpNOepl0LZpX7EZx+3n1CMKNgLV9rzN51omcfOd6qRYqbb82zsJ6q4uI+K2tg6383yB1Tb7o1yY3+2+aYuiVEcRBCxUBGWI3aBx0YCZp46JdMzb3ufl+xcVa69lHE7DPVs7sx3UCkBL/UwA27XBi9B1dtTOQLkUkpZsZCdXHeo7tv/Xf1W0xOWjUJnP/x6P6TQD0O2hmwun8cj9/Qc+fPiBLuwYwh6ANas2mmvZdHOXnDeh1+1Ybp5AS+rVgLaAL3GA7Jyx/bHdPdqlxc4ee9Qsch0qrwkJr1V7avNAg472ZFdLuywBKMEnuWDvoY8OysrT4yc+ffrEzc1ruRQHU15JZIauo4u92ifBE6sG4tK68PTwmfF8ph8C6/oNzmXO45l5mfjp/Q+8f/8Dx+Mz0zTWexXmzCY5wYuyw82eu4QslsyhYiUrB/Lwwga4i9c1QyL/dmzt+vbcRwJRXscxbd+lbfr6bztqNPE6jUc+f36Pc443b37N4XBLF3uc6zmfzjw8PPD48ERKC9MsZTc5r0xjYJgm8CJP0HU9+/1eNJdCK2FpC0OuZ54mxnHS0rbMbr/j5vbA8fQtaz9QiuoQFehDz5oSp+OZh4dnPn9+4uH+UfCSg6vrA+fTieOTMP+ckw5q3gfV0VspRRJiFY9bx67qMLqqB+Scq057ZTRtbMIFtjA7ke3cledndeCsQ9/W7joHluJtlRJO2o/puEXV8Ex5Jz+XHmnUHYgEegKdd/guSGmNdt8OQXCr94HgfI0KVEF519ZQs3c2BnqfrjGbtthCWP+XYpgmIl1clrENiYLgucaiLSQHpQRMk0fGImOh04orq23V+dDkRNBMQ3JtRdd9oGu/nhUg7G7tmFVca1xhz687q9Qb3+wnw32G0WzdUvGS32Am8w/b6WF7U//uNxiqgDVwwCPXmK2EkWa89Z0ucFmhCqbb/peE8lqTYesqCeiW4FQCQYF5Ut9nf+Z0fiaXPTe3bzgcDhwfTqxzZjqvnJ5OjKcnhnVPvx8IdHWJWxKwlHYNL61dPThf4KKsUjd5aw+qXc1tL+m6uWTotFPH3ttsnwl/p7J5D+Q8yKUFNbbniVVlmI6bCujhWDf7uyWjNy5su4ovfq/4zTAcF7ej0gt6XiSbzyJ+S8WLMp4t4a83gpVNmq5uO6eLYi7pKCsBqu1ZcsFidnUkNFlHO4Np2k7BWUBJAqu+OFiFqemQxlcN+b2wI/az3rztm7KJNZT0c+Dqy8cvDjYZRXVZZ8Z1ZE4TpUinoK6L7AZpmanNtVuNMaKVs6pYa8pb4yJ3cQn2L39nA+0cF4EhAwlO1191zh1gE1lM+6XgtG15jKK7JJTRWB2mLd3Srs02+JbKOq8LuRT+8pc/c5oeWJaRx4d7pnlkHBPjqFkfhS45KWvFgXU/OZ9OPD89SaRWyWzPD88cPz/ivGdKC3NKnI9nPn+8Jy2JGGDoDuSyksqoAr1NA2Q7nmZMixnjDeZslhbM+d8MdHtsNox9eXNMHW0DqQaNLED9VBvDsnmvulNhy1Yx1lRRYY+0rMxn0dxZzqNSiTtc3NHFwm9/+ytev7nj+Hzkw/uPLMvMPI+sywwZzqeReVrw7iPTuND1Pdc3N9JiXo0SNJ2e8/nE09OTaB/o2u1ix2635/r6mt//ze959eo1ZV8Y4iCgPUsk/O7VK/7n/+n/wjTPDEPP4/Nn5nHk6fEzOWWuDwfubr8SMcaDZBVOpxOnMRNCpO8HhmFgXmbdS17E9EOs3WRSzpTziXltOlxbT3MbYKqaGphDW77ohGgLwiL5xjt03iEaZrkGEtY14VU407rN+PBE6HrOOL7LEVc8x2ni4XxidPDoIiuedVlZk9bD2/rcAHtvTCHvG7gvcgIbZiibtXphymxN4mrHlA0+qAKR8r7GArQDUwFYaT8752qZR32UlkGs63RzaFqwo9opA0qmXWOZUL36bXDA9lXbXxcfjAXH22foCFSA0DJOL428vcb2meA2vbbi2oEMFRRsxXuDZ9MJzS5WTlhzYg20bllRdp2FojX7Kvxp9lVvIVPqITVNC/f3D5xOE1eHnwTIZMe3v/2GdUnsfMf1/o7kM6tbSWvW08+xrCun41mcH6e2rkg2ShyEVq5WtENdtpr1UiqzaRtsMpHxi3nfngd6D2bPLmj61eGQJ23HGOco61qdA+pbtFJP080Jmh2PIdB3vQKPtV6n6VTIZ9d8KRffLgBTW1x1P1nQNxdSQunpqL5CgQ3YN4HftvZeLuStaW9BWzkvWncvWyNb0da2B3T8VDvOAiWuSOAzBqF890HOoESA0kHJrBlcyUR9n1qcrNcjTuImYK1Oj7gh5d+T2CStm4GcVsZpZp7PBAdDiAx9z34Q/aUMUJwwyIInYx22pKwl22ZqB30FgiVTxXbrQ9fdthOmg8aWMwPkWiClFoBoko3qkECIHSE2TZrKylSgvXGr6nMM+xQKT8+PjNMR/jDz8PgT5/HM8fhIzguPj594fnxiLZnjNLHkRBc8nerjTdNMUrHccTyDsgcchXkcOT494XDc33/meDyyrAvn8STnpot00c4buRevGjLBbzHU9lF46Z2oNbzYdiVninfqQG6C6zT7a2u82ZMXn1dkvW7tiiVmN5Iwsm51TzaGf2MfpHVlOo+UkvmYfuAx3lNcJMaew3XH7373LW/fvuZ0OvLp40fVg5lY00JeE6fnI1OcoMA4jnR9x9X1NTHGmqA1e0CB8Tzy+fNnnHMcT8+ETnDWfn/gcHXFr3/1G25v7vAuMneqGdQPXB0yv/rVN/xP//P/lXmZcd7xp7/8ibyszCf5/DtlV3Vdx+5wwDvPeB5FZLvr2e12zLPoeY3TiPeeYRjoYqymT2yoSnqYsdqck/Uce4GrLDDbgq0SZJDjXcWhjSW+wb2CdSQqmpN0mXY4xmnGOdGUiTGQiucvaYAS+G4+8+P4yBw9bt7j1l5Em9fEGpI0k3ihp1Ixua6XnLMGQjZ2dWN7t+u7ahvZ2oXKCMELDnWOmohtgQbFlTmJT5VaIMoEya22pjgbNxubl871JYapOGVzzZU1bUnB7Xlb99flfdb5s3NtYwxbQJGL59fpV4Mqib5LHVv3wo4GEHyuLnvFUCXo2SI4UO5YzxzDnThhUesdFIRVsmWt1CBYc7pU+FkxYsqczyMfP9wz7E50nSQrut7x9//x96zTyk/fX/P542f06BFtpixBkXVZRe8spXYe16Yz2ghEGUZrMvyRGk7ShleGiwuGoVDfVs8Pp9Pz4lxq7OuW5MPcAOc0sSSJclecssOLLWzFJ/IVQ6Qfel0rDoqj6xLDsKvB4tb4KLc5foGft48tsjObXzZ/KAWZE+0zoL+Q66vBIOoerZ+5wSPbroTli0vZBDn1vJHhzjUesvUjvHdktc8ZOY9dEdZVhyjHpqj+j/OKo4SQYMz0WD+5fW7FyNu4iO23zTn4P3r88mDTKtT4eZk4z0fGRQ4z7xxD33G721enDScdF3rNahzPZ+ZlZllWzirWXOurMSPGxsHaDHeN4mkEupT6GtvPoDQyvE5swLmAEFFkkp3qJ8WuY9jtKuvCe1cpj0ADA5uAiGQYPCXDNC+MZebhn9+T/ulEjJ7DVSQEx+eHE/efjyzLyuPziWVZa7Cp3V/h+Hzk4fNnvHO8uXvFYb8nBEcXPeu68i9/+hPvP33g5nDL129+zTDs+Prrt7x+fceaJk6jdBxwSHvgWNvMUw/RUgq8ZI5hALOBnbbdzOzRnKKNw7E9SGV+Uj2Qm0Bbo/dKnYRQPzefrvOnlEpcBU3m3Kd5Zno+sSwz5/MTyzxxdXvHm2++oesH/uE//o7d/pb7j/f8y3//I6fjiQ8//cjn+0+kNXOaj2TgdByJ3SeGYeDVmzf0fc/N7S03t7d1Y4KAqY8fP7IsC8/nE+u6Mp5HxnHk1d0r+tBLxiY7rg7yWhOCf/f2K97+394wzzP/9Z/+G999/xfG84nHjx9xwNs3/5Fvf/ctzgd86GogYJpnYowMux375SBguGSCZhSHfiDGSNd10rFuWaq4ec0kXByqBoosIJVV8wUVJt+ApQLWGUpeuzbw6qyEz9aIZvZKZk2zGv0CuXBV4M0C5wzPHu6DYwmex3DD4nYs88yyLCwhEIhVY8kO3xACUbvWVdruFkz46tNvAi7tYe+XXxAbndNugMGrcG2iFKGGF7U5ph2WU6EkBUK+va9X2rh1M9s6BXkDLreZF8FJ4mCDOvGb+7kESs2uWXnR1iaWzR6upWz1fXI9NLf7iovPsUsqdmGVlWfrQzK+8hlrNtquA+0MKtenujibQ7nNR6kgfbu+iitYd6xcBNRktX1S+mZ2x3E+T5zHka7r6LvINB356t2v+If/8J8JvuN694qPdw88nj7z3cc/sswTPoALME8Tnz8Lw7Efevqhw4KQQO06ac5X0e41L4NNWwC+LMvFz1vb1xz6VlZ84Sy+OLO267mUQpllrILSvc0GFyfC8LYXjFUYY8cwyLitSbQbRNhz1vltTkXVJahLZQvg2/8vlostqbWI2GyRMgDnwEdXg8DBSwlpQc+vl4HI+n6bPaGPlyWnFGrZhIHF6jA4E2hH50cYqMFlgukLREfCMftI1pKGdZpZc2ZARV+dqyynUtDmERsW3/Ycy82h/Pd4dK5TB/TI6Xxkmp+JDvZdx36/41pLlnxdA4HYR3LJPB6PUl63ZmENlkLR9c0GpOdcWrBJnU1zTB3g1A5sz40WUBXHCcRGoljKBwP3XjGHdNNqAWedey1jvAygy3sHZXXnsvL58Z5SEj9++COw4L1gSO88Tw/3PDwcmZeF+6cj07IoWpC1ZZpV5/OZ4/Mz3nvevXnN1eHAX7JoiS7Lwp//9D2fPn3m3bt3/P0//Ef2+x27Q6TfBdUYXSjFSoeiBs8aiJbH1tVsvypsMZTaPyf4cNvRz22+fwnU3aXTIiOoYt+SlfYKwnzwtctiKRIozup8Ou9wISD6k3I+LFqGti4znz9+JKfM7au3fP3r39L1A19/9Xd03Z5PHz/yL//4z5xOJz59fM/D4wN5WXlepLP06XgUvDwMvHrzmn4YuLm+5vrmBkAbKRRN/L0n5UQqUuI0nkfSmri7e0UfB7puABeIvbD8h2FPDD1XV1d88+tvGKeR/+V//X/yT//9H+l8YB939LHj+te/4rff/kbxidzn6XTieOwZhoHD1RVJy2rLc8a5wOGwZzfssMTIuq6M0wQsGOCtji3tHGNjN4UFaP+umwkLPGazZbmwrvJejd3qcFF+znmpdkYwVCKWQl8y5+L4pxR5zJ73PvMnn8h95G665rDsSIsk63wQRlnKWbtfh+oP1Y65GqRs2kpo46QX+F/vyeRESpEmGBddgyn0GrBb1kXPCkvMSDdwCzwlknRN9Gw+K9dxpSBanZvPy+lSf2h7eFZsXiBpuZbgU9o8bZ4re2WLz5oMS8Mo27PY5v6lk6yJqi1O0+e3z0HOF/UbSeCT3pM6otIBVAkOzpHKlomt76Xv75ytQdfEl0PAl0LxnhjlWlLesLlK0RiW3OPx+cQ4j/S9dNXErbx99RX/6R/+M64E/un/+4ofdu85z0c+nd5Lcj4lliSd5D/ff2ZdVw6HAzsV9Ldgk7Cr5Pw0NvoWQxkOrUlj51S8vp0rFmipwaZyqatm9rMlPnPFn3VmdA14jLHEBm/Leul6afYA0uTGCjdknBLrstQufNbt1Koafu7Rfm1YT/9twcMNtgN1fX27N68NYUzDy2/0uIrpa8IXR8xlUKedzSVvPpN2TFnSXbRxBecXEXejqL8mXecKwUGJDh89awhkVyBn0mxYwNFfolrBUDo3WwmibXD3r43hy8cvDjbF2NXggyyMhPeSdYlBgJHV7wM1ep+LshjMEGPA1EZ6+28bwGYULSL/cnJfeHnQ5gg7FByyEAvU3j6mIdAGyya2Cf5Wilr9CAP2zeidTmdOp3tCdMxTT4iex8cTz49nlnXl+fkkLStzqqAwq9bH+XhiOp9xznPuTzX6GIN0sjufjkynkX3c450IaQ69ZHGWBZa1IxcFpdtbNgdGF7AsXBmrdrheDPXLkQR3KS5bn3Pxu61js3G+zSF1rlL5Xj7M1prBqONavZ+LD9VDbmVdZg30rFAyIXiurg4E7xlPJ9KyMK8Lx/EkIKBIVmYNgXmaoBSmaaKfJrz3dJ2Ay3VtHVdy7byycD6d6WPP+XTkfDox9APLPIsIZNW7SQKw8so0j5zOR5ZxIqUVB6xpZVlngo84F6qz49WpDNoGfRvMsw0t3c6sLKw50VRgtJlX+OK7zY0tYwMizhUIEpiVQ1i/U7iIa9Qp0aCH7b+UISfWDOe1cMxwCp6zc6xey9/0qxQBba7SqEpbF+ag6nu7LG1ClbIHZeuw2I00gG+ZFHStNdti92rMiqqMrV9QVP+ogSs2DsImw10voDEhnPW03whxVzN2sWW+NMLur+ytLxyan3kNFvAwwFs3cx2udg0vrmV7fGyd7W2G3cZT2GKlPldzcBdb85LR89fvoAZpsBKbliNySHmDlWWM48T5fGKczqzrAsHhA8QhEpYWtJC9bYGkFx1GxNADFnC1LjryvWW2ysUN/RyjYZsx2gZMXo6lPeqeNDv28i1f7K1qn3UP1Cm7mB+Pc7lqB3pfkLK7lk20N99mg3/mZr60rfKH+vpmxwXYZIqIltrFK6AuFjN+GXCrx6N7cW3bc9n2fBsQ+8yXZ5JZqPr5TkqMC+aIOxXsdZQkbCAZlbb42/9LG1d+fr7/PR7SybKwQAW+wUvCqFO8ZDpHEqBR1nKhngENmjQnqt1re8hztuNa6tKUHy1wymZ9NIwD2zk2vQ0JNpn9KWbD5clbBPzXTVoxpkliPJ8Yx0dCCBz2O4L3PD0eeXo4sqwrx+OReVkN1VBy0TbgiWmUhJCc/2c8TgJN68K6rEzjKCK5KRNDkIB23zMMkZJWlpLbWtjatnozbRRluLZO6M/cVhZxWAsKyXhthoYX/67neBvLLyZQv1/sJRq+ct7BRSLwy5eTS9WgW5dJprrf412mi4Gr6wMheKbpLEzklBiXSfTTspTee++ZJ9Ff7TsNNKKYXKUIhEGdSEW73c0T59OJvus5n04yRy6w3x8EC6lOVimJdZ1Zlol5nBjPZ0rsGVxH0W7B67JIENb0yQwnKUayMjWnY77t3Ca4ppXptD1zuX/qfFxM8HZeVI9PB9Z7iBQxOtEgT64BKn1LwUAm5aHjlYus/6U4zgmes+dMYXHN4bYzys61mhD3Hl++XJPyb7cx9f6vYI3Ls207nu25Ws4UwOcsQeLcfIuivkcpjuLbWbpVzHM2vi7gfGM2UWWJzaeqq/ri+srPbbIv7qGdxj+HSeyt3c8JPsOLz7DrKRsI9QX3UD9Lnm/BlEwbS4Fqbf87OegvIZnhwGrJf+5DaHjvi+vcrLFcWOYVcIzjyPl8YjqMrGWVpEtwhC7iNChmIvumVfkyGVpowabWsKFpeP580vTyjK+jd4Gh7C+Xc3bxKr0+u80a1HDtNV/4obqHLfi2nZstvhedVvn3di1/uT8M+15iNbeZs8vZ3J4RGwxVyqa03dW9bFUEFxjxC+yzxZ2OL9fA5XlhmGp7HtsR7Ll8eFfwZcO2cl41mKwSQT5qG6b+Agv/78RPvzjY9Pb11wL4+sw0j6zrwr7rud1fcb0/cH211wmRqHaIkdB5icaHAkuisJLLulm0vFi4bZLb79sit4iqMBFMVFEno9ZABtEJUAe/CpNtAmGpIMK7KYNr2QINT7VIubXbzIU1r7JNgkStv//+e/77P/1/KDnjtWhuTVnEvYq28twcFubMyyIskMTofpzO3HvRpggmVLes3O72vL294dtffcX11RW//vbXvHv3lvN04uPnwLIu7PudrsXSNnzd1Brdd8LgSEkPrVbuXRdRpv1sNM7tRrS5sEyolXaY4cq5Hd51k6qqbnHlZxdthXUvOtR57+n6DucLlD29dqu5//QB7z3H5xN9v2e3v+Z3v/8W7wK/+c2vOR3PPD498sc//YnzODKOZ+Z5JC0zTw/38trjM5/vPxFV/DLGyOl00navSFAoetZ54fPHe5Zx5k//8gem45mvvv4K76RbStdLm+WHpwf+8t13HE8n/ts//iPfff8dXQjsO+mo8vH9D6zTid3+wOs33yhIKxwOV+Q1sd/tWeeFvt9J+ZwXEU356hiGXjKvMYrmQWplP3XdF2ptvOmTifFR/oiKZVbj7xwxyGfZezvnZMwmKUs6j/K9mEPhJDONK2RWcsosFH50cPSF2Rem4Cle3BLRUixsW6va/g6uMdosj76sBngM9HgV2G/XbNH7tsCLOmShAm6j2cqaks4pXYkVEFe6eI3Uu6bPwAubr+CtHm7OAqhZWZLyGdss2saT+1nffnv4NUr81nDbPMn2KcW0FbbXZOUSvgZbDPNSJEBQWvzsi4cFM3GOuAEYJN3BXvektULd2OJ2GRcnnR50LTvVbDuttNMObhWL9E67Jk0Lzi/8+NMHHh+fOJ1nQgz0/UCeI/4Q8GtGZTmYppF5GUXgl0ZpT6lQyORVrkFKQ5QBkht4t8EU/Z+fAxvtUN0GfylFxMC3961jYQBttTKGCsBMRwxSret3OH2f7ER22HmP18xSF4WZl4sGlzaNKrxbSKnglFGQSmOSyCMr0JUg/cX6sn2HgeHL9SEZZ/mbZbkdEKJkZ9dF9nbCkYOuD++MwCrv4UQTwMSStw6FORDW5CPpZ9i6kDFsayt4T8CrMclNswhH9o7YdcL6yplcnJRWpaRZvHaGmxPqvQaetwv53/lx+/qGQuFxfeZ5OrOuM/vdnnBTGHZ7dlcDzqlIO43pJXszK3ZKlKKp21yazJY5N86Ccu0mjaGZS6ldIU3jAqeioM4CwQakFVPhcJWJp2c6ruqJYK9w6qA6anDKjENBHfGsQeDiWZPjX/7wHf/83/8rzsGu6wnesS6JNEsn39m6J9UzjbqHrew+4/g4/8S9VzFhLeXZdZGv37zim3ev+fbX77i6vuLq9sDusGMaRx7uP5HWlRjjBRPYbqiojTdmQtazV/62dap1/5WkbdAz1oJbWCYOitusX9TZZONMtu8XCYBgCVDt9LW5wCyteyvuTfoaEH2OvuvwDnrvyKmjLBMfv/8jPgSur18x7K7o+z3/8A+/B+f59OlXPD4+83x84vsfvmecJFi3rDPLPPHp40e89zw9PrHb74khsN/t8d4zjefqZAWVrZjPE59+eM/0fOaPN684P514++4tnkTXdXV1vv/wgX/653/meDzyxz/8iYf3H7naH7h625Od59P7n1jGE8Nuz6s3XxG7DoB+GNjNA/v9nrQuoo0Zg8gTdMrywJxT3zSn8qqdLDcO4ybQtDnB7bgSPwIJbnX9gNd7H3Y7HJ6gNUpPT888P4te52k8qr/iMGHg4DvwAdaVtcBI4QdfeHSJ0cOoLkrKmbyuFOvkjfg+y7qK3pHiv5Kzlr6B6StKklK6Z0eEmWiO5MX6qs4sKpBte1ifZ5UJ1tU5Z5Z1IaWkSVL5/OSD2BeonZ7rKi2F4EzjyhzyrAyQTCiOgnUe/JJlYkEKQV0tOWjNEGrToU0wwm3svl2Oq6NoAYRS5Rfky6psfNuXbcB4+WgliI4QHb4Y61jOX7tfV1rS3b2IL8i/crWNFbtvx6FsxqwIo9G6iJp24bKuzMvCFBZ++O4HHh8/8/T0TPEQY8/zvMAOER3PEowfx4lxnsgp130BKF7K5FUkcqyLsLirm/uqARy/GXe5p+3PrRmIkj5K0cY0uh4cDZMVYbwtiguCkgGCfkaBi2Shc1pxoeW39n7OeUIcVDIlELtOmHXOkVNk1TUsWKlpOFX/qK5TC3y181DW4yZBgwXR2mvMF861jNDho2CmlBKrh9V3mhyr6R47whUnbWIb5XK/2nqFVqEgOJv6O3u+yYkUJwnkjGpN6XmfYydxlVTIxbGWwpwFQ0WcSBP49j5bm/G/hw/+i4NNh8O1GL1wZk3nmjHadT1D3zH0sjhy1iEMXunXIDosRq3MdXM322IDKj9d+DLFwHNRoCWL3WXqoreshc4WAopUoFg7a/kgE2hUwBZlbKUNLfpugan22UUZF6b18/j0xF/+8j15WUjLLNoBXgGCXkKzLLIgbIKiDwzafWBaRNHfsjHOOboQ2XUdh93A3c0VNzc3vL675dXdHf0YGZcj8zKrBkRpI7i1iwrghQ5M3aSVXljauBUz5Bocsjt/Ccq3QadLx1Kd7drH/TL6vfE52jxtftoyaiyjSwnQRbKHcZk5n44ALHMixp63XwVev7qlH/ZcXd8wjQsfP37k/vMjzgVyWlnmUQUzz4AIe5/PZ+ms4sWhneellm+axkheE+fTCVfg4f6eznv6PnA8vmZNA9f+QAg90/jM+48/8fT8zIePP/Hp00cOux3Dq1cU7zgdn0nLxNX1LfuDOBq4SB9Fb6CLXSuD3Ijcbb8k+x103bV5LJhY4OXB1CZPx3ezpm0vDP2OrusJITL0O3WonyhFDpwREQ0tG6dFAhQFfGMRPLsiz3SQ1BDtHHS2/nTfmLPgHFUXwNhOsm7bZ1jAqfiNo2iCf9toqt6zs5aLNWC0yajYeznLsllHKrSe2aHtWSq+sECJGBjZ68U+uygzK18ygy4HvVSbVU9Jm43NgfFlkMPuTV1qZ+WF7rJbZskIKDIBaSsNLHX/vHxXoH7mFowZrd2cmfaCUrWeXG5j8/OPzeFcD9ufGY/Nr8UZFc2LZRXg//x8EqZCDHz89J7dsGM33NF1B4illjmu68o0TfVzDNBYKa+AIwFK67rQQEMbYctI1uADXNirl8GmFvC83GMSIJF7s8/IFHzrmy3183kTcNdSVmhMwouMoX1uZdi1Llc5F7wLElQ1lsl2rp1FfnJziDfroYGpl2vP5rDdl3ye3FdxDml+ATmAtf1tb7yZW+cJ4a+tbXuarNXatKNqyrXn1LJw0wEEPBlfPMGcWlfEedN2w0kPtlwBv+leGEts41yaE/BzEdl/o8fusKOUzNPJsY7C0OlixA87KQXtxZE2rZGWNbY51a5ppe2pok7Nxfm6mQ/L/NqZbQm7SNxkN/WrHvrV05I15WIF12Yj0zZrhY5z8IontvNtzEhzpCAXT86O+/tH/vCHv+AoDDFKV0GaEymNGl3LBqNi3BijXgIbx7NiqBCIg5Tj7ftByr6u9tzeHLi+vuL67obd1Z7zqWM6n1jmRfdnvhCKL3U/NMxkrJRSXtgKNg6untG+liRtdO64PKLlMLd30N841WHTNWuO0NZuu83ntn3lKV5tjNrzGAJYxzpfmJeJ0+kR29jLPPL6zde8efua2MlYXV2fuP98z+PTo1xDTixLISexuQWYFylJ69SJ62JkXdaLsXDOkZaV8/MRcuHh4z3BBbroeffVK0rua6XD8fjA99//meenZx7uPzEeT3ROAhg5JU6nI8sycnV9w+H6tq63GCOh64j6Zdh5ywq3R1Z8XYe95IvrNVy+Pbcv58upFELUjtSRq+tbrq+v8T4QQ68YJLKsGTdPMI0iaLyxa15xWHaFTGIt8OQKoxMMtTgR880aSL5gvmYVY9ZAE15bKJRS7UNzfD2+QPZy36ViikvH9ZI9cbEyLVdMZeYoicA5h8TqMsVLwjwrrqrd/jYPS8hVP85KTUs7hwvuZ51Xs2U2gpJk9dqd93IP/tzDzkOn/zcfyeBI0VKjXJNIQjZob/gSy9DGyzlhiPiiezZfjK8FluS6qXBwe83V07rwo5q8TP3o0s5H58w+yrsJsymBKzw+PjPOJ1zw3Dzc0ncDZR0oMVJCY9St68IyS1duv8FAxhZPqyQ1mj6TEjTs8ytGaYLlF2OkI/kSQ1kiTJ7U/JaiwcqtnmMoNsySwCo5swlTyVpEykcp4lf4xXR5O8AakYW6XrzzleXYhLfbvF6SIC7lZi7X1PZO7aFYvRIv5NzOWZjXBV8TLbaXLh+N51bx6c98juEyw9WNALIZ2s06fHF1BMVeBWmylHMh+UDxyJxTKE6OXvMn/CbOYu/1vwdD/eJg024/AHDyI+s6k/NC9J6+6xT4tZtqzs9ltDanJDpGOWNdeGxgcZu6VSTTlKsxuHwf+wxhwUinihA8ELUNelIjJ8aqLn7xLCnVbdAt70wVoCm6VwtBE+sN3qmTXri+uebNuzvWeWE+nchpbVkFB85LlHvNjpR8wxWuBZu8cwSfa9Ag6+Tu+oEudrx5dc3VIXLYB25vO96+GRhOK+OyZ5oD6wjrLLTAl0sXvT8Bb5tD4CXgsV+Xok2JysXzzAHavnRLC86bRXfxuQaULfbm3GbT6kDoXJpORaAoLbrDUSgp4kqmj5FUpNthCJ7gIE0j9+9/pOt7cpbDqo+Fb3/zK6Z55tOnT3x++MyyzByPzyJ0WFkQidPpxDTPTFr2tmWwFLTbzbqoAPnM09MzP/zwo4CcKDXbHz594i9//DPn85nz0wmXCgFHHzthQIVI9AFSZnx+Yp1nhv0N/a5X5koW8eJa5oNE6oFcJINtZX4A3snYmKPhQIW9JZtaI4k1C+qq4LgPga4b8N7TdwMxdsTQsd9f4UNgd3XFzTyxrgvPz88siwirHk9Hcl6Zl5PWa2fNchRWH8RH0b3ri+n1BLou0vXStrdlE7br9Oe8VVtzVICFc8rgKFL+57Ydumyvbl6r/69MCTblYSgNXrN2VccJWJPsv3VNtZnBqoHzoIEZD3ROQeOmU5tTFGPbQHwOKdUrijZqVsIsj3tJ+y4XNoeXe6oGGe33ejTVp5q3uQVG9lJZL8UV0QTSVvPRSg1ybg6hOuqiZZdVb2GtgSSx6ZZUcFW4s9lyqiCzgUSva8RMic9I50Iv15BLJq2JkjLH5zMfP9zTdz3DMNF1e07HE+N4Zllm7Ugi2dgh9oDTwJJeY01mmLaSU5akORc2Ng0MmaMi5RgtiwNFM5apjh9ls8ZezEkpBV+ctIP1VBvonZUbbC5gs+pLzqRlofhECgFHy5C5+kTVJoiRlBM5eXJS59YbuDAwkilFdRXKxUfSAOPlGtEV3JabOdbqCAgrRVqIj0uhhEIMhRBKPVnNeSs2vl7PH2PL5iIZZeSapaOk2jrdAu166sEt/yzgC6Lf5DyRLEwrJ6KYLnhKcqQs7CtrZp91j1hJnsNJK3JojS3493l0u0gpGT9CXlaysgRc1wmg1slqcFWu2MoYSs6sy8o8z+rMKLJxOsb1fmVPL0k6G60bUde06ve0si5i12LXafA5qM4WahOSzod1YZHPkwDXxv5CbYdcNv83e3bhhjgRcI4xcnt7zdu3d5CzdvSSvRJszrUbW8qgHdTR/q0iCNtHeY3NtvNIEsZz2O8Z+o672wP7oWc39NzdHrh7c8PTo+P5cdByTMGJ9cRUSPjydLrAUC8eNXiqdrBq4iWHtY7+wr3Y2O1L519ZE8VsSjtfLh41OLixJ5o0DcETYmxjr0HN3IumiWTMM+N45MNP3xFix5oksHXYd3z77a+Z55n7+3seHj6zLCvHk5z/3kPJK+tSOJ2OBO8lEJVlD3u9ppwyi2pTLsvEMk88Pj7wlz99hw9eKwASP/70nvff/8g4jqR5Yegiu75jNwg7KQRZ3yklTsejsC/wgq9iEImFdSanBVRyYZonSSSo/VuVYRRCxOPxvZ17Rc8uayvRGiB4c/icY7e/Zhh2dH3P1bUw4nd70bjxXthOznnC0LG/vmJZFm6fXjHPE6fjkePzkyY/z1VWI6ujkTTBlnJmySJREGKgHwQ7hRhr92KnHY6tqkNsrCSl2lkTLjtd1WCXJfyMKd0wif3b8IS8TNaVBXorTqfgfMQHWedTyqxZNWm1e2rOucopGBvQghTgterEiZUuBRCdTGupUov3VVbBURAWnzIHafcEbVsW3Tf157L9++Xv233az//KKaAfZ/vckj/eO2L0ineCOvzqX2q0yWfB9cK8Lhef14ICUt7UTnz7twUfqNUJBWETSz7e4VOTilmXRCHz/Hji44+fiF2PTwMuSwXHNI0syyw+aBf1vPa6R6T8uLGsNgNrNkPNjR3Ltj+s3FsqJTrBUKXFAkwfs+HUIjmTDYbixTyklPClNRhxmhi1deC29hr0bFxwPuF8EKy6wfcGAKWKKeJcKyNsAZXLAFTtPFmxZPvbBYYCJNhs65KG17ORkDOpQMqOJcG4SpdfH18EliyAJ1fT2GN2vpaC901GwRh8zrWGRC9OinpMuCIBH/t7RgPFQdmXzpFVJ2Ftm6X6lVbKLzpZoZ5128YF/9rjFwebbm6E2TRPj6zTSFpnuhhxKiTXoEY7JKVeXCc9Za2l1zr6GJVRFAidanJshNBWVbpftBzCMkWgDuGa8D6wz1KyF6M5CQGctFEt0VF8rEJdwWnpix0t9cC29tzWCQZdLE0MDCC4QN9LueCbt6/5zd98wzxNPH9+YF1mOh/pg7QvjTHhXWFcHOdZjYR+TOcjg+8IwXFzHdkNgXlZOZ1Fl+j6cMV+2HFze8Oru4HDIfL1u4Fvf73n6QiJW87jzP2Hiem0kFIDS0g/KI8AAQAASURBVPYwg9BoES/B0hYcyr/MEII4G+Y4tO2qB1AuKhpmxl0PCfXm3GZRKqEMK51hc03V6BbV/EomLN+TvMPlheSyAKioJYZFaPLL6Znv//hPeB843FyzO+zZ9Qf+03/6e5yPfPf9j/z4/gOn4zPff/dnxvOZVCRQsq4rDw8PsqEtcOMcXmv/SxEh0uAd0zQxTSIi/nw+AXAazyIo/vjMh58+kBQEeOeIeHbDwG7o6XzQYFPi6f4jzgfefB04XN3KWkyJtC4iIK8CkNN8JuWFsEbmWSj+a1oFyIVA3+/EqVbarld6ZJvjTTbUO3b7KwFKXcfhcC0B0dgRtWTv6uZO9Nj0saaV0/HIuiz89P4nfvjxB+bpzHQ/Mk8rZU2kNeGdY+4DOUrWgZSJXgTqhl7EO3f7HcMwUM6lls1sL9UO8W22wIBQUX2CrIe1gEenmSReGNZqnbkIAmQJjChSwrJPFtxNRcZuzYVplrVxGmfGeeEl8zEE0aa72UW64CmbTJb3rspC2YEaLkCDXG0m62HJF48tPbae9OXl39vBbM5KDTZtgIFzbH+BZUBqlgnTDbM6dLlHcUIz21fL+gvKCG2sUNFELeJMKX4QHR1q4MpAuwyJgVeIWUJ/MUhgMmfHMs9a6ihrO4RIP+yIXU9aE9M0S9lUSqCBof3uCuc8j0+PnE4nG/y2vpzXUrmX+8PVAEjXdTUgK12P+joHOWeenp+k65UDiukeNFZnqnMm31Ip0go2S+fTaGUO9Vy8DMQBwiCYM15tZM4rFGUu1VYuklzp+0hOnrQurKvs8aAl4gb4DNxZ5zqz6S0odQmqmmVvQMnWl8ynMMdSgpnCM5nZO2LMhOiFgMKXmXNfSzyUQetLHcOq6agCnk58Dr7YHM4iDxJokuSo7KEMrMGRnbCc0ioMvbVRFarzSAFfxLETvT7JMP5SoPR/xGN33Uvw9hHWeaYsq3TNItSSKTtPzXHyus7ymkmLCJ1O45lcCl0UdmrxXrCFBvTIApSneawttI3RlNPFaUHwnn6/q0mergw4J+Uvgp0LLiv0dXaYU8F3LUV1ygClOREXhqlAcYXYBQ6HAwX46t1bfvvt16Q1kScJjMXo6TrjR604CsvqmFex467IZ/d9ZL8TDLUbHDHCMmfGs9i527sD+/3Aqze3XB/2XO13/OqrO7759g0fP0Q+399z9J60RNLa2NXbhwSZMD+l7dfNcwwZ1SRlzrjVVTwrGOpFUJqN3cYEh706boaNhLmKje/PX117P1xtehNjpO87kpc5KZosCdrpUcrHV05Pn3l+fMJ5z93rt1zf3HJ3u+Obb/4D4PjzX77jhx9+ZDyf+fDhPbN2B1zWhcTMPJ7V0TF74mQt40hrYhxHnHNM45l5OvHhp4kPHz+Rc+H5dGSaJ54eH3n/44/knHl994qbwxVXu4Gr/Z5+6CXpXDJpXXh6uCeEjuu7O66ub5nGI3mdWaYTaZ0gr+RUOJ/PUmZd7OyT/d+FXvUqnWI8EQ0Wh16SGE61X4LzeCcMqTdv3nJ794rdbs/d69eSDFUR/xAjw2GPD4F3qoOzLguPj0/M88z3f/kLf/7Tn1imkWU8sWqDpFIKxTvWEKALrMvMPC4U74hdZH/Ys9sPxL4ndB1+WfCqn+WM2aqlwaZh56DKENQKDUBYkchZ7S3I1LA+m3VZ15Oyt8VJ1vNDgwq2/HLOTPPCkiYNsARygXktzCosnZVyETUR752j8x2eAGXBKfvOE2oA2zBJQcp/fGkVGSaT0I6qFzhnG0Xi0j+p7KrtfV7sxb/+KKVg4gm42PC+4ibJ+ZqsgqylWEK9pnXV0nc9l7d4z+u5J7EUV+/BrtQ47lbjWAqEIBYyBPnKGeZxJY+ZtDyyTJkQI30YiL5jXmZOpxMpJ0LXMex6xcLSafT5aWWaZqBUWRjpdvuS/VoqdrHyuL6X7t2ivXeg6/uqfZtz5vn5yDTp/lK71cgkDZ/YmZFLJrlVyuVjJHZR5158gC1ZxEyj4J2pru0QFlumYEEbDZKE0OFcK9/c6iQ2dtOqXxaYNB+3IaWXVrkyjIujFLE/IjkjPs6apInSlOA4JxZfCC5gxVDW2GTbaMA7YwtTz1Cn3Q63ur7m72x3fXV99LXOScBH8Jr8PjtIwQvOS0ZyAJL4R75k0dMtAtCk8t7Ta4OQVfHFL3n84mBTiELHdLN2sCoJ77QE7WcOw6JotYLrYtHSn9/VBq4qY8Zo3wqcAUrxNcthbI+cEy6JjkN1qEqpi3CLqovhVrdZKjVEad9to9tBvjWATjIHugm6LlJyIsZAyeJYSD1zYdd7QhAEksy5UKcg+qDCoJ7d0LHfxWbEgb6LxOAJzlej5BARcfnSOli3PVjawjJDbef/pmIbK4y6nLEX3o85kRuz/PJY2gaavny/Lx/u5Q/FpsayAG1zee8lW71xXqrTam+gACT7xLpMLLOUTAqdONN1gf1+R8mJw/6Ac455WZiXBRMordTUL0ajVJBia82tK8u8IAHXWeqkp4lpHEnrStd3EnQt9o4b1l4R3Qxj+zWj1kbVywtrYECEFLOWfW0dN8kaJLe2ckabP6XSW52t8/7/z9t/NsmSHFuC4FEj7h6R5LLiABrontnt+f8/Z3dEdqQfHlBVlyUJ5u5mpvtBVc3MI7PqVbc8tAO3MjOIEyOqR9lR7VIxIkQR2iJsLd1Uy/dM0CqR/zCOcN5hnMRZBBT5Dtm8GB9XV7vLFvXZtpLepmt3y0tlga3T7XjYKbkbok6eoAH1esLu678VqeojSXUdqkDOLF0/crE2r7YO6ooAwMgsGVzEnRHwwnjXGzTvEzWnDnQ9CMBtX+qkVHNMdO9xG7SXz6Wv9pHK6+M6Y7GJxy6zFAC7loFkn3JFuHNkXCX11tLHGRq9cwK2nGOglJrp0J1MZJEZbgqQjYNCHkKcXcu8wnkpBRMHV9Hgg0ZnDWQbub7JEKDqIoIEGOw6NvS21gx8WNdHUdxBZbnuwX7JvqK2qlS8sj4ZZqR2EqvXQ7YW9KZYL8AoSuarKec1GGKDxlWuVCeOzl37ezt37Qav1v7m9+1nTUvUvev6PUzIrNG6YqV9drIuWnt1re6qaEuD9TtofPv1S9tMEJs3UmDvSHSUJw1CkQMrt0ghVEdx/6DbnfEfWBf/goO8bYDmsHQ6vrzRb23GeifzC4dz/3ldJ9YqWrrE5u5fM3CajWk8DpqJU+T7zvYTs64EnaOGKnoBssVY7Wa6F9AyPEE1eyoEcTg6SHt4JkJQ48kRED0JoenSPaPq11DJoQnj6DEODovLQJGuyTF4PQ9VvUEEBKfnN6PdDPdNeUQ3Z/2zvnhxi32uV1QzUnpHE1+9v9VXvZy2e2Zue+vFNbpxMWwrDgghfi3UZRpSZzwCNeuNyAmGWueqh4mkamG3k3bqu53wM2GZxaGua6xiKBs/08tXGD6nJFmNuUhQbZ5xmWfM81zJxzmXDi/oUFPbB7JOjUqDdGwKrAvv9rOG7QQ3Ba1IsLmWc3jklIXLJs8QR5x0sfVOuJ+895h2O0yTlLpaV0VJXTWHj6wjB1+DGNO0g/MB0864nRjOBxhJdrUvTFZ1W9ochq4rBezlPV+tPVOxW2O5rb22aDpbxtYFtuuuYg6yTGxUHEMmu6nHUrZvtDKFNbu0q34wfViTru07erKq6zYLmxuGUHsEKvP7rPD+91clun1tc+761u8cV/vRxrLiVNL/K0ZSOgcGuvvWcSrSCaxYoNRpaSc5FM3QhZNAQdFuvrXzs+7/K/i8mW/Z62ojF8nGXuYFLmVwALLLWqkhmUs+Bs1Scc2Rhf6eNVsOQtkAANR1ljXdHoLZwkIHIoFs36gDrvTCbzWNquPMr/3dtHY93wb76+/c5srkBMGwEQNWSeUsi8lkwbWNQttr1fvpVF79172I/t5sh/aYzOSv0z0iZf9WHSRr4Pq52vqy89kf1zar3POLUd28V5+BULl1wYB19EOhunZL913fP15VNroHfmdOr48/7Gwa9lGUyznjcjmCV6l392GoaZ36WKJaC4PLKp6vnMWAA0TgOkYIUQwNkpRbBjAvC1YlJVvmS81sEs9Zy2zK2vmCueBymeF9QsxRuY8CnJ+k5tgJQZgtMqB5/usMwBaD20xoTeXkDvABktbqHGIYEMMAXgs8PEplE3CIwePDuwm7yeN4nvF8uiBnxrw65CwGlieH6D3ubia8uR9hnSxKZhyfE+bzgjMueIhHzJeMx8czng9nHM8zlmVBWhO8D9jtBkRNjxanVAMTZmSxgoy6S64PfvlzA4q6hcYw5dgciS9Oxy3CIN5xPV/FqT1Ek41o5YchBMm0YUaqwqVIxBCiiB15uQ8tH3x+fsLj0yN8iPj85QtciBinW3z4cI83b27w9u0d0prw8fNnfPr0Ceu6KjF4amDNxkpBdmau/DDn0wnTfo9hN0lHlWnCMAyYT2fhflhXeLqR6HTJKGlF9g6DOhXFaSHE0o5QoxHeOwRHGIPDLnox9gsjMQsxrIKlaboBiNRBFHRIxGg4X054en4UAetlbY/TiLu7ewQfMCo3FKNrO66OhVQKLssFLq0dkJGp8SHg7v4e5Ajn8wlpnRGCR1pmrPNZ5pOljSjnAs4Z5AnTNOHN3RtM064S0jKJoWVRYmZU46cRVm8Fc694KuTQlGxrLy3GVV10rzqYBBRy5R4igpb3MKg4cYxwwbJmrKngsmbMq6SpVvLpJKBWyoaAGBzGwNhpth1liRhWRyGztMLunCh0tfleRKudg+sMQTM0qvKzPdntOQIqL4gt5BpF78bC9iNBSz0U/RlMDEruXgrDaeaSubyMO4eZkZ1D9hqhy17BZdfAIcj9i7y3TIrcyQtxEnilFopBWp7nIvwiEotinM4XEIBLWOCdlxKDtIJB2N/slaBWylmJpHTEUnwHBVIpFawpq+FpGS0DxnFQedNK50IcNg6QVBLOZyHJX9elZnu97jx5eQgvhQBuaBagt/Kk2jbwFT3NLNdLq5YqaPacGjdcmlx2ysti69lQhIovbDYQ7O+t3H154/KQ3lvWF2EYJJo9DQMG7xF4QC4eayHMqcATY/AOMdia7gCmpXvo/XB1Xojznc1RjmtD6TowJef0TnSnACUxborzcEzIRFghhueyJLk3J+UCtYJRT7mmVYIXvyUz/lVHFLBfkJDXFciM6ISGIHMRvoSKsS3oJqVvPa9gVJLkoEEDBsv+YMayLljzipSycJvlol1WW9Zkha86BpZFDkjAhp0G7GAAlTtZ0AH2bs42YHjjbOrWuortYYhaEuqlVbhaLwwpw3IFGAePb9/fYpoCnp5nPDxekIs4tAtLh16CcHK8e3uL+zvhX7ycZsFaC+N8WhH8BY9fj1gXxun5gPk0Yp0vAAuZvx8GUNzBywLedBMjavKVydWW3saM1vmFbES7/Qf0ZRX9rrPtacBdqHj6shrR+0Zi69z2PTtJvZ6+4JyHD6wyLYIArH3U2XChltuhMLzqnMeHL3h4+IIQR0w3d5pZusOPP36PNSW8f/ce65rw8fMnfPr8SdfXWcnn7anaveVSkNKKZfU4n084HkfEccK0H+EZGIcBzIwTEZZ5QckZaZVyuKzd6UgDq16Dq1ZOZbkN9jdzRnCEaRwhTYEiGBHDMGKYdnBOytKMQDyGAGYIjk4Jj08P+OXXf6DkjHHaScb3zS2+/eYbxCFiHHcYhgFJm6dwYfgYJUPCO8xlrdUTpufjOCKOIz58+x2ICKfjEVxmHJ4cUl6QVslwykVtmZJBjhC0Q+Cbd2+E/JwZVMQhaMTqLYAvgVCxJ7S6pAo6xUvCK1IdjXW1UpPXRkBtATXAOqx1RMVk+RVcyzWdVpX4EJAykLKVWhcsmbs1J6VDKRdx9saAQAA5hg8ZYPcqYTdZeTXEAQhWfqqaNVDqs5gD0lm71Gpdt51n2TR1fIDGf8XWLZzrJt7qB6sYYDD7zikn0o+UV7UFf/Xaun8dSQZKcgWuiK3ncqrPanMaFEPlnJCKlTy3snrToZLoASklnSJKZlwWBlag5ILj4SQ4x53hnJcg3roCBATlB2QG8qpd3DSBwhleIunumbOsy2GQAHTU4Bw5lcHObDbJCBfMtGJZFpxOlllrRPdoDkczNK6BPqOucRQ5nzRccPCkjizucH+35NXER8nSBd6oIuBI/QJiZwQGSpES3FJawoYtmSbD6cU90tWa2txE9xhEHnCGcUn5rSdMcYRn2Q9cGHNKcFQQndPyPmyURRHQV6/B4MqrLBxQbQ/Ur3Y2xDW6qdntKrMzA6NzIHbIREhaRrmyJBQF7zAq5jJ6ilxkLRGolvf/keOPZzYNDo5lg6f1Ak4FA0npkR39+rESg1zaP2bUGsPa5QDafUFBz6qpratmoBgjPqAdfWwQdXMSyedksUl3AIu2OM3waIKyGWhtVrcwwDyG5miy57LF17esD84jq5BxMMJWuebtzQ53NwNCIAALUmKAPVYY6bEA590Ycbsf9F6BnArW0wHnNWN1K07HBSU7nM8LLpcVyyxAMpcMclJy5hV8crcRaukC0BxQvRDWwXgBttVA3rzKqManfeba0dSbMVUh2j4lhauMFxEV2ySOJHvCUnW5uHbPDLHgdNycd93LBZfLBZf5Iobn8xN8CPj+T3/Du9tvADi8fftOogYATqcTlnnBOi/iJAGEULY9aHU4Fa0DXtcVMUk3QuckDThAylbWdcW6zCjTCHAU8FOKdhLR7AA2Pgd57lb7qnXfnjAEiQgtWuNr8SsxkkeNHAgP0maqnMPprHwKMYC8w25/gzdv30uJkBPnaMoJ58ulZQlCothrWmsNMIAuK4ow7SbtDBbx9csN0rpgJQIUHKVkpU/KPcUeMUSJAkZRZgbepaMJ13qFqtQ7MH4twvv1RDDF3xad/dWiwb3ENyNIr0Fdpl91MjcHm3WSTKlU/gookLCMp8KMOUkXvajZNXb3VeiSRbd0vVd5YjtRz/uiHS9vn/d3PRsKDHVtyeC1/XgdKe8NoGoY2LDonNtYcanJ4voc1MAckQClwiAq6kRyFSw5VyroA8neTMzi0EPjLSES0OgUXLtCyEHSmlMSBw8z4FZxFpVSsKjRNGnJj/dBShm6eXTOIUbrrpIrB16Mkjk6TRP2+z0cuRqBc77xoC3KWVZKxrLMtQTpdSdmtxSvMJNNosgcBpxTo9qMPZMx13JTyHgLhHhUjHlzxOrc6fzVrDCCBR87h9nVjbyyfl4DUvYo5gD2XubHe4cYAwYf4LJHyYQMQsqMlVjIJIPrzkd17VmWFPc3xrwx6p13dQ3Wu9g8hOlzV++RWPgGIhxYGS2S8qEkl5CJRUaT2xpokIBOodfG5V98+AKw8GqUXECFpZGK8ma0LlkNcxTN7JPgnTy9kR87LUvJrA4pLljWBUtaJGMjrbWLWk+SL7IPVdeVIp1HfbEsckJvZNk8muy07Jlr5yJwhSe4XbPNvwBvp8EWTQiQCLs6wKkAgRzub3e4vRmBQricV6TMUtLL8j3BUQ773YT7+x3WZcEYpOnA+mXBumTMlxXn0wyCx3y5YF2EAsJ0s/cBnsQRYfffZG8L3LUgyFXG3GuyoT5/PU3dB208Oj3GktEpgVBxghUG6JVGFHUuAPRd8ZiNG075L72XAFC/l/TjLRNHS8BzwfF0wmW+wIeI8XxCiAO+/+HPePP2DUph3N68EdmcCw5HCbCVnKTQhK0TaSfLCiNDMprWZcGyzPCh8buGEBDVIMxa5plz6jLxEkr2kKYmttZ6zYSGC9VxGEMAyIuhBw8XRgzTLWIMuL27xTAOWmI4qrwXZ1Mh4OPnj2AQhnGHcdrh/u07fP/TT5rZLU91Pp/x/Cx8lrEwQgQoE4izBrAE24cQsB8meB9we3cHMGMcR3z5fIN5uYhDQJ1kJWWUnOp6dM5hGKXLXhwiGErGT9qlVG2ifq9R3Vq6HzscIO9vs0xeLFN18HSDKnqHFZNY9rGeTe7Tg1GqDiXFR4aVsskbaxahVEvMwBicNl1RXc3cyWjptqvGgtyDgSYYgpIAYl990WeZ18PsvqoXqdvDtBnz63LqTRapyWTudHcdDfmP6C+Vy4p3Npnv+n0mAorTBjl8tYfFYSwUJgCr866UrE62NkPqx4L3hMgBxRWsSSoPcslY06KXVnoYlown0qwpHzxKZiTkKlO8F1s2xqjZLg5EklRiPHvjOGCaJpGdwZqXOG1mxBrEX7Gu1silbHR9rwdsRjcSlBp2AJQ0PEsmfbAO1SZNu/XfKZlaGQInjYZIK6LE0eKU8kKezxqx9BnV9RZ/4/g9ZN70K6ktJc674D2iD4gugIyDkIA1FwRXQBQqppe7aPO9FXl6f9aES1+3ypc20FtbSYa2y4ciwOvlQrU2Rb8yFWStFgOAwfRNtmsK3vgPB+rq+MPOJngGOgEp9PShOhKMSM7SJkXwZAVQCow8KxEmqkysnDRdyZKVTtTW3tgaUJvB6wzGUqS+sKhzy5UW0e81f/3bhMDm/a2BxiwGmNUee08Ygsf93YTvvr3D6eCwHAIuZVWv74BpDELEC8LdzYS7W49lLfjl44LjUdInyUl3jpwKzscVt7cD3t7vwcy4nJVUzw0K6sTrGeOAlItGOAjIAxyPlbPK2jtbFleX9I7twrMNbe80w8eEX1uUVI3SNvyWKdVlWfR7tXNqFbEypVQA6Ja1ffblfJqx47Ru3ohmQRrN9ZpVoaSgQwwAhMAeTlKZ59MBXz/9AuclMkXksd+N+PHHH7HMM8ZhlKyl8xmn80nWq51TnyHnjMPhAC4Z5/mMJS81ossAnp8eQMjwDnBU4EgpadVjzpWfxwa65bcIOIryL44Yhh0KCMHtwBThXVDC4p4EXw1jsJJuFyGtvLsDM7C7u8EwTRjigJubG0nTXVch/0sJOYtj1infALMQA1a+AtVgOcv8Who8OYe7e+F2Op8OOAaHnBOW0xFpJemI4hnjMGK/3+Pm5lZa12sKPZir8O0WWt3TwgNElXOmReH6JWgp3Nt1TJvF98qhl9yCEXmxFM2SZHN+WNZZq3x+sWu4PYKdx9Zszbhi7ZriWkakOS9bJ4rO0CeAi0h/E+Z9mrj9bKXDClTsDhkSdS8ic+UW2jmK8lD05QlySwqKenB6vdeZW4thW7tEYI3kGok4gwAlGmRmsPdSwqFzX6TmCoA5lkVvBCdlTzF4LZESxbDNMGjRVeECWJBc0dOREtdqpqCWPoy7AO8CQJJNRYCCKXFYrMrL1YOblFYBastay7erM6tbB9Vxjk5/bJagfp65ZiOVXDT01uazXwKMZtCbWMxZmkwAADnWssDQwFW7oc3f1zZwLZtQoUvdM9vn+3u3rMPAwjzmibALAfsYQasHJRnDVArmLE7DzCLbe+6mzTX6sSGJpku6u95fG4rNcwBUn4V52/HHQeB91A8H75GJNBNIzpt1/IklY4YBjQz+cZD0n3XM6awyce2A4jYbsQVxuJXC6XN7L1myLnctuoGGnRT3lMqVyfVzbQzlBev8Cbu2yuq0JjjP8LFoRoWHEeLa96WjYnOXXK+nzdHJPzP2pnFEjAFv7nf45sMNlnnFiS9Ia1ZuPI9hCAg+IviA+/sJMRKWVPD1IeEyFy3XDojRIaWCy3nFED2+/eaNGLv5GZnPGKdQs9mthFyyWyJSIHgf4SlqduS14SHyrGmCJh/b3HXzAEbfiZer3LDV3YOk5n66Ln2quFNfsTLHfl9tkGvFYEbe2ugIrLsroZXgNucuwzuRYqNy1UmGhmQ9nY4HfP70K5zzmrlAuLvb46effsSyzHh4GLDMMy6XC87ni67dtjaK8mM+PT8jl4LpdMF5XgGQNnxYcTmcJNsleBAKSlpQkmR3Fu+A0JXkd89eMaKWU07jJE4pFxDH9/BhxLDbYbe/kff3O4ToEbxkfbE6ZnPJGMYR33z7HRiM999+i9u7e0zTiN3tDRxJVtLlcpGSv/UinJW14x2BsuBmpyVQKELxIMJfdFMcgvA9xYDT6YDD4VEccecjMgun0RgD9vsdJiUjd85L+aEzWnwA1JzujV5EghRQ/eC96T3RmQ379Puy/dI7cwybVMOXm/DoOfjsFJJ9adnL1rEOlR/M1qYZ9d5kydagELtF5Z+VxlXcAMUqDGRyNSPWyMLV8lQo1Ck/wzN16Kh20TTfkslcezYrodfepmhlx73OIDt1RWGbZ9F5uj5M5RMJFBDKAnO2qf530JJqCaIUsjFp9ybVEcafx1U/xCjmvMtNrsutqd2htmFaJXObC5DXohldght9cJimsWY5WWKG2T2WWYRSallesycZ87xowLAF6aqs2jgC21rboqs2VrbIWOkTinQhqnNZcW79jnzJdfNjWCbnpDjbcGxPSWD2rN4tAc35+vLoJTl1/91+RvQvQeh1oneYQsAuBnBicFIuL2264lypnGBKVS7jUxOXttcgUC1jtv1iWL5+kl4ZWY1OS2Nx+V0kL4HJCYccEcjrfmLjZwUCC+b/jUf+D48/7mwaLO09oczCqMgUAK9t5mtUTu4ic8aSxLiFg3hSGfBZATiz8qSI8dCXzFlE2YwqAHXBMBsxVmiK1BwbOQNwSCmDKcGZwUDaRQGopFlgAgnfGJoQ6QATG7EgK0BMABeMwWMaA3747h73t9/h8esTLg+f8VwWDOOEadojqlIjOHz7zT1++GGHyyXB8yd8whnkAuDFX7heCh7nM+5uRvz0w1v4IEp0dxMwzxGHQwRRQIwjpmkHJofd5QLvMyLtkcMEcg4+DlJGhbZRCzcDsj7f9U/7DIu4KwwQE5y1hOmkde9NhhqFr+oxPadylQqpGQhwDlaeXSMMxRSZbHivvFcoHt6ZwcgAAmr5i/fKqSL3u9vtMI6Slp2TOA+ev37B518/YpwmvPvmWwzThHdv3+Mvf/kr5suMf/78C07HMz5+/AW//PxPcXimJBl4uj7SuuLT54/48hUYxgG7/VgVPQjIawJ4RfCQroJIIF5R0oziGczCdyTj3RmaYCmfG0bsxj3W3Yx1WcAuwE9vQX6sfBbkHLwzQkJXozDH4zN4mTHt9wg7cTh++8OPuHv7FqVISnpOGU9fPmE+ndWQmEV5+qhRMin5a4SLW9FZuwSGgO9++AkMxuPjV3z+PGGdZ5zIYT2dpAMfSQnduzfv8P7DB3iHGqkMFcijglzpPiaKMiUD04OU8ECiJdXAwdZR0ox9ljVlSgLXnXy4c6A0J6zsDYm+raloVJnhWUrkCqR+PnWe/K05oKMkloKA9+56kgLcKXv9Xq68QwVc1wWrEizICsDsmrIvGrC0jAZToP0dWSmbz9owoLsXI4uuBgujA2u2Yds+Nn4VRVvyOncdUQjGaim8PdZhrBihLeo6daSZqzkjJeG7ggeKgxAPQjpgOAA5BGn8oHxkSfejgCtRguuacDweQc7DuwtABM5ZjM8QMEw7DHHAmzdv8ebtW4AZy3xGydLFa5klmn0+n7Esom+ku5eCZXOMUtsLwbXsGLB2nKur4NpN0tYh+CqrhKCZQkHXoK0AMeCZUK9disoXAPAZcCSk/kH6iWwi1Q1tdcaAAUCbYgPLr6EEqvcHQLOQGUMhBN3bb4YRb3YTlgtwTrI/LjljSdKp7GbiChvriPTOhzqeAqWsPMAcyM417hIzmkmzkswoZ+18CNJsIIijybOutzgoASuQ4YBcsJYEKgyXYcmxKFTqs/4vYKb/5eNweRJAvs5CIs+S4eCI1LG0bUjCRcpRcylSthBl7os3B5Hsv5yKOEhL0e6lBSXL+FaHk57XynxB1ptXsqdk0hJKnpV7Q5wPITRHrx0WVNzq/M7Y6h37VQZJRhkR4f72DvvdgNMP74D0DqfDBT9nxuW4IoQBIQyYpoBpnDAOAW/fjri9czhfEv4///cDPn+5IPgBIY5wjrBcEh7Sip9+fIf/47/9KDKB/gF2rOeTLEjvI0IcMAwZ0zQBSPB+B+92IoMr3NFfWDEUKhJ6cfSjUsdY6Qwc+012dy8nGgZSGWLGk42wEoRX/WVGEcluUC3ZdBGg2UrazCJ4gAOy92DNVCbLhDR8aC3BmbH3HlORsq01SZbu188f8enXXzHtdvj2++8wTRO+/fYd/vKXP+NyueDf//0fOJ2O+Pz5C1L6KEHiJEYTl4IC4cb85ddfJTtymDDt9iLzl1Szvyfv4aKHKwnrckJaPNJ6hveMcRykFAZtThy17C0rGRyGAXfkEOKEmzc/IY43CEOUTnGO4IPof8mc90hpxfPxgGVdsLvZ429v/0/EYcCf/9vf8P67b7FcLjg+PmKZL/j4+SM+/vwzSslYl1nHWsp6xUkiZUXQ5kBUGHkFcnLgkhAjwbkJP/7pL0gp4evXT/j1139iXWYcc8GSGDfTHm/f3GO/3+Pu9g12uxsALC3qSbK2LPPEhVD3mwWw1pp5DzQOTldlaFuhbQ+3PWv6pNMPxKi5yGw6XTCp7WcurHpdiNmZhWzduYBIAdbQg1l5qHyQwKzL4jQoDHBR54tvBja2WKraKIB2h7X9kfVJ9GdhsCtbvWNbT2WWVyqG0uMz1es567PlXLt2WsOqlmEEqEeovqcngTl4eseZ4Qbz2zmpjpVgXeXkbVis8UuKfWtVO7mQ4jh1SxHBs2TkAy0pI8aAlBLcQsrJpkEdJkC7dc7zjPxgWY82/4DzQBwC7u7vahb47c2NNM5R0v1lvuByOSOnhOPpWWkGpFSujSdgGVW93JIFK4upoICKSc9amFzHsw9ulMSSoYQsJYlKNg+VtdfuHwuaW6a8iXOfJevRacBOuB+3AYaaTFCdON2e4WsCmOujw12aLezgMQaPIQbcjRG3w4B5LjjOGQWMOa8onAAi7KqDS+qkmi1wdZ/UbCALRBhuEpwut9E/S7NFdIydOJl0Oao28UgsdB65EDJL044lS+IOa3Muc4VS99R/5PjDzqaCjAIFz1lrfF0DHsXqbNGEYMmlAtfmgSQRZAV1M29TFnVI+o384jDw0ybfNvXLKCHXITaTn+0eugHbXru7cjeSLXLkMI4Bjias8wXj4HGJrqbLCemtgFvvHHZTBIEwjdJ5jpXjyQRk0RR5O/84BtzcDCDyOJ81UuUs7c+cDizlZFmypCqJax2P18Zua/x2j6xjZwb0S4D12tlecd63a+jit00BjXjVL5qDqwpii3jIGBSiRuAJqpyC1blITmt0GfAtKsEOUrajHADeu/oTYHEmxIDdOIELYzdNmMYRa7JsqaTzL/cqDhOAHMPN3NWvy0M6pwRruiRrmrc5KKiyf23GiKDkxIM4fsh7kAvwIcKFASEoYIS1mXSVTJZUQTAkY3DQaN24mzDtdljXVWutm/FSnY7cG6T9AmjPXHQDeGhpQ82ucrjMF8RxAiC8Ttl7BHKIzmMYBsQoZIFS2678P25LYF9HoVPCm/usC8x+tG/ZbbdP/Z74fxll7gFAv89lTLiCyAJIFyY9vdO57OVFXc6Gxuptq+Pg6lnFoOBq1ZijqX/cXp5tItlmaPB1SnyfsQK9hjka7LNXzokXV+zlHXV/8NWnzEC65hch2/Cds6bdsyMhHqzlIezEAUAOzkGAmTqi2QPBs7S0V91RgHoOsJQVWItt2xchRjE6orSMDjFqA4eCnByku1vL1rMs2pRSLZXbZn247fhvRuRqTaIf7zZOW6DS5GJ/our8o45Lp35HYl2kJFDNCdnGnnF1QvTz9/KwtVKvDaBGVa/uFfpZByAQIRJJu16SroMMyWjKanxkp+Tdv3n13zLZDfCj7e3O2cf9AuyelSBrp5YcE3SdiTOqYWlqq/xKv/3OUP2nH8KrVJBLqs9rDiCLUja5JKVVWXHUi6yhqmauDTLevt+vCzuIrmbBvl+UmNZtznv1SViGbh9VBdq6uZY1/TolUHUSjFPEzc0IlIIYHVZvbbR9pVsoRRy0+70Em8bBY4iasaNleOJwk3u1EvBxjNjtBziKmuljRo9lOfWZP9QwIeld9mvmety7XzY7kHlDDix6xnQWv7r0a4bjiwt0Bs9W4emnmrYQPdI+QIYR6/OqnOya0IhTwLq7msxmyY7VDrdFM91S8MhpRU7iTIkxoOSIaZLs5WmaMAyjZJ3yCiqlW4+GoTRmr92VkKQKwTtCiK0BCqyaQcvj2vrp5Cmh4nCvzianuiCEWJuheC3XNOPTxpnRMEBBQQwD9rc3GMYR080e435XS0st0JzyqtwkTd4yc3UqiJIq1aGdcwZRR17upOFKLAWnyw7DNAIQziPSQMk4jhhGCRw6R+pMVr4b5yqO2qwDc4YwQxrKWDY6wW8++XLxbR3EXMdF3+ywO+p89sGropxCMr5autThXht2g0dq++p57V+3Il/BKL0TrMcWpktkW3VYyt67Flzd+diw0maPdXKrw1ANi21x15b0oP9pt6DyY3Mf2z0q49I/XzONevzUZ3ZbIwlLMDFbsDBqkyn2DO+cLEnV4VKWq89cxClMZE4MVOftECOi4vgYombJaTUOWZaQVCzVTqeds6nhTTlne946kFd6gpuMbKNX/74OHPeBWFtgfbEDXy8hw/uloBgWdVfz0GHZ1z0oVyetsnyL8frV0esOycAmBJJ/qY4lqo7L5gsprAkxXDlu+3t9za6Xced6Wwy0DCR7ru6urg9CIwx3DuDS9KWt40ImCurE6AP/1llfHn/Y2XScH8GFcT4fcTleRABFybqQGs21CnAwMK8LLssFQhinKd6ZFRSwesK3LbnlX1HSLklhlsFCbfNnL5hbJWUhD48+gLQbWOGi3jlNC69RBwPs6kHs6nT7xW6/ek8Ae7igtbFBu3k5jw9v7zCN3+B+5/Dx3/bwNIMRAK0PnS8JaQEu5xFpYTg4fPfdLW5uRzw9JXz5skK6Oom39XBO+P/9P58xjhFv39/im2/f4+vDiszSXtYH6QJoKZOkxpvWcFUi33q8AKK93GvgVHSVAl1iMNQLXpsjboWl2rO/4YS6+oslXVXWZK6SwFlqum4ui8gYKAqDZGvFcdTIr0aR7BlJogpOo7a55GpAmsE3TsJlRUQ4H58xn45YLzOOD5/hfMQ03WC/u8PNLuLbbz7gMku20+F0wrosmOcLAEbw4oAgQLiK0GqbfQgYRwHG4xAxBCddBF3jCwshaIZchrIcIqcVzhM+fPsNbu/vkLjgy9MToCnQxh9hxHqAXNdKhUouWNYZyzJjur3B/ft3ohzGCRnAsi54PjwhKVcCQyJLU9iLEtAudC1Cha78QoiV+3Iv5wNu37zBMA7A4JGjtjNOM1ZiTOOID/tbTNOI/d0NQhTyPbl/WXglW17MdqlUAclS2pSSlFJMuwkewu9gwMBrxM7KwhiaDVFzopUfRqNW1tWSGGpwQDubrTDHdPDCFSRosSBWzjDG4Kmei1mM2UDq6MgF65p1L1B9CO7BFtDJxN7x3RRnYYkAw55DfzaC/dd/AlzHAWqYWlp5jXd3it2yJozXQ6K90lK25CwBBH0WGe9eGW5TiokIvvNpsCS3dCDCEp+2bb3NASMynlX+yXW8kw4mIRd4L/t5Xrw0jKhrEoZW67M4R3hzd4+7u1vEONRyz3m+4MvnzyjabCJn4RC4nC8SoV7XOmatE6gBn1aqUIMkFVSTjE1pY7GdlwYSG5mSRaCsNE4NEM1P6MuRGzjimj4ufxPIExIWBaotO6ds1p1lVvAGd7foV5vH3nG5MWgb0gNSAajAp4KQGYWloUEuwFoKEhhzJjzNCTERbgZgCrL2az6CgUK0n8yawYq2v+pgvTgYtsXsv5a+L3xxAKnD2xNQvAMNA0pKWEpR7jDp7ukAhNqD54/CpP+c4/HxE5gZx8MB82VRnSK8UinbGm9Zisu6CnkyS4fMwqglCiJPZC9YiaxzDpQdSImlZWlRDUTJEdoaUAdm1jIY0u5CgJXHcKUkMN1sVkOLqJYXe6CWfUGDQwA8ecBDOj+qYfPhwz32ux/w8OUJz5+fQWWFcx6OBjgCDs8zLucZ03SDIe5B8Pjm/YTggXkmHC8iL7Nmyz8/zfj7379iGALevrnDu2/e4Hz0+PI5aGMCyTokzYyrATzN+GFT9L0NrNk/r0LqDlO1QGdRzkVSjlOn+05l48bg3MoNO2cdSytJrj1fm6HtK48RNZnoTHYFxFEwVFrXKuNCCCoPrAwJCKHJeHNu2vx7RyhDBDmHw8NXnJzD6XDAtHuAcx73Nzu8ubvF/d2NYqgFv/7yEafjGTmvSNmygMxwcWB1nsTgESgKAe0YtNTMq7NRO42SBG6NeiOlUg30ED12+x2++/4H7G/2eH4+4vnpIGvheIS7rGpFidDzIWippGTYiH6RDnTT3R7f/+3PCDEiIePjp19xeHzEr//4h2Q4XY7ChwnAQZpJBKW4AAR/EpSHxSawGt3y3M573N7fIQwDEAmJEi7ns5CiE+P23Vt8++P32E0TdvsRRIzMknULSJmc8V0Z3mg6owBaWVKKlDKFELDf30rwkixo24zFKmfA6tCyXF1Z/DXLVAAMACAleZ6UEi6XWbN2M8ZxBC0L5mUGocC7jKDlVl6dmc5lLWcvSMuMxBmeMoLWNqeSu51he6XbW70dI08KC2ZKu/bcMBaj4jaTVdUoFhBRrySULW3sxIGIhoXMVoLiIJK8EwfAuuKKDJYskI3zosNNrRtoe0brsN2ahnAN9IItgCLl4UUzxclJIMAoYpzj+po0U2GE7BG8fH5JSTl+NWORRVeCxRk0DkI78PbtW9y/eYMQAnbjDt47nM8X/PLzL8glY14kg2meZ1wuZ826XRVDOOUmbrNW9QW6dWqfMJFVt4o55vQ/1dEBaLtGEHUZ/QSgmJ3egrD9xWQIjUdV9KZTrlHnuToom2xqOKin73lx6NrYOJkMLoGv/guhhkgMT4xYGAOLpRGD14ZgDktxcAk4XzJWz9gFoeoBoatW6jkS1aNtFUP1sbk5g6hf5ZuZ6Z6lcwywVC4MzoljKRJAxs8pNkku0jjEGrRcsW39h8cfdjbN6aQC+oL1sqr3LMA5KXdY1/UKKC04K0FYUgAtqd3YOJt6wNvK4nK9rk2ks/IqNEEo59ESDueg0LUJJyUaBEuUB8YXZZ+5Uvw1Sq9ODWcLnoQc3Tg/nHO4u93hw9s38LzizZsJyzxgXQOWRQzUdclYWX7mJM/25s2Em9sB4DMevgqItKyky5zxy6/P2O0GfP/je/z443v4cMLHL4uUn3hum03vVzopyP26q5VlgpW7xdTeaYbrxlNsgtpkX5P2ck2gdiAl4GqpXf2lQqFe2pRW3QvtTTN0JNWT4EMECEIoGVbp/uepu5KQ0npdA6kIySWRlCoB0gkuBOFzuZyFK2O9nHF6+oLd/hY//eW/Ynezw93dLZg9Tqcz5iWBnMflcgJYHC4xiOGcixCuMlDJUaOT+mbvmpMpaLvlyp3gnHqdZUBlj0jZz/2be+RS8OnrVzAFEHktXXM1A8McdrbGpfV8xqqtTPfO4ebuDnGIcFGIjlPOOJ/FaVaUTLLPTrKMMXE0yL2llJFTgey8VPcRINlTu/0eu5s9kgNmygjnEfHrJ9B8xnB7g7u37zCNA8bdCOdJAWxuyrsKNF0CXTTB1mpKUqYr5VDSLta8m2RthiERWCJzzPTOGwNRpQLool2YrEV6SivmWfgl4hBrbboY5wXBauGZkEmdCjV9Vj5DEI2RUnM2iA3W9oDXLMTaHnqjvDpnk2Y1QIERmKsDTQzB36odbxFGizYxa2bJiwBom0vb/dIhTcu5iqFKbGSxjGEb1/796l8zA6iTL+ZgkPtw6hAzhwcDWeZQuiwpeCKnpYKSJt1/J5WCwtbpBYZHKhi7udnjm2++QYwDbu/u4X3Ar7/+gufnJ2k2Mc+V6+lyPm+ARHXad0p4G8HczqvIQM20LNvMDvuonc8AlwBiwCJQVtLYEg2oyggGapl5/zdICHc9SXClzyqpcTSTp1dA6TrTxHRgy7o0oLX9DgGgXADtoOMLI0DkngOwkkOBw1oYpzUjFCB6j+gLPPVj0DmbOjDqnI1N3lz96m5fvGafZBaeMpmHxu0SvJSOJAbICeF6cfK359La/r56vX/dcTw9S/nhfEbSEkmCZKFkdV6zysHCUho3zzPMhQwIH1VOuRsuXX8kjhRXSwwNyaPOARFVx2rldaoySEsSVN6ayJLhVcNH7+I3gbgevayw8viePNlpefbd3R73d+8QHfA/bgIuJ4LkYwSgFJzPM5gzvv1Wuk86cri7HUAoeDoUnGfJOpYEVML5lPD54wG7XcR/+T++x4fv7/H1c8bxeUYpVqJimdItU7yuT6t+VdlSYxivIJ0eUm32oBorKp3Qn2EDzq9kpsjoLmuDUctvm7PJvkqQZkdafqI3bBH+xrGk2cdJWpJbF8PCWctPSNePGmOuKPWErImgpSo5Z5yPB+SScblcEMcjdrs9fvrpL9jvb3B3e4vlfcbpeMJyWQEmpDRjWXQdqNLPRXAGiIST0nvE6DGOUeZCmm4KBqoYyvCQGf1Fso+9wzBGvH33DsM4YM3Aw9MJnBn5cgaR8DFlTiIThkHKb5xH8MJ7aQHyYTfi7Xcf4GPAl0+fcXx6xuPDV3z8+CuWZZF1H5zgUOe1xMUI5QGwNctomK1hpwDnAwbnsLvZY9rvsfKKUzojnEY8PXzBss6Y7m7x5v07TOMoQT2IfLPAWMlFKiZkY1XdYpnGVpKYUgYtQvI8jDtx1FFrZFLdGtxK8CTTsq0xwRONq0hXCayx4TLPOB6PYGbNahukxAwMIAt/qbNSG1vk4uznkpHTRZyO3krzUfFLrwecyq6+5E0FGiRAXqr+sI56Rl9g5cOVAgVNJslPdRTmPrPZrkvN9mub/FW9anPCXGqXMOret/Fsgf3NCQRTds4Lu3d9W+6n0o80x0ombTBBMkfm9HGF1WGrZX6LrhXlZTKZJtjJ1UqEN2/e4Lvvv5cMJtUph+cjvn79CuNVLkV4ziQQX01PNZGvG0a8gjkqOWh9/PZntTd1fjqDltyWFoIKCQWDzRM6bIkrH0DFRJaIYHK2fa8+hI2/OZzwO4fKf/Pz9xNr7iaTyb4IfZAv0gkvkNiJmQvW4pCLdKdbVil/H9TOa1mpVMfWMDfYOKfcxr7gbmDrkHYHtZvU9chQYkuhotCqjsASmssEoeUAgYWObkub+z9x/GFn0/PhGcyMy3xBygJ2VkpwTuqFjRDMDL01Zen6os9zbaxQjeb2w2GGjlNOJouobe+lZhKApFTIZr2CBvunbPO1dnF7HnOOSWDrKtXeGU2XOUMU8qk3e1kzDscZ65pxdzOivNvj+ZmgPH0AexAD68p4elwQo8O4D5gmwmGfMY4e3puzSRwSJUv05nxacXi6oGTG+3d3KCyleFBvfilZ0+uTtsl2gG8CtAnJ61XRSTXdEM3wtzIcdO9rGUc1R9o5ycbJXqGrmaT2nca5YUYRbVasKUJoFIicF2Gi/EzGQWCR1CpELBJRrD2mdVKTCLyDcE8xBgFPGlElAs6nA1JOcH6ACwMKZ7x5e4dhGnA5nXA83AgX2SpROi4ZWb8r6aUeUWtxHbVsJuuy6JyROlr0WKT8uorBWyCRhpQz5mWtadCs6eNcsmScwAxVGelsNdhOyPx88JWPYJnPSLngfDzgcjpJe92UgJzhnEchTbv1VKMhJWU0nCF7zSLAVtLgnZMAAyTte9rvASLsbm+xrDPIexwvZ6xpxfAQsKalnYdkDoILssZ6zVL9FqRCuzmfc24OrwrctK7fSkuE1J07YwswR3GNe+ieIGepvU7JK4s6maCZaYMaXcpDVAqKdnOq0W8VC9Sdz8S6Ce4+wlLUAbV1BrSMKzbHkpUL/L56q/tvc75rEOXM2YE6lhJZbFmhMvaujo1T4uGNEumM2deyd/StaszaqYlUIb3yLAa4avYUix6wZycVC/I7i4HkCBGEaefbRcnWlcyLNE7IKLwgPzwCBBwOz8oFmGspN0G6IJme2srHlgLexglNXlYl1FmZ1MZmOyj9V7dBjaoLWeUhAc3R177T/tkXlYNBuTks4NLuh+1j0EFWsENX1+9KCOozdxE+dOuKGcgM8gzH6twHITqp9Y/eoXAAUUFSp+9q2REKxFl1s6kk6u7jeg6uwVUFcjYFL6ATzDcCRwwuSSLBcJLxy4ALHsgkuiIDhQhFM4II4kD5X8RO/9PH8XAAM2O5zCjaGnyFGMMpCXedkH2XLptJszVtvQDVSWdOSRuH/jmki2no9tt2DxO1gAMVJZA2hz5tDQfWiavLXn9WJ0tphpCeXOVeW28NKusZWJ45rzNyyri9HYG8x+UccD5nKStVHbosjKfHGeSAcYjwb6R9/ONThiRVqoFEpAEjYJ4XLJcVjhzevb0FIE4NC+LYP0cVdUNJ0yqgl6AGlDuFNyIA/a/VSLrO/BbZ3tky7cudWLEZJEVbIhdR92aVI53u5ELCuUSyiruRVdkYJArtpTW9VQaQrn+jvbDMWDNaiSSL32nGhr02jqIfffSi1znjdHhCWmbAebDzABW8fXePcRoxz2ecTyeUkoRUOycEBoYg9zfGiOglA8Nrq3XBJaROY+Mb0qAHWwaOODtOpyPmyxmnywXneca8rNKxlAle+T1rSRmRcvAATFwDUCDRfSknPD8/wTmHh8+f8Pz4iOPzAfPlgpRWeNKM4EIAZcW2AYTG8SM6tsmsXOR6gcSJBgi/zprF2TaMUoI4TBPiNCFzwcPjI4YYkcuK/W6qxrQ40L1wV9W1Bl2raoiT13WjuMR5rGmFdf21YKc5QHMXqCqaFWS8oKbXqp5WYWl6gdHvBVnj3jns9ztxTCSWTCW1UZhZ6UW8OGS0bNW7FnAgZw6iUrPfoNc2OWIqyZwBpWLE0vDLBqNwt4+2xzbgpPuvYpJONiptRc0QNdyqYKd2SO2cAZsNXq9B9Vn6vW/4qgX5XO00xqXp53pK7s/ZbsXKaolo09AlxggfpKHUfm+5xnKnzjkMQ6zltefzGWBGWiWz/HQ61UYpljUvmVahu5mmP7ne08vx3uAU6rAOvbQuewjzmnJmBmrnZyMosjHpv9KgOCyzWzBo7uyFq1mr2PwaH7b3bfDrfdoas20JyxPkCu+slM5DqgKCF6dZ8Q7MknG6arXGmhnRM5gKyANCfdJ8GL1j0rrHmnPUuJ0qLm+gEm3uO8yjH3GQkmKnpZYeFphSuh4COEszH0Ap12DJA38MQf1hZ9M/f/0nwIyHx0fMywqwDAqRw7o2Z1OuGUvm7efa8loGxXV7RsjPGr+JbTiPcZzQhIUoxWVd6wYU/g8Gk5C1ktNuUEYCqCVN5qRo0rENck6SQumdU94fFaQQYi9x3aIa/uACF4Qw+XhacTocUNYFP3x7h2/eBPz7P8+4XE5S8hAGEBwuZ8Y//u2A/T7i//V/fcD7DzusM/Dl0wXLWpBZWvkya3o8Cr58PIIysLu9w3/9bz9Jh6UwgDmhlBVrWrGuGWkl5EUMyUjWUcEpBwGuFpQBl86Q6BZbH3cmJQc0bhlCS5+vG6kTaP2Y1qihGfmsIM5I7Bgovn2vj3YDYnA4H0XohAinNfjTNEimSJYoRq0TLkUNyiwgaIpQ/FvJPcdpkHtXI4OZ8eXTzygMjPsbjDe3iHHEf/nrjxjGHc6HCw6PJyzzBb/8/O84PD/KmnACNIYh6rrqlIxK+BilDE6cXrLWxXAQcujj8YACILFkA6w54+l0xJqz1ssmcPGSkaGRN+ieEW4KAJDohfMDhjEiDjKghy9f8fz0jMv5jKeHr8g51QwbEEknKdKub96Bs0TPUaQ17zSMcA5KAgmEEFVZSVvOxAVhGvF2N2KeLzidD/BTxPL0jI+fP4O44OnwgDF63N3d4ttvvsEwRPhxh2mYKjAwh4sBoBadkGcDAbOmjy/rimVZAUCdYlSJSAXUyRx77xC1I+MwDghRCOZjkFJKAYy60mJGLf9gxuA9pts7AKhdZ9aUsV6OSGvCMI4I4yjnUUe2J9TMFMvCkXUpSip3ysZUYO1GV7h26dwo2x5YdEDk2skjjRrKZn/3zjBfo0LNsARcBzgJRB7OSzdRTwTyupdSbhqUjSNhq4z7LVsBGBM8dfJF5yV33+vbrwsHEzYcBHJqKWckAqZpAJw0R9jfvJUSU+eVj6BI6jqE6H1ZxDH89PSEdVm0A+OiY6LP7KSFr2SPSHlJK0Xsju55DXTWZ6hoCFWubqJqVbReR0LlHljr86lzMEmWhX6Kt+Ct/kKayZbWCp4aUPXNGOBuDuoyoHpv7YR2fZHtLpByxAkxeSnCR4Ik9xoKMKCLyjkCI4KCZJNeFiklmXxGdIzoHGKIyv3JdUxZdUftVAnAB0LPo7OZgpeETRvdwY5r6TxKEnPdRwQtLU8cpTsZS8anY4AKddlNfwwo/WccHz/+CjCQD4sAepODUH6mldGyCszBJE9af2fJCmFmJOPE08UoultdL9pxDWgGWikF6yJzKzrAg7jAi9dBAnza7dWCYIDgLOIWdGrLSLJeCktmojkzoLjMZtwOQxOknZbOxwXHpwNKWvHj9/co73f4+ecZ//jnWQz7IG3vj8eCf/u3Z+wmj5/+fIe7uxFEz/jyZUEihgvSuQuc8Hy4YF4cnh6OGAePcXyD//q37+D9gLCPlaMtK9eIg/xDlXMES3EimMOUwb5xGRqw2OCr7ucGQ9UZ3MpkGw+buWoOWJaSOhp648swFIMkm6+CN+30RZq1TB4hToDzCOMIRkH0HuMgpWCWTZtLxrImuU15MDgHjEOXtQNZh9N4tZbygk8//7u8d3uL/f09Qoz469/+hBhHHJ6PeHh4wrJc8PnTzzgenxCcBOiEY0+5Tc2wV9tAHCsRwUd4FwGQNBLKRUsCGcfDE9gxLpcZnx8fcTqf8XA44niZQXAYi4P3zaEoslEC0+bMIOewu90jDgPm+YJ//uPvKCXj53/7Ox4/fRZ8qR1LgwX0ujXs3QDngpRpLxeUUjCNo/BYMWNNqzRAcA6RBhRmzOuKMjuw99jf38MPETdv3yIzY75c8P/8j/8BB8L9/S12uxFv7u/ww3ffYRiiZI0PEcxUcW0fiGPpyaklc7Jmz5cLCpfaMVDWnAfg1LltXYjlubxyiDrnsZsmxBgkU9qzVpPq+iu5fke6kwvuvb37AALh68MDHh+fhGh7XVG4IIwjQhgBYvgipfxWrWJWF1xBTi0Ql5E7w1jkimXYmA0AmJPP5NM19mn6H2jOglYlYhhHdTm2Op21dAhwQusAxQSqt1t2eOn2S6mOFMNQdc9T2/N2q0YzII75UvVjT/xtKttEUBVVRcSVK8KrI44xBlhs6/1uhzCMiqHuhbZF8ZqMoWS1rSnhy+fPWNeE5+cD0poqrYNgCcGy3jl4xVA5p5q5X2r+beO6tPFomLYhGzPJxTI0p2Yrp+szzZq0RDfWRWVFqM7B2ryplk323exR5z+XVce9BbVIK2csy/e3utEZvrPxNxEMDfJKcgNrZYLogcBAKBI0HSAOsjUCmQlMUZz1peCcEhwYwbGWolKtVCjQhh7EjQUoi1x0RHAx1HXUZ4U1xG0Zit1I1vVn66aAchaSAS9yYHVAZq2AKQVrEQzFRWSCNWjZ+AF+4/jjZXTzLJs9pa7DieRUWcvd6hUsgEEgiUxw2yD9T7Q0/roMbV0amK5+jlIX4SYFzgaqAwt9hE1e6oCufa9byNxviM1PEQusghbQBeqcdJtYMqhwrT8fhkUIqC1vH6Q11AUhSIeSECx1WIDZnBxQCKUo+RtLVtjlkjDupRvHMI4AvIyUCqVKJsbSNp5LqU475p4IEm3QOzt2awZ1WRpXq6YBe958qR9R6l+ldj71lMgE9RdUwFSDilUA2+cNQLmaSSZ8PfJdiTI6EPLmtHbtCvpsE9h6UPwnndlWpJLhQoDXuuUQvBi4GeAEBO8xTTus8wyiAkICETDE0HhemlWkf76MDMsjm1EhfDGpMJY1CZ9ZTfPVkoaSpZuBKS1noqIzYJ1xyGj5AwPLMuN8Pgmf0nxByRkleK31F7Al3nEPx+JsMgAXQ4Cl/5vz0XjAbOlI2adkU4USEQchE1y9RypCyn6ZF5Qkadzrumo5FldFzhAnA/WyvCp52ZuVLFeNsJSSKGDdkqWYU1sEYR2S6vlv662lm3fAwhGo2yMWOQSs/M2m1b5joMUUVDftzRNx5WRQeUVVhaKl2bcUcDH2t3VvzUnx0hCWOzKHvi6xuvF7o6Y/emXeMjxrAZWOkaWBv7xq/7wN/vU5IYqr6njK36+dCXWfNlLs+nK9AqAlqF7KP6QrkShA4XfKUj7LBWVdkZPs6flyEZ6y2q1G59/uCw2AltJFbus4XStqvOrwM7HWO6bq9yrI6j9OV++38THC//qtjW5qv7RIln1eUE4jnd9+2UTwi/vvAGsdD6Ja/ir7o0XlSDn2LH/CgoleO5oUsnUljr9cSlfS3o3V1Ri1LKsrMvZOptZ12+l983dylYq6ss14gDaOJo0Ug+Ue1Xgvda+YXP3fc6yz8q8od4Y4HrWELRfkrqyN2+KrBoZl58nLr9/3Zj8p+Wt1kqCTj+izF5Sovysr6/FALxX46hp2X3w9wS8Og70Ec+zkLDQDxIwhBpAnDMMK722OZI3nwpgvSdab8xjHgGEQHAUU4bUgBy7CE5OzlCKua8Y4iNM6xhEcBehbVj2XAq4E2d3o6Vqz7nQVmVBbMUyyR2on6A5nvj4hTSdtcumMlxQdru2+9lIatXPJeVx9rxloNsZSrmil+cafxdBSlA2K62W5Pa9moioeA9QY01TrtC7IucCPESktcN4hxoBpGpFTxrKs8J4wjiPSOigdgjrGfGurbpabZBrrGjQcWJ+Lq95LSUqjl3VpHayVt5MAzSLPdS8Rta5eQq0ha86yfnJacT6dkHPC6XDA6fBc14fMgMXwFdsCYE/wTCg5IWnX7RID+sz7pudllAsXZLUjpONjqP8ygGVJILA6hhjjMCDlhJBFmjoNXirF49Zq0bGySo6iPGzW1XVdFzADDtLRMueCNcm3nWs4wGXJfqkYitpa4+6CPf4x2yj4oJnjlikp7zcdo2tTs+as4qQqIwuK1P9aN7j2d8NQuWa6Ae4ldQBv13Ov/9r82N5v+25zNFhVz9M99fWnX8cJr7z/G6K72rCsyqnHVC9RmeHQpmBlbXaYQvWflKsG5WcKOo8k40dC01EW6Qa/LAvmywXrqoFq19IB2PAzWbYhgYreb4NQHe7oMaG9uH2tOm4q6tOx7aot2vPrSbrLNQy1HdTX5oG5VcbI33rezjaumXKdI/K1c24yhAnNrlBHj2WU1+AP0Ei4SRw0wNY5bE7krDjKxsI8JP04V5VeXzIwZ8O2WTxyB2xZxtT09QZLGYZSZKm4UJ5Ns8J1PApk7RXGhr/1944/7Gw6PD4DEBLfSi6swlpIOrkuYjMmbH21ja1PB5kcM0StXrdGItAB8ix5UUWNTkmZ9EI4aUYiiYc5aOQbMM9i2aB1A952/RCMvLYBaFLh6LTQnLmRJ5pRPsaIwxJwTgGUHeLMoJxxsxvw5z95LEvBw9cF86xkiyAkJhyOK4aHC0Jw+Mt/eYNlyfjllwuenlfE6BFvBs3YIhzPK4ZzQpoTgo+4f3+Pm7s7fPn6jF+/PnU1zg0wcGEUJwTGgjlc1eW2Z1q6JrWFpe+5br3WRVYN1XZYKVRXeLj5nCMDlTaRCn56gWDrgRmsaQ0FwvNjqZveBcQ4SBaRU3Jt3YhSfrbI3JS+7ab8tKix3rH8k2ABJFoV4Fla054PT1guJ+S0IMYB47jHNN0iDBF/nf6GnAtOxwMev35Gzgl5vSCtq5SZWUtdjSoaAaojS7GWdeM1rT2njPPxhFQKzsuKtWRwSZgmIRI/nw84nahGKGUYZY1L22rNaFFC58PTI1IRsPOPv/8dD1++IK0rlssZXBghSqTaeY+oZJ/BS5cJLgVZswU5rchphvcBwzDCe4+CFWtisCtgTgCizGcBiIt0UBkGlGmHdX+PkjOczuPzMWH5t39ImeFfGFPctl+2hAeZHV2HRnBqOQcsUUVpSQtYE4kQBsQwAiCkrGVbJKnYzhF204gYfAPbAKw8ESg1Wt2pLOS81nuQDoFSvlmKRTZD/SwgqfNF2/raP3sakfMEhhCK1AzPWjpnDkbUPdZtjH6n1d+Mt6AC2F67d0poY6gqQKzXRjNI1iTZUSKHG0+VIdj+HL2jSfQyKal5k+39sX1N9YGVE7C5CEwBGgCTqJ5luDCEe8d5JxlTZUHmhMu6Iq2pklbKWBbhdcoSqTMH44txrOJS9IX3pnv65+uSgvvnMpm2OXSOzSCDyVIWMGcA/ZWDASTNqHLcOgcZ6XPbG6jg04yMKnHJ5tjWcpu8dqdyBoMr9TWWezQjIETCOInMWkBIRAjBYYweY3QYnEMEIbGWszAQ4cGOAE9YtGRuSRmHkjBFj8F7ROcQOgVk688ym5wjeE3G3pTPVVD1cn3VlHUmcNLGBt2YaF4GmAiDZmGV6CVjtBRkVgdHLwL+NxyX81k4HLKUKIMASlR1YQvidTrXwF0RLh0xxw3MizwllX8yrsYJhlr6ZaXX8l7DWhYJHYYBIJGrIcbqnG0LsQDsWkaDAmgQITjlhCHLUG2O7SrbWDLPLItrnAZMuxFfi8fhIJHcuzEgeIfb2xHffVewrozTsWBNgqGWFfBr1ozugt0U8KefbrEsjOfngnlm+GFA3E/wnrAuhK9fZjiX4CMw7BzizYgwxVriIM0oSmfPcDW6UYdfDGfnnOAqVi4a+53V4aTBDAdIJgR13C/1aA4Tc/rXTNFXpMv26I2uZmig0wXmG0lrQk6GoTyGYUSgFgDMRXBIygnLsnZZHlSxdr3fatGoo7bqMCAMA3wR8urD41f4ELAuF8Q4II473N7f4JZH3N6MSGvC+XjE08NX0Z28oqQs8j2arg5wLiDEoXLAcGGtKuBaAr2uC9bHVZpHrAtQMhwXeCdNdC7zEcySleaVExWZQWxcmAkohMPTI5wXQtxCjJwSPv/yMw6PjzJHmhUVtAzROapY1PsB3kUULkhpkbVAjWfIkYMLHgQWovQsFQFMkplkDVksI3Da3WBAqFbkvAIPjxek9e8Yh4i//uVHjGNQVd9smBpkp6ZnxZnn4VwEs5eughqwM7tGuvYpN5TqFeHNEv07TQNi8OLUsWCo3psjQgyxOk4YQMoZp9Op3sv+5kbWpMruGEINaOZllmBRSkhmx+jnjBCbjaNRHVkte9x+ttckA8h0PFcD+vpo/JiAcfIQWoDJ7pW4XUtwU2uW0G1BydTusqLFCdP4hXrlb+WCXvGFJWD0dsurug5VPGxkbDWlqMBpF8SiZb81y8dkEADOCZfzAUSEZVlrx+plXWFNIMzOJQJC6Jy+PbaAYR3S0lynnX3b/drPZp02d4ZhkX6CKtYxGxUkNkf3Zo/R+iOzZjajwNt1OuxppbiGQ6vM7c4pWTrUyhe5OSF7B49l7V7fh3TFJKF9GIKssUUaohkFTAiKclRnxCw20EAAvJPsRl0jlyS2yhCcdCVX5544dZodUX0cVBFBNz89tLlaV0Rd/gehlISeI5UICGA45XAcvEd2DA6+JRaVsikP/CPHH3Y2nY8nAUVLgieHgtbFpBF2d89jDgZI9E49C/UBN4DKhoT7yG37u7WrTm0RqHHvnQd5VwkHJZ0adbM3FdqPtRgiIpB7gF5j/XVDbe6LVWjGCEbAnDxcJmAtcLlgNwbs9zuczwnnY8IyS3p2gbSIPl8SDocV487jhx9vMS8ZT08rDs8Lhuiwv5mEDC0zzpeM/SzAijNjv9/hw3fvsGoZYckypjaGfXSxdJ3P2gLUWSGHyiNQ3c2on3FoC47q964PvjZdYEKkpbO2k0pE1kooDWzppXVdWAcXE3pcWL3yUcqCyEAraknEkpJGN3qBrfPFqlgAAE6EieJmAEJ+CYclrZjnMwDgdHoCEeHDt9/j9m6POEz48P0HDMMenz9+RM4F83zB+Skh5QWOrH2wcIyZI8fKGQGLsqE6aFOSLg6pZFyWRfjPSsIweKxrxul0xromxDhgGEYdT8koKizZQy0SyUiHBcfTM9Z1xa//+Du+fPokQkhTjIOWwfkQMO4mcTqFAcEP2gI1qQTO4LLqdQPI+WrIIwOSJaJolgFAOLCGEFGGCcvuFiVl5CWh5Iz5fMLXz18Qg8M37+7x4d0dHKQTjOT9omWeoQP5OtUeEsUzroleWO52E2729wAI68pSSscZzAnkCNMoQMnWqji0NQKnyrg69vW8VtZGBIQoqbnTNHV7R85lxtq6KKllXVLNmV1tfz2/fcf+tRKiPlLUC1Cq8sdSgythfHfF7b1BgehL0NKTlhYDOUmcM+SclkqaiY6re0F1nl1fqz9ec6qo3Szgz4kTsdpWsHtVo82ROg1bJpJ3TiPgDC4rMoDz6Yjz+YyUhazWeLaqXtGOhSbrANTyPTOaiFB5CgRkb51CW6mIzRsvTMJWA14PRw1a/dbYmCwzrcid07ECNcJmHuVc7VlaJLVcyel64npGi481WUn1fSmdJQyjgJ2cBDT7QIjBa+auNeBo6z5oLX9RGVgKsOZVSzGBNGgnUW7ZF0aUXrMXO6DZdJI8w6vjpp+tzit0RgKw0T2ehFfKMbB4B0TfmpQo0aVyF/9vOdaLdOcaaEBwvpGUNwiyPToHZtvTrOQDqPiKnDB3Gsm8YSgr1RRjwJxMekk9nyMn8k51WC2FI7sxcTTJTyutdxVPeG0ksMk216MfWwHHcv9DDBiHiMIOp3PBEIC7UTIWb/YDGIx5zsh5RjmLM3hNQFiF1yrngmn0+O7bGyyLGK/rvGIIA25uJzhHWFPG8rTi5jbBBWAYHfY3A8bbHU7nWeVy6WSDPW83/Db2EKeeOZs8LJBlWfssOAdcDQoCKifgq6eva/+PrD410nTMLeukN1gl2CiTKyWCgg+lq1uEkVcwSjUupbOhdZTqMhZ0nqoxpmCtYSt5I2iZ5rLO1ZA9n49w3uGb737Auw/vpBT/3TfwFPDp469YzjOWZcGySPMecqjNVKRjnOCV1slKnE1EVGX2PM/SHatklJSE3xMFjiSAsswJKRcMMWIcRhCrMxRcM5uYGfN8UWdRwrLMSCnh6etnnI4HXa9W5hsrDhmnqMblAO/F4ZKLyUNfuYmGOKhjR0qf4V2bL3Sdz0jx4zghxj1KYZyOZyzzgmWe8fTwBWP0+PDuDt98eGPCT/a+clhWpzPZ67JO7P7WVZquAMrZSSQY6uYWACGtTS4AoouH0RwJwFqkmsW0h4MD+U6Oqy2YlTianMO021WnFxFVOgcuGYsj5VuCUKN0zhn7jjhtUl0D24QFbJwG1o2TmbfOn6tdZM6mPtAopZtWNtrsCHD/fFsMVTVwYbA1++i67tZ722CodjcEgImqbXDtaNo6Bkz+q32m2W1VrjpxbrOr6kLlFumaV+2fE5bLCQzgeDzifDmLPbO2rujWgMsyD6v00oygjT3pgE6DKbXDdtR7h1P3zY01Tr2M7D1V6hmqduIrB0Oc0SAo11CPg+w+CeYor9+r44y6bqoMNXyE7RzA7sO8q/Utqh00YwwYBuEFTHkFo8D79j6pTnVFaAkIQFT6H3YOhcTGm9WZUwDsOl8S6ZoqSsVha5k2wefrQbJ1aECrVeSYw0lkvq4vkx1g2EpLXgjqV+/BXveDjkNAtQr/w+MPO5uQG0cI0dZYa5ur7a8GidvEdiNQnRIFgHXf6g2vcrURZQMIMZn3Qdu4kq7JK0Defa92BqnOox7AqRCoK5rs//XaeLHo5B7HYcDd7Q2QAM97UAbiGBHHAeOY8PRU4Jy2qYbDEB0GLdcahgH7mwnDUPDhmyRgIASEYYC1pQQIu/1OnUNUo5LlKouHC4Nc0Tabyq3gdOQ1XasUQILRHfkZtyfrM5SKGkk1fVIVWT+JMj+mNqlV8RS0OalesM0qaDNE/d/deHf3BTLPtHUd5MrVlIvNl+xEUjBUjZjC3ZpTIVIACwlYGbdTRdiEIWOdZzw/PSAOIxgBaUxgTri5u8E4DYiOMV9GBS4irMmxcF8AMN6sdsaXa7MURlpWrDlpHbpEkObLGfO8IA1Sm+6IQCE0oaiGnkVSmaVeOqUEx8AYhjqfVl0jKf+EvGaUxMhLAdEi3EFplWdOC5ZlkDUaPIZhBSiASAyRdV3g1gA/RIQQ1ZHX9qkP0qlx8AMIhDMxLicnLVcX6QAX1KnhlBvN5vqFcc/bvwV8dISWJSPnBYCr5OmMIoR6ALgkIeDt1lhNjdV/rMKqlx0b8G4AvC57XV8GOtTAMKOCNd/AHLnynkRNnbs2AtXxugEZXPelKbTmHBBl31r4NrnUSovaoLWyvX6/dplNum9RGNRlOKBw3e/m8O22YjdO/e+vAcHu/uouaI9W90XnXJA9080J2X1ncAKYxVBPaRWjSssiiIRzSow96DzoKG3kd4fEujtqGba97pKx7HFFzcrsx8E+VE+rSsWh8sO1FvH2XH2ye70LXcPdwud+j3B7v/8eW5r3lWOmroMXT7/V4QpeLbGtH3vhINDIWujaxLM50yyqxUp4ScjkQPBizIKwZuNxoKpna7ODq31n4/R7R13P9mydkQJqEWoZLGE5cFrG4pyAPmKPrFmyhRk1ieN/wyFNEsRYE7O/7ZveiKqHPpc89wspqc45cTRJ5Fwdtb1MqPtAPhtCy3zwmhXeLtzt9/46m6v2n5P7qgbDyy3SrdFmAFnkfZwm3N7fY3AZ07Ri8AXwDmEMmC8Fy+IRQoZlQE6TR4gRQvYdsNt7rCtjvkSEuCLEIG3Yjc+TGcM0iRNUm3HESnjbnO8Ve9rzdl4yWx6S2SCOr6zZo7b2TB9bZJzUMIftrW5ESse7ZOeQUmoD7azX67KLsDWQLTOg5h2YDLDrONZsZIBY+LFEf0gXOitNNyPd5sbW2MaoZtM/bT77WbY5lVJ9+TwX4SB6fvyKEAbsxjvEIFn7d2/eIqUVl8uAdVnAnJFLEt4v5W6DOU9ct5Y7pFADNiljnRfBUKvohZyTdMxehYpAsKxDLrl2h82amVlgJaxJuvbmjOA8pmHsZLGNq9xHWjOICtJaAJKMptoxtkjDFe8DdtNUOdDIR8A55JTg1XEWo2SJOy9ZXd4HDC4CTHAUkaaM+fyM48MBK4lTcFkXbfBieLDtOwuUN0ex7k/df5YVxl2GY0orAClTNexOEMMzJVa7Q8nDbSlcyRQ7LLnA1kjlxJTTomTlINM5soz/2pHU9OQGt1vAqFS77FqWmO6rHDtX94XuOzYkbR2r475Y9lSXudTbWOi/094TeJSbXKO+TK7T+a/cxwvc2X32+ns6FBXOVqwBgFnGVexow43SzUzet2589nm08kO1f6C60ewg61LaRM5WN9gYNeeWBQg7GcS2c2jz87VxoHYiWPYQG1eeZi23wFobD6BleNkd9mu0SlNW04/panl0mPUF9JC1tQkXmHembjqqjYLqY+u1SZ9FEhFcdbaqaSDYC4ahoBywWomk1RCFpakAwNIATM9v83MFIrdj+RtH72irU9s/c11nrBjbwbF2f6eug7AQDGvS0e9esh5/3Nm0ClmbEJJJrTwnyzzi1qaVAVgHFXSv6SG1062TEOkAlSJlORb1t4iLHc4RhmGqtedOsx1WSwHmTqnrAjWBalG72kHK1jZVXQroduhBhwlasIJybQvpyOHdmzf48N6hLAcsny/g9Yg3bye8fTfhfEkI8Q5Pz2sDV8SYgqSM39/f4Pvv3wIAbm7f4XxKWFbG+SIbIgTlJvEBzo/IWUjY58tF2tnXMS8S9dGMh6ZoVBCrUkpZyNxN0Eg6fjcp1bAxkN6icpZa25xyG1msQEs3XF+Oc4U8N8rhmsOpO3ojkcQaQuGMWQnrLvOCVUly4byWXEk7emaN4BatQ253Wyea2NaAZU94RBWERl59eHrA89MDfIh4980jdvs73Oxv8ac//wAC4XS8YFlWPD9+xS///DekdQGQQV6uE3xACFEdhfZMWyMrp4TT8YDLsgBUAMeY5xlfv3zG8XDCOE3Y7XeyDkKodb3ohZmu0bwKv9MAj3c39+oskhTp4/mMi7Z+n48zSmEsi3AdFDbCYUYYJAV0HCfMlzOmaYdx2mPa3aBwxvl0QOaMG3+HcbqTsnuWqBmDMA4THDnc7u4xDTt8/vgPPH75FSmtOBwP+PIl4ma/xzQI0bt1QzGhLA+zVQ7QdWitdUu5aPr1jPPFBKumyVIzx9aUUDJVYa8ioRkH6rTBK0q9qDFiq1FkhCkldbKqkdIiiZZBk7ssp7aGrVzYHL2liJrhwkh51dbDDKPT7m/JqSFiaxrg6uize+qPbue1Z6qOKgPtWm6TTIlDWyuTZvzps7wC3OpRtxVXome7v3YnW6BVfdZ6h0ppLuuPrVNSqWOeNf2fWcpnwZ2+YUbQrjZWJloYWLNmP6YVKa+wyNN1BE3teFgQwxzAbT3I+PYg6fow2V7HvXOwM4QXpQfT5jTgzeflZmQIbW32o6TlF53h8BpQfXFv6HBRe6IKVEm7UoYoKeBioIsxTQ5wHoiDw24XMYWAGCVy6xkIzkpaSy0jmoaAzMC6Aik5rCh4nlcEAm4GJeXtje7OkdlKPwlEBddrpz1nB9LJ1FWpz2slSyxkSAAKvHJZDJ7ALiJ5h1QySnbInDDn/GK//KuOm2EPACianWPcc9KFDhXx9o6F3tjpjTlAsxScq+XJUvKbYKXo1jbd8IAEuqbmXLZ9phF/KtIhtzqQTDZfg27VY9XpcTWAW1vX1q2v0XOvOu3du/fw7q/wWLDHIzytCJHgB8LlkrHbHXE8pNpww3vCfpQrvHmzx/c/vEFh4N27E54PC0pxKEWcK3AR7DymacSyMsppgR89fATSMtf92BvdVqdN5FWmC88XiJCyZAIxW5fAHgABbGTgXGA1JUE7uYpzTfZ6dTDCnE0E0q5yTi0QMSoKirb+4Y5vUO5PeUCIAOu2DKhAZSRHSm1BYHgNKhk5fJYGGKuR5Eo2gwUPS2klXrrY2vpjW4NtbZgjw2R2KRmcJUPo8fErYhzw4cMP2N/cYRr3+Ot/+29gJhyen3G5zHh6esCvv/wDuSTJpBykcYWPEtRqgU4AGqQqJSNrNtLz06NkSqUVOS1Y5wVPj19xOS/Y7XZI+xvlWfRVdkrmP0RvOIe8rsgX4aS9GSbcDjuZsyD47Xy+YF5WaYRwuUhW2Cp/F26l2MM4YhhGxCHg/v4ecYgYxgnjtEPKCdP5DOc8xv2E6fYOyzJryWDAOO5wf3OnFRojHEV8/PnvePj0C5ZlweF4xPPzE2KM2O32cM43udlhENuT8rvJCcJ+v0dOCefTCSklzLPhDdutipeUuiFlwT6OHIK102OutlXvODBHE2kjmzVJqbs5rzaCgxmck2bCcM1aJ9IyTdtD5sCojTQk9cJYx1D3iPE3qR6o6rutW8OAvbOokkyDYRpgo0frvm5yuK+6ARE4Z6xatr891PHUEVRff8b+Mv1tGKoGOrt5AXFrHGDkz1fnY2aQBzKxcCkpPs8dX5cFHE12OXKImvEmMlbs72WR5inMjJLVMbJpOtNjPChRut/qaJ2m38JOdRy6Dn/NRoRic9Sgpzkw6/PanHXioXf6GvppdyvOWcP07Y1ev9p/XsewnScG1uneaedOJymtMIoL5x0CCa/gMEYMqr+EdYAQSGycaDrdOYxRmiHwSsiZsGbGeZZumGP0iNakoJovvYXbB32vx7xORgtYb7K9bK91y6qIfHBgRBJuzhw82Dnh40sMRsaassjTP3D8YWdTBXWdC3ATWUS1g+vDdrB9ey5wXVw2FGYYWpaTnb+PfFuqotOoh0SRytXZt6CIa+p3Z9S+/oTd8lSvtBmlaGnGpmRDDBiGCRkrSojIOWIYIna7ASCP3W5Fyl3KGhiOpducc1JORI5wc0MYYsb5whXshzBIpygtO8kKFqyDysYDXlgIpIs6cXTBMByIC8yYMyHQMjNsKLo57J+ZXF14RHRF5ku2drceO26z/pqdWheyAofrOdt4vOvrei3z9hbeGCpUzetOwJmiqRtKz3Z9SWrRfYtyMomhuqwLfIiYzyc457CbJmkT6jyYHULMWOaLRJlyQW0dXnfslQLr9oQJznVNWJdFIqleOmSty4xluYDU8Cfn4IuCrqqI2mWk44fW44MQNetvHEYAEBLyNeneTBpZMmduUUVUUNir0wOY54vux4AQR8A5pLTCrV6zrTrlwwpKvIMnj2EcMY47xGFUA4g0XX9BSoMaKTYeXJcOcYvg9waWOWv6ogyJzqUGti0b0IBp0e+7LvJhYqpel19fpHXO+nXcCfIKwrv1SrIOxQFV7MavF5tmOMlac8TSuhpUr1FPrNcVwMJbmcpc915/n791mJO4N9LtPAIoqJbomYFFtsB+77x25bq8eTOcvahtEb+rMemUW3UMFqDYGLI550rjVurApDmQahczBlx1GHEDPXVct/K/OTjaPdtHe51VMQjakqnO97YEXqwHoIuW6mv2lT5abq9UMYxe1vbQvrs22pxeA9mXYONKQxLVfeWMBJS2cyhBFUsBNxDY7tz4/RwKPEknLFuz1j0z5QQmNc491bG2sdlkItVnkvslennfG1zBrz1ne1zjMhB3pHKjaCky6TpjUFeQ+q8/vJVrGEE1Gp+b3vZmP3V/AngJXSomqb8XnctmpEn2gMkftylL3qwqvj53h8/6pdoW8PV2uvqA/s4yzsZlQ+boJIc4REzTTjjLcoBHwTB6jDsP5zJ2U0JO0pDCB6/PmVGylH2MowRUbm6FNiCtwLwob0qQTpbeB6QkwDkn+SdZFaYTFE9IS8NuXO3BXcVFPZhvel3+U51N+jlZvi27qN87myHsx7YfOVsMV/tgM99oGRUwRxUBJWWR5SQ4zlK1xFfQ+GdsLmyOr6BKp3O299djYcPxgqEKDD6mdcWaM1JcMd9dEIYB47jDME0gOKRcQC5gnmfpfMisHRB9dQxZyQd3eNHmTAzhRmqcchI+Tc1yWpcFwXusMSqfZoYFDoqW0weIPjb+RWKW7sc+CDVH1K6PKYtD2Bmxv3LIruJssoCITDmj5Ih5vECye5yUB64BOa2VtkDkqtcyRwmYhChd+Ia4RwzWGEgcgUkbYDiizRosTJWovscLba5QMwnZt3Ixy3gxuV4Ddx2Ghi3/yoaj43+16akthLpca2Cvrme2N8CWraF3uZU1NS+/rjNGk2fakgvC8Ugbe/FVKES0kUjt6PCU/dUt9Gs32YvTAl1malfSVMHCy6u+yGy60l/XjgKqm5JgZQrt/Kh7b+OEdgBKI3Lubb7q0ILRfHDF8YYDesAstyIYsadRuMZyDfvIqBiGfzFmv4VbdKE2OSLPbE6higerxdqwlP3dKc5uXGvIt/31Agdf/a5vVsvx1WXQ7tWpeO0zMJuNZlmf2sW67rWGj2t2E6lTlBmZhHpHupgXsJNudkIvSHD8yurc4PDtOm6ejfb89bUOz24wl40jSaIMgGr3MUlwktmBqeCPuZr+Z5xNq5wyJYAz18yEkkXBWMeTSnBqG7E+mDyQpXEboTKX5uCIMSAEj5SSkvMWWFq40zaTRMbrI8aHd9KQMgSJhFikR6LOrR48BG31bQKvBxBax92sGRXYusat5jJ4h2EIGAbhnZlTwXxZ8enTE5bjEwrfwgXCuhaUsoJoxeF5xtPTBVw0DQ2Ep6cFD19PiEPAm7d77KYBy3zBw9eDfjeisBdjPwxCUBgA8Irj8wUEBx8iyuql1pIZII3WOBP6XBd4VdAgeOr4b7bIRteZLGSvraNd3ShopI3cf6UpGSu9q+/XxasCWa9lo9yUA6M5E1rET9wnrDwsUpvqQ2gAXaMjkpAk3lrvA5yTTIFS7Fpa6uWctAdGxTHKB2MGgEg37z0GJ+2US2YslwVPXx+QlwwfBtzcvsU47vH+w7fY72+Qc8b5eMAyX6RTIXuUrOmRMKPCoqIJa064zBc8PT3geDxJCdu6IK0J8+kE5Iz1fMLzMotCMR4aNRAIaijWuSggVuEHwrSbMO0n+BDwJtzj7v5e7kFrgedlwazZTYfDs6TUKwAhcjgdLricFsy7FfMs0bdUMuI0gchhd3ODUgqmOOD+5g7rZca8nmXuS0IuC3zwuH/zATktIAo4n2YMYQSKcPeYEQigEoLLM1KN5NraLBpRFp4TkdIlW+tTJfhXQEWQGnYyeZQ3+W3tuDLQX+qU14CCGCXc3RvqulcjygUFpM05aPNWijrIlQhbnJu9QdEcVTXaYztEs0frPMKyFLei/jWD1FGXgaPP7R0ju9YpR6L7HsVr7wzn4DTVvxg4rPhTVqGDcR7oPjVASE3uRNI9qE5iAazmDETtcAaQZM0WAZesY0O1a5xlh7EGPhkt+C4tk5t9pt3IoBgtW0G6Ux4N/R51zg+WUlgRKxk1WPMagDXF3Q82NTCBOnc6j1zEIMDroLi6k64MT3meLSqqRqh+4kXEVP8um3IEkXdOGWyNW8B5IIzShU5ApXKLaRadA2H0HqMPIEgpd1FjQ2IcsqsCgJEYgQCKUjqCrGTOpSAUgitSbjd5BbWlAdje2ZWSdPy0bLT+mQx7U/esFJRLSnGE7QsJvjhpGkAOseozjxQiEgmBZ07/+9xN6yLXSllKgHJpEXYuOrfcOHGYG3YS1ayy35vjxTKJ5RNEVEv1c84IQcqPnTM+EVdbdaeU5NlJukgRWjCvBuXIto0gagcnjhN9v67bDuj2h4FpIiC4CcEB0XsMQ5RsVTDOy4y8nLA+fAWnC9693+P9hxvMswUoVhwOCeezkBR7vafH5zOeDkfE4CW4ESJOxzN+/eVZSoDcBKaIGGJt4144AciYzwu8NcwAa0m2ykhbj10WvMge1U0gDXTiau+Vih+JJXs/BuPqEIeDmTD1nw5db/BvSdbtaIZxz0+G7rsyVxad1swsB4Cli69nRokZVDxCNkLldl49GbwDEEiN04LCeWvMKm7f2Lzq4AQTnHYIDW6AD5I9lJYVp8Mz8iplbz5E3Nzc4/7tHabdiPs3dxoAE0qBECJKJiQUXZOmHYvKCOHumucFD5+/4ng8Sse1vIpT5jwDOWE5n5CXRQ0m1WvUdK73Xm2QXO2bIQ4IPmAYB8TxFs553N3d4ObmBswFqWRwKViXVZxali1Um4XIXMznWXiX1hXruiCOZ/gYMZ+O4PIOwy6i5IRpGHB3e4cpjgguwCunEggIMWJ/e4+cZnABTsczmAk3N6J3q2MIralKM60bVQTU1gELhyc50dfWQMDWqBjPktkkHJ2yLsy2M75HAml1C5rOR5NDr6jGut4B0R9bUSEyDaKekEl0JojgDOPr3jLHifNFqlsKA7SIEw9omNIyZtAuLFw3gmV8sYzjhku2d2Rfbe9YhlTbC83Rw8xY0wrvhAMP2lVRupIDVjGykZHmnMM2mGOynEgqfwKZTWUYEJv7IK0Q8oCW8LZ7ArfsfGUtg2W19P+Qc+0oLxU+MpcCO5qc753bVRIRwXs9V2mZ3NfYlLulQlCHFLVxaE7sDkdZx3FmDRCZw77OUA+H7OT1T+7Gwt4G9y6Yl3Pe7rW3GtS5GcQWizEgxiDcVZE1k0yacQAAMcGzQySP0XkMartUH45eL4CVO5LADshMWKNHcgTijDlnuMJwTqgKnDm5SJ09zN2Y9RiKWgf3/gFNluv6E8vbyidLpathIxSlLAm/RIjkAE9YmZBiAFzRhl1/DEP9TzibBMjl3FLAS1eyVB0MCoo3JQkVuFAlqtsCSFnkIXoFSqF6rGvUuhvQZTbhYt3onHSi81EH06mCIfEYknIUBF9rhmUjJR1gaV8qQK+Vzhmw8m6EIyHMi+psmjNhyYzTJeHz5wPOTw8IkTDtRylbyQscJZyOR/z8j0eUAgQ3wJHHly9H/PoLsNsN+O///QfspwHrvODh4QHznHG5eKyrQwgSDYoxYByBQAmnJQOQ503kqsJA0QUPV9eUIyiRmy1ESLbH1S5r5p5UkBKhtr30DgiuRREMaDWHkgIwMnKxJhTlEOGeinWN6wyhTj+1Hwa6IVqpAigRki4EyV5Qx4kpQVnvBO/6rmFFZZTcmHcO0dLGYY4bcTgVFrDGzPBBnVJEKJmFF+Cy4PnxCTEO+Mtf97i7e4vb23vc/PlvYGb8+vPPeHj4ijWtOF8uKKkg2n1DSSRZiONW5RV4fnrC8/MBx+MBh4MQbAZtVbwuM9YkCr9XLqxCz3uvhn4rFfNqVPjoqoN1mnYYxkm/I2M5LyuWZcXlMuPT58+YZyPtXLRb3hk5p0pSGYeIwow4TRjGEffv34HIYQwRfn+DCwP5dBG5z8Jj5YPH7f1blLyC+IT5MmOdUt1X4ruvqratQiLNnjSQ0bJDJG1VO8pkye8lzy01VUvAKLUys0qIjWa316WvKKhtBau1fgmG5OMEpqJKt3u3Oi1cza4qybWSKE13zWSZFQxyjayyXYpBxNUwFH2vBkEpnZPJIlWETD2AuVafclhmWFXokO9kL0BrTasoSQIiF1lX3oPgtetEQg1Zw8R5mzsj/heCVlQw0lKvtWxPeRqyOoctIKBPLsCVJHLDLOtZOKWogpMC1vbR6qAAtw4ZNh8KmLw6vCz1nwzNottVhGbg6bhQ5g4oXTltupG2F3qAJL9bBFnvuxDIZWhAvZN53XzpPDYDoh0VpCtaes3hdJ01tl0Tep9B0r6HXcBuN8A5wAUAjtXxopiuyJJ1cBh9wOg8SPnRCrfyZCnS0TEi4WlCiCB45HXFZVnABQgF8BmIAZg07RzqcKrRWBi2aBwY3rdnsj12Hfk1AtqcM9badS3XQJXTKHgkCUoROSwhghyjrFn4m66cJP+qI62qC3OppUrbjJktz8cmSlmDIyLX5X1Up4dFg2MUR445m4yeQLKZUHFZSlm7ATqEEOC00co10XBz4jcDYJPdrtLVgnfymhzErE3jCRQKAhGidxiGWHXKeZ0xn854/PUR6XIEwNjvRyxLxppWrGnG09MZnz4exAGq9/fwGPDw+IjdbsDf/voj3r8bsa4LPn38jHnOKLRDwYAhDriZ9hIkHAnDQJgvq5TPRyAnCB5U+W3GmwW/nJa1eZWhDGteQVf7zgw7M9YIgzqbpHwwqv6QMWwGNKrsaL9vD/tcVoMQdb3w5nt2HsNpKAC5ILjJAz4Kt6dPWTF7AWtXVFN65FTuM8BYq9O9dm1Wp4Q8cVY57oxCUrsjsmARL+V1UnK2Yr5ccHh+wjCOuL27xf2bW+k4HP6CUhgfP33C4+OTyPms2VedGyVr0xezQZZ5xePXRzw9PkrpVkpqUApuX5QTU3hM1fnQEr20/FTVjuqjkkcpC/QMT7cIQbv5RZk/c4qIs0lK+R4fpZRvnhOWeZXmFfO5ZpCvyyIdbp3HeD4iRIfbt/cACFMcQPsbcTS5UDEdIAH0/c0t8jqgMOF8msXG4ZfyvmlkmZnOrpRXzNmksiDnhLxx7DsYvwxgZNqyu3NHkWIrLlTHSx98Q8VTFR9c3WZbsw33EFCpOlj3n9gPXdaSftpkOzPD+6j3KYa3YDDe2C/gzkHVOZvMUE+5KB8x16tsbrnatN1r+lB9hY1VnSAEhDqHjYcSuWW/GYA0LCDiVrlnyWS6yeHWmKOUol2AbT4IcKx4qZGBOx0HZga8dWPWuVK5IdmcVB24PY8d6j2hOpn0pjbPX/ONOhuk8tZR44Zqz7S197BZJ815J+dvOs5B1m+GAhBqjkQqdo+0mcF+Div27xdc/0L/ev+RZjnYgwp/pfcYxoBpiipHMkCMtBbJomWZEwdCgMPoPQZNBOgvQMwILE/q9PyZAJADO0LJwLISUBhDEEdUdQrrYDZnk5y2VSlItjm692yx1cw0stJt+T0nIK/CFVwfmxqWDiGIfROAJQawFxqjNWdc75HXjj/sbErJeDlsYb6cI3l+NeCoTZdFyiwbw1bfi9tjtAi+tfhWg1G6iFtkI2kZjQdRqJu+pbLJfxuIEwBKmSqfAVhJp1k4jEyB1wmsxlQ7o/y99bwypL55TQXn04qnx7OmmBGClwV5ezsgJ0ZaUTPBUnJY14LTacHz0xkpZdwoaThpC0vLFAJMyXtx/gRprxijB0cB7rXJl6MquI3rh7IBQlwZMldCFK2MxkAT2DIJbH/aIt+ewQxBAjqSv26jvliMzXAVhxWak8xKJK1W2RYXWuc3ptwAWyYY341dxxUGmx1RZYUqtP4WSA1mAMVx9eJydXI18G2bdZ4vOB0PyDnXbLswBNze3yGlFWGItT2ktadsrev1qXU+RUg3I6OAKg+d6xx5QBMkda84Ge+i91dIDLXz2ePp6REhRpwvF8Q4Ch+PdlnLauys6woiSDtfDAgaEY9B2uUO44BhtJJOSc9f5xmn5wOcc0izdJ4qWfaL7Tsz+HIWbgXHK5jXlkG10TbXaMRepm46t8ClB+dFa4tJf7epcnDQBJh66v6gF7/YxtCIEm2XrBm6VqJi82XXqydSzS5YQ+bSyoocmnxhAK4QnMvKm8GwFOSt1mvrn6iXrbpPYGnH+gzVGWF/X53mSg3L/bcUWnMIOTXiq/J3DhZVqI4h1IfX+W+roAYTrsecCJahIQikjbM4wloquhkA4DbGpB0gm3yx/KEq9ascsfMZXxdfgaYXo1R/6cD8FTpqy6k7x2aNdYCM6pKyu6oOgvbd15R0N3bUf+y3P/vKY7UvQ0rJK+bQQBHQsleFH8YuJgBHjDDUNu+lv7yCZWIICb7OpQcjkMheUgLqgiJdVLNxp3X7skn+tmZePMd2jbz2lA2D0PZf/X7RDGbTT12k87UL/guOpNF3y3J94cXs9vaLUgV9yB6Qt4Be2/9c13rjujCdYeU48poZAmLcVV7GV/YtUCWL7P9uzxpHhYGC7k5giOLFyex5oCVvBUipYFkEQz0/Cbeg9x673YjLPmO/Hyq/lXQUZCyLOLjP5xWncQYYuL/fYVkLzrPHsjK8a4tNyok8vBcHXCiS6VgsE95wkxE7k3yeQKBcIJaNYAOTfQ3IG55R3FTXlWEvk+2u7p3X1t1r5Scmu6r8emUcu0kCoJkvFnxkBhdX9Zr3ARwhGT1EdY0UNg4gOZmMjUou59pPNYyZbY8JJ5cFPB3J3/U7Anf0+pIBdblccDwcEOMITDKe4zjizZt7nefU2QGNyL1m15A5SISvj3Ju9ArK7wNC4xtC21clF1QeHFsexcqyFy03IjyFZ4QQEOMgpXBOSuuIgJLFudoyMT2GQQIvuRT44NTR6xGGUHkB0ypOt/PhCICQllUzMqXBSYE4PxlQWgXlolqAJcj+lXW35VhpRnq5koX9kpGSmKLro+h3egeEq7xlXTZYj230vc7PiSq8Oufpa7KcgEr8XMtTba/YWu8+TK45GnsZJ7KvZVNYebBo2Va23n9LcIQMmGFKUnlaSBEEdbdyhal+8+jwmX26b3ZV7eCNLuK6/3tpa3NVg5ebZ1AHCynWegUP2Dn5qvZLbJ52zYanOi4oskwj0koZwVq9Pup1kl2+Zhq9Ird6DE/EL+RX02+/r383Adnu+tUHscFT3f3pqckuW9uvtevVccH29Wa32jVNjps/QTj8nAO863GHXJSYW7dtbtcqnQ3YMDI3RyHE+RScQypS8m8Wzmp63Hfoswc/3dHWCiomaEPYP3+HnWDPofK9jp+iaw3osiUXGUdrr4N+5/jDzqaLtu3l7a1V46tmtdhi6NL4jc/Ge18zm4TIWe7aIuMlZ627zkhpEeNRs7ZTTricJVrgtFQuhAFT3CGEAQRJHRa9ofCHM3JeBdyBkZRUL2vJnEUVAQbVEhVxdrXyMXse6Zds4MwM3lKAZWGcLwW//nrE89OMaTfgxz+9w83NCPetx80+4nJJ+Pkfzzg8zyg5YF0k8+Ef//6Ih69H3L29wV//9j0Ah19/OeDxcUbODsss2UVxGDDt9uCQcZNXxFQwuIgUg0Q7B6cRm07IO/Fqr5m1u0THEcH9Hu02limOsgIKirMaEo6Hqoz6zcy6oplzkwL6pq2Xxn5ly3grxG07u5qGCjj2YiwWiRYBQIiDkJhWR44Ak6Rh+aKORCKGr6z+skk8tdKza7BtN6mrQWUMVZBhm5CI8PD1M54eHzHt97h/8w7DMOD9N9/i+z/9gJySdJNLCV8+fcLjwwNKhnbQUw4HOHgXMIwTppRwPl8ExDIjlQwgy16JknpPmtknLX+1bTM1YlsTJBadeHx6xK8ffxFw7SWi5r3HOI7w3mEYR8RBygTjMGAcI+LNHjFGEPpUftF4uRQcLwvWJeHp8wPSvMp34wjnghquXpIVckHCimWZcTodkNcZcz7ClQvGccKaMmLRgqIaIaUrUdUZis5cGG3dNvtQCMoBVrliPDO+ltTZOmeTTdwi8K8dxqOAfhl3QKdFgK7bzW8Pa5VtAh8AMktnB+YCyh13mnGG1U6Ttsc6RaiInUhzlFhKzBy3rna2FtrfnQx+7R51nl2XrTgvM4ikHCdGyRS1TApxLEq5LhUJ+RMXyQBlrhlJrzkEJDFA3ndEKlMaErY5RqfsnL5fCFVHwBlFaFeWpwPN3GS/J1LS8NZFqpWhMPrW2ka0WO+b1JgBo1Aj+WwD1y2J3xnX7agTrACxRlGv1tf1aeuu6ME497wQPUBt5zMw05/bzmddKc9cEKJDmAb4IJHhkqUsgTIDK4OSZCQRQUrnOXfzo+WvDgiFASPH906yiT0hDSNyYaQ8I80LUnDYR4CCcRUwammS3mGTtQ2otrX9cpyp+11K7xnSQVOz3xQQl7RixYrEQMpAYgDIUkL4O3P5n3mcTicAEsW364pDQxwupTfMrpxOZBk2Qci15T3NfO3mXwJxEv3PyiUj/HyCueZ5ViM41pKaEELtVqUJwlsrUb2DRZEmsSl9KW2q67diJdVzjkCagduMBNP77V/OhPO54HLI+IWFFHyaIr798S3efxix203Y7yLmOeHzpwPOpxU5MU7PjPWS8fGXZ5yPM/Y3I/7f/9dPKAX493884cvXM7RyFM4DwxAx7SZkBOz3QIgFzBFgdSxZIwF1YNijA0DW0i2RHlbyb/81vNnKT+SLq8qeUp1N3keQ+T+AzjDcyu/2e3utGp/dZwDLXFXKqSKyS+azqHNVyyVKBhFj2jkN6go+5iLcjesqGEqciWZ4tnbogGapmczRe6nlREpbwWagKV6ybpYWYCNy+Pz5Cx4eHnFzc4v3777BMIx49/4D7u7usa4Jp/MZKSV8/foVT09PEhxL1rSC4EMUHqhpj2lNyJlRygxzfjIYMQ4Ydsp7pPp2SZLVbUCC7FnVXjmDNY5C+PjxE6B6xJoSCW+nwziM4oTyHuMYMQwBu73wPfVrW1ZGQS6M02XBaTmD8QXrXISaI8r5EArcIGHPlDLAhOPhCY+PX5HXGQETOEm3YJnfqPpSs79q9mFR/CsyuDqGdB2tq+psx4AFEZUTMXhf5zIE3+ECfR7FoSJfkjoXO4eWrknnHGKMVbcyN26ga6yaizj2CpvTArqvNGtVnUhtT7Qyrdx1lqxOHa1MYZaA6usQrc8CpFb5YarAwBD3tkq79+vzEAB2DU8Y+X6MsXb8FBvDbE6hUKA6XlQrM17DTlWXO8nz69dr+4htyBd3KJge1DjHnOIt9Riw/a5XskYbcA7k5ZlSznWcxdFHqgK086faZ7QZW1fXQCnXY2c32AHk3wDUFb/bOkadnpZe1Y9T/VZnX9JLWfua4ufu5RfTDS3RRwEv0hHbB4ebOMJ7oU6RTDbA5yLUAQVwsk1rVn7rVm636OC5ILDIN1abbSXpFJkLY+GEvKwYvEN0ALx1tyNYRYA8J9XsSENHppvaKF3p9oozTQfq2iqqC3TQy5rkfpiQCiGpzdoxU/zu8YedTVaLCDNEIYNkD7hRQPYx+5TVebuWbmdkZf1RIyz2jwusOU3OCcsq5XMhBHgEWHtNyw6pTrZuIGVjanp+4dqZqW407j2b2K7D3jNtm5FMjdQdIhOQgcslIa0WPRWhO44BRKO0kI4kQh7a9SMxzucFOSfsbne42U8g5/D8vGJeMtaFkFYF0uq9D4UQQkGBA2KAK5K9FKOH852ZWg0eVEPdxqIK7ioAOg6S+pKMjzy7ChdL4yQVVhX8QMbS6im7IUQHzDbCRK/VchLsI9ZxQstoTKEWS2uXzcXkAGpRL+Ht0MyLGqHplYYa6dVLbZuzlQY6RwoN2r1Y2mLz+ALLsgiwASMOAwpn+OCwv9lLZtAwCNfE85N8t6jS1s1rSkXIWkOrBWfU7LD6/KaoqlFiGVC5TpfNrZHHFy5IRWvYlb8hhIBpEqG42+8x7SbEGDVl3Gm6+CBAIUg6d9GxXHPG8bIIIee84AzAOQ/eEUKQBVAFGzfwkpLwGpS8goqktBfmZp5sDJq2n+wnEQnJPXUGoRpCBqL6SEOpe7mPGkAhmH2nH2G7kc0KrJkzVeg2qYZKVIleNlyfo8nE/okcnJCCF8FtAsIcmL1Gw2RvtfNRAz8G8tHyhxy5bgxUIXTa14zQek/c7ofRAJoZvDVzjjTaWYfb1c/RlXfDXrNh6hXZVrXbeJgc7Uu96oiCtrOja2D7PeFWourkpm4uUJ9Zr9eBEdsrFvW5PtrtdM9U77U/y3ZJvvz+a69v5dyLZ+fufHZ73Ud654PN4CZC9eLaryBPFYmlMDgV9fWyqXTU2TNngmZDmcPGpkF80E0LSgYqlCeL4cHq7BNekZQkCycUKaGUJdZlFtVnbPvmGne25/69o0UWHbmNLmdm1V+9LSFjyPQbE/effFTMQ9w4T9qtd47DDvzr/uoJtht3yGsYqjQ9UKxEgiuR8bqugoWcQ0BUn0AnL9kkDOokCNikiqfk/uy9ZuxtZ4fbQ1Wc0PaOrTdA9lbO0m79ck7VkBIScGm6sq4jfHB4evSY3QowkFYAzLicVzjH2O1H3N3twCB8eThhONo6lms2gnQJTogxGkEUAGolmWSsr7C1Is9vrbNZy+moe84mW/Q1kg6D5mwwg51hRuZWOtr+fS1wsGmI8hsGmeHfOsaOABaeLdEpBUQecEVwkAdK1gzeImVpzhkuFizotEFNf+2261lpJmRwyQIJXscJhEqB4DycF/dyxVDzrA01HG5uZpAjDEPE7e0tlnUFHGFdVzwfDnUNVV0HmSNH4nj1PtYMAFYMBUgA3LptJWhpre4RVlxBNs6W7VgxVOMiMfzlvccwDppxt8c0ZsQYEWNQThWHYdRyO5JuxKVItyZp0jJL6d1lgXNH+OCx2+8QYkRxxlFr90DiAFxmpHXGsnisUboiSrmnkOgXFidTLb9jiHwhrYzonE3S3EUzeVhKvHqboHdqmpyRt6nOPxQLWKXNCxVTHShOZdGVPrZ1RNRhkO13TQE6NFlo2eRGdQGg0qwYlma1QWQdGMpBwyyw+9A928mF9m7LopG9ioqH6vj271fsQ/Ve+wZX/fasNiWgpf4drH1tX/N2eK9lcn2szYnsg933dKxr6ZhhKpPBna4xacaM2h3TOlVuMiwr3GK71XZ/3flkHOx3rj6C7j92ky+fH9jMBtAewU5s2NL+Wz9vGVv14x3+rCfZ6qx+PfPGHumkvcqK+hlJ+zazpOFiPbtlT9pc2mhRNz52FVL55PU8mUjtN+XFLtpYSG08kQPbcewzmq6e7OUrtqa7UbQEA4A1QlwHRGRkytL7nVuTkd/WSdvjDzubvI96k9yElxk4rJQe3dJ4sSrRgCsAJWplEV7ODNSikTkrO4KUohDBUcA47FBCqYuayClnVKtjt1k3wzKtQhBIyvEkd2ndSDQK7jwGzSLhzgHlzGDk9jyO1PHjhDcpeA8fPXzU15xDKcDHX5/w+HjEzU3E3b0Y8T/99Bbv39/g8Lzg8eEirbpTBAN4fprx6z8fEGPAfj/i9n6P02HF508XMJNEn7UEACyAxYE1M5SrAK1mQSXjtZRfFRR9bS5vZqxuJEfAbvIYooelhTMzLjMpj5CrKdJVnrI5Httc85XBBmeASLMUGEZnA+MgLiVjzRneOdzc3WEaR4gzQdbF4fkZl/MZzgPOcwUfwAqmIvW9Tshfa0pxEWHryFUeFwP74mzyYEi3bGY00jPd7FWCa1pxiIDVza+XGZwzPv7yM87nI4K2piUi3L+5xzRNuJxnfP78Bcuy4Hy54Hy5gAthHEZwYRzHI2KM4qBZE3IpuLvb4/2H91URMoCHhwecNbvPoiJ1L+h4l07QVQCBglRWnJVUe54v8AfJ4BmGL3DeYYjCb+GcwxBjTU/3PqAwsORSI9uOJAMoh1lLnVwFZKwh+nWecXh8wLrOGH1C9JrZ5R3IW9IoN5lA0JJJqgaQIY7CqA4HUVxOojSAEBJKOFeMLCIE10CuRRpZ/0lnC62fr85Ui1hIrb+Mp5UN9c6kTilzB+SuDIY6L7Y17Gent+rZDIA5iT/Zptg4D0yBG7GhOkxaaYbufIKcQ8FZqSUu7X7aTzNoNfZFLRIFaObpsgjgUK4v2LwwaRdQc8YagMdvZo3ZdRnmRNyClF5L2BNRB/2onWCDq0BUy00Bi6xznRtHVnYsq6060bjjDLtSlhZVBTMKUYvCGvljd9+vqXFZo6wKutRPVyNbnTgts5ZQunlq8Kp3pGHjaDA9Jb9v76L9SZvXSi6gQibKABSss5bH5xYp9Rp5C87DuyCZkS5ItoctXFv3Cly9zQELGTEYGMkhOwkMZATkApyXjJQzpuAwaoexivq7GbCXrrM4+uftHTIWPa8OAQVCMryiD40HZkkFSbkffgvk/isOy9gF0JW4QXUigO7etwfDOEnkT3nfEUlQidTAZiiGyp2Ol+wDDwJRAPOAUkolCrc1Wii3FH8izShQNGH8ZZbNlHVNUhtn0vJ2M8xgegEVkqFGXZ00P/HKsynNXQJClDXGHDDPwC8/P+Dh4Rm7XcTbtzdIq9Rhnu5GnM8Jh6cFBQXny4rCQAgX7PYHhODx5u4Gd3e3OJ8zHr+KxWsO/komzw03Nblj46t4Ce0Zm5zPnRxqn7PxIkgwYXczIMZBjAMlkBauLFN4DmZy2pT3WX19y3bmNobttb7MBagclcoV5LzDm7u3mKYRaV1xuZxRcsLpdMQyz8Jx6CzLqe0p0a0Myhko1sFK70+1FCCkwIA4fsiLYyJpvFH43VQ+qPPO5p5ACFbt4AIulxkpF/z68SPOlxnOe8RxgAsOb969wbTf4XK54MvDA5Zl1czxFeQ89vsbgAnLsoBwAEhKeUGE29tbfPPNtwAY59MZ65pwOD5jns+tJJh6fSNZtELmrLgXNjbCO1pKBpE4yw4hwjuHr19jzVKKUQJ1IUgGktgLgoPXLBks2S9IawQXj9UTOCeUtIKtfG4VrPT0/BXPhwfkdcHd3qHsrE19qM2QgI6fBajOPILJ+LqLlYcR1SFSWHVcZw+IPCDl0oq6z73uazmzdLEDLMhnusj2lDmAqkOaO8eI3pvr3t9+hrsP9kV0DS/YUfWw7hkCgZWSgMhs0noB1BftGlZe24EKO5/pd5NxdZ91H5TTNXxiDUdsL+WaDSScbxucU+/5ep+/1Hf90WOBflyvsUj7XHu/Q4qvYijQ1mnO6mwiUr4/1zKbqlPiSn9yN8leK41knMzutOz9rb5/eRhQtnWFZiNQsxNMj9bvXHEx2Qy3BjndJKBxDZnc7lEps6uvWOBZuK70nBDxmHIGJWh2pQbeSDK8xSfgEbyDh4erQQfUa9s68E6puplBLJniQbNtEzupjMjAJWVkJgweGLztkasxpIZ1+4VRtRxznes6PizygzxqwIfRKoPYMBQXrDlJdngXqPqPjj/sbApBnE25tCwC424yHoaNUq4LnFEzoLgNiVNlK5krsnNLLkjLqp67NhFgp6mrAoAkfTKD4CVqV1vZaqZT8LrJcuWasi55Zsgy2n27SHDOMkxM6Bb0LYlse8oicsJvw0EcTlEdTs7Dk0cuBb/8/AguGX/6yzu8/2aPyTvsb0aAgX/+4wFPhyNyKliTR84ez48LHL5i2g34r//9z/jupw94+HrCun5BSowYXeNoUCOZIJ5OR30EWu+XW5mJdXBi7seqCfUqyHUs4Qm7acTtTYBwpIjzL39dMS+iaIRZluqCBBtgU5DZgWCGEgBepdLWDlUsPBZS4liErD0E7Pc3uL9/A8sqSikhpX9intXh4SCbxh7FFQ3AFliOEAO1fEqI1cTREarA6p1NShSeS0sLNYVHaqGRGGHWan25XLDOhGVd8Pnzr7i9u8P3P/2IcRzV2bTH4XBEzsDpdMa6FqT1hFKAcZzgnMM0SVkbrSvWdUUpBbv9Hj/88AOck/VUdO6+fv6sDsdSBaQpjJbNRpWw03gYMjPmi5TgFUqQhpVNWVTHqbaU9s5jGCeM007B3x4uBICl1Tl7j+SjOD19gPejGtBy4eVyweHxActyQdl78OSkRNATELx2iyt13VoEiYwHotblolEZdS6LBvw9GNrlL0lr4KRrzcPDK2ASbiOqpWoSxRQZwR15tYuackzoyCTb9eygOtadgu2MBqaN+dKpdz2TvaX7BED3zA7VC2tfIGq3UGxXERrrOWm0jMAkkXRRnh2HA64P2Rd9yq05nCQzTbqCOoq6d2QfM7Pk1WkavYPwcJSKV38LMJGWtbSsSFN6dv8GDq7HezsYzYAVmd7WTctSMQesk24uAFIpQgjaWYfbeWxT4hUAUilwm5T9FyP4AnDZOmjOXvuwOfbkz9Z1rAfS22c3J3kFp/ply0KzzL7NeG/uUZ+PWbnVRHOYY3iZi24vW3si39gBsXM0CY+NlNlZh8d+0KzLn2ORAQSh0ktESOSxICBzwWlZ4Z1klAyhRZS389HGsN/r/Qruo8f92Iiob6WlpTpBGZxkHpd5xcoFPkb46Df79F95xKgYSukCWOfEjDhCy1S0MZBnbAYJ2QtoGEo40AoKREcIN1RbBEKW6zojsJNTzNWANl1MREIsq58tJosMk6nelDvU91yomRSdcKs/zWlKzrgKfTWaQ4wIUZ1NFMAIWJaMn//5FaCMv/71W/z5T+/BYMRIuJwXfPp0wPF4Rs6M89ljngHwBSE8YzcN+PPfvsP7b97gy5cT1uUrUpJs54Zd1YhxzWaqDjSg8VOgYcc6J6Vs5onb0MjTqvG2vxlxcyst7+d5Rs4Fx4N0IgQ5kGvOORv3/l/f/crOW++ikx0V6ykGts5uERH3b97h/bv3WOYLzqcj1lVI+9OaRRZDO46qQQFmFK9GGBE4q7ypmF6ZPbuSOKeyoTDgcqlZQUkDdlV+OenWSkQYtMSIAZzPM+iyYE0ZX78+4ObuFt/9+AOGccCb928RfcTz4Yh5zSB3RkqMwgnkAnb7WzgXtMFKC3gSAXe3t/jxxx8AZjw+POJyuaDkhEc8qPFqstFkbgsIOBThwuRmKBcuyIvuW8Oc3TrwQTLEHTkMcZRgXowYhwHeB4zTLXyISM7DhwXFOzgqKEEbI6UFDMZlnrGuK56ePuPp6QtKSnj/Zo9SbgCWwH+MA4gSCMLTadUAvY4w2Wk6wmSBTHPpZKh8Oq2rOO0cS0e+OEjAMUg5vWVI5uxVXmTNlLSSuFJxds1e6rBAc5Bs79Xw1bVdshEj1c64wmFovEswovqNzmj7peEL1WEbnbM1zAU7iDx43RXSMATrXrH8CXNQVQzlHFwMncOje35snU216ubqav1dbLAAi41dMSVXjb8ZQvm9DuSL13rnF4s5pxjLdDRVuVlLFzue5Dp0OsZGZwEIDjAn1YuKJhuLV0a5ZlKVblJIJFCjQdDy/bo0bKyu57N10aQ6b4bx5YMvx53qB9uzseoIIfzOSpFCxEhZsgAdS1Zo0IBd8F47aUuyQsUj25GDr2MhZbesWAyOxPYtGQQWZ5MWfERfZ7WaSL/lULo+Gu+ZyECCdLCrj86NK0/sMEZJyvebElZmhCFugmi/d/xhZ5OzrBRS268af80jSNSEhYHqFjeQicolg0A16m5lbaUaUKasFbyqYc9gdRqgOhdswVkNKVDhmVyxA1VVMPTLur7WBHIHdTfWh21gsgVPSqrpun/mZIEZPkICfjwsCNFhHIJy5gTc3Y1YE6Ms6kQCKzEiY1ky5suKUhjTbkDJwDAGhOiw2gLS7/TKro3z9tgIHBP47fE3HxSQI217h8GLM8sTcmZ4n/TZ2zPWRVFPWJGbvEC/AeVfXLyBtKaEJKMpBOmwE3zAzc2tKLeckNdFuZeqm0vvyYEc1xRGi3hXFv8KlqkKzB5UOv0HqDGtz2PZXO350BwEEEGcknCLlVxqKnVOCcMgNezzvMeaVlzmGefLCetq2SGaHVRBAxSQe+XlEb4OqEEl5SDqcugAaw98TdBUw9f+Z4obTRBl9fKztgovngFaAZIMJ6YAl4t4aDOLEywX+BgQw4BBHT0Dq7CdL1LnkBPAEsGVddsBim5vmjh8YbdfL+DrNVSXmXVNkqMwo9HcNYUKaineRSMXBCgHEcvaoRbFa/Lk+oY62dLfErelLw6VdobmjL8+3WsK1xSGbq8OxLz8OtULb94nVIL9Kq7752EDPAJWCxoAKt0iMhBkkVpT4hXQtK1en2Urk9oHLStL1YlyxNCGlPLq6eosUJVur42BDoGhwzpuLf19s746J9DvRWZIFkwtfSFNY+Y+M0YBdi3ntjEA6l7bFgfWwe/+1AmmpqFsbqxb0OuA6HfuG+iuK/dZS58hYKY3BkTONZliwEWGj+u+7YF2u1630hUIOZI96JSYGdDs0SI/LcGDwXUN9cPTBtEu0kCTzXef9eFcN5f2AbR5V8kvnzV88jtz/599WDa3EfO2563SD9sHl6OlumvmqoJEI763rHDDUL3Dh1TeNf4MrmMmUXlzKPVyg5px1uGL10fKMpk6wFsfy/CT4TqH6nTqHCoNP1HFF5ahBgaWOeNwmDXRQTruTVPEze2InBglO+G8YlE5q2csS8GySDb7fj+hFCAO5hDrMZ9cREq/dO/1CtT2Ddq49UuSu+fcPD8BwQNDJCQSXirBN33wwvDbqwO7GeM/cth6NgwnZffCy0QOGKcRIXrsb24Ed6eMtMyoGbIV02h2rPPCMQjIT9031dmkDsnqyGS1DViwuuvO52Cfo4qTe6O7GTfiLJ0vF1nPGeBBMP44jQBJBkHWoJZ0qrb7kaoCsswksqwigg9eM+dapngvb1iFtWEq21vcTzgDTYC29WC/UwYSLDjg4Z0Egh0pl5xbhEcU0tDdOYe0BvjgEUPAbhjk3PMMlxLcvAgxvWVBslWRbOlGtni8lxdbWcLXz7sdArSmNS3DZSsWdG2x006XhqugAQbZK1Kqql1CiwcXanYAiZOX6rxXd0e9V5Pn3GGM7Vxd6cFuLYk8wmY8zMHVfsr7MHwmCq/pYN3JtS6jw1Xb82xLiKr0rkvE5II5hKGd4rrSO52MzXnMzq2j0um0+nl1sun9U8WITcfX79B2rKrQudoETWUa0qLtaaDyq7vXfly2R8sOs2QBcwLrI1Q71DLYnMoURssY2wTrKqbpx3q7bvrrVxlDqDQ+FZRtMEy/nq70LkOf90pI1yHs9Ai371lizQvJ3V+/jiE68Utq3EmZnNeMKtfJ08xQSiBUDO3qpmkjZLrJ9jJtxqu7pW7gKhbrXqm4mRrktcCeI0sM+I911B92NkUV0sgWLdS05IJqpLSsG7mh4M2gl8fPJQuRM9pQW3tQLkqepcRXwZki8zWabpk9zmUQSWp0LozCWTuqSNlX5iKE33VitwCnthUnVACd04LiSInOFWCoI8OTg4OH1LxL6jG5AMcj/DDCxwEuRvFcEoHYIWqJ3/Pziv/7//sR4xjwp5/e4u5uxJs3O9ze/4R1zfjnvz9JBzsfsGYPzIRff37G6bhi2u/w3fcfEGOopM7lMKM8MNY1A1lAkDDYtxp0r2DNynGKGXFE0rSXJONlA8Zt0REQo8PtzYB394O0gI2S+n04Mw5nMU3NeCA1vGRBunaymp5uWk2iuPJrlyGg+07KdQiePAYa4B1hXU44HTLu7t/izf23cN7j5vYWy5rw/PiAX/7+dyzzDMICaaPtQD7AAL0nLY1ibVlMlm5MWkanys5ZVF43drEOfqgbtGbbEAHsUCCtues69QQ4wjIv+Oc//wlHDvv9LXbTDsM44e27N/Ah4M27e5zO3+Lx8RHH0xGXywznAmIcwUwgdwJTATkh1owa8SXnsHuYhPsgO5RcpPRQxY04cqUDUVFyRLAJpK1CEcjvN8oERUowCrHW2TuEJcNfVkkLj5c256qoKTjAEW7HEe/3Nxidw7fssQNhfHpAOD4LAeQuoJBHZiG/TGuCY0k3FQBrUyF7S57JoromTuts1NdNiAJiUA1OwBqTEFBTyUglKfiTLEpHDIqtixuzEJzTSsr1JSn/AlYtffdKkKqiaQEXc2vpXDCQ0fjmeiVpStbq4GVOCM2dzeCaldehrS5duFd7FVDpHmtYiStA2IAKw1agRlLMBIYYFoUUJJQW+UxrknsMkuFCOjv2BASZR3K+a327dWSgfs6MSWzbeHfn6h1Rtv/EydXSxqvzoxsRqopSx07Xl5XseSPGBLCWIg5h77rU7G6KbW5dc7A5X1AKgVdtWGCywxFiiBiHUblxsnKTEVIPlugKgJjm1gyAfnK991LG4FomZUrSatsyf4uBWNVh7bTCZyLAO0u2JhiyILkSoRqoK1nIaslq9LWDl6MCDxa5mBIyXZdIUl1L5ogvOUv2LBGCl/kYg0NxA3JOmC9CSBwjYygFAVKWbo/fuC67+eB6OZhxY4GmlHI1uKy0tYJ4tBJLT0U6csJJyTwDFPyL6Oy/8gjet2dh1iw8y5IR6NQ7lkhRnkmFzBnIgDa1q5h1TRnzvNRyGDP0fHUGiG6U96wkNCNrWbUELgscacYukeKxrDKLqnyusqoacpIZVxh13vXuYHMomEOaYjjnFThLeWvURgTknZKeCh2BjMcA5ozPn884HP4d4xTx00/vcHe7R4gRd/d7LEvGx19OOD6vADucT0BaCz79esRlztjtdvgvf/0BIXqZ70BwMzQwVOB9hpQi6bpy8nw26pIJhVqCKU8m48HoshNtR5FIGOcc9hPhza3DmhyCd0gJOB2NW5Cr0fgaUDcnomHXOt92teoIMB2CykdFjgWmeofLfMDD04q72zt8+/03IHK4u7/H+Tzj+fER//x3wVAM5akiwJFgKE+5ER/r/XoNOAjmCSqbfaUlcIo5QmHtnmQBRDWYdL85J/QZXnmX5Hxy/ct8wc//+BnkCPvdHtMkvEbffPsBzns8Px5weD7h8fEBnz99qhnTcRxRckJZC1Akc4ucXHfcRbgAhOcAJsn0rk5C5lpG32gmSs0+rF3rINnSDED4QmXdAJJRK05friVijhxyLlhXDdScE4gcimYhgpoj+M044YebO0QiTEvCPhWcDo+I8yprrQArCEthzPOC4CNSTlLSpjIUQCX7r7iQdY+a8d4WWNWRVY47hziOIhOYMa8rAgPkhZOKnBcM7R2GIQCMKkdYKxLEnhItl0sB+ag8SnKtwkVsLZXZrupqs0dEZ4nd8jI414KmaDQd5ISvlllkKPp9ZWFOoJCMheEVsMlXLb2rtANNBqth1OxbNFvXqVPWDPq6LxUD5ZJrVk7KWbnSnDae6jBUlfEAtKlJn+FVKQeqHlT8TqxZlvl6lDY6Xr8EczoxN16zNr49flBnP5p8IyJ4Api80pfIMwnXW9Oh1bnTwRkipyW3EBuapUmXfFcoaMg5xGHEMIzIOeM8z8jadCTbiQyTEdRpX5dv/amIF4AE52OM1QfDYLWbtLpB7SbZ77k6OQHVmWqDFF231akL09cFXKSTby5iievjIzhGZMATq62je7DjgrqGHU4byKBkIGep5vJAdARJzxd9eEmSGOA1mOF1BRN3q8DKnCpg7oKIOogWgLKEH9I1YnaDYRHThp7EeR/IIZLsMxdbw5L/6PifymxiNqAnD1AN8W6Kq0+0ehUb+KgbUL8HAJmvShRU4Vs01zlfCZwBI7xUgl2Y8AEsXmFeyGaI6ICRRTLbtSvPkQpkFEKxzzDQIlD6hHYCXYgOXtrlamq4TQqIpDMTMZZ1wXK4SHeVDwllP2CYAqbbiGVJ+PL5CHcQpcjskArhfJKsJh8G7HYjxklbr3qHEJrjDZv7q3utPnafxVTnzIy2K4BT59BBM5u8ZDYFRhiAlIt2FWlOGqA3DnT2qRtXMm6ZtglYnVPt7+5+WcsUvSjskhPWhQHOiENACAPCMAo4zhmffISkEjcT7v/P2582x5Ik14LgUTNz99gA3C2X2kgWOfO6Z2SW//8/RlqkW16/12SxmMvdAMTmi5npfFBVM/MAMpkUIStSkMAFItzNbVE9uh21w+SIpKVxMz/egI+0TYGVxZUDyJLd4VGKA5oJqh7cUrymnngj0gOJQ3UaZwACUOOy4MCM/sMHKZvzHv0wIOdUO6g5r/wVSbejcEmQrkUIQcjh1XgAGqCr9XLMlXi7bI3yzvIIZaWrMwfVMVl4vjJQapRFWdh3IxMFMbJTxbrZYBsXsPNgeHh28Jcz3LLA2ag0HVeilTVln0gdAkUZGuCoSrAoYqz3UftzS3LLqMZ4zllALQjWErmkC9sZIEn/Z6ocOeZkak5WmdM1BDJA0oyvdQo18n8NnKqMajOTita06SA9MzpH63mh8ndqb1Ueq/0tFWdyxVFVFpR3WgaEnQt1ZtCtQwP1vqt5sH/9kgFv9ybZd7kBKTXNvd5j9VyvXU4RR00lb+YSL8fsHDXOmUYJt2thz2byntbReNM79kAEUvLhAGLJULWgS+UGKbNWn6gd62rcEA4cNcK8dvQq3fcMcDfP0M57kfcqq1ayvtEPtncqcSjrMrLKbgMeKAaYjdv0iO2i6nyoepMAeFaA4hyYHRJLqnnMQFRDLqOIz2bvQpygLYBCGwGuz1ScsNz8xWS/ASai4uRwzsEDlW/gb+Rsso6KjmoTAiPfNWBoGMsepA6tyawpjgaRFznnVbegNtvktqQFQMEPxVCG7AFusFF1FNsGqOegDA5VhjLLXq+FkXWfc8MnU1u22zjV4Wdt4wpudCAthxzHiPN5xHbb4/vv3iCEAOcJw+AxzxHPjzOuZ/HAmSPuel1AHuj7AYe7Lfqhx5wiImfFWjUibUTD4lhAu7UqXuH6VNCjWp6Uyl/KdwIjBGDo5FljNAzZLHd7vVf2i+2FRiyUueZXPiC2rzgeOCjXR5oxTRmHwx6b7Ua5ujy6fkGMEc55MdorOC7Z2s4zHHyDMy3CXh1Gtxn9ZWckRi4ZC816m/519XvJ3NS/pZgwxUmulMWJuTvssd1s0A29lp6SdE5VeU4knYMJDI4lxFlEq/MOnq1KYq2bW9oOw3252R+kJSZyRFWemGO7WUgzQDNJMJAdlIxUnVJJPr+kBUuadV1lgGG7w6wBU7ckdDEjjDNcEseh7DMpVY9JznuKSfg7W2zPFVcUXJi5kRnNTr3BiM7VUiNmqDPAPlv1ijkNZY94hCycZNJkhMv+JC1ZZVfnEjkhkTO6KS0908NE5oBv8dZ6o/PNz3VNjHqgXae6PhWrVL1V9mpzEMl0oh3y5tXKUHtZIMrmjMh4QeueN5mdySom8OK65WdU6KLKvoy1PHeBDDKe9O+BJLsgrZ+p7oPbWX3lEvZdbaC8suFqgBFU93RdhzoOMvvJ9JghFLWlfAiqU2bdFvr+9hlbnLiGuM14SW1JLfm0cnqCYqeGuxjtmakyujjQ9HryM5ffFSzGDAsOExmMUj2/MgDqGay2WDPtJPcpWJszPLJ4GkiSGySrsxSYFOy0Aj/NnN/u19V6mq7P9X1sIV6qz1wvq044tgzXl92Df+31m51Ntrm9+NBUGCekLC2vzXBx5MHs6h7gXIRdZokmM7g4+FJKWOJSa0EzC0cMqDCvSzevptuWZS3dLFj11Ot8WcvOArglCmOeuJyygq62ftH4kGxzyQG17AiJ/nk4CL+A80GI97yvpFpsm1sG6ZRk+eOnE46nEXf3G7yNexABb9/e43A4YLwmHJ8SmBOWOQOccXya8PMPT+g3Pd68v8PhYSdljLkagMQvvf/VaDUBUDcir06pvud2rWFGSJN5wOvsA/upxhnadVgfymY4imfWRrNcmJp/yzWXeUaOwPPTV3gv/A7DZovQ93Ce8e3vf4e4LPj65QtOx2fEOGG8PiOnKGnc0m+9GEwEq20nq7kQoGTdx1iyxLL+bMJSskCEm6Ds/aylpSq8bL84coWbg5w4n67jFT/99BO6Lmj3lIAQHH73u+9xd/+Au/sH7O/ucT6fsKQJfBROj9Pzs5QMbLcIIeB6vWKepUVxUk4J67BjxrvMszkfKkeFRJ6iOpSsHbOBKoCd8Ch5H7Dd7bV0ccCw2cB7j82wQ/AB8zwL/0ROuM5XLGmBA3AdJ2QQrpmwYYe4zPDeoXMe2+0W/eGAYbMFSLKOOOv+JZTSBtkITUksi/Az1x81O8/2T8kQMuAGfSZofXmSM9AF4Z8RI17LEW2vknbO0rISYoJzDJAvQCtzqkoIRnCue7oY3UDpsrVSXmvh36YVyzO0nCj1uvWa9ZxVEu9aVrUCQSRnyda//u4WLLUKdv16oTj0LKTMoJTKmLz3tX6/zE1TjkeVXLteu15W2g4bF53yTDWKqwXRLXAjy7Cp3riCV9cGdcNJYdfRcg/h3NP51s+swIX+3HIMBNUbm81G/q6t3YmEUNVTkBKQRYhefeiwtcYaer24TFjmqYi9dmJKuS5QOJIIpNk7i3LWRTWMDBys19cMeMlAI8RkxOYqp5lBXva7D4Su8xpEECBJzEoKCgRH6JxH5x2McUCAWhl0GUOb4SE5XQ4BYsT2uubOE0bvEQHEzDiPC/rg0FnwhiRqZmth/5X1eaGpKgBq9Y853EDUOJBtfgxcquHs/3acTV4NXXPqCebRzCwLZOiCFp2r5fKZk8xtw3NoWi1GyXBosyUtq6kYAYBiqBZkt/YH17UtBpcp7Oogks9YybdAhKwlpcxZyyQFv5hDwrgEWweYOWeD7+CdlJsbnhCdlCsHHAggjxgZP/7whOenC3b7AQ9vNgAc3r7dY7fdYBozLqeMGBnXS0DOHoQJm+EJ/abDsB/Q77rSRECcTC0O4XKgWnkmw2+MK/uBaqCV66/kd65qK1luKk7Gkn1HN9cDXsii+o71/m7f+7qBKGs8zzNinPH16xc50z4ghAHeBQxDh+//+Acs84zHr19wOj1L9uSkJWzqwNGbVQyl42+79Jb9wKIdJTc313VXHRua8yb6zGMV9CNzPvXlPTFGXC8XfP74M3wQLO0csNl0+N3vvsXd3Q53+x122y3G6xWffvorxsuCZZ5xOp3gHGFaZsSUMc0TlhgRU9R9R/A+SFZ00T0qUBX/5ly5aqJmO7mc4bT7WcqSaRC8ZMj4ELDbHxBCh/3ugP3+Xu6x2cH7DtfrGafTs2RwjCOWJSKAcBkXRAa6mEFJ+FG6rpNOx7s9Dnd3GDYb5MxYYpQsrpRquSIRKMZ6dlFlXTUm695Zy3KAckJ1JssfzLFFTgjQJXtOs0NXhr7uacfSpRCia3taZ08we8XbktmSUpRxGO8TqCUBvtnTVc4LbhTnfbKsKFu74gmon5M/uXKODXtVrEbFUCGTfzfOmddeLd4o82rytRmD3UfmwaasBgFMnBMDjmndVbjg2+YxbR6UeNqyc8SebTCUI2gD8fL4DJIkZ9RkhIpWq8MVqn9aWUW6rkQMzwFosp1bXWPPbJUWzOJ8GRQ7FdnhxK4qFCJEAGkwmgg+dPBdL3soJcX0UTLLbSO0eBFCTF7uoQMRHZk0WJ5W63q7xKbrCpdWcjD+ZmadebI9qLZhycZVOW90Is6VhmLrJICXmKNNwoDaqlYz0VuTARAWxbBzyjhPCzonPNXB6WfKGpjj+Ff2sD6DVAYp4iqy+NW3r37dcnP9e6/f7mzSaEdQ4zZlRk5QQ9BVIaZlMJxTIeONcSlGr4H3bLA0ZSxKumcpmSFIujU7lpQyUOHDYTYCOikGMqdBMTRkdsu0ENqoiwDxTjNKEmkKKOeGOFjJx8nBGxE0dPOpp9Q7j0zV2WQOJ0AUhGRwcRFY3gfknPHjT6JgvvnmDkQOm22Pb755i/1hi59/OuJ8/ohlyZinhGUmLMsV06h8TUOPw5u9zIUCJeIsiXeNsCqQXA8Mm5TStLoi/0x4tAW+xeCHoUhl+89FOYFaaGPzLT+/AsdWG1NkeQOyVKEUjAcT7iLk5rgAnDHPE07HJ4TQ4d2HDzjc32EY9vjD3/0JDIew+TfQx0+4no84nc+IS0TohLCxCh3xyMK4VlxViAYazbGm1Q0goAhFH4SUEYB2JSk7fnVOnJMuS/aQKUVczguOx2cAhLfv3uLNmwd0HeFPf/oTcgY+fnnEw+evePz6GV8ff8Y0XRDjgsenr+hCwG45oOt6XC5nTNMsZacK0ITIe9BIoRJ2qnAjaKprzkgxYpxGNW6SnE81PnJxchD6fsCbd++x2Wyx3x9wuLtD6Drc7x/QdT2ulyuOxxOWZcbnp0+4jBfw9YrL8zOWlHHKwJCB2TE67+E6AV7b+wdsdzvZv0mcX1RSU50qUmsRXYUyI6+APqHN3FqXo5kcMLJT4oQZs2SF9L1kiIUAF9alM5JB5iSqpqR0InBFPKYclWBmvaPLqIwrBVXJFxDTSOfWqLVmBFVBEyrpe62Yfy1iUPhXjKuO69kjBVu2onwz7Ao67SHW+/c2esfNm0VJi4KxLhn1MhW0OBnk6n6re9j71MCWTh/mlHIlalacTHo9kf3VKM+5dXZX+WbnuII+1nkzPgrJ4nCs5TSaaRd8de6V86sgJYSAvpe217vdThxOTjsrEiFOCXFJmOYZuEqn0a7vEVRmZDVILyfG9XptHHQ1E6X9bk5pZiHbn6dZyzRUB2rZW5GbhFLy551DFwKkdCprJywq8+QcEDor0/XoOtn7Ugqpzl8nZfCd93KOSXm9spbrNsu6nnMN1hBr8qjMZSAB0ecQkMlhThOWOGMIHhtt6NE7XzIeXOl51ThrXxwF2w9rIuVqNFYdKA4OCwroPBBpt8q/zctAGTmAMhVnOBgKtivpqeEhM24TRw3W1SYfJlwKFQFX8lbBUE4dwvUsWMDO+1oyB5sRVqchA2ZyVCddNcRJr2ufgzYhKETKagR7NVALMStJmZyMyyH4Dl0YEEKnBoxcL7ERMhs2kHHOC+Nf//IZnBO+//1bbLbfoe8D3n9zh+A9Pn8643x6QoyMyzlgGj2WeUTOX9APHb7703tsDhtYhm4l2JeAQgFHLSQyhxKhYCiAi/O4OqilUYWQbrOWlXL5crqnpSNbXsmYin9ujP9XZH8xMld/4pvzWNd7nISTaRyvOD59RQgB33zzHe7v77HdDbh/+/fImfHXf/kLQA7j9YrrdUSMCaEPSqCPNl4pe4CMgwwr3svC/YfqZPPatS14LWspe0XLhwuBuMkxcYATJFgxzzPmecb5fAIR4fBwh8PdHXa7Hn/60++wLAs+PTzg/u4ez09POD5+wvV8wjSNOB6fQESI2nzmOo6YldSauiBZl6HDZiPNWpwP1TmmOmxeFizq0B2nSY3ejJC1UmMewTkLL5R36IcBb9+9x7DZ4P27b/Hhm+/R9xvcPbxHP2zw9PULPv38E6Z5wqfPX3C5XMCnM85fvmJMCX0GXGYklzF0AzAEHA53uH94i+12LwS9S5TudVmIzL3uFwsqyh5pcJPtNT3DZo8BWHWQbR2ZzAxyM9wozsR+GEQPdh08odphK/kgDXeIJHs0dHI9KbmSIKcPHoB0zVy09I4tMxMEJKtgSWt4TYA5dkVHiEYT33bFgDeQvNpFpFijYJy8Ou8rp3GTcXV7uVvH0mu/W2WYcROoz9qah1D2lw2RQIpBGY6dBMuIgFTL5IqjyRwr7Fb3tdEmy5glB9KMfqMJKVl5qMkKVCSQ/G+FnZjBlolIgNfOkwFOymYb4u/W0WVOzhgjUk4Y+gHb3Q7BSwB6GIZy/hnA+XrFOE6SCqmSs+t7oY/JuWCgecyIcQIgmXVWwm/39j6onql7OS4L5mUuz2ZjLU3ByvwaHqtYTHwCJXde5tAZo444x713hVLIgeC5ZnV7X+2xNq68wsZF14kNUsZh9yRIkBDA6B1yAqaUkcaI3jv0JPqVXJ0PU+q/lHVkv3VqD5eUHKpr3Z6KggVQM95dgwX+vddvdzaVOVHF1iwY65CKccVASyJWBl8MnRfHt14XuDmwZoSuf1f4c1ZX0XGJ5VqcnjaBzjiFyj1fPueLaFFrrLXGAdVInSKRZrzNZtLPZ5aM2pQZ85JxvS5gJsxzwhAlsrnd9QhzRlqccgQoNxM5xCU3xIh1RdpHsEe3P5R5NgeO/r8YkI0EI3v24qjjYkCW2+laiHNgJaVfvtrf2fWBQh5Z7tcMvoyS60gJUhcr4DAhLjPmcQQhoB9mEImC3243AEfsdnvMXQBhgVb7ro180nKBIrAbw6QOtzX3Xz4g21av81oOZ0GmNx/RuUxxwTJPYCbEqMTfDtjttpinLTabDTabjXjCY0RkxjJN4JSRlqWAdu894IT0sut7WKcX57wAOy3BMeLYlBKCCu0UF+S0IOWMcbb6eRFUfd+j6weErkc/DBi2W3ShQ7/ZoA+d7MmU4JeAfbqDCwHJByyJEVIC5kVai1OWGnnNsui6TsdkRLB1/5mDiWyPvZi8mx/55n3FBlidhiqOlMOKlGcnpaSOLuOpwWo8K/DRZgUCrd8Llnlj+7kCGs3oQc2oKHugPaDN+8tp1XGsdxC98tN6vqqTS+UyA22xbIUSBKbcPCutHDK/FgVh/buVa7aygWBZGbySJ+V5b51cIFgNblVwAoyqc4GKfjGl2WY4tZ+1QAOZ7rnRT+Xf+n9LhmllZhl/8zKjXEiJJcvPnE4MaOaJRLyXJZYosPNCrL96XzOmCnrWYKA4V7gx3nPW6GDNEuOy6W9euk8l8/U2i0XOnQEg56vjvxjRKqfU7vt3X0VbNPN7c4yKUeDs3kzILJ1cUmbtEihZbq3f6MX9y6YjVfFU5u9WlxgGKGruVq9jDYz/pi/Gy3VBGfLqReWQN8bSL1325sNl7+QWO71yzl+ZBzsLa77+xvn7C8/Vfl/NO9X9V6QlSWaZEevb8VtjP9vP8vuYAU7APCdcLrMEJ722lvYe212PZWEwe+H7yEIWDspIsc7F63rajLEbIGXPUeaulky0GMhQTmPzlfm199QpeplRbu958Su1HNbOfbzc9yvpWpVDCeophlrmCeP1iq5nUJAOyaGTjGYiwjhescRFa1trUE3R0gv5XDLYUHWkOFQtUFv+V0bZZtW0/oFf2V1l/tMSMU8TUoyIcUZKEcE77HY7xGUWDNN1AAHLsoCIsFjQTcu9AHGEdhpE7PseznnJ3tFgd9dJUHqJi/AjxYRhnjRAviAu8nsGKy2CF2fMMGDY7LDZbrDZ7bDd7UuWeN9vsNluJfOp6zHNET50SM5jiQkuRmCaEaOUm4EY5BXnddL5upDcF+NmvQNezOCr+Hyto1+TC+ZctnNsDgVHhBh9MTSF1Ln+R6vN/wtL2dyDAGTngJxLpoh1NW4dYQDW/EbyAKoSquZRrXDz8LcgUv9WPmZ4rP13o99+7VmauXshg5uf7TqsNpbesQ7DZE8dDSxZgF7T9yTPKUThVZ+Z3SvPw4Xv0sRai0krPjOZpPdq7HXbZqufSYOF/DJ79naMoQsICBj6AcMwSMKG2idiF2twJUZJTFEM5VE5zcB1PzYPuMKGKp2KjOIGQ722Nq+Ot/weq88Vs1jnQPYpKoa6OYfiI1irmF/aGSufg96nOH6aeXcQDGWk3MySIe6IkVh8A9V/+QvYCFiNEw2Gaia0vvEVTHH7oub/v/b6D4f1ck5YotY/NgoIUCOeGzNdH8AAe0pJSC7ZUnGBWKXG6j6W7h21Lhmoh4kNkZKSYFqkn43AEeXv5p0M6u0kR6W8wro5rASNTZpFuuzQ6n/GCh98gPM9gu8gUS0n2V5RN3VuNqyVDmoG1Oma8M9/eULfB8wL8PBmRD/0+Pt//BY5Az/9dMTz04SUgOMlI0wZx2PE/fOC6aICX1PfKhbicj8BrawpjBUnSdTRCCrbeuO60XJiJMfIjT3qnNOuJAkpzyBY5k6rVl5utnY6TbmJEIOAn2K4WhSzzUTIDbGvpe0Szo9PuDw+I/QbPB6e4LsO+7t7/PHvvsc8z3j34R2WecbXLx/x9PhZAFYUUlrvpB2lXF2X19UUcCudS5ybNHgVapkRF+WFyNKa0pEcICKI51/fW+bX1YhdH4SUdr5c8fF8ltTw6xkpJdy9+w6/+/57HHYen376PbaDx3K9YL6cEZkxHk9gJpxPFwTy8F3A5nBANwzo+g7DdiMZTv2mZGBttzsFgFYjLUYxM2O8nDCNF4zTiE9fP2GeZ/TDgL7fIPiA7XaP4Dvcv3mLd+8/qIE9iNNou8Pu/gGZGR+W3yPlhHmcMJ5PyMuC8fPP+Ho+4jpPmC4nkHcY9ge8ubvHYbdHr60yeZHSNIDAmnbNXLPMWLvjraueLSwA/RspmK77qThbVkKeMU8TZogsmudZxqXzV7L3Wqi2kvRFJiuxvp0LgvFdSemagK+q5CwDgfX9zYhuOoGxtSphBZHsbuQRF13UnrCiWJuSvGwR42yOZdvxjZx9BUHdRuPK3UuWEhBZwLpTviXp1uhlDpt2wmWERU4wjMeoqienPCOAd+JYTpRKWZ0vnQErmCvRKGJ40Op3kgFi/Buu6EqrgS8cIzpzQkPDBQDmnMCJixHlnMPhcCgO4If7ezjvMU1TibYfj0csMeI6zhjHBS54DLsdOr8tXXlSyljGESlKCWLnAzJpWWvpBGU6yIhllQw8Zyxxkey6Vy0JaCSw7vnMGfM01f2QGc4DXe/hHNBvA4ZtUODC4By1XbmUxAdI+VyAKzRqxoHWgg9zeLXDIudKGrsZyU5JWXti7HqHLhPOo8eYxBF3vM6YAuF+GCTLabXDf+lloLpGJi26bU4WU3ys59ZK1mxfmmz+VQP3P/Fl3eJiihrR1zmkiqGIVPeqQ6R0OHQQjIGkGeUMyWStZ+DWgEiaTSDlKqns6VvnptMgAGzeZBb1uix88Qpyy3hy5d0D2zPYuaq8PihjquVz9rxdF7DdDpjOvYijnEWUZiuPQe2+ZaWgLgAU8PUYcf3v0njlj79/izcPW3RDhz//378XDPXzFc/PCyITTiegmzIu54jDVcrQiVCIetvnlUdaG48rw0PHmYGCJ9uXlRWmpCi4OAxEHku3NTOmeK2obA0bx4z8mst5KjZB0R/raDn0k6KbHBheyoaDx6BZRU9fvuDx42d0mw22928QQoft4YA3799hmia8e/wWs5bWPT9/VTwr2RVOM/4LuKNaKmKBQscAJy1vAmQOIDJkiVrZkBIyK0GwZjYXS9b0LJqgLlUS7OvpjKcvnxDjgsv1GSktONx9wB//9Ds83+3w8w9/EUe7Y5xOJwmqjbN0Cp4XyWIij7uHN0LLEDr0g8jr3f4Ow7DBsBlwuLuD874SequOyynhy6cvePz6iHG64svXT5KlqRhqM2zw4cO32G62ePf+G3zzzXe1AsI53L95g2HYIueMb3//B8SUMF2vuByPiPOEpx//Dc9PjxiXCfl6VLy3x8P9AdvNBsO2h/cBaVmQ43r/EaFyblmmmKl0mdGVI6HF3JZNCNQyXPscA+LgyxldCFjmCd47bLcD+qGv+tNkgekixWgpJ6Qc1QaJsMBJWzoOV5tDMWvJouov6Tot+x7g1X/ZaROLXDkgf+lVzIumS68FFZm0MUvWDHvTL1TnR+b4pQH/wpnxC+NgFnJ64b6hRn/plw6wZJOwziEZhrLryzdHADvplsuOQOyQkMHOqR0iWctZMSBzzWRh7XgGZmTKcFaNqM9DlvVDFpwzzlsU29uhzWSq/MuWJeidx5s3D9jtdsUuIRCulwumccK8LDieT4hRssKXZYHzHsNmC+et+7ba9xq2cs6j69vSugzSrHWYnIQ2JNPMuRhvsuSalwU6dYVKtUSMqTwX1KfhA0nWd+cQBqcZUIABIRN5wTv0zktDqmy2F9a+HFRds4ZWVOxP20VBLTkQMIQAlxnTnDEuCTExBkdYgsOePLpOPrniclo/cfPsuv+bvcWM0jFy9enmH5bp7iHBw9/y+o85m8yBYWn0XDea/P11n3bLek4q/Uy5rIDPSpkK6EopIUbphnSbriWXaDIDymJW+LsCleasWgnaeu/1le2Zmt/a6psCdF4Vr5NnZ+UDbOWG8iuxTAQASGbTeUTXeRwOWxAR3r7v8PBmDwbwdBxxPE/ImTEvUuo0T1JeF+M69bMd6NpOZDWim/3WgCZ7NIss2Mbi+r/1g5N91pKkG6DULjo1Q6Pm8+2v9H/rSJ1FMfRQtcCJUIDGPE6Ic4TrZ0wpout73D3c4+7hgLgkdP0GyxIlhfp0Qo4RNcOpdpaqMnsdqQPjhUfaxledlI3H2x6o2XNgXqXZeyIEEiPqcrlI5HCZcDx+RUoL9g9vcLffATni/u4O83jFKUVMz49IKWGeM1IClmlRgCuOkmG3Q9d1GLYClDabHbpOOjrs9gc5LyRfql8AZpxOT7ieTzhfzjhPF5B32G732Gx3cM6j9wOc8xg2EpVzzpdMqdD1GCBK33g2pmnG5XrBMk+Y8oLRMaarF94mR/Bdj6HvJf1aHc/ZZY18qvOYCZUmWB1JVJWfrZb8m/Vn3SdMRTat9l3zKtETTR8Xsv2AkIN8trip+MXnWfdGBWa2XRoHdTG21sTrbefF12RMkV9Eqz1ZxsDr99s+I6wvagpjlfmzUhd2ZvX6zOWZbl+/BJrYOCxYyqAdLKoj8tW6Y65ftp72/9u/6twpYHJUnWyyZwm1vTPq90b8VP3CwjsBAdyyv+o8lawMmyMAnoCkPyfVUabXnHPo+x67nfCB3Kuz6fnpCcsipeHTNGGaZ5yvE66jOG03hzvJNjQnmK6byY9Smm3LqXuKyh4SvWH3EJBuhpvOGbDSA61hb7KqzaYCxNnmg3Qb7Xsp+7aSLeMlER7AAK8Ak3TsrNddOWZultrmdjVG/T1xlrIK7dpJREhMoMSYo3SCicp19+LhfuVVzh+jnmA9p83OfXF27cO/mqnzn/xiHYcFueyMrqOK5Z0gVCeqs1JTcgClorfWTia5nr1sv5nT6fb9IgKo6BQLvFnGnb1HfqgBtzrWBly0e1GNo9UeoAaL6d+9ymCvZZR2HSufy1BZ0xjBUD06zQmX64ShD3j7sMdm0+FuGPD2/R45Ex5PCThH5AzMs2WJi6NHHFcC21oM0+64ihFRnEz2iza7cJW9qdNgDqeV3C8HuzHub/Z4kU3rU1ZwcYuP63Ba9GbjrmssmdziAA7SsgvX6wXTdUQ3TUgkXdzu37zBm3dvMU0zyHeYpxnTNOJ0OkI6Wmo5YJPNb3qxZKMAcDkr52UuQTx7+BZDpcLll+F8i51sZpv5UDkavHRAO88zTs/PiHHG5foVOUfc3b3F/f0BnBP2ux1O2y2mZcRlmpBSxPUq3EgZ0jnU+4Dtdovtfg/vO3S9kKff3d1ju9tjs9vi4d074awSRlzBhur4dK4Ds0N3PeM6X+FmwV+bzRabYYv94QHbzRaHwz32h3uVd4I9hmGDvhtkj5M87ThOOD2cMU4jjvMVc16wjA4cJyB4hL7HMPTo+w4+eC3bcbZBX+AEsXl0v6zgPJU5tf3CWq5VHPT6+cJZA5Ts+CVGNUSlFDd0DqFTvpoS7M+wjnSWUdN2+cvKddWOmBqdKLhEeCyyGIEwR2ZlseHCa2SyxZxWtnfWbEQ3uKbO1FpusSli0gvVc7z67C9hJ7sw68Dseu3fITLNFxRn61G9xi38awMKL/GVqVwqVRulWyQA9SWJo7sZe0GN+pgOBHaCOyxpxPBXO8fNJ2swmz2IKt1NwTna6Gm72eL+7l5slc0WzMA0zUjpinlecLlcsWipaoxi00nmX1d0gS0SM0oZd0kWKbK0WVPIs6SYSlb4r79aGSp7WR5DAi5lDqx0LggNASnlQFlbXW9zjjtCOQOturzFHNx+ty3ZbAIC4PUrEIEdYQSwaDOaJQlGiNmQw68/6eq+uk+rrJCB1tDwK1dr/Ab00mR69fUfczapxSodCmQY6+8tSGkJWkXBGhl4UdBE4CzEetwSB7KkP5uRUVv41rpCuZsqe712jEsZATPQdxDeJXJIMYG1Vt68mHaYSno6M8BO+XiqlCaYkVMBl/B1eOmQ8v1b7LcJXz894cvHr+rd1O1hq9EcBhe8Rr2FFDAzkMmh3wqvzHa7w+//sMP5FPH54wQwQbipWYSf6WXR1cJ/VWnpy3KtBJ/+uu2esEIuRAiB0HcefUfSKrjY/hlAxjAQDnuPnL1EH5kQIzettanctzqMTOA2Y2rW0EpGVmpBf/Deg6AEciQZCV3Xi4PPCSF7XCK+fvqI8XKR1qy+B0DYH/b4Q/gj4jzj/HxEjAviNCLO46rrDpT4fSV4mRAyFQO2AjjbN1mDHVICAoihSlGlhBpcwQctd3PCHwWJ5hIGOMo4QjhY0jJhmc7IacZmGHA4HJCnK6ahQ04B/RAAdtgkxmZhwDn0+x2Clrxtdzt47zEMW3RdL0Tqw1bLeTqQRoo4LdJ+fBrxdHxEygn7+3vs+A673UHT6J1S+xKG7U4iIERSHtTsFSJCcOaU6uGCR0pbABH3D/e4nE943OyQc0JiwtenI5aYBDB1HfrQoTO+lFwBkmWtQPdQxVKyn+ScWvak7hqSqNbKeVK+yeYvv1YjnpKD93NRoK6NUNt7uY7DAdq1R6IrrWFXP0s6dAazU0dTa8TZxV8CmBYPmlxDs03ld9mk6y9K95UxWdqf6thQx9zCsVYNF+mwxmnl2qZkxJhKgJd2yAAkywkOObdXtExLWwu76/o5LbPMHGbts5NGAW0Mlr1pICuXvYECsmyNiluOuRxNACUAQE7aODMDoevALHLHOkDu93sMw4DMjC9fJcp/Op0KWf88z0gpwTuPzWZQjiaJuJn4y8nI/KVsKHRBs1ygKeMiW2Rs1TFieseRlJ29XOw6xyKrdI11M5W90+wl0V1U0r9ZOR/yEpEWCQaJc9whNICiOmpYz7/8aNurHd1qpAU4y0p4zdrxRPBB5NIYI+aUMXQJ15gQnMPgpQNLJbtv9yHQGkt2U4vol3PEXGh2JCMDcKRccdyo5t+ClP6TXgbSvfNFF5qMq10SoeeyZguIszwLIF8WxbTCLcnM6PtuJVNYM2gMa1mwYBUchJyTnBMIGXFJhRfTHOkhEJgDgLw61+SqIeSKsWMXzci5BvZK9qHyvInzKMOHgO1ug3i/w3ffv8N2wzg+XvH89SxdHNUR1sJnAgBHCJDurCEQjkfJGpxnRt9LRPxw2CL0W8zXiNPTojxKUI5GM5JULlE1FBhocGvd9+vuRTpzDdmv85rxHoAwCIbyvn6OII7tzcbjcGBkdshZxpGyOdegGSd6xmAOGju/twE6NGNqAmANxyYp+b5xU4KEl9GRNLXJMWHhCZ8/fsTlfFU5JA69h/t7DH3AvMw4n07CvWId0Fga+bSBXJkHX7IxvDpUb3GDPYuNVzIIEihppljzmS4EhKBmud6vCwHb7QbTxDidMpZlEWqAHAHK6DcDdvs9aCJkJGTu0PVbyRgkB4aQ0+/u7iWLaStOodB1OBzupCFL12PYbsXmUKNymWacnp6xTBOej894en4ECHj/7TcgR9ht99jtJCt8vxWCcPIel+tFYHABFiLXoDLQeScYqnPYLRtw/BPevLnH6XjE548/gXPGdVzw1x9+xn63Q0py3oeuQ9911dZiyWCzhjHGGiIOJdu1tJITLYcRlf2HFfYtPzfrtigPT5hMb1UbyRErTmu4vrXUg7kGQVobpPDj6BfYqYzLjYxUJ9ULPM4Fu5vttw5sMcwh8ZqDCKYX2XCP6RTNXC/DNIePXNKZg15BlD1TqxOLAV9uRRW35FzOdDkXqDi2HWt7mYoj28e7eX+5Xl23EmgnXp3J1fhV7lvHzoIjXuhITTwgp5xFW9VDymfWdRj6AT4ITxsz43od8Xw8IeeM8/GE62UUmz1n1TWhlNjlnBG10Yo9m3MOIZDa57nsGZtHpzai4WtuBQnfLARaedoGWFrsLftQJLP6IpyD94QQPLpOgyRO7sNROBiZGL6TBitOwe/L4lLDNbe/rcNtkbr97CCdtTMYnjycC2AA1yUJz5732MQI7wgdVbJwLjpkNQH6N3MSa5YWU3PObASqSzQorPUyem5u98brr9/ubDInhROuh2r4oaZ9G/oEigCsClAcA4tyxMiEEoIL6LoBjqSGOoSAeV5wOp9LOl4h1jTAUa0XBTZAjAumaSrK2c5jFzowCVAiKElscV7V+mcTJmklphi1HTTVg0iSaeO7gMNhi7//87eYrz3+Txfx+OUjEhjIAwCvERHbavIVgpfyHWY8n2d8fbriMkUkBrbbDf70D3/A+w/v8PnTEfP4k2yijgFtNQ9dambbRALg2raaFbLW38jzq6KTRSoAgAD0fcB226HrCP0ASYpxDOkRkbHbEh7edEiLwzg65ETIKQvBLon/p7l5Y1pWTpX6l2YtaX2gxDggBHXIWamkA8FvtMtSzpiWjBxn/Pivf8WyzNju9nj/zbfohw3evHmHuz/+HcbriE8//YxxHPH1y0ecx4sAv+A1AiDgCgqaZJ9n6f6jSrWAZY2+uAx9D7AsBuhtv+jzEKHvhewe3qP3Qn479B02fRAlygkpzlimC+brE/IcsduK5z9PV4zPGwEQwwE+DIjwWKgDiJC9gOZ+GLA7HNTZtEEIvTiMnDjohIOgQ1pmjNcTco64XM/4/OUjhs0W7777FsN2i/3+Dvv9HcBAWuS8eh8A5/XsqlKQ22oq64DQefSuxyFIVsLbdw/IOeL56Qk/H37EPI04Hb/g549fcLmO8N5hMwx49/AGm7utZP5F3a2OQF6jMpqNVUtdIdxdKmccWBOaFM0Uy7HuOzGk1q6UbASaigQyS4Ru6HtVDFBQpFku8rZS9sseqCTmdV9Q89myy9lKds1plqucRAuKSM+0KdbmGdjwj5X53QKK5pnVQLMzVS5E60iWyWnWLB5nJTGoKlBNnfY4r5SzdTgzBQwSg55VCNXSZ8OGXNTDOgMFZa6t86ApROekpt9xSxqO8t24CBwImeQ7E9V2sDq1VvlYDbU6x847hG7QMyPEpl3fY7vdwHuHYZAAwOl0wsePHzHPM0Z1NJXxEyGEHr0SHYOFfyDlXMiObX+H4OGoF8DkfCmtsn3DmcE5afTY8uSMPLkBQjB5WX+XNfNM1u5lFrAQFCtvUgcF63KHJUorbQdC6AmDcwgqcx20VKfoC53Fl/htpTvVJiiOHceMYEaRI/iuQ0oR5zEjp4guRGyGBb33CC5omVPdc6C6jnUtqexDcza1vDxy3EizMz1CTnA5K2ACyiD/hi9H2hETgDn7Ysxgvu2Skwuhd4wLUpbMgmmeIZWyEiQxPrFK1itcNctyVnL7DiF0xRFRry/gLaUFyKSdRmcA1hFMdo0PnciFVDvnWflEbdbSguOaqWT3JBJiWWlVLxke3dAhDHsEt+Dv/vw9rqcN/vn//AFfvzzqVuuLEVEQjZYXeN+h64RA/8vnCz6liMsloR922G4HvP3mPfb3d3j8fMJfpo/iEPbrMsLWkMkQw9g1v2M0JWq5Mb6BRp5nxYQe8ISuc7g7iLOpC3KWwRmOMrxj7PeSabxE4HKRTPicWbs+qWQ0XWKYNNU9cZvhadulxdnmHABszkVfQ8/zZrcDMWGJUTkbJzw/HRFjxm5/wHff/w7DZoMPH95js/k9LtcrfvjhR1zHEefTCfPpBHJCfiuZTobhSMpGQBDKhaQYtZZX3zo7pURy0fNaLSwzZMRLEgAfwCErUXUHcjsQsjgZxwnLMiHlGUDGdrfF3f0d/JUACE9jGPZwoZd1ch2IPIJSA9w93OObb7+TjIrdDv1mQM6MqFn8oe8QOo/nxyccjydcTid8/vwJnz7/jLuHe/zTP/7fsL+/w93+Hvv9vWIoKQef5xnH81Hksh4SIl+yMzb9FiF49JsB9/0dAODd+wekGPH582f88//cYxyveH76gp8/fcabhztwZmy3W3zz/i0O+53g1EU74nW9NodA+Uopl2w+01ntyxyTRkRd9k+qjQpss5mzOM1zQS0pRuE17DvU7JdYbUNY0wnSpkMNObzuCWu8ZLxiJZNHMbicPSrcbcVu0UYUTASiqB0s7RwZLmrOhepaUSm0cqQYNBJwIXq88j+ac8uwvv26qdoxPaVjIJKMoaKHgFXZmc2rldubo2nVmfvVF9+c+7pmhhDlFupoRgac2S3QDCao46zKmlU2pNmLTXIDALU/Db8JBhTOs+1KLw9Dj51ywEnnwYTT6YyPnz6Kc3hJyEmyoaBOmdB1cEGyF1OMiBzrJgbBByeOlsRIiieFtkLnvE1uQcUA5uBr9/2LoItl5RW8ZhzPLQom5WVz6HuHYRAdnvVeiRNyTGAHeCJ0juANf5bmEuv7riBUA2nUPFk5mRia2aRvEmdTD+aE8zQCOat95aWRW+hQ+c9vMA6tvhm0Ez0BSZ5YYU0i9f0IjisVBIA6qP99DPXbnU3GdcEM0taEtqDthocB5/aAr5xO+nD6hDbMl+ngOhmNkd+evcwZjp1+fn0/AwQ2jnZJW4OtOgnqKptTSd9Q/m1C1H4WIMLlGuQkK2i76xAXxjJZSiE10RoZh6Ui26ZmBmJkTGOEowVx0W5nROiHAB+cGClubWDamG1u+PbX5dn45jNlcstzmhHRBYcuEHxgSBWWRCmIgBAchp4xw8FNlhHBdacW29YiF8UcUoH7MsHPhmjrzBp1bh+t3EYNzJXjDyIgsrZRXZYF5JyAc02/9V2HLmfhJRo2q7lgc6K+MjXyWKa1GwGuGRzVI4zGc8zKobLe6zVrQ1VAcXTJjbIqns12A3Ie8/mAy24HZsD3OzjfwVOApw4MQnJiWIvDp4NXIm5xpLr65axrFWNZJBODIe15u6HH7u4O2+0Ow2YrddCZAU7IqSGXK+dK06MNbYNXTyfnwCm5Zl/anF7HHjR7MAjTsgAETPOEae5VHfq6VcuGeLldefVzcw4aZFWEJ4mUt7NKrQI3oJ4FSFmUCeq1N7BQN7SOqZyxVt7V71Vwt8bBS8VWzqTJEhu/Xa91KjScQryacztPr7yaqeHXp/JmNg148IsplfvU98ieaD5v83AjXuysmHysU8JlWtnmsZHfqwuYWLm5xms/3/6ODEgy6xyslIq04HYE73uEfqOTJoaSd+YIQMkOWZYFUdO8U+MAtciOuG3kHjllgISzpDo7q3YXWYfSxYmyONnA6jDK3C6zbj+Tr+1ea85fuybNWrWlEayAvV2LkmXGBtJIQaY6FJrRV7GseroZS3PyVtrWgE4BJvo5A4CAZG1lJsTMWJI42RK3mvrXX2aY1Ie3P9zqypfXo9d++V/0ciT8GZQta0VuXuaeqyy1wa4yC1qs1Y5ffzKd2L5MrxZOs2T7hbHu8lkBem3+sZ4/Q2sGLmu8tkGujayokfL1V5G/jJLVI2VSDv0gAS9phgLFQbqfgfKMzjWRehanTYwZ07iAnC8OGucd+k2HnDx8cOWx7HOizprd2xi5ZWZa2YXXfq7r6BwVDGXZgzZeQMpI+84csXx7iTKGW/V2+3qx51evX/h9i6GIVnxlnJX/JEnmnHcOSQOiBOkKlVQOztqoxAK1r9/Prt3slQbjG6YXR9vaEUJF/zdnoZF1Np+2J4o0ZOHC2e62wo/nWBypIPhhCwodgABoIM6HXnhlQleJ6p1lf0CzgVjbpTvhfBpHXMcR5By2ux32hwPu37zB4eEeQ7dB13WalSGZiDkb5yyv9i7BFf1Nxe6QZ7FOksOwkWxz5zBdTpjII2dgVIfwOE6YtgPq2XfN97pv6hltv7+yYs36tC+THWTcrZxLpi1zzQQsjWbq8slzMyAeDp1P1YsFT1DN5GlXvB2Xc9Lti51kixvvEMCl0sayhQum0AFWDFsDP+Ba2q8w4eZ4mw6+3X+3r7XONZle7bQV+Gkw1I1eagbwAovJL2H2cvuZNQ4FWrllAb6y4jcQuMV1pvm5eYOpgdeOuGUYkmL9vut1w5kOcWWNY4zIOWFZ5tLdN2umLhHBsW+wgYylBowsiEQAebt5Ceo5WGdmeW/Ro+0eaMb82qtuidt1kr1cul+vIMYtNqK6RexcU/uuOomtj8HW+YVZ/8qLXvmShaxOWMNQgDjBKkpbPTFuF9RUzst7Nr/lV4aoz/w6gdL69ZudTV0/yA8xgUkEaJy0nWXDDWFnNKaakp0aD7nTNFYbOLHTqFFGRNTMg0pm2XWdpOFlaaGYOSvhpZGQeWk/jWYDKDB3cGJ01JkDuJbnAcILJUDHAzBCQtvUIrw7H7RrRRCel+AxpwnjcsU8nvH45RHz+Ii7uw7/r//3n3C9LPjLP3/B6ThJNkbqms0nAMiRF29nLzXkYIfHxwnnc0TXf8T5PCGEDt99/wE+eOzvegybgHGpLes9HLzrSkr7+lU3dgG0eH2zZIiBE0LA3Z1H3xPu7jP2OzFOkmYW3N95bLbA+ZQxXiKgkVjmDMrUdJlrLg6FGg3Is9Q+85YygM6MKSUE1H8o2ORGOakhREAfvHQ7cw552IABnJ4fARCOxyPC8CP6fsDD/QM2+wcM+w3efvstpmnCly+fpC1wSliygAEjqqw1vhXYCL+E7REnWU0AlpQkWmOEhzAjbSUSirOmRI2Ypa1tFp6aZZrQDRv845//CV2/wccfv8GPDw9YUsIcCTEDCxwmeGRQiWJIWU4Hy9SDU/J2zdaSQl/GdbrgX//6LxivF3SbAb//h3/E3cMD/uF/+W/YHQ44H0+4HM9SbrqMkn7eRMNynLW9r0OnGy6lGeZYzFOz4vrYb9+/RUoJ3SZgd75DjBM+PR7BnPF8OmG/G7DfbPHd+2+w6YeSjmoHtspujRzkvFIIjNpSHqU+WgW3KWdTPDrnxF7LCuXsT1NEktoeLW8hLQvjYgxwqllHlqlSgDHVFPC1oxow0NFyzbWZVjJXegZirGS4ulcAgHIlKVyT9wJk6dDlf2YyGkyXGVrNmO5r+XEtEcqONd1uRKPWkr15n/O2B8TJ68ghuFDkds2AAiz6L52NLAInACGpJk+aXl/kAlB8BQbQBF9UUO6aVM6cUbLdMivvGptM4pIFl3JC13V4/+E9trs9fOjRhS0yA+ezcAjEtOB0knTveR6lrXzm0oZeorg9XAa6JKAsZxJ+ADAmnmF5aADUqRW03ASgoF0oieBYSuk4STZTThlZ9WYuAJTUeaadZVjWVYgnK6A0A9I5h+BEJsRlkVJfhnbjArrFYVnUgUdKWr1kpJkRHOAHJwThTkrZPEl2hOK5wlFA2dWI3a1i0fMGtQkcaTtgTd4x/gEhdA3IIJwnBmPEJnj0Pii3MuMmYbacO/m50Q0NR4xE0bnoHCnht0wzfRcD9O9ROfwnvrquk7mOETkKd8k8L9J5lmu5lHUXsQ6HnDNijgrQJZrbClpmIKUoZVnmnMoZ3gd4z6U7l3CM5dJ8hXOSvRzMIQWQM0ega7KWqj5jKJcDpypXkUuHQwnEyDmFEvxLWarwzPggHC8uOJyeFxxPJ8TxjOtlxjInvH23x2H3R1yvM/7yl884nUY4H9D7zlZW95RgNmbGsNkgpIQlAj/+8ISuvyCjwzhnBNfhj3/6XrIUd7ULZWYgsV2v6mh7lSBFs35rfWTvQ/ksZ0YXCPd3A/qesNsyhoG186JTH3JG1wPnc8LxFJETAw1GZd2zdvOVD7X5RxuYFeOVlBRcmvhAm9JkzkASgz+SNeaRNXWO0CvRbhdkX4AIXz9/BBFh2G7Ra2nw4f4BDz5gHEdM44RlnvH8+FUzPE03UdEZYMFBDIKl3AtnnBiWlpEQY5Lslya7VpaYikPJPBeZJUvMMgAFA/bIXUKgAGRgu9niv/2v/yvAwJdPH/Hxxx8RE2OCR2Qna2ElbF4yUX3X4zovmFLCNS2a1SfZ4QDAF9nznz/+jL/8yz9jvFzwh7/7O/w//7//H9y/ecCf/5d/wvawx6cfP+LTT5+wTDOOz89YpgVCDJxVPmsZYOfQme2iAirFqGWANbC92+3xp7/7eyzzgs+7OxyfHrHMI3786SuAjOfjMx4+77Df7/G773+PYRgE25h7SSc0F2O04iCoPrbf2d53VkVijideB7tMtuQUC8aJUTLeM6LIeS84iiAVILI/s6isnBEX6YRs+EzK0Vj3xDr7G5DyV9uncXFIlAT39j0AiM5eZO6u4wUpJ0gXhaT2nuD7nGpDKKP5aB1sNjXAy0QJVMmne1TnzjJ+y7k0h4ls5EIv0tAAWOmzyY1VAweToZxBrs4RoNgxSzC+DT5YACG3+NiOjUotC/CAUDJFGQx21cvB5bnlmYjMoc/lSiaQQhfw7XffYn/YI2ehVskp4zqeNag94Xh8Rs4ZyzIX252RJcOUPJAdHCuGykCkjMjiA5iT2LnOGS+SUy5dV5rSmL0IxVBJ1ykpiX+Rf1ivc3nZgjdz6X3Ve96J3R6TcL4SM+IigXjvqZbRWZgxJfCSAS86MDjls3NqM2YqpZo2FAfDUKvd9eJltoVjoQ1C1jUlSfqITMiZcJ4T6DxhCF5kTBfKOZVHbnUI6h7OADtUDKI4Uk2IYn8tMWIpV5MLUGb8ltdvdjaZEHIMubhGd2OUDl3mPJIHEoO9kPKmSkJaCHTJnEPVGyydlGrpSwUqUsOZchKnhl0T62wLOTZ6B/Mq8lpJt5kaMgxbdV8FA5m4sM1inVR8JTheGPOyYJpmXC9XzNcrHh4GvHnY43Qa8emnJ4znDC6wmkpECc3GJ09gL0Rm18uC2Sc8Pp6RcsabNw/48OEbDEOHMAAuAN6rAtDyOYmOA3h1q94ervb3jQmqRqcjxtA7bDaEzcAYBiBlAhaZw83Go2eHtEgGFrBuxS2YgMq/y53a2xHDSjcM6BFYnCTMmg7bRnH5xplpjisp32ESXi50wLzM0tkgJ/B4BZzH4e4eb96+E+C03QIgXC4XHC8XTDGr4072MOUmg8KcE+bcUjBt43YMpOzLerai3YyAtcOpEWqqAILvkINE8nOM8BuH9+8/4HD/BoGAvCxSUnqdMS0ZMwienZKm5nqv2zG0nYAUVCxpxtPjV1wuZ3z7hz/g4d17PLx7h29//wfs7u7w6cefMI2zPDtVQC3zLxE6cIbLLOQTEGNFfG1ZnG4AjJUy+IDtficOBU5wIeB4fMLp80fEOCPGEZfRY7m/x4d3bwHXW2JJ3T92f7Qgv2ykQn1Q9jS50jWj3fNttAPZOABMKYnRbiUBUGVfMC5sL5hhm4oCs6G0EXyrG7fPUnG81GguN9c1ZVOyJcsegQLrhutg9fzV2UXtHlu92vfbnfWLb/7eGE9sIAxm86zjFvV31sEtaZ26bwgl5XtDsVDPlsrtCm7ac6GfLU4lNFlp1bgCuBlr5WxoT57yxotDQ69va7U/7PHw8AbeDwhhK3shE5iviClimiYsy4LT6YhpGrXUcihODe8cfAL6JNt2NoXMGTEtUo6tZ9C6NZF2yAPUaQ6PnKX8OWdzwOVatlCfujwztMxQtiTXTQgDVAImgxpMWUGsgG0xOlOSnyXmI+uQMgs+Z4FOwbmaAaHz2fIpAyjOXRnHy/3XYBxZN9XRjvVnvbZ1mZlTBo8RuRewGbOX9sc3amyluxq90BwInWYq7y9Gkjlbm0vdYtD/qpdT/ZFyKgZ0igkx3eruXMZrwbxabmmZBrR6DAGJaXWeTN4Yhmr3VW7LO1FVSDlzVAE63chUk1O6q0R/sfB82YTKR2iFmQrwVjy1LAnn04Q0L5jniJwy9rsB27cDjscrfvrpC4AIR17IrVHlihlCIAIHyehNifH8NCJ0C/b3V/iux8N9wJu39+i6gIwRmZbyDPZVJqF5sQmtFy++3eYyNSqznSNsBo++d+j6hBBYjSaZsyGLk3yeMyp+shxCKn4A08EmK153NN3+rvK+Ze1UbA5rW2/VfkVPBnN8S78AzPOM0/mMlBOu04jQ99jf3ePtN99ioxnQyxwxXi+4nC/iDOVqpFj5cpHDVH8hlBiKoXSrCA90xCpTuTxPo0lJZRXXUnpAsJ91mgYYoevw9u179MOAoeuAJWGOCc8LMCXpcBhL1luAdSNeUpLATpLM6+ADuiBlnEuMSCnjdDzi69cvmMYR/+3w/8Cf/+mfcPfmAX/6858x7DYYrzN++vFnKU8cR8zjJI52r85bdTSAocaz2SgWTLOyqg7WnKLvt5JxtmR46vD0+Bk//fQD5lnKBsf5jLcp4dvvfw8nxK43QV/DcfYleqZ2qHtpkJdsyNIJuMHeJkdJ1kGyVtQAJvm9SPTWQcDV2ZXFEWA2oeljq2qoZ0851kCFSqU6fyCZ+Z3ws+Yse986j0l2vp6tbM0Y6nfY9fXRVji9mZf2eYumKxPHFUqt5IHqn8bpI8CEmj2N1c/MqfIOlcqEul6UK++bIu9qS6y+XiLA1W8qoCt2b4v3UMrrJMmgxcBracjwzuHu/oA3b94gLsA0WUBnLlUlJ+V5E17LCO8d+r7TrDQAjgRDRcEDOTGsGUFSZxMzg1idLL52/yx8XQA416xB22N2lsqbVk9yO0ONP4AaW9959U8sMCdNTmoPJRYnTKs0GUqwLhyv3jibijR0ZR5XZkuZ35djszeVzF4QwHm9v6iwSmFKGW5epPNnZgytjm9X8mavyDzr2VPdYBjf3mkdi7NtnDKlvw1E/WZnkzmVliVKNE7BTy1xMw+4bFbHrvAElNbYQNOe+HYy9QH1eiGEsgGsnaIJKIkOCMDoQleIJ80TZ51AgnY5YXCpv1zd3JS2TTLMGmKVD4ycjYSu8YxSIwDhcLkmXE4LvCP0JPXa798fsN91OB0XPH8VI96RbF7S7h0AkJWIzZGQFjrnQOyRFodpzDg9X7EMEXfvNtjsJMvLhwAfIN2WsqB4Wu1gQISpPl+d5rUFUN4JXduE82lEWhwOWwceqBiKYKkLn+eEcYxY5oS45CKUinPPZo+be968yoYuRnUVzqxp1VUA8CtHUB/Wzrm+wXuHfujhc0ZiIIGQlhmPnz/icnxCP2wxDBtQTnj/9h3u7+5xuZxxPh+RU8I8TYiaqWRrbqn6rrTGrPMoKfMBnjOyEwPaMjBIHVRlRnJGdnJ8yVbHOUn5zxnjNMF1I8ZpRJhGLHFG5ghGkqwdLxJFWirL5xlrpSVzpfcgW9MF85yxzDN8EL6D+4d7fPPtt9js99oWeMR4vWK8XsExwYHR+eqwYs7IUYS4I+No0OyqlJuOEWVZJFMxCsGfDx022y0YGe/mb7AsE6brM56ejyAQjscTODMO2x36bdAzXMuKbp0R7b5aC21q8UIBAwYqqsJW8KvPR0TqbMjiAIBE+b2TrLp5zlgm4TPIKmRbLil7uZINQCWi13LO2Z4q+74ZN9m5sL1iAEe/Z3P4AeVvVd5XkFgdVZoJdpO9ZNlF5eA1YKnc3+ShyXTU9PTbV+vUtMwzMyhZgZxk4zSCQJ+56CgiUGNw2/oUfnNCOYdW9mUp63J7JzpHndQOXKI1Bvzs5JGWkY3Xq2YobcWpnrLKgium+Yp5mtUJzWVNi9yC7RvAM+AyC/E0LNrUZCooWI0xgpI4rJ33qmZMF2aduzYyWa/xmhBV11Szbij7zbpDEeys1lJvIoATsEwMkGQLMBhxymW+JItTotMFZLNkAlrGAagBaQWJrvWNrF9joGRx8Eb9nqMYKZs+IHMA8qLZboRxjnAEbIIQhrbYphrZXL4LtlC57d3N/Okcp4QMiMHwt/IwNa9lkf0kfEpLKZX3rtJt2vkjEgdAF2Ts3hoOFA0ihkF1dCtXTmOwtefaOhvaXvHO1yw4xVCWjWTAGLBzbMafYaDa3Uf4DivoFwhlxpAYUvaSFvZVjzrv4PsOcSEcn2dM1wve3AV0LsAR4cOHA7Zbj/GScT5GiANam4W42tTBE4FYnyk4IZhNwDgmdGHG+XRF3wf0O6DrO3RdWpfjt4tUIB7pfJrRVSkXGgqpxvGjWDUyrpeIHB02PYF6BzI+OmbMS8I4ik7JuexoUHvRF68q89oX3wjkSqZs8gAi71DLVsszt0YQmWErXJb90CFn4XjinLFMI758+oi+H9B1kiXXBY/3798hPtzjcrngfL4g56TOByUGN+oNcwC/0oSDnGQIZHYl49VwF1FbqgdVV1WfEZEaoA4xJ0zjCGbptheTlO1YU50S2M5Z5bo4ZSz8Y0MrHDuW1ZxZ8dGIGCPevn2DnBI+fPsN3n3zDbqhw+l8xnm84OuXz3j6+gVpiSBi9H1ogpR1vkFS3pczSZDGeY2XqzzIXOQ3kcxLv+lxuL9DRsKb8wdM0xUxnvHp81cADufzCd4RNp02qbiZK5sv2RqGnS3QW0te2wAD10kvtltWeW/7tRjkhMJNw972agKzYMB5lo7aWXEJoFlOKYKgJM+uOhCIzEkngUvqaPUcNRRWbbMS2CMAN874mr2kga7c8BuWDdbKYEU+RgFjc9mojtaUKo6hdnM3+pEbh16L1wt80i/WhIu6PijOw5rlZ0ElI8dWzI2Xr7VDWvdAcZ61GEoxsQPAVuHBBcOV1jQqW3JOuJwvWt7okXNAjAnX6xXX6xXTNFU5QJXbbxXggLhfPAOUJajkWBtOkUPJLVWuqRwFz5aOmFhj16R8YHm98EU23+JXw8m3+8Srw8850xG1gZStXc5AXETeZrv/IqkuZstbkMVuLvjuRpY3ds0tImmHW+ddg1DK7UmcpfFE14GDYN+UMiIY4xQlc8w79L5mfdu3Yi/oFIjfJJez1/pLKoZL2hG3OTO/EUv9ZmfTPE1gRsnmsekhXyP5zCip3sEI31gdCK11BTv0zQM03jHnpTSKAW39PhfAzswIQZwuTp0LtqCbjS56rCRf5a66QXNRNkaaCJ1p8UhyA8iMfA5QQ5KoCAXvHTrXg+Hx9Tni6cuMPCXQOKMfPP70p3foB4+//F+fcT3/hBQli4Eg2UlGEJrZuls5BVIEQod5JFw44jOeMQwddnc9NtsNhonRDQNicuDFV2eQw+pQ3QIoAxS3eKZVSNO04OvniM3gcH/YYb/thO9EQ9HjuOB0SjidsjicFoDh1XH2EkjYrW63YlbpwaUYFpUrh62cgCE+1OY9jcNPvsnDkzp3yAVs/RaZGfMcMS8Ry3jFX//lfwIA3r//gHfv32MYtvi7P/4R/bDFp88f8fNHIRD/9PPPmOdR21bWCI8oQVoLK4JkDwx92cctyLM5J4hBJbpN0vgtqkjewwWPGKMQ4oNwupyA4DHOF6Q8IYNBLghx3pKQspRbkZLcq8oogKDMiQqS8XoVnoHrFaEL8H6Lb7/7Fv/wj38GE2GOC6Z5wul4xPn5GQ7ANnRibIYAHwIYjBS7IoyMDyMlRlYSP9YHt7VOWQkACeiGHpvdDtv9Hrv9HvM84b//H/8//PDTR0zjjPeHB8zTjPDBF8LLFFNxOJV9utpIRQKhVb6AKMmVwimooKaeElOJLjJLarftQ9KmtKHPcMS4LBOOpxFEHq4bQOSR8lIiaeYEty5TUpoSCvFjV8ocG+4UsdxRI0wKcprIn4CVmgpeM0Rj4ziTl3NGIm3PzIUPxSbBQJyBE9s/fPM++TjXuSzO3zpWk7lEThI3GYiaWh+Cl7LYck5vonoKI1yTwg1WzodWZlP9hM1b5rzKdJK/iewTHaJ6hYBMGsG1wAhIuhFlxvPxGdfpis1mj/1BSkienr7ieLwgxhnTPBbnj3VDtaipC2qoZyCwZCbFJKVOzhFc58DKWcBWzqJZJV3fozPuAX1000mW2QudKcsmbjM7WwCr/2rmqxKtlg6uqZYOOY2YpgWYT2IAx7zIcyYGR4kmh+Alm7bzCr3FGZaSBJGsjo41G6sF7MUIEJuqyPSUxcm0xISYpVlIihHkPQ6bHZyW6FyuGSkCz9cZ07Lgfjtg04vzwapsQc2+sf2as6bRA4ECyFI1qO6tGKNw3XmTBn/b1ziOACQDd14myN71ggWaFvbSyZLFceKCYiVt/62KRbBWG323M6wBtvI7LhjKfgak82Lf96UklJxDCFL2ZRhKOi2RZjHlQm4rmC6DieBhGXya7dQYVqwlizaOAr51r/guoNsMuJ49Pn684Pj1GfzdFrt+i+Ad/v7v3wPE+OtfvuJ/nj4hM8H5Ds4F0aPesINyt1CHzgvnYYyE0/MMTg59EAz1zeaA7W6Ly2hjyWghuJGPm2Oi6FH7nRlkbEZaK9NkRy0L4/lpxtA77PcDCAFidCeknHEdE46nhHEEcjInvGuu1Z51HRu1P1f8bN8r7rCyDi7rVLNExWhaZSuSgZFqiJHzILdBziz4KUZczyecjkcQEb759lt8++032A493r//E3zo8PHjJ/z4409SWnd8xpJiCbK0DvCX2blKYD50ACrBcVkPqs9rhr9rHSaOQD6AQsCSIs7nE+Z5BlFA1w8YxytAGZWDTPZtjKLrHbF0pszCRSTnRoxF6fAsYz0fj/j6+BWeCH/4/e/Q9z3+/h//jD/++e8xTiN++PlHXK8X/PDXv+Cnv/4FwXs83D+obaJ20MpxkTEvI0DAFEfZXRp4FOeKLwF0c6Bs9hvs7+6w2Qnn6PV6wf/4H/8b/vqvf8U4zfjjH34PIMHd3WM7SHdVTlWvyz5mRUDm5NZsQW6cAs1ms6Cx4fGc271mvFAOnrk0LwAY7M2oSsg8gXPC5bLg+BSF4H27gXPCgTXNk8olcRQINYrs067zmuE1qFNr7bxkxXXi0PO15MrwqI6iyCzDMjmrsy83Zx2VG6h1FuVXzqOr17SbmBOOUR1OJUiq5YNVZuhce6DYL3qpFkM5r42LTMuX88CFB1iaslh1z01AFvWZa2a0ORaaDGnWbFmYc0m/6x9ZBYQ8rwQaUox4/PqIy+WCEDbouh1SSnh+PhYKAtM1pYkAbJ64ZE57EEJmuMRYwFigJfZmc2WWfWxZyaScZmEtB+1+hqFY5YfTNTUnSuucKjK0kbm2l0oZOQiUrEmFLgIkqDCNmhUepVkUMcPBw7uAEES/esWbudxTxpMtg6zFb40jyL7ZvrWvlDKWJWHR53QQnrTNdgNHhGmaMV0nwDHOYUGMCfuNjIXUcSewyG5C5flrpqFgKK+N4MwGMBskO5YKEDuHVPfvr71+s7OpJYFrAXF7m5dK0Tw1NW2zCP3mwUqHlPUFys64VVAlFbsQ4lWDkxlSe6iH3ARSOVVoJrr8rGO5dSgosKtg2qw0rH7PSnC6LBnjaDXB4ozoOoeh94jOskMM5tpY6pgkimP9fyQzIMYM71MDJjX6oCVkry+0KdeqZFd/vTEs7eechah8cXLfGFlD93rAknJ7pCb7gdbL9tq1WyFrhn855uX0vxzRyxHWqK9FYlbvUGFcgIpeICcho4txQVwWBO2cJk5Dj77rkXNG1/eawcdKhN8qh/qcZU+h/n0VAS7zUX9uV8S+2myUnBJiSkhJCPSWJWJeZi1T86sdY0ta+Gjsyry+DwDNJkhNaSrKHhZBqYTHKRbeBGJ+MY/sHICMnB2cU94Tau7VPGizuqVcxsBnCF2JYjELQeySkqaq19TZXzQE221UflWz+Mrrdh9yWTi0swZqsm4agQsIQb53gPes/EC5GFnmoGmd5hIBaskyZX3bn+U2zb5vRR5acN28r1WMqzE26815NSkGEFqBttobK/lalfb63N4oY25gWDl/Fcjae1cverEyqLKay/5fGxZ1sHaG15+l1WftcQDSdH6JZtm42r+RotQUxRHqw6Jp35qVdStPm8Nkxr6KPZuZFRCULk1e91Uzl5r10TqluZlQW+citenlrAHVeGi28810v6IQqMovMT5r9q/pyPLdns2u0RhqdQxczpAFiQgvb1s/sgYzLd+Eg+hJHxwW56SbFQkPxQJxmKbMgKvFRijrwGU8DEjEtl3z2/MAmzRa//a1ifwveJnzZZXBZq96MMu4isxQTgfb2ygOhLxyOK11j/y93tvwVtVXbSCFdJN4xU7ZSXDMiEeBWzTxypr/gtw2uWZZkFR/WZxPKTNSlOzpaYwIHWHXO/gAdJ1H1zukBHUcrO9j0seMcytdYJbORXFJwuuY7Qmo/IdGLsuc17+unoVt3l95wOaVs2Ak74AcLcjERX8bxkrJUGLFylWWrU+SLXv990t9IOvNq63cGlflQi1+wOtnlor8rPczZ3mKC9KywDVljd579MqfY9xgNfuEVnvyNf1S9iStV5Zgwd1GJ6LuRYAKnwuz8B4ROXF6kK8NHZLOT3EtFhh6MxZ1StwYX0kNWXEAhRow0oY00zgKlcY0I8VFMmsbfVrlfCuvzPDUVcgVK5HNAxGIJZvcdygVERIEFB2TdHyzNn+xzDJ5pnZf0woArLUyoeZLNq8GPrRYh5o9VJ+AyvvqDHPpUO0k6iN/MQzV4I82U5xIMshTkmvmwmlUnT/ixMnlYJh8MWcqA6vr3zxW81xrJUHVUC3r9NprpdvLXJn+XuMqu1+r72UfuHK/4rx6VSVRkUv27+ZPZT1KJlAzxtbGWJ++GwUJO2eCjM1BSzoYuQev5i3GqPvKw7moGWusjuV639t5K5iObJegUKNIcZIGF0FgTtpBkBRDrXms7Jrtejca9MW9X07urwh0ttm4fdVgD5g124gb6dJgMFUbt7LmhWz+tUE0nzPtV/Q95PrBS6A7LglWYhgTw5MECrNh7BX2IduYjZ2h6e2o+NnGUPdxfbZWl/x7r9/ubLIuJrnerQ6E6gKvlJ+NpAGApswbQ6wa6iibJiVNh2vAkUVKfAgIvquGevHcutUmlLReLT1hKwGqZS2t8ZdKKz+9n3fougDvPLq+1/bBoZRUmPD23mG732OeR1zOzzh+fsJm8OJRPPRwcPjHf/wG0xjxw1+fcHq+gHMAZ6k3NnPFuU4PGdBvArpevP8pE+YIXK8Rl9OEaYog5+EDwLESveWcqoBo9IouSS1jLAqEy3fbMzkD8yzr9/Qk2V/9xuFwH4T4dlxwPjGmicH5Ji3vF17c7BUrqyg0x8ylrNJT3RNQZWskgpZ6K2Tv4pCzzzIqgGYQUtZ9meWaPnTY9J0cNGY8Pz7ifDrjcpnhQ4eu73F3OGC/2+Ow3SPGiOPxCV+/fBFPrhoGrbOgcmPYjm0MuebVRiGspE72mjyT9xKBWmLEvExwocN4neC7EV++fMVf/vmvYBC2d98iDDtkdnAhyHVMobaTrIeQG86r3MxfTBE5L/jy+SP+8i//A94H9J3y0MwTOo2wMC9IicBIkrlUgLfMQQgdGEDQMaSUlTzZFCoXectEzf0T5hixpIRhu8fD+2+xHXqMMYPGCcfLBZvT0ESqTAHrGis4a+fdAHTrtCxjsLc1wLGsjS0aoFlsvhyOZUnoe8KbNx02G8KwYWx3wDQzHh+jdONx0gZVAIMp87pHomYnWQSPyEpXXL03GamuEekK50JKCVBwb5mWK2PyxlYu8/AaWmxAYftecxLYPjZgVNW/KcnyR3VK5tK2WZyIVEpSSsMZoGRFOCWXdoB2smGwZr/W8yIyy7mq+JiapFPHwuhbnr+epduXc5VnghTQJ8jnrWU7gzHPE7BoW2gl6T8ctri/O+B8ueLx6QlJz2XU1twGEiTqLd1xskdpLS5l0NJSm53D9TriyqOQiysBeooJMyaZe13MnHLRq94HBI2E29nO3JRVGvV4A6TrNFTNn5IBQeFXQJFPeqaSrlX2IPa6JpLmXWQFm560SKNc3CKWdS8aBCIYV4b9BqhyPmv2UdJMM3Li0N1p5C2A4OFFby9XzHNEcAv64NB5h13w6L12JdJnN3LVzIyYRIeHYG2kUb5a46rKTdQN+zd9tY5nBXfcrE0Bk2qo299UqxslgIMDgnS99X5NrCtBBig+asp7GwxVM/YkkNSeLZs/yQRRWQToZ1Ays02GWuQeUFJgV0snvJdIb2nxrfLCGrz4rkO33aDbb/DlecTj4yO2m4A//OEe+32P7WbAP/zjB8xTxM8/XXE+nZTDJTTzwgA7eMqAdxhCh26zhfcO05SRc8Q4iiMrxiy4LlhGuT1zsxlMf61/VfBpNb51i6lzZpkZ55yxLITj0WtHX8D3HpwdljlhujJikiYx8NTIlhrsbJ1JLzpa6r55achJRB4ELdXl0r7edDAX41bLMm8MqhqckufpgjZ92Mg8pWXBzz/9BB8Cvjw+C3dOP+Ddh3fIKePu7oAlRpxPZzw/PZd72J62zIZ1low9x0vDznBX/aprACKEbkDWT03ThJgyXLgihISnx2d8+fgJgEPYv0PoOyQwggbVEHxxtsKwTM7Q3nFwPhYjzJFDXBY8XY5wDvjv//v/hst4xJISTifhrhrPZ2x64XmapwlxiSXbWS6TwMjSAa9TTNo4W5d5BsCYZz33jgp2nOcFwXe4Xs+4zmfMccJmv8U3332L3X6H4+kkjTr0/AUXMPSbVfUGsbZiZ9amFi2GMtzUisQWG1iGg+hViT9TXTOygCsgQcmMYUN4926HEIAuXOH8BTFKeeusMqULPZhzqTohajLUSzZFFsxF0u5dMGhA7rX0r8gZh67rQQTMrAFUVl7JlqOOSDODGqczTJRV9xLdnLnmpL3yY6PrOL94n81tykltXkIg6TAOaEkwa+KJfqxtikRQx2qWxaRybmuWORglEWSFdc1OvsXBv6D/DJZZUaOUSNa5s0SIabxinib0m4gMwYUP9wfc39/hehnx9HwUWZKUEoSV5F9fmYVDLQcSR+umkxJeOAQKyAzM44QpSxMChlzDKpzaleHiAxDd5FnI5nHDDaqT0zz4Dd5t1tA6BDOznKNmb8o4pOrA9KyhjJRYu6myxii0LDFXnW861VuGULtm5Vs9jNXBqs4txaKeCJ33uNts0YWAwB5Iksk1xxlLTCBH6IOXMlvnEcgaTKkzPaUSTBB8SeW+lhELEplp9qTlzDCj4c399ddvdjZVT3/9d/PXoiba4yWDRW09TcXGajhNDGRx+ZTxO7RGWUkvdQ5OQX25tyl9U1qKCrJuzDIiV9N62+cCULI6LFvKkUNQQBaa+ksDSmRDcw7dIG3eHx8f8fjphGHw2A4ByxTx5u0W77+5x/U649PPj8h5VgXmUNZUpTXlACYFYH0HUucJJWjEbymeS+ehaZ8vI5uqh+tm5Wq4VKOyCjVqgNWSAUbG+RrhPLBDwO4gzoVlJkwjS/lcSfv/9Z0mR7AqMTOiZA6asTTOHJljIbm0z5jgZUclWphbYlV97twAdnMuDkMP50jJ3C8AEU7nEeQ8PnzzLR4e3sA5h/u7ewCyN0/HI5Yo0UkDs0UYNc9h87caCFoAVR1ott9sv5rjc47aVl3bCnfzgtPxjE+fPoOcx7vuHpswIJOUXTAAg//l1DRrWceIklKaVdDHlHA6PePzp58wdAMeDg8IPgBxQWicCwwrk1MhTjW11KnBgFJKJZ2Ssu1FG48+dmYGspbiZCknCP2A/eEenXdYMgNLxHWecR1HhOCx3WwFbOlZrtEAQiHzuVGUZU9Vad3+8XXFqpNm6fkWMSPy2O899nsHUAfyGZdLwuOTpKaGrlvJkRV/E6MIbwFLYvhbiZ2kUKssopqFsypN0/FkHc9aOWrc/deOngGrl39YzddLZ1ONLra/t3nJOZfMN+HIa/a3OdJQCYTNkeaoOoXLxdEAGz3XMGBj+4dE/pmck89QkWerZ2qcCs616cEkJXWoGVVxEYBkxmLoerx5c4ftZg/nHK7XCQtJZzqkeg9mlPXIIER14gy919LJAN9vAOeRYsY0LchUo0UpC9krEYF80HUuKbhKJC5jTDk1xq1t+F+OttYVrgaqBDLcy/fo2lJWA8HOfSYYkTbr5Ag4F/BpnAEASuv0uherLuJmLMXxnWsTENbPOEcYOo9NH8AJSFGIXsdxxLIwxjlhnCOSdxgcISsot3mxTLGs5aetwf5i9xO9BEamLP9mr5rFV4zwLN+rs6m+F2XPAra7S7BODVXnWIIDDYgmMlLcJhPcSXdfy2gy52MuNy1mVzFQDIy2GZrOuxd7qp4LvZ86xbydCe/hnK/cmToHRhodhg5+6HH8csTz5yfsdx3u7zdC1NwHfHN3wPW64PPnM1KaAHR6rSrvCVpawBLI6boejoC4MMAJy5ywaDchoVXwKCaVGXRAlVPF4wT9bvlOVRaZWrHZSEmJ7jPheo0YBofQEwYtR48RWBYgZcC6wqGQ/tseuMHWBXfbPVuDtn05OOsmaLxqqZ4VZgn0OWYYs8kt72DboICg3Vk1c8k5wvU64nw6Ac7BX64gH/DNt9/h3fv3AAib7QYpitP3dDzCLl9wAXglE+zVZpTU362/7Jw2n4ILAV6vE7Wjq/DtAZfzFc9PR5APuN++kdIdL+VJWTaqXbhct8w1ZfiGxNoRYUkJl/MJzAk//vBXTPEKQDoNMgNpHtEFcSxJqZ5kWjktm2ZI1nzXM3wnphcp/yWSlna1hjABpLxFyWd4FzDOV8xpxpIX9EOPu4cH9MHjMl4R44L9Zov9docu9Oi7TZEVFoCk3Mi6Wz5Hfqld2jUqWEDfS83xkMFKpo7hTecdDocBw8Yp3+uMaWJcrwlxYfggXSpZiZPdSg5XeoIYM6T3M9CFDsEHdYaqE73r4JzInRA8wAGxMeCzcjSZQ1dkcM10W2d7VK3Bq+dbvWX982oKeSWH2zlktIEjyf6xLpLF0c9V/rR4B8VpUR1ZRTSZ3QQHsuyx9rNlHBm8hqn1h+YZDGeX7EauWZPt2JZlUYzA8J1w/+13e/TdBo48zudRsLA2KzAMCQikyiTUBlnL1YbeI2x6eHgESPJFjoyFYnHCFWzDtwkANvYmkJMlK+6FHfAKhlo7mvQ9RS/b3DdQoWAPwLjIGW25XHXulWBGg6lzoyvXa/RSDrayUqWnknRLr6bgHLZdh77rkRbGNEuge56EfqhfMuYlIXhCHwisAdnifMxtoOq1TC49IwV32fNWmfl6Jv769R/IbDKtYUpZHR0o5nUx9vQE6KioLnZR2hXjMVDqTwsZsIFXhnjyUgY5Kh0QiBwsP9O882I0VkVWZkwdOS04FfCkU2j2j6tAqyg11uRSbYPqnBnZUOAhJW+cCYkhQtN7JDicx4gMQjcEHO4SmAlv396h7zrMM2McZTOb7HdOUmNFGVLpxEDk4IIXrgI/gGgG51G4QBiQev/meW2qm1+ZYVYgJb2S3mhrq2szz4zLNQGOsLkYyV9CjBkpa2SSUMC7zHu9WnU/WpnSi+PdCOaq8AGUxkYZVuNLxXitvBDAy3NJZU1tnchRiaIVTgAGoIL3ejnjy+dP0m2fusf3AAEAAElEQVRq2IijL3i8ffceMUVcrxcsi3RXSMrRQ2gJi3OdX8MIZPu7SLAajc8Nv4ZmfZT20lS79fSbDQ73b0HksNlsMHQBY0qI81m60XkvRG1g1Lwj+78zcVTmQjzrcpZSXLDMMzglUMrw5DFPs0TWuDrVZC9KhGFZJNoZNJLpnEM/DPAhAE5aoZqBnF9EXbnOg15/s93gju/hidAHKZ+ZU8bj6YIueKQsvG9dEGdvXdd2s+rztntdNknd62VrvIANzY6TOaNCni3tWb0XfrXd1sO5Dl1weH6OkurLuq/K5Rs5R5Vvx3lp0U1EKtRl7JwTmEgTmLzyFcg4vHfISXJwxK0hYzKwLuLS2vlU2dc+KilwWQGKckbX720jzG00xYRwk+ugHclqejU3X6totV5hWRJEBiSNanETfSvbohjTK8XKzT3qcNavRp+gzIO9sf1qn1/OXDUQE4AF03hVcJSw220QY0DmBVm7xcS4KCh21eGl+oKdA7yH73vs7x7gfQdmjxRJOrFMwsvEBGk3TG0mp3Srs4lg1YUvyElvUWG7RgRYxx2Cyr5mjdsfRO6afFAQxcqH4RzmxLguEVMn7YRJCbVLejxqGeqL1H2grFd1Aojx65mkFR3kml67QHoFTb13yL3HQsDYSXMRJsIYJSNqmzx8AdYostictl5bidvfFFFpBJURs3RLKkZmme+XAO+/4lXLW7jIZHkY40HSOSxnVPXmStdReU9b4VhEYTmPNSMypYQYl+Jkksp4Lfdszq85f8yotOvaroFdNwvfUNGzZraVtWmMC92yRL52/9LLCYJyIBZHVsqCM5w2XjmfFhCuuLvrsBl69B3w/t0BQ98hLsA86dzofb0P6IJ2vytdRUk5Mp12+eoAajN6alkHNwLTSgjkfYRWzlVxwiXiL85smSwCgES4jgv8Ceh6h0XnbZ6EqyyzZMVadzU7j5X7xV71zLcgX2Sl/IuLjC7v1IBcLniDwMjqMLZzdevEKvdo+EkMw0hGhjomVRHLdRMu5zM+f/4M6+JEROi6Dm/fvUVKSTKOYtSyM81qdaTce/Z8BGEC5jKJMr51Zy5VCYpvhTxaZDarDvXo+wGhH7DZ7bA73AHOo+88ghfO2bhcxc8SAmAyoyGuN0QlmZ2iYM15J9nhEdN0xfVyBmdxZmYGOEZwivp+r3I9IARCTgnX8YKUFgybLXbMmgXbF15McZRAu3jnaiBBZUfpWsZwnjDst3CD8N54JQO9zBFfHk/ouw4pSSOlLnToOwlsONU3UsrW7rE1Vmj18IvsMhSLqmJLhvLsMkIAQnDogtOsJmC/80gPHcYxY54A7zOUaBZaYb7GbETou171Y23+ZMTeYMGx2RFAGZ4DcoqqB6wxRp27miHeBO6o/A/rn+zfQlXSJN7BjP1WDa+1H5p1q/cpmJokYF5tA5QsQgmgt3aUfY5Xsh2ofsJWTpi+XWOo6kgwnFhkso6wMVNWv6tlnusXAyVjR/CcNL/ImdH5UT+SsdttkFLA5ZIwzVoGqVVOjuXMZQV2Yq95DU706Ic70RnsgEV0wxzFBgFZVzoq8naFQvQB22dfP0bNDJO713UzH4FOVVmD2mUZZf5tnYTMn5SmQWZ6ignXZUGA7G+n58aG3YaPX3vdYhLTs+RU31mA2pvNKJQfXXAYuoDkCCkFcAQyE6ZF7PaBhFB8JUfN17DC+xBxnLl8ZZbnXo3d9vlvgFC/3dm0VJeoh0fR0Gg2tyDpcvMKkoGyFVbKWxdQUwmRtDuOnVVd/JgiKMvP0oZeWiIzQ9s1KyBGRl1RvNp1JueMZZlhKeVm3Hsvk5315kyEDIJjB3IdfBjgQi/EzM7BsYfLku0RMxAjkMgBoccCxqenCeE0A+rd7zqPv/uHbxGCx+ePZ/z1X58QlViMYc6mXkrkOiHdJSIEJ+V7od8i9Hu42SGnk3COZEWcDegr881V+BRDtUgRFIcToQGyupGQgfMlYpp1k+rHjqeIccqwbgWeoCnH6/s1lysvLvep6FgOdpXNXJCaXCtB0iwdZ1laIpCRaprEQyNkFDQwKps+s3ACiRI3kAUBBUz4+uUTvn7+JJkN795i2Gyx3x/wD3/+J6SU8PnLJ1zOZ5zPJzx+/YKcJQU/OI/MWcrs0BBaN8CldrGScg+AC/gDGOQCPDGcW0DwIJJSHB88Dvdv8e3v/h4AsN1uEEJAPD5jOn1BYgb3O8B3YsR5mQEHK1FwRVBKtEd4LHJMSIu0dR8v0gHuaVoALSMyEjzruOZDh9D1iDHh6emIaZoxbAZsdzt0XYeHt2+xcVsE7zEoZ4M55nLOskdhwjxDpRcIjLs3d7h7f5D5iMIXdT5d8fj0BX0IeHOY0XcBd/s97vYB1jabCNpxwvZx3fYMlM6SWY0n6LOIh8YM+soRZ3jDlTWTuegHh6536Htgu+3gnSjNZc44njxOJ8bxWEtHykbUMQXtLNn1HTbDAAZjGkcskhZY5oZTQlbj1zsH7wBOQd/DiDZvOndAbfltZ84M7hb86WnQM5CLU94cGOZsl89Uh0ZrtJoKN7cMESGvuiZxIWZmZizRskw0WpIZUcvUvAd8kPH5QhiLogNaQ9vubYT0olpah5PugxdYyJReg6baN5RngpKjSpfUZZoRXQTjK8L1hM2wxbt3D+oUsy5SE+ZZO6y4oFwzAJN2WfEe6D363Q7ffPc7DP0OffcFHl8R5xGXFJF4xOIYs+q7kvXlGT57ycTVrmFt44wKkF9q9LqOptsW1Ru+gCSn8kGAHlQfJFgKfuEIVI6yyxKRrwmbEDCrUdJRaMh5qxOiHL8CbmvAx/Zc5wO8d9ISOIop5wF0Xvh4eiddXH3nMVDA3CXMaQfnOzDPOI0TgicMXhywDg1wIS3VtGxf3fc5pmqgZsacEqaYkL2DNuZW/o+mRfJ/8Sulei8Dr5YTY47rtaFwu97UnA/FPUoMSxqByZz1qzqdlkUyxbwXAzh5Ru+EJ4shDQfEiHVlfVdbrRgjKkc4I2qWUwi+lAJI0EQ+WxwjGWBHcC4ghAHe9/YkcEwI8HAgxLRgjjPYAX4YkAF8/HTB49cr/viHe7x/t8Ow7fDnf+yRmfHl8xU//vUoXGvkAZAYKV0vWKr3IO80K6dD13mEfgMfNnBe8npSzghU4GKxWKrRZvimLUFRWWXrYNmHqJxvGUDMhK9PwOUa0fUOm7MEH87HGcsoXWalpM2teAqNI6voLqyNwQryXV0T6yAEdSqx6BWGyV/lE9QES3smcA2WVJuMirOpqhnGvCyCt3MGec2ujhEMwpfPn/Hlyxd0XY93799js9liu9/h3ft3SDHh508fcT6dMU4jpllKYoIP4pxg67IqpSelo2QhLmdkdXBDuZdELxBA6lgKAcsi/EnBB+z2BwzbPTLrR8AIXYBzjGueMF4epZlAvwFCB09SdibZpirP4ZG4ydzwomzmZcKyzAjHJzCiEAVfZqTE8N5pCamDV3Lwru/BDliWGZ8+f8Tlcsbh7h4Py1uEIGPt+h5dCNhuFEPNizSM4GrUphyRIA1i4MVJf3//gDC8F0x3uiDHjK+nEV++XjB0Hd7cXzD0Hd7c3+Htw72WjnbSHVyupodbsWmje1OSjlfSrbLBs3pQiqPfQXkOXenk1/fyNQyEzeCwHYDwNuD+sMP1ksB5wvmcxL6YoWZbxfIC1zy226123/YlmHk5HjFdJ3COmKYZREBKql+YEZzg4LlkborcTSnBSrxLMG5lG1ZMVHWqvYdKGTiRBRnbDJAb7KSHxxzaYMnsZgDwqvdhdOcVk3GGckfa76x7nwRwhfPUmkhRmbN6hm/scSh+stJ7fd2w0a3/deO8IQXVRSba88FBGpHKfIyXUTJtM2GeJ4TQ4f37e+Sc8fFj0tI3QJrbqCNPJVahaQ8B/TBgs9nj3fvfowsDPvuf4RdCjBPGS0RkRnYOKbgqg1nkry/OInXWqrDmm2c2K7UWpqPsBVYM5cg6SkO7y7kb/SxhCqm4CkLUbriXCOdlAa4ZHoSHzUb2tBMK5Kgpc6vd1+j6dSYTCsZx3oFSAnyUTpregbxDFzw6DwQPbHsPwiCNWFICY0HMCacxInigd2brUNF75AjBC6A2/ERM2v0vK/dgRspALHa3vMdI5F/Dprev315Gp/+7Ne/FMKk/t/6OdgCmQNkMRJtUGzsA8xqbUi2HTl3fTKz2YmPsNAuzGuzax7T6YwFCfBPZKQdt/WGr8V0Jp0Zgee2g4L2X9FjOkLbSoixSZnSQtrubTYdhM6PrhODP3mNdacg59VZCHWtauuQCnOtANJe5YQBtp42aXXGzcbEadnHCiH1agVWLuQQXC/fAPIsTL6687rYTtH6zuV97N/6Fcf2C7SQAiOo+sPe2jixRdLbZ6miY7BCrkQ0Vhg2Ya+9fo74Ctud5Fp6s7U467BGEq6vvEKagXF9UnEhF4PNryuvmsdQQrnsPoGaMdsih8+W8lxa2YHRdQAgSmXO8COdTnCVV2TmQdiDKBBA7ybwxXgKYctV1IPlbilKnu4wjckrFgQYidTYRAgNQws1pmkS5O4eul7IwcSqlJuMQxcCtBIF1XdvFCiHA9cJXs4CRkyQAx8QgypgX6cqxDFKzz9rG3Z7D3TDjq04Ev7ap1DFTBc/Nn5u3yZlDcW45Rwge6AIhdhnD4LBEj2lKOs8ooL2qfirywalSACopL+dch86ioAp3hA7EEco6rESqjrjunVceyPZU2Y+Wi7KareZz9TC2MuDV81kQVUb7lpI9mLnIbGt1X7ghiAvHU3EyFaVKVejrN16d29eVmZz79Z/XEFJ/Ry//Xkq/pV0MkpZc5154w4glSuqDh8/WHabNbKIyNlaZI3xW0sUxBOH8Yyfd+QTWE9yvPIvNySqT4uahKnBq5Hgzl6t92H74diNp4MZRzWYhUi4FJeZOLK2JLXBj+6oMywxivLJCqzWpe1tkEpXz0fqD4czp6uFdRsoSzKFc+QII1DTGoNUYytM3IKJk3qFyWtxM6d/8tdYV1WxoyxRMbNnLRFgrygwIrDGNPi/XaL5wOmqGsDlNbvZZ6eho122/Q3e5TastbqPH6yPd7DuYLKx6s/5Oy+004CeGpYfT8eUkXJJWrtv3HcgBw2lB6PQcknR/DE4cX85XXVH5/zycCyAXAHVO3Y529fpFTGNnbK3bWjWX9TDEyHAkTh+nSNsaEZQMiYYXpMV1CnqaPXCj7H5hyIaPrByrGqAod2zCkDczYGerkRc2SnOGosFzqiRSSohqMC/agKXv+8KNGpTQOkSvmXMaOBIlV88vmQF381y21QyvlvkQB6fEanKRTU6Ncu8lU4KZpbuulzJD8KJdroJcyvnSaZEI4mvLQMo2+eLMQxOUySlJYC1mTNOIHLNkxWuZXucIzsvvMgt9wLIsWGZrSJFAziHlBJeSZrYaTlM8CYgx164fV0ekDx6h12Y3GlxI2i2YKBXH3rxsEDXg2vmuBGosQNWu/60p9WKXmA13+7fmyBfs1GRddEGcUal3GHon2WAZmBfTZ7weCriRDdLRlzXQ65wlBbDaiKk42+2zhr9eHu4Wcdu/X/791Ye36WpwSvtnO1WryhFe68byMzWYNVdn9m2H0cyKoZTOoug1e7aV7FmP6dfWslHgErCws944QsyhVvROmR4DHIppWDCUA5SnNJZEDtJMfa8ccvZdAvKuDKUgF4IG0BVDWWd6cgi6Lpbg0KLX8kMj9251Wbvb2/WwNVtNT/l/3UPrz9VMP++9OHApaUdccezHXPl5M1n2bz3fL4NJ69+v/trqVrMLWvxEco4cEYJz0uDDWQKBBIRJM1ON76lY0eV/+lyWcGPyoMULzfPbpvitOOo3O5vqA9c2gKxZHav6fc0oaSOzomA1Ku809c5KLvQQM4RfKaaInLJk/WTGNE/FCeDcAGYn7f/mpShBWZgGFFmbxVwFS4FzemKYjTXfadYJICRzRgReW2k6T+vUbCd+fA+PzWbAd9+9wd2dw/nO43yvbdO9gOfdRryPCRBSvJngOo83Hw5IOWOJrBGEAOd6wHlQGADXwVGA9wOC79Bt7uH79/BdALlHwDK5dOM4Jc6TmbCaYBQDoaxfQ1pRhGODG23zWje/cUpIj9KeNS4MLaSBeexZJ9W+35ZV/NJr5cmFGaXaJtwM2VwNWiHxBdjV3V04Q0wxOwKCOImEoG2deUJqXFUwBo3cSJnW6XjE5XLG6XLG18cvcN5js9lgu90ihA6b3QEpRlxOZ8zjhMwJjiU63HUCRLKSALfuBxGCFi2UKFLreHWOKkDWPRdzwnWZ0AWHh7t73O+36N0V+Uq4zhH/+vgVj9eEYeix2+9KhgKBCh8FoQou7x12+504OTNwOV6xzDNOT4+IywJAuXicQ+g2IO8xbLbYbHdIKWO6XrEsC4ahV+40wjRdhZTSWRTAYeh7NbKFT6GKeXlW7yXrynkHF0h51TJyTOiHHTbv9sgp4jJecb7OmGPGdVrQdwHv7/cYhk7apbog66y7XTZJdU4YSCvGmxFHK9AXIckvDIWuc+g7j6F3EhHvHcAzlihRtHfvBhwOjK6PYIpYlozn44y46FmESJyFF0REkCMMLOPoh6GAJo4SfSld+LJ2zWEgp1iuFbxDJiu5aIliJWOpclFadFIBAyrnXc1sako40Top2pOp6b6tcimAl2FZNtky9XTuBRRVZwAM+LvKVxFjKgDSOABSaTxRAXWNtNqXPh/rN0tM0+ej+g8UmGDP2PxNMlKFANEAn+hZL59Uh9N4PYO1pWzoCG/e3CGnPR4eHiR7SMuJ52XB8XxGyhl97wHuEOOC4+kZ4zThcjkhLiNonnA3JdCUcfHAxQORgNFHRCLkJSIp/4GQXbflcyjP9NqrBUmlwxhZt9bqnLUMH1ZA4r1wX9zfPaDreszThPE6whHDBQY5RsyE8xixeIYbpDMYXHWeEtk+qhqWHCGzNupoZbztpyJ35Qx7L6Uj8nunzgGHTR9ABMwxI3MEOWDJhDEyBi+ElwKw7Cw0nb8aoM9cnVQJmgVDmoVDrkSX/5av1ggyp6utW/uykn/RV1VnWuZsyVhh49jKWOKiGIq1tEGCKBKVr6V1MUVgVrGZape8FYRnRirllnVcRQ4QiaFnf1dnUgji3NFfijxRPRu8L4G7EDz6ocPhbovf/+Eb3D90mC4nTOcjHICBHDwRDruAcczwC6HfAj5IedDbtwd1iDpx4roO3m1AzsN1Ds4zOu80+6VD6B/gujdwPgD0BaBU9sFaVvzK2oFw20GqGq7m4JLfpQxMi2QXRc3KSZFgzi6TUW3eYgvnb25cv6mYK+9kw7u5kZmtOaaoUKPuxpNay6LM4WMcWJqLnKKQLNsGKHhSxuBgwWInzUI44+npEafjEcMw4HGzFcdL1+Ht27dYlgWHwwE5JVwuF8zzDPKkzQcYwYcy9qS2g9kGZRrKZtOW9/DITHBOuUydOJpCCIgp4/l4Rh8cvv/mA97cbeH5gsdPI8YYcTzPGLPH0HXYbbYgzbYVOi0CqbMsxwSmDOcJ2+0WsROZNV6uWKYFz09HxNkapAiJ/ma/Q+g67A8HIN9jWRbJ4E5JM6fFGbcsoheXecY8zXAke1tKgiVDn6HZOZmLfLT4TUoJrJnp8ITd3QH92wFxWXA8PiLFk/IlRWz6Dt+8fYvtZtD5q5tLgj2aZ8JSdurUKeCLvCdYo4pid1kWpZ11dRQMQ8DQS9a987qXcoT3jDfvAvZ3AV8fEyJHLAswTWIDCP8fw2XC5XKG8yP2hz32dzsAwHa3RfDipEtJnIbzMmEex6LjwAxOWbJ7PYP7XssQzQ6tB0owlGV4ac5f470wblrOLYZKVY81wYFf8u7UoJk6HjTYqImGYjOw8f9Y9pVTvMKS+6kkPcafJ5U4Tq+XVnZtGU/zUgmBIjjU+ChOgxuuTkA5GmEYiWyXSKAXVbo4lf0AIcYFWQmnbV6lBPqdJFZoEPJ6HTFNwlU7ThMARlxmxLnHiCuenj7D+x6X8zPSMsEtMw5LBkXgmhnXLJUvE7JUwKSIFBddn4off+lVA2YN95PiJiv19hawKByqVbZ67zGEAd577LZ7BB8wjSPG8wXeyXxkdpgTcJ5ibXCiFArOS4CvbThWsVFtdJab5RJO3JqlRk0gxfAVkdgMYGDbdfBEUnmVEjIBcwZcEr24MXqPVsJmczJxxRa56XqbWbMZ1Q/CTkodf8PrP+Zs0kUysGOez5Xi0gi9dIIz4ya9WPi2BTScOpuStSpNWOaowH7Bsiyr9qrCn9F2yaoKyeySVjlWxd0aIlYrK/9IKcM5aAQkKHBXz6FzIF/LeAhWeysG6dt3dzgcHK4D47IRgRmCtnFMMzhOYABLykBMoOBweLNFzox5SYgpg6gDuV4OLfVgBEkHd512TdvBd/dwIcnfadGZT2U8NdtBU/5gc6AAl9fCBM2sFBCjXxnihJrmjGkSQeQ1XVARwMrTaR7ldp7L4qIx+ldgCGWzZzUmjZxWvQGGKyoQ4zreEik1Z5MnOG2pljnBvBANVFHQTAV422HPmXG5XOTepyNIQeof/vgn7PZ7DJst7u6DpIOmnxFnyVFwJrDUUZ9Sxoy57m+u9zYLt5QwUv23ozVRYOaMOS5wLuCw6/H+zQ689LjugICE+XrE49crdrsdvEPJuqoe99q1w3npRDBsBnjvEOeI6TJhGq94enzCMo+Stp0XOB+w2ezhfYftbkFOIrznaVRgkzRC6LDMcykLM4PCPzzIPUmLiAF1+lUjk1gcsEaOaWnOu26P7W6HeRrx5XjGPI1YUsK4LNgNPe62A4ZO0u9759VvynWDqJB07SG32W8jBqQwuSjmegicI3SdQ+gCQtchBIe4zEgpAuRwfyfdMlJ2uE6EcUw4nuda5w11dCmmMWPROYcudKrXMzikmiqdopYdxtW4iFhLVBQUMa0ei9kVkuvmY+X8sT7cKtsh1z0pOGptlFDZpyoT2JQPUJ1AWcqduYl4sHbfgBjD5vy2cqGcpctZJkJgKaMqWVDmCNE1tBu3wMn+vrKHqY6ZXH1+5kqeaX9nAxXKjVRkXpEJep+UMHHGnGZ473E4PGA3bCFKShzV5/OI8ToBuCKlZ8mMNDLTlHC5nuGXGeN0QYozQlywWxK6hTVDB5iJcWUgEiMnaQ5g2SjrNfxlwNS+ioNJnUyWAr5+ySYhzRzq+x53d3fYbLY4n07IMQHI8C6DnJQCXeeE5BnbrsMAaPDFr43ZNqABB6cdTZgqsF8HF2S8wStHEOraSaYw0AdzUibMMQDEiFnAUvBoWtw3C426XxqlAWQBaoUIQIFSG4T6m71o/YPpAJCTQpRm0awcGQAqZ5vpUeg+ttI5I9OtGGqaloKVcs4gV52YOSVpzNA4StosmHYuqZwzfSnwJWZwMl5LQqYM6wwVNNCQ1UiyZhjOu4JVQpBypbzt8eHDWxwOAeM5YDwDDoSND/BEyDFinhcpcQ4A4BCCx+FuK3whyplJ1EnATg01kHLHdL2U8IUDnH+A8xFEoTjHzGldHu4X1s2wSktBUGQLaha3YcSURcZFsGZwaPdRqgE7K21lvDQQG2R2s0upZHOaschQGUlrudm+cs5yZkqXyZptJlxLalTpnZfSoMCgCzUjgHKtsnYSFll+Pp2Qc0YIHbquRz8M+N3vfqdOpoy02+v+rCW/TU5vGSciSjloe8+yFjYvzsExrYw2y2hKKeNyuQKbDvf7Ad99uMfp+WcMbkbkGfN1xmUm8GZAr3h/0c6WamUCZB0cpeJAnEQO8zxiGWdM44TT8Yh5WjRLPiGEgP0yo+ukyc/QDcLTpdQX5lAi5zDPOhdEmEl1zt0eoQtqAKtjmRnESZ2ZRpPADfG1lOBv9wfc79/gfDrh08ePOJ9PpQRsv93g4bDDpheHr1PbqK3kMM42r3bCa05w2e81EFQcLUSAZq31XUAXjD9J9yxLYPLuvkPODksEjidzlLQdVxmZUBwrw6YvsoM3A7xT+3LxyDlinkfEeS7PacayI3UYdl3BWmxkR3o+cm6M+JUeUUcTyxlsHbmFigAk1QTlM6+/zHYxJ32xf7jOoWU2WeKD0buI2VaN+dKkwaGUtFm25O0YqD0w6mhb+cTY3iSOK6NTELzJsFPWnnqlV65Yy96lb8oxISOpw2mBcx67/QP6fquOfY+cGV++PCGnswYPL6KnFsNBhNP5Gc4FzOMZOc4IKWIXGSECyMK/CAKYEiKkOYiUqb+ch5cvEZ6tLVwyrUvAzo4/rfb/ytk0DEqKfpAuiEyI4wSn5dEMaX50jeIoHlypOS0OrRaBFPudGpmb62SvAmnqBDM/BVT+OyjG9cDQaS5YSqIjIQ3AXIZWb/iy1oVHtcFNplMqkXgzr+oHcvRf4GxqJ6SmreusNLKoyJyyiIwbWdWMl7RTgACmWtIkkfOs124jtkWZm03U7qvGCGFVxDVyYw6X6se7HVd7YFeL6qw+st7f7pVTxjguGK8TTs8XHL+c1Nmk189CGkgOGM5RohKZkTQKmxIrUJLII+BALgMuaGYTI4SMcUrCCyVhFwVTqRBnG/iphjduQNRvWNtmGkvZzcqQsMltBVYjuXi9GVdXaw9KO+dlyI3hapvarRfXntCRRaarownqqU5R2vvGmLDEpATz1ZA1kG5RcHmECrQlGwjalSXifBJlHboew7AFGNjttwjBI8UF03wFc0JMM1LWFveapcSWvVfQpD4fJFXRgL+VaQIoXEfTPON8vWCaCH/567/h6WuP49NnfP78Fedxxul0xPUyAZwQPFbdfgoMptriOsYFEo2GAtIs3UL2e6RhQGn1CXFUASQZRqej1GRPE1LK2Gw2mMarkrjqMnmHzosoiUtE9OIkC50vi2w8NBax9AwQ+aK8c8qg3iEoMfB2v0foOongOIcEaSWPlLDve4TNIILby1ngnFfn+taIFEDWFCCZQC8OqMa5wpJxM16jKGFw0exi1CV1zkkWiiPLJDPQhbL2ZuwxZ+Ef0CgEyECDEogDpRxRBiTRLysTYDagYUpnbUy8pl5LVhAq6WF5N6EY3I3YLLwLYAgQWMlyKUNgplrmUpQRQE6/UzWoynqQMu2QTLYNpwCVlYhZK1fnhNuHyFrds2bE2TzcmGLNmKGyv0TpZFILt9fqc3XihAQZSdtRExx5Jf0GYpyxLBNinGEd+qIaxAzCNI/wKUnENc7gvGAhAN7BBYchyJ7yPINy1mYPVS/9WkSuHWlxApg+LvqRbuQ+l70GMPq+R9d1kmXHEP4wFsemI4fNIF1LAhEWzTxbcsaistnks+Y1yAlpbmcZtnVcKO83kE0Q4FXKqkwRqPPTOyB4QpedkNuCAadE30yIWTgaXHPSa4RQ72byV3WiAWnvPch7BAQE8vhbvQpobRwXDcyQOeI6b/YZy/CogIf1IvbPmj3eloWbYSOlRa5katPteWteRfw0A6v4yTAF0Do61p+/NXgqiLcghb5T9ayUm53PEy7nCy7HC87PZzgwBnU2cc7SzIKAYfTwnpASSykOUDKbiCRgKA1dMsh5dMEh9SO6jrFfEjILR8jrk/DKuXtxFuveZp0Uas5jwZnNv1ujjVFl7uoUNRionbvb/dCCNNtDthbczP+r303/qcO4jKroRTkzSWVRVOcJo5bRtaZ1ubaNn8UJIcdfy+uWBSd1QHkn3ccAYL/foeuClqPNsC54OVnHQy+6tw1U6TxUpwGVrC7DO1DHgDhbRxyPR0xXwr/8S4fT0xf82w8/4OvXI67TgvMFuMxAmjdAinDO1SwzQkM8L46OrFlEhoFzFh6dh/t7caRpy3PnCKHvJQM0ZVxOJ6QYMV1HzPOE8XrF5XwGOYdFnU1d6DD0PQiMFCOiF0zhQn1mcz4X4mMjpWIu/H9d16EfBqSccHf/gNB1GHrpcr2kjOPzEWmasN1usN+LAwAl4Fo5jZhrEOY1ebT6UpqTip8EF8QETJMEfXMiEDowGClqZ2LpGQ8wlI9Is7WVR0/WWXTrOI/wziFz0vLLug88SafyTLovdEOa6HfaiCdngLWF+8pwRoP7V79dB9NubRiihji6vZb+w/i2HEOyfSFBt4LLtPIiM4NUVxlvXqFc0P1o8164SJszeOsMXI9fzrLzhE1nGD0jRcFxOVc93j5EG5wlO3tkDjg0i93OIVZ6ygKtyzKLvtdGWzkzYpwEQ6VZcLQGW+d5QWDAzTOck8z/mCPAGdkTMiRw3jvpvHfOi/KDNrzEZXZevlYOOKwx0/oLN9/Xstjwk3Nen1Oyqoa+gyNG3wf0nei9Rfd5ZIcI0/uKSV7bOGX+gZYmZ53cUd9HVOWgyWJC5etN8Oi4k/1A4kNITIhaLdTO1e1eavcaijxQGzc4ePbw/9nOptKWW0t0mBnEGcyVgUL2WPXg2kNUJQxYOZ1NUk6S+i3ZEzPmZRaitKiHDw5dp3xIvrYOL8++Mix0HFk9hBrBBWp5GDd1GNY6U8beGDiFQwVqsDt0vXAJmA1lDqcYE75+PuF4fMLnf/uET//2VzBnqeYyoFG+08q4Iojn3REpyWWApK2KJ59cQPADun7A7n7E/j5jXkiIpX2HCCE0YAVkuQGzdhP7/2viiBrgZJ8rUYsGODloJKytsbWylnaj2r9M2Ddg9DVnU7tvaq2yKKLyBAQFMAyLRHrteOJdJeAGSwbNHKV97LxELDEKeIrq0c9c91+ZkdoCWoC4ZIukLK0jf/jhBxA53N3d4f37Dxj6AR++eYf9YY/L5YLHL18wLwuen77gfBHi+WHodB9yvW+WmnlJJRXBlbSOnjSKASIhc50mPD8/46eff0acJ/xf/8cRiBOYF+Q0YUkZPzxNeL5GnPsOp+ctvHfo+w260CFlSd1nQDscSqR5t9loZhqDOQl55N3v5Gy5AO8ClmXB49NXzPOE4/EZn59/RkoZMSblzsjo+iDgSwX8RknVgw8Yr1eklDD0G4RukPnkWCLu8yI8At1mQEceGVLukZYEdwjYbA8YhoR+6AtgnMYJMUd8+vwEnyLeP9yhf3cPFwJou4FzQq7MuNmPBJQszLL/uMgMU+T2NyLbh9J58fOXjL4HdpuM3cbL3oyjthXNmOeMFAUoDX2AlKtFWVs2Rbvgcjkj+IBw8PBdLwZ+ljTdvgsIjrBEIQWlJLwLrP1UJWPNFc6Vsm9uYVEThStg5yYaVxz/ZJEzkxWuGJLODH9GYc4t+SlF6WZt95w1Y0nPH8oQCnhLqe55l4xcXEA52TVBTV+JmoMiDjbGMHg8PPTwnrAsM2JcME2M5+eMGBlUSoirvraIeeEDVJBUQFQDHrNGyTyRloExeImIAM7xCHJndF2P7W4PALhejjgdz5iWBXGRrLbrdUTM4lDMWZy8kj04ossM3xEGH9CFHm/DgDFFPF9mXJcFYC2dA7AiwPslDAnNELwBSG1AxshcW4eDlIcT9vs99vs9zDAbxxGcBSj13uH9/Qa7IWAZZ5wvV/iUsYkZFBIoM1zM5jOUvURWPU8auBO5X5BBEfSM0jGPaqZLeYvhBmb0jhDIIbgeIfiS6TlzgsuMa5SuKgOJUwxa7iHrq9kAKSOmWAB3hnRM6voeLgQMFNDjb+dsspcjCVy1hkydBBTHsK1bwQ0KposRQKRGlAD6lKS9uMhYdUDpMwffK6eMRUL1vDQosjgcmjGZk6i6M4CWSNSylGy87XeCBAp88NIVa+iK0xjq0E2ZMI4RP/30iMevn/D8+TOePn8CmNEZ7wfpfSBYxDAUKUAgH9RgDgBNIHJSiuQ8ujBjM2T0wwa7t9/j7oOUN7R6XwddeI6KM7CxXco7DZRAs9ullU/RM/J35S/0rpKwltUXZ1dZe9TIsY1DVkFnuJnflTFoRi4TLPMhKSazVzGQkeHg1HihUmrGupb2XgmCZu36lJFU1jKj4Am0Yy0yl0rgwqLtQkw/Y4kLxh8nOHK4v7/Hh/fv0Xc9vvv2O2w2G5zPZ3z98ln05PmCKY0g59EHwVDWCVRmxLLfhRdLjG8tgSwBDsHk87zg8fER//qvf0GKM/76f/3v6FzGOE04X87ieJkSxigye9gIjvBdBxe8licJmnBBMrH70ONueyhkwDlmDH2P3337HfquB7MHsivZrTGKo+3nf/sBKUVMo2AHM4aISBvLMHa7HUizwqdR5F3oOgx+I2ubImKcy3wwGBQZlKSUNmi37M1uh8PDPTa7LYIPmOcZ18sZ18sJ4xzx17/8G3yO+P77b7H70x/gQicNJMz5yCZ3TJfX/eec03I0q0DgYuibLHIZmrWWQAw8fxVKkc3gMAxbyUQaz5hjxDJrdQmAvu/hnBKhJ7EHl0VKsq7TGU9P0pV40w/oQpAAcorgnKQDJW0Ql4gxjuLMEPAAAoSLFB6JYmlNnziqDSu5uOIAoMJnY8+fci7y2M5msYu0OQ8RlPNr9bZyZu2cKzor5y1F7eypATuxYdYOZwBC1cFcSpoMnlk5XrFhVX5VOYzizOo3Dg9vOzhHuJwXjNeEuDCul6wVPlQadVUMBcVQBEGhykOs92cruVrNjWKonLFEKaPLGZj8qLqg0yqSJ1yvZ6liWmYwA9fxCkaGDz2WJHIqjiPSMqIDsAyS7dfB4R4eU4p4ul4lG0qRozzBLevy+lWxols5k24xlG8xlv5sXFR9P2AYNuDMGMcZKY3YBML9Qco8t9uALjjkecZ5vCI4wqaXklJiBctAGanpuKpkVH+q3yLnJitNvZhEottXGd6ZYen/fecQAsEHgosa2E8LppxBCQgxwRHQOcVvsBLCaiCJDUu1VNaJPOz7Dr4L6LJH95+e2dQoFvkuAN6AQy5ehlszCOX9gHrdbha49RoLuWw1+mo64Wvbp3r9yFwd5eZUvhumMKdPHYOCihsP7WuDrwThJiz0uTNjWRKmKWEcF1wuE5Alwma1rKTkf+rNUd4nuW4I3Di8JDonpXwS0U/eIbPHEjNy8ZMJuKZmBloAWryev7AWry0MvfLuMrv2P0YVhC+mzA56tVXLRBGa35hB/DpBGpcPcxlA/WTjSGjEif22kOllSausRMXmbMolomGZF8VzTOLYpGYamCW1M2VG3/WI8yxEpsFhGHqkFNEPA0BiXFa+FB0PCNAaV2YCk5C0OUdFwJeodXEQSImDOGYWTOOIy9dHxPEM5xjBM2JmTNcZy2R10UJEyZmRg4x3MUNDOxYMfY+h6wCPknoNSHvZrusQfI8u9JjnCdfrBZwlYydrtNHqdnOWrB5mp22AJWKZBiH0Fv4ngndBOLecRatYvxu/CNff674miDBnR+gwwOekvGYJvDDmeQEtM5btIKDNiRKsxlh9tRGB1e+ryfTq3rOoQ0rANMmZ6zyQe+VzUHBV9xiBSDLKMl5GmUTAZyRKN/vX/DlirVtr1PrxCmxao+PlmSEFHIB1iaz3tjEbP4PIHXk/aZeyBlygKWkwAk7Us2aGHzOVLKYUG0N1JROoAB2ne43VMGCrqUeVVys5gypnFO+K0tTxyvmhKmPxC2utiLEYp+2cqRK4NfTt5vb7lBKQhA8kJSUQT9LG20rn2gw2InEcCilsFIAIIHuH7MQwDj4ggJV2r804u339qlJ64WyyZ27EyWouvEbLvRdOE2ZI2UiSkiivjoU+BAwhILsojkQn4D3qWhJzI5MF3JUbmjht5l9VZXXsolSolD1fxW7d957EMA/wSEygnMApa9MNcRBmZ3ukKfdaYRUuY2jnonSwo98GlP4zXkVGNWBexH91PthrHUGn9mMFv9g17P0lS7RxMtubyh4pHpSycq9o0nbM7f2bE1SIZH9Zl9cBkgZUqHYZszFr5vE8RUzjgut1weU8A2AELblzTvkymUCZASaQhwB3Irgg8kieU8iCc5bGDjlHOIoAxdLpiRlNRJlXX8xWEtc8T23BVOaEm3m139p+a34j73kFl1aM9Osorc0wawdgK2LyUcaNtUz7hReZs6MZlu2/Fjslw0/cOMRecTZZaTxD+aqISodSsHSCZAaGQfR2DhkhBAyDcAt1GoCx7GyBt4qJleqiPQFVF8q5LxBTZ9LKsxflg1nmK67LBZRmJM6Iyn80TgvmmJCilFk55xD6Hr7rtEmCBj2DkM6jZ6R+C/L1HkSEoe+x2WwABJDy9uUcsTiHC52RtKzV5sPIxYkIaZYM6SUEpGUBgRHjUuwNzsKNxu25NoeCcV0owb6Vqhrf07DZwvsgPITjFTlGCSzME+Zprqk3ZHvidqP88h4qsrpgZdVnhKY5CGOeGdkBXQBIwGetXJEGcbBmMsahm5tzxZD3LovwM5kTssgP3feOqkMaBM18UsdR0f9UnWi66cv7IRlpKBldepZtbordUs9e2yHZ6dcr8AylC6wYfzKGrHJG54nMybQS0ZqVlDWLMqMJnjW3oHb3G36q2pSZpeNYcMJ3tzikyAByyZqva73WCAVDGQ413VMOXdXx+o7yWeO4EnsBTck8a2VAXOmqnLSDGkX4GOFcUxZJBA4O7BxcloyaaM51xQK/tl9XCwKs7P+XGKr+TWRRdUQFbeJliS9Jyf9TSkAI6EKA94TOewTvsDhScm6RJ4kznOp8atYJqGu70rPNniryt51rata/XMpoTQjEcv/gzIFeOSCTZiRmUrIbap10uufphtOp1eekPMP5N038f8DZ1GT6lEfVn430rD5m8xnmUp/YOpWCto922cGT9ixmLkRsSdMhSWscLQILCHeQ95IFZOnARXlTJfQCxNC1cbceeon0emXH14Ukif52vaaccUJOotK9lijJ82r0ZJml5podGAFwPZzfginXyJNmyxBVjiErFSAibcnq9D2dGAVKUC5bQDunMBpeE8CaL3CW+mY4i4U1m9cApQF+vCIMdS11ReuZVUDKLJvR3lVW39Hqs8D64KyEVsFTawBtRku5rhpKRQHamAiy1s6yJaRtq617SnKIc5YuZlZzT3oofK9EjykXklxzatmhofbhWMETAS7o/ogLHj9/RugC0jLjy36Hruux2Wy1dlcid+M44vHpsfC45JxUEalAM/2+Mg5trwpJHo0BOWUEFzDD4fl4xun5EX0XMAySuXQ5XzFNM2YiXE+yr/quR/DKReGljtNI7acQMF+vIvAVZHQhwJF8PxzuMGw6DKHHt913yDnj3YcP+P78e8kwmifJWPr/8/YnXZIkSZog9hEzi4hutri5x5aRe9f0zGBmgL7g4YT/f8YB8zAodNeSnbG6266qsjAz4UBEzCxqHllR702lRnqau5qqCAsvRB9tH2032O33SDHi48dPOB1POL+c8Pr4DOc8trsd+r7Hbn9AXBZ4Y8onAf6mrJdJUmjTkhFIOjEa0Z3JFuccdtsDtsMB8+mEjx8fML6M2PQdbg4D+txLSaN3QE6wJtRUUDSjsEnbGecL0HAhJ2PMGMeEeWaMU4J3QHzXgdAheIdND7gugfiM6TQjJkJOclYtagxmUNdyoKjDaUmIXqJxrGUvnCKYE4gzgidkcmCWdCCGRE8NNjjdL0wSuxGHj3TaORx6dL1bEWiXDnGNfC4GSTmjdh65SgBu5gto5CapHshwTqJJx5eI40tUQOUhTQNyuS8jl/NoxErcojIz/Nhkm6Y4ERc5mRmSXt0Rrq88dvsO05ix3cyY54zTMeF8jsgZSEkzHQ0xwBzKDKMBZkAI47lmjtTtIiDQMmINj6dlwevLi+6RCc4Jt5GnDKYs5K9aEued6Kc+dLi+ukJwDjs/IDgHp7xD8+yQTg68yFiNKBuZ1EkYkTnqXKgspNqco5RE2fq0oAmmz6BltA7BB2w3u9Ih6nyS7JcYZa16D/QB6Byhp4SeHCbKyMoBc5wXJE7YOIe98zKXVgJPkAwPVi6futFg4lzAjbTOjVnKaAM5BOMq0s/WLDp5zuBk/RI7Nf5kbs5zkkhrsHa+hJBFJzjtWJSylFKnLA4qmJ7NBMoAIyvj4d/nVTABCSYwY4d1LiVjscVYlSxUgDqrfccFV9m6WzYJQxuz1LuW85xiQlzOAAAfOniveKPBUCZ7qXHCcZGZ9qfiKZHbzdo3OoeBkvkgxlkA4BBzhksJU0yY5oQ5Moh6eL9BCBt03RYMcX4SqHT5Kk7CAoRZx9DBaUcg5/qC7ZzXzHZXZSbYyuQ1i5olQx9oDGj9IapI7lWx09oQuAwu2PyUS2XFxC1w0++VagGTec3acnO9dljtsra3kc8Kzjay+Doe32SgSTbNYrhQBVxUUt+cGUtMNcPDSV6774yL1UpWbF9wKfmxMdQ9KYPLmgKZloj7jx8RQsA8jthtt8qLtwfzDpvNBvM8Y5pGPD0/q4NG9rTIZOsCatgwm3hsHK0JMS0gjeSHEBCjx+k8YZ5OMMUv2RVnzMuixuNJglehg/OhcNPZfnbOYQkj0lkCjlb6wznj08M9+q7HdrvHdrMHecLNu2sQgN1hi9s7aSwRFyn5oeDhQkBMEQ/jPc6nE5Zpwun1Bd577K/20gJ+u8X1zY10tFMqCMv8ZXApqxv6DbZXWwkc+k4zZhg+dCDnsOMr+NBhPD7jhx+/w/npEXfvbxHzDMeAox7WQbjF+nqAlUfIbDexMYKTroIJqAFcERZYlojzGZhIMmc8AYwOQ98hZ8C5HiEQcppwPk6S6U89xNYRmeiotpQnEOIUwZ6xhAhHHlG5bjlnrY8TEnfyWhqUhEC8anw71NkMJxBYuXjFibDbDggdISXRUczWZEjPZrnMhZ1D1XZCMx9oZIN9w1tGOYSrkTnjeIw4HaUE36uMbIMGcHIOhDTcMi6tokOepQ6J1z+LI0e4Qb0jvLvp0H/YYBojHh4mLHPGeE6YzknKkhNV2ad4U3PeQU4cJ+IIlfJ5zrnyIaocI0hpI+t8JI6ICYA6DTkndF7oBBbSBh5xwTRm+BC1ekeCXv3tFTrvsR0GdN5jGSPmU8SyiBNK7DwnMooBFo4alR2xyMGC+y902Po9WzZrdiO6sh8GWJMLR4S4RC0PZqQlqbOV4Ek6D3eU0RGKXRoBnBfR751z2FjjHDZdLrpJ9HAju9WuSCzOochS5pxU9gbSbPJ22fXvTp2cnZNmTEnnJBIhccZpinDEGALQeYYjhjedqmcw54w5CYZKAOC9RBSyzHPKDPqbAdP6+ndmNrUWOSpIR039Vk26XkzXKNOUm49pLX9xrwroqsSxgGcBQplrV5Wu6xE6hnMePZGEuJqXs7Apy/VEO1kmi92XShTAbFBSZ1MIQZXWLBkoDHgSkkDLFogpYZoXzEvSelwPUA9yGxgfCwElhFuBmYIX5c8xsCYR506Vm93LIUdJ+S7kwMUNbaBJjDWxFc1gq8KwetV/YU0vfllEpl6ngqwajdYvl7/biAzINfDHRtHK3fL+yuGkLlx6c1FbL1H8FnESgSXCeEkJMUu0alkkitZ1nQDOprwi+6o4U5J9UQnW7LYiNIg1ZK4lBClGvJweQESYTid0fYe79x9w/cc/oe97bDcbZGY8Pj7i8emldmXIQorYd75IMosEryPCuq+WBaBJjFYl/X49nnH/8IzNZoPdbofMjPE0YpkmEQKl5Cpo5lWHfrMVg7R0UHQ4n06rPb6EIGmUXcBmO8AFaVN8e3sL7zssi3A2pBRxHl+xxLk4ZqdxQpwWHJ9figPZOYf9fo9hGHC4voZzhK7v0G0HdH0n5MfqPV/mBWlKQBYB7bwXp3PdnJDudhsM3RZHCvjrwnh5nXC163CezsiOsYVEpLIzj+ZlCi2X873afur/MD+IvVISRVibEIhjfDsEDD1jvyV0XQZ4xDzOUk7mBxhIErCtxiGrIk6pgMNkToksddzy04iZSbPJ5ExnVcoyt7pvCE0WlYy/7x3u7jbY7T1SBDQBB1mRo0U0AECyi6hkATK4OGNkYmpE2faopelaZoJzGaHvFOyPGM9a1wAFSsq7IFk9GcjVwLaI7KrkhllXrbCy6QJJVNfKYkGE3X6Lr77aYBoTQgCmMeGeEuIUVSF7cKZa2wVzpKEa9vqvDBTeFWZNw1Y9YM4mJDFI4xKxjCMYrFl/kM5txHCwbihSFu4oIISEzfWA/X4vnSy3eyGtnWcs04zlzEhe+NXISYctgIDowNaitoBlKvrSDC6LthV52f4dVe9579EPkrW4318hhA6n0wnH07FkLQBAR9Iyt3OMjhgdErzQz4OZcV4ilkzgLmA3iCzjRWWwk3U0o48VgDtnRMiVXiRlA0pAIFKwpO6Doo/IbHx4zV7MzFhyAIOQloxxUScBM7Jn5faROegCIESkUkYXkzyHpMIJuS4lkfVJudH+Hq/qFCxvNOsF7fBYHYmr7ygYtQ+vxBmhZAUISLbuStZrr2Y9GWl4P2zQD5WE1taqOJWMlJbUeKLKC2MZBHZOLGJd3FWOCkmaODRycQKCxNlESRyB0yKNZEAdnB/gwwa+2xYsQIA4kkJQ3WWlkuJQIQCh0xJBJ1mDRKr3yO5pwKWW3MMcpVk4M23crU5uTOgGxDfABFQzA/TaOoMrbNXqnrr2UH7FykUkn62RfguAvnmxlI2tXoY3bc/YWJyV+VXsLtgnrbJllmUWEutcu/iGviv41HeCTYWbSHRJLrrJNfunjscXe0EcGSlGPD4IBpmnCZvNgJubG/zmN79BCAHb7RbLEvH8/IzHpyfVv7nMFWkJJakDQV1YZa6szCilCJdEd/sg++E0zTi9CtekDyIbxvOIaZ7qWSJSR5MQjEtpV80aIucwnc6wIHEIQTrHQpxa78Dohw5d6HB9fYOu63AVr7AsdzI+5VKblxnjNGEcR9yniOl8willbVLkcHU8YLPdYLc/gDhLg6DQw/sg+seJ3o5LRFoiOtdj22+w2WwlyzwqHgwBjiWTdbPZwjHjPM14eH7B8XxCygsyOwTiki1sVmvpUK2Z6Gs7QRzBIoUyUkkTlA8tS1LswsK1BsZmG3BzLaWbznVwDKQ0YTzPYCahKPEkTiCSAyINiUR2xEUycJcuwrugzlGrVMiqzTOct6OakPOieMPkarUzLKzhHSF0DsPg8eH9Ftutx7xkTEsu3dMsOF3ilipE2gYnrZywkrg3jmi0GdoZYOFRzYlxPkUQ2Tlzyk0pTiYoRyWbvcRVlol8VfxSMBvKeKo/Sjo+wzvcXAW8e7fB+bzA+4xpjHi6T0hjEj4fDXjBl9RxOXVsukZxs/5k55R/iss+EdkjGCpq0F30cVZ/X4b3GkiB6mLtRu9TRvA9OGTsrgfsDnt0XcCw3yH4gPh8QkwnLEjqbNJy764HGEgcS7dkK40WqoVq+68dTSi/a1dMgqayJsN2B0dO9Qthnp9xPJ0A5qaxh4OnDE9OnE0AZohDNAGY1DbdBmDolZxbO8ojk8zjhY7xlgnc4KcM6cQHhbjePs2rwRfpKzZwxVAJ0nRjWaw0WQK6jhidE98FtGFE4oyYE2Jmoekh4d6yEkrjn/41r1/tbOJm0YxoVCI2dQG5OHVQFtIirG0mx+q6n3GFGPhhhjph3vIqFPHGKA4L1i/bUpV0UzIQnBuAbo6Rt89pQEaA9OedNQYwzIgibelroMayuRpccqmLy2ftequSjgLo3KrrmlmY9sRmpq1BUAtwahZP+UbzuzK49dfr98q1GOyUzK4BU3bNt/NZL1Zw1+cmEus9USN+2k3CoTy7/VeuacJBp7FGeNfll+0f26cWMa7lkUDJA85Neq3OHdlNCVpK5jBOI56fHtF1PZxFeAHs9wd0fY9pOmOeJxCzOoRE8XGpv+W61npuUspAjBLh2h2QYyqtm4X/yMC7Gp++jSrqfKgTQ9aKpfubagp7VjMCJu+QksfLywucIwzDBl3YwHsh5W27Rtb7iRPv3bt3QsyoZX8goNMoMwDMy1QcDikuheOFAcS4YEkRwXXYdlvpunjZ5Wq1/wR8+K4Hk8McE1xMRbmW46R7r8ieZjfaP21tjZfscm8WmaQXjIkxjkJQS0py2vcdhqFDjIQ5UyHJ/MVNrnNuLYNLV7RCGGmH9Be+X4RaMz/N5vRBUtVzsmwVIeWULVY5Aey74rRV+dGmz1KxxaS0kbiZW5lr5xmgDOcEGHadGPopVj0hU6zyS3llyvo4FIJ8KIDK5oRqBlH3NasRQchJnpGIsds49AGIU0COGXEBXk+EmIQAMZncgt6v3QxlH5jxrzElc5oQw4x7UdjWOa1K3spno3OspFU5JUQA8zxjHM8IXVSOFOUxWWbMcZGMG72OEOcSMpz6HlNJTzbng2vkYMlU+IwxKudUQFHf9+j7Ad55BX3QrEt9irLfyMzC+rzqgMo5Cw9tYixOynhBKmONL4tROpQBjY4oe18xlRqFRfZxs2dMvssCNPhdxmhd9rITJx2TQ+KEmGVPMZljlBvga0gSVtde7iNBhTfT9x/3MuTvXdFTxRGqDiWJ0ta5K8ZRK7tX59+UlD1a/Z5kwam81qzRAqpX12tlpV1Ls64aedM6Ydrvrh9wDdcrMMPqnuWlY7aAGznj3uESNLSs+tXXqK5lGbnKV3JZSEuLUbHmZ7JlMHyYM8oevnyJ49RkdH2k8tsLzGO7uHyi6LCq00j3N5PhpuaKl/JfjcxWJ0pWQW7GtdZXhg3aKW5+vcKSJchnWNZB8AJdfK753irbzpyC5d6tTBIlW/mnaoa3dKuOmMYJL88v8CGU75AGrfq+x7IsiGkBWLARYc1FWL5DFe+ZY7Xre1xfX8M7wuOnTsdoQcqsgZO2a6rxabFkFmfNzAWJUQYgaam0rZWV38UYcTwe4b0vHJZd1ymP2lQy6WzMVkZ4fXMtDVxSwjJLad1mu0HXB3hHmOcZXh0r3gcJQjnVQVrG550TwuLQFT5TBgr/XxsA8D4gdD0YkJbz5BB2kiFhYhKEmkFjQVfb/+C6d5tz3Zb4MNcuvFmJ/ec5YhxnOC+OOXHwTOg6r04ueZ6iDwrmditYZfJBSmsDmFLp5lv3hHJ8mf5ojo/pBjvPrS3kvDpA5qzd0DWzGVV/tQfeAnZvxF7BMS2oZLUdJBPFuQzvJbvKOSB0KPO7wsB6Jl3bVIWUykA/VcsOcwkw2ssXDCX8mTGylqZmBA/sdg5d8EhLACdpunKcgJiqC6/yCqGscVVLVOZEEFTV5faq+Fw57BwDLJgmOy4YKjX0GjElMMQpPQaPlAJ8CMghY14WzMsinLy6UZxmbwMMTrJomaVTJVDtQZND1dFkm95QnTqznROby7kSwACAJUaAJRN0LaoNN+kf+zuqTZoYmBMjOAu4VZlrekDwuGW8tlevpczmAF3pKwG5NuNFx5RfXWCoSDVDLjGEHkF1cSvfmoXHCku1t/6VGOpXO5ssmmGlZ8Cap6k+s4FvU9Rq7EIzRpqRFu6WAuHlZcADELDchQ4xRqnbbZQbAcX4tocmIrDjcggswpshSts7V6JkAIrxZzOYc8ISF3CWLAR4u34FNlw+L0AmGDN9CNKxjl1J+66k1DIrReG7KkQlO0k+Z4fAa/ld8J0QhmvZIUC15jk3zjRc7oFmg9iYVZC3m4Ns4tqLNPu4lsNwEXAVyMq81g4JkkLd7ogKcADrm2mG78oZ0ADgAlwcN6R1CoBcA3ZUMDt4BTKQ7kJs+9SimzJWq7M1kHAJlFCcEKzdtqwUKWv2gThRkrbHfbj/hOeXZ3gfcHN7i91BnEzf/va3ABHu7x/w9PyMeRrx+nyPFJciiKryIhAkkgZymKcJFBM2wwbffvs7PB+u8d2//itOr0cAEh2TZ5Y01aAROACYpglxEWGY5kVAvPcSYSAAy1LAu2V0jecjHBEeHx4Qgsf19S22/4sAvRQXzNNcOkUys2QtHQ4AE+5u75BTFl6p4wtilNTScZzAjvD6/CIAJwjZng8d+u0WIMI4jZimGYfDFW7ufoPNsAXIwxoLWCqycVgBwGa3k+fzjNdxRiTCu2ylJ1iB3yK8bb+X1OYqHIlJbdoqXMtOcASvsmwaE+4fzriOHb795oDtNuD6OuP9+4RxYjw8ZoxLKgbj5cv2lxC3JwWHohiXNKN2mMllDK2MK9LUMsCb8yPqkbHZMHZ7YJ4WHF8nARaLl9bkjbVhZNoS0Ze5qzZ4RZtWIqBTJmBfS5xDYOwPGd4zyDGubhyWBTg+Z8R5fUYDSRlFSgYCy+MU4cCsJQEqA02elM5Vyp3GiTGPjPkc0XXA1190cA54dxVwfL/Becr46WPEOGW8njKO5yjLbg0jTBY1a5PVmJJMMhlc3S+sZ0gdPPB1rFmyR7aDAk5tfc05Y54ngAgpLTgdX5TsfsEwDJjGGeM4YZkXjGnGgoRt12G/3wEgLKNkpkmDuBkM4TdxysNhINwMN1tXJiqp910XsN3tpCnAdovNdou4JLw+n4SMv7QJ1jnRCztICUJHQE/A4Bw2PiBSxjllLFng5zYk9I5w6DpsvC9ZgHwxNtvDlm6dlEdl0SgnKXjPKSE5FONP1pwafSUHtvMe5KXz5OQ65JwwZWnRvgkOG8sIKuDIoK8oBwJJQ47yH/6uziYhBwY67zSqK/Muss4BFKqzqZVfqI7XnHNxQkpmVlKAWoGunZ0u9GqA18YqyyJluy3fiJSTQcbAAna9d0VWZs0gSlBZ5pzyvaEYoQXBkZjn0rVTsY2zEhAB7aWwxZwXXjBU6HuE0IsuZFTC9wuMSSqjiCqpcUq5dM6kTCDv4JUv0wUxVMjVe0sWjJYrK+VHaYTSOGpK44IMqKppOPy5Glwwo8atdACB9F4G9lGsX3suW+fmtmunE7ehY5HdNiWsn7WMM3MMWeDm0vgzPem9F9nHjKz/BljLqlD2nF2XtJyp8qeKk644MNUQqY69sj0gzRkE59hv4rJIh7ZxwtPzM7z3uL65xX63hw8ev/32twCA+/t7PD09I0YhEM8pifFdbqF4WZuguEYeXV9d489//gc8Pz/i4dNPOL4+C5aJYkcE70GDfK/vegCM83nCPC+AlUYTAZ4lyyMl8LLIOlp3RyKctbTm+PqK+/tPuL6+xtX1FYZNj/P5hPv7B4BZvkOEYTNgu9tiRzvc3l4DLHyU59Mo9seySIOaWTLHMzNCMIoEgL3IiGHYousHdN2A3e6A7XaHnEnKFs3mYSgPl6Q7D/s99vMtIhw+PT1jOy8YDtfYbKvskH3sV447oGay5dwEzWxFuToBRbVw0ZUA4/mF4WjBbhfwm99eYbsNeH1hXF3PWJaM8xlqwNdzUakz9HzAqbNMiK69jmk8zSV7htlKzlgzcKx81rBgLs+UmeGzZsQCCCGh64H0MuP5cULKQGYvNq3ZkmR0KE73mQaRLbCNmgluXKdlgmwMmdF1jKtrIARG6Bi7nTRaGaesWEmzVeVvus8bB1nJbjLOX3EUyTm3MlqC871JDcxjRF4YcUlAjhh64KsvO4A73Fx1ON4Jnv34STDUeWKcp0tnGhXHRQkyUfPMXKRa+bxzauOQVAgxAO8qMXlO2pBpWTAr/cg0nkDkEOOE4+kVfddhnmd0fYfxdcbpOEo2uTqNu67DbreVfZJHLExKaC4y3ftQ8WS1bi89OjJ3AILvcHW4kr3mO5Byn72+viIuwjdlz2cTJNiJ9A/QA5i9K02bpgSlxXAYAiM4YOO90GdYwJ41G1PPn+m6rA6uqJUsSf0eWpUNC5xUx7nKXVsT/VwIQZJzMmPUfT1rdh0cYQhScq3btehpC9yo+6xlufjVr39nZhOqNxAmaKphwPreytN1sZ5lbVCV7KXToXXkWET585lReoDLhc2pUkGavdem+bfPVI3T+l6pSzcB84svHacZ72RAtwI+A13NcCWd07yPUIVdwEcV3qa8XaPAK4z+pfGs3U7N064cTvWRG0P7rZ1c5s6uQGWk9T37vk5wc731BXUPrwb/JtIJFOEJo96qLoCi3KpHWn5t/3Zq7Vw6ri7v99n9RO1nbFfJcxHXz4pMylhSwnma4LxHPwzwXQcfAobNAO8DjqczunEqhqk42Wi1iNysM9RgBEc412O77bHMM7q+RwidEBPnWJwAjoSTQoASJK2alLnIIp8kLUKbZmWSSZKz1OSWyNMEQITyssyavZWUyE8JsfUsmODe9Bs4IoznHsEBy7KoMSupl5NGHnICkgNC5pomrCngnLg4zMQZU5VUq6ABqZ3u+h7kIpY0IySLFPJq7VbOQ1sx0p3LZmDVfdJmbtleavdvyox5TliicDMZwfIwSGkgOSl3smhDe83VS4Gad1Dw3pw5NbxtY9TISzMXepfLw6/2H4wLQMr1gLgAKalT2xmIVAXPyosHMahKNNTpk6gRVoQXs6Z2y+/iktUwBUJXy2cbs0bnXBzT1rmufKA5d+b8IhKAdHnGOUlqNzG0TDCjDw7D4NAFgCPEwR8SXo4yhmnJoBGFBFfWBGXtqQyxBibqHEOfrQmN6N+ZSHWCg2uictL9zdqEi1NhWaSkg8FYlgnOQaNyMxZrTw8BlSGIoyF7GXBm42RypZSjDtymUOWRjs3eI5KoXNcJMJeycNbOL8ta56o4MuJPBzMelQeJnMqOXHkDsoWUqlNRQHAua277si6zRuXY0v3bc4EG2TQGDGH1OSIlsDdORhL9Ku3sbU9VPVkGUd4wXKF3uLzf3+Nl9yz6nIvMMTDckpaLzm1UXSOzWqzTCoU2A8UMtlUQh+r6wK5hY4FJMntH1sWWqOjw5nG42Zfles16rp651dvNWM1BbRyXwsckYy+ZcPXyin/bjCeL+kon4ct98wbcsOkW0YfcyPzys7lZFYMXe9eev0yo4YbP7ymGyiRTb6hn0WToZ69dnqX9bDPF+gwOVR7YB9aIEHYM9LiQZiPquQJKE4nPYbMWNxpOoubMXX5DZKs5+1t5oeUlMWGaZzjnMWy2koUZPDabDYioZHWbc0MaTgBWdt3epzawkDkNXYf94YAYF4QQyuZtO3Qan13fCfH0PC1FHtZ1aYJfxu/FjKwlJ0YUnlnKdkMQknCTt9M0yXiURiN0Qe/tsRmkVHGeZIwpJYznUbtLitNMsmcse5rEmeoI3FsJozZ98AERrFmrKPhSHE4iI0Lo0A0DQA7TvMD5UB0iK91S178N4n3OTig2QZkznSt16IC1idII6SzuvCQR9KKjmBNI6prf7h2s9UEr2+Crc3htSzZ4rgofoIyxqvvqjJWz5Zxm1sSknXR1v2qZnug8KZ9PWbLIAZTAuGEEQDKwc643k0wvc0BRyZwiYoRAQKpjLFiUW7m9nvWi6xqZVbKeVrJe9r3GOkoA3XvCMEgQXyCLg/MZwysjM2GOSZ+nnmu29Whgujg8VFesjyUsQ5YgONMC7QJWc5Md3lKoaICZMjArqXXOUvLKXPBT0k6zdvaDUuJIJm8WDNVkydo+vti8VZhS3W3O1SQSVrzBzMJ7GAXvXwo7DWdJVhMgwTtIAI2RsaSMmIUPLBnvlZ0zxaCmXy4709WzbLqV0fz2s0K+2A7NMxf9oPdkcKE4yKUF/cUaNvuthVOSGf7mg7/4+tXOpmEYAADe1awg43klx024pyqeAl24ZpLkUuAni5pSwqKtLlk3BWfN3kHClCXSYILb2iYTRRE4RjCqgMVmY2VAojmojSFYslssxY4JS5yBZAeI1dlFAty9U2Wv2Re64bx3QsQaPHwQ8iwhrNQsL90IBtjEYNVDnk0A1iwGMbxEoLFrPP3NxltvBjvO9flNzpa4oN7cIhMt2K13/gy4aO7rmr9XB5QOpT20+mJ+cwLerIV92Q6GKQuZWyMmVE4wopIyKhFgFVL6nTazhJkRY3qjGG1jXjo5gTXXV7XpVfiQkwLZ5jsyN7L3xpO0uj0fXzGNoxLzdnh3e41l2WA39NIK9+UFp9dXPeSsez6g66REbooJmSP8IN0MQvDogqRIzykizkLs64jglOfg9uZWxk+Ek5PWu/M8q+AVQbkSSjnrfqSSdmv74XQ847//5S94eHhAXATsSLqwdNbabDf4+OlnaSvddRIBk5UDAOwPO+x2O5zHCU+vJ6Sc4Xwtk0AS3o5tv8em32G32Ut5zrxIjTxDsop8UA87CeGnI7z/6gPe3d1gOj5ifPmEORKmSTr2AVBek9UObCJLjezmCrSNKLoQaJvCaT6cEmNKQqL4cpzhgkCP/WEL5xPCQ002/hxAtyFZrXUgkw/KX0AJoIjEsaIglS1OFXGRZyygxpYxJwZnh+lEODkA7HE4bBAX4CUTUlJnuNd9YCKC6TPz1USmFEDYuS5nQQmjp3PG4hi7nbR5nYjx4hYBCkygbFwh9j1TcM0jNq9qDFO1xJqVI0hEbBqB1+cMTsD1FSF4gg+MYcOAI9zcOGw2YhSczxItXKJEe8vKNOksltXFrAw3q7E1YzDDEDIfBOmW1oUA78RJmjTiO6eonEsSfZrAeHp8VGNC3k/K20WQCPtmGABIFlAkBigicw8gN9yCa5BBtl4axdzuxFgLXYf9bgfnPJZlwdOTZB0K55oRZtpVRPc4BwzeofMk3QOTlFZsh4CQGTMkKpfBOE4Rk5MSO3FMZnASDrJOm1uY45MZYlSmXMoGsyIjR0bqHIour6enwtsqpwXwewchm+WMZWbhZcqSop6JsdGsYgBCpgkWngLY1mIYuTQ1d/qPfhmGIl/T5MlBnLrEYOVaYtWJrQGVcs0utaw0258pRSxLLDIsKNefdQYts5ezthVnpOiwzBrM8r5pAKMk6gXHtXKjzpSVm5LqkvKHpUwz5QSCg+cgV6GG+wZY6V4iaYoSOslAcpplY6Wg0GeXc6prRpaNg4Id2RB5Nu6eLBiqumTKH8EKTsoH0DrnLow0Z2Vgdn3Sjnio170A+e2/iaClHLWcRT5VsZq9PhugePNqgxD1qUzGlrXSQZS5MUccQQIJljFuXEuu0TFkGfyikMXBErF+fSZQrPqhGG1lkJXPyc4cSy11sZGICKfjEcu8oO97jOezVgc4vP/wHsuyYLvbIMaI8+mE8/mkBhZBOBIDQmAprU1SWssMdWr05TmtsxmB0PUDfOiw3WxwdXWlRm6WP3rm2BwbppLKVtJgDGqWDzIjx4QXPOGf/us/Ybv7EefziPNZSPklGwro+h7DgxAO90MvWfguoA8SNPTOw/dbpEjou4jkWAKOnTQusgDJpt9hM+wQfIdpEu4jhvLtwPYtkHOUxjOO8MVX3+DduztQnnA8jcg8Y5pnRLWt7GXBn5oNZLbKW2drWf+qYGWFNZNQZAJwOiV4nzCOCV2X4JzH1dUW45QwjmPp5tpi+HVQpG56R8JNmp3D5AJIycVNRVqpnTjCjVyIwBC85zWoI5k1gpNi9JgXD/IDdnuPGBnT6BATCTejq/tchpJBoZbWF/PMEhRIKzOK4ccFe0jDK4aPDO8J+12Hac54PUYskVXnB5RyZshjVCZuWp0xy3AqTujWG614L2eHCMZ5zHh5XSRY10lmTd8B2Iqte7pyCJ1kso8TtJmGYiTSITTyvjADMkr2/eeVKhfxSJRBjuE90Hce2VtQQc5ezMLtJHm78v7zs4MPHmmRZjtC0bGAKcMFQj/04oyaZuHORAari8NriTa4SZTg3Pxd9sJuv8d2u4V3AV2/AZHDOE2Y56NmrkdU2FzxgwNpZY2YiQ4MYqDzhF0f1MEUkbI4nF7mhOASiD04CAhgNhnaBod0v7B2CeVKoSI6S/wMjkqudnMeqYyRG/vGgeEdoR865e1bsCRpeDPHiECETixbMCR7OjEjEZDhSzWIBJLpV2eH/3pnk5bqtOBF/1nIqatXw4CKGkVs6ZWaKgYDNYSYorSKtjpqspIGSbNb8qIta7mALWtbX7gIHElqrSkUG4ZO7i+BSYtIkCpwBsqCSlRXmNcdSaqtKD+5uHnESQ1HcTRpiaGrTjkREtV7IfrRODUAS/sEqjwSMMCls896LeniXyqCqTGQqfmorYlKYSNeb6N3TsdUoqUXE2YpkgWYs6boAk0LYbvZWwD1SxlOdlQvM5DKfACwzlZJeYqSc3B6GystoVJaoFFRBlK2tNoGIbSAuRHKFq1hVgJ3m4RmMqSsqh2jCE5jExtPJ8TXF3gf8Pz8hNB1+Obb3+Lu/TtwBuLVLVJK+P67v+J0HFXQJd0fUi4ZU0KaxGs/dBLhC8EjhA4h9JinEYs6m4bNBj4EbDdb3NzcAEDJQpq0o0vOGRw8qBFCBZCXH425RYTz8Yy//vf/jtCF+h1G6crhO4+uF+Nw2A4yhu0W11fX6HyH68M1Nt0Gzy8nnCfpbOO0XagjkhQnR9hsegxDh9D1Qvy4RN1PBA8P3wclu4zS1c47vP/yAzrv8fP3hJfnJ1CULmXzNMF7mScomK5rW53bMLVtSpKEo6FV2Gj2szllcozSpa6LeD0uIC/9cQ5XW5CP8GECIATW9vWKSbn8W84zgwmlzNa7gEwBJYOgZH3InvTelTUz563F840/FdlhPEO7IAccDgHLDJzODMwsnT2ME4PUYIeDlSzmbHP21gHbCJFicHIGprM4SvYbj92mA3EC0QxGArLT8hOSsmIy8Gdr0s4QVtcu816Pni6dnLRpynh9FiCRkwLHwBhIeKsSO8wz4TxlPD4lUJIuaDmh2eZm8DBAojCZIefbnP8F1KmwYQM9VZ4458RJnIFenU0xJSxJLmA2SEoK9kk6cgXXyfnP0lGtdTblGOXm1CGzGBdWTlT2U0WUoJwLX9h2u8XV9bUQkg9bAKRlKC+wzody4ps9r0/pCei9Q++kYx4yoyPCbghYMmPMjMgJnBNe56ifF+OScoZPWdvnUgmkyCuXkqWcDSDKvJN1pLVOr1UxrHafPasUcklm4Ea7cloXrcjibGKS7nSmExPETM4ALLGuyECsDZj/6Fffi7PJukmxGh/kbMMpZ4lq9TazImvpo2WZ6qQAkM64FogDQ7tlsXBaqO4snSmznPkY9Vw6h0BDU/bYlkE1DgJaG5MlYNeWxqoqSYvqRgpwWvojAQS/IsMu13akui6U8ndmCFkzOTCiOHjMmFQ9b7yCNfNEz6h2cyKbqwq/iswrfE6OCv5ZcR/aA5fsKS3bL8FBvjhD+vdm6gx71owDuxKXDxR9YXjsbzqcGhxW4JY6FYia7NUGT6k+lFL4fDEOKiX2lLMckKInDZvqvuE2FGk3r/uzvlyZO2fyfMVBJt9/M34Ap9MRKb2gCwGn4xGhC/jq66/x/v0dYorYHXaIMeLnn37G6Xxe62rvpawKwJw0C5s8um4QTk3yxWESFyFj3m48hq7HfrvDu+sbMIDxNGEeZ8RCp5ELfUL75FCZWzAzoFnihDhHjNM/lwYvUBtD+fFlPryUePaDcFxeH67w/t0HIUoPW3S+Q4xOnTKMYdios0ky38XZtMV2s0fwPcZpVoNRO1kTqdNWS3SWGd4RvvjqKwTncf/zD/j5h/+OlAnztCDFpegrcVZlcV4VZ1N1NP06p6jaOcZXExPOSxZn0zkXZ9PhagcfFjw9LgAlyXQJbmXvtZNvS+6I4LsOnJ3YWnDS1Af1LBWOoAL2c6PY5UoxMVJk5OSwLB7LIjblbt9LZniUbG7vSLKP0NgMPsu+UoM8m2xpsI35rK0sXxyFch7HKcNFxtWhw24XQC4h8yi8QNSXfUemF4uxjaorVzLakiHM4Vhfws0jnajF2ZSRssP1wYECoe+B4IXy4mpy6HrCOGX4lzr89snKrc0WI7lnnQPUX7ZzoXrPutp5DzjyyNmrzebFIaNZS1JhJM0F5hgBdXD4guAS4FidTR04awdKnwAKKBaOqwEUs91zrkkMMiaH/eEK797dic0WJZs/zq84aidic+QTTA9VGW/j8pCAnYN09932HWJmjDMwIyImxisLhgok5aGOudiSWDmbdN6NjL6x2JxzJanFafME2Z92Gf1kse0tIA4ETyVgN56lU+BC2olU/Rc2L4kzImfhEyWUDoCSvdXI8n/j9e/sRodG2LACjco10j6oRVMsnfoy08iAgxzAxsC4mHCpP7S2vmslDxjxbVbCWY2mlwNY70fNHzTXYeaSMrsaQ8Xz9SC7hrPJznpxljjVJGaYrDBzmRObixIls++Cyr9tkeVA5ALSizfKIDOL0CJ2cDkXw7kF0FVJ5OrMap8d0C5AbRojGqFW52JlpBW7vOGE+aXXZyajClD9wJvPcD0gROg6aWncd52mS66VoL0sXTjn3ESAG6B8cSjaSI2A8fKLZkBUuMPfXFBQmYBWLdGye0/jiNfXFxCc1CqzRLdvbm4QY8Q4jmJAaOcJcwSWcXI1agsHGF86Bbjs88vorJ2EtbOvmQiSPccX+2WapAa+XRqL3vnkkXOC81I260OCI4+5n8GBMfkZjiVLSyKHjND3cEG86ByF88D7AOc7+NCj77fwodOOghkgJ6ngLEbUPE0IwSNvBrBG4X0IcEHOXJmqZo1W+6Ls1ZqZ0oLEN1NTJqP9hWTHTHNGN1p2Zd0mb5sDkU5xO7ctTx1AugZSbnsR0dC9VORZ8zw2LO9QSuBSApaYETrhKnFe6uJdKUU1+Wwy2xxxXErjMiqPEwHFCWMAjdWxwZzBUb67xIQlSlt6cgznoSVbDb+BUyGy2txvX60h1BpWZpwQJJtrScAcgWkBXKDiLJNbSpZO5a/hCjqb9V1J6GIIqeMJ6phYgbkKMqor3PQD1JgWx6Dx3UhHHsk6KnpQ6PIbp1WV4/K5XO7gNNW8RHttHxPJWpA4LYXDwqHvB3ShA4gwz1IuF9XhAHOkruRY4/gzDxu3AEoCEZ6A4Aidd0hgIQ9lYEmMOSZpjW6GJaF8v8C69ryVD5RQA8z5VXSrGbbc4IgWL+h9nO4vR2JmRuXt6SjBsYwtKldU9r4MrHn8eg7/ji9bb8kKqxk5JRO4yPi1vAAqFin6sSLLN3LeOth5ouLobUsPbF+UrBftcgU2h4VB9eaqn8NIujHJQBHpmlPFf23Edi3F6nOZwKu/uURtazBdnpOcBvTkeW2QxVGSDSeur7wCN7jElp95NZCoYDRqr7J2XdrIbQ5lPjWT/PI+raPpF7ZjmSKu+9iA/+pDnxmzcw7DsClYSrIsswao6t5rz2tWh3jFt2/nrJWDcn8uEDWX8XLzHaqfofUqOKJSgpRyAiIwjme8vr7ouCQza7MZcH19haRZSsJzxCjOsWznRWLzpodXmWuXk0yQrGHSvd82D9D9y2WV20dfA0s7S8s8IzrlNzG5Y9W/XvlE1RHjQ8bcR8nsAWFB1Mlz2O2vARCG7QZ930uW0jwCYPTDBl2/Qdf16IetEIgXZ6iWc0O4PM/nswQ1uh7woZTeSfZMkxFzgQXxBh/LP8xpXWVQewLqXqIicAnQrtrLkjHPwu3UOrhNrgMVz5aAvY7JOvpKgFa8d2J0S8COksnB2iyi2jUqH5pVdBnICu5TYiwLI2fNxPdcz1yDufPK+abZpq2NprjK7FoWQV50WWZxtCxLgkuMGF0p13NkHcjE2UZ1qNX2XmEknevGvr50NFW5Rbp2wLIwloUwLzZGqhjKGS2DOccAB8HZGbqHL0WVnnPTy29swkZu2V6qJqAErZxiKJAEWVECCGUDlh/ZZG9zvaTZ1aw2kYEYQt1nAK+oFZzyRPrQlYA1swTXpaKqdvuuj9KgR8UkojdrqSVpvpdDxaLeEYJ3kKClfDImxuIyAomeLtjLrt2I26rqm46wqPLfAlSXgYuCn3SkhiOdkyosI91nZMQkNnBwCeQYMWVElo6tFuSpS6v3+FtMQ83rVzubLOqzRMlOYjCytm40IcSFAFzaX6dc074tGuc0hTwnIzGrigCQbkMM/bd62LyS/s2LkemKwZNZognV4y4TFzqvBHd1MzbZvY3RpkKSnTqc9Fl1AaV1J8ORdHvwvgOck/p+6B+SCK3XlqkgJyAL6g1mlJbOrMKIsoNPmrngArwnVQ5lDWWOckZMUg6VjONjleoqZU7iBBOiNG/lStB7QwR0TLrBG8VRBLlZTPazovC3CkAHWJR1gwXXIPDiVa5X31DRreMskqcArxgTMicMww77wzWCDxiGHl0IOJ9PeHp8kLIA3UeZs3biEiMrxijeZl+7q5jwKdKwGbvVX6/GqyUFEgF17QOUxTIA13VVIadpwY/ff4effvoBm80W7+8+oO8GvH93i29/8w2mccKPP/2E83nE09Mzjo9P6tk30AywMBSi084l49lDMiYywJJB0go456gSVxaYa8ZY61xhFIJBPdcGMlLKeLZMCK7fcuoQ9Z1H6INGo6WM7nCYgAQEHzANM7rQo+v3uHn3BXzosT/cYNjuMJ5f8fjpR6QYFSj12O6ucHv3W3T9gOPpFafTEcxJeQ4STscXHI8v6PsOXefBvAWcx+Zwjc4D5AOEQUc1nIKs0q63AMYWDDbKo5EHl/izzBhJS+SUCA/3CccjY7sN2O4clihRGhfs2jKv3giJ2RXZl1UORnIlRZ88wfUePga4FIBM8E0WjlU5GIecjQckYED+AOOYsSzA/uCx3fYAAV2/oI9JzpgWL8W4aMafOkOg5yxlJBbjA9COMU25D1CzTXNKmKcZnDO6IcJ3M1ICfAdsIOny1r2v64M4JtmU3uU8r6P5dk7NEW7veS87ek6ENBLYO9w/OWwmgoOWyzCQIYa1V2cbMyG3Z1fFTGl6kFuHiN47A6TzVZ++yjzLJrJABwB0wYGoR8oJzlWwssxmwKtTNGXErBxfCtJziljmGQBVjg4kdMED2rK3dc5A5VvKCZvtFu/efxD5E4S3YxxH3N9/UrBkeT16hqkeC4scghk5EjgajOrhvINnRtDmCLvOwzuP8wxM0SEx42WOmBZgFzyGTQ9rOtBmD9pzJuXvkK56xkNVSarL+WsBPYyUvuTRlhXxuk/60IHgkdOM13EBOGP2QE8sGVkxIQHITsbvyNqnr42nv8eL1ZGbU0LUc5azAOTcGhJa+pVzUtLcevYl8ECqr5Yiy5xzUiYYIQSz5NB1PQAqjTFSEvL60iJes4WRIig7sCeE0r1OuSYMtwDrtVL4KsEu1a1absTM5WcBv5q9ZGXBdv4AxRjOg7wHkyvGUgH0uv9bHWYlQ0QkDSigY82G1tU4ynJWnGvLhKqDU5wRehZd7bK2yiRsfspEyBmsDgjZ0wQqDUBs2AAa7GGYzPDn+tVCLzTX4ObvNh+mj9vfV+eNgRqT2Rnb7Q43N7fNsxHG8YyXl0dphAPtUpSylGSyOaIk26RXrkUycrfmPNapEXmqlhzMqeaB4vS3e9cZqE4G4ZkTPsFFue2+//47/PjT99hut3j/4QP6vscXX7zHt7/5BuM44ccfBUO9vr7idBqlfNlGRtCmExHeC4bPcdZW4SK7OUu2phFoCyYXnS1sl3U+i5OQ27WoRkaxS3LCNM2iH1Cxlf0QLphBz8QsmC177IcdQugwugRHAYerO/z+T79H3w84XB2w2W0wno94uv8ZKUX0mwNCv0U/DLi6eQcfPF5fjji+HpFSxDydkdKCp4dPeHz4iM0woPcBbi+k+fvDNYZegn7JMGddSrVZAINSSfmGmHNjh3HJJG82Yp0vJ4axY+UTg8fzi9hyDAaTF0exHZxmPsUZxsUpKoFQIYbeDAM2Qw9yHt0woE8JcXGIcRZ151j8dTCCatQSr3JWCBbMcUQ4nxKWJUtnv96DiOFDhF8SmGr33mKLmUOWGfNSK3C4YIJQ+IjQEJMLdkhYlglgRvCMYZBMmi4QNr0TjqtJMth8p42NsmEocYbC9mOViuXRLrMkDUOBCPPMeH0BUnTY9B59TyAS50LOgim7ntEFRudY8omtBBFc7EqjXCgYihjMvsjFQiJva1q9M0gQ3S7vaPm3NnFIKQNOM5xiFBJ2e0yCNO8yx1YQuZtixDieVOZJlhw5q36pDs0i62F0FITd7oD3H75ECJ1UUsSIaZzx+PSkDZdy8X+UQ1HOicgXMIOz07/LmDwkEaOHZGPvBqHPmWPEaRI8dJ4zUgS2ncewCdoYjMo9bMoySwe7TJrxq1QjXhv+lECPvtrGaeKHySsE5UDonAOTQwyCEzgtOJ4nwVBOSgIXZowlkUWSHjx5dXaJfs2t3fw3Xr/a2dTMbuGJkIOWiqOn2LCoIGOlpCFK0iJClvpcojXNy5SSV86apOVtljViXQ6EMNCEPMHMbDtwrYKWrdXc5wIU1VRfFbzFAKlteesslJHqYWrb6/IKMJWfJpObeZGSOt9El+SaZgxkruVgJSNK/5inHJkFZIEaAluUdalrUcds41iXEFGZE7tAUbRUZ470328jexev8jiNMmoib9UesedBUeatIhOjYkDoxOnSdV0pxzSBR3od6/xSjBSNjpTyuAYs1QNKdS5tODpe57iOydKb9PflUaiSU+asXUwyYzpPWFJEXCKu9ldw5ND3N7i9ucGpP+P55RU5A96fBCSZMQ4q60osDloffCPw6py1oA+2523DrxbF1s8iq1XwlPnTN5dlKVlhFvG0lrpmJJCTVvfkkvBJTTNykCy76BNc2Eq3lGGD3eEa291BOrY8PwAAvHZZDGGDYXNAP2wwLxneR+S0IPKkkcuIaZoAiFPEnDS+k05kpFxr7TTYnm/Pm2zDVtnofLXyAOvP16kzQ4EwTQIYvGf0Q3UQkwN4xXGp+w4o5LNm3NseJW97xwkXmUZUoaDe7DeAC7eUjRtATTuBALLMOh7NujLS8FYWG/G7zVFmSXGPKl9jWuojN4Y5gAqwckaK8hxLBKZZjQZy8AEgykrwSPCaplwn981sX/zd5A3WP3XrZybkSJLZJP4ZzbwRWSS8a6hRK7aIebOOei+GVY5UGefgkCmv5J18utawi2ENULbyW9QyW9IuR0RILiGqkDOzigtYqc9donIgZE4CvopxhhWmdPoPciSOyRCw2+2lRKsR3dM0YZqmOn/l/xtZXM4JK1jKCpTq3BvlRHBScjqXUnUhCmcweqdUmJahe7HczS1QnGaNfl7tD6z3K9iichV82S4xw5A9YU4Oi6BiyfIlITRfci66tzoYUIJL60jxf+yr6peaDV4akegY5feAcaO1jqYa7bcyxTYT0HQywVS5EYQLBUCAcwkpR1C279VMEOPsqdjEMgTWZ/Iz0lL/v9Gpza9W677Kum0Hbj/o8jf1Axcgo+4GoM0yzRffYyjfxSUWbc63PeGbzCZdlM9uj2Y87by0mfRvPn/5PTRYY6U56hldQyZbl4sbXOCqi8uBWThghmGj3G/yXtSubJklo8IKtK3kri3ZlM8wjE/v8nZAs9b6D4FboruEe4YvPt8EMtHsj5wR9d7zPCJlcXrdvrsF0GGzGXDYXyGEMx4enhGjZBpnRjV8wStCPmum4nWvGF6sZ6yWpq5sB5OpXMdp27Hun/WebgPsIl5sX3PBEYRQOHZIcY50oyJkDTCQ8zhc32Cz3eHq6oDtboNT32GZzojLgjDs4LsNhs0Gm+0O3geM5wiQGIwpCtH1NM3CG8XieM05g0Da+dH47f5WfievMHnOlePyrTN2vTFW2doAGA7LInxQzhNcMAWHsq+rfJc3Kil+La0zQnfR89LNOefYfAeaqVY7pRXCoeYASbc7+WeK8nzOMXqyzGjdBKj7pGAo1PlIMUn5WzMX1AoG02VsgQRpssIaIE/aXdyRZL/EJSJFzSrUbrj1fHGVtHwpnxo50ooyxSiAZTYBIRCmSfaj8wTnVUYS4L0FMmVyrEELg8DuosS7eU5SDJZzIyOonpsiAG1PmL3Jht18gxuBnB2IGo5CNkxRZSQ5sXlTmf8Ms/Pa/VfOrjpPHUniiHSyO6DrOhxfj5jnBTFFzNOMZVkQvJGYr+dbAqLqXOT6U+xmmQzBn7JewTnkAKQsOIlZMBQx0HuuOrKgNZO35dF1b1uX0CYj8FLj8FqfFwRlWbEk2egZtRwv5YQlMqDzl0gcjVHPZICVzdXz80t+ns+9frWzaVlmANAORgWp2nMVJaNHHZatxMxSu8+SXSHCVo2uclgFUEkWitTpk5NygK7rhLMmZzjvlJNmKrWWlRS8CnzWcoCVBLOloppdJYuQV5tRALYZBTpk5QdwmopvkZNcNoBTR4O079STrddRIW7oWA9sypVwTsZFJWJpcwoiBK+kmc42FsCaqVCZk9QIKl+0i1xswAugUwGXXoNNiNVrmHFlzqgW830GNr55FUXdKPi6Tk1a7mrMFbARHHLKGMcRXe5wfXON6+srDJsBoeuxxAUvz084nl6FNwYZVhjWlhSaQnFlhzYjbASRIqTPK89Lo8imlI1QUZ2WciN01Kkn2OH4+oJpHME5YTyfAACb7YB+08N3AcNuh2kc8dPPP+E8niWqvYwAJ9y9e4fgHfoAzOcnJX7VTMNlwfPzK4iA8TyWlsIrx0CyVPi65qb8M9v+kVcIPe7urqUW2HVwrisKHSAknhGTOH9IjertdoPQDxpdJyyZ0Q1bfPj6N+iHrUQKphNSWtD3HUJwuLq+w/5wg8PVDb793e8wbHY4nU44n89IccH59IwUJ9zff8T9/U8gSOrv8/MJ0+mM8TSiCw45dRDmLGc0Cqsd2Sol28tOiQILsNH9fRkNutzIGdLlLCZCxoQ5zohRuhKamBHxyEiVoak506wgP2GcRnjnEJzwAQiHgxcd2ZZTojm2F0Yp1EgQ8CIRs+NxVkcQcDpKpM6cSsw1I4ZZZDmzpHML2BGeCpmsjJy9ymSNVpnhSxAeLnaIiXE6Z3jvMAzi4JkmUpCyhp6NCGwAujwdN3KhnH+yP1UmWEOFeQEeHyJCABxlECV0ncPhqkPoPHZ74JtvPKYp4+PHBeOYwPBgJRIltOd3PSLrBFLXzpwiBpr0vDinIAkgJad25EG9jFN8gaT8OUlLFXGRM0XS1vv1qM/pyhhKKVMDWJOWtVzf3GCz2aLvN9huDnDk8fL8iOPxVbpJpvwLzoHq+ASbdmIER9h0AUOovISQKn2AgD44OHZIHLDN0jmS4yIdMomQiBFJeJ4KgSQJOTJDAC4Dyt1mZLnV+WNrb/+ltty0yK0WsGr01Mk4U/CgEJAzYYwRkzk5VWd75YXyoBr7yFyj8n+HVyoBEs1wZq7q2jAUGfWOAE/J2GHbavoSWoE2UGRGs2Tx9sozKcTI5mxKWQyklBNAs2YEu5JG37pfVkHE8lJdSZZZA+U4y2KYeQdzqDK4ZLBZJyDnHcg30XHmeg/d50IOm0BMCN4EuoGW1miQwIeDZC5751SX6WedZZ07zZBYBwvtVWQAPndWKgZYOSX1CwwzQOUN0jKdUjalfyQWYjKtOvHMqVeCiKo7Vrdeoat2vasTtUKVBtWoLjOngJTtn9F1HW5ub7Dd7XA+7RC6gGVZcHp9xTiOIOj+c0DpakVq6Mp2KZlbdj8LzppsV5BfdKpNLDfrs8a5+hw5l3F72zcMeOXieX5+wvl8wjxNOJ1OYAYOhx12uy36ocdmu8U8z7i/v8c4TcKR1Em51fv3d0BOeHn6hADJQiEH5LhgGs94eRHHj2XOiLNIHBs5JQkEtWuI6oi3rqLkPLzv0XmP27udtDCnDkTiGGHVGylOiMsIIiB08pybYZAMDnbY7zfohx1u797jN9/+FsNmi3E84ng8Yp4mCWx0Ha5vbnG4vsNmu8Hd+/cIXcDduzscX89YlhnHlycsy4Tddo/gBzhHWBbC8/OIuMySteE04CL+QG1WUG2h4jQghofyTHoHwMsaF9JwCXi9kaYXhyox4zQumJfKYbXEJNjNyxkW3kLD6kDbETymBMoR4+RwOkv5OJOQrjMnwVCFoy7BOiGCoFlsuayF6XjTd9MSQYuMZxylkcL5HLHMsm+LboqpZNu2DjjO1VFbzoUeE2djsM1Oki3PnBETMI4SqRwGh76TszBpdrhTvdeKQlsjs9LsvBVlopNvMqjIMKBkGfM5gx5nBE9wTsqou0C4uvLoQsD1NYHZY5kZT08Z05Rh/K/iJ2qtTxmHUwzs1LG3Rjr1/6xzOzsvAtKxOrQ0uaA3BzeVRmRJfTni9DKHC2mX4oRpPBd55bwFWxv+SBOxkJK9m9s77PZ7eC/cX9OUcTyNeH15RYoLCELe3gZIitzKxmMnjVSE00uqqoJ3xbFnAWeA0AURkBkefZIOwcjChxThkBggfeayfiZLIYFWtmZmXrvU2ylp5GnZkwVDscovQJx5NffWAVra58HJg51TLquImRXcdsq5a2TkzZgYRgHxb79+tbNpnmcdnwF/fgMa2l8TCdEoO6BTYikDsBZVQVHWYigJMBKjy4cBpOVroRO+l9BJOV1mqdWWTV8jPQVEG9AUN+vaX+AqObdETGpWCpHyG0DrVzV/1BlHjPeiMMgW1epjRVpnlhpHZAZ5M15Ryuik2w7rwRHNbcaufRYQgVycbyGUdMzKv6JzpobAmg7+AiFeACRqf9ovGnxjW6g1vmyM7csA2q99Fc4jBmB8FU3tc+0LQKgUyCJMcso4jyekPGDYDLi9e4cYE65u7rAsC/76l3/FOM3gvIAwi8CCeIBFyOrVDMQ3G4LqhhXhTdD5y+2Xmn2PMtIWEK6jpgLGg4LtnDNen5/BAM7HI54299judvjmd7/DdrvD/uoa7+4WvLy84OnlWZxNacGyAEDGhw93uLm5hkfE8fEnTPOE8bxgiRHLvODp+RkAiqNJeFpkj4ijSQVzUMGkZN3M0FrcCrVD6PH+w1fYbHfouj36/qDOXzHaTqdHHI+flIBTDdGhQxh6EEiiQ4nRbXb46tvfYxi2+PGH/47j/UdwWoQQk3rc3b3H7d3XuLl9hz/88U/Y7PZY5oR5TojLhOPzA5Z5wmH/HbqwwTyPeHj4hHk6YxnPmE8jht4jxT3AXs/iGq+XNy5eRdE1i/hvOZpA4iSYZvnONC9wxwhmqbu2Y5QKKzSXKPulURjjgvMoWRlbdTaSazLX0mXnn+ahuNlrZLxKjEU76LzOE56fJv0cioK1jLSUamZVSqIwLbKWUsS8zBD5kpCytilGr8alXpAAF4I++4LjKWEYgMMVoR8czieC99WQaEWNzIdxRFCRLW10xM6pOVvayGiOGTkRpplxfx/1CuLC2ewCwjBg6wMOVx1ub4HTMeJ0fEKcEzIImYPKZAMtNkkNWwUZx41cmbmqE0B0iKgYKmMnMDJlsHE3sTiagvNi2GCSjFwIoJCpIV1u6VLpnMNmI6T7jrx2FatyOUPWyHuP29t3+PDFlyB4UO6QUsb5NOLnn34CICnixllhF7GzISpS/uIgGQvBO2xCJ04lAqwYxZGCH3Lo4JGJMEH4LUbVdwmEBTYHKNmkRc6ydAVkIlBwWuaojojPmvhc9DwcleYCNSjU7GsvTrWYPRA6cHKY5oQ4C2H80EkZJ2lWQ3GpqMH+9yyjM2eTnKG679qzCgagXdpd43xcGf1sEV/BZPKeaFDhnRBgGEIPyWzqhKMnJ8BBs8SFQJxgEdI26wg6N0DFWK3OFAcWmJERkZUnxStAMQBqjn3npHzOKQi3bJpW3tqjG4YiAB1r1roMQ+7t/MrZZI7EEBS8Gx+dilLjOyzdTX/1S80okxGX20Tx5qpcmwmcmwwdZ7wkVRdYGUKVzRZ5toVE2Z/lse3ZG4si2XkuDSWaD2KtcwApuTyfT8g8YLf/Gl9+9QXO5wmb7Q7zNONH/g7TOOma6dwpviU1VDMYXgR2WYNyX0LznslzDcvqgZVnNG66yzG38p9Kp0FpOx7AzHh+egQAnI5HbDZbbLc7fPXlNxiGDfaHA66ub/D6+oqnpyfEeYHvoQ1WPL748AV2mw3uhwCeXjEvM07nGcsyYxoTUpaM3mlapFFLktI6cSQ4UJZnNooKIQM256jo3uB7+E6yjL7+5ltsd3t4t0HwO9mvivePLx/x9PgdgIy+07JYAHERZ1M3bHC4usXd+y/x29//AX0/4F/+5b/i4eGTlPuRQ+gcbt/d4cuvf4fdbosvvnqPru8xjxHTKGXZz4/3mKYJm+EARwPmacLx5QnH4xngCcwR8Fow7gBkyzSrZaGVcFpsGtPJVpqWU9aOVowFqSkdtP+vDigGEHPG6ayBEJLMmZQlGOaCQ1oilmUBM4qsFvWj+j9FZJayKn8SR+LQD+g3G+ScCuYXR1iqp4ag40xVntjW08yYebIgLcBZkUVqoJfafTk1FBMqB6wJQ0oZS5Sqm7ZSJvg11410AQ3FSXc+RYTgsNsJfUGcE45mNra6tGCoxg43WWCyhGtWkXNU5s6ew0jR5yVjHKWc22km/X7vcXU1oO89bm48dvuE8ylhPJ8xTzKf4uQiSGDfhqU2I2mVMUgd1vW3rd1VsC5XDAvHoJzFCamcsBZ0y8pxlZVUap1HwUhxwZilQ701LnK6TwENdpnMRoZzHe7ef8CXX3+D8Tzj6f6EeV5wfD3j6ekZRIB3XKgkinzi1sEoQRbvpStyF7x093OuPJ85C4kIvXdaWkdCB5Ez4hIRIxBBiAoLMjUcmLrxGISktrHTknNHHs4UneL71ckz6g31DZPyW5I6ik3/dF46zKXskZ1HYiBmseVCR9j4ToODQcjP1dgRPc/4jIv5s69f7WwykixSlrvPpU+tDAPziqlnQ96qHQ4MZ5WTr4vCzrrMNQDo4llKdkIDhGpmUgOOLkCSfvuzz1cjrLT6ZLlew4NjXr3Vd5s/Ftld36vx8jTja6UeFQMYsINbr1sBhKWxttk39ZnLnco19ejL7wpJmz0tY/2Nalwx6hNUA7d5Jr22gAgbdTVuGiii79nnLwA2UIU36sVsPQFoN56IaTzjfDzKE7E4o4bNBofDlfCeGO/MHMEK7rWypkRa169/G4CWGWrBMddMmOooNCHfgvb2kaSMaVkWhGXBqC1xoxIl+uCw3++UZ0Ve0vKa4ZzHMAzo+x7gjJy47MsiALWeHswandQ4cxajzRL+qJxNUvDulENpi81mh3d3X2Kz22Po9xiGKwEJmhaeeMJplI6ATr3+Ejnv4Byh76QzyGa7Q+i60rI9xaVElljTNvteHMkGziUKDTB3pe3obn+Fm9t3mKYJOTPG8YwpBHhIW1GmgKhZtlRS9blMvBkKlhVhy2N71iLx8v1Lpwc1u7FdUOXrKWScFTDbz3pcPiMDAM1yyc04L/dN/ZwBmkuZu3qWZnglescoskrGabG5ah/J58wBVbkYUs6gBBCkg0l2li0INVD1OJOUMXKbnusJXecly4tqWc/6bFyekXZE7Vyuz2eR0cyofgKRoTEC0yQp+ptBAhfOE4bBY7v1mBfCtLRRmOZ+VIG1zZnoBG5+X79WMvL1K618VvpmNXRF3pjxRMjFUDQdIbLb1RLACh3L/mSWYEzf9wihEzLwbhDQOM9NGYYiFph4bmR0M+HmIDPtY9x2Jh9LlLTBuC1ZeJExqrMSS0p4ZEan+7OQraOyhrW6zJmezM1Zhcl9O7NvdXjRS80zCAGnyEIyXkVyZY0uz0i9z8Uv/wNfxlFBZBiiAljbBytdjgaUN86DktlisoAUl4HVcVTxk0V2y30auVQwlPKqrLBT2ZuXMuytLqQiGAznVVRj577FZOsjXWVtyd5usRhRE0uroKRc0wZUxkItpHqDB+2erA4Cx+vPrV+8/qHTV6u2G/xragfN2Vn9SgZe1w/NvuPV35uprdKyArFGbq8x2y9vZFZ+zwVuIUzTiPPphGVJijs8hs0Wu8NBsqbP0DKhKBknKp/qXLpGlzbZ+GjLKLnIfTCUgqAMVPWvnL/PPw+/WQ/7dUoJcYlY/IxxHMEs7wkvU8Buu5MsIc0A4JzR9z2WfkDXdwidZJR0nToFDEOVdTKZQgUviePCFQ6n1OB3Hzp4ctgdbrC7usF2t8eHL7/Gbn9A8Fv03Q4pZRzHM5YlYp47kJdURd/16Dpf8E/oehyubnB9+w6b3a48W9RGKSUwT4BzXrhkQwBpxoJkVwHcMfrNFuQcrq6v8e79HeZphncOyzQhpjPickTXe6TsMC+SaVkdPPKkQq6fi7wqi1f2Yf3/FuraGWhnFSAQi6NUpk/2SF4fhtW+/UV8rsZ+IrqQRfUcF61S7M16XptvlHG0t70MPBqGWr/TyONsAZKaTSh4qlb4FBlv9khDjSC4S/kMtWxLGo40LpoiOtdY5G++Lsy19hkYLU+wXDNGYBpzwSJC4cHoe4fN4BATJKGihWcVIhWcXZ9XV7HgQ30CbuWtfNaBS4MAp/zg3jlk70HIBYOWbLXm+YTU/O0122flnNXu6PXc9AA75CTJNPM8I6W4wkWrCzTTfWknmGPLxmDoDSYDAWW8EgzlNdXN5EgGEJmBDIQMBNfoG9SkHrtgm2RTIMyF3jDb/63OLQ+xsiUkYOQBBhIlGLqyYra3J4LqfX4FhvrVzibhTUFJp5IpSHpTA6mugJzVsyutSopJvJOZwRFAIoB9yWNx3oNIU7Z8KMLcyMSF/DmDyCv5pV7cABqoZCEZuLdX62WuHuDyy0qc2LwvJKYS3Q/OC5hFA9yybErvxMNurXs5a0q13o/YVauELb3cK38VFYXuSqouK4u93NN7L2VNytS/zIsQEKZK3BkKp08R6zAvv2M1gAzXciMhRBLA7Iq/Id7rs+uctWssXs5mvtGU9jWSqZZwoAFnlop8wRHlJFUwmwd4mfHXf/1nPPz8A3aHA969/xJd1+Grr77EN998g9PxiJ9+/BHTNOH5+QnH46vOpQpOqhECU39Gegzmxlv+9uRUctH1q02VLU9OljXEECo8qLMSSiI4Y4kRp/MZzjscrm5wdXODLhD+03/6E5iBl5dXPD4+IcaE8zQiLhHn1xu8u73BPG2wm2fEmDAvC87jpFl4CZwjHDKGzlcHVJrAibBEGeSiAi6EAZv9AV23wW9++2d889s/Ybc/4Otvf4/dfo/t9gq77RXmZcZPH3/E6XTEd98Rno4/ImfGZrMVssvQYRgGhNDh7u4L7PdXeHf3FbabHQCHOC04vhwhkZAFwUu23uFwwGazQcrAvAjHQMrCv7C7ugHA2F1f45vf/Q5xWfD89IJlmvF4/xGffv4BKc6I0wMexxF9yNh2EmnoXIaj2r1SNrXCqCYLsJwCrvt1BUgugQmvnVl2lnKuZQZ/y3h12rGSILKQHSHHDPaSDVlaRdsOZS5RshYlXIIrbk4aGcmEGaQ5V4XRPAzBwJ6U1cSYEOOCSbuYMRg5eeQgKdaeoeUqGtm1iBFL9wqCyDnHhM3Q4d2tR4zAcWTEKOOsrYNVrrOV0ZpjXQZIxXoxEEooGR4mywAktnJIOd/jDPz40wzvCXd3Ae/vpO36F19u8e7dgPv7CT/9NEnmqEaZoXKGmJF03tDICeHcMieJjp/kXGkwWM965TizxNquk65DuSkBT5wR28CNyotLPjYDsExcMlF2ux1ub+/Q9wPe3X6J/fYOT48P+OH7v2Icz5inM7rONU5F2wu0AoXCuZXgSNodO5Ko3LDp0RGAnJBiLgAOALxAUwwE7DogekKKDjmLAfY6R4nGkcxtIIeNF0fBkjOmnJG1zbFzwl8QFNhk6D4gi8ISvOuMjvSNEWqGhpy5DMqSyr4fenF4JYYkCcjfE2fhgKjQTVCLa8rB/g6vKUomEum6ECDODgbIBS1LVnx1ARAryI2IcSmcOnI9yV4CxAAlkutY63UpTVmQOBXuS+cIfd9B9l9QwGyNVZziCV/kYesMAkkTBrm37GOnaydH2OodDMP4imEsym5mKEN0kQ+Cnzr5Q8zlsypdbOZ0MjRrSnWt0So4xX2aOw3rcOR9dahxZiyLZH90LqBrnVxkT2Xih8vfLQNJ6BOagJ+eVTDUWFKycJCS0NplNF8wmyG2NopRsFnzIlv35gzUYTUv66Rr166GkBiRC15fZ/izx1/AuP/4EcN2h+ubO4S+w9e/+RZff/tbnI6v+OmHHzBNI47HE87nE0A1a82VOZKnscBhmyFYs4TNSMr6HI0rStfQRFT7rKQ4mSz9VN+XFveS3XpOZ0zThNPpDO89DlfXOFzfYLff4o9//hNiTHg5HvH08oppGjGdzgjOYzk/4+Vqh2UJGLY9YhKbZJwW5CT4wZHwKbpeA2U5I89Jcz3N0JX164cdrm+/wLDd4Q9//s/4/Z/+M/aHA779/e+x3x+w3eyw2+5wPL7i//2//7/w6dPPWPgJ/EQAPDY319hsdthut7g6XGMzbPGHP/5nvH//FULX43w8I6aIx/t7PN5/1IzFDn3Xw/sO2+0eoeswLcCSkmbiOJDvcXX7DsyMw+0Nfv/nP2CZFzx+ehXy44d7fPr0E3JecJpecZ4mbIITEuOiF4xgX8sEmyCGswCB4ivjnK1ZPsZLV+jai0wwfW9OFflOtQuobrA3L+dcSQpd5gXJJXRaJsts3FxOjHjdf6WbmGI2OWYVCMl+tYCP8ouXM9cAp8Ywl+Oai4MpxohliUhZ+Lfkg6wZbw7edYpxXCnn9d6s51Scpb7r0Pcemy1wOAApAXMCElvntKYLMqA8xYL/MppMcZMqVWDCQEB1pJhbRa5P7DCOwPffT+gCcPOux7u7HpuNw4cvM65vAh4fF9x/GiVT2SmLDymjABOIchmDu8TPrUOfCMhmTys4SShrRgQ4ZlCn3GY5I/ikxNcWZNFguzq1TJUTHLSCss5DFL/DYX/AV7/5Fl03IPgNzseM4/MZ9x9/wjyNyLyg77x8r+F71OVEbYgmvKTOi4Om807/BHgCOArvnHMmOwHPktHXEbAJmj2UhA8rMvCyRARztlGlfGFmRE5YOMJzQOdISx+rw4m1MZZlGLNNMaRhWW6c/YykPM+yx4kFy3beY7vdSIIDE+YszrA5S06m+UFMd5OdR/w6DPXrM5uUEb7wDBBQutyol24dGTOcS7BGQFmLOEvqr7YXJf1AATtOy3Zg4L0KMqshNqJDlDsR6DNjKJ+w96hV3Nx+AOaGZdb0QDJDoHVGXXyVW8eIebGzKsw6L/Z3RWewDDGoIWhRYrltZRZ6G3EU4ZmSbJgaDXXFWG28aOXgV4+yDb2xPuqt37zksK35bP6WMih6xcTYZYkfuPnM+ovrdbGDpJHzFEEJOL48Yzq/IuWEq5sbTT29xm5/hb7vcTye4HzANE0Yx3MRrLL01egq2QKmlPQ5y8zROsvlcy8qe4ma79S5XAN1Ku/FyGCO2nlNnJX7ww6h63F1dYPQ9XDOY5qkVI4JiCFis9lguxnUM05Sv07ANM0yY8YFQpJ9IEawOHCYUZJe5egRyEmHxdANuLq5w5df/x77wwHffPsH7PYH7HZX2O+vMI4jZk5wXcDmcSuEhUQIXVcyLbpuQNf3uLq+xe2t8DEF30lkLGXEZQEhw1EqGWZ932u73rbTicxX1/VwjrB1O3gv8me7vcEyLwi+R1wY83TCQzximkcQMTrP8MRCFq37rHruLxRfswnNHm835KXDCbCtk80tpWQHaHHIm1d7ZtqoizklzKmA9mxx/W7ODViTN9fX/8whtEtYaY2AOCpAWbIv61mzTAnh99LMpphVnuYqc00qNQYHssZruBoSITgMg4PzwHmqKeVVVsljOJt3VPG7Mj6aR27fE7BHyKWEWR44JkY8JThi7HaElDycA7Y7D7DH8bSgkk0SpNZGZRvMCUAmfoqeax3gZQxuzRG2krEaWBC9geKMTJxBOZdABHCRLQCU7qpQh5HtYc4Z3nns9nsMw0bI98MAMOF4fMX5dIRzXKLxSde8TNiFzjPD2dbTOUn1dwRQTs2e0RlW4O0AdJox6UmcUQzGkoRQck4ZnYeWJsg1pLeehhIU3Bu5Jco+rQDYPlMXYc1htsrwU7DkyaFz0tnIOwfyHkBG4ijtrW0ezVK53Md/h5fJa8D0kT5veea6H5oP6KeqFKiGXKuPvYJ+5bykJuiXm8xF/UlExRll+MHuLSB2XVZn9zF808pF4zgjGygUxAJlb7dZVpeanwANYrrC5SUOUjtPeDOW8tzFqJQgZMkI02NszhFq5pN1DlPO6Ej5LD6LGytAL+8Uh5PJ7MYhynV9JMgoLqcG8ijPlF3bNQtriGmVy3AxS2vgZAGSdrytcVmwDcseSCkiEuHl5RnzNOHqJuHq+hbOOWx3e/TDFiF0eHl+AZHTLJxZsHnDGdrcbSVX7N5rFWW6mCEdAjPqzufV3NiYzbFXwCrXvWfzy5wQmTGOIwDBIoIHA25uNnIP53HW4MkwDMgxotfscCKG806DWwvmOQomgu43R1pGyGAlKGe20CFgUf/QA/1mh+3uGncfvsa3v/8zDocDfvuHP2B/OGC/22G/2+Hp6QF/+e6/4fX4iNB7oZkEIQwb9Nsddocr3Ny+x3a7w92HL/Hhi6+wLBHjacY8TxjPI6ZxFAoQeCTPIHIIXQfnvTiZSqK0nLPQSxOVvdsieGCZE7bDEeN5gfM9xiVjmc44vYxYphEYgN6LWiQwoN3JjBqglV2NxwUWuK9ZPq2zKV1gaFnQei3TEy3WpoLXVidABQxpp0kjC2+rPN6e9caJ9eacfO5lHRftni0OrN8jseRXzysOCOueCrgkXJKutROoxYJ6E+UOZO0c7bxkZXed6LOlkANXO8LGRATFE7USpg3ar18NljXVCihOkMSHGBnHY4J3jO1eOlB6T9huA7qOcDotYOuEw74YV8WyMLykhlDR6+3egWEAHavhQbPP29FqRVEuWKH6AwCUAA3KPdTpziaf6lwxZ4QQcHV1g74bME+MZWbMU8R4PmGeRoRO+J7EXlqbr4y6z22/2rjNR+CduF5y+YwNTSSGY4aHcDzp42k3+YqhtnbmSD0sjNJAyjXrXPb5Z2Qo2cXF69JoDy7PYmcXQOGKCiEIRpVaRlgSCTOXAE4LjgkaUPnF81Rf/75udHZTy/IgWVWZV4umpNIEgixNMEnWiJG7yqGpGVKU12DeWkOCWkGWC5mnHAA0As4m+LIMoC5KuzgVT2jXJ6B03yJmdYCRdK5oyvqceig1Jlfv4WpG12pRyyEk/bv8tk0XL1PLXIichR/KyWFezb0dSrmf1RATrDbXyMJkI1h5jzxjMZGx2pq0/ucvLv3ndhOhXLMaSGacff7C4phrngmibDz5yrVUvm/fgZIUS6en4BzysuD5/hPOXY95HHHavSAz4+pqh91+i74P2O33WOYZp+OLcISZQrMzyrUMDs2hap+X6lBXz/DZ59L312m0lbuiBX8GKomA8/mMTz//hBA6HLev2lkDuDpsZQTuFgChJwZPZ0zjWcgi5wnH0wnD8IglLjifz8K50wi6FIX8OeWMUb37Uf8crm7w+z/+Zxyu3+EPf/6f8Ns//Bn9ZovDzR36YYDvemQA4zzi+7/+M3786Xs8P/8shOZ+wBdff4Wrq2sYX1LwHTa7Pbp+kO4GKRWi4uDFkRx8h67vsN1usdvt0PUb+CAZfDIfMtOZWUoFMyMmlBTYriccrq/xRUqY5xF+IJzPr+DlCJ6ekDgiphOAqKtXaCarQVCAkikwlS8tYPrMfmdwxb8MSBSHlPyY7MiXEwCuZUMXFxICaeLqZFMFatxKq8xL22N2GNZvAECTgly/Z9E+Wx9AnBCZWzBiStKBQ0DXWZo+FQ6CqOTWXgrU5X6uPaOSRjyPDE4ywV0v2Zw1YYfBjUevznVNybbnKxmadDGfqIq0+Jn0LJV50Wc9HRM+/jwKafg+SEvhTcDd+y3myHh6zZjmJnoOKucTzSVb3i1bS1b+IcemsKmsF4MhZIWoDkznEALDKT+gNyjdeNrMyUhwZR/EZQFIW0CHgO1uh5ubd+hCj9PpjKfHI15fnoSrQqkqTLaZbCmyhqiMU7rMKFF3ST/HyhAsQGIli2X/m1YaQoBk9mXtZgjEDMxJ5E/WTF0u66V8iVqu165piVTa3OtdM5cqu7IGDAOCLG3LoU0ZlVB40wck1adzjEiZJYMhAiCP7I2XqiXF/o9/VawiD8mQByHdQw6S+ShEt1ZarDqFq3wwH4uVaFZDqCJ15qyZtVCiUDPIbJ+7JgBSUErFYMrZ1Dp6ahCxOjlcs3djXHRfV1lrATjXnJ/2jEGvaNnhBNlPYICtE6zOg/yn2dqmL2C8SlBmWh2Xc4ASxBaBrfNUZAvMgKhY8ZcXr5nnYuwYRqCSbingm9ay2kQM1nNZRJbNpskT1L3eXqbMFtka1ACg7KvLgF37HVsHB2MuW6YZD59+Rug67PYHbLY75JRxe3uNfHXAZjNgu91JA4PTSfGpSWMGIOWqScnkAWgmLS7GIHMlut1K8NybByvylbk4d4xXzZkMbTphlbkHcDqd8PPPP4ltoNl5KTNur/dI+w0Omw5xnnF9COj9gmWecDqfMS8LTqcz+v5FOrfNk/DBssgXMLDEiJgSYs4YZyGOhusACnj34Wv8z//Lf8G7uy/xx3/4B/zxz3/CsNng3d0t+qFHjhnPT0/49Okj/vIv/4R//Zf/hsgz3r1/j2EY8Mc//gPe3b1Xx6R0iIsp4vX4irgkzOcZ8zIXaoUQOhwOe2w2W+x2WwyDNAEg7xpHncmMLBkeGcVp1G06kPe4iTeIOWKZJ7xsA6bxDCyvGOcnOGTkbkHns5AS55opIXPONVhV5E3FLKbXC4bh5oN6HhhSVsxR9n5Szknb+yC6kM68vobKQgClO7mQunPJfrFsu7YM13S8ZUeT6iVwLWvjDM0EoZLU4Fid7AA4ma4nkHI3eu+QWTJSUzMPKSYQhKCfs0NouhAWvcuaw5sJ0xSl4y5n9APBRWCcc0OnYPK5nWu8PRMVWqyOmTlHzLGaCx5G+Qtnj8SM42vGx59HeE8YBqDrPXb7HrfvWLPWgaWhF61Bs3ruTVK0Ms1kIzvDhLnwGjNypTMkUsJw1qoU3WOuVtGQNi6qHQNJuaJkD86z2NTb7QZd12G/36P3HRw5HF8f8fJ8xDSeQJQRAjV7XAJivKpRI5U/ws9Mmcq4CJqRbzim+BpapG1SE+hIApG9l+ZG1UELxKwcrM444sR/QmrjW4ml2dFsgKlZSzatwnbequ4vckJ9H2J3a5sl55HIYdN1yAnISFjSDGRGpIQIBzjWcdc99Wte/y5nkyn0XJxMSiJaUugI4IhMLIBSHzzrgWg90JIOqsa+gXNdLPHiWRlMnbxcviu8BOagEYeBMrMrcM05r5w61djXJyEuBpO0oRQyQEek3BRe2kGWiNu6mwk3gzMSymqAVfBWF7gq01W0TccjWQ4Z5Aid1pRyljbf9vzVuSXjytSm9LoGgMlaZWW3lciiHeKaPVIzlP72brk0vKvnvDqwWgP9M/JrdYjtHwSUNSV25XDIW/X6BkaJCJ336IJDWmbc//QDiAi7wxWG7Rb7wzW+/va36PoNrq9vMJ4XHI8v+O6v/4rxfIK1LKXVCA3Eo7ahboCkHtEVdDMDeP3SiEsBStJ1LKWkqfw16tqCdgA4vbzi5ekRzjlx1ASPu/df4MuvvkbXDzhc3aLvB9zud9gHj3E84/7hE06nI55fnrDZ9tJ95PiKcRrl2molxygOnzkmvJxHxJQxzgnjknB9c4f//D//F3z48jf45nd/wte/+5NkFnoxepCl5OI8nfBP//R/4J//2/8X/TZgu++x2+/wm9//Hl9+8RWmecHpNILIYb+7Rj9s4X0nbXY1Q6YLHbwn9IPUTO/3BxwOB/jQC+eAE+EpWQisxquCFnXYdUGiK8Hf4bC/xrwsGK6ucRrPeH34EU8//gtyHBHjCZwXSEtcM8jMqcEXm1PlhXZSWe+BNydhtW85m4KrRM6m6Kshvf6pO05kIVGTTZRLZLIYT82usy23Mo6bi1pEy9pJE0jW0Ywx+6O8WW1KvHcOCFK23GeN+qekXVUy5jnCeymt4VBBhciyIJFQyhjPC+aRsd0RtjsP5xje63ljlAypItN1UGxLUhShMmM0QKnR4yLPoeTdVdyWmWIGXl4iji8Rm41D95stwj5guw/4cugwTRnTMmKel7V8YioGtt2vgtIaVSRf59TGX52DLK11GyPQgUp0M8NrF1b9ju2JRpcwc8kqIHLoDoOQ4O6vcXf3BZzz+K//+M/4/rsfkPOCmBYojUqZg8uoYQXa6uj0TvSc0JoUI0++0+onQpv251Bb4G5DQPAB8yKAJDOLowkMeEIK1l5XIpNS4u4b53KzuZszg2beW91kAR3TPpzzquooOLlX7DuQ85jmCdMihsyyRIAT4AOy00YfFYLh7/Equg7GPcHIUTaSZwluAYzsAdI18pbxlq2EoHY68hrVFRxkGZA1MySzZBWWEFOZy3U5RjIOjkaeZJURhn/eZv7oWVBHUsoJ8zwLhrLyNs/FkW3vVbVbdSyRknx7LZPKDR50Ksu0DNopQbh3FVeJeBFdYfhCuEY8nLpGJXOgzkUxeBQr1vN9IVMLpuGCQa10xuRTmReTT2jes92lRq2RlK+cTY0cKffG28+1c8/NOO1rFsytTvy1wWEdGa2j0Hw+4+PpFUSE/fU1tvsd9vsrfPXlb9B1Ha6urvDycsTpdMIPP3yPcRwL/2UxTKHcg7q/LDO2+QioabZiesfmupUBNpeG66WEKyqGchiG/mI/1vl6eX3Bw/MTiAjBi3x5d/ceX3zxhZDmu69A5PDzh2tc7zuM44jHp0ecz2e8PL9i6D9JJtF0wrzMIAgWAQSLxJQwzQueX4/SLdHtQH6Lb775Pf7v/4//J77+9vf46puv8OXXX4ndEEQg33+8x6f7j/jx++/wj//H/47/+o//H3zzu9/gD//Dn3B9c4P/7b/83/D1N9/i5ekZH3/+iJwYc1zw+PSEHBPiJGWzMUYQEfq+x+2N8EIJDcEAVcQiqlUviU3D6nCumL/fDhj2BN95bLc7LMuCh/tbnM8Tnj/9FZ/++gzkiDxMSCFKeS/1IEIpeQckm7SsKajck9mc2+oYKPQTq80tHcQ4C/8PqmwUHS/rG1RmSNA2rjC4YTbhIkvKWZhqhpGdJ/1DUGO9JASoJGjEmbPCbWkJrMmVhqHMgQYkmGOAChbxPkA4sxJytmBpxJITmLPoJu+UIqYSrYtTwml2CGPU7nc+EDZbwrIA7qTyIWdNpm+CW+VPlaWtiL6UM+KQptIltnVSiE5yyCy1hM/PEafjjM3W4ZtvN9gOHlfXA4g6THPG8tOEZUnlvnKuoRiKCp4oy95gKClTVBli+ILrLqEGBzt1MDl1pq/8Apa9a5idqg25LAnTNMF7j7u7d7i+vsZ+f42+68EZeH1+wg/f/wCiDOcyut6tGleQoxKMlLmjci/HDO+adbSNVtZBg63mbDLbAxLi6kiakSVtELDEiPMsPog5Z4QEBMUEAk1J9444moLak2V+G9XV6vviN9BBOCdONNNjDhKfEdwnfg5mIPYDgIBpmaRhFWcIGy8AHzQQtDrV/+brVzubLFuDy06uRrm1mSTttuYoo3iaYGughgUa0FMvhdWHL35ZhZz96sLCuPzKZ14GDNYCy/BVY1xye/KogJe1c2Y96FUEuLlRderop1Z2YgMWmuvR5eoVIN44rFDH03qLy0+9XCNHPjs/q+lfI503H/6s57xs4rev6pCqGLY6WfT/mS/ea79d56TW7fPF+sm+iHGBmz2WecKs3GJgqZXuug6bzQYElqyfZVYlmOrlCcqRVTMZLvdkNbesVM7AYf1NmxVjf4RIGiDKqz1UAagqvpyR7Vk4Y55GdZBl7PfXMF6u0PfocsZ2uwUgBsU4jViWWRR0FySqkyQa4n3UEtiIfolwlAAX4DvCfn+Fw9UNDle32Gz36DqNkik/wzInLPOsfyYs84hhu8ew2WDYbKXULQS4JFlHBOHMEI4ONTICsNkM2B/28E4yXrq+hw8ezFnq6eMMWAtUuLKuNu+42OugWg7WdT0GZoyhB8MjM2FZElKcEfoOIXQgolr2UJerLvRqG5Pe97JEof6uEoLTxbGhapdrNuHKiNa9Vr8jsm1dKtfykjRnhZpz1F6RDDo1MqLctwJ6BrTDLGmBPeCcOMyck73smbV1eltCWhWsgSiwZbes7yM2opU6a0TKlWQonTv92wogree3PDW1v6vPvnLaGkDRcdgscpYOaCkC88Lo5qxlpHUu2/vWrI+6PnQ5zat1XMst43sQmV/3T3mi8nnL3mxlDZeNUXaBk45f5ByGXpxN3nss6oBalkkySTg2a1B2aJkrbmSsrICdI8nqlW5zaP4ocbdr9hLWOkLNC3iS0lz7XibZH4mFBFZSwa2vnbzk+q4Y5bba66wZvSO3JrXuZaLaDdYGxhpZVDnuHSE4QnRiVFsKvmRJNZFg67SEv8/LMNTKp6FyKWtaGDnhHSkki/KhZv7XWKh1iNgn64qt9VL7nUu1zdDI7N/AUJ+73wrT1eGiyNXqkRE5Xs28MrYyphXOslKb5nkvBWm7N9Hup9UH159vLbHV75uP1UdrsBuvvmVfqnCY3l7a5gvtLrMdz3hztSJ7uOCnNrC3vnP7VouluN0eRTbae3zxSxbCPaS4iJ7vJizLBDOeuiCNPDabjejRlMApga20leuZNkM91zvbLK0mptFIF9C9TObKUDJnYOX3a3Bjg8nNxkjMyEQFQ4WuQ9jtBT91AaETDLXZbEEknTUP5xnLssAHh26ZxWLWQLaLES6Js6PrPFxy6DZ7hOEaV9e32B+usDtcoR82GpSmkpEYl4jT8SidAJM4f7teHHmHwxW6ThqrgBr+UGfPKU1jQB6bzYC47LHdbqUUsOsAMOIyo3U2QTPGuGAQoASgiMrYyJH8ngjdMIDh8Oo9lpjAKaJzCxwWeA+ErpPrmtOq6PEGJ7U2TLOmpgHfrDOZ+LXz0exvZ/aM0yxBhlGutJaByY5V5mZR7AQDY62T9rPZi5fH0eZKNljdserYZ+m+AwbgsrznHIPh4DRIIKVxWpKnetgcGW+CmUTl+ZPuce+hjlXRz2uTtzqamkus5rC1uaj5ns1BPT/K+NSMoaxZJkQI7ceyMOaFkRJWn633buSwybHLMdUhFLnazr+stVvtpdUS6ZowVwaLKghN19V/eefQdT1CEI7nrhOn6TxNSImxxBmZYylNWz2F3LCOjQzbVblDzgKuVP6Q/oRskfIqOAftr1gcTnZ8DcuzVCBQJiQL0DYTvQ4GtpP0dm+3s0jNf6ZjVHtrBpkEEZkATw7BZUTXrDVjtX/5jbPib79+tbNpHCUKTNrCVm6uwj0vpTvWZoB0pyKG8y0YkGylZO1EGz4R5rRSghLpkhmetBUmiNR7rEKEHMAJSb3ZTrswmJe4pG47wGpwLcPPDmmtK9b7cj0cBCPM1JI2T7pDWBWtjJ0YSkrn4XyA8x3AUZ0ZXDaHwUDb0+sooRzvlhdKeFw0GuzdKsvKh4DgPbLvwKFyLHzutd7cEmluDZMKQuqrCPKCCS43lRrcF6Dq4iMrRFRFtv20gykfNaZ+ayHaOqKYGYklHTJDaOmdc+i1i0dOEefTK+Z5xPn4Ah8Crm/eY394h+3Q4fd/+COYGff3n3D/8AlxWXA+viDGCOeArpe0VooWnZEsE1vtAhMbIGjC3oxUE0TWCpf1p3ACAJQjCFJOFtSgl3RvUmJ5UVoxJaQY8eN3f8UPf/kLtrs9/sf/9f+K9198Jc6y4BA2Pd5vPoDAmOcF3/zm91hixPPTI06nE6ZpxMvLM1KstcjLMiMESaXeHL5Av3+PD1//Hn/+H/4vuH3/DTb7PbzW/w+9OJ0+vr7gpx++x6ePP2A6PYPTiOurL/HHP/0nDJsN+s1WUsxLlMehDz22wxbDMOCwH0BE2A1/wPK7r8o+ISJsdls8H5/0MDxASG4HdH4AeY8wbOGDR+EOMWEO4Hya8fz0BAaw2Wyw2+0wHV+w5A7zTBg/PWI5/ojb2xscfrNTI13ImVvAUU4foXbBIDstLCnkb05UC5tyo6REwzrYmVd+kgvDrDlhEkFIEeMsEYcuqFeGfL1HAQ3mv78862bK6LWdK1+X8mQqSopRS+tSzghRsiWcE4Lw7AO865BZspliSnWOGFhiAo0CyK0+XaJVDtKaVmTisMkgynCesdnImi8LY5qrAdeCIXtWU+iaswTr7mH3ZzVeXdY0ZgN/VE2XAkAjIbPDnBifPi14elrQ9R79JiDGjMypONmKUdkCNLXSyvnnGqWVsmkB8U7LerzLhUsgZ18MH9MTSdc7g5DMEGhS4nNWtZ8TUs7ouwFXV7cIXY+7uy+w219hnif88z/9N8QY8fz0jJROsi9cs5sN5XGNxhWnocp+5z0CCJ4YfSdcZ30f0HcBgYSzgFS2WQe11hHmlVASIHgCyDOWzomRlxnnKAZiQIQHYYoJGeJ4tFbkTkksbb6dgTuIYd/4OVf6AmpE2FxLqW5SB5MclA00c4ozjl0PimIcx6TgjnMp0WhjYv/Rr2WU9uqmzwGAk2agxFmaOziHzU6zCAngoogSxNhLyutlqMEymfJqHxOhcM7kmEtmhMlU02GWxZhzhvcEcoZF2kxtNSJbgK+4wPYHM2tmQMUVktEX4F0oVASg2ja8cm+wBClChxCCtGIujsYLCVw9QKoXqo6ugF8NksyKBb1yQVVeTUcOHtI+WgIs1BjseguGkNiSnAfnRM8FtOW1qKPkFSRCaQDQmsgrQ4rKWpE5CAq2EH0lhl3Nim5UQlmGooPM8Ue1PMbyB5OuVessFG6YHgQgTRNO04T5eMT4eoQPHa6urrE/HND3e+x3f0TKGU8PD3i8f0RKC6b5hJQTOucwDEGwj4+aJaxdzGBGDjSbUJ5Rqhei/s6pbBRHUtYSqMxaxp1sb0ctsQ6FLsN5mcABDj065Cxt2lOM+P67Z/z1L/8Nm+0Wf/6H/wnv7t5jTglJCbQ/fPgC3hPGccZXX45YYsTLywvO41nK7I6vgqHGE+Z5Qj/PMj4Gvv7t/4gP3/wDPnz9Lb767R9w+/4LuNDheFzgA2HYCF/Sp0/3+Md//Ec8PX5C3/X48osv8Mc//hn/6//2X9APGzCAn3/+Ca9Pr3i6fwIxcHc3YLsJCFsnJP4EfHh/jRgjvJeuxN47zNMJP373r2LzeMn6FE6qAc4HdMNWCPNds0fUvpiXES8vDwARrm6vELobvDz+FQ+Pz4jzEfP2iKGbsN9d4+bdFs6Rco1qyWSDZSyoYWeZCAjeVUoA3ZsQk6Y411zhmTVZhtLVDRCs4ohAqcle0Uwh6Tot+CvFiOi9YBkfABAcdQAWOJLgAwHaddOw3UXDn+bgMmVkUfBlXK0hn4NyMKYkfFk5g3xCjFmyTZ0H54zFOSmjI+VtBLDEDFCC98ot2IyNwZgnwT8+eHSd6Lx+gAb6oETqNuQqBxnWzY2b2YRmstSyfQkqEHKT7cZs1S96DkkyS3Mm5OjBI/DzxwXd0wLLMF2UkLrp4SDP0UyXUUuYrgEqhjKZ3K49stBmQB3Ml84NZ39HLaOzQJYxqRIIYPnX/rDH9dUtQggix4YB59OIf/rn/580XBrPCJ7X2A++UXlaEmyBhlJuLrgH5BAc0HeEPhCGPmAYengAObE6HNtKCdf4nwRD9TC+J8biHDITIguG8iSl8ETAwlwqmoRKxuvcm4y93KaqJzUzy4Jx1VZBQ9+RAE7KxxnARBg6B5BouuB7ICcA2p2SzEZunVf/9utXO5uWKMa+4VoDFMxCJrssogi6ICmvYuhUT8Yq20MXwFpectMCXCasdj0BZ6QcYV1anJFTsIB9ywyQQ+PUQ9cSqYnWbQ8BUB0FKdXU65Ua53UmBal7eQV97NAbAaZ1GnAOLZWgfKZAAz2Urce53LU6WPLbNG17LqdeVec84LgSXOJzm665tl7f6ayvvSgFDpWrtJGE9nKsxlL5nD1ZA2TW+4+av7WGQx1r1qu0oKrOX/XAWgttc7oRSdvKGCPmecL59UX34YD9/hqh67G7uoHzHnNc8Ho6Ns8hNTPSEUP2k2nEZmfKyKoN1+xnM44t+07JcHV/J9YE85xVAAqeFV+pK88uaytKi5cFKSUcX17w8viE/dU1fvfHP+P65hYpC4mlCx67zQZd8EgJuLoWxbfZ7HE6HnE8voLIYZ5nOHXcek9IUQi7r29vcXX3G7z/8hvcffgKN3dfAo7AzqIBHZxzSCni9eUZp+MLUpyAvGAYery7e4+ul6ymlLUEVNc/OI/OB/Shw2YI8N5hv7uFnZysR32OEdM8ok21Hvo90GX4rkM3DOKMK3XL9ZVyxDiNYpjtJdLXhR6ZpTXr8TRifHrGdjMI2PCEWMSByYOL+LdaKPV84I3xYBvT8oguf1uOOCrZYbF81HlbTw3rs8iEhBDAmjJbZZGNlct5tv2yejWgwWRDtULaL1rChDpqYB3h5LlkD1u3DX1WNue6KNBF5RpnVhBbnzNl+UxWh5Ejqc7LGUi5AtKq9OqcmsPEuGKAptsGqgEJaPaYgZEiGfRMaqo1OQ9kQsoZx9MMRxmbHQNOItlgXsnIasOu0BJMYq3Sq3VdnEY4wdByItUpNhZdd4m8aokeatJKSxzqCKvIpw9eSHv7AdfXtzgcbnB//xEP958wTZMGbbKOwwibDGAwWn6s1qFn51QMbkbwGcFLdxOvZVsa9G7KEaqxTKgnwEO4LxIBwct8xQxEBlxmTDHDQ1r6WrljCZ6U+ZW5prJfgTVbf6sP6oKJ3FhHik1fBtWHS5SOd9kBgv1ykVVtXK/e6z/2lbTVvDyPwk5zUCbh93Deo08MhBakQ2WI6JHCL4eWN+HtM9h+Zs6lFCkgoJ1dAMW4d47LQZC5bGkD2m9UCWby2xyBToFhgeWFrNyy0lS3mvGherQE0vRPzrk5n3zxc/WA5X2296iW9fiiX2vQAiQOjva9gseo7rJWDLcZV23XX7uv/ObtHNnfJTtjPX7hA6kyusq45krcXJ/rMXiTD2IQtoFf3PwEKjm57XxHpDxZEu2PccEyTRiViHroO9zcXovjot8CcEhLxOnliAWMGTIO76SboARfq/wrvCpKb5FNVjMjI6nelxGZ/jVMZSrTemcYfyAz4L2dd3loazfunEOMAOeEGGe8vj7j+fkB+/0BX3/7O1ylG8ErDBB57PY7bIYOu13GbidlWJvNFqfTGefzUWTIMgNUZUtcegAO7z98wG9/90fcfvgKh+tbbHYH5JQwLwk+O3S9jO90OuHjx484HZ/hvcd+v8e7d+/w9de/gfMe9w+fcDwecTodMZ7OYkNkkclDH7A7bMSeuvJlriyLZ1lmvL6MOgfqRN7vQcwIXa+ZVpbJpHtA5V9KC6bpDB8Chk2H3X4P33mcxxHzeEbgI3I3oe82JTs5WYn0ahPzmy7Odiwtq7QGO5rzYDrImSOVqqNDMYb9jgBQ1q68ZMkBtZTMHOZQXCPq0MO6ZFGzR0wuOfBKpq2yf53TRlifkTckXFKsMkGcpk73unQX6xjI2ZUOlVDnCBl3lnKfGT6QhyUgk/KTKj7wEjAQ3UzCv1V0eyP+gKI/a9agZdHac5PaL1QyD3LOYk8TYKSPVmZn98nssBhpuAdCYPS9072wHkOxFclmGcXOJNJAvgWvnFf5qs5moGQYlc6ezfVkz7vSXdkwiMkTgaHraoShH3Bzcysds/se3nu8vh7x8PAJ8zwr9Y1rnoHKHBrGX1Gu2D2YC92B85pJrfgpeGXEY7FUM5wEh9BgWc66/ySHhcDIJNdBNseikIUTid2YuNr5YtOp48oC6EUBrDYsSoXFxT5nGN7Meo0MUswOAjpPYHgsSRJpctHXFdsWV2x7tP/G699dRmcZNjZiaVEr5RfGXeS1lKZse67ZKo4IUI8vWxZJarzMDFAjcEQpims+K4dMcQaooU8qbEMIDUfA2wk2g6x1egmoqXwCCkOqIHQa/SpgAwV8G7hxRGAnm63zHpJgJZ5x56hGMbM9T83SkLXSlNk33Ahi6GWOmOYTjqdnnM6vWBat4dbsKceWpdV4snVz1JcCSDEdV2trHy3JSs35aj/TnkmdiDoPdg39pAhjLoZaa8SvQJGtSQNEGoRdlcAKdHMB3Tacokh0Ds+nV9x//AGhHzDNo5Cug/H+7j3meULnPeZJUsbn+SwCC9o2kgErGjYGfhmbPFeMabWHTPFAjfdUfmeRXwayEgXqHDtmJdAXQ5tcFWKAZAd2XQfvPeZ5xul0wuvLK56fH5FixDOkuxuRh3M9AEmF946x2/Xw/r0Q5E43iMuMaTzj6ekKMSVsrz9gOFxhu92JcHTc8MjY4jDmacLLywtOpzOGzQY3t7fYbAbkFMHZI7gBIXTwlOHhQQycXl8wHV/hifCTlz0XfM3I64ZBzuowIHSiAIatcDF4cvBO9vT59ASYg9nIxYNkXHWdx83tFZxz2O4HhK4D5wXPj/c4vTzg8f4Tzk/32O23SDlBT2Q9A43npjiZTLkUw/rSJGtOUiNP7KcAj1yVaTEIUA2gplyuZjBmZBLOk5ZM3geJKtg5do2BUU5jOSeyqRyRRAadKviVhLFjJBYLOcDDCTeMk58immWPdypLU0olimXlfkTSWQtghOC1Qw4U6DFyAqZR7hOCdKUz/qe1nEAZFWCcenKNMlqV8Xb27I+MtbjNG+Ch5xEaRLB8C87IkTCeLXIuANQcW1C5XByJzQ9bQ75Yb3tmcpd8KTJ2iRxlGQG5wk0IQIxuvUfOGVHP/m6/BzmH/f4KN7d38E7k1MP0SbIVl6Vmza7mqMUaAhpNUBvYtzGzCvmy15ymTycGO83qtOyhXEFF2W26d0nv7YkwBIfAZkjKHJyjZHMmSFl9GxBpxXwZU7MlPnfyStZa42SyB18Bbyi3lHMYQoAjwhyBRfd4YoZTTsf8K4HS/xkv2x+Om+xEh9Lh12knvUoAul5j22PiSDX8Urkw2zR/mwnbj/b+sizVSDJDAChOHssmsKj7+vv0BkNZ5BZoeHhMxxlXk2YSXfiGynwQana4cDd5cBP0KB/WCaPGWK1za/wZ60AWW7AySiOJl5cHnI4vWOKMmCIcghjFqv+tRKvADr4YNKqMAYD1r1V6KJaqMm6NaQRrcQOqCMXYVg9NXU9xZufisFPjuYh2NTK4lUG54PUyRr7Y5+X5VHIq+WwxTBkStPpJOr1tdleK7R3uPrzHsszoXryW86bCeUrOaQOEXBv/mO4FF9L64ihG1k6XdXSS0cTFGDKZYtl58shKGk4M5qb0O0vHKYDRdV2xCeZ5xul8xuvrCx4fH5BTxHj06DoHsAPD6xmLCB2wcwNCeIecE+bpCnFZMI4THh4ekRnY7q9BQRzZ0zIjTBI4QxbnwzRJJ9TzWbDbsiy4ujrgsO/RhQ7Pj09w3mMZZyAJZ9vghQLh6f4jjs+PUp7s5VwFL52DvZY1Ou8xDBt0XQ8fOsmo8B7BMTjNWHKUBhNO+WbVsBbnkcOm7/Dh/a2WaXcgMKbxjIdPHzGNL8i7Ezb9gtBtYLqiDQS74ohW45yk7OfSQWPGsew1/bc6wGqTKNMKuiebbEn7otlD5nxs7yNNTGK9CkE5JiUY7V1FdHZKV/pDX608sbFfOtlX/1IMQrly8xg/qyMGB612yBnLIl0RheddHmLxDtnkPVmmr9NnAuZZ9G8IhM3WYZwY82IY8qKShVq8V5/W5IH8Xd5ruz6XZy4dRhS/KGG9UeMQxF5PkTBzDUaWzHNAMn9cuzaGO6D6zZXfmdjSzWS7SM486TwUnSd5W5mydgGuqyC6g9QvIPpzv9tL04PdQQj0yeF8OmJZFhxfX8GcNbip6QTGN72ycqtcXb/aUroGQ5EEzHJM6qvIQMZKP9q1LYuVSPmoILyZQ/BILNlvMWVkZEzKxSicTVTKc7nMUz2Ta/y0foMhGW02Fmu4thpbMwdE4ggL3qELQe13za6GkJjDZQRy2qX63379OzKbBKR49mWDloYEevi9l5roruuKFw6qAMTzrCSFzEgcxeOnDp+CvMuGr4aJZJ4wopbgpWwplMJRQ4407bCDkZA6R41AWTuK7LBZBwOnGR0iGJVA0UtZnPddMXZLK2GzbHSO5cB5dN5j6DzYPJxlg4hRlJRHx+YEqAZC5bIQckv7RWbppnM8PePx6WecTkecpzOWeYZPgGfzlmukniWllrk1DmSMmQmgtN6UivoVK/3S3n37MkBl5R8rMCYXsiUlsgpnNerYrZCPRMHaNu3rWxWWf1QQVrzkOk9OpZepg+enezw+fETX9zhc36LrB9x98TW+/fZbLMuCx8MVpnHC/aef8fHnUSK7VEntdReiEm2SeKmZS+mm/bExM4s5bd0orPOXrHcsFpZ09nJFUAm1iT6HOmv7vsew2aALAeP5jOenJzw83OPnn37CMo84vXzEMh2x2exwdXWDEDpsdwcMvZSVbb78IEaJ1hidTid8/PlnzMsCdFdAt8fV9TW63kukUFMqM6lyYuB0OuLjx58xja84HA4YBsZ+v0NOM1IkdP4am2EH7jJyyIjLgvsfv8fx6QnzdMbx5QnMGX0voG+z2+H2/Xv0w4D3X36Fd3fv0Xcb3FxfoQsd0pKRlog5Jry+PGCJGc4F7cbVYXe4QdcN6IcOh6u9RGaDEt3mCR9//A7Pjx9x/91fcXr6Drv9FjEt6DjoOVgbI7ZnDAgXRcKXyLzZi/ZdK3lt/p6UgF72aXWEmkKORlJOleMi5yzdfAB0XYa1UO2GAcwJrACOLPuTUZw+ZUzlWfQZzd+lNaolUozKtyDdK72Uv6UMSqaARVZZFxbpxKNAKWUkja4tM4GDOOG9ZwV4HpkIMWacjhk+ELZ7j9A5xEWcoyIT3pb81lLgms1hJdctYGqBaSF/b5wqzMar4CQ7hBmcpHVpjBHTtKjxosDXGSk4FaOsgFmukI6clh41e4BcGyCozqYKJqRTmshDdWJnNDUuui8AIAvv2c3NDTbbLQ6HG9y9/wIpZfz1X7/D/f2D8qZNyDmprJP5KIGgYmzbPDV7hOq8WXcX5xRMeI3WpoScCcaPYfJNvoPq0IecuRwjKDM6J4Sz4k5kRBIZ+TIv4MzoOmnlbB2TbP5yIXRuMvoa8c/tE9iakI4rWbBBr2f6XXcwAegcYdd3iFmMz7wkEEizCeXMO+LWS/cf+rJosO8I5AKKwmUu7nDvPbouoOu86kQ1tpM2EoBE/JmEg3Ap7YBY71Gd1lR2rxjmrdFjGWvOOfS9OPulnNsXxw+p89UIoGuUvEapi0NVHVUEoDQPKMHHUOVlg8PKQScpKYf36EOHvutABGy2W4QQitMTMCeFPNMaxFspSJvBoI7cOCNzwvPLA7jLOL2+YpxHLHGBY8l8bRpDllK7Mk51vtiJKqUR5d6febHoUkftOeSK/8AN5wUVGdY6mywQmpycE2dlNyTkssUhZnNqKoIb/FyG0+Br+54ad7JmpAEOczYxnh4ecP/pHv3Q4+b2Hbqhx+3tB7z/8ndY5hn3n7aYJsEmj4/3Ii+d1wYKsnd1gGUtkLPs65ibDtD6+2ROACuL0SxxCN6L2pFNnGlJ7ALqikPT5ErXdehCwDJPOHc9nA8YxxHPT0+4//QJP/3wPZZlgssjwBH9sMFufwXvA7b7PYZNjxC2GIY70dOZgAwcT2f8+OM9lpiwe/ceru/ARDhNJ2TvJSsUcnZYz97r6wnPz89wyPjyw3vsth2GfsDPP/6kGfjSGSswYdd1WOYZP//1L3h5eZLxn1/BzNhthZpgu93i9v0dhmHAl19/g7sPHxAccLW/QggdliUjLicsS8Lr8YwlJvhuQOgGdF2P25s7aTaxGfD+3R7MwHkGYmKcXl/w/V//FePpGafDgu2Q0PfCDep9i5tqM6Lq1KjncZ0xpOWO5fxLwoIlCHjfUAbYGVCurBa7gEiMZdQ9Yq+YopQBO0IfKjWFwwC1+PXs5SJ31pnK9VVklP3Onml1hsqHJThNRrwsz+uoBo5zEpk7z7M0s0JGyoTkRUZ6L6WSxpVp2isujPEkXWb7waHfEDJHnE4SYFg3MzBHeeswgJ65WHT42remGMpbNze5njl2xJ5nBAaALJlanLEsGfOo6QrstMmXyq0GP5l8rpxVNn8XGIrqs0iHX5V9NhaykjqWJlK2fjkXzCBDFGkTQsD7Dx9wdbjSsuweMUb8/NMTHh4eBDtBcLbZdzJ7up8tSEd1jtYS3saF4kiVIInoiLhEyVjPaPYv170Fw50yT85wvXMg3yEBOCIh5iRdw2MEg9F3HbrgNUHB7FLfDLWOstjy5d9cflb+O7Nds1INmbtPtJEXlwY6dtgOATFJ1mhKQsWyaNY7aWbXL+rB5vWrnU2fjebr72o3NlccJu2eL1EaXaw6IfWwM+ombX5V7lWmqyyeTIsYWmsQ2z42v8GSNTpXjc+LcdVPlkNcrn/hCLGDSgC64LHZdMrDoL9VbySzlDMxKUgrQKtulnVU0jYJ6yGfMJ6PUj8+TRJZYl+rQFUgF2Gs71XAbrO8FkY6wc2E0+ffLu/pWtBnr/Tm8zL+WpZG+sVqlPH6y+26N+9R85m32U+2L9v68YSUJKK5zBOYhUwxJ3H6hBCQe5Ya92GjhNqxZJ9IO0jNZiAShxBoVe5xuV7NI1/OQBluVkVnabryLDLRBvrs2gbuJU04FkEBEoUclwXRz4hRyHBSnJE0q4+1BpdInKQW6WEGcghgMyY4qUJqzp8ONnMu3WBAVNNO9T/OWcYxL5jHCcs84/X5CS9Pj5imE47Pj2idTdM8grzwCnRdD0eEZbvFphPnGrFGGbNwH3mSrElJJc3gFJHIqWD3YO2qQAzEZcE0njGNwlk1TVPJADRQ20auWsOn6hiq51AVytv9vF731d8b2VKV7cUeeXNBO68VRDVQDZfntuz6Ik/xxliWo0CXb9jtxDFiUJHquOWjlslgT6R3tnGrorNuFiujRs8hszicbC6ds0imZg4VeVuf9K2cXs/RL74aPVSBAL35jFyFiiwSPSA/TfGvRtTgSoVCRedRMzNrHWK3a3SkE+4g1nIZuxc3gKbVLwXIkzlVknQjWuYSbGmme/VvmcP13mzno2532fCiO2vk2TbfJVi5uMHq/racXufG6zNkyoWQ27d6aKWc2zmmN7dcHZXP7g3S/6mBfPExKxMCZcm8TrUDW+V6QDEo/qNfFZ/UHQQlajc047xr1slS3SuGqo7V9srtHmicMCWFvmbEVJ3TGoTU7O3PTLStE7XPAD17jczU9y6fuc3I+Sz8gGZlatbqZtNBHBeq0wkKstGUA1mm5FvcUvY8C94S5yxjns84nz3G6YhlmbDEBR0JFUErIxltBLigUz0fXO5xKZOB+ngluGkj+xtbrJXp9rOVt3buWHUdA5qF3mSslqExVjdjfnvrz+CTIouaz+ScEVOCWwjzPIEhDUyyljSFLoB5QNf36Puh4VnRK/F6T1jww+50qada7FrtAZT9anNSKxKUl0sN0sLjpPe0YJ7t+3wxrylGcJ61/G6R99IMn6RSAZwAUvvCi40TQgeGh5X2M2fhDIoL4EI5I7I/SQI0MUFa20lAhVmMSEcOSFLKNJ3POL++Yp4nvLw84fnpUYKKp1cALM1Z+gHzPII8MAwDhs0AHzw221Ey4fte8BMTOFlZjASqpAttQlpmRCKE0AuGYigFRcI8TYKdxjOmLsJBHCXWXVmmleq5L0vb6LtWxgArabKWf+1m/LziX5+Bt0eovVdG1syNJpD1Zn/Z2dK99Qugw2Rb+X05QxeyzfBe8+xVHJnMs1vY2W5kuZV1r3R6rdpJSbJgfSCtKFrr8TeC581TMNopfPMJqhimKmLBaAX/kclA/cNUZWKDvVoMZfezkrw65jUWafHn5/SGfa5wTpGDEa6sMc2FnW7rkhkpRcQof5I6buz6K+za7q/PYbkyh+Y3qP6DgqFsbZvrtdO+3m5UPkRcm7QA1e4DUW1q8sYwfvuyIGd5oF/zavEryZqVvQsJagR1SOYckVM945moaODPaJk3r1/tbNoMGwBA19UoldeBdl3dtMGHspDmoeaUNKJhGSn6nhpMJriXaO22bR5IhXxAUtDNLGSgwufiEIJGNlTAWwaPu+BzqnXdBCk9sqi8ryYVo0QTHXkBgs7DuyCk514ycizCKtkJGSAHdsD7Dwcctl9hmmb8/OMDzucJzA45Bp2nAO+9Cvd5LQGYi1EPqimHRqT46dN3eHz8DqfzhI+fnhBjwvurd7g9XCN4B3RVqUbNIjOGjQrKdV5bKwpV2F0aKgUg2iFrAT1VNcHmmPnMhluBIf17RjWULXpqc9GIPbSKyIBq8UZbp4nyn8F1EZTeO8lBRsbp9AKQwxIjHh8e0PUDrm/fYbsdEL76Crd3HzBPE37+4XucT0dwWoA0AwQEJx2hUpa23uRY07TluZ2XrAnb15IG2jqSNFKnWS3iwGFJn3UO3otCcSpwrbaXUIFS5oQYIzabDb766mvM04iQJhxZiASRIlJOeH0c8QqtHe46EDl0/QAfOsTImJaInMXBBABLinh5fcLCGT4M8GFA1u4fBCgHwYx5njHPCSlmAAG7jZSwHZ+e8Zwe8fGnH/GXf/4njOMZz/efMGqqKpIQ4oagxHahw7DZw/mAzbBFNwzY73f45jdfY7vd4tvf/hZff/Mths0W799/KQSaWsOcUsbx9Iz5mDC6APgAIgc/DCDn8dPPP+Cn7/8VL0+f8Pp4j/F4xPPzMx4fHxCXBbvtFYZ+u85Ga17k3GpPWgp/NlH6C7K0GAhoneB1/TMYpXVGexFV1Jb5IhH4qONQukO2+1I1EBuwYtcouKlce334CFxLZPX91uaz1O+spXzleRkAR5SQub6fc0ZcRPGsMxoI5CUFfJkZXWTs9oQuSKbnZuvkdwtW5WsAmjVpVbTJpc/N/OdAYi2Fs5lhELIjcIZmjAY5rypz2AAUIHpJdUYsz6xzRA5dcI0RZNlBwv3Srrk9l3OkHAOsYMy4cdAYP8qTptkfcYkYTyOmccbDwxNSznh9fsYSxxK9ZY08su6prH+XMgaT3drx7XNZZERg5bbwziMEkaBZOYUKL2KZTzTrT2o01j3iQFI6Q4SND0hwGDPhiAWRCZSzlIp4dXwr9+IvujfazWlvMVacBc55lHImzrUEyHi+GOhdgAskmaZk+1ocpImlgYOU7P8Cevs/+dX3G9EpndIMEErGAMGB2AisCZyjNstIhSg5pcbRy5XawIxqoM1scmVdfWMQWYZTCQ46h6B7z5EDLEKNDDgHK2OqxocQzHvTbfqZ4lwxYKwp+lKmqR1KnSule+3yOpJSHmSHL7+6wWH7FcZxxg8/POB0mhD8gBC2itc0izRFLEvNdjTbsJSPkYThck5IPIEjY/z5EbjPmMYFTw9H5MT48t0X2N0Ma/OXs5D4CzotMhfMTZZ1sSrlO+W+jdF5aVg0bxFRoxbo7ecuDCe9dPlUex17/nzRotvWQ/5Sv2cBL6CJSqtMY7sPAQ4ene6dl+dnEBGmccLj4wO6rsf1zS22uxtsdlu8u7vDPM34+PPPOJ/PdnPBMbrXktoDxGJHkIPKW5Wduc6JtaHX5lxFR8qwNZNF6n+17NSXLFMY6bLtVe+1ZThht9viw4cPWOYR52fCMh0lO2WZpLRyPgGKH6V8xCF0A7zvsURCyh4gD+SM/z9xf/4kSZKciWKfmvkVR2ZWZdbV1xwYALvAvr2ekBQK//4nJGWFFHlC4ZKLxTWY6enu6jryisvdzUz5g6qamUdmDxqPi3kxU52ZER7udqipfnpTnMDTiPnxEZgjUjeg6QckbuCaFuQcQkyYp4CZA+7vHnE6ely+SOj7ASExPt3f4nQ84dOPP+IP//hbTOOIw/4B03RSZViiuZqmlTPUNOgH6Uw6rFbohgHb7RZffPkVVusNvv7qF/jyi6/QDQNe37xC23WYQ8IcJDLy8e4DQkzoVwOG9QopMu4fjzidZvzwh9/j7vMHnA4PiFPC0DFevLzHfr9THiDGNiyMSSVC36KUssGQWZtxLJl50uKFIi9N1sg/yzZhRo5EEjxshFDoPutISTJk2Dl4vT6FII5lMEiKHWUaMtrMZ4locWbyOSWq5lnpO9VFRKSdrDVKmiHp6BVOWzrUjZ6Rdd2CSVXfdUAIjMM+oWkJ3eDRdqJnty1pdHmBJ2YIycYTMxrYWTYeVa3dOU+x2RGfJ2DlG8qp9FRhimIEsfnGVNY5xvoOikmamteh6GpUl0mwexpWUh1LcUdKKdfFNSznvEOj/HK322GcJqSYhP5Swum4h3dayIHNKEOlbnTm6YbK6zUqeqVdJ6V9WLu2ebSayZRUh7c1qtff5pTXq1p6R0Cn42sdIXgxGsckaxoiw3vRR7yTIuG1Q2PR6MSYeKa7Qr3ZQKbpm9B5QdOSzdDkLNLOE65a0X93B+Co9woEqT3FUp/z50Con21sajRvr6SbqRAh88ae5d4q8ZsF1xhHCZUth7hEHBQLur0M0DMXGxpRqQUgtaIsSkOEk+OkSvXyoBeGYoaUJntjUqyjC0wYq7DPkVuVMSYTo11D2G4GvNhe4XA44P7uDsdTzADIako1jZfNCoSFYZXNIFHyk2UZJRLquHtACAccDhM+fdojRmDle1yuLpDIomJKPQtdvfIAqvYG9dvPMNra6LT8T3mXahFRDpHQ+Nm1tnN6lkkV5fO9LsoxsjnqiSHMAKVfKlG0+JamlMAhpoRpGpESYxpnPNw/YLO9wMXVJbquwWq9hW9XOB4OeLx/wHgawRzNqSVARtszuSTpTiZY6+gsUehZ0mG0MLh52MT7VqLOogrjlKJuC0lUj06elVmYAmUCtW1bXF5eYR57HG/XCMedrLdGmMyTFA62fSDn0A8rNF0HJo+IHoDPTCimiNN4BDuHfiCQa6v0Tjm3MUhXshASYmAQPLqmBwDsjo84HvZ4/90f8N//2/8bp8MBh8cHTKcTvJPuamaxN8XXkRTYtL3ebDf4+M2X2Gw3QArYblZw9ALbdYftxRYxJIQQMY4Tdg9HTIdROnpBjIl+WIN8i8eHezzef8bu4VZqJIwjjqcTDocDvHNYDRtVdp/hC7ZgkDVzcmilEVESej43eNR0yWYEqkR0/YwzKs/7U7/PWt9Ly3ZncMV2g8rQZPtXG5zOtJuMD2qfHAPZMy5vljnUPNbSKOWuRajb91iLXErRa/MyU1ZcYgLmSa5NUTxhzjm0nYOL0j7X0kWerpeNqTbwEYqX7KniVd8ps046+5QsAhaq8CzvDwCSJa/Pj+nsvpSL+uc6bQagyCKWjKdVddxMGYeGLJtuZzSmHvlGNyyFiDkx5hhwmiZN29WIS4YYU6qahSVNT2UFW62cooieLbSexQI6nBpac/oVAViApUppzUtaCJgY2p1F6iR1cAguIbF03vMKQpN117LCzGejI+BJ7ab6GpuNy9+3KoAGkqhsOwENOTROumSd5gZTkAjOEKyBA8MlfnK2/7Ve3mofVI4vr535HDx87kIZcjSBFWlPlVJeA23by/P6RZa+kBtR5PcJ5mST2iJW47JOGyv0WW6q9EQFDzELSuZUZPUicoqxwGqFx+gNoXKbSHARE64uV7hYX+HxcY/3P37ENJ8AeDQNsvFA0lSWhia7Z21ckTOSEKKk0Z2OD5jiAdOYsHsMYHZ4sblEcaKdKYbGSM5Jv3DC8qyFPKFnwXfJmjOsYkbApeKxxF+KMc+J1PS/5VvFBFbjqycCSJ2wTp1b9uXFrEjq+jmPGCPGkxi7p3nCbr/DZnuBF9fXGFYrDKsVwMDxcMT9/YMam8p9LTXc6E9SzbROEjGgaeTJeM9inXRMRlLMWn4jgtmjCQ7QQvkEZP6C/OzShZCI0PcdLrZbzFMDHndAHOX+MYCRMM+S7kQQiElEaIc1mrYHU4/EVxr1xECM4DAjnI6gBBAcqGmFj6uMiSlpfdqAwzEhBId+GMBRsNXD3R0e7u/x3e9/h7/5b/8V43hCilKXz3lC1xqvK//ILctQbC8u8Itf/grb7QUaEK6vrtA2DpfbFdabLY7HEYfjCeM44e7wiNNpxHhaYRxHhJBwd7fD8TTh7vYzDvtHjIcdHDNCBxwOR4zjiLZt0XWrvI9sloQzWVK/pIxEALKRUHmEGZyVVxgvN13JItBy+hSZMl3wSq232LUERkzqxNMSLVDZi4Xhp+CMxfk5u6fRVE2ONXsw3Giy3jmnhiYuBFs9q8hS5PEIfmLVEQAiSY1KAdr9D2qQIXjJNAYAhFDGwfmm1RvOfjH+mGdxpvPVTGSBePJ75s63SZDPkzjDvIIXcwZGeWJZ36rmEFgp2lm0DJQGBO8t+CiL7sGVTLLoeokMIpCCkNPphNM4IswB0ziB2c6y1qas5kp56czxqILD1ihPQ3m2XiI2EHmuVxkqGIoBsvqBhqF+IsKsIkNL6XcENFbWB1LiwbBTUnxOhtlsqLaQ9W4+Ie/lBeW82neN/qBYWWW9F2ySmDHNAdMcq7HIGQ8cC338kde/yNgEFC9CBqpazb5SRdRwErMnI8S0OFR5gY1pWPir93C68eWyOu1BiseWHO0qZW9hjLANLnnvRtz2XBG4qkTpMxe62uL3YlgSD4xZV4vFXC6MIJoQ44jd7gF3dw8gGuCw1ppSHkScvY+mGGTLqT7PQGBM2pKcI1KckdKIxEEjEAzzC1FwJZCWBdRM8zIvUaZQ260F66VMeJVltyaEfBCrP+0jA8D1t6qxGFNMRLlrYKaaDA5RKt/rZ+KJs7xjV/Yhf6cIkfo7kVlzZ11ZBwbmacLtx0847PYY1lus1heIMeLy8hLD0GM87nHa38sez7NE3CWGdZTzhKxE2j0JOm7nBWwA6plOYughhqWIMVsXCDNULA1vdraappFW1Sw3Jy8GS4mWEKXJOUldAbQOFPusgIAERIUpIZFEHJAHXr24xMvXv4BrB3RraY9LtifMQJJaQdv1Gl+8e4fTcY/724jx1KH1A+ZZ6i18/vQZD/d3eLi/RQoziCO6toFHryksMkeXjaEOhFZoVGt9xDjj/u4Wp9MB//B3f4fj4YiLqyvc3T1ge3mJi4srXF5eAXDYbNdYbzbZsz+HiM+3jzgcRzx+/oTT4RHjaS/nCw7TnLDbH0HkcXGRlF9wOTe1ALXitrq25Kx4dh1hhOUePRM1AhWQZCG/+RyxnFE25aJ4X02JS9pOVISO8SbOh4P0X61Q5AhE+1+lOViEz/KEVwDK7ql7BOfAvgE7zs6BRgv2Eqyjl05AawtI5BkrOKhSgPTnHCLcKGfBe+MUqQJXWIwNNnIu95CXq+Z2BpRqHsOAtfgthjnlDQukaKug9zNeAo02O9PAlnyuKD65bpCCOPtefhRDebNX3rV0asBJNInZ0XLhRq1J4HQsORAsZV8iaoCwwDCVTHoCoG2MVA+QUXfFEtqwNMhST6k2aqm1rcxHhC5cAnwSb1fmJzp2JqGDmCKSA1hQK+zM5KHkLToDMLXMyo4szl+UDolF+khxaKlR5AC0XkpcRtJOMQwE9bL/KV7GD33j4JsSEUDO5LMZe2U+MUUExVCCGSwCxHiYyLW63pnUQVlGGtXK2fKfW/ysF0Jq+RiWU68nJ5AWbrVFTqkojwAqhYx1W5VAdf/tzFgHKSnsyyAnWxfTjBiOmKYDHh8fcXf3iPUaADqphcPSjEbqnyhftOLjWdZY6q5DCIwQZ00VD6W4PlOmeSZRbgrmtF8yp8xrmWVB/rzwETYMVwH6QsO8vJ4o/5WquyRK1bV5mcszdG1TMh5VjFbGk+rxKmoq6fskNct8UgxisIiX/LHwKFOgCk7nlDCNJ3z6+AH73Q5dP2DoB8QUcfXiCsNqwHQ6SpR4SrmAc4k6Y6l3B3GrFP9XUnqSWVmEDFk03qJeiYw1pQQEoTM2YwcbLUgkjkTuqWHVt+j6lbIMhzBrncRGVtoaGxEpzgOQ5oAxMFzj4FcNfDvg9atr3Lz9AqAGiTpV0DStnMXw4QBcbLd498UXiGGCoxGECO8aTKN0T767vcPtZ+lI5xqPljsgeXCK8J4gZbSo0GsRmjkaOEwRd59ucdof8ff9f8d4OGJ7eYlPnz9je3GB1eYC680FGMDly0tsGfC+QdO0OB5O+MPdHT5/vMPu863UFoWczSkwxmnC8XjUFMIeXddo3TEZg0WUAZWcMfltzgWVcSnLDMrnIzvw2XAT5X0mFjp3VKVpVcYdwWhpccbMgWtj0INgo1o8v4zB5WUt+MXlc7bQb555EalRM8si5IgZSfG0KJIa01TYIuupxWHCyk0SE+aZ4SaRV76RiJoYtasdKuNqZsJPRpjva3Ouo2LAxalZeEiFMrggyDL8Cj9l7FTjqYKrbM3L91V3S2Jckf2p8KuCnixmDEPZOHVMjqSPHWk3wKz3ZkymgSxs0TvyLNM6BaEj809bQxmN1oRiWtAF5+t5CUUNoy/WvaxHMVIV/LhEbdCoWYBSUvxk/TuVH5LQQ4gJzjGMNYjzfmmwqx0NJhsLMlruq5WtFNbFun2SsSWZXnKtB9B5j5gIUyxBOYHxs0oR/GxjU6tFG513cI1bRDZZWJspRww5CFaMcg4W9gazJOSOJ1mIEeBBudo8a8evZIePaFFo0gCShVUX6GyhkpQLWCpOypVDxTFBwgBz2p4pf8hML//uCOQltz+liISEEENut5m3kAKIjgjhER8+vsd3333C0L3A0N9Iga/WgShhDpL2JOvgQa4BOQkvJohV0xEhTQnTHBDTjJSOSOmAFCNimiRyCxUntpgIlk5LAGC1WUwhKnorPwEZC1Ix4qwY1OLjmlmRspmUpDVnfeEZ8LGnWI2QDEQBWDeExNbBrbySAm9ApkrJlXRMV+5dKypWzExe1kJVmN94POH3v/1HMDNeXt/g+uY1+mGFt1+8w7De4P72Mz7++IN0gfrwAYfTXhiOWscbJ1EcJogY0gKzAD75FzQqSMZlnhtNczCasbU5O6u+8ej6Pht5U4jo2g6r9UZSIZgwzhNab2kpEKOAL2HJDMYUTpjHEYk6BAf4Fvjqyy/wH/7z/wHTHHH7eS/5+nAYIwNOaiOBgJvrl/jrf/tvcDjs8e0/tXh8vEPfr3A6RpyOB/zut7/D+x/+gPH4gDgdQByxGTr41aC0UQNmBljoFExSXypKx7sfvvsDmBN+99vfwrlGPHW/+Q0uLi/x13/9P+Hf/fv/gO3FJX7x6z/H9vJS3D4p4OH+Ed/+7d/jD7/7AR9+9494uPsRp+MezAFAg+MY8OHzA05TwvX1nL1yWcyoFLEIlKwXKZLXDMkcvVPTstXWAZAjFCW6TQWRAxI707OU7gF2cl6URcm5l7sgasdC6DKJJUfTjSsCMWFXAJLQoxk8zLgudXOK0KlPZwU1JB3aOeGx2o1O6FQUmbmNiM5hjkmKiWcjBGmkSJQz3ZT8evGaA8ejFHz3Hug6QgzAHgkpRKnjdBaheC6AM1AynpFTvCreZcKbC8sptRCKEv/kZQyeKRt0EqBKZ0kLzlRcPcuUsBQDJGWp0WiPhAhT3Eh5rNeUa1EmXSz7IlGenNO8UgrZ2OBJISdJKqB0EEuLoYMB6yBY1ySxdchRBdV6ZeZDamBOCcQOVlA6cVI5WXd1dRnsMRtPMyQuKfMA4BKhTUCTIlyK2rJaLAkMKfoeiBAbgL0RsOx73iHDaKZUZD5S9r2uI2Lz5chFcycp2D/HIHWjAKzbBhNFTFGMuoEZIVUu4n/lV9tJ10bXeHiNWCBNo0sxIXJQRaU0MJnmSX4P6hzLwFiVJF+nS3LuwCT0qSBRUwst1cO+axHhpa6NrSUv+Z2pEhZ5XaFqqfkXM08AFHdknF0JTtVBYoyyN/OMcZrgHcG1wn9jHDGO9zgcHvDjjx/www/3ePEiANxJnUXupXh65snamY0segXVnBxCZIzzCTHOSGkCOIAjSWozq2ZDAuQjW+FbFIZiyml17jmZEkXl8wVvLTwrd+KStoMZ79Ty395htvRpW3e7G8PqOtYY41melgdhkf51ZJzwbqkXRAA8Gq98nDk7sSwwPUV1CqDOPmDEOOOwn/H4+AiAcPPqNV6/fouu6/Huyy/QdR1uP3/Ghx9+wDRNeLi/w+l4En6vaTTeWUonITmpHdT4ogBZarBvLH2Ule8w5mnGPE8gkoK8xh+kg6KUtCASg0rXraQrnWvg4NG1PTabSzSuAbPDOAY0rUPvXY40JBSDE6eEw3HEaZzRbxxeXPVYbS7wmz/7Ff7NX/8VDocR3373CcfThOATAgcwEzwnNOTx5tUr/NVf/zXG8YjHux8xjQcQEQ6HEYf9Dt99+wf88P23SDGgbTtpcgRVVSjBkfLYRJCueforGGGSWjTTccR3//QtwMDv/+G3aFvBUL/689/g4uoKf/Xv/wP++j/+J6w3F3j39S+w3mwl8mcO+PzhMz5/+x3+4b/9Az7+/lukMIJ5xhQC5pSwP+xxd3eHGBNWq0u0bYcUpY4mGNqN1lX0qpGXSdJwKTeEMn5d+LnJJkCgjgRjOpBGTUYAzpWsDTM0kkYIEwSzuBjymkRNmSveeMAqyyyc53kM0glO2FTl0CI984hYwoczA4HeytK4Ukq5QHh0DFEvWbv7atAFWxqhRH1bTVbBcVzOLiRK/DgmBBZ9puuc4uaAFCV93JFpr7U8NF5YIltpGRCn1xm7q7GUmaiLrljzpBrVZx7J+jcj0ynMuWZsjwELmtegMxCxONIda4STGO2SFQOvDDUSN+CqJjycfyZOkFLJ2mxK+VbrDftYX3FkP5shHsN+ZqQxc5PVca2NoqxY0XBGHSiy0HYSqxNjyTsLZlka9wmAU3nmU4CPCT5JGqiMXMzXgYExJCQE4Vk+V222DVv8M1rPOFsFiBmKajgIllRsIonytzWLmtHTAqC2xRQTQkqILD8tEOSfe/1sY1PuQGdeMAOBVEL6dQkzWLEJ5Rzxn5KN50yAl+9ncawI+zyM0q54AlbrR9R/qKAu3hyCFUwFGVgo36P8bDZb2QKQOVVMEqfsQZMOBDM8BbQ+IbjSwax+rgDIpF7ggl9y96NamVpQUlEX7d/5q3yneInqr9cGjvMlK3PG8sKzV/7OTximnsNE5m0tHlHbvdp7Xp5bG8MyQ+Dyt12DxTXls0wmOpiUEuZpQkpJi0mf4Lyst3UzbLteusY1bWlDb4penrIAXUapNUAKRtk6PpH8boYHmTsXWv+JNc3eWeW0SQ2GzjdwvlGBRIt1ghnUshKtaxUTEknXM3gRUF3bSB0bTqAURajCChILk3OOMAwDOEUMw4B5WsE3rdpArI6IMnZVKkR4+wyK8nqZxEkWWaHKB5cilClNSNqBYfPxI8ZxxOfPn3B39xkM1nTIiMaRdr30QIhI44Q0TxLWrkZJ8QJIZE0IUR9/DvGrUNlqK+ysFwPHMjrEvkPGq0yQ4o+dB87vZfpXTm/GchN0BR4sx2QtonlR+Ld4LOr5FV5ZnY0nx9iurYGYRgGS5BBayC4bf7K91udnHoWyBuX56luIAiQaKvztfG7l/NacnBZHpN6Pcy9j5uM442vPsa7M16q/udpIKtdk2gU9ey87z9XNF2M1ocJEyt8tlQR570xBLvcXJr3gx3n/K25p5McqvxYi1uTGctBCu0qLJuvqNVlevfiVVGhUHDrPrxYqhKqOBZWClwRzHKSsTJb5Un1XZNqt19p+PrMR59Fc1QdlTHkshYZ+WrL9j39lJ4uB1DMekVd2AQZ5MbfaiFlehacteRw/uaSO0i4y3njFU6fH4qVANYMI/b1WCvLDqhTdJY9VMG9zTNJpjVVeSUfPWYrih1mbPEiEFxGp8cRVa8KIsXifs8wELaJS+elSLKZlq8/nOLVibGcn6ScWiRa/mWOAzz6tZUXxrJ/x/LNRWrTPc/xv+cUC7goPqJQbW7ufugXbLjGswmamVP0sJVa5LQ6jaZoWGQq+aSR9n8XoI9HT1QOM1RJgkWkMrjqOaWRCgkTaVuegGClKCmyWh2frIPcuDgqLdgqN1LTM5Jy/UiLOSAfILKl7dQkQ6SRnxjqWVDEtZ8CcctSJ9w6r9RreE8Zjr01orM4Q55pVYMr1P70+2/AlgCpzAQsRmR0+s0TtzdMJIMYcZlx8vMI4C4Z6uL8DA9JZ1tJ8WjEU8TwjHkfpLnrGg2JKucCyrI9kl1h05bkexnb2lXk/xVCFV+T3qsOwdCydY6AzjGAykSqRzmcYfXF9oZBzurH3FhE/dn2NoaqzZaLPsGWZk35XawdbYIUZMSTtOA94yd8XjEZ2IyXkOk3kqbZZV4tz9ue5fDAWvBCNz2EolHHk389fhb8vGtFkHmrPsii0eoznzyy0RhUdAMv9r2HGczRCKr/OB2skx1TGxdX7NcgoeKpCI0YI1Q3zOOv9rkZaaO7py84AL+ZaUykjh45QcRBRtXkxJVAktMvW6TbinwC99vk5Vi1yovyszlkBXXr2SWo0VfM7+/MnX/8bjE3IAifEoMyuGFHsp3ivlClxsaDZfyVcNuX8f4AWhJcFvz60CA3ZsJJ+ZoRYFzZVonEejrwCTKf4iDGzeI9DMOuwFBwtDE/m27YtmrbNglIINuUUwRjVE6mbFuIRx/CAx4cdpklS3eaQMGonjxi1Q4+mnqSUcDiMCFEFVZQIgfWwQt+1iHpSpcBiB2DAHAJ8k6p1lI4GKTpIJ4qyxgWgSlQZK2HwGS3lOhnV4bEDXQw7y4Nch8xmQE9VRqxVJK6NR5WwzLeqQFG+Thm60cDSkMSIrISbx1huxdW97Hmxil6zC6UzG2MeJ3z+9AHtQ4fj6Zi7063WawyrAW3fY55n7HcPuP38UbrChSAdB6lYjAnQwuBkoXNgbRcqCUbG7BhRl8YUztytiwzUmfQUg8k0TUgM9KsNhmENAqHrVmiaHs4lMEdkIy8BSBCWxayeBI+YgFOIcGnCDz+8x9/+7X9HnBP2d0fEkJCGS8ThEiDCfv+gQlTORtd3uHn1CtvtBtMktZC6tsHbN19iNaxwf/sRP76XjnAcZsxJ01Qq45woqtrxjyE1FyBGiLbt9FzpGjnC3efP2O0eMU8Tfvfb3+LF9TX+0/ff4/Wbt/jqm2/wq9/8BnAdXnZrhG6L75s1Ll0L71ockTBDiryGmTAHCT+Vgv/aktaK2lbCyujaAH322LEv4EvTWpx6UQFI6i+bIhRBbEY/I+iauFHo2mhd6d14p9XFk2LKjcpozjVUkgp4R0I3BKuLlVda5qLCyCXxBhFRLty7OOO6R1aM1UKHTciloRc+Oc9ZItvRlmGxBb7k+zpvkQpCwz63O05oPKQGi5M9gQGFDERtBk8jks4NfzVfWJzxfD0qZU4VGh17QTAV48+ypUyIgJwO8hxAE0Opq8adNYH8iAxkSIpssikVnAAqocqA1DoCExwLP5HGA2qs8FbNS/65TFOyhrlVsymYiTQFj5RexXtKkD3pGo+hIbQeWZ7aTc8VCXuJN7AYwh2Jd5hBaCA8p2s8Ltc95pSAloBG9uF4nDDSDL8h9F3x4mfQowu3gLBmVEgqi5R/g8U4kdNJNMqh7VqlP4IpCiEmhMSVAcwiBP50r7qbkHnpjZxqJ1RUPCBt36sQ/wyWReZFARKL4rwpK7x4ApQLbkLmX3UUDqDFySsFSORSwVpG71E7I1qXVO+BHO2oRO+9105lHZz3WUblMgTq2GBHCF7k5+lwwuPdA3YPO+loCYcYk9TeSIxhJSlLUotRHEbTNEvHL7J1dthsNuj6ATFGeN9qFI3UcYkesMgM6bgmdMPPGI0Nhxg+faJ86MbkaI2sHBS+IvJOo6bM0AtVkGD47DlKNMNcTahFPgFLHvjcWa0pvGC6gquK0ZOenoWMqyqHQvVqmxYAcBpP+PHH92iaFo+7Hdq+R9d2ePHyGpwYq80W0zRhv9/h7v5zMbQoE87RLUofZIKTgeS1CQ+KHEbXVqlPIqMkLaxZGAzEwCwcJoSIaZzgncf28gWatkM3rOHbHq5hjQ4R2oRV7jP8Kw/AnCJu7++xO834x3/6LeCAeU64vx8xhwRsLoC1wzRPOO4OICaEOGG9XqPvGiCNmNcrjKcTDvsDhn6FL774BdarS+weH/D50ydJ+QwjOGl6KXE+d7YXMe+HRPi4xqFDC3Aj60YSo/vhw3vc3n/G4XTEb3/7d3h5/Qr/+f/0f8Hrd1/gzet3+OKLb9C4Dtf9Cl8MKzy0HTpHYEdIGokbk9RqmecA5zz6rteMjiUdAgWLyJoxvFcDGlAV/i4YSroka1HxLOoVQ5/Ts+khNdavatfJe0l1MkbXNmjbDhZKI3FCVJ6h9J2jD6k6j0b8phOBzPe2xHNGf0xwnMBkPN4wkgMbhtJCz9M8a8ElcyggGxxdjaEcwUH0zhDkurZx6DogOkbTRMRGz2+ut1eW67x+1vmrGOd0UVV5Oj/jpNeypeqxrd5TnCUrlRTLSYOKfBPdn5SEdihHRZemFt4zPPtnZbIiw7zmuWag4fVkU2CI47zSBcumLuYO645JatSG1dmF6sqqNyb7hHJ9KXOgeC9ZKE1DWhdKpYWV5TjDUMUhZvOp5Iby5sYxugZgR7h0hACp00Tazfk4jnDk0FCPVafNqlLhDxYQUxtOU9Q1qcoYtW0r5zFYaR4GIHpC07bwjdRq8kntCiGBI2fM9vPimcrrZxubsndKR1+ibooH1RiJFe6yGgOWMlCTqAlYaxmYDR/Vvc4GoELaZWG+sHxSJbQY6u0tAtbgayluyxomnPSeeh+7n3ZoarSThaWFZK+jKh/5O8yI44RwOuJ4PEmtpUSIIWGmAOecFvoyQhbAZIX7UoyIs6b6JAbzSm7cOO3c0wDopFCcmyR9jKDRVBYhVZQEMxAt98cY0jMou+IL9SEAzgCNLfAz4KhEQhmgNmLPZSgBWn6vKFn6d94AysKkhjlSeJEyKDkHWPUciawjoX2/3MeEXAgzxlFCvPeHHXzj8frdF7h8+QLeNxg2WzAD7qPH/cOdhBRyKbDpXTlCKa+BKouxSkvKc3OZ+eXoBkLx/tfzIbkwxKAyjiXiihm+6eB8C4cAIMA6pzkUhayshYSrzyECacbt51t894c/gAMjHoIUQ78EiMToM80TEicMfY/VakDTNLi8vERcr/D4+IBxHNF4jxcvrjEMKwCE2/s7gE6Y0wEpjjpnOx8aAZY03aamHSJ4NfxZBRcGsNs9ggHcfb7FP/zd3+Hl9TV82+KLL7+E61p89Zs/BzmPre8Q2wGXTYe1axDJYxSYJgWKo3mFqPAQR6Uge023Z3/XHlEAleFcDavGV3Q/KVH2zBaPHWdZvqBTGN2LUSlx3SVPaESKD0pIP7QmTu2RLnRTndt6HpUwLYbj6vtmjCJC0kg8aCiyGVsIhK4FkpcOXtZthM2Am3lLxYtRhHFSgJa0cKcYokjqNxFBfDjna1/2JoOhP/Iq/KNWrGQknEf09Poag9QeqtLJrXwvgbJnm8oD8r0kRSVV96jmVM/PCnyznFUYyLHzChI6AmCpfDk1swIkGUxVoFEMTlCHho6Lk2SMOpc7XoqCJ6ksrffoGkLjkJUb1LzIzgKj0LU8MH/uyOX6ZRFSrrdtHNZoEcCITgByioxxFGVg1fc58hEQnv7Mzi72LEXrTiS1VfL89POoaUINazMTEiXBAJjT9As5MwrUjV/+CV5LDKWwOJXxA6qUxCJjqm9jgaDs3OkalVbsReafKwQgS7lUDJXlpwHjgpdKF1+rj6mGCnUshhD0OXF5/qnwT6s72DRNZVCosKJhKJYuVHDAOE447Pc4Hk9a4kBSDOd5FtrWGdsYQgjY7Q6YpinzCnEcOkgl2wTnGkjNtwZMDRyJQsREsPpRRGQZdYtXVlh07TPnyJ59/ROFh2TMWd3rvCOXqS9ZDjzhc9X9OZvI80Y+b2jXtTeN9eyOtTG80E6NOapnLIZbFJjqbrl26zzNOB5HOOewPx7RtC3evH6Lm+tXcM6hG9ZSm8t73D/eaZdqZJyYa844zh4P6W7JGtlkxcWtMYPVCSo1T41OdbUXspVAatiMaIYOw3oLkEPT9SAvJSxA8ey7su6agAVyXoye+z1oDHj//kdVeB1CkJ/et/DdgBSTNDIJCcPQYbUakKIH4gXmroUDYTqN4LbH9cs3WPUX+Og/4OHhAGaHhCCFtQGNsii0UUqW6HAdJHqmbfUaTcfmhPuHOyRmfL79iH/4+7/Bzes3WG0v8Pj4AIcGb9/9Ao4aXDQdrrse26ZBSw6BJBKXSWrhSGSh8tamkfV0pVMcsx63jJtKPUtSnG17VJckWO6Z8YWSJlXLmifkd6YnZoOOdTnvWi1BkbSYfNF5mEsUTaH88wiVwm158TlXZ6PgHGLKdWjlfEIcMEKwaBPgk6V7KY1pelLh2fI0VjltSyNNVsRB5xsCOYZvKqP2ma62dMjVs0Feq+Wa1/r2M8Kw0p/z2mfeUckk2K8ydjrL2xM9dZnSKO+nCm+d86On489F6ivsJWnUFqBAudHLuaEpLwDzYh1E1ZI9Zn1eyrLZ4LfLOpvd23nSruKEnE6XZcDzBr9zuwUg2VH2XelODMAR1o1HBCNAsBUnxhhmEAObvtW5KE5MZ1MloVtGFSWtBghHpclHqtISNfs12z8cS+kHcdgBTkNrlmfluUV++vrZxqaspLjytwms3PLdQA4DYAfzVls7alQHWtLqROhEDaUGikXW+rKYMMngFrLp/qzWxxNlSxc6G05YNyOlqmOAXONq4wsVr5N1witpAFS6gOeF0YPHhYGS1qIy1h8ZCIkxzwHTNOM0jjjsDwgx4ngYxdqtobVOD9s4jmJ51ZoMbXNE4ydMY8yHwurGEGlR8OpwGKBADaaN+Iw/ZGYu/6kttsbg630275flJNcUl31jVELiq3L5+pgzcKOMOCtWXH7PSIRrQxX0/jVQryPryn1sQ50Uysnba8NeCEZnURgBiRN2D4/48F48dX0vqWPeeby8eYUwz9g/PmI6nZBSRND2qnC0YCKsz2ZnqW7ybEunMTqzMZRirQXU25GLIeZIOEfCBIZ+hfV6C0qThqslCDtKqszKHnCICFGKiY/jhEQRd/cP6H78iMY16P0A5zyG1qPvGzABTW+h4wmHwx4pRoynA2KYcTqdsjLUNA36vsf1yxsQWAx3hx3CNCHEGdN4ROKEMM9IIcp72tWGY9DopqTF1xcyPK8HlCbmacaH779DmEZcXV/j3dffwM8SBdD3A1Ztj43vEH2LXRrFKOkc2q5H1/XiWVfBTI40GkmfuVAC66NtqUxPhQPVNM1ZPMHynPOh43IO8z/G4j3O7+ldNFqRtMitRZKcKxi1cdeKxZ6/shio6L02tthHztUGa+OPMjZHEFDrNHedAatBZnn2+R+E7xvHtzMH5afkGF3nQSCEAExzymAVZ2e3rNkff8k6PAeWNIJLZQBXjJAyT1uOMSvf1XqZRPDMcOyyE6UeX332SwSLnmWjs2qPGSitukGV/HQaJcbZdWQ8ii3q6QyDmYFIGYyIaA2lJJ0cp4TkNGWpKgZeUPcy2s3OSUZf2WhaA3wqQNTAGrS6AEm9BAdgJvF0s0ZwpQTMMeI0BzTk0PtGjdHINCjksDx3WbGRrarksIJ0nZYEhhmNK3Ana+5gtSKBQPiXu+f+/3hl0s7ytXbYLfGTzFP2nEC53obdgwhVnUzkwp6OHOAbfU9X5xlwa13ijA6ykmJDrPmEfseMMtkJlBV6II9O94RgdEs54iGvAxf+YisjQFdoUDrluXytGeJjlOgUIul8tn/YIcaE0zghhAjjpUQRD7sdxjmAiKXuDRIcnUA0IcxCpUTGv0jpqRiTi8MOFcEpDZI6vJTnEqqoKKrmqCloJYqnrJM5CYyQM0e2lGa2PVlCqUIARZGg6rlLeqt5od4bVdkLZkhEcRXNVn2vNkTm2tvy5Uwr9T8AiGEGp4Td4wM+/Phe9rKRAt1t43H98hohBBz2e0zTmJ2/hWZs7JCIEadclgGrQ5NAz57bGtMJXca8DjFEBDcDwwpt14E5YrVeY7PZwlGApxmEpI14zAggWC1xwBwTIgKmcARcwMPDA/p+QNN06IcriW7wMkf2Dk7xWooRD4/3SDFgOu4Rw4RxmhCidHVq+w7kHG4AuKYRDHV8RJhPSDFgno9SkH0aEUJAjAHjOMqZCFWXbzNAkc2Y4FwDU4ARGfNxxPs/fIs4zVgPW7x++zXi7gTHwGZYYd106OEQ2SGhkfqCvkXbDmi7Ht43ikkk6tvO6xO6q86yOcnqYAAzOtm1YOX7XKK7a0N6oWIy8A4Auc5Y7ahLXO4jz1D+aXqDYc2M2fTsg1U3WAiWTJf/7DsVhsrQr5zqjAmcc7kAuh2aZbOrEiFd8JPorgRxsjgw2sYjtVKeI8bCFvIeWKRLNYbCm547K8VAa3ziyZSrR5hTdYGNUbYnbxPV8qdEJBXHao2hCqYwnbuICK1dlCPqgBIBp+tY0w1b2S69d4UbVMBVsriGGhWOo2W0Z6HrVOwC1cKYwXWBo1DmbzL2HEOdGwaNljyADmI/MJpNQMafc4yY5gBPhJa9YqhS2zF3lIOW+qGM7jOfqEDp05dBRB2fRV81zqHRrAQ5Tv88Rgf+BcamIhA01BqlSKcpwmwdEyzfmgqILQNahmknBtIcAWiXFu/BnuFz2HGesSiMzDniCChEWxO0ywRUrIvWBSymhDgnVaKkDSsBWjOpEIojB9808s/7Yk2FGcoMkJjlXLog+Fa+A00riAy1NkXsjyMiJ9zf3+PDxw+I2uUsJbErad8f3N3fI3uRlagvt4T1SqzDzFIUuvENGi+F22MsbbsL7Qjjq1MOa8Xazlp9KCzawYxXtYfVDhbruMqKIzP0/LkdDnpqbl1YhmG0pOPNAE4Pe+URte/IkkrEj6QQaptT5B4CGegCtYK8PNDlOoksGccJMUUc9kd8//17dG2Pt198gYuLS6y3W/zmL/4KMSV8/4c/4O72FofDDvvbD0gxous7ad+soyUyL4RE7cRQgXNeGkrPi7U6cmpNhtYwmsCQguNSI6DF5dVLzKcRcd4jnBxSCghpRrLivUmLrZ8ipingOAU87EbMCZjDt/jwaY/N9gJfffNLrDdbbFYtLl+stGiznNcf33/Ejz9+QJhnnI5ibEoxIQbxTgz9gKHv8ebNW/yHi/8MANjtdhhPJxwPB9zdfsY8z3i4u8XxsMfpeMDd3SeEecI0HhCmExJbTaXCIZxzkgqjlf05JZwOB/x//l//K7x32O13iCBsuw2+4WtcXlzh5foSb7oNujnibj5K+GfbYL3dYr29gGs7LTBYaiOUCIDChGsli5MpL64orbnIuJ0vBmtRyux1XNCqdqhZUHFtCJYxpKx8SmoQhQR4J8WEnZPQeft2/m4R1d6eV81pkXasgjNR8R4RTEGlPH+OhafbuJ2Xc9pGQmRNR1aju3XCEkFkEQwFRLDW5xHalrDw7VaiN3e7gNNplBDyxucwcgNKpe5LLbBRrWe11HqeU6k0WhSiqmMqG1/KbiDjYpz5Pkg8u4QCBB2X1FvppKjyRNerllPWtKIoa8gh+KygmqHgCEBwUYzS5vVLauw1+vByg2xAttWlGjQbENMzpMqZpSyBCAiA1FXzVbQKAxqR5bylAflcMxD5OYWCTR54jVghu4gARwxPEvVJTYMEwlGJhVNE5IDAjOMU4PZH9E2DbuXhvEfgWLxsVM5baZsuDTZQgcACVY1QACapUSf76fM+eiQwOQyNR2SHOSVJ8/sTvepIpRJxVWGoHC1YkguNdi2832hWvmvF5JH32PkGja5XrjGTS98DFrVnGIq5GpdFg8uFCyBs45exRokyg6b86rnOXSmpAszWzdIVJSrZuUExpsj4xUHQ9R3adpbpxogUrNlMwn63w3jyeLh/xKcPn+SZrgGRpumpd/t2txO+6AidlyK66yGh7xiMBqCVRqxbOrQYJJhT5mm6YPrDFFbdBgbqqDhTZm1vCMhNcQTfyIXOucU95U1aFJw1Pl67qk2ByoqZKoWubNjyLFTKenlWrdiwphBGOKbM04wM9FsaFWY0p/dNlQKrw/ck/Gs8HMHMOO52eP/dd2i7Du++eIft5QXWqwGvXv8GMUR8/4fvcXd7j3EccTo9ghOj7YqR0RRDoS/h+abIS2HoJdato8lMzojOIjJonkaklLC9vMT6YoNu6HB98wppGpHSCWmWxiLzNGr3QkKMhJgYcxpxmgKmmLAbZyR2CDHh7n6H7cUL/OJXl9gMPbq+x2bVAURI6x7MCe9/+BHff/89UgxAmAFOmMdJoulB2Fxs4X2LL77+BuvVBZgZh909xtMRx8MO9/efMc8T7m5vsdvvMJ6OuL+/xRxmTMcRc5xE/whxsefOOzS9pBOneUYKMw73j/iv/4//gq7vsH88oBkuMSSHnhlvr17gZtjiijv4FBAbRvCMtttgtX2B9eYSbdcL/XoAbTEQZxqvOoTKea5oRFN96+gmwcXKU6pozroA9EKRJQKRh3OyL5KZEnOGSopJeaiUSJlJjJVtI3zPZHUxduu51RIrwkKLnvoveTkikCd9dmVM0HE3XtMTo6Z/VQYH70tZGMMbbEYANhwKEDy6tgWYsR4SGnIYJ8ZhViObFXfOhhzjE6aL24hqY4fVkgWAaGjlybrbd6m6p+13uQ7ZKF1/jZylZ0tEO7N007Mop5Qsks0BmrZtUZP2YkaObM6Yhznrw+QEcyRmwTlJ+CNiUiOLTpILdrC3QIBLxRijsFhy5FDsG4UmivFU6jCWtXZe8bXzC14r81s6jO0965hnnzlHaJy4mjwYiQnHyKAITMwIajc4jBNaL9Hp206CBurzAzQ5+s2r1T46K55OmQ7rDRQxYTjKxigYr3EAvJyRAU0uEF7rJn/s9bONTfm1UHqAwlxqra0YEzLHWdCubEhWwaoJW+oHmeax/GolVAzIn4XDLX6pPqiYTH5ebX3Mx0yHTOVZ9XWZASyWRN8glJQC/V5hoCR5zx4Ypwmn06g1QPTpRNrCHtI5JUa9h4S8d40TgQ4PUJfXMFfJT8+Mqfq9VnxsgQzoZQhFixucHeyyE3k7mc9vKfe15aiMSjY4qi9FvfbPqg/PvkxpTNXYbHzntJJ/Fo5aPacakCmhCsBCGBHagPF0Qt/1WK3XaJoWHpLK1vYDmnkSpmIc64mAEmFnQsyW6ynToeq3skIG7nI7YL2BcxLO3HU9Ak9g70HE2kGA8/mjJB4uWSvIvCJL1Bwd4XyLcZ7gw4xxHjFNJ3jv4LXNfAyzeNRm+RnnWcck4/NeBEPXdbi4uFTG2WDsRzRNhxhZCrGHJLXTXINxHDE34p12Cgg5kSovKUckiUJM2uFQwMh+PAAccXf7GZ8+fUAYRnyxvYRrHRrn0bsGnfOlEK9zsmdNkxWFmi6K4vBUANQCTVEJzukyf8ZieCiemuVePrfTdrezr+T7psQlKi6/X50SLokVdo6zYsK18T1PajG/5Qo8ff5iHjp3cqQ8CEgOWn5kwTnPblSOnJ1RUgUCDvC+RCPIGtJiDvkmxqvqSdZzIX5ypkxmlqGZsd3eovNlz8CQq98zjzpTEM1ATlSlUj9ZguKdO9+rmlss5YxFBJfxL5X+yueY33rGE6mvHHHByh1zW1abxbmHspYDNeg0OX62/ovPbLwySuvy45MWDFdexCyK+BwjPLlFsXCuHlcDMFBxBJ09vBqfEJiQkaVZA+b8Mlo1j18Ew/3Euv2rvmqMt8BQAmifG1Gm14p+6+2oZYt42CnTJpT/A09l4vJZhQ4KvZ5d8RMY6im7KbKfFnOqmdjZfRXLiYGxfMPKMoSI3EximiRCJCVG4wXkm7EpgRFSREgRjXNITsokOJKFd166stap64WXV3ym5pmLn3l19DwbLlrMsuDjaqIMPs/AWz7jOZrmgpHqO1VxaPVCni/t2YsLzdmIshhbfrfmOTbXMtCK8FDglaVZRlV6Oi1T0E89+q5D17aIrhEM1XaIMWbn2hIH6QzJHJIao6OMk6tnPyt78ifyWeIEUuOTbzzACW3bou17pJAQeURKQPQBTpuxSO288rsUy06IyUkpgeaEpj1hmia03YR2PGEaO1GavRgwQ5gwjSfB8zEAnBDCLPNWQ6dvPPq+x/biQvimI/Rdj7ZpMq3Pc0SC4qtpgp/n3EFUOmTr2rNEi0vkoiibTFH07jli9/gAt3e4u/2M+9tbzNSiSwlt06D1Hi0cGkhKEjmAnIf3jUQ1ZedVzUcqWb2Q3YJDLeLS6Okca9WGl4W+geW5OY/Ese0vOqidDr1PNhCUk1INsYwVhpeEWurzVTHbpwcqG2D4J64pZ8n4smEokz+1ESLf41k8ZrK7PEOMdxa1yU+Zic3PIpJ1HZ7IbwK4CrKwUf8UnrAxCv6kxTO54gXP/azn6jT8mrV26rnR6tzRoUwQFl26vF/BgFnOE1UZJPbZuSxDhvXmXLR1lB+csUOhLftOLcBt/OVMnMvDerxP9A3o3hgvNpySvyM1pYzyTfeNUTAUgSpntZ4hKvcrgSZY7lktxxejsZkt6UB0NjNeEcAS3JES8BPTXbz+5cYmGUUlTEuxa/nd+DPlwmXPrXxaTNSESBH82WNcfd/ln1YsvOQM28BM7OtTkGsJFItECWn0lD1u3lIfHENaUSNTDaPUwTDLYUqxWPKVDLzr0PoVmmaWAqVOwNE87UFEOE0H6UoxnnL6iHhh1LOm44xKTCkmhCi1CA67ExxPGIY1rm/eoO8beNeg73okTpjn4pk6f6mtdQGArPCneCQKM0tcGHYRArq2eoPc0j4rSEIPtZU3g4H8VhEi9eHK9KQtes2jL1+vPq++D6gnTZlEnhekpowMzeWwRl8Da2MuXAw42cPQeJB3cJG1kDTh7vYzdo+PeHi4x27/iKZp0fUD3r15i9PlJS4uLjDPM3YPdzge9krKllIJwPaWikDLa6EWwlQx1sSsGTCVAm2GjKrtaz8MWG23mFxAmhsJpSWC41a8cZxE0DQtqE1A4NxFzjlC23pM0xH/8Hd/o/voAJKIohfXL9D3PZxv4V2HGMVjOYfSQcXmRyR1r6ZpKuHAILRti5tXrwBmvHn9Vmg5zDge94gx4nTYYxqPGMcRD/f3mKYJx8NePw84neTnzKMWsEuYZ+k2992338L9l/87ri+v8fLftuhuAE4zXrQroJ2xTj06njB0A1abNVbrtShgYc4MEyCQpbwBBmVLdD6b5way/osIvXI28pnJnxVQJFsqBaHzJwTxthh9a2SDnVFAIxJiAjEwNxHsxGMnRWarEGRSGmOApcJpPt82TgM5xv/MI17OqAG7Mm5HrtTbouLlbxvxLHJihGhFXo13RITA1bwLkGMwpilh9xjgPWG9adG1Dk1LaFoHikVQGz8qSowp4ksZkj1CgHpMJcrUaqqdXV39FEHsVFjaOGVJChAwmMqaUkGgYsSUAWiUQrPgU4Sy/hL5C5Vf0gQD1dpkfsfQmkVOok28OSlY+UDUug0sEUu2tpA5L3l74Wl2HVlLd43US5C9C0wYZ4JLhFXvAZImGYkZhKXX0lK2YyVwHZVdq9xgea3E0yvc0PhWA216MAaEOWJuA1aNz4X1nZeoHKtr4YFSbBOVjNH5OdJDQACs1hY0oktagy5oxhOhtf0l6Vj2p3otlXXFFIahonh7y9yUH2Sae2KyyftMGSXXL8NQFumnd6HaK6sedJUzizrUesecOgcuNetgETpiOLZmADY/Z+M1PEeUuxDKvyg/mbO8S0kjuFyLbhjQdjPIS3raOE2Y46PsXyMOnHkMAHkpy+RL2YKojhmL6ppCwClGgBMe7kYQT9heXOGrr19i6AdpSU5mWDCebJtU0qgz/ihgQ5pvAAABAABJREFUI+NV8ZaX+gpcrZ9pLlmJ1ugv1nOwdLRJ/R17zkIPMOGRMXFV6854uDmlKgxW8wFlZFofxGl0qtBVtFQkQCMskTuRWoRgpbHABlnzHUB4MTkHSlFxYcLnjx/xcH+HzfYCj7sdvG/Q9x2+/OpLHE9HbC8VQ+0fcTodtVahGgcVl0gQhDQRiaaA2H6gNlbo8uhYsw6SEhIiCIzGOzg0gqFWK4QZmHlCSh4JDvBBaj0GhnMJrp3QtAlzCkhxRExitHKesNvd43/9f/7f5LneA96h7Tu8vLlB1/eQtHICYsLpNEoUt+oQRIQYApx3OB0POB6PGuUgE/Ndi+tXr8HMuH79BlEx1GmUUgbH/QHj6YRpGrF/uEeYZxwOOxwPO8QUpXtvjGAiiRpNAWEcwRzx+9/+I/r/8n/Fi2GL/3T1DVb9JdrG4cJ7UNPiNDikjtAPK7RtD+9bqZ02jZkghT/EzKvTGT7JmB5Qo6J9Rz83HFMRejYUgDSNu2ASZpYagNrd1jIXUqJy1rR0cYgJzDMaL9GVTFR00+pc2CkXWfJHlGYqvC+rOVw5SUBPaC/zAypBAa0W9S46c0W7kREQ8iMXjn4GTuOMx8cI68bYrVqEFOCOqYzrDAMWt6Kumw5QVCKN2q4MecylAH39WvylewLlXwucsIj8l9ey9qBdZ7q+7jMzpH6A8O7AAQuwBICfFNWzoAOL+haztHS/FPzkNQKXtAh54eNlbVnAWHkUl/1kAHCpwIisoxJmDnAJmFoJBOmcAfLlmpguR9rUQEFiXvPF0pLV8jObgowhcNJgAlmrFBmncUJKEX3boPMeoEZ2XKNDA0s9RE9Ao6Yec6Xa+TS6sQhSUQV17knnnWhBU45IalmzRJp7x0v6+InXv8jYlJWISpraIHJHGK2cb6kHTyKDqg0o26sWyerzOhQwW/o0tI4yoSJ/y4ROeUyx0haq0WuyYcllplUKWEb7uv6TX/I8NXSzAHoD2g6OGjS+h286rdsEhBhwPMn1u71aoSsQQ3XYpJpZEkvge4hRCCpGHHe3mI47vLh6gYvtNfpWmGjbtdqufvqJDc8TkWeqgaNEJZCmlNhq1R6GM6GuJ7O2yJNo74qpMgrJ97L5nmGqxUsUIFWEVEAtPtf9q70dKbkF0BEhhsrYxFrMjbMuUhucUjSwXmjRe49sH3JC0w8PD4ghYLd7xOGwwzCs8Ks/+3PcXF9jmmesLy4xzVIzYr8/ApzEK6TKj6XwmUFuMWutT8JWYwny07qNLedvklLUkK7rMKxWQDpiOkghVDgHqbeapPggJ8A1oCYCLqihSJSHtvU4nU748bv3OJ1OuLu7x93dPYbVgC+/+QqbzRbvvvgSX375DZgJ8zhimiOs8L8REREwzSOOpyO899isL9D3A7quw3q9liLr3RpdK2HlEq6fcDwcMJ5GHA4HfPigY7j9iPv7zzidjvj86T3G8YQ5BFFKEiMEqYHw8f2P2B12eP3yFf767W9wc3EF5oAL3yO1A4bQoYkNuqbDMAwYhl69/VGV4CYLzIVgZC7dvIzole7OafepMVZ3JuvcxmPM27K8gbMOd4nBGr5sXJC1kCSR8ADpBGD1Wcr6JzCQCjjLBwIm4Iy2ynOzrcB0dlRTU/AgCokYnKgq/tw2opzn4tOUKnpADoeu52/sZ54k/bJtHNbrBr4hNI3V3uOsdBehVtdTWoKfWpaUujMSTi3jqMFNBdjyGmv0XLXXzLnMkQBP4/em0GdebcDMxlH2Ma8mA9ZdMYowzKkdppVnIG71XCz13BtYAVLVut1QkKv5na2SGQsYpQGF0ovJSzAv9olU9ZpnB8+E0BLM2MQVqDHikDRHXd/a6FatM2c2b/W5ZF86kNR40DoExMA8Szv72EUc1x3IMVrXyPyZkLROnZzRZcp23lW21EfdiwqLsu5BjVetVlvjvaYdUE5l/JO9liJS9iyV6J2ieylHMOOQGtLqVzYt1Oc7f1jKHBjALWkapcNc/aUFL6iekbFO5czK6X1eZdzyuBdeYmcTyLI9pmJMlPeRadd5j6br0HQtyDswAVOYEY6Gy8R45shLp87sKCkRvLKmsi7zrKm6MWI+7hBOR7x+3eDrrz26tkej9cIWxKw834y4wjML1lvCE3W2JXqyF6XNb7VfeX85YzDoM0QHqfDsc4R5brGs9sicI7VjLnOl6iwn5emyr5TrAebGPtHSp+W+zjmQd7mIv2FvPp8vtEZXHqbc7+7uFjEGrLc7nMYJ/bDCL37xC1xf3+B0OmFYrTBOI6Y4Y388gsHwJPRT8L4T/p6S8p/ls00HIaIS5c/IsouZDfRJtBuAru/QDYNEh8wtYnKI8GAXwU4M7kQJzvfwTYCbSVLuovBW54DHh0f89u//AfvdDseTdOpdbzb4+te/wvbiAm/evMW7d19IYd/jAdMU6gXDNI0gAk7HI47Hg9TjHDbouh5d12KzvoT3Hl0/oGm7vO4pMQ77PU7HE07HAz59/IDpdMLnzx9xf/cJ03jC/e0tpnFEoBnM0iTmdJoQwoQfvvsOgQmvL1/iz//dFd5uxdi0cQ2S8xjaFlPvpVZT04mxSetvEkm6LqBnWh3vtfFE1rx0cK0dqtWmZQxVyHtZ28l+mhMiJemcVTJcavlvKEqi0IQHOHRiuazGVY4WM7Sy2tnY6mE++9f5vRgmt6vjkLG/zb1pfJbXISDjJ5PN1lWTn9yIMM8Jh4M47DbbAW3n0Uwp1/Mra7hcYsN8WW9zKOm3KhzESKROhRiflETj/J/6OTU/kA9rY9PCkFZ9XqKR9D5WMy4HaZnjpeKDGUOZMNNzgJSN5iZxvKa/sWNEKuVvlvOpdD82zGN6olwjOqbQkKuMjfKZlMcIIMwBaMghNlwW38rC5H1gSdsm0hqsVUR89ZNhFKy6gxqOWgCRgDkKc+OUME4JUwgIMeJi3WsEuSvNU6qGKmwVXrICYDLBMKLSqbN9VWyaAEQudK58uSEv58YwFJ+v8NPXzzc2aS58LSzrnM1MQE4UtlpRAHPu1CUCnCumUgivDp0zy6ntfn2ATAjZX+XgG2FnjW+5mU/WoxC05RiDDMCVInP58KAS7FaArlIEbGxgIIaAOUwYJ+B0krWzdq3ejFtESy9ACirchTBdMoDP6PseniI2mw2uLi+x3W7RtW3OVz7XKC16Q/4sBi0DUHpaMxDJICW3Y67YTQbGhThrz0CJgE41Z6uGcx46WO9XGUOdTlFt9oK/y7VJgZGE+vLZxZk+k9CjdCla7n8pUFhA7wKY6V76xmdrb4wB8zzh8eFewBppvndKWK/XSNfXmnp2UKAvCnYyDRAGJO1vfaIdVpb8XFuvch6EPmKKCNqx0HmHtusQxsakGTLY03vLIx1AHkQ+XxPmGUf1pO33O5xOJ5xORw35Bh7u7jCNJwmtblo41yCmRru7SRcgQHVT0hQ4hqa+ecQYMc8TYgzw3mNsJ7RNV+0REOYZkRPIO6y3G7R9B9cA/brHPI1Yb9eYpxGn0x7H0x5xnnHcPSDME6ghUEPohw3YeczMADn0XYdVHHDhLvFi5bFabUDaic8MbezEOGAemWI0KgUry2l/+jrTFSsec0ZglWEzixDVKETJKMImQyQzbNs4LJISBErCV4tCv3wJzVLmz6K4lOc8kQV2lpQrFKOZzb46o/a70bEiAEIB+U/WqVKibA0SS4RfCAlh1iLzrQg66ZFwBuvOxlS/b6Ampx5l5akISx1JAVx54oRFFxW7IKfj5RIqAFW/g/OlmbfqOY0QPiznspeaGU0H33ZwzqPpVgKWdE1SYqkRp0WPT1o4P4QxA2qwKNjeOVBjNCHzyFnrzFpQHEh538veWfdOAAqYZL62jQklwsZ2kRY0Xe5ZUhMKPysxH0VAn4e/OxKg0ThC653WaRQDY2TGFGa4mYGWcjv1wouV3M6MtfZ0UjRf7wm43qdCCnm0yn9pMdd//ZdFsoLM+GL8R0bnnBVPrb8jg08WnZYxFFTpc0UhNwUCyBiL2danMkrrdZY2UcvnhaIAZCMIZIj1sSrXcc0Xa5qpo96N5jgrpvbPOizKeGR8iYE5BEzzjBgcYpDIQOe5NJpT5hJjQoDI2WiRiOTQaBFj52aAgdVqDdd3uLi8wGazxno1aN2qAsrrEgjyw9WTq34/pxoF5mTAu9BVZmu52xTnPbDFkx8EWGFl4+NFI3tGJBUZZuekRlB5BHo/c2AU/Fr459JIYOfH6sYlgOMTHHd+PXDGlyB7JPVXZDxzCMA04v7hQc5AMnzmsF5vZGwxIk5jxnkcYsbd9XrndYfxCb2GytrYmeckNU2lxXfMTjffeMS5RIYCJKURtIYYiEDew/kW5GM+u+M0Yr/f4aC1KMfTCWGewSkizBMe724xjyNa59BpDddpZsRkBhoZvxXQt6gy6SpJCDFgnhukGOC8RzuOaJoWyFheDKlioG2w3mzRdT3IEYbVgHmWCL4wTTgddjgddpjnCbvHW8zziNXFBfphg6ZbAU2L5D1822LVD0iOsN0O4HWLvh8kXScEyeiIUev5iWyy9Uy6bxm76H4YNyh6GBXSt/fO+M+5MztjCX0v18oxPGXX5fp+hNwl0/a1kAsML+QDTYbL7SmLI4b66+foa+lsrMZe0WT9MkdarSMtMFR1+7IO6pBLQAgy5lTJYt8AiFbPl598n7PRuxqbA1wSgyqI1Mla9KBahov4ZWV55zuKxX4993ou0CRHvZ7rXhBjUT+spN5f26FtWpDzaNq+RCpCdLjTUTIfpnnCeDqBWQIvUoraMVmMd2bkyvwy753tmSsqmc2JRJ6x1s+1TdVVhTlyRZaXf0ZSVpTc5PZzTpuy5fnBBXjmzdBoIiK0hqGSz9GoMTLmEDG5Ga1v4X2Tx7mA7NVeFVCke5/lXfk4F9N/sqFFbyJYPcl/HkX9CyKb5KkWZWCgwVbDey+TIiXMBOQOA5VRyjwNTeOzdTzLJfXqmjedHStjIl1wC9c+M0qhKjoHDaVmK3aqQcNEmvttC2YWbQYSLJ5J8mAdkDhiDgFNCOKFg4EnYbgxBIR5BkBwZjZ0BAtPPp5O2O332D1G3N8FEByGYS0dvLoWXdsBYEyqlIcwY57Fy3FxscHQ9yAKCFpIbT14tG6L1zev8We/+gW22wt432GeJvDC6Ocqj0BdZM2IneD0RCQ2RmeAMOXohIy5TBU2HplY0rPy+ucLi+dLnpbBWwZPZu3VU210xCygJmNsw0gV0uXAGTCllBCdtU02r7cUjVyALk6gVApFCq0tBVlF3TmizNoaOU8Y/JCZzDSdME8j/ukfT/C+wfbiAq/evEPbdnjz5i2++uob7PYPeP/+O0zjCfvHRxyPR1GKyKN+1Qc4Ja1VBMAUzNwWlgCeImKcxfhy3MP7Fk3bYnO5RQo7KbpoZwbigUyAFnJvgQYgH8QYhIT9fofH4xGHwwHf//AdTqejdLyLEfN0xO7xHkTAx/fv8f6H79D3K7x+8w1WqwucJvHegYC2bTV3vEHbtiByOOz3EsbqKNdK8q6Fc+KJblopZNf3HdquQ9N6vPribQZdEmIcMY9S0PN4POF0PGKaTrj7+CPG0wGPuwfcP9xis9qAmx77mEC+xYvNJbquxzfDFn0bcHl5CXCLGCQ0NwNrElopBmPWdCnOe3OGEWqyzL/LKSoRHLazRt9L4I9FZIxnKebHVW06n1xR/hMjUsI0zfBaK8lXN6v1HzarAfTcmYBIWhxxkZohz6q7h4qxSUC5geDM363riGEjEzKagsgpIMVQrVc+vNWcbaAAp4TDYUJKDpGBYeWRovDbMOmaUXmWgbNz0GZ7Z97N0maWq3HIDuVwezOkU1XPp9rr0tigRDkRJe1cWMAd1RGL+pTACXMM6NsBm8uX6PsB16/e4OX1azRdj+3FCzRdJ7IIDiEEPD7sME0z7u9u8enTB0zTiLvPH3E8HoA4IaUDiFhSDaG8T9PLQ5Jwd4CRVP4I2NFioVEUAK9CWWgk6vVqeCWHmBrM5DAzYYbWfnWam88AJZlnSgmBtduiAWOGKD95DasTQgxxPgANSfoc2GM7dOhCkvFPAWOMuD8dcQgOLzeE1TDk++ZkRuPZFQ0YHjOVIb+RKYAX9F4bB6xIe+54gz/Ny2RrymfOIucgNe20AH2OBkgJzBFm3wOWCphvHBqVK9X0YYbzOpLpvNuRyW1T4Mg5Se9JFmMsZ945qb1V721xGBb8UPMkp9enxAhRUlqipXCyFDid54AQgxiHSOdBxockQnd/OOHhcY8UPWJspXZl38I3MvamlfU6jSPmOeSxkCNstmsMgxh65zkCLuH68iUuNz1evnyBL969xWq9EkwbJd3VSyeErBwQmfJfFBP5XfmEKWeGiRe4GNoooKqYi8w+BbBn6zAy6BfTv+2z8iCnm5ttR0t5k+ulLihZMbNGnSVYR1sgIkp3KyKEIGk5iUsKVEwpz8WcFTPmag58RkvIRnpLYxTmKLhb0skAJofD4QA6nrA/HOG8x8X2Aq9ev0bbtnjz9i188yV2jzu8/+EHqe94OmIeR6FD60BdKUxGpxaVRTCDl+2f0zITE2KSAuDzNMkKeYem6xDmBpZiRdRoVGaUPXKAbzs0PeAD5wiZh4cHPDw84LA/4PbzJ5yOJ43ycxgPO/z+Hx4AMG5/fIu7jx/Rdj22VzdouxWmMGOcJKW/bRtJRW0aNG0LctIAxXmpPWkdS33TwfkGzjdoM4aSCHLfdnj97l2+VopwR6mXGSOOhwOO+z3GccTnjx9wOh0xhhGncMJ2WINWW8xth3a1xavLG2xTQPPFFQ5XK2w3a5wm0XPGcYUwaLt15ZvR0pNS0gL7nD8vupwZmJbGoXMDd6ZcsnOScPaRlDvxDim5XFjZeemiTMm6rSbEAE0H03TVVM6EnK/aiMxPmmAU+jo7WpUxyJqoZPjFy7mcO+IEL4leYgEGco0aQLlcV7+cYz2rQNTO0m0fAMdgSuh6SSWcxoQQkPlsHo+tM6oJJtF9rUurc9pYq96EsmRLOV/Jonq/dCkrvHluwK7kd6bThNzNHoREQD+s8OaLr7FarXH14gYvrq7h2xbDeguvMpJZHNZ3dw84nUbc39/i08cfMU8jHu4+4XQ8AByEDTGjbb1ILbaoWizsEsazc6p4AqI554SryF5Rquah40iEKQEzAzMk9b+t0hONtnJpIEbm4FRuVWGVev8Fw7Yq74k9tn2H1kfsxwn7MYAQsDueMAeP7QD0bSd0D0JkhkuANxmRCj3U4wOXCGgbQ3EuV9cZOFe9SftP4+e8/kVpdGyDsHBdJSBnLZKR7Q6lWwTKoSMi9a6QCvNaZTKvG/Q+P/H72cQWTAtlTMzl7wzCyk3yc7PVl/XvxTyLFbS2fpsFuzxXwzC5jE8OvORmhyAwvk1Ja25UUQxclF4R/DpEjX6y1udd16FvGKvVgPV6hfVqQEzWarM+xGVd3EIJprJ+VAjMJrW08taLZeASi89YwYQJe9LP7SlifOKqjQ5A+fDWCkG15mf7aoKp7AwW+1rGpIpjfUjlbR0fL/YUKCG69auGbKQHy/liAIlBPNPzfABYwGSYJnjn0DYNVus1QpzRdZ14bDX/vtzPmPH5jE0wVAPXNaAMakUohRCzskuu0dRS6zaYy/BmYW+eMNIaHUSEEKW7zzie9N+YmV9KYuDglNQY1GC1nnF5dULbDghhFiOrzsdamdp4U0ogNytgs5QNaX3sfIOuSxLm6qAeQwffNmjbBo0CLmbOXdFOxxGn04hpPMEBGI97uKbBnCJW/QquaSUnvmnQ9T2SJ2zWLbZdQtcNwnRT4QcwQL+o0VGd8zNqEDI44zl5l6qzlek0+1KXDIfO77BUHI3elh4jrZ+TLBWcyrefeIuWQr+McUlT59/hepjPAgMuAOMJ7dbXL++dn6/n04RsitDoOAYqwzgIi2eW8ZUbL59R+JVhW1vDenkW76HE4SzGqopSdWl+RunU98yLBLQSM5z38Mxo2g7Dao1htcb24gWuXt6g6wdsr16ibXs5D2ps8s0K4zghMXAcR/jTCYf9Qc44WDvXpFKSiAGLPC21mwQkyvhlvDAjHAqNCUswb38BO/ZXriFzRqeZb+VQ/+VK1DRXcXWlY84dXkGQ2gHOITlRGix9Z44RIOlscnb3fMcMcJd//pFXRfn23eVg81U/Dyr9D3wx5yg+O4OmsNs4mc/OgP6s00yEvVeCRX7JciTzFKLqPBTsUV6yV4wia2rDijSpWwCCCpNydYdyloAzPFbRRo016s/KWAreEGxknaSkmLyU2Sr7a8WoxdCD7OAyh40jB3jCMPTYbjdYr1fo+w5d1yLOUVJXlPfS2Xl/mvqTP6jkNfL+LBWs+gtnr0yYZf/Kc2vsi2d/L888H1i9knWE4lK5t+ia7Fx4Zo7PGQNqWV+KuFP+EqPIAsNwjsxYDoSYAEj6B0M6WsYY4VX2D8OAeQ7wTQsfBevkfbWDcjYmWz/7kVeV6uiypMXLRbG3vXbeZeOopSQTnNZurSJmvM9lPECi6IYQMZ5OmOcZIcxoqYXzHjElTKcjYow4rB6xe1yj61foVls436pjeVJdicHe53ReIkJIMadd2x46P4vDrmnR9qy1sTx8Ix382rZF04jTr207WbMotS5X6yOOqy3GcQRD6kPtT3vg8ICuX4HaFtw0aLoOq2EN4oDVag1erdA2UrMzxKqEAnGu21pnfySuCVKcMpTpdhkgcK7fFbpC/pkjdfL+ys5avZ9a8JvxSIyjlk9tfIS0AHR13rJcZOD8XJUZ5M/ZBnVGd/WUuXzrDN0r/8Y5r+OKbs8+qfhq/Swz7NcRoy63X19isVpnAlD8LSZPVGfK6Mj0RSqyBvZZXv2f4DQ19jz7/sKp/wQoEqBNUYi8NBzqe6y3F1hvtrh68RIvr1/Btx1Wmy18o/pBYulQSi2604jIjMPxCN+0OBz28LPUfEpJjMZmokiccuaHywEKnNOKTbYlqjAM4Yxe6+GbvCjRyqVDKGpyE7mvBtGC4etsI1sk5P203y1T3TsqEbt2BlnKbTjCIjuocOQ/SuZP9/TJhbLzBKOZP3LpH3n9bGNTTucBsoEjexVSApIJ/uUBBJZeaMsnzEvBYmm0+ywZDz37s3j9qugEICv3tVHDHmWFr11VWM7i3ORa89aWWlCOvP5zma8ZoSNDgxKRASfRUk3j8ermCiEEvHcHnI6PYJY6OU0jhoI8PHIaIgg4D62H6MS7mYRwyXu8uOrx8qrD5cUG1Ih3ilwL78TSS7Ewl7Lu5aBYQVzXCeeMScC9Ad8n+daaEVdY9jPAC3LPOkqTYSWcKFtC7SAaRsyjdNKS2Dxqtrf2M+f30lJgkUYe5ZbqMKKvwmMrRinl3OpR632qd82jKBdwAVyV19A7D7AWrgRjnkZ8/PADmqbBbv+AYbWG8x4vX1wDADarLQ4XO5zGEXe3d7mTjnQa1EKqdR5gGUABhKqsmyFnHE9InKRwY9Oi6wY07aDz9GA4MALaABAivE9wMaFpOqwGSeU5Pjxi97jDqNFDRITNao31eg1maRtrwu94PCIl4PHhXgScnY8ETHECQxg1efPAqWFJu6yArP24RUAJaBrHo3jlvMfjYwfvHHzT5Pa4jW8qA5rwjZubN2BOeP3uK/wyBPRti69evcXlagtQA2LGcRpxO99jTCcwS3vQOTrMccgLbJ7/4tl4KtjluopmaqCkH9Y46JxZy3sVhdXXMOTcc9IDz8i8VSnRRmXk15AD5XSELKdQCNXGWZjvQqgpUnBkgIfBGnlSUIh+Q89vBkjZoE1l+Oq5cc6ii2yNiuFMByS8QHlLYmA8AWFmNB3QrexSq0nFUloDrAVEU3XP5d7EaBEcQGm57p7wKUuZq5VoZWx5zguwpHslU+as8FvqXoxSrL7pWgybNZq2xdc3r3D14iVWqy3evv0aw2qNzfYK6+2lpEF0PZz3Nk2kmLC5eIEwB7y4ucb1mzeYxhEfP3zAfrfD48MtPn74AWGecDw+YJ5OsCgzBmvOf6E6S0Ayz7LVJ0rOgarIEwLBtx5N4+Gdw7of0HoPuIDDHNEQJJ3NkXSl1JpUKUrEAykIeiIKdDmtKwqlsi+si+kSMHiSls19hykJb+YUME8J4xhwOJ7EW8a1EZ3y/Q2FLBV6ZFq1OZbx6Xi1ELLXBgYMUXyNhv4UryWGilkJAoqXvPy+lLmiJHMpbF/LXK7SG23ujMrIZOeyIEVOKReCNT5YG7KS1XaEKUJqvDTRmmtI1WO1/Sj4yHufC/jbe8XApJEPmhYuTSodmBoMw4Cb19cYA7B/DHi8DyAQ2qaR1HZXOvCIw0JkDSntJ2acpgmcGKu+h3eEF1cr3NyssFp1YIgTkODQNM2CBxpWBEgLemtRbavrqUAmpqQ19bBYx+wtV9la7yMATcF/qrTZFQWLqHpsrPf8C8Byz1LVVAeGpcrpMcNN5ussNJeSy3Qi+8GZHurUE3uezSUr/cY/AcVzZ6+K5TZqoEp6mMN0wscff4BvGlxsLzCs1iAivHnzBswSQbTf7TBPIx61CLbQkLFvjbh4ZoHE4Vuinqy5zzxLM5OmaTGsNuA5oB/WiDEgwUnXtxAQlNeHjgA0iJGxWW3gXYPPp1s8PDwgTBNc49APPbbbLbbbLWKM2B32CGGGaz3uHx/QTRO6zQUSLPNC5OqouNcMWiCph0TakdGilchNIBIM1Y0TvPMIpyOOXYvGN3i873VO4rQzQ1ptMPCdx81bKTieiCWKxDd4s73Gth3gfvlL9NOIwzxipiNOmJBAmKYZYIlStCZGZvxhjWoCQ7tpC+4vBmo56d7L2AmUI/Vq3a0OEiiPMLqrfmZdxME7KYjskqV7Mkq0kRmgCOwcOLeAL7SbD1U+73buavoqMicTM1lK83NHsgjH2tFjkYOGx4gstUv0rzpr58kdFfQlraGTAuN0DIhR9CcNyASniBhTjow30FnQ4NmYuXJ6QKJKhbXLHLJT1rq8Zvz8lBfYKmWHVs3vMn+qangxI4aIbuhx+eo12q7D9as3uHr5Cuv1Bm/efolhWGM1bDAMGylF0EjkXw7OiBHtaotpnnH18iVevnqFaRzx6f177Hc77B7v8fnjBzHujjuEMGbMTIaDM28tTjHdItRdgR1pOQWVcX3Xous7NI4wOIeWCOCEcYoIRFL2wOSRrok1x/Da9KCsGxX8ZrSmZOny7/KGZ8aqcWgcELjFzHLO5iCRU62f0DZHEBwoWeQpV0KEikyvwFPG90b3TumAocxa/uZqz5nVtvMzMdS/sEC4rPTT0EBkRpHL0+SFNCYgkR55epmp8LODLeHf54pDiQaqf0oEBalys2RWNRMjrkBD9d/6ryyezdjkzJqOTAT5fsSLdpYJ0tXs5uUlCIxpdPj0Sdqqtq2XdvG+PJG0AIH3Dl0joX5SzNgsrmLNfHG5xru3W/T9Gs5LWLR3HTw1kPaRBhyKAn3OFKwYOkHqIcRJ85qrulGFEVVzxFkh1nxJ/TtycZMCpAqDQkWg+dtVdBEBmp5RGRsNIFdFyyirHJTpzYAOanpZ0E1Vu8LWA0u6wuJqIOel5jIblfdEWUKYR3z+JJ0Gd/sH9MMKL15c45tf/wZd12O12uKwP+D+/h53tw8IwcJlI8zwasp9xujVq4SyC53ElDCN0g1ktd6g63u0XY+m7cFMysAICQ7NLGvpfZTc56bBoMYmvr3DYb8Tz4DWzFit17i+vgFQit/dPzzg9u4OISbsdg9IzGiaHm27AjNLPY0oqSGstOFbKfLrvM+gR1IIpXBd10iByfHUSJqBs5oOpCl5opysVxtJOe1XGPoV2rbB5dUrdF2HblihX6/hncembdE5h6Zt0TUe+/GIbz9/h93hAYfDEff395gCqUfVPF0lVcTW/ZwanikRswD2LvMUqcNQW6a4+tNYvP1R1BhJ5yM1NjFpTQkutMwoxiaQExBKQDk11YPyuRdwYHRe6NkebL0usiaZBWg+F2ziT5WmXHG1HKvSDbQu6FkrVgbbyr3NcHU6yTMHMNoBeU+KrCiKkNA/4/l0FONvMT/T++fOtTHuZz6qJpV1cQOYuZOpPVPGFsKEOUS4rkO33WBYrfDLP/8L/PrP/gKbzQXevfsFeo26I98CXBwqMSXplJXEqJtiwvU44niUFtovbz5ivz/gxx++R4jihR7ngDBOOg4zpgOojOjihU3GGYtCaGCbU+bFXdNgWHVovMeqHdA4D0onnOYJnljAkBelwVtkQYpIUWq+1B7QvG5k+yGCg4Gceq0AAQSgdx6tI4xdgwkOIUYcTpJWN04Rx9MJ3nmsmiE7LaA8vt7Zcw+pSW8BaE/5u9G2yTGwGPz+tMYmQGRR9dwqTcsiMO2VQTuj1JyDlheo6F8MoLHMMxsDLO1o6Tk1Y4/hNpP6i6ipVBQs43OFm1QNVTTtu2CF8j0bg9eUIJLbIGMTsugja9ICEKSrzjB0uL65QmDCZ3/AeNiBATSNpNEJDtRuOl4dg86haWRcMSWEOaEhj77r0TUelxcrvHy5Eu84EkIM6HyHxmmxY12PMk6bmGAnn2uM6kdgQBuNnBua5H5LY5PQnhlQzbGwfGXdR59tTrvn5NH5fheDY33D+uDUEQqGF6VGaL4XSpHf5yLt6mc+weYoOO35sapBgiTKkQkI8wmfPu5B5DAej1it1ri8eoGvvvkFmrZDv1qhG1bYPT7g9vYOp3HSbnUaNa21uwof1P9mlq/zNAVXo7q9lyihviekYUbXr6Trrcpdcg5zjAiU0HcEwCOGhPVqDSKHFD9ht3sUh7Bilu3lBW5uboSudj2mecLheMLD7hHdPGN93AHeOvbKuZ8niT4CCR4AaSFk5zRiSZsiadS69x6hkzUYj4ahDBtIqqGMx6EfBik4vlpjWK/Rdi0uL15K8fHVCv1mjYYJlzOjS8DaEV72HXanA757/1t8ePgE5rQwNhXfa1RdUGQZoRSdZtJyFCqjhF+0FR6UW8RoOkGFnbg4d0odzee71plxLsYkNbaQsMz0UAOrExm47K5YKKZcX3WyzTpIod1slKKSdpXKaUX5Ru18K/MqNxKsZPN0lAqG8q46R3mEFc8WjDiNESEkdB1haJwEOnDKKWLZflbdBWfndRFcEFkcHyrzMw+06bmne7V8LZ0Z5VFL/sQcpERElC6GQ9Pi5es3WG+3+LO/+Cv84le/wTCs8OLFK3RtD7ADWO0GGUNFxCSRdquLK4QYMY0jXh+PmMYRV5c32D3u8OHH95gmYDwdEcKMlDspyuJUcE/xizkdlffVxiYHIJVSL13f4uJiBQ9CG6GlFiaM0wRPhIYgnc256vqeg25QUoJrEGVAXPccjFJexVL/AQwNoYXHlBgjS4kQCWRgtM2MbiJ48iLbyCserCWXSumzSPVsfAPlEgNlI6no14rLmKWcw3mt1Z96/QsKhFNRlowh6BvlMJSUwDoK6dzgk6em750Ls6ePXt7r3NtSXWm3Lk+pUFBWuhYqoPo5bVEr0Ocq5mTMw9bfgJlFDREJwBljwKQt2okTGk8YesmhXK3XaLWot+U3J47I+aCacw5tc2het1bTjewgSIcuQpwCYtjDO4dhaBYGuqLw1aCg2gNTLkmNW2as4CX4LsadAjqBKr0hP4fLklbLa0Ye1IytaG/lhyq4dZvmahMXtLD02Jb9AHjxfv5WNbQFw13y3idGgbOPs2GoZqg2Hql3NOJ0OmD3cI+26xFjQtN4rIYBL16+xGq1wum0x+l0zJM2+re89sUCkgE4aTEJFgVVgIVFAjWayx91X2x9JBRcWpZ7eKceZjXs2F403oOdx3q1wuXlBZihxb0j9oeDjCalKvTbo2kUQBCBXbXW9b4YPZMTA2uuVyTPjTEoc6fcBrhtrD2nAAhQggsBzk2IKcH7A6ZpQhci5pjgnUNqPFpyGE4HOEQp1MxR6whp1xJX0jIskiBHKKliTqAFnTEVD8A5uH5qALddM7queFp5a0lc1Zfp/J93cPBnPKcGSkaGfHYmC8ogW8nFtBiAeNOQpDZd5sE6fgfKtYuykkvyWfZiQwAlQwymyZcIIzsp5TcZrHkerU24NFcsUaTeOXgvIcaJ0uI+S35Wzxln1/0UGDrjO/Xbdp65vnfFyExRNwOKI6y3G2xcg9V2i9dffIFhs8b1qzfYXrzAMKzhmzafUQAK4grty6Fe8hBTyru+R0wJm4sLvLi+wem0QkgnSdkNI6ajNB+IKWT6tP0u4Inyuue1M4eI0zo8VgeMVPFTZYJJPO/RAR5cBXzUNKpnQMGykV0t602tzdfpcpL+4SC1DZgMeDvhPSGBPYEblE6x1v9XH5RFmBIuVXSRwRAZRSN/14yHlMdt5+VP8xKeIGPJAM3KC1iKSp5bRY865yU0tOvKehfj0NKzbGu0MMA9OUM/8dK1ErZ+LhFruVzxRQOgCwzl8hoYvcvcEkqxXkkHSFPANEWAEzwxWu/QDx0AwrDq0TQN5hgEYOfoX1FOozkVGCoLRcY1jVecxmCOkjpOAac0ghLB+war1Tp3pK2L4S5/q2iKgXPeXb/O/zacbPfIEeF0vi+wmxcFILOPms9Xo6oU7PNnLoqZq1wjXo7XcCwzL2qjnb/O53muUBf5X6ZCi+8vp0koTooYZkzjKGleuwe0bQekiKHvkMIKL66uMA4D5mlCmOaz9SqycvFQkugMRySGJGbEILzTOw/XeYRWuq0ZTkxgWLMTD+nA6hxnp510MCwRHE0jdZfW6zW22y3mMCOEAHKE0zTliKoQghq6xEhk9CNOeLJDtFhja4LTegfnFOPr4sYYkLQbrfOaFdK1aJ1EqUhmg9RIm6YZMTKcO2AaJ3QhIKSEBgBNCV1k+PGERutUiVMkgqiuH6qGOBJlVk4Ya9daUiO/pSAtN712QBkueYqpnsr22viEjCFMdlrGSVUqwnmU7s5Oy5I4HbcY4shoBSZD7J5O+UPF18pAFnORPUtwSfBSTu91isW4nKmUII71Cksyl0hpKUVRzsdzRlwmAidkwzBLMhFyBBdYo8fEiRAXPKOcj4KhioxYGJZBT/Ygz5/O33oea5nTk2j5NwOqqxDW2x5N22L74gXevP0Cq+0Wl1cvMQxrtJ0UAi9sq8bMCyRd6MiRGmgbdMOAVUzYKoYaT0cQZhy8Q4wT5mkvzgEr1GZYxe6uoNl4WdEtC/5xhJxRQyT8NHcXJkZK4hQyfaPIiirakIEcOY/aTrLcnwW4U3IlxU8NEaJjiaZSrB9CAjxJA6dcjocKmT+zved7KMtAWebkdw2LZNz3nB3m+de/uGaTeeByIcG8WfZ5HmrFMJfpKvIeQ8py2wbUnplzIeie3YilAWsJB2oGBWix7Kx8LccizxDmGWPILQMb36BtOy1mTnBRN4+ctLBk6QRmhZzHfcRpf8TxcEA4HYD5gHXr8OrlJZxrcXX9CsNqjc+fP+H999+LdTcXrU0gSwvRwzX0K1xsL9C2DbpWhGGIAQ/HPVJy+Pj9LT7/eI+Liw1+9atvsNmstdW7plVVjNr+pVwk1sKgHRpuQKQFwtnAulMQzLnVK2sha/vcgIsu4mJN83NpabwCCpNaWNZ1Cwk1mOGSwqOfOQLgpLtaXezUedIILXl4fRh+Fqg2AYhCx8Jg7HAXb0i+m3OSggJgmiecpiPG6YT9fi9Fw99+geubV1ivBty8eoWYEr779lv88P330hHu8IiYgoAVNbTkdlPGjxgF3KSEw2GfowSHYY1uWKPtVmBIUUhOCd43aBrpnNK2CZHFKdD3PaAGAjALQFqt4ZzDu3fv8Gd/9meIMeLu7h7TJNEWYOkycjruZX3XjK4dhG60QK2dNwCAlxQHYXoRRIy27aVTCrQoHYslXtq8llTP1bDGMKwQ4TCFCJcIUzjicDoBAD59EoHQdh26rocjwkDiRXjlgK8cY4wTjuMBp9NOjH2tFRYVZboBaToagZy0WAZzVaivoscaMGdBU4zPNTgy73aqv39G7wDn6D/jj0RJQBK7HOHlPYHbRselxWabFk3bCbh1BpRS8U4Uoq3mwHkihVeyAh3W7nYsxdPNyEwlMiDp/QklejTPKfNVKdQLlFSe4l003ugUuKo3ZDIwC3B0IAd0nYf3DeY5gbW7jaWN2boDRZaYodz25lzxqhV3K7BZri3jB5uHp4oiA2kIMeU1AAmYaZoGX379C7x68xZX1zf45V/+W6w3F9hsL7FeX4DgJNoUpJESSfmQFuBlXVfW4s8sRlVygG89Npcb9Ose/XqFy5cvMY0jfvjuFR7uPuPh7hbf/+FbzNMIng6IcYQQVEQZufxHak0R4BVAkgO3ACdG23h03qFxhI6ky8kpMo6nCE9A15CCFKBT+S5Gag9LV7T9zkHOigxzl1APAFa8ugJzkiMJz4yexJgw+waBJGVldxjRtQ3WvaQku8arrGWEcX6S7r3YS/29yBCCOU8kiieWg8m2N3+6yCYJ0RVeHEPUocR8dMuczLG0BKH2srrSpIpXlp11EXTo/UiboxifNhm5uFJ/O5PLT6MJXDYM5CLkKGDfPguGocAScarp0k6/3zQSje0pITnTsiT677AfsX/YYb8/IE0jGp6xWXWg1ysQSV3Etmlxe3+HHz/8KBFdVh9Ua2SCAO+lOLhrHFbrAX3boGkJjIhpitgfR4TA2N3vsX844PLyCn/5l3+B7XZbKcFn/L0q8K7vZgzF7BHPlLfsiNL0CTAjaMdhcpQdP6qZLoRGERms9U9rUGCplk8V0yc7q4XZi7NAUhXJoSghGl3svaSoIO9/WtCd0MBPPzM7cKgaHyrOTLWxSWiLiATbApjGE06HA8bjDuPhEW3X4ubVG1y/vMaLiw1eX18jxogfvv8BP76XvZ8mcYw13pfIMyo0ZXzHN4LVpenIAV3X4+LiBYZ+DZeA4/0DQpgkYgIJTIROaxWFSEjsELuE1TCAAEm9hDQ6ury4QNd1ePvuLb76+itM44SmbXA4HnGaJoQ4g2fgcNiDwei7FYZBZGPbCA0kEOxEkXN5oUJKcOywWfVYr9ZIKeaI9HnUyHIi6aDnHNa8QeMbJJKi0QDheJxwOElR9I8fPgFgdP2AfrVCA2AzR3SRcdk1uOlbnBAxTtKYZdW16NYr9F2rBhbBjW3bwcFKpHDGxyRoofxPt8KaFdVGphx4qRhdxptyQ5+SZsfZoIxkEdDIJRdy7SIi5YlyjckpIikX4BrR51RSFV0BxufOskIYlXyo9AhXnXHVsyJziUJR+otRuzZb7nHFF/K8dR5ta1gsPnPmTCcTWWwyNkVG2zo4kjy6ricQeelONppMqfBSlSJt2UnFyGS/P9WxQaTdGc1hscRaZc2KDCESByJnGklomlbKf3Qdfvnr3+Ddl19ie/USX/7qNxhWG7TdCm3Xyzll7Vypz6tyZJAgGMrorOwLwbUNLl6+wHq7xfriAi+uJbXu/Xe/x8PtZ+web/Hhx28xzyOYJwDzcm/tJ5X1ECO8z3gTLBGanpMYWFnWNUTGPAW0Dli1Di0L/rDSdpa1gYrurIaT6Q/LvS9zNhpwzHBR8GOLhJUHAhGidwjECJFxPM1oG8am92jbVozkatCMFkmZn6O6TN77ZAhKI7JQDGIpaSH8cq5zh+KfoWL/bGNTrceY4rIwIqmw/GPQ7Rzk8FkLalLr7bkFtXyfs8hdbsq5ydX+w4srCnMrQi9bJml5gABIgeMnkU2UCdFCH0nj8mNKOE0R0xSkLk+KaJzD0HfwTSfGoNUG+90jJGfUjGushh7tRAZk8N40Ldq2yc+KiaVtfAQeHh/x+fNnpBQwz+9KXSw1gFhYeAHotndaBwXIOZjStQPZq2UgCmwdrSoAC7L/n70IZ6XOsvJ9fu0C0AKZfsyafB43nj23C6uzXYs8l7OnPB3hc0DpbC4VrMsGyme/pgycweCQclpMCBFt0+Ll9Y2EfGvRYIDwcHePvrsFgXByXtpLmOGhGkxNuQLitV5MCCrESL0EUijS2maz4wwgiZ0qCB7ORa2NoUJfhYmEXDdYDStst1spejlOICLpNmfGBy10L8Iw5bmLQCIFxLpQGjaa6104YXrKsTKAN/Bue11SY9VgAQUOGqqd5iDK8jih7UY4IkzMaAhYdS2mdYs5BsQwI4ZZzrkqQSb0WFsLZ1rIzIAWjIEKmS/o5qmHzvK/CefV8+z2QlS1llsTnAF0O4ey14CkiZhmY+vtqKTCskUJGapHOb/ZQ00FzBVBKgNzlVLhkhjkuBKwYCdeS0el0yTZ+RABaYCvDnl3DtkIkT05TmqBiBEoAeZ9ZABcin6mBDinNQCp9A+t199AZL0P9jLasjWofy7OPqMYKSrZpkSDEumkMocs+qjB5uIC169e4cXNa7x99xXW2y2aZoD3HTgx4rxsu7xc//Kv8H+ZAjk9c7n4a4tpmnA87ACI8bZtB6TIcG7UNIQc17PgYXVkkdB/QsrRjmK0d2aI0DWIkQGnkU1sHWIqIOqMv+u6ZpBepoG85jh76dlQA4ZDSaXxTpQtia6KWjMGCzlb0/iTOxsorsZhJ9HkRlZ86nH+DID0P/JVw9lFIU+l2bJmMnJmGzcvvlvfMItPk4/VPSw6E0Rny//Ta3l+ZhYv3Y/z0RhHfIKhGGpgqmsvmvHLIRMel7Mwh4jTacY0zkBKcGC0jcMw9GJs0lqF+8N+uQjaXTTLRpdA1BRDitZ5ggL80xgwTQkPD494uH2EI5cjbOtaRMvICpz9fc67l+lnud22AmM79WLkPGtQUq23iCEq+8RPd3/Rbeps7W2/aUkOS8USpjgif9/2JtXnqbplJoLz5y0+l2uIiiyqP19KSCg+kKiPEAPCHCApWglt1+Lly2s1yDishjVSSni4f9Dut4R5nqt5meKkqenV3HJ3a0AwlG/gXYOu65XnNnApCY7hqrg8izxyTmuDWQ2yCkO1alAdVitsNptcsiCq40/2lLXrdEDTxKLQuyp11dbWFQxFimGatkXf9xmDRZX7RrNgTe3PDtfMauVcaCSHGaqmacYcZngG0hzRxYRms8Jlu0HgiJCk4za31tzFLWjA5zOtGAhixBTMZLKvRHCWNPhlNNPyd17Q0cLwYz8Vr9QOqKK/sNJSGRNXJom6U3fWETNIq4UDVX9XPE0Glce9SJOFlTeoMCRVkU15rcqpszPuIbWXzAiQy9SYocfqTOnvjkVtEAeK0AqRdFLnRsYQnQV0OCydcngS1Vgoz34rdbQMI+dI/+ra2ola9Dkdt0WuAvkzOIe2a9H3A65evsTrt++wvXqJV6/foR9WSCxrlSBGNzMwyjqV9bX9zPumtZfJMFTXoWmkA3bjWkzjiONup2nzM3zTSf3JGPJsrBHT+avwdyg21bEondcIlFmwE9VzphIBabpUxk3VM5eBNMtdKX8WIU5JI5s06NtpkXXhowzvOGPKXFO6ktuLuSpdFgxV8W3ZgfJd22Mb8wJz/PHXzzY2HUcJW40hIcFJxIoKCVARXA4VEeo4DDwTUbb+OnaZiM6BIlgPkrVPzhMzYW0MqALbBtiArPPVNUS8o4qvlDQNu4MFcpsQdhAlvPGNMv8EOFHCvHdI0SHpJnkvwu14mvHhwyPm8SAF3ALQ9w1e3wyAa+BdQgoTrl+scLX9BiEEfLq7w/54wu7xiE+fjgAIr19d43J7IYYm9QqSRgicxhk/3v+A0xhw9+kej4+PGIYejW8w9IOkFuWie7Z7hYBLZy4jEoZTxuw1nJcAbV/vEFNEmKV9bAwl5Snn8AIw7z0RCsDNj9bDVL1fH6wMlmSjUH4oQAZrGhRDczywYG4pSTSNgqvFmQKQrQZc7lsOcxEMhfxEEbIILhORwuht/BXgzossXgXTxmOM+PTxA8bTiK7vcXF1JZb9vsWvfv1rTNOIz58/YZxGjMcDxtMB4NJhwGibQWBKeX4xzoixlacTAeQB1wAU5J8yYFMkG+/FeNNY7THA+9JG2OidAQnJdg0uLl5itY44HgOOJzGgpawAQVoHU1HipPB3C+cd2l7CY9u2w2q90Qivt3jx4iXG0wkPD3cCYqRyp3onpVA5a10CGPBPjH7o0Q/axUujE0MImMOcazBwStg93uP9pwOmMOP+4SOO4x6u6eCGNZxr8laVCB+qD0hFb1DhWgRIDYiW8KPsk9XJKZyQi93CmFKlqJjHrqZ/UVasFkkCsctKWGIpiM3OFaCHhGwos/OsByALj8wX69Q0FX7KByT1OZb7oNzTPJa1cFqAJYHEuXaBnMli0C73FbpzREDXwidG4wmcZL2GwaNpCcdDxHTSoruVGcWwoZ5OlTnl1JajWP4utaSKYpd5IzhPNytluheJY/YYt12PpmlxdfkCX3wl7Xi//uWv8frtFxhWG3TdCsReah5wNHGYV8/OKcNkJUQRIimCz2RteIsHkAPns9o0DpcvrtB20gyA2GM8HvDj+29xf/sRKc1ajyzWqATO6I8krUGzCjJQ8pB/rSO0zmFyHs63ADHmBFBI8I1DahSoGP41+mZTIGTxEkyuoAI5mR3KlsG830DnZXARDr5rEECY5oBxmkDOYUwBCEAPMV7WmGYBnBTEy2NrACH7maoaFrVhRrVckPdnfOBf72UYao4MuEYjC63oeinSbGkfcp6EDp0vZ9MUuFxBiE2xWIgz5DpdicS2YTJTNqyc6WoN7eWsJpsrrctdXmfCeUSYcYz8OYRfN61H02ptGb2HeFkTYlDgrPTCDOwOJ3z73R3iPIESYdP2aH0Dr9F2fSsG3zevr3B902CeJ/zw/iMeHvcYTxFhCiDncHN9gcurq8wjYgrg5EHwOB6O+N3vfsDhOIKCB0WPxNrEWZn+gt/lAquKQPM6llk75wr+gNCoFWiO0eXvpSj1Vq1TVwHvZth9qggu+DuyiF+8aiMXQc8mFWzNKI6/GmjbDExx0t4rKlboSa0o423Vf3R97JaWamX4mxdrAkdl3nnslUdfZWyIETwxfvzwI/bHI9q2w2ZzBe8brDcb/PrPfo1pmnD7+RbTOGKexlzPUkr5UOar0GwE1vTxOM9IzqvMFcyWkBA55jFZAWpGQtOI0WSeHRgRiUOWp7IMTqLtnQdci7bzuH79FttpQmSPoIEETdvlNC5LgZOC5xqtPawkerZt4RqPzWaLm+sbdF2H65c3uNhc4DSecH9/jxDMqSayStL1WOQMyW7OcwBRQj/0WA8b2WWl3ZRYun9yQgrSWW/3+TO+//A9xjDjeHcLnk/grlHeJEYnqQnlKspxBWNnumUDTk94gn2U6biiRzK8bxFplG8DE9fJ5A0rb9TPvXeix7DplDYO5ACGpE6UQvMFXZwrzWYcl5pBtXGjOHecM6cgg7NxxB5bkKIZcZnPHUJyt6R8RaZvUSflmZzMiAr4xuVaezGyRDUlUVT6zqPvPMZTQpgKFjlf5wzznnvVhgYzkBDK3p7xRnlruX4MgGNCCJKBsb7Yoh96XL24xle/+DVW6w3effkNbl6/RdcPABxCSLoTMjhnQt9WkaDOU6UhJ2vXeDHUofHg2CAlxpQCIkfBIA2hYY/Lm5foVh36zQrsCKfTEbcf3mN3fwfmgMgnlFCZ8lwmMSobTzNe6ZjhFUs1nlQvcQA1YABzlBIFrdf6TNXGVzANVH9whkOymk1GcUoDTiwUPawdFMG1HoEJMQbRr8hjigEUCK3zQNMoXZaItrpEgi1yHo9hpmR4HjiTipk+nuvs/tzr5xubTnN5iCy3ApiEjCphWJq1kJmCIlfqxOQoG6/bxlLgyr4LO+N6Vo2p2EKLciQV0AkS3WHbV+n9ovg53Riy4tayeOV58hCXZ0XaOF4KEDa+kfobThgqEUuKCzskJ/+ISItSMo7HGe8/PCDOJ9AxgiIwrBusLlZIyWF/TJjnCTfXa3z5xQ3mMONvfwt8+HSLeTpht9sD8PjF1xu8efNWi9GKMUiK4TkcxwO+/f577A5HTLcT5oeAi+1WvCl9r6BtqYAVPvHUyAMYQaMo9KR56N5L8TWS4mOhAiFGqFEjXQptyOcGfHK4Jgp/W3SgqDhUhrL5OWWX1IqpycgC0qWworQeF0UGmXFDuw3Ux8C8leXeQA3sUmW1ddV3CIonnF2Hos9kpc7lcElmiUL4+OEDPrx/j2G1ws3r1xiGFb744mu8+cWXGMcR6+0FjqcjPv74gxibgBy1YgUhmR3gJBUOYDU2BVHuSNNjqAG7BpymvJAWxtp4DfGPmgqq9VoaZ4zdrNqEmCSS7uLyAkQOIUj4+DhOuL+/xThKN4dJC+3NcUZMEcMwoGk2IDTo+wbDasB2e4nXr7/AarXCn/3mz/Duiy9wf3+Hb3//TxjHEa1v0LgG0zTh8fERYZ6x25+wP46aZhLAIKw3K2y2G83FXsM3DR4fH3F3fw/EiBADXIp4fHhAeP8t5jDjPh5xSAHd5gLr1UXmEcJ/AGbKf6PiGaxgqH4R1TRiqgueXgSDXs8ZpGBIKTP8FGO5jpae8RLlmmAHjZOkAUqyb6MRSAQr+J1PWC3AWJUNTrmjhAyFChBkRnK1N80UFBU8hNKVgnnBT+xeGWgoyivKw9Ip4JwT4K9GNecZHGXMq77BaiMK2+6BVBm22itAyMUMCaaY227UkUPG15b19uTKGGMupGxnJM+p2qqUEsYo6Y3deotutcbN23f4d//xf8bl5RVevfkSL65v8plhAIjIXSbJW4rxMs6zGDnFy+5Yzq+tT4xRataw1IIoxqYX2F5eYbu9xHrY4nQ4YJ4mHHdHhHhCjKdKUUUBqbZiBPHqq13FkaSxNQBaIimw7z2cawEkzCkghYTWMSKVor5lIgUoix2qhOUbXRFhaWzSs+WVHHtHaD0jOY++HZCoweNxRNBqyGOSKAcGy9ggnvtiaCqGvHPDIxktVrJ+4YO08+pcbjn+p3iZsUmJRAZqWIRI0xyULzNVNSUA8rrWqmRQHreeERPBBYqVWkYApHlhOacWtg8qkdD1y1JiLJoDEL5l0QX6Rp6OPNpGpJzQ6gpa0wiy1s0e4CQpwiyOFOdFrj7uT/jdH27hkfBm47Hpeoxw8GoMkqYaHq+vX+LV2zcYxxExHjGOO4RJUot80+Ly4hJfvHuH8XTE4/29GC+4B9jjcBjxT7/7PR4e9ri+fIMXmxuwde7J/GxZh44qTFHSHfIpkKL6hjXtZyM8KAQxTqSUEAkga8Wma2iFuoGlYZzy4Vni22ejzvR943de71MMYyhKc948U+9qFaLC4YaXygPKuCn/Rz3nXC5h5I6AJdpoibVAxSiQdQKVNQxo+lrE4f17pB9+wHq9xZs3X2IYVnj95jVubm5wOp4w9L00Ybm7xTyNABheDfWJSbpiJlGKUmVsitoZzTuJmoos0UKkzM1p0W1PCW1jTjUHZmnyYtFXugB6nluQa9E2HjfrrR6KFgyPeZ5xPB6llhNIa1Zak4iIDW2x3m7g2wb90KPpWrx7+xr/9t/8FTbrDa6vX+Hi4hK7/R7v37/HNM85vGUcR9zePmCeZzzuD9gdTkiJMc8BzMB6s8HFxaVGKMl8d7sDHh/34BQQZwbNAY/3n/Hw4TtMKeDgA5JL4DjAjGlWCN1p22wGciT0wmDNDMMuhYYLhbH5yKr3rVZSfZtlpNMS01j0uy1/00g7eLBEWafIqAOEwKKPBm2I01R35bOfSp7VadAzD4IZ1uw60QcV8+TnCWGTnl06p/3ljKqfbBp+1otsiVhxj3de7F+6Ps4ROIre2g+EpiUQIg77KsU936PoN0/Go7Kh3qo6eyd/H+rgP79vHqximZQwhQjfNLjZbPHi+iW++PoX+Pf/+f+IzfYSq/Ul+mEt9aVSQpij8E8nRvhcW6teBeW7uZu7Yl92ALEHUouoTT+k1Ig4acg1eHFzjXT9EuvLSzTtgOPhgDgyxt2MmEakNFV6LCpjI1cNGgo9OgiG8kRohPVj9g5ACwZjjlmSo2+e7r1Ca+OgqLGrPd/OgmAsZL5qgQ+OCL0DInm0TY9IHsdxxP44AgRMMSDNCalpNKCECj+uBlE7KUr8GMGqDBiGyioEVcFF7l/B2FS/DMTaAXZVKhxq4VbGlo1NxlDqSKUMiIAi7GvK53KjEj1Qg8wzzqV3cLDr/zdMTg0vlteeJ7IQthXjsbFpgbrTcUKcjkjk4btelPZTwjQTUvLo2gbOSV0oKzzYdR2kqF1JXRpHMSDs9wK29vsjjscTTscRxKReQ0mhiinJoUglmuBpuHMJ6zsPwT4Pg89pklmZq7rQWGRTSqXo8jMrLVERdnjkmfbeYlx5vPU4noKq+iNODHYSEWMWfFOQz70IyM+slEtlJk/IZzGuMna70Pa79uLVjDmDPqXDlBLmaQRB8vZ3O+lM55zUK1itVtheXEp49DzluiY2ptpLyrneSyrGukrGZwMvOcBJfn3yasRSQebMe+YbDKsLNG2Hl9ev8OLljaZtDpqfL4BrmiZcXF7l+gizdtU7nPYSit1omLVzSDFgmkY4B1xdbbBeb9A0HiHMCGHGNM8S+s6AawhN43H94goMxnoz4niaMM8B+/0JMUQQMw77nbQ9JZ87JzZNI9VqRklf5HlGmmaEGBCdA/lGoyldxQOqRa1eWRkuC57fKeTzlGb/+ddSevNyUxdgI6tpmb2cGypqIzFD6oRQFloWsrsYt9KlhHE/VaqpOpt1XTzKh4meXnt2l6LMcAaC1eN1CfjJmTawmRKDokZcqkHJOcD5yjDI9cmr7kUWZ3Om9eJ5vlcbnliFO9XfMg+Wc+iaFr5pcfXiJS4ur/Di+gbrzQWG1QZN28r6V99dpAMYD8JTnliPg1mMBo4hYc9A5uWSKmdpAlaDwsE3EinS9QOGYYVpZoTQiNFCI4ElHZoqGaXrmMeAfCYyeCJJqVUbDTgyZjVwJoIUyq2kbTYqQZ5l3C7zRnpOKS7yxiIBLcqKiNE4oPFVFIgC0RjF8GyRUWzAD4vjtdyPClPUFLnUdwu4/d/jVUQri2Im70KiG+2cn81Sr+dKfj99ZV89snah59MBKgs5n6vlmGwP83+Wz178yoXE6IzGQLC0FTH6PnMjm7t9wwr9kkdKCYfjhHkUg2T0LUAJnkZNOSG0zYCURAGWBhgSYet9C0sxmueA02kCc8R+79G3wP5w0jSiCAKhVQxlhZwtshRANhzV5QAK1nhmjfJ5U3yCtOSJtQLHFVah8rn9XPKwSkoQFePu2eucz51/hmosT6LLibJMOZ+RKc71mzl1PuPDQgMLyiRazI9RFHEm/Z2sSQoB52Nnw8IjAMLxcMBhNSDMUu9yWA2YphWmaaOYdYbV7cly1TmpIEel+HWJ+pLo3lwLTcfvtJOZcxHeibFUjAoxF5Qf1htc37zGerPFzavXeHn9SiKAGusySXDUYA4zDocDwjxjnCYcT0ekJN2Fo5Y3MJlkP9u2wdXlFpv1Bs4RxnHENI2CcWKAJzGi9UOP169eIqWEzf6Ax/0R8xzw+HiUDsgxYr97hPcNhtU6p/Y558GUJGVunpHmgDQHzBzBjcgar/VCDQc7Oj/LmQtkyCDkUEm+8y/QUxR2zsoKbS6dYJUqiDNylpGQPDvfVGXF4p5ANgxnHmS0j6ckuNSZRFY9PffPjIcUxy3OF1cXlXvkc3i2DvnUZytueZZTJ2DMDngLm7DyFUbT9Rj0hs+cMVYpW3BkNb7ncHO2XJXB2hx802A9rNC2HV68vMb1zStcXr1E16/QtL0ETxh4NblcmETRu56shvww/6c1mvBeSjqACD743L3Va3mYqB5cc4C0rWQNdX2PEBIii7eDtTkXIPyNlFj5zMhItJh2OR9O3M2RI+bIaBxlA6fD+XzO9rqis3p78srr3mW6pbIWErtTutcTqWMqifEtOqkv5eErXebnazRGG09K1SiGenKAn3n9bGOTWPVLAVBmRkgqmFksvKgMFALkZDVcNfnEViDUZbCVCdlC9rgqFk7Q8GQFLdAi0d6sa3W+M9dyT73oyvS1VWK5tvzKXA6JjcU5QtdJnnRjdW5QgLoBYmM8xEDb9lhvtniYZ/z+u8+4//QJ1zeXeP12BIOw2yVMM+PFxddYD6+Rknh1G7/Ces14/UriPdu2wTzP2O/2+PDhE0II+LwChg543O/x/oePmOeAm+0NXl6/wPZiixACjoeDpjNodwhn7YCbXNBQ0v58EbRnQMjemzW8N9meoigkyHsrxcmcCu6kymJ9CL1vMth4Et2GwlzLllFmoonjM+OztU9Sl8cRuJX3iZAL+1IqgsWYtRXpJaBEa6A+t0tBaswjg0NljFnZIfFoMoAGUuy0Bm9ZWQTj4e4ORIT9boc//OH3WK3WePPuC1xcrLFafYW3b9/hdDzi+z98i/1ujxRnpCDF65pWivNGlrpJMUxIYQbHGUhaYJYqD4F2MZQxeLQpgeMMzwE+zRi6FhcXl9hevcSv//Lf4+LqBX75y1/jl7/8lXZKEWU6BKkxkBJjGmeEkPD999/it//0Dzge9/jh/bd43N2jbVp0fQ8wsNs/Yr6b8fbNNf76r36FzfYCt3c7/PDDt7i/f8D79z9gmiZshgFD3+PVzTX+4//017i42CKoV+LxcY+/+/vf4eFhj2+//QP+8b//A5qmxas3bzGs1miGNTabK8zTiM+fb3F8fAA/7MC7IxiM8XKLpu/Q9AMa36Jx0pWEELPwkI2vFLk/wiuL5f+pwemnogWtiQKdXWv3s/1JSWop1ApCbQi2sVnRTLAH+k5p3WVAlZK17TXjd6UoJRIn6DPKRU2ny4jDsk7WpUg+M3zGeqbqmnDlvl6VCmbWouipAhZa6DJJuLfzwDSypG2lgK5L8J4xjmo3R42NjN+bgsYqF5DH91P7l2uoqCJqNRdIAUtgKZ44bLa4vn6F1XqDv/p3/xFff/0rrNdbvLx5jaaVegDTNANaD42gkSAWyqOC4jmg5JwDex2kijgfE5qmQWSJpppjhPcTwEAIAdM4Y54mJI7wrUPLUssEkbHf3yGmE+bpBOYA5rCo25Vqg7SOKdcjcRaHl+C91BaMKeI4zgiBAQ5wzGicw6Zt0S+8jYsFzvzUaZ1DALkzGFUbWGgc+mxGA4n8GDyQ+gaJGVOaEELCyBMQIxpy2LQ9nGv0Vl7pD5XcUeltMtkENteFnMuwS4fMP82rFEy1M6MNVtToSDqfmITn1rInK6Jsnd7Uu69dSotWYoqWnWMGISoQFWcYgaq6HUW5qM+wKClcHG0QRbuOVNbHyKPZavCZAdtat3fotEipYaa6wUxUD7QnDweHrh2wWm9w2O/w97//Hsf9DpuLNbaXW1HicYCjBpvNK7T+Amga9N0Kfb8BOIJYWtNLo4s77B53+PH9B8QQsH9ocbFucPfwiN3jSYq5dh2uXlxitR4wjiN2O6unJbzBCjj7CkNJGrMxwrI2rEpcsmL5KVS8smCvsqKmvJI0YQEW56QYm5fGo3qfnsNv544v+1lHm9s+RsVu523p62fJPhuN5P9UnV3LGJzSlA0r40ZXaKy44YQ7GO+QMl5VMqzhTQXpt7efQOTwuLvH+x+/xzCs8Ob1a1y9uMT2YouXN68wjid8eP8DDsd9MVYQoWtLRzIzWkl9LwYnIERCCDIXc6s0bQOvczXlPkwnzPMJ24stvvzmG9zcvMV//J//z3h5/Qpv373D27dvNSpKZEGYpYtvDBGHwwHzPOEff/uP+P/+zX/FeDrh8eER0ziKoy5FcGT44ABK2K57/OVvfon1ao2//fvf4be//Z3oBYcdEjM2a2kGdPPyEn/1F7/CZr3C4/6Ix8OIh/tH/M3f/Bb394/47vsf8N/+/m/R9T2++vprbLZbJG7QdwMCEx5OI8bdA+LhgDjOEinSX2G7GbAaBjROmkk02tEYCwyFzGtSfSB0byv7wIJpZFa1+GWJpRaRyPmcFYxhuIQ5ZWMCIFEfiJrajbS43zwDjfPoh050WnWWC12y2Z1KCZYzA4E8/2nDlFInN+UxEwQHJTBgXe7YMErh42L8LEbpHEyhp8QcD0CCVCWQ7ATo/E/HAO+BtmvQtgyipA2CAERCisVAUZZ7CZTIuZIFQrXDx/jSkr/Ue2Hvsc2fE15evcSX3/wS680Wf/5v/grvvvgKbb/CanMF5xswnBj7qTjSzcpnTiUT37AiN2Ypc4W/GPb0PqFpRH8gcpibmPc3xoBpmjCNIxJHdH0LAuPy6gppmnEaH4H7URsEBEm55kKPqByeyTkdipT7qK0QjXPouhacEk6zRCzOiZFIjE6D97m5z7n8NA1UlqA04kgxoSyEygGVP/Y/AqPhAAeH3gGpEwwV4izdfZskaX/kMHiHRuv7mjUk8dLxujDyUWWfQXE45neoRNH+c6+fbWwyA0spyF4pLpxPUCbQksJQ36VYqpeW3JpzPSXk8pkNxuWQbbnWmBUtr0M5GLkUKxvQpQIWqDp7XASid149Gu4JyC7X6xz00JjXe7cfcXu3Q9M1WG9XAAj7w4x5ZszTCE8E8pa25tE2EuHCCthTipjmGfu9CKgwMY4tY3884rg/IcQI2hKGYUDXdhI9E4N2jLNC4Zz3oTY2nTPK59a7BiQ1YUHBgSkULrG0eEwMRomoAosVmZyyTlXCnkRWETKh2zOykKq3fDEOZEWXE8G8WMsd0h2z/c2MW6sPsVvcVUCRMpaKbkoUBQpIMsuyMQgog6CnRgdA0mvmaQQzY5om0OMjLq6u8ObtW7StR9/3cK7Fodvj44ePcH7Ucc4i+LTeRYrahcGMvNmwK4vCrEoCITMAj/I3gUGc0DTSYn2zvcCbd1/i6voV3n35Nd68+1LaAbsmG3fFyEwIsygJTdfiYXeP3a7D/eMnTPNRu981YjwIM06nI4iAly8vcXFxgbv7B+z3OxwOOwVcs4wLEsXy+tU1bm6u8/7e3j7g7vYBjoDvvmXs7u/RtC3W6zXACeumQ9MKUw8xYZxmxFnaDYMIzjVw7QCnKbBFcJknvqaVcvjrWLi87c/oouf7uwT/xmee0kHmLbVhCbZ3pUbBkobLM1KMIuzqMRJpjO1SiInAdvnM1QChPvu1J9w6u5S7AdaJopqCDWhhaKrT8ArAXBqpDLTnlWZJCWJILcAYZHzOG6A8u6EKY1PQ5H7FkJ2P5jOKWD3XOiogi1iN/EpguKbBar3B9uISr9+8w5df/wJN06Ef1mqw0I5rWrewdCg0wLSUQufrXS9k7R2kRAiN1MhIIS2cArnjjhY87oYB680WIY5ofIPovCq8DkgSjcTnPArQ2nkK5jLByH0b9a4nJoQEzIEx+YjkGCvfSPMBg0ZU7mnGrTz/QiKwTamoVr2EyHzeuh02zqFtnITgJ0sZiwjMYOeRmgJ6jAXb2SPwsu5+xduzTEEZXqGhP+0rg0w1LJXtL86R3OHJDJgo82Su6Bs1hio3N1hTrpP7yyWUFQPKIfPLl4jlWs6V9/PvZ3NZ3sfW2oyaviKLp0qlPE+oyXmPpu0AcrjfHfFw94iZGa6VCHBPDAePeb4UkE+UZVbTevR9MWSP44jjacR+f0IIM4hHzKPDTiM/YpJ29n3fi7E3CuaSfUiZx/jK6Jf5jvyR16Veb1uJHBleYYmyDkW5KI7O8nrOcFR/9s/xuOdoOxfar+7xBK9Q4bEL3q3HabHXFX5DvuQcgz+NJuTqhpmLkEbBq0E205eegRgTxtMpK1Gn0xGXl5Iq2Q89nG/QdgMOhz0+f/oEWG0/pUXrGA2SJgRNds4YLpS0O2cPrtbdRZdxhJzNiK7rcOF7vLy+xpdffYNXr9/i1evXeP36tXYaFJng1DAQY8J+v8c0TRjnCd9+9zs03iPMQWQSl+7erHi27Rq8uNpitVojxoj7+3vEGDDOUsag7xqAE/q+xZdfvMbLqws87E/YHUZ8/nyHD+8/gWPEH2LA/e1n9MOAm5trdF0L8i7X0p1TxGmeEUNAYAaxQ990aLsVmqbRYsiFFs32UfMvIWFe1C3LOOCcFMmI6imOqt97givKLTMtAdZDRb9rdJpvUsZonbXZjBqVgaPQ6vK8uop+ijNuSeP1mVvIejzVSsrckBfQOm4/1Xk1SsnU/fIfTV2VFKcYtC5hSjI2YjHcsqUSVhvxDL+wJ4mcXPJy61L8bITWc/PS/7V9h6vrl7i4uMLrN+/w5t2XYDhEeEhGSBmLOfyK3Hga2UQ1UQljqGhPVllwWELjI8CEFIPqL67QEms6rOpAw2oF5hneN6JXCQLUvc4SrpKZhlmqselPq+ccwYhJutM1kTFH2ZfWOXjOw1/sc8HG51FNrGRNuUSORBjpuPTbDgxwgicJDKKUEGKJbAouae5fXlA9hpUcqdb7OcXn/J2st/+Pjmx67sE+195wGRhLJEQJQWaWCCgwpK2ouqrNq5DvRnawsDCOZO8cmb1XBXw1EjlD5WibJY4Z6r02huBNqizmYqCYUdptCrB3OTQPLOA3hKgRH5ISZC2mZXwOQz+g63qw9wjkcL8fEb//rMxB7vW7b7/H//K/BDARPt6N2J9mjJOsTWLG7e1n/P+I++9l25IjzRP7RcQSWx15RUogARRKTFV39RRnjA/AVyCNZuRDknwA0mg0Ds1onOke667uklAFZN7MvPKIrZaICP7h4RGx97lAZQ+7iws4ec/ZYokQ7p+rz+8+wDhO+CDtM8dJypemMdLansbC1eU1L16+5GKzYrFc0LZtIlYuzwypjCtlKp2DmNr4qonFT4TJmcFYPM0yNNbalHKo81IWsLYV1/d17aSbgFjSU8vmqYFI9QV1rCDXbDTF10qr8ayrKmVIfa20LYEcffxYmZUqUZPGRDPqUMdZAjHp03pzeVxPopDpig1ddQWYxoHvvn3Fh/fvWa7WrNYbQgjcPr/l8vqSw27HbvuAn2fG4x4/Swlb8BIF8SnDqetanr14wTxOPNw1HHZbiS5MyTufWqwbIm3TEhfw45+84Kt+zdXtM/7kX/05l9fXXF/dcHm9SQCpGM/WWubJsz9sOR4H3t+94dW3X3M47pn8jOtaGtfSNh3GWJbLNcbAZ598xnKxwFnHYX/k/bsPHA4HIAhvR2vpuoaubYTYsE18JQauLpf8/KdfsP/klmXfcnV9yX5/4NvvvufNd/dcz56m6yULZbnAxhtC3xLWC6w19DfPaZZr5nHHeLgjThHLIqWE2wKUy+LI86eTFHkqb3OmyAkQr8pNdc0TC5dZBSJ0lYkBVvbhqUOmuisrjQrkjUIo7oPHBnMChvLiqv5UoKAcIx9zkp3/ffKjeyGobIwCaCDX7Z87nNRwUjtVHbQmGRMZKyB/t41LgTSDn8UA7vtE9Dh6xhCE1yh1pgtJDov+URBcSIxrR/a5QVav6TrLKYQAVhz3prF88umn/NGf/RnrzSXXN88ScbYT3igTkqMmgZus7nUKPg4vPxYNrN7M9+Y0LTyVMQD0fUeMkclZYpBoYNt1NH1H2/W07ZIQpLRInRTidFYhdnpd7aikpSGShi08bkRLYxu8lXTy4zTTWMOqccgWTa2Wz56tZH8+tSwa52galzr1pbWi6eohgvFExPXRWoc1kr1lUmr7lJzrPgSCPe1EVEg9CwA0GRNAyTjROTh1vP6+cqT/WkdGPGm+S/er1AlMHQ+VIwaidKEKvlr/RsquY5ErULiWJNhUnjOqQFPbvjbIft99njkjRGalrqdR+eQqOZgGOoaStW7SXovp2XyQsucplVPP85Qz3w0SKFitNwzDyOgj28OIcUfpzmgtjT1greXXv57Y7R4JEd6+PzAcBB8Nw0yIkf1xD0SmyQvpctMxThN+GpnnyGp1iTWW6+trbm6uWSw6ur6VtvHRp9Jj8lzM3sM0Uu9tkb5awp+6XmkXVZIs0HPkcxVjI2MZAVGCMSsckeei2rtPgmDV8TGj99xZrZ+TbABH13X580VnFbldHEOyforuK3hI9qA2Oqj3kxjvIejaqe5PV191vtohHKtrYsSIa7sWSJwtwXM87Pnm1df0CXN33YJI5NmLF1zfXHPYH9jtdqkE71jZHAE/S6awsYbVasmLly+ZppHhsGcah7RWiz0QvDiF1psNbd9z8/xzrm9fcnN7y5/+6U+5vLxivVmzXneJN032mku66XA4cv/wgfuHR75//T1v3rxhnCYa51hfbLDOJUdrw4vnt2wuNnzx2eeMw8w879hud2x3OyS7cErBAcNy0dF3Lc4IIu1bR1x2mJsL/vxPf8Juu2e1aFkuFwzDyONuy/39HZfXz7l59inWBRYXK6yL2OsN7rMXcu/LBaZtsczYeBTaAyLaFOLUhErrPZTMIJ06604dEzHGnE0XUrVJjNIlLI91WqvzPIsDLuEOIDt+6yBTqLF+rPaCNWCslBhRZfYluR9MkbNqPMj+jKg1E6r9UyTmKa74Z/WInr+WpzE9k4CpwoN0gg9qKxcFOwkvlOcUXS7yiCjVFn1v8T6mH+14TepTEzNO0jGx+Xeh6qgdEfVxEihV/BQlm8s6x+X1FV2/4Isvv+Srn/yM9XrDcr3J3JYqGzUTXKufBDbF6vdTXKX2pvyq78XqXtQWNcnBFGkalzI2YdF32WcRfCqf7nuaxYLGj7hmIUPv5T4KhhRHkThSC+6QElOXnMk2dddVnWtTs4DIHCPD5PHW0DtDtC7ZhFr1cmqPf9ThaApmE5J7j3Y3zVxigVQmZ2mtIxjwsYXoIMI8BaIFbwONZgzpeqrW7oleqeY3RlFR9iw7XObjDyGJcvwvdjZhTAKdsRoIich5r4aIDOg8CZFwvSmNkTIpY5KHneLDNcZIF7ikAENI7bdNFeExUOjUBVifZzipgWSMpj4bEVymENjK/9WwEkNOhaE60ZS0MAYRgOM4Mo4TwzCIxzsqwLWsFiu2/ZLoWiZjef944M27B5rGcn29pl+0/PJXD/ztX/8jxjjWV7d0i7Uo7kYcP+/e37Hf7aR72WKJMZbjOOPnkRigdQsa57i9fsbnn33GYtGxXK5ouwY7zyX1lCIIx3E8cTCVluW1wDwVmsaQx6k2sE2MhQ/LSKqoACrxcPqcFaVKQudDDptSTvMUqnEaqepaE6lj7nPFqaFqHW3Xp7KNity7EurqNCiVlla6VYDwOxIrNv0oJWnZmaDyL0Ag1fyrYHAocjwFV6eGV0zjirU0jQAlTQ0eh4Gvf/dbYoTbZ8959uI5/WLJi08/YbFYcffhPe/evGE4Hnn3/cA0eXHWzvLjp5F5PNJ1LZ98+pnU8KdyhGkc2M/btOcCBI8xSMe4puVHf/Lf8NlP/oSL60u++uOfsd6sIdrc3r6mKDMJKI1vtjzuHnnz9lv+6Xe/YponFqsFTd/TupauWdA2Dc+fPWOz2fCjL3/EarHCWsvuccfr794QE6mmc4a2aej7VgjFO8eyE4cC1rLqG55drogh8vnnn/LTP/5jXn3ziv/L/+n/zKuvf0OIkdV6I51pVmtWyzVwDbzENY7Lyxf0izX3b77m29+8FnBGT+Na6gjNE4UW6whSvf7rvSTrowZFBcgXw0yiJLL+s/NdnSJIx5ysIaujBgEGQ6oCJoaZmNanpAp7GuvKZNU4yJANHww5cnZ+nfPI9kdfC4k7iZhL/ur363E4cWgVq5qTTJrKsSdk9S6Ps58irjEsl+I02e+8rBkVEAkIhRCzgaaEiXXZSG1U6T3K9eyJ/FPgO/kZZxzL9Yp+ueDzH/2If/1v/orlekPTbjCuJwJjKotsm4ZGM5qqMu6yduKTedUjOxcLXko6X/SHTdwimi1ojWWxWGCtYxydGD3W0C06ukVPNyzouhUxGuZZW2GH5JQIJ8tbW4w3jRPiZlPS1Z2BzgkEalzDHCCEgcM40VjD0Da0YtFIWTnl1CYZVSrvTiCyMUJ627cSgQ2TpIZX+gQ/p/uDzjk8htl22GiYxoFpmgkmMHsv/CbWSWawMUKSW7tN8p4yxUGquj450euy0X9JZ9OJ00AzZZICzNmXRGIq59RuXjFGKceZp/R8oiVnbDZszVlJoEGJvw0heOFzrBq5yGf0vjhZJ6rv9Z5VJmmGkhjfyaly8jmZ1xAgBtGp1qaOf5CzN9TRNE0j0zTlbAm555bN5RWH48hxhofDKFl2o+i3tpXyme+//55//x8Czjqubl6wXK2ZZ+lmOAfPbrdjGI607YLl8hLjDMN+YDweaJuWi801fdfx/NlzXrx4TtMY2laCAN4bYM5DFWPEz8KTo7JDHdzO6pYvBqQGVE2STzF5m2SqkzvalGi+dD5LCCl+XFafH3Wm1YnOOHM21d8/X+vqbLJWyg7neX5yHV0PSv8uBg6C/3OjipnMkVQ1clCXksp9DexB4fJMtjYQs5MUYwq01/1sDE2jpToyF/v9xMP2EYDnz1/y4sVL+q7n088+o+863r9/z5vXbxgT15EEXIX6Ys4yx7DarPjUfcY8TXx4947d9oFpmjkcB9H13men6MXVFRHLX/7Vf8ef/cW/YbVa8snLa/qFBhOTk091HAaHIfjI+w9vefXtG75+9Q2vvv0WgM+/+JzLy0u6fsFyuWax6Pn5H/2ET14+Y9kvOR4npunA/cMj9w+PCM9rpGksjTOslz3LXpxNFujbhqZtuFj1fHJ7RfSB589vefb8Bd99/5r/6//t/87X33zDlz+Zubq9xjaW9fWGxWbJcrlgs14BcDyMzLPHH++ZdjtMDBgTEyZXt0FW8gkTkQ3PPG02nuwjCXyPqdxszskJ0p3Pn6xTr/jKe3xam23b0tCURADA+HMMRaqoSCZ95kgrXKc+YeJTJ1D5Pnkv6mu6d57Kxqe4KT79nDqhs5wozqYYyrUqtJn/zdmUxlC6OZHXL0in6exscrBYNsw+cDhIp0FjUkfTWMqm6gYqxdlUGtTUDpAaU9UNJWR+krPJWm5vb7m+veXHP/kJf/Knf0a/WDEHVwizTcoYNe6JzsqmO+qEMWdvVE6SWGEpFD+d3l8ITeLjMwS/oHENjbPMXjqWdssl3Wpk9jNtu0SZwE3GtIHsD4winxTxtU0jGApJFrJIRlGT7s+4BoLBxylhKFi1hugMsZKDp/lRqTxOxzs5TDX5RpJJAnEO+LS+tBRTO/U5a+mcxWOZNeNonBnHmcaAbwLRhuK05OmRM/7SZijUSFDzMiqG+2gA9SPHD3Y21SVVRgcpecZOQM6ZsjsFn+kz6r0Uaz4LKHH4hKSEq0Vkz68BhVyRfJ0nrV0j2SNZH7WQNNVc6/Tnv/PmzuLjIwZaijSalFmTQJkQkPXEEBn9QPLHpJbCqVNHjMxzwMyzEL+aNnlnSyeXvu/FSGVmNrPccxDivn7R0XVSUqTcCiIgSoqhpP/FJwujdvydG4x5GJLQzcK3msE8P+cv6bIoM/30iMUYKxHWWJ8ij3i5UnkGJbnuuh7nHE0jUR4/e8bDUHVLCMmpKTMuHBFJ4Y2SRq/d2YwxdI2VWujK2xxJpTUxEbDX41k/UvXf/HyxxvDlC+pY07bc8zwxDkeMMYzjkIVl1wkP0mK5IobAOB6Z/ZwAkETnbCKXt8bSdV0qyTNSqxw80+iY55EQDf1yRcSw3lxweX3J5uKCRd/Rto0AvoofpxbzwXu220fu7+6kRC6V8iwWC0lhN7J227ZhuVyyXq3oui49oyqjJLxjwEZpWbroe4nKqSPYpHWgCsNC17USde6E9HX2XmqrpyMmtjTtEmcbXCPOR1WY0yA12FLkXkelyIBfn1VeimWOaodJljEly0e45+RZ6n2VwUSSME9lX3Ha6v7P19JVlxaHrQST7JGyLrNj2Gi3xZPVR8ZQ1fXyvtfnjxq1ITtwFAjV93Syds/eOvlUNijOX6qe4xxY1FcIAlZtkqHid0xcH8YQ1DGYQUV96lMpo3+qHPxYNkD9Wjm1SRmTlqYVoKJANculc+dg0i9PS7jyU5/8rsGUrJtOAFPRn+pAU1CowQEN6rRdz2K5YBqW9ItlusJICDaPXW7bnPSptIA22elZyyaBOmIENtbSOieAJWgQSPMXiuqWZ/oI0EjyL0PEFIASUH0+QmVwTTqfRAmlvbZPkbQA+ChZ0o0xuYxe9ZhNz2X0fOmwxqR7LhnP//86Cv9FBTbTvsmHgkx1mJ2AuXNtWmSN8o2EWDqwZjWrmOzk/FQqqZIT52W0eplKM9d3UfZU4TU0Ieeol/2ld6uyKyiuMJXIkbtRzhsF2MIfGIjO0nbSfn2eIyHMgFAOeG09ntaB4ALZw33fCu6aG4yXcywXPV3X03YtrrHYCmMqBhNdpJNUAhFZHyge1L+yvBejRYdbRff5Ciw4hwovfET21t+IsQj4kzVU467q2x8xBNSoNdbS9wtc4/CzT0FCzzSNJ3s1koK0mJQpEVI2w5iwb8CkjM+2UUdwXiBpXZI6KNYOr0gWnNFUK0xfMk8eqKxADQBLRtk8TYxD6pI7TRlT9IseY6Dv+7ROpCpB9LjgXkOppGi7lq6TsjyMTdUY4giJxrIOgLFcXGy42GxYLAQ/NU6CzjrD2enkI1Nq9PP4+Mj9/QfmaWKxWOKc5fLyiquba+HKbDq6vmOx6KXDr2vws2eehMMtD1lyTLSNEwzVpvVNwW6acRGtTdnj0iUvBJ+btfhpgKaRLFpn6Rcdy9WSEAL73Z7heIB5zKTDangWzrlY9kOMORim+g1LzrRVvCF40KfynhLY/70BqwqomZPnrwPjtZ2gsk2TEypMXq19xaZQqGFAjXyyfs64R9+rsJPurxKgruR0vlkqkKnZgic7oOxwQ3mOKgqfeYFPQM/5pkhjknoL5YwbW7pjFgeHDmn1ujk94SmOM4SUufhRDFXZS9ZanOIVl7jLguIw/exH7ELVS7p+zt/O36rl5VPZlvFT9ewxVn+nBJLQhFxG5+eBtlsk+T0Sojh9pMlSmuO0/lIuK8bY9C/5PmTfkbGbcxE0y5eCo9JsZR+KBsA/+khJp0iAxxenZXXdkzklYpMUUlLykPwNnpgyowLiiC32RAzJ71I5mRRkl6SUKlB6slh/2PGDnU3DOMoXbINzkpom7XjTBgIw0l3KppuRDagLWja+q5wi8lBkoysifBFYS9BNYG1qXX42uEaFgSgbzUgyGFxTGNeDTwslAXkFOxhyJzgMmW9HlamxVlrXNlKrkR0VqZRJIjgmP2cxYA1N23J7+xzvI+/fvWW/3xOAzvUs2iX9xYKL9YYQ4DBF9scDi+WKhesxjeHy0rBYrFktl9zcXOOcYTq8ZR7vMLRgNzjX8eLFMzaXG5rcqawy1CE7oHzyPOs4RRKZdIru1OR0ZYDzf07GXLGXNacCXt8HidjFNP4lYqAAlCy0y2arIgKxVDnqLQl/RIJ0wRPmmW4jhNH9ome9XrFY9Dw+PPL1P33NfDxiXMBZTfGc8DGy24/s9gPjOPLu/XuGYczKYtF3/OjzT7nYrKTbU9sI6baCh+AJk0bDNEKextpAnAWQyFp3eaPqBg1JC6iQsdbQdxINm4Yj79+8pmkbjoctXdez2Vzy7NktIUTW6wvGYeTd2+959c1vidFyPI7stjvWF5aLyx7TGW5ublj1ApIwUne83T6yP+wZhpnVzZFoLF/9/Of8+Oc/pW0bFn2LI3m6nckCExMTv1jg4X7L3/zHv+affvNbdscd19eXNG3Lp198wcXlJeMwctgdaZzl5ScvuL265PJiwzBMeB8YR0+YYZ49x2GPc5b1l1/w5Wef8fLZLX3X4axlDsLBJEOX+BJMpLXSrUvX73Dcsr3/nn6x5Nnzz1iuVlzfXPDykxumYeRv//rv+P7V98T5ET/vaJxBen+TZIzPICArC0Uh6VOGeh2qbIrMPmYZEiq5lfd/BVJ03dcZmRGRIWMcqvWfrpnLEkw+rxo2xmr3DiEylfrz9PlYniEiRnmMMTULOI2o5XuuyH5roFcc9k+PEz+UAo1UigVS1harMdTdqx8/zzSSz6SU+SlKgouBHnE29X1LWDt8gNFLunxjjBCYKgCuxq++biF/jnhfc56UtGT5MxKCtMpu0o81el+B6D0Yn8t2TVLgGYCqBFSQZMoclvfMKbBIYOHECaaGcuIWCY10LPXW4mcvYx86fL8UkvJPWm5ub7m/uiTEyPGw490bg78bsdEngvZA8GIw5XUJ9NbSGYn6Kim1icrvZtj0PcsuchhhGyYwMNuWkZRtnKSY0zK9DMoLOC8OpyglUeMksqUK/KiBVMYpYPyMtY7etbTGSeve0BCJHMaJ2U8suo5VI9lV3osx1jiXG3lIJkoiBu46IjDNs5RCAdGEJINLOvu/xKGZI65paVKJZA7KpYCPSY4SddJoZpZkvzTFeYSSMcum9ElYhZAyCa2lUTlqwabxUmNNdVAQq0tkQ8IJklnu8rpUIn1rYiZnVbzgmiY7ZrRseMZg5pQ97dJ1SIGCIF16Zp+wXtKVev/RSHCx6zqePb8lRM9xe2D/uKNrLM+eXbLZLBjHkePqmHAnHMdjynbuAEO/XABSPnF1scEaGLaB6Rhp2iXL9QuadsHl5VqcTUnnRRMxTp5f5kfmzucSYkPivccazWyus1sNxlUhgLTn1SyrExNqraA/JmohXX2cMakURZPWgqU4t2LZjvkbJmVR6FoRPXvZLfjk8y/p+0WW/4+Pj7z65ncM05yNtRBgnAI+wDBOjOPE4XDku++/5XA40Pcd/aJn0fd8/ulL1uslztjUWVIaZcY5lU2lUjbbSCMB6SLYYozJONRQBVvSs4puKiaVtY04pa3YBsNx4PV3r2nbhsN+T9d3rFYrXn7yHO89y9WC4/HI3d0db16/ZpoDx2HgcJSyzKbtcE3D9c0N6/UKzeQLIfD23Tvu7x+IxhJdh2tbvvrqKz55cZmClaDk+FnOJ4fLw+HI/cOO16/f8J/+5j/y61//mtVqzb/6V3/BcrXiJz//I26ePeNhu+Xdu/c0zrLerNmslsxTYLc/MAwTMUDf9MTo8X4iGsvV5oIfffqSi82atm3k2kFKk6NB7lexdupjHqPHh5nh8MjD3fdCMH77nOVyxWaz5ur6iuPhwK//4a/5+rf/xPXlks9fXNL3HT7M7PdbNJulDrjnRUddklVku2ZFCxXJLI4+H1L2PXn9na97kpxyOcU72WBBZVXZF4aaniBk2enDnDCP7LoQDOMYsFbs0SaT15PvlRyIi9m+03UYtWKg+k6975Rg2yjfZUgk5AnP5dBnNqhShmolJwTLlSog+Vf2TMzjWTBPBMYh4CdD01n6ZUfrIose/Ky2WOXYj+myKqtikWVqx2kmuOrT7EhMd6kYKsZI452UjAIG6dg4zxN2ngi+Ae/AmWRPJ8yqtcqapYnqw5gQhgZS8oAJftK1deaU0vvWwFwIPnWxtkzNjI2BJrZCOdNJyfTN7S33H66Y58Bxv2d79x3hccZaj+vKuCh1gzhwJAu8sSaZpSEFeQxdykyPfWRuHNMcmcZkS1rHbBsgYmOQsTKuwsX1uicFYCU7PcyB0QzVu4hD7OQrEYfPDdU61+JwHEfP6AOWyMHPxFm6/nZJdgYl4q8wlFxfAghd3wOkLpgi57RSIdsfP+D4wc6meU4pxMYlnpwKGCfjxVDSe4uTIQmCj3gr62ibqQysECuunGz9Ilqr/j7k7msxEScbY7BRu9DFU2Gg90Wqv7Q2G0s2eTA1qwglt7YmkdGroEk/+Q7S5s02n1xbhPcF2+1jLjG11tG4FptSwX2IHB8OzOOUnleAW9dHnGtYr9dcXl7QOMPUbvFDC6YHt8G5nvV6Sa+dqYyC0rQljcEkzoZQSTg1Jn3iJQBymU32cKsw4NT7mudMDbwTQy85VyqjSzJAyCnRWWhkzFRTMpdoQfXpcmoFuEkpOetYrdYsVysury5YrVdELLb5nmimNAby3NL6MjKOM/vDyOFw4N37B/aHfc68Wa+WPLu9oV8sMC6mVEeSRz8k5ZbqxkmlnsZJrbwKyBgky8GetdNO60YkvLwjZUBpfvzMYTym1uOepm3pU2tzMT46pslzOOwx1gngnT3TOBG8rBXrLItljzNejJnkqbdti2072tETmhGM5frmhpvbqwSIQhnu5EB06R7nGAk+Mh4H3rx+zTff/I62F2HdLxbc3NxwdXPDfrcHHnDWst6suLhY0/Udfg5MsxeHbxTDaRpnopPW8lcXGzarZSrL0QiojmHh7JJaYfLc+3lkPO5wNmJtpO0sm82S589vOewPzMOBu7ff07iRvp3QsseMiSrHZoxi/hNS3EHXpggXMsBIskMjezHvpbKgi6zRlwo4NtXnQoyp/Eczdyj7lpgjukZuK8ua3OUryrTZEHEhnq41yh5RJVm/floKV0cTy947x3wnTqb8FPnRRF5W+7R8T2V/uv8MmoQQVWEFUdr3GkPqPqcOIUvbGaSZVsSkTETxY9Tnq54xXU8wjAjep0DW5Mx64b5KANnKuWQ7hwIw03kle+YUmBaDMg9H9V+Tx+V0yE6knhiMWXamcssUhQNytDA4KX+zIZXlpnm7uLzCNQ2PD+8EvAA4cUam5jUnz++MSRwfJD6nNBZpDXaNI0SYfSN61EDA4pF+jnlUkswoAxLz08X0WgTCXPRL65z64MkRvUrWC1m4oTGGYCUDSwg+Q3IWRZqUzQAUfWyr3L8kR6S8X8DtHITnoAy9klv+nuzb/wqHOnLUqVdHm0XUpHVWcSmWtVt1J9Pvk1VuZeyU8ZQxT2xY6fMxgWb9j46XlnWoYwlbugrmclz1aSR5oKVgUhYvil4wFDKuyv2XygGDZjaoc6ziwKh3sJR8WJarJevNmnn0zH6Ls9C2HYvFKtEbiNwYRphmT9sKX4W1wu9jnWW16Li8WOIMjLZnaltc29OvVzTNgr7rUM6omEr21TF+EsVHOaoyNBLcq0GMNE+aiamHRoLzeSlYuITf9Nnr2He58kfRfHLmyoAV/FzOldYFKmNjfl25s2zTst5csFyu8vd8FCvUh2JYSkaxBGLH0XMcZnb7A2/evOXx8ZHlasV6sxEM9eyWZUwOeVOXq0rQc07coQ4njSCMxaXyzmjO5XStV03eB3nv6PCAZLUfR+G5s9D1HX3fsVqvUGqPtuulNA6Dj/KdeZ6lW3ObcP9iQds6GtfQdT0hRIZxZpojtmlpVhe0bcfV9RWbVU9EMpcUe8stFcA7TTPb/ZH7xy1v3r7mu+9e8dVXP+HFixdsLi/5/MsvuXn+nPbtW7aHA9ZA10kHxzBPTFMq/4sSHBfi4ZmIoe96LjdrVssFNjtjysRHGyvlnYz3ZCvN88B43OJMoHGwXLQslx3r9YIYJo77Bz68+47ePcN9ekXTWGL0jNMocv1jAWpd29XeyaVwyTmi/D4hOZ40u7+sdT1POZ+psEPwykWqCQ6VTVLbKUjDHqXhyNWdSSd75ZeCE6dFxkNBg4q17kzXDUrirt85Wa4nz5EZ01MQ5AQxqvCuMFS9doxy456NqzyPfrec0c/i1LfO5gZBbWNpW3Gw+QJpsvjIPt0CWvP1irNJZL8maZzjL6td2UzCuQmXKEdzDK4II6rgawyk1KETmVmkbK3HjFQoGXHwaBWE6rXyecWIpRt7jLHY+injVSpCWmKQNbpcXxKj47i7K5yUxhEJwouoziYKDrQqm2O+FRyCIwXnBGJ0TKlRTzSSRCPVpudBhYSG4/nfZS1CogRSDEXM5chAShKN2ChBNad+DCO+hmgicwhMwWdqIKN2QAil3DStywiJ71DcRD4EIv5E7pqk2H4IhvrP4mxSR40MAETjs+GgQkVuQJRU4VGSTjlZ8KXJMvasy1usFlZ1zcrlV4CWUdKugCqg8zr2dMq8ZdVQKK2y5X4CSDSg4jZRwFOcZ+FkgZh8/wWwTePEbrfjeBxo25bVas16veHi4lJqqm1DCLBaLbi6vpCa2uk9h3EHxkpWRxTF6ENkmiaO+z1tY9gsLIvLNePkeNhNCWQd2O/3KcMmEb06R+OkBMGEPIpZ+NdtzPMAqREcinGqjjZL6saXjKBsmCVho0Dg5Eh70BoIRuVtDd6KgaLiNztjItUmTAA5SDZK3njAcTjy9s339IsFMXpxSFjLp59/zjhOPN7fsd0+MA+e++2BYRx5/+GBD3ePDMPIw1Y6g7RtS9cvME3Lw3aPD5GubaQ9plECNnG6KBeWs+JwbdqGRS+cB62TSJ6mW+pazgIjahoq1UYtUWhjpBRS04of7t7zCotzDd1iJVwWFxu++ulPAVivL+j6Huscx0G6192/fcv+4QNt17JYSecsiYrNtE3Dzc0t1rUsl6sMfPN6fvKvkXG62/P4sGUYRuZ5ZnN1wfOXL+n6Htd2TF6ipH722NawXiy4ubpkvVpxe3NBCJG/+LOf8ez6ksPxwP39PZjIT3/yI54/v+VisxaFkC5eE9yCpMRvHw8cjyNd37PZXADwcP+Bw2GHsZbV3Yb796/4/tVvGIeBV1//iu3jGzbrlstNT9eJmJvnKT2ZyXKkNnOKxDjdFxqRQhWOSe1s89pXmZFGThBMtSGSIvyoQyfmPSSiRj5XwE5ZQ3pIRxU1gJLwjyGVKZR7z23v62cJZw4m/f0E2Fd3nj9b/eh5gOJEq7KyqOVojSVO34vVBXW0vIfjQSKW0yQGTvCSHl5X+mX5W28oGZ2T1H0o6qM23GOULANjyG2/h+PA7D3393e8f/+G1Tiw3nxCv1jmTkTRlKjOE7mXjgLgzl8zp19JQFnqB+WelMCzcY7YNAQT6No2K3iJLoXMdWGd4+LqkrZv2T5cst9e4v3IPG6JYcYpZ0aMuezTPLntSgoYCcRoOriz0qHO+8CYgKxvU2dTojQ3qYBqPS4xrTs1Nqyx4hRSfPDkZgpwMiFg8DQG+s4RowUTCGldq1PENSI7nXJomWIcaKZeLupSgyUtCI3E/kse9d7TrG8gG2An+MOWDkg2dRsE8i6zTp1xyD6uxJnqFr1mItop3FAmcSJq1lIC5U7xl4LYSnbk81ohIq1Mo7K3YjESssGiTof0GdV5mbwdchODcZzYH6Rb3GK55Orqinnw7BY7uqZJxKyWpu1ZroXD4t37Y+oiJ5cPITJNM8ZbGgvzaMHBaulo10vm0HKcJ8bRME4j4zQmWaBgvjS8qbMPcycuCs7UDJaQ9L2vseoJ5jEnr53i3jOhW5shMec3nJzv5Bs69mnvZX0FqPtKW4BrlnWMkf1+x7fffstiseDy6krIfBcLPv/iS8Zx4OHxkd1uyxTEYTKOM3d393y4f2CaRnwwdP2S1fqCy6tr2q5lfxwJ4T7hRL0Hi+bBq1PGTmLwNM7TNT5hKIdzYsTpMlLSadFncg7NAI4U57+zFtvK2pzniRADd3d3cnXrcFY48K6urjA/+jHWWTabi5S9FDkcj4Tg2T/eMR73tK10h8YYpnmgaRztomd9eSnEwn3PlCaiLtHVLaj/Hg4H3r19z/39I23bcXl9xbOXL/j8qx/R9wuGaeLN27d8eP+B3eMjbeNoG8dmvWK1iFyu1/jZs+hbfvT5C+lQfRDM//mnL9msV3R9m8dBM+5NGpsAzCFwHGZmH7m4uODZs1uctXx4/55dt8UCd6tVzg4dhyOPd+9oLbTOpK51lnn2wFBKtEzhgNU1Vpak2okh24yl9O7MzDbJ2cKpXZj/U+Foos2O+Zh3gS4WMi+aBocLhiqzExHDOcRIDIbo07rCp+uUgFxxUhU2LuJTR1vZb2on65UqkvkKQ+nrxeCRE2gpuHxGM5vU1oXSHVjtpZhf0zvyc+B4GMGIs1MbS3ivuiJ9zaau1bUwSufJjWBiCRTXwX41ZDRBQTCUZbvdMYfA6vKGx8d7Zu/pmsuUFY6MrRcckW2lk7VgTv49GdhalBqy80lfrHmbQxBbuO1arLd0ofAYS+KM2CyBSNM0XF5d0nUt0/4Dw3ZFjJIAEpHOdsSQHDmnw5XvMclf1bradKXmwppmLyVuFlpbsF69krN8r587XSNGcQgVLHOi8DGIvQ3CsOeSb8RZQ9u3chojSQRObQVjsKkDstVmaLq6YglAZaM2vy54w+ax+DgWro8f7GzSZw6hcNfoAIcY8FWLRHUm6SEfTbeUBtEmJve8eCGnBeoCjuk1jTjZFAExKdIrGScl0p1LJ/I6TZvbGJrU80+j3To8MRl2gZA3lgpqa132ItZAUO7RYkufVGKMHI8D9/cPjJMYxpfGMgxHDocDMQqZpfewWq/58sefM82e9w8T99uZiGNK2WPzLKV6wzCye3ygby2fPnN89skV948zj4cD4zhyOOzYbh9FUTepNKvvMJ3UqetmzMaZAtN6bKqFrp1iACkhjCkF31hKG2PNBNBxKOc8QUBpM1giwUjJi3rbdX60jax8Xw3fYqQk9lNRHMGX0iVgv9vz6vhbmraVUqvW0vdLfvJHP8MYx69+9Ut208A0jLy73/K43fHmzTtev3kr3UnGiRAiV1dXbFZrrDG8//DA3Z2QuTfJQVG6j0nar6wh5UhqWa0WNE3DzdUlm/USZ00mOY+hcOHkNZ4iHcYIKS9WUsG1a4efJ+YQeHv8jrfffy+dHX78Ey4ur7m+veLzH30OEQ5HIc7FGHb7PfM08uqb3/Hh9bcsFj2XVxtc09B0K5p2QbdccvXsU9puyeXFRdoNsrNqoGQq+X3YH3j75j3v333geDgwzxOr9YYvvvoJrmkY54lhnhnnmWmeaKzlcrPhk+fP2ayXvHh2jXOOz17cMs2e7W7Pd6/f473n9uaSq8t1Itpzp2mq6jiOkeNx5MPdA7vdkcVyzfXNLbvH97x98wZjYHv/jrZrmKfAMHpi8EzHLWEaaJtnrNY/ztl/wzDgrEQt9SGzUksgpXaG6BGrhV2pNqzR92qImZxZ1ubXcxQsGSRqENcZN3JeUSSa2akArTbkQyygLvjIbNSc8Em2niKHOuIKZDLK+jlPnD9nh2b11feqWSaaOVHGo5B9F8V07tyI+UezMXQeYoR5Dux3AvpmL9eevTihpEKgqsGvnD76fb3POmKqzg0FfXKPlpi4DNpW+MAO+wNz8KzfvuXb775mc3nFl90VFxfPEk+FyKrGCemkGu11BsRphPt0VZx4PGS6ISpxt56gZPsYIDh5Hk0NVyLfeZ6Y/UzTNtw+f8Y0juwe7tg97pnGPXt/xMeAteBIqfBeyglsvieR/tXd53WmIEW6cyVy7jlg24Y58amlqqp85PHAFIMgAdUQYiLkKp9VgPRk7cWICbKeGwvLRUcIgUkdbUTm6KXzSttgW1fcVHkNJP6is250anxItJOSEfAveMSQdMmJQ7RqJKAGXLU/5e9UnpH+Vn1cjIDy/CYLcgkGxhATl1FTBYtK9DqEkLvrAAm0kQ3F4iBJ3FhVC+V6z6nxLW+ZzL8U9RljrPZMKr8j5v11HAYeH7dM08RmvaHveubRs73f0jhL2zW4xrBaL9lcLpkmz+PuLY/bCR9K9F2yPyIuzoxtwLSGyxeO25sLHreG3307Mk2e43BgGFYpWEWKFDcn5LUmP4vK1lNzIxvTKndSeYg2zinfSGN+YmQVOZn/jqevq/GqmXoylsXojNXa1++Ek7ObLDdCTJxLIfL48MCvf/Uruq7jZ3/0R6xThtL17S0xRv7xl7/iYXfkOE/cPe7Y7498880rvnn1iqZpuL66pF9uuLi64fblJ8Tgedg+8H4eiV50MRhM00k3waahbaX7XUoRoDGGLj3X9cWa9bKXBMQoxnWWHZAyUAwmVGsolaHkLAwC4zAQYuBw2PP27Rv6fsEXX3zBxcUlz5fP+PzTzwRXJlU4jCP7w45pHHn3+hse79/R9z0XlxfCpdQtafsFy9WS2+fP6PoF3apjqDCLqMEzgytGHh+2fPP1tzw8PtAvFjx78ZzPf/Qlf/Rnf0oEfvvbr7n7/jXbxwfu379ntejpGsf19RWdsyzbFovhj3/6BT5EDseBD/dbfAg8u77g6mJ1sscEV1bO0CBZf9vDwOQjN7c3GAvv37/l9fffYozh4cNburblsNuxvbvHAJv1gkXX0DnlC3SZ1L9tmtS0QriumqYhhsA0F2fmKX7hLMhV402ZU2kUYrOj11RySPlqiEKMLLIw5OBvrPaLviDr3atAzCJNbTWf7tUSmYzoQos2myiYTfeZYFI9fyj6Rl1QlV2lKQmhkov+DEOJHZ0wVLq37DowUgJfAIzggVgEQi59LnhK5a5hmgJzGIlEpjlVZniY57qMLlXx2OaE71fuLdlksye7aKK+VyqIoDRcabuWSOTD3T3hwx3dasMXH96wmQZurnv6fpkwiFZSJMLy6qgdTX/YdVGyGo0p3A11gNMWkJOcRmQZMacmWhLY93R9y7MXzxiHkePDHfu7B3wYUgfYMjdEsCmoa+q5SHNgo8mfdekXtWciMEyzcA22DX3flOfIQejaZ5LWFaeBXhMDJMdsjX3VX2JjcRQ1WgbnLN1SKl0028xFIfqXrPmWpj3VSFqtRiSV4J5itNLorVz/nzv+F3ajS4ousTt/zEgpMLtscj1O3D1GhzyeJgPkV9Miqjx+tZCqQZOe0qa0tfOWz2Uxp3tLQirX1uq9VWCsNiTqeyt3WD1xjDlCZ6p7MynFRwHw7APjNDPPmkkk76kTTxXs7D3jEDDRMk0N8yyEgZqWLISHmsZdx2jTOfOdfnyG6qepzdQnn46VwV3NZfY31l+qfi8vFYMmD2fCwur1LcmQp1ePefOc3XEynowRUu3j4YAxjugDuJRt56WM63AcORwHhnFK5JbS7ck5UumaKIjJz5gY8LERhZEAe0SBt6nGA+YQmWZxho6TZ5w8jS1ZASdOplg9WSxlmwSINkVYYvIYR53fiHVCfDkMB5yzhLAQwG+FH01TwkEEwDxPTLNlGkdRGjSEaHGdTzxkLkUG6x1a5ugkPyUEcX6lGvtT12SZbucci35B34n3fJ4mxtGxPxwS94Xcb9s0rFcLfAgsFr10FnGnnRlqWREhtS0eGadZnKptK0Z3EIU/jEe8d8xzYJrEEy+pLKYyPDWT4GlnDV1zuu9DNU8mD1BZ1OVeYwGYWQxUhogpmQXledK4V86Y87HMiz5/o/5k+as4imv645jvO0GaM/lcGaX6+0eu//ukRcleqF8z2eGkJ1C5cDI0xCfCJUfsTvSAqRNZOddjBio9UcntJEeKw+lU9v++Q9c8xGyITdPE/rDHtV3KhlMAWg8GpzeWxkedBLXD6VQP1lcmLdMEJhXEVHrDoiApZA6Vuv2ztRbXOGJsaLuevl8AwnsUstGhXAyqE84E9JOjBm02lWCHTBAu5dEVd08sa66ampN9pgAyy/Is+5MOSas37zktyyd1O7VgNMgYUwaJhca4RJGhi+7pnOhFatdWXQbwL33k3f/PrM+PYZfT/UM1p/p22U9PLmhOz3cC7nV+6lR6eLLfC+r5/QDzZA1X1zl/npPobeRk71KtkRrQSlZfEINq8kxTIk1NTmgR/cnpQ2SaYRxGTDRMs2WeDbM3hCClJcXJJ+shfuSZTqX1Rzb+HzhKlsPJ6ORf1Yisy+fMyVL+uJ44n976tyze/8Acyb0F5nnEGBiHo3TvC604D0h4IgTpzHY4poyzKd2jwTWtcGQZmzItPcM4Mo1jwhPCNdZgMaaRn8R7F5M8DShflxjG4xSEi69RXVnGQgLH+vwxc+GJrKw+o/rei+PDWZs6SA/QQuskU1QIgNWJKIPm/cycOiSO40DjPME0OFyh6Uiluafb4tT9oGcMafy0I5hyfGqjF+9n6TAaI13T0DrHPM0c9nvmxsE8o23iSc6YRd8Ro2Tgl5KaavHIQKBE3vPsGScJTlhjEy8LqcNbZBws0c+Mw5FpnjIXnNCkmNSRVoNeJcOlXo+RSkZVi67oQ6NwGlLwQ6uaS6KApXSHLmfX71aF0idr4uM2Wn136B0mW+VsTyUspdvlY1JZ16ucUTFk/elK4f8hsf4HcUnZrwUbnT5JDg1XAL5I5PQJtSv0e4Zq7E+vFSuAWO/Lp5k1nP/y0cN7L3brOHA8HmnaToJc+bs66yqrKulV4Se9n6cj9JG5rtZYcRWUgAzEHMCueaiy/rNSpRJDpO062m6BmYXrU3SpLfLsTPI+LXtOt5TgrpKJaxl20H2Z7tNGDVc/fa6se/Ml0vqv7JKPwILyfhRuSuXA01PlwEjax3lvPjkRZ2shjdkZlsj3+s8cP9jZVNq5a3tlk3lnFFwQlVxNjYQE5RMHhRDEaXqeRoYTCTekaIh47owK2LzJtf7WZKEdM7v/aTJ8BiaJ10bPVboTpIWTuGCiguWIEFpGSSnTSJIhfSiCQVteR7KxlpxMBknB9rPJSmuaZ8ZpTt3BhJvm2+/veNgdiTFy9zACEnk6DkcZh+RoGIeZ7XyksQFLw+7BMc6W/b4lRMc0SUYJOGy/wKWyP2N13Itgrtve1oI6DZiMaeW0q0GXptpHVzyqZx04n56bmCLfKsifppdLhpohxlRbGwp5pc6SSlaTMl1sQM6VQWzk/v17pkSyvn18xLqG779/zfv7Le8+3PPNd99x//BIDJGu72jajqvLK9q25XhMmWchYIJET7quly5rztEtFjRtqvHNaYZJ7EQYfWQKBn+35+HxSN83XG6WNI2VemlnUyTbPwHb1obTja58MUbBnGT8vHn9Le/fv6bvF6xWa7qu58Unn7G5uELiMZZxbFN3vgZC5LjbS0o5BzyWi9uZ1fPPMQjPgEawQy5l0BE3tMbJn35mHA/M0xEQY3cYDrx/95q261iu1vRtx/XtiosvPscZw+F44B9/9WtySYI1XFxsWC2XdF3HxeaCtu25WHWslt2TVOxMIBwhhsjjbs93b97x+LjFNR2bzYXwNbkW7yd2+wPEwHKx5vrqGoPBjwPRe9q2Z78bmKcZs15hezm3zbKgGv8MOCVjso5UWp2gJCeIifdCBa7m1p5gsNptJ3In+JKZl7MoT4DAqcA2xhSy2dpxGYrjT0GSAsiYOMiUn4GqY558V7M3yzqzVjOxdBMXg8UD3lgCGukr2Rf5w2ndOKd7sgITChz0P0YUsKrtOoKp46bmmTgiI8ZG4Q8LkYjIfV278vg1v42vDA4FLTafW7MT6g4tsvbE0ozBsN3u+Pqbr9k8PPD8+Y949uwlctdNVt7ybDw5RJEnElxbSpBF/tWgsDyzJY2vMSXzNwLREUyQbIboiKGha1shDVfHeAiMaVwvr2/wc2T3+IFx/wjeEBlQWC/nQUrUqpKskzUnixuIOGNYtC0hRsbZMAfLHA1H73FKRK1Pk+ckJn1YsvNMchJDzPLGOpcj8IoJxGEVMdFjg5AxOyPlNTZGxlmeZAwepkHK4HrhfKm3j2ZXxRglum3KXBkjHbMwSJn5DwBJ/6WOeo8F70ExlCkBM4n+Vl2dKHtEM5BCMlT1bJnbEiES1TLS80OmJhCxFYaS51cdrxhJ59GHQJh9ta9lb8ckH63Vcr/iGBc+JUfTuJyRp8+smYV536nTPJWuaEAh+sA8TByPB6ZxIMSZMMPd3Y79bsQ6cK0lBNjvI8QGPxuGVC7ho5RSTUfP8XHEOTgeDR8+WGbfcRg2RFrBUJOX8i3nTrB9HSAqBjfUxQMn85swVKznWb+jcywgUV7S76X3ZS7rjDaeYCzN8jHlK/mXUMk8ZcTLhqiRTH0TU+OIJFexnhBH3r79luP+gbZfsLm8AmP5/s1r3t/fc/fhjl/95jdsH7d0fc+Ll5/Q9R3XNzd0Xcd+v+PXv/6VrM15FH28WrPZXOLajqub5ywWK6lmSMT44yRZisHPzPPA7CMfHgcedgNd27BZdsLZZ12uYpg1E0S59TD45CSV7k9l3G2VcevnkdfffcO7N46+X7JeCob65NPPuLi8TEG8mcEmnUMkTCOHR9kT3u4JtuFqmrn85HNoW5rQ1BOQ7QDBMFUJoQ+Mw8Q8zRANFseHdx/427/5T1KiPHtaAquLNZ9dX2INfPfqW15/+53g7FTqdH11yXq9YrlYcnN1Tde1tK1NGbZPHedSOidBug/397x594b9/oAPXsrigOjFLhmiZ7aGrlvw6eefpzJZeSofYb/f004N/aIXInLtEKpVLt5neSD3XOahzjZRmSzNclJwJ+lvmzKbauf0admtlBFLR63Co6p7RjPhEyAoDqx6n8gdicMyyX6j/zORxkpZdYgeH1SaVfxMCRTlLJMsx8i/ix5Ley/Zp3gwvoQDVeZJUkQJTFkjOlps0jq4VTw+iqMsRjKzFctQHl8GPDlZWnGWzJJkmAJ5yYbJmCqUQYrkLLR6/mrskgNdVVdVEBkpwe6Zh8cHvn31is3FlvXqhs3FFWo3ybXVueTSD1n3yXoRwWdt4XR7InOzj+H00HvW8TQGmmRLhRBywLrGsjFGrDNc3twyjYFhf8+H13smD5EJm8dIklNsNdbVCJDpUqJwqjbGsmj7lB0+MkeYguU4S2VLbyNtWj/ZJquynPVZ6my/GCF68VXU+joHNpLtZEhN3UzDwjWEYDhMMM9g8Fgz4qxh0XZ0rvmID0n2SM4gpOztnAEdFC/+88cPdjaVRZX4EqzBUNLXDUYI/vS2ih8jCxGys6d6GFMMHZNz1gxnEqIYxJUxbozFRa0HLwAmf6dKt32yKI0oLPRSGROUEo1iLJjqts3pj05yVQJoTBLEKVXPp7T5EIxE2B4PPDxu5fu2A9OIt3Oa82IBgx9Hpv0Og2fZWuJsiaYjsMFYi58llVSMvJJ+r+Nejd6Jo6PG1wJoxHFiClN64XshkTZnI7DMax4OndVsc1f1zSaLF9SrfSKgK9YMYeQwlHYN6sUv82fzOio3cdjtGA97FssDEalBfXh8ZHcc2e6P3D08cn//wHKxkFaxfc/1zTWLxZK3b99y//Agm9v7xHtjsa7FRWHst02fCCO78iRRuHOmcQQfE4ljYDW10jY9OIxpkjNNlHLmpUoD504qOJJzpnHJELZJwUa22wdC8LRtx26xZLla8ez5C/quJRqHl/4HNE6cYjEE5nEiEjnMkTFEbL9mCjOzQE1qV4E6DABMVIYFA8Hj50m6eRgBefM8st9t6WZtz2vZrFd89vw5MUZef/cd7+7umOeJYThijeHF81uuLjdcX11yc33Bom/o24auORU/GpGvy0KGYeIxpfBb6+j7Reow4YCZcZzwfmLRr1kupQvO5FrC7HHWME0TMQYWvSe00vIzWHlGqbiIp0ozpVbEdD/q3Na1roUfNssEsfqiZnnWU0y9F8WRkQ2sMyV+Og5FtauCy6tEL6BO+7RuTJJZIQqFs6bcFqCkcqrMezFEbOIsqZRZMnRyN1HpklDA43n0EZWdtWA4ywZK96+ZdSVjoZLZEbRcyNqYxFHA2VR2JKYFSuxPclCUJVzAYBnjUOmFwvN0em2DdnIYh5G7uztmHzgeD3g/YU2TygR1jAR01IazjmwIFWBSR6QOurzxZMI1oJEje1bG3ISUvWQjwaWoNEJAGZsGkzp8xehYrFZcXAXhanIdxgwgzCLl2SnRqZOZOlMKUmIg1wkhMhmp2w9EphAJJuKjGPuGxH+V1o3osMoYMCXCqF1RLVDr6hq4xRgFC6BOqaR7DERjmGMkzp7GSvl+zugruybzF6lDMu+oinhdb/Y8W/O/1lGvnUzEnbuenb6nzqYM7jIf5dlcYfL+BxKJd8ifPTny/MR8zmI4qc5JjqEqMBiMJ1s5UU0eXUMFe6VPJOPH5gw8NQTrjm1P76sYls66xF8oATvpxigY63AYGY5SIuejWFDOLjG2K917ojRAiXgmP3KY91gTRDeMBmOXGLdAu435IN2H63vLzr4E4EO1nmvZ+bH5zds9PZOWlMreTtcx1RmyoRfPzgckHjfFUzpG6GuVDCsZreUuqeYnG1XRyDqxEWNk/+y2Dxx3W/rFkmn2GOt43D6yPx553O149/4djw+PvPzkU24vLugTf2LbdTw8PvLu3TtCCKmbp8E1C7Attu1ZrC5Yry8En7qUVXAUR8hsRmkiEj3TMBKDZ9F5WudoGrCt6CZp8iL6zKihr09pTMpSUyeqzdk5Bog+8PhwTwiBRb9kXA8sl0tefvIJXdfig6ftWkKY09qNBD8zJiNrZGTG0C5WjPNMFwMqdXRbnIuQ7I4MIdkBin0t+/2e77/7jrZpuFqvWXQ9q77j5uKC4APffPOKDx8+IG6AgGscn758zs31FbfX19xcXdA2nVA2PNnkafZTQ5xhHNkfD2x3O47DEeXOM+pUCDN+FHm5XK64uL7EGMs0DIRZ7JFxHImExGNqsgzSH8kyL9rkZK2l9Vlz1wSfEg8oldXWNpx07Y2xogWQvVO6EZ7rd90vBXOcyM48RHK+4ow3J9+1NjnwswO8kqEVtij7tGC4jAPSekgqnEjq+Gmqc1TXrHWgcCiZShzYjzynVs2U7ztTusIVfSYncU50njHiZAjKC4pkFIb5jHBdn//sGU+DH2rPn669CLmj6XA8cn9/J4Gq8UhMslp3RkyNQM65TVU/mST0NPuwlrcfQ841/kpiO9nE8qzqjNaEjBiFmkBletM6MJF+tWJ9cYUh4GzHzEhqs5Kwdo1ZYn0DJ6+ZKLaUMxUVQXKW+whTgGAiLTIEpopfPMWvnOnmVNwYNfRpIPrTZSkeJ0A6LramleB4FFk6h8joZ5po6RpZ7/U20WB71C+Y8oy22luxwl//3PGDnU3KSB6DpKfGJKxQxaUAHnOymdIdZaNWJ79xLpe7ZY+wOoaMKW3AY8xlMTKGsfL8xcwDIEMjA6LKJns29dvZElQAAcaIARaDtrpM8Vqbflwht8wALGqnp6oOGamHnFMaYW6PmQWmrqjkcKsY7/NCrQFEBGMdxjVYLCaR9BnbYV2PsW3mX7DG0jQpkpgj9mn8jT7TE314cpxAE2OyoCSNOUayB2bUq6nR1GK41FAru6oi+W/9TXyKRdBqJoOeRInFBTOr4K82HiqjZB3aFEUNMfD4+EgE3r55z/dv7nh43BK88CL1/YLNxQZrLY9bIb98eHjgeNxDhK7tsM7Rdgv65RrXuNw6M2KEwN1oQqU8mnONkN4Gi9SUW/bDhJtn6ZDSyjg5lc0qCEwk+lpBJRCZyvxsLMWHoogl8uNnz3AcePfmDdM40S/XLC9vpAYdA0YcVLP3RMA2HZ1r6Rcrurana9rSRvZszhQQ54mL4qkP3jMcRw77I9e3sFkt6fqeZdfSO8t++8gv7+/w88y7N+/Ybrc5Am+sZIoslwvW6yWv3wgfws3VFZebDYvlgue3t3RdR9s2tI2Qvu72B4Zx4uFhy26353gcCF7IsJ1raLsFEZjnB4bjiLt13N5e0/dLLjaXLPoFw7Bjt7sj4mm7wjvWpL1trUZnKk995azVfhMlCk8CKkX+ypc1Q7J2rogilX2YjA5rxZlnlX+FzDt0osRsJUdjUfZK7Cprxp45O2zODsSEdG82ka1GkW+mpElnMGY0O6EYJcUold8bZwkWIjbLLc2ejBTDWBS5qfZ2rMaksoQUUJzIgDR+UjiFKMkoHYsw9L04NkJsMggLNilvH7IC1lhl6dKSl7bInpSBKiU36bmtFfmeJJEPkWmYGdqJ7faR+/v39N2SzeYW4zRDQeZPoj7pmwpwXGkccQ6SDOW2ilY8BbD5G+k6SqxdR+9tyhixCdBHa+j7nrCO+OnIenOJMYbjMTAMRxSEybrWvX0K2HSd5c9iaIwVUBQDeHDSxD53+PTG5A4taWBRWa6p2ycgpprrOtv29EifSk4n4z0WaDB4Y1OWsIdgmGbPaGfJgDKSseR9lG5JpvBn5DOH/J+cRfYvdZRW0ZoBVuSJDpLuy5JpVOlguesc5WyaRojkVYNGSrZ5bRB4AYUYcXgHU8rHNJocovA7hFDxvaTbUoMxpmCQ7FOZO+8jJpC7TBkk4upsI/jFlvsQfFWisCUaq6UFKUCXdGfJijCY1F1Y8JKjOJAVV6llaJIutQk0N2BarA00TSvNIkxPNE3aQ5I546ylsS7phDrAUMahHJXBWO/veCrTTr+iGDFkzFtIYKhElS2yS9en/vt7HAt6R2IfZOGSvnqalUGSu1lCpc9ZKx0uQ4jc3z/gY+T192/47vs37HZ7uq5nc2FYLJc0rRhP7z+8I8bI/d0HxmHAWku/3NB1Hav1On22k7Lk/T4bLKK3Q85syryYxkrHpAi7YcKl8rOuEUPQpB91RIiUSOaWFZ44UV8xOeklIwaUNkHWyDiOYAzv3r8TnGRKAHH2kXFKzQfSmDfdgqbt6RdrCegZqVAoJb/1RGgJv0n7W3hQx3Fkt93xuH1gsVxwsRCuT2cMcfbcfbjj9XevmaeZ9+/es93tSHAO6yyH45Hv377jYr3mzdv3LPqe2+srrjYblsslz58/o0vt3JtG+F/fvb9nuzvw4e6Rw/GYAm9IRUEjGMpPI+NwIMwTzz5d8OVXX9F1HU3SO8HPhGnAmHjC92YT5ikotay7QipccMATTWNSVk4+nzt1NhGxwSX8UPS7yZ8viQvZoZ2Wf9SJMRpoKNnd6pCRLN9EeYE8i3Mp83Am4wQl/5HMS92aJmNlY/V+TLYNRCIneZf2r3cudSIzhKqDXB6OtHY10aFWlicGvf6j3cQwJ5hNYIiFKHumcYKhjIG51cwmBzhclT0jZOql9u6ky1klhmJa48aIE9yqDYjaiYKzvY8cD0eca9ntdux3W5qmo+tXMtepbDJGUnUOatTJ3mtctl/1sROizCOWcWV1nPgCEwzU9eISB7M2hJnn+aSkzlrHYrnAXwUMM/1qQ4xS3jv5AUPEafKEKPF8v/r8dTasSdioNcIP51PXVmvJ9Dk+1qTeug6e6pCCoYo9oE1G6usJtk/3FYustEGyoZ2JCISU5/I20DU+E/67ZA8Fr9yDqFBF/ThR/zZUg/3PHz/Y2dR3HSDs9pOfZAN5BaU2AexyI9mITgOjm1OBUtt2OY3bp7RKk9IYlfDOGIOZU5pLjJnLI/iQDQ0lqtXIl7EG23XgBKi3OX0kJu9q2Tk55T9E/CzCzNoOaxzWNtJmunFEI1EVn5xN+uOTMykkY272olSkU4fPvAGCtSwgQEkWUwKeWmZWmf157GKDbxdYE7CNwzYW43pct8a6lqbtcMbRWEfXtrRdc2K8qiCMMRKtgtyPTG71mhoNJhmimiobYypJSHwgkaYA0vSvbpbKXCoXiKDebAEN5mRTlQ1DNnxDysxQAyhWeBKkTa8xYBvpOjDOM3fv3jCME7/5zff89pu34vybAm3Ts9lccvv8lmE48v1333I47BmPA8fDkaaRVrdNt2CxWnNxeY1xNo+DPH9JiRdDUHgLio0l0da77QAEFo2lc5a2dVyse1xjE7GftlhOgkuNfQVRKUXSR7lG13bS+tx7xmFiGmZ+O/yaxjluX37Gj/6oTeMFuDbzBBChu7pisb5keXHFcrli2S9pXZNnSN2Qqv+ygz0pZ0LAzzO73Z6Hhy2fRbi5vmLR9ywXC1rX8OrVK/7x7/+R4+HI/cMjh8NwItTVodM0jn4hTqXPXj7n+e0NL1+84K/+zV9yfXXJ5eUFbdsyTjOvX39guz3w+vv3fPjwIJwQXrqUNW3HcrUBLOPg2T4eaJqOz7/4nJubG/7sz/81n3z6Gb/73df89V//R46HPXZ+wPgD1jrapslAVFKti+IPkIGSzUR8ZR9JWnUVLTOUfXaylzJNPJhzgu0iG3W/KiiJSQ7KizGVXyZjLsxibNpcvCRrBpMc0+LMMon5VM4dU+eIBKgTWBeApuSqqTSBSsmlqJM3krEagsVamL3Nzy1rTsbFGilP0pT2EvkoDqec/XkOEE4+FzPllnMR10QaB20rnCzeN/gEQqXcKDAMA+PoM/iKyVEiNmjhb8nZUKaAXGct0ZUadjWEDoeJyJH3b9+wXi24vHrO+uIK13Ti6EOcHtM0o1k8Pnga17BYLlAOiidoKT9zrIBRzJuuZAqLLo2WnAou0bgGYwJN08hzGbCTGK6r9YpFv8RZuLt9SdMt8e8GdrsPGBOls1ACYFFxRD0PMZusQIqyWpfWjThLop+kqxWROUiGYGOh1UbAVXpFyWDLs4zi6BgCc+1MMJVEqsF48KmVr6FDMhrHODGOAW/g0AgRatc0uK7Bklqa+0kMGjUWKOX9mtdpUXfyv8zRdV0G12Ga8x6WtVqVEydHRA04a8dL20r3qbZraVJ0dpq1dFMdTWkPGnEIhRgwURxNJjmb1Mk0zZPw0ej9GEPXtiIfDcRcplc6KmXgqSXvWT5ZWmdwLgXDnD0pBVYeGR/KfgtRWjJrl8VxGJmnUUrbSbjQNSnxsCMihpTNpamlm6mOqDWNWhoQxHHdd0uWiwUBh2eBMaIL2tSFq20S8b/VblgVhi3SHHUsnx/nBkId/dUszNl7KWWylpj4i/LNqwMIGetykWxFyl/m9FoJelBSm4pBcnqfcnZnDSba4igx4JqGru84HEfevX3N4Tjw69/8jt/87pVwMi7XbC6u2Gw2dIue4+HAt6++Zr/f4SefOqYt2Kwvubi4YHVxwcXlFRjDcTiy3e+zk9VQnAuRSEyccsprMfjAcXvAAIvW0reOtrGslo00makNPe3YZQ3YkBwYUqrZuIa2MamMV7oGe+85HA8M48DXv/sdr1+/ZnNxye2Ll4QoHVCPo0iIJvHjrS429JsrVusrmqbPRPqZKDhPQshRKMUUwc9M08DxeOD9uw/c3X3g2c01zy4uaRrHcBzw08S333zL3/39L4SfcpyYvcc1hrZPweikS9qmYbVY0DUNX372kk+e3fLJJy/47/9X/y3XV1esViuaxnEcJn779fe8fX/Pt9+95XG7IwSPNRHjLE27YLG4YDAHCbjut/zpxQX/6q/+ksuLS66vblkuVnz/7bf84u/+gXE40pgBwySOGZOwev2sqVN0CNLgKGdunu2LEkSVIDrGpmzG5DDSz6W1KxmOchrJRhE7Tu2EgjdSRgxI9nqyy7QrHalUVxz1LhP1C0al6EcDMcyp21YyvoNJVAIxb0eT9QvZ2YQpxr7qd4sRjGEjwdZNgzRTUj4vXf5Sgxx3lj2iGEr1QHbwUM6TZbPN+7ptBUO5lFgk/qSOGBvJSHMS2BjHET8mG5gyLiqaRM5rAwSRqy6WgIg1NiVvSFXIPAce7rdMc+T+wwcu1pes1hcsl5vECWeJyLWn4SjNPFKApGkamraRNVFJYJVh+vfT7J9TB5TKcIvJ3fJijLStOJm0o28k5mtdXF2wXK3oesvdu1swLfN2Yh4fBeu4KJ3lQwRN1lIMrz4FnSEjROHOSjfdGIM4l2NgjjM2RmZjcRiaKsPrJOlGn8WcPjeka+Uybf1uPUbptehxXtZMKynlTN5zmISfrWvaHITXrO9IkMxhrWygNBoxRih1Usj7ByOo/+wyOnPy2kc+FzlR0vk4A9sYXcy/3zP2+97JqeaUDaabwJKUUSyOm4+eTfV31tRyU+UpVZJKVot6LBVsxJOzluybGBWQVSUsGQUpV4mpXntqeOVhMqWkz7mGprFE41JadjWUecOfekTN2b8YcjQmZoDzsVE2H/1Vh8pELQMQQWyqsdbxyDI5D20a7GQIfswrXT1QTpUuALK8RzIi9QJ67RDE8DwOo/x7HIiQjWpNlRdnjBBGzn7OzjkZ40S6mEooyxrjRLDJxS1KNm8SIBA7Sb43hwSGrGEOEbwWAVE2z0c20YnxrfsuOwFktU3TJPXR05AiyqoYklOhavdqbAPYnOIa8rqsp/hpBNclEnJpx9vStp3866Qb33A4MkTpavNwf8/xeGS3PTAMo4DXtqu4kESBDpM4ohZtK4Cuabi7vwOgbRuWy6WAi5QhOM8+R0E1SuGso2k6mmZCo2HOWfq+lU58lxfc3Fzz8PjI5uIS5xzz7ogPA3XWn0a1ZF9WSuvJjOhUne4vnccMMiJVVnBlOFRzLcaFIppYlAS/X95BvfZ0H5VvVKqV+oT6rFkhptdD9SzGUM51su3lHjVDFCuAS6NuxbirHuBjYiPrjWqE6zX/kciIqb5DnnODys8czbGSiVGn6MdKaet9qhzKUadY7iUkB2+doSpflYEax5HD/sBiOWSuiJjSl8VonlPH1DI/J067+tWT9cGpDKzXgkl6oIr01RHd4iwsZd452utijlp3/YRzLZpNW6LQ+aZQUJTXV36MZBQaMed0HQTZPCJjUF4NU5bkkzlM91+d+mOZH3WafllMlbykRKBNfQ8hMgePC0m2p72Ys0YquanDXEqkZIX8cLj0/+uRZM+5Uj2//MfwUz5Def4sj87Gt3w4nbwWQzocipmSQVYDd2uLHk+nr47qKmpN1fsmiwO9L5N0UwZbWXU/PY1mrSfuzkqymZT1ovOew1t5eqt5PFuHxjkxEJxkMxEt0xzRLKATcJ9B/umpTlemyWWaH59Afs9rlOdPhknNkSHyWQONBXPqGD15vI/sI11fxpyvhrRGjMFEk7DNU/QdQkg8loKfxnGk7TrJJm5bMORumOM4MAwDFpuDS03bSIfg5KQmxqTH58TjloLONkrWkYnCH2UqZ2sI+LSmJNvIY0zEB8loq1z4nAPEmFaC7u08bJXuLhhwIgL9csqOz6wr0vzKa+LAJRYnbQxNUXlnOqxeK9ZJx0z9aRo1oiGGwGG/53g48vDwwMPDoxj9QRwSrrUExFkTo8jbxjqmYaRpGlaLjsaI0/nu/j6P4aLvCBk7yY/ywFnNzHWOVsmbk4xvmobVasV6s+bq6pL1asNht2e1WovemTzRl7JsGU4dtWqhni2qPB5G9UTSDSngJRj11LmusCQCJtRcTiafR+8hv6eT/RFMkbFA1nNpgrVsTS+o3iZ0H1GwlNXvlefRtaVPWb5ZZG/GUPmGzzHbxw7Fj2eKNVb2Rnqu/DL1R4tG0EdzVgIZ4jgr2C6eyLyio/IontlyGUPV047qjzJ+Gtwbx5HheKBt+6xrJLjncxlzjBHjSsa4qfb1KTY4fd6PjtzJGMh3aozkzjFUtb6ss5L31TS0XUfTdRLoyKNTMJQu/ydiOM9FzPI8VOsgAl75pkmULGfn+Ki/BUWXFUz7Pfon7wvV6UnvFAdruVXlSTZAdGp3V/tNr3OitD962T94/GBnUwwlIV0jZi5FvCJIaR1Ugl7v5VQQ6WYPPuB5SuYqH0ukVGk2nbPZxiJy0mZT0q1TmmSI4kFuQvZIu+TxVh6QdBtgZDNIdrmj66QeOXib3hfng2uECLBE4mICPWWw9TUfPdM8Ms9jaq8oraabphFy4FBSK3Xy1Et5MtYarcGw6Bc01nB9teDZs47dwfPd+z2zh0Wz5GolAyPNKkx1jtMFIm1h44mjSuybCozWd6DtZuEMsCcS71H5OJLBg7RctfUCVKcbkZofy6SySwG7KT32nG/KSEqfZvwQXR6vSIoQjqL4tM3p8Tjw7v2d8Aw8bhmHgbYTfqambZmmI69efcM0Djw+3DOOg0Tjrq/oup5nt89YLFdY22ZOJp8Jh3VjV+OR1rq1ltV6Q5/awZruCojsH6UErAkBH480Fjarjs2yQ50m2eF6SrggY2EjmECInjkEjIWmEyK3mAzf2c8cjwcwUuaHcYQo5SWRiAsRFw3748i3337HYrGEz1+yWvSq99I8qnI1eU1cXKz54vMXLBYtf/Hnf871zTNevnxO1y44Hg78z//23/Lqm28YhyP7/U6cvZrlE1pM9DmqqGW4kjof+e77N7x7+45X337H2zdvWK/X/NV/+5f867/4c4Q719L1C4x1zJNEwttGHAvL1RqsZbFc8P79ayY/sVyvWC57Vquem6slL27WWL6gaSSN99d/9+9582pMzwnaHSIvbDWYgpa+lvmW6ZYvOm1mUCnVYhCoM0N3kw6wSXvQECuycGJMFT1JnGelXjs/qt0cSxZB3sBIa/s2OsnSMCXaZoxkBlgnijxGUWxPFHXlhCnAXLOuBPDaEIjWogSIeleKvwwQfUjlr4GQSgG13K4eV5J8LX/Xwp2cbeK9GCpta1isGhmmQyRMEQgSpU2krrFpCDF1h4wagJB/leuj1penTiYpXVV+vQbLol3Ruo77Dw/41CXp9vknzGEizJboU2eRxOuxWq5SRpMSIpv8aLoCogFCJOaQWH4n/3aS6WkhRlORLGunUp9L0IwRXjLvPVOYiXiaruHm+TOW6zXHwyOP9/cQJ6w5YEilTmigoOifknlX0KVwuEGTwMfsHN60xBiZYsyOttaW+ynErJXDNTnOZRqKYVdfV78PWnLmMogNmFReDNE55q4nxsg4B8ZpZGqldKqxlr5r6VdLyQSdkjMwLXwBYf+S+UzlCL44+Z2TSGpuVhBjzhJS4yY+2agF9AuvTMBTiNj1Tfnd546q1ko2lMApcXqW1s+RaR6zTDHGYKOlDU0yxCTgUF09/aoyScbVWslmEjCf2jqbwtlUsB4ZyMZk8IlfN+JjSFkMI9M0SVZn4oPRLl4nIqS6K/1NM9gigu9651j3HW1jWK0bFkvH/ui5f3zEB8Pt1XUqoRM+NFe3445lPVprafSxKYZWMfLOHcxnn6kcHSBlK95PZKNSMZQ6SbMTj9ycwab7ycEqo3hS5tnZRozbmBqpnBzl/kIKiIYQmFKnKO9nhsnwuNvx3fev2e0OHA5HKX1pe1arJW3Xst1uefPme+ZpYjgcIAQury65uX1G13VcXl3S9Qt8mLm7e4+WoWjWi0bKnWkKH0sjzo/rm2vWFxu5Py/ZoofdI7v9jsZ7QjjSWMNq0bPsE35RcuTktEIxbRrTiE2yvfCFtV2bPiNzoAE44dZxmNStTmbRMI4z4XAk2C3t6zdSHvjJLZera7LJqCaBtRWWgmc3V/zpH33F43bHsu95eHxktey5v9+x32/5d//T/8g3X3+dDT4gBztDcBBbpPNwR+scJgbhMZtmvnn1LW9ff883r77hw4e3XF5c8N/+5V/yr//iLzgeB7quZ7Va0zQd8yxP0zYO6wSvxmdwPO7Z7R4JMbBar7hcL7nerPn09orryysW1mCjkIR/85u/5/2bPY6IaVM+YeKFyWokpqBGgkcxOT2tJbW6t7hUFWGtw7rmZA+r87s+RLY0QlzeOGKU7Cafsr5zyTBoxRwa7M9UJyRHdrIrtULIKp1CKlFX571NpbkmlRwZpxkq6Rp6w9k2Utkmz2pMynYilUqlDNRZcWZaIzFqIaicMCQdEEIguILF9bPn9qLinHMbUv/0s+wj6yzLhTguD4fIPEj5qmZ3O+do2laeI+jzRHySQ4qlapWk1zXG4PX+kwIzOBrbYWLDh3d3hDnw7PnA5cUNXR85DBPDOOe5tdbStRIsFrqYUw0tJXp64Rqbm7N/xZ4XeFmy7Rokg19teedPMdQ8z8kpFIgEmq7h6tkt/XLJHPbs9484ZqwZU0smk9f52Y2e/CmIX3B1k4xfbzTDMzJBwlDQWsmEyoFDcs5ulvOa1AAoxSha1aXPok4iLR2W70pZ8BzUJHH4dPbjODEOE4uuxRlpNtR2DY3r8anBAcqnna6hTsH/nOOHO5sqh5CmGWsXFKm3V2fUqcPj6Vzoogy5pPbc4SSL3Bdvo3qD0yILMYKXlrdeO9jpBZHJU2JWrSmNWflrJFc+HyNJmLcYA7OcWq7tpCtdBvkxZqWmUbZiJCYepyQEQ/oBTaeOQnCXayxrgH8Kl/LkGEvbNHSNZbVccrFZMPkjh+Mjw+gZxzl/VbMU9Bnrc6vgi5HcOvr8OPUnFXMgG9VGjaLE3aTPpin7xgivSPaQ63xrinQSwIacraMp9SCbTO9bLyVe96S4iy2aDOYyfroOxnFiu9ux3R+kRn2eabqe1WpF3y94+27P3YcPTNPI4bDHzzOr5Sq/v7m4YLFY4b0ApBhLJtCTETNq+ImHfLUxNF1H0zV0a+n4djhODOHAHALBjzQWFn2b+VZqZ5Ny3yhoUUdrREluZYO7BPznOUAAHzzjNGIwGSwFDLPycQTxoo/jxN3dPV134PbmMgMvQ4a7JyAJYLnoub2+xFrLl198QdstWa56GtcyjY/84h9+wX/6j/+RrmtYLSW9fL1e0vcd4gwQEGnaJnGACc9LjIH9dss0DrRtw7u3b1kue25vrvnqR19ibQOmo2mScPZJoTYiD7qulxJXa1islvSHBX3f03Utfd+yWXZcruUzzXLNbrvj3at/4t133yIdAGfyastGk45/4oLQfZknQ8vVEpKonU0qv4z5PY0ZEmBInE1a0lZtkmzGqd9F5aKCmGK4xLKn9OzJ4C+GTwJKxpQ5zZ9VQHDm5NdrUjIF1bBxxhCslNHZJLO9jl3en/HUoRPUMJJ09ZOHqJ47/6uyCtBclhjEAG0aS9uKQTsNEZNLTCKYiHOGGB0+iHOKLI+TIykTE+fZOAG3Iclkn/j/jDG0rsPZlv3uwDiOLFZrDsMe01j8aAizyR2qjDEsl0sx6JM8VIWvYLK+aJH5mhlZrZS03up7VCJL56BtHd4b2rbJ86dcQNMs5W3WOVabC9quZ7HY0LglMVhMHMQBrPMb4dzJfVJ6o4YDZP6SYCyYBmIUnrgonVlCDALAKp2thnNMiidnHtXXeypZnxruUTIcGmSeGmtoTIMPkXEYpLw7GvpmIjrHcrWgX/aSgRECnnCSVab74V/a4VRnwClfpQRqTClPgxNQ9zFdrbs0Y6iQBUaRGYjuVZmVifs92fDS9avlqOXSrgLzBcirsXFeBgsylk3jKESmxdmshoOwDlQAvSg6NNrtEx1BSJ2ytEzAWIcl4kPJajjHl/VaSr58jHH0i56+tXQ9NB0wBPaHA9MstBCWpFvTONV7QM9vjZGSUpUpnO/bc+PoYyNU7lCxg3xXSrm16cT5M+VrRTH8hQ5IdRDlXityYak2q2SeOjXzWAuGy6S1IRDnmePxyP39PdvtnnEMKdu7FU7FrmUcB96/e5vnxgDL5YJnz25p2pZ+ucS5hsPxyH63Q9t85/tFnU1eiI1TSV9DpO171pcXydiOqUPzwOC3+BCxQQjI+7ZLvC8p49XoOKWRimqk61ox1VibLC+B3CE7RMkcIpVsmhjRbhqz9/hhBHdM2UcTz282qF/SV/Moa6lkh1ysV3z+yXN2lxtiNDxs9xySg+f9+3v+9m//lr//u7/l4vKC58+f07Yy1k3bAA5rAjGVeTrl40x8ZvvdA/M0Cnn74x2b9Yrnz57x85/9jGmSku6+UyL86h6tpe+XmAuHaxr65ZLjsKfve5Z9x3rRcb1Z8exyjcUwecN2u+X991+XPUyxf7KXRQFM2i/n+8Ok4JV1KieKs+mkA1cdiJIvS3lPUJuzzm6KeU3pfiFWmOzkRzM5I6gDN5UOJUa4vD/19vO/Nd6DbNzH+ntqH6fP2/TcWFu4cIwE5E514KkzSdRykrXJ8ZCvpthNn/bMfqwFQgSijxCk2UrbyTgNQ+WcSA8pdAIuYy61aevA3flxEpxC9rjYi8Lt6UyLiZbddsc8T7TtgnEcsdZxOBzYHyRDb7kU/jJjxRF8rpk1s+lEF1a68iQjzlT8WRnbR3AOkxqYta10PZ2mJvsPcnmuQTBl41huNrimpb9bC09ysFhmLKWjakbNtf6uZjWPMXVmU8nE0wxOGyFG5cHSvVICrznhIUq5oTpxRbyV+dQx+BiG8lEoD0I0UiLciFycRi3rj/iFOLdd09F1HfM0M49zVTFoVLNXz/nDjh/sbCqdOM608B84CqZIxpopxppizng2UU+V9tnDZPkWT86pWRk2K9x4dh4FH+mOjCrgiNZyUp1DiCNdFm48PWWRs+kZhmHk8XHLNI7stzumaWIYxiSgK3BQfT/fnBqk+TNJiQafUo+DpB4bdSJIdGyaZtquEZCShPTHAWo1eLqA61fVyD4jmExvVlCpgFAVSEQBRAoq6mV4EvlMJI7Ry9IVx9xMjiY4U+QplaCv5GkNNPXHB4/xcByO3N3d87jb470YgF3XiSNqGhmHI8PxIJwjqSwreM88jlhjhCgcmSufTq6tuut5U8VircW1QjrXLnq6ZV86HaX7t1ai+dPk8QT2h4G2kSjJou+TIqm7hqkS1LRyAfdRCsjF2IsSBddyAxMD1jr6FMky0XPcioGqgtd7z363ZxgmDvsjw3GicZa+E2eAnwPjHNJ+FGN+mj2ubVkul3zx+adsNmuO48jhcCCGyOXlJS9fvhQlHiTVfRgmpmnCWIdzQho6LAbatlPLBQA/jWKs+pkDET9N/Paffsu/32y4uLjkxz/5I5bLNVeXa168uEmpuKK0MAU0LpcrNpsLrq6uuH12y83NdeoaSGpmkAyXE/6vk5lMArsy8FVQVHN+UrpC4lWpjLCTHVY7FtJ/n8g3VeJodpA5eT/GWDKUYkRqvi2GkJzWZe8Jp1JI3CoG2zSJT2JGyBzPwF+Wn3UEsZILeu78++mnJHu1PGCsN221VyQaJZkLJsac0lsDMzWM9d8MJIkEL9lNvon4OaQUX4NrxBjRiLlkCYTsvI4x5jbrCi5rQzSe/gd1CilvE1ENdCER9R4O+yNvX79hudyx6NZ07RJrHYtFjzQoaKrnkbnNZSHV3H8si6cAFk4Hm9P1pTrL2sJTYa2lSYDdWYc3XuRR1wCR5XrN+vIaPx2Y9kfCLPKCzAMR8lr8aCZNNc8GsFF60Kq7z8fIHGD0kWCEDFNziAsY5UQv5ec2CI9QRUxazRAnljTk7DiLE5J/YIiJ1Nd4DsPI7Czd0Eo788STk3Wq6leKnvoBMOa/2HEyvtW9nHzmD52gcuRleaXrjbOx1YtwOoe1Io2J8VbJchXgKlmobuZz2y/fC+QyS13bJmGyxpVy9OLkqMv1KoMoxowFDoc9dx/umaeJeRjxs2ea/B8YpY/N4KmzliDkvs4Y2kbIjYWnM2XaJoeD2EmGqITqFW6tL2dOGq78vj1zZmzraJpKvZgkS9MHkliX36tx0r6j4kSRAFKI88m5jTXY0GAShirOgHIfOdAbau4teX2aJmIi8n54eOBxu6dJHV6bpmEYDkzTwHDcM88DhFJmOwxHto8PuMS36JomZ/bL+rSUkkddkwEfoW07FqsVTddK4Gi5lEz11EUWCjefweMMtO6INv/pOsmKEEdTRc4NqRGIy44fLR0KSRxo0IUoXaOsseJwWa0Eo04DSR0gTp6Zw34vTrDDkXGccdakQKlgvGlKTUyM4mnD5mJN23UMk2ezWfPm3Vu22weMNdzePOOLz7/ANcmZ5KWMkSMp20b20GLRC4aSXUeMko0Wwowh8HB/z3g88utf/Zrri0v6fsn66jkvlhc8u5UudvM848PENCZOJStcNhcXFxgTuLq64nJzwWa9oW2KE8jPUwosVHgh7f/sGFf7xajTRN6zKUslP4vaa3U2Uj6lKY4Fyh44tw+1S7Nuv9zZszIcNHtVIJTItxiiNPPJej6FeZN9FWLERYSz13VJps5IXm1l85goBN3n8lT3ue4rGxN2P1XstRMkO8fSw5wEXzTzMwvfWAniWO4nFseUnkndAd5LFo21Iu+zzavUZz7mzD+xJzgNRASf5uIMtwE5q626arSWmOZWGzB4HxmGmd3uwLt371gsl2AaoedoG/q+z/Ql5VmrZ6nWxZP1Vx1PnF81ponqKElJDBV+ss5hnZT9KjWBaxoWi4Vwtq02rFeX4AfMMKVIRsjPr70pz9ep6sN6VqVQx2CxCbd7caQDUxCnd+Mcjfo5KGugBKMqqZ4MjnK99F7+bDbU5fUQUra6wyVew+Aj4+RpnOc4jNLh3gp/tvelgkmf8XTg5Ql/CI76X+BsOnlK6kVxegv6rOr8MdmLXBtyAjRC9dkCkIpXVYnI1JAvnjybHE3S1tBVAkbBgqmuE7MRD6n7QDqldoex1tG6VF/dShv7Isiq+EyNgaNEirbbLa9fv2EcRg7bA/M0i6I1NZI4P+oRTSDSJoEcPCHMBG+wzLTOY40SaUpr0+Mw0rYugXAjyz4TxqUTn9RDfwQc6SyeGzumABf5jGwbU2V1CWiZMzjViEMxVuWkrXUY5D7n2ad6XgEkxlqiMbio3tx0eUsFelWwVlwhRv4d54nJT9w/PPC7333Nw+OO6+efcX3zEoxlmqbUDeSR3eN9GitZb34cOe53zNNE07SM4yF1+uvSXJSWrOeg2bWOxXpN07SsrjasLi4I0eP9RPAhpYg6Zu/ZH4ZU/jJzHI50TcvlZiM8CPJE8pyJxN46lyLFhtCk9t+O3IJ+ngRoxHnGBk/jLJvNBX2/4qEx7B/fMs9TLmmRrK8tYPnk+XO2zw4s+pZFs6BpLIdpZrsXQTOM0iJ3tVqwWS/pFwv+6vqKEAL/+Ivf8O//+m/ws+ezzz+n6zoe7u958/p7ucb2MXW/IgkhKQWVhgCWtmuTh1/mdsQw7CTy8z/+v/8//P3f/C0//elP+D/8Hz/h009v+fLzZ2z3X/HwuOWXv/w1u92OthVjuus6bm5u6buWz7/4gp/+9KdcX16yWq0FhHjPPB6ZpyPBF/CaswDTPRbnrgrmUP7GiIZQR44pJL6nO8mU0+j6rNb/E0NewU5MRVXGCFlmOoeNmiqblE1aI8qPo04CAUoxd4Lq2pa+7WRvTiXzTjmPjCmZKMEn4FQpsrzTIzl1WkdK5akonQroJLRk1MjRHWsgRklbVzJmBV8ZwJw4UtI4pskJPjJPEWcD0xBxjcjGbmmZxsBhmIXPK3F6+RQN16i4lCXE4lI7e84IucQq5h0okSfbtFjXEgL4AHfvH/nl3/0DXd/zxRc/5sWLT1gsVlxcCKm903IAnZt0qK5RWahrr0531uwrIHfg/H2uEO341zRNHr+u67CzdKoM3qdstp62a7h69oxpCgy7B95/s2UcPYQJQipDT5mbHwML4rQr61ay3KAx0pNujDNzgIiH4HEmsjGGxgmS9dGeAp/qOHHE+WRQV8BQMlpjdu6KdTWDD9gGOtfgDTwGGKeI9xPzNNBY0ekmkVVb06SyIynZ0eCHLrqPOXz+ax2ZKy+Do/Sw+rup3yxHXitGDFttxlKD0FNjLJXM6/6KAohNdcmIJ0aPMZambfM1dG0KtwsUTsLSMU4wlpzNGiNEvMTc8dJZR9u2NI1k8ZrGgicZM+I4yMAVucdpHpnGgfcf7vjd714RvGS+WCxT8B9bQn/4qLHk7MEEGtuw6AyNJeGnyDRJwC5z2VgrevoM76lgT6GGaqo+jutMPZfxRAoltVLWnspCk7CV6I/kAKuNVSP6P0bPNM0pmJQyspwER3MZXj57wWNKA+GTIz5U83A4HhmGgXfv3vLNq1dst3s+//HPeHZzyzyPPD7eMU8j24cPjMcdAI1rCcay3T4QkSyobrGiaVrJKm6b5BxvEt+NBSO6Y8ZD9PTdiqvbG7rFgovbG9ZXV8zjyGG3RfCl8GviPcM4YaJE4g+HA23bsNmsaBvtyCgZ4Pq/4BwxZUzEKEHkaLV8k6QPgOBpk2F8cXEp9zccOT4+EIJnNgYfA+MwcJg+0DQNnzy74bAf6RrHxbLFWcP2eOT9/QFxTngMkfVyyScvnxNi5Pb2hmma+Zu/h2+++RpnLT/5yU+4vb7m4eGet6/fME4j2/2WYRhk3URxKiwWXXKsCR+frlVjDQOR7d0HnLWMhyO/+Pt/4KuffMX/9n//v+OLLz/lcbvl/Yct2+2eV9++Yr8/4px0me0WHS8+ecntsyu+/OJLPv/kEy42G/quhwh+nhmOJUiLoWTQVToMUrCYghuMNbi2yaVSLpE0G6MZ/Wqb1fumyL+c7aR4ATF6nWvS60ktpPWszgORT6mJRww5WzHH0WMgzilAHsR+CdHR+0iwhsa2NF0LMTD5IyHMCQKavJeFCz5mp21QOzjGXA5toix5tMytanwRY8z7r8iPiCKQGKu9q+ZWLV/SZ+qMsJIYIbZyjBE/wTQFcXIET7RCx2EbCLPQDiheEuewlN7FkLJMQ3Z1J1lX9GcUr7xgp3STtpUSVWsNbdPimpZp9BwPM4YPuOZXLBYLPvvsS26fvaDrezabi5zZFFJ3GMU/keJkqjN2alwl91L8CLXDqmTAyaHVISYYmrbN32nbFu0Cq9lD7soRZs9xu2c+eKbjlv27AT9FCFPSodLg7LTrZ1nLMs+pCiibGoZoEu1DCEL9EAJNhMbAgiiOZ4oUz7ilxsm6Eqosp5NlEsvaMoAJETPPEALWQdc0zBge58DhKHQDhkDbWFnDk3DiSsM0W2VfnwCY86v+3uMHO5vq4zw9i/NH/UPXrr574sX9Zw4VuuU8uiTNySLMAOnsFjOOPblk7cjQOuPi7LHVebNxcn7LMeZWn/M8524S0zzjvWxy45qTz2eL9GPDAyebS0fKqM1b8EviDEn18B8ZygxAn0ir4ryR9/Mr+cXKx/PEcVT7sjPg1Vdq4VN9R4GvCgXtcuejpEeHlOqphobclwrw8izZSIV8XWHlj0zzzDAIaaX3XkAGGgGKKT2/dD4EchmBsUJ6aSeLa0C7BtrU114cgaeDbK3NoMo5qYWPGin1IfOEkJRS8IFpDqn8UXiVSCn0RjuyoCnKgRASJ1oIBGtLeahYyRKxTR02YlK2TSvKOOPcGLMxO88zYDgcDikDr6VrAm3rOB4njoM4/47HIz54nDP0nWQJSAckS5vK+Kw1bDYb6RAHHA+HNO4zOVItRAHi9GGSUh4SCDHaVQ0iFm8MD/cPDMcjV1eXHA57MR4bw+XFmhACTYqMZfhvjHTJDEsph1yuWC6XEiFJa1Hr9J9kbpwr72qvZRI+85EPf2TfmmpPajr07zs0uqKH3ufHIjX6eXlbnTAloljLtPr5ctluZXCp8jb13lLjRRV6rJ496k5/+iwfF10q/5XYNuaxqCNuteR4aqWdnTl9WBQ64MFYkRPSAjtksBWS0yhUP7m82pRxPpEjtbGuH6wdXsUjmaPZIi+kqYC1lCDHCagpz54jtSfj8AcUZCz3e/6pOhhTg65ieGiJgQR1IpG27egXS8I8CKcODsNcXex09p7cTqwNbvm3plOIUZx0PmWG1IDEnKye+HS662fTa6iuiuW7dTYgUSNz4qTVjDRJ95iJzuD9jFenm6tzbQsArF74gVDpv+xRY6iyDqGQessYnEf/z6HD78tIO8E2agSlZzWm4Iza8alZsEaxVb7QqX6vsUQFE5Lu1rL9Uu5SAog1XKxWRtKNs5+ZxolhGAg+0De9dhmvrsYf3EK6ZU36nJospNu2yRmp91K4SKr19vGd8PGLVs8ToXpWxas1hUMsGCKen0a5W56ctuCuJJO13FBpGowxCQt8DAdWAiXri/jkx88z0zSlwJwQg9cZI/MknZZnP6OdC4MVsu55lvec8xjbEEKkJaaO0gmPR3n2NDpodrC1lqbrEgm5OiEkW92nrOTgPdEnr3+UjOthkrGY5rlMdjqvRZsFiPFoMUhm8OkaPOF6TWMnWaotYZpOxl8xzTRL1ux+t+Ph/oFF1+DigsZZjoeB4zAkPs0JiLTOEZbiuGkai0kZHc4KRcbV5aV00rSW41665MkYpw6nqatw8J55AusioBkZqdNjiogYA3d395gIF5cXzNOINYG+a7jcrCHGzDukGNoYy3K5hNiyWi3puz51oizNcXzqoAh1CWyRHbrLdN9YqxQvpzZUkTfV6jxbr0/k3flWOZEplX3AqW4/lZ/m5LsxNWgxeS9Q/cj4upTVbEItE8n/kf16cltpn2m4rpLrv1fxfeR1xU7/DGZ4YtLV96L/qZ5LMZFRSGSAjKEK719MuElMqpADJMo1erqBKHZYZe9lxCnkvPn68+wZBmnSExI9gnMuBdDsyffzf0/G4Ycd9bidrC9VrQnf2Wzrn6/RKhMPIxiqX2D8xDFxHZX5iKfnf3o3J/dQYyn9ijgthcYBCyHaNA4VgqrGnBon5POagg0S/tLdcDJyMeYqA6O4IMZsjws9jjofvWTRpyD4qU1UP9MPm5sf7GzSOudk1wPFkxjSzZJK0upBqD23YhjLZIbUSvFjt/pxL2V6MCMkcTZ5bkMi/lMhZgyZNFAG7fQ8McZkdOtt6WaOxGhonDLWS3lUkyPWaszUzh2pedwfDozjwMPjI3f3D0Qf6JqOtu90V8senSRlThe8Ij8R+vmj1bNGnIs0LXSdpV+2tP2MdRabBIVE8GfmeWSaaiFcxlIFRO3oEQGjYyKjURZqmT3BKfKadmMKMdWaxqJs1MNbG2yqoGXsAj45TObEt6WOkGhtqkOXLaKC3TlzImRiLFwMfp5Tdk/InuXjcWCYRoZpZLd/xN6/kzlKzz4MhwzcBEghJV/G0Mwzrm2Z5omm7Wm7gDEO13isEX4Am8CQCsi+77i8vKBpJZV7GgSk7R8fmOeZ3f09h+0ukZzKpg0BjmNk8jM+bnHWsewbln2bDVgD0hp8kjazHgfWElwkKvlRSuOchoHH+zuatqPpN9i2BySlexhG/G7L6CFGS2sdIUb+01//B/7n/+l/pO8abm839F3L5c1zLm+eMc8zjw+PTNPEYtGzXPQ0bctms6FtO95/uGe5WLLoej7/9BNcYxkTP8M0jrx+/T2PD488Pj7y5s1rhnHk4eGR/f7APE8cjwdZE8kZZ62hdZLttN/tAHntf/h//g/8+te/4rMvvuJf/dlPeH/3yLu3bwkhMozSSthawyeffkrXWn784x/x8uUL1qvEGWVgDp7DYeBwUF4X2eNPjgoISeaQRFcyPtc9kICpKOmU3VTtF1WyaisWRGCq91OqbtMkJ2FxhIXEsaIgxVTnVQWpnBKS2WkAjzGkrJZAm7IJQLh8AlpKmXicQlHiWvtto83PURpBxKRYyvNJRk1ShGHOACZzVtSSIyr4ryLtlaNEzatzBZ33uymlYjHA8RCwNtIthTA8mplxOjIOnnmWkpiQDBHlEMw8A2eG/flr1QXTONu8JkicOgZL8KIDln3P9dUFTdOL0RVC6tiXFHjdJSuNa5FjBZwXnVQ/P2cW/McPJTQNwWIbcSyp4ystC4wxrDZrjDHse8fhzRV2jsThkehHjLGYBsDlgAmmlGmhxmss9pwFnE/5X8FANMzRMAchs+zaSBdjhmNnEDlxtklbagWYBcSXMTsZN6uE7gFLIIQJPwpXyjQNDNOEZBLMNNZwmCb6ucW5yCKRJtel2KcOuz88zv8lDy21jDntXoxqHeecUJkytHUO8hFLNFv+VOxjTsC6OuCy4y89o0Uj/uIkTTdTNQ3QphWCocR2iqn5SzEytFuYfEP+K06QkDgmNIvdZX5COVfIGKTmmPB+5vHxnt1uy+PjA7v9AYdl3a/pu55xnonzmLqZFbakc+SYA4+YjFGtgaaBNmEo4cMJ6Z6kdGScRqwzmftKdTyVAatPGiMpe7wKoFXvc0ZunM1OLVfN5zTSV80Uc0B1U5YUaXHqnon4hLtCzubQZW2TXtQATz5HVcaomX1+Tpgx0Qv4ENjtDxyPBwk0pRK47eMDb9+8xvuJ/e6R2Y+Mw5h1RJzSqCd50TQNxrW06QbUiBOsldZC0yEd0xY0bcvFxZqLiw1t3zFPEw93d+y3W95+9y3j8ciHd2/ZPdxJiVvCCcM4Mk5Cdj0HT9M4+r5j0XcZ9xsg+Jk5ZbZY41KTjFTShzjYQggcDnse7x+wrmH2Hts0+BjZ7iTj3XRLaBfM3nMYJWv9//Xqn/h/jEeWyyWfvXzJcrFgsb6gX2/w3rPdPTLPM+vViovNWrK+euG1PByOPH/+HIA//7M/oWtbDrsdD/d3DMPA969f8/DwwPZxy5vXbxjHkYfHBwnA+ZnD8VhI3mOQIGAKjr9+/Yb3b98y+5l/92//Le/evqFfXvPf/9Wf8f7DPdvHRyH9nY4chwN91/LVj37E9dWKr370Javlgr5tJVhhYPKe/eHIYT8Qgsgw/bG5HC61QU/rNSRbSdaA7n0pyVGnNsl+O3c21ev+XKYZxBlIlJJx62zmkFK5kpMDznSILNESmInRZXmk15hS6WbT9TRdR4ye2TukDYNiugpDUNR0/ldxH8UvoHLAINlkNmVmzXOyKSs9q58PlRxxrsnOrKK7zrOZyPswx8Qt2bD0Afb7GesgYLGNgUTDMk1axuyzfIhBqVHS05qiq2s0lZ8zj3UpkYwZzIjTWfkJjTH0fcd6vUrOaXHOFll1OnJ61AGMfAc1/j7T6x9bW3IeA7F00IwhZt0stp3g5mDERlxtVsTnzzk8Nhw+vMaPs+AXZrnLgDjj4tlsF9cCpyuBxAmn8y8ldPs44yy0ztLiMEROvSlyHp8y5c59LVkfqo175uSKCZc5BHfM48jsZd1PfobJgJlpGsuib+lohZ8qyZiPB55P5+MPHT/Y2VQ2PrIpYihKUBek2lZ5WLKqJe/BSjAoUCqkuzpWH4/W6dJVJ1AMgTFOUj9uOP3hlIBa7732gIM5WdzZGEwkeq4GSsmAEbBHdhCFGBiGgcNxz36/Z7vdimK8XKQaazJANJPn91oRpjJSq+d1LtI4Q9NZ2s7RtLbwUiVnTvBzAgiSCiztRDkRpCRv9ZPo/xmYlevWwjSbntlxFGJEqysy8aQx2RCvU/+yxzyWSHTpDFLWiRKOyzzoXFTEpggYU2AcvGTOKKGoD55hGpnmmWmeOBz3mO19fpoYI9N4JC1eApJWq45HHwLucMB7T+sjEUn3bULMdfMupuyhtC66tmW1WtG0DbOXzKFxGNhvd8zjyHG3Y9zvM3g1VjqjSPqqZ5x9EopLiXaZZJpbUmmPJxrwJmKcJWCITjqMaUnYPI3sd1uatmfdLHG99D6Y5pRqfzgwebCupes3GOBXv/wFv/jHf6TrGm5vL+gXPX/08z/hpz//Y+Z55v27DwzDKGSVbUvbtlzfPmOxWODnwKLr6fqOr776kpubK4gyZ/M48c03X3P34Y43b97wy1/8kt1ux+++/oY3b99xOAgx5jRNzOOEn6U2uO96KakbB6ZxBCL/4T/8B7777hX/m6srfvrjT7i6WPGfbq55eDzgHzzD40TXtdze3nJ9teaTT15yc31dAU5SrfjEMMi1yoouBr+s4WKsGaMOKS18KAI8qsGUDQhzpgnUWCgxiWw+iM1MiLJnrHVEI+n5+b7iaRSsfD+dIskq0ZWqxWLeU/p7zmyyFhMtxag26flUTpqTi9Q6MeZ0x1Nnk4BELXs+dYoVJ4nel+7nYhaa6sPqZMhXiAoY0gwZk9vUjoPI+KYPGDsTzcQ0D4yTZ57Bz4nscK46nFIuqhHz/JKlvHYO1ozesYIf+V27l3Zdx2azJtFmJy6IkCq3Tx0YdbbZueNcHzqvFFNHjlUPcnLUQLz+iTZmA19JzgEWy4WU+RFZLjf444SfB+Y0I86KcypU91ZakMcc2VQAa2PEpb9NclCEANMs2WZjiMwx4oyMTu0QKMGH+nny45bPQd4LRjxNaZ0lZ17iMRRnk2QRS/nxxGwN4zwz+pkOQ3ABVxNeUzkl/iU9TVQYCm36ECr9mN44d6Fk1Ky6/NQg0f1eZ9TUxpecsZzLJlmndAIhRKZpPnFa5cBXsn7CiQMlnT8kAwyTA3/FSZ6y62wqx3MGJsVBMQeadPK99+z2Ox63j+x2e47HI61rcdbRtR0RmMKcopzZ4jtH4SdzquIrB+wamxoNNClDVrJsNePX+ybPg4yDPJ1XsFcfkWwghryY5YZycK/+eCxyOvNWpf2evcvqgM8yRLUIlUHqcwaTGobpyYkmitFopUFCxrKuyevDSgPslDUkvEjDMDB7zzAchYw7cXYEL/xE93cfJKNnOqSuv1Mep5h4o9TpEHyg7VPpvoV5lnUQA1ibuhKnhjtd17JYLFitlqzWS1zTcDwOHA8HHj584M133zMc9hx2jwyHPW3T0q0cGMc0zcx+wjmLj56msVywlowckzR8cnKRAtzBKe8Igq+i0jh4xuHIbrfDNS0eg0mE2oeDNIdoo6XBSub8bscwjvzD3/0tv/7lL1ivN/zkxz9ls9nw5Y9/xBc//hHTNPP23TuOw8ByuWS5XNF1HdfX1/SLBTHC9dUVi0XPz37yFbe3N8zjyDAcGYeB3/3uGz58+MCbN2/51S9+xW634+tvvuHtu7ccjgced7sk9yZm72msY9kLhno8HBgOB4wx/P3f/T2H/Y6//Df/Hf/Nn/yY12/v+E9/80s+3InjcBgFQ336yUu++OwFn758ybLraJumcPKFwHGYOA4jMYqzRxzITereVhoEZflW2V16Hnk9ENXeShu09uWe2D7GEEKR0yrTbEpL1K6vAXLmuu61c/uxdtSIPg/J4VQ77lMH9Bih7VOZeirL8xVaPLNv63/PREQlE8sz2uQUDMEIHy8RQglsyr4qz1Aym84dLQkn5aDYmeGoJ0y4MfjA8TinjtYO24qzfZ5npkmc7iFVSPjZFxqIfE6RVRk5/x6cg+JKo3Q5RZbpt42RSolF2guzD5m7VDCmYsBTvsv634/5B/T9jCmMjmdZZwbECZ7I5p11BBdO7H2bMKcGXRaLBe7a4ghCcm4OGDvJE0WLsMMocD5XSzEjvLJYYh5Sxak+BobocRGm1IDiYz1zI7pm4+m6rj9Tr6FqSci/yYEVAj5Owonq59QgQmycJljG4JkINJhTigPUoi7Zfj8URf1gZ5MCc81SiYp68iAX8CA3YfK/ZOPEnH6+EhAKDpRDRF+vr5+PWqDESExcJiEK6XOukc3n0NQ4UUDaXUxNSkPR+cIno+mfNimoqrY2L9oyHhIlmgSYJHYSZ5KH1HuCn5JzZ07EfK4qzcoPVSlxAQxNG+k7Q98axmHkw92Ox+0gnmc1TNN4zV6cC84pZ1WJAtYCW4jgqmy0DF6reaHcluDf0yVrTOFVUqABPCk7MiQyNr0HeUowqTSomlslJZWMC7mGczZ3ItRP20COcGq5VJgC4yyROl2WfvbMw5iNWXFQlXWoEd6mEe+2dVKTOs8zmAljpWuC01QjXQXRMnsBLeM4Mhz2zFObO1mNhyPTMArBpY+pxbjJJS46ktaK81DAuBNngTXSmtYKLNQ0z74Rzp3GgTOJJNcoz4mARpO6G8mzOIwRYOZ9wI8jIU48bg/Ms+fx4Y7heCB4x+MjDMOR199/l7g7Srr5PEbCPDFNcs7joSOpBLyfuL+/l3RY5+gaiVC07YL1xSUhGmYfGI4DF1dX3N3dsT/sef/uHeMkBPqHfSpLmiQr57DfcTB7wPLu3XtmP/P27XseHrcM48jt7SWzDzSN4XDY0y86nj+74fmza64uL3DaBjmNsThFxcPvmpa263E2EPHJINeNf2r8k81/PV9ZzxGEsBuTicDVmFCnRN4FRr8b0W5cedWnl1WO1MdHFWk825PlKtnpQySnwhoj+9Go4ykbPGcn5RTcqCyIev+x3I+1qWuksRgrBNSHg+dwqIxaFfex6AF9swAGeZj63DqE+W9Uz5RnwkTsUVoCD0Oqg3eGOEXmuZDenjiaqK5bzVI9kLXhmy3tEwedhUgCZpbD8cB2+0jT9PR9+6SsTB169bWfZjidzaXRtVCnPdfASTNFNaIpPIU+2ESsKZmTufOYKXK/ELK2WNtJP5VQJslAKflVgan3XC+YrPtiKmVLDlTIHGZzhCmNf5uB8slkoOurGPcFwOSJsiVCm+Gayu2o9xvydInalx07+cA4e8DSxxRNL1A365Sy/X8oXPovc8Qz3Xu+3wtXVVoTpsiYPKLx/HzhZI0UfJPOWQFSGfe6DFcdSHVwTjkE9Z6S/sUSqDmNSqp/Nils6Tj15Cg3ke+LKKVJ4siouFdsyoJAnFsxZUTFoEaYwnGT5Ekgtz4PskadsSlgYjgeRz6892y34vnSrnkhjdk0zSfGSoypS1uk7M8YpbtsxmonkqYyOp6Wfug9k+ZXswWoyJKLSVaGy1onkfCUKURUQ0zHyp3gpWzcGRC+pOQMcDbtk5ixiJ2FB8mHwDhNwsuTlI33E9N4JEY1QH3ad3Ju7aarRpoxhjmVfRXnZTJsscmQnSFGpnHAWmnKsnt8xDWOw3FgnCYO+x3TMDBPE0TN7LASpAwQjcU2Ha6xNF0vHXqNY559ohKQ+2kMNIn3s3GJ78yQXG4xZxcQAmEaZazb1Om2aYgmBe6miTlGDocj796/4zgc2e8eiWFmngYeHj4wjkf6pdwTBqZZGovP08Qh7pmmEWMt3fGYZLTD+5kPd3f4EFLzDHF49MsFl/FadHeUxjdXN1fc3d+x3+95/0Ew1G63Z384SFbqlHiLsEQvFYffffeaGOHLH/2MaRZe1dvbSw7H5/R3jojnYrPi9uaaF89vuUhZsJEUqI+aRSF7OmOoxiJBp6Qbja6rSuZk3J9e022Shlw5h2oZhH4+642YMcjpjkj6OWF4kxyK+TyVc8oY1Qvne7AQH2vAhRRcEXqPxC1nQIN82sji5HbyM4sdSqyCjPVGTp91rdB0xGhoGkcM0h1uHCob2dhsw544kvTXSrCrLjgJ3if9qDhI53M8CoZqibTGMs8RlCw8NWNR++lMcKX7+IimzGOtc62k/CW3WZuahBgZjgMYOBz27I+7lHHYYbB5bZDlU5GhH8tee3or9WsVijr7qBFRirOWkDv9Cjl5zp7KgxwLUMhONAkySuZ8yOMs5njBzmBy5l01WyJn0uIXb4GsB5906RyRgB3kbtJP11t13qhzVNbFqQOq4HxjRQYmyryUIGJyJnMIAW+k5HGcPDho2wZjQoXlS6D4fIn/oeM/m7MpprKlkwWugiJKdNMgncc0VTumwnt1VAGYEBSZpwVuNLk8X6tePPWAS8RCO114QEvbUglK8lBrSpwo3UJy5TWrKoENa6QVoCpHZxucbWiSs8Eb7XSRshlyurM80zAd2R/3zPOMMS7XfXdNx+D3zPNBSL2nmdlHrGtw9KmjlUyeZE3JfftpIviZRdNxfbGkay0Pj488PN6x3UeOR0+YTQLbgRA9w1FqxZ1rcK7JoKKCm4CUz2UhlJ6jjPk56KUojTwfNgENec3ZJtd316TIMXmTGq33VBmfl6fRHZPGX9jvnbW5fM6lCJkYTDr3pEiZZZo9xhge957d4cBxHPHpacbjkTiFSkiIcDBRvtt1ks7dNEIET0wOqmlmmjzjOKV2s+D6XoRGkvbBe4wbiZRsAtJzT8PI/nGLnwMmRJoE9oyTUryA/LiuYXW1EnL3YWAYjjTOslq0tE1D66BzQsjbNUJqKhOSoi/BE2wg+olhvyV4ITHsFwvaboF1C4wRB+R8HNnudnz73WsOxyPv339g+3iHNYbd1mGt4f27t/ziF//AZnPBH/3sT7i4uOQ4jYzjABg+vH+HNY6uX7BYrnBNw+F4oF8sWK9XXF9d0zQNq9UFFzfP+fxLw1/85b8BIsfDjmk8ClBKEb/vXr3m3dv3bB93fPO7VxwOBz68f8fd3Qe8n/nbv/slxsKPfvwz/vW/+Su6fsGf/Pwr/vjnP+Fv//YXHA8HVqsFf/5nP+dHX37K1cWaNpWfaAmJD0K+N3to+yWby2uCH5jHx6RgTI52nrd2Fb1SosuKMvLeMaro6yxNmz+ta052XXFcqOUi5UHCB0a0+Vy6jtIvspqjptMmmGxCEp2J9DTanHU4zzPHYUjOCINpGsI8E71wSNhC013+F1V+Vo5+dQhU99M2hraztC1s1tIi9e3bkek4oo5virQQuZsUt632cEKIAu5S5sCpXJLX5lTyO02e3X4kxMBhDjSHRJRuLa61+P3E4ZiIyNM+Udllqp+TsVVlEhV2pvl2p9xHMqeWEGam48g8z7x795blume9vuTTl9IgIBueJqu1fJxHWgtcMNnhWQxcLS+3laNJHkqMSzXkmpz1OXUe6zzTPONmkYB2kgw044wAQNfgmiXOjUDD5L2kRyfDsYSgU/aFOhH0tSD6ziAORwM0MeKJBCOp+ZHIMYCdA72VIIkr1kJ6FpMBqjgQDU5FtLF5z2k5lnBkyc1ZZ7FY+d4sznyDjImPBh/EONyPM5gjqz7Qdy2tibSxwaF6xWSj6imy/q936BpQQtb0YvmA0QztmKO8OUsxdQpSJ2z91RyVT79nrh2oHG1JlqXvhGTMlMyqkIwN7eYo+KppHG3Tyt5KQbjs9IkxlY6qY0N0dtM0uKYVg92a1L2JalNU6wFZ89opNgRfSnVaK00BRk/wRylj9ZHgkwPGOaRzpDxbiFIeBhGTDPjG9qw3C7rG8uH9I9++OjBMluAlg8OYxIczz7ncWkVz5kbKIkOEfi4t4cSkOZlrxUvnEfmaxFfLXGzKAosRaVV+IioMbWvzOTR4kFuXq/wgyXsLztiEu6T0X6+heLxtW3zwHIYjwzwRkAzB3X7HcTgSjeDKadyze/DFyEpzJZjZScTflWz6CBwPR2KM9Ise75fSZc0KB07wgXkepZwmBsbhwDQP+DBjrOM4iLNp2B/YPj7g5xlnLV23IIbIcRgBWKxW9MslTevoNyua1hHnicNxom0cq16aI/SNpW9E9zidE1JGYQzY9BPnkfG4ow0zi8WSbrWm226lxCeODPst0zxy9+GOX/7qF+z3+4SLZo7HR373O8lef/fue7753W9Yrdd88eWPWa3XDIcd96NQNbz/8AHrGrqul4zTpmW/27Poe5brFZdXFzRNy+bqmmcvP0EoBiTLYr/bMQyCod69fcswDLz69nvevnnHdrvlm6+/5bA/8PbtW97bd0yz5d/9u/8oAbmXn/Pf/a//1xgHf/zzH/PZpy/4+tvv+M1vey4v1vzpH/+Mn371OX3XSVeuKNmOkw/McyAaB7alW65YhSuInhjnVFxmsTSiK85KSA0mO0JLlYkhnmTyJAwSUtc3o9UMp/umxk6i4C3OtZjUnTu7yJMRHxK1hjHk7pEGKfWULB6x49RGjDHxYwVxeo/zmPefbRpiyoLL91LsbnmORImghzYf1yoFzYDse8ty7TBG+M6IkQ/vJ8YhgvJo1hnOihWTjkxFK8VRF8klzdrkSpov+WSTCQ/QMAYettKkaHXhWKwtfhZEaKzY1OMYCu41lcPCmOzEVscShmy/qu1no01dqFusbSAFvCV4Hphnz93dPc2+5e37N6yuevpuxeXFM1zTJdtdnUmxkp36zPHEIfRDDmNO/42R1GTBSAODlJnRdh3GSjMpyRTXYIuMn3iuHca2GNsSZpNKlgvYM7HixIKMsgvQKH6SJukRaQ8lBXmHYMFEjj7SzJ7WGhrln9V1BWgrQVlXPvlbCvWDzWXTpHWRfDZJR1ukqYdQ0Mh820bw4pwcrvvjhOHIomvpXINxNjdHyj+YE3qCf+744c6mGjSeobQcbUmLM9v3taAA1OubvdhUp0wkghrZPXE0ZcOtMhr0v5VjI2ZBE/L9KNfUH3626jrpWRVA5deqQdVNrh54JfOT21BDy+T3lV8ndx0yFmN9+qwsMMnOkh8fZoKfIDoaB42DYfBM08gwaBmfpqNycg9Sy/v/Je6/emTZljRB7LMlXERk5pZH3XvOVVVd01XTMwDfBmCDIPhA8JeTQ8zLYLpnONMo0VVXHrFVZkaEuy/FBzNba3lknlunwa6ib+TOzMgIF0uYfaY+y3U82iw1Q1adey31sXuXzg11RjZq4txO8AGobU2bkdrAWB1DGWMFRoCta0YfwahAMy3riL2wVAVg/yScCSXp20IOHjWdVpyaCZHH2HQ3XPS+TM0EaFl7bNhIfzBeSymiZCfTz8+fMpNix8hkmlq2SABiCJU/x0I2fmdMQo1Ya7nb4eCQYqgOEgl4SzTOSKtfdu6pY6CAS6l4T2gpJYNC5cnQzKaSmX8hbBseHx84NXy9sDIigDsSsbJZloUBYdjYmZVaHXeJasxwBoVNCafzmfk0AIwDl43Os/ITeNwcDzCGkG4OyGnD5bJgGkes6wYqFs4OmKcHnB8XDAM7a2OMWLcFp+UBKXArzmVdYZzHy9sJ3o+4u7vBzWHG4Tjh7vYGL+5uME/jzqGg2QNZaqLVARxL42u7FuIdSxM/pwIe+f+JU7Z0zhh1DNVppup3qdH/0vZXO2gnW3cRKrkRKqWS+7bzt8+3jCl1siUUCGcK7TMjiirx7jae3FK9/v4PRBoRIgwDO4Wda460muFA/f09f2ZZzU1ulA4o6r3mNo8pSZBgS0iUBJQq54ly+oAbHsmY7g09Hp8dSKH+2UunuNRQrOIVgDYTIKzbisvlDO/GWmZWz6Hpbt247h1dz9yH3sy11qamT/ZffE7NANFSQ80G2YHFThdrJ6C6ZkQX0NW1S6ffi6oYaKSY6ppk7dUIPQsx8A2lwBWqs4x61xDd2nQTr+3+Hpqub3CDf6hZG6nL7IVOmcI7voco3Qg5iCPZJPouXRd4usb/pY+d47HTtbh6ljZvfKe8pvv9omsJ3e/773108zlw/txnFDux8zmj5C5T8595NsUHOwcvXX2Qrn/UdcilHHyvpt27otmuM1sztKifVblfcbYKkTwhwwopeIwJ5/OKmD2AQaLGbSxyyojEjTGAlv2tnZaajO52y7MOtF2eXocF27OpjKkGgGE+y6wwpcPIVZbV81A1OvX8fB7FTCobVRa0MqeCIh2hhfdGsFHKmTN4UhSMAcEVAdy+yjY9hhaYNcZBieV5DJNkiHcNQrJiWxlnYr4kIkLYNiyXC8gYLOuGECK2ba3E4FayMgs1jF1AIGu5Y6j3MM6iJGkhnnu5wNkjBpxJwLJcnPbolmbhzDnu5EnVgaalQDklhG3Dul5wenzA+XwWXcjO8HXj0kIm1obw3wQerZyRYkABMfUE8XuNNbXF+LZtSCXDDwOGIeNwPMI57rZ7c5xBBByPB86SulwYQy0r2FniMH86MIbyjK22dUPOCasQui9SKmmMxc0Ndwt8PJ9we3uD2xvmlLo5HoRTR3Rx1ioInW/OxrLOsTkThRJEhVTF/21zNMzeyfb+6DwmWWwfDqZo9l+T291mgMpD6vbFbgeqgYaywza9PUqETu8AUltZZWCSNaLPzvycqM/cMNSP649e//X3YCzbNd5whpW1nfYjfmJ9oWKQ/tG659oFCEuHfUsnKyEE3SHLPgdsKOxw07Hozq0ypx8zHetm5eHpdNb3KS1OOz/I1GBAAZh3dV1AxI5KquumZUlpZlrVFKLTngbv9vf59PX+vU1eG+KA5TUlQdNfTf+2XwT11EqFJmtKPyyln/t+HTbdryvZyGIsgnlS4cwmkyFBmqdrrLcp9Eq7J1ecdTVXbXzkngTgkSEgg6laSqsmSMnu/Aj7DFwd25+Gof6LnE28ZgyMUYcQ6kLVB9Jynr33URYLKVcBOuUnVBegGlWu3lOgkgwC7ENXIMqD3UpQqnIuEAO/peKhFOlIxhkACr6VBZ9/VoGqofFOoKGaRjuQux8fVEcJCAhb4OB9ytIWO4HKCuSImJjbh0GDtoBWh1RB3BakuGEdEtZlAjKnW1pycCbDUQJRhjWSOm0Z8ufCBnLPrq8Cuhk8Ml4AlJumFyB1HNVgkbnXWWw/6TA1snadjazP094JdZRwZhHqWqoOStl8JWds4syhpGtO0+nFYAJVhU2ZcDo/4vvvv8fHj5+wLRfEEGAH7vxBLBugm6u6M+XGUnWoNBCZY6kp2cYYLMsC5z2GcazGHQCEbcXj/QOqN5lIiHY5qgDlMiAmRywEuNHDjxP84DBMM7x3zN8UAmLOePfpHqYkfPbqDi+OL+EswRsIIXyLPBuyEiky1XC0xJ7wwQ+YDgchTA5IMSDWrwg/DLhzruluMFH6KpwJy/mMZZzghwHzy5coBdgCd1ckY9hZRIGJeY3B4/0D7j9+grUWx+MtxnHEOA44HA9MpD4oTwZgjMc4OXzzzS/w1Vc/x7Zt+Ou/+bdMDnp/j8eHB1wuZ/zx2z9i2zb8zX/738ENM5wfcZgnTPOIv/jNzzFPDoN3+PmXb3FzmGsGXS6cCRNSxrpFhMhGJwhCqKxCq0W7eBj24lqV3ZNtroK/WSkgdZDkJLIMIOX7EQSxU9LolWM73bNOnyLycadgO8VfshgwAhJTls5ABs6NYBGv8qwZ7IYgBI4CmvVyXRvVpmF0jRRuiwuOPFlHsC7B+YiUgKi0Kij1M1zaTJw1IdkUhdRw7OSRZll2Bm+MiTNCoxoqhPNjQHhY4L3D4SjZjxbwk+kRU5Xx/Xz20ohfLPyVG3EpSVfJii16QAEuMb3/dA8yGWGL+Pyzr+ClyxA70ds8dRi8yzbh+WJA9dz66gFxM6TrnAsQN6YA4BI6P3iYbBGroWeQU5AOUxyFrsagGO1GjVaiq7EBGobhCcoooOtMGJlbvWcrZcghsiFZvMHRGhRLcOAMTV1rYr5UuKIzsstA68ZDMzJUHxUAURyQZJiLhwnH5bO5YN0CG3JS1uOslSyvVqqooPxf81AnoT64QQPE1N4E1XWNK1NKRTo50DBWqZmZyqNSrt533Sr6+tgbamCHBIh5BrPodmo6WufKOVdLEHht94G2Jl0ZhmmHVpGtguVAzZhVkF9KwbYFMegThoHLpLZ1Y2JnMkhx77hJuWU2mcK5dssKLEtEchYAZzRTMtiEX9JacS4IAao68Yg40KPt3Huwe00B3iYXO+xtOwzcB/F2ziZ0OMjI6ixomWNybV2vqqWoM4p0PakU533Igbb+fS0zo6E+5ZA5nU744Ycf8Ph4YudHipI5YioW3n+2fcXKk9fWUQwbziUzNi0Zgx9gnYMfBhiytVxPyxdBhCSOvSyOEeP53jW7cZPW7DMVOM9dgMdxgvMOW07YthUlJXz8dA9ngM9evcDru1ecXZlSxdcozGuXQTBJSmhSBmzG4Bxu5hnnecI0z5wBtpxrAFH35DiOGAbP5UlbqM7Zh4cHGGMRQkDOGcPo4adRDLimH5cLZ0NtywJjDD7dj/j48QOsc7i9uannPxy5u653vgbOjXWYDha//PWv8PNvvsa2bvh3/+5vELaADx8+4tOnTwjbhof7T0g54y/+8q8QMzeIef36BQjA7e2In335GoP3ePPqRV0HOt7LuuGybFjWTWhHruQkAS19B1eGoIqSciWHqDpEdCUBRZrhRKQcJeDM8+6d44y5UqpxzyXGfDlDplZLlOpMVF0tTiKgOk9LSdAge+UlLL084n2Zcsa6buwQssKvWZJgLg3aEJiHjJ/bSHZ6H0Drt4nK6RACzqcNgwem2wJrAecyQGzz7BLsBR8lSTtOYr/snGnQQHkb/pxy5cXVbuUxiI2TCafThvMlwVqHcZy5RNITXJYEhidZ/h2O2k0woKYUY0uIQ9KK/rg6ZJxzSrj/9Anf/tHgxYvXeHH7Gt45KEWHrp1uOuuc1aX2LDanZ39vvMz7v9kCgAq8cxiHAc5argIoBSmGGnDPCYhR8RvVz9frKSWOAShDSmK7x5Y9XwnpC6rjvHc6SUEdli0jx4jZWUzGANa0kVGsRj2GUgz3/GHIaDIU1OnPVDSMF40hOG+4eZtQkcRUcFmZniXkBMqc/cSJIDIOajPnH9WIu+O/rIxOjWpZR+ygAXZPSh1w7F5UYaWcANZoe81mcVjJylDPGoCds4l3FeHJuHaTW9BKN9SJU0BA5nI7BnV8306dTUbb/prmjScFQZ1AVUfTtdzViSdiQJuBEIUXgBLXBAsYKyUihowtsENCyaZr5kHJiNsFOW7YVoNtYyIyZ4h5oAiwJsoYirPJqONNQQyPm7aSrdE0nSBUO6IawdXlVBoxmhpsdbyrdajGc2cMkW4V4RParT+NGIhQkvVhOxBchJwui2NwN7ZqCBJJ2R6nFpI1oEg4n8/48P49Hh4fsW0rYgzwzqOmo+4AnxI885EkhR6gyjPB6YWNZNJai2meYJ1FKRZkEiwR4pYRViXJbEScO8DNoRrOuiLAGwsvQMIP7HRKIQDbiritOD08IG4rbg7yHmthSUnBm8DS+8yFcRREGDtrmdh7OiCmDDrdI6WIGEPN/hqGAcPguykteLi/x7qs2MYV67JgXRZM84wXdy+Qc8HpcuHU6piwbRs7RWW+lGjPSMq79x5+YGeTcw4v7m5xOMyYpwmvX77EOAz47O0NjocDlHsGBFzOFyyXC87nM37729/hfL7g5Zs3sH6CdR7TPOB4GPHLb77E11+97QBJm8+cszjv+CvELM4miSglU22Cqjh0oRWF8k3R7YT4TszxKpKCFpYNMh4AYMlJ5UEH0ju5Ufdjs2GeyJW6LxW0XX2WtJuRlDaQGGZhKyjOooxDt4dQ31P1VaeMqcjmpPb81w8eA0eXrWM5Yy1gbYR1krIdlNSzpYEXiTSnyGnU8hsUqTSjtBkWWhIYxMEZlUsgA5dzwONlwTQzcT08j7MfJCITUYm621hdaQxqM1dDFkUyKjud8GRiBLw+Pj5iC2dY47CFM6bsYcwk6cudLipAz9/UXtfxkfVWVGe2N6qjaX//nUYlAyKWTYNnzrg4MG+HNYQYNiRjkPMmTmJJ6q5BANVv+zXe32s1FEr7XM3i7XQGiI1WlMJGQ0wwGVinIjwzQhauCw8q000HnHcTtB8H0hzD9t4kvCREnGFnS4HTbltpw5YTnLVcag2DrOXY3bPVbm3/mofqM1nvVp5NHWlA40tpZXSQKDSfQOeC/67GmGACycqoTlvsA3+90+P60NElqKOE14lyYfbSUR0ezdnEXJCtBGaPDasRdjXmVaZdRZbVMONPZzin3eECctrqNXRM2UhUXQ7hPCzYNod1jcLpwvdbiGAjO72NlWc1fcS8MyhtK0/QZ8nAkz3dFpbsb1B1Nu31dieXdhizrY1SpCzoGQyvRrHuHyW25TUS63UqOXx+iknq3pNxBzGHyocPH3C5cEfdGDO8v+KM6R9V8WMpz2AoLjHZwiYZWxmb95immUuOTUaSMs28BeTThc9rXXU02IoLeU7YkSjExQRYZ+E8Z//4YUBcVyThkgyXEygnvDjOmIaBqTBiYHoNxVGZnU1kkuwXDvYOzmEeR8zjhGGcECIbXNz9j9eGOpuOxwNnNq3sWDqfzzg9PsJ5jxgjcskYxhnjNKMUYF2DdADkwF4urRxVg5h6bsZQHvPNDOccbm9f4DAfMU8TXr18iWHw+OLFLW5vDnW9lgKcHh9xejxjuVzw7bffYV03fPblV0jZwJHFy5cHTKPHF5+/lLI3wda6JmWvbluQtRCqbbJf6oQnGRcVOjRboufYUUdy6+bd2TzSAbHaHL19UL0p7T6qcza3tdlnA1a9WaQrV9FkAV7OvHdEn6W+9onYsbkxAb2zA3MQSaYboXQyzlSdrWTlHHiU83W8eKr7lNweM3dVHwbAOk4e4PeKcV0dFIwrUTjTTEvKgS7rR/ZoczZJUFD2ZhbSb+XpW87cyXecBng/sh3sCK5wdmUK+YmAu84cqn8tvAx0RLQjbg1uXAvKzM6zx/sHABEoBunrgK6Ov50YTcb0+qoPbOyPpzrt2u5VcVaKBFRyAZxgKGMQh4HHyxiUFBFjQtgSjInQRIdKo1Pltu6IzulT2h6o81ha5hx3eO30H+keLthi4IYYAxCnUkuA+2uoj6UFkZ7KaX0/4zO2mWMEMnLlZyzqbDISABVfBK+1CGctYsowJsNDHMGgWi74XJbZjx0/2dlUOQFqZ5ju8TuFmQU5tw3fup7toohq7BR0rig9dILQZqPsIGj7iehJiUl1NklaMTtrRVgZ4YgwrV6XnSuoBg/QhK/e4z6tud4iVPkYcfpIDIoXLBLcYDAOHilZDItHThklR4TIaZraHSWXzF7UDCYKK0LqtmUQEtxk4J1FSAVWs3xqeZg8K5VKBKkRmD7KeD12DTw2B5oKT1UMROjSaxsBZ6dyqrEEAafohYNEFXoky2L6+m5Q62cB221SOU3Rn3MdG91gMSWs2yqtS4VtpCRRXqwgOCrRAO9OeVbFhLoSa/tvoArrdV2ltbhaBrZmNNUSD/3q16M1mKcDyBKGeebonrOIOaOEyErKOVBOQq63jySSnJ8BvUHtAkYEpFIjHyUn5MwRQ+a94MjbujKADNuGEAITE8IxIBbnLgTk6nMulwumeca2ruxISEpMzg6eUsDEjHvrFCkxyWsuDOysszDUMqdKBgbvEGLEskoGjmeHUQxBOlMQpsMBxnnMhxnD4OE8XzPVCL5tvpHuKLngcr7gdF5xOV+4RDHHjpvkecHI+7o3pVDXX/1bEc3azC2o06l/D8lYPDWqnrt2vy9LfXPnWtKl2RR3tyf0sso9Vbdd6fcMSalnAUG7oXB2TFEvDowQxzYgWIGSbHAlDE0JSLEgRgXeFsYUbEEyLIR0EgXKhwsyBRU39iNY9bXuu6IYEVbSvEHiIjYE64zMPUnWDlDIwg2cgYEipSi5ZU7tnRyinyTbsW5z6pR3Qwz89HWcOWM2pYywcQbZcrlgGAaMg4UdBih4ruSp3byqUdHOd6X1ioKhBoz+3MGyRkgfpXOntRY5S4DDMudOSkzirw7h9kxtHddz8hNUPdeW8P45RDpDG9GrvMwKmsANAgwKvDU1tal/4lxqiOQZ/d+covXadd1XuF1lY40MloJIBSlzRDqmDENshLdt3YGKf0VnUyXfJtQMQs3AbjJe9s/VvOQOHLZDA2qqb6/XU6nXfc651BsQvRRiY6zTY9p1U7LS2QnTyKGdNIfg/dTK23uH6e7qV7dCxBm52k5dZY8Sdztv4PxYrxVDrBiEqEVco5BPs4EWa0ZMCKnyWHhvkYkzlhSw696v90zUsJM6v4h+7PbbeLe7uno+iDzY7+ln97dgKGP2CQbXCPnpfLZ1xPtDMwRQ5Tn/zjKorqVSUDKXGLKTKcocg0vAElMKmMq5VbrnbBi53U8DeRoD145/TAPBGGoAMQ9KkfHSfSzjbaRCInNtB5z3ODgHEGEYxvpsMSUgRJYl1gCwaBQRTY5oyYxiv2wLbDFVhpSs2SDaOIEdWtY67nS8rjWQGWOCcg0CLfMSaMHLdV2wXC6scQ3fU86pYijnHeuqfG3YS2aoOC0KMdZBsYgbZ/YBwOA9SmJuUeUNJRDPYckoxmA6HGCHAeM01GqCktkZUXG9rDcVHwVAihmn0xmfPj7ifFlr8KeUXHHg83KzGcK9sa3ySTObalYHUOdJuSerTCbNaEv1pbbOKyh7uv70uuiQFbGu6DFZX9bZ1rIkUpDoJsUQch5jjdg2EhgrmTOaSIMDvGcqVkR7nIqpknR8S9rdltfPOFqkVLBF9gH2fgz+KAE1+1udGmUHojrEyMhUACElwIEwZIOYgJCkOiQzkb1y0dqBmDQ6SW6G3j+usKxiXM2or3OgGV/XnEqKd6RChZgfd102bOuKbVuwhQHOEIxxdX5k1Jtvoc9Ar3pPn7hbhb1ee0bIVpzV4S0j3Knc6Z6TQ4y1sPrd2S55o40DUEBPulLLLck8lW5N9kkdKpZZjBQOToCz+CDzx/gFHNgxmqnXYbDSxpZx258BjXqtuqZlnEyjDLGafUipUv6wsyk96byqP/9Xdzat6yK3R9xO2xBMsZVrh1tFFpQkFM3UuHxy5pT+xiskUEocQZSFWLdw2p8u7gI2ctW5Vbl8yMCQEk83Xib14imBab8oURJyyUye6BnUTOMgETMFfwRkC7XarOVoA2Xd8fx6Padc3/sBw8DtMsmwIRdjRKaE4/EWr1+/4udPGdacYJYVKTHvyIvbGdM0VmM8poS0GYRM2LaM+4cV45BxGGccDwNAhGmITHpstcsIwdoC6wqc57aSvIHcDiB67hwAAQAASURBVATsDNAOAGo5XQ9WGXBCvJ5C8peokhPXhVdKXeS1K50xteynOvmKcnyw3SG2Xr2ksSwAOf2SFbF65XNOiFFb+vL6yXKDBcCyrLi/f8C6riiS2hDDxmtNoq9KBs/j0TIQtNWzOjJK5raquqbUE70sF+ZnsgY3t7cYpwnOjXCDr+9X7iYZYFbcpWAaJ7z+8nP4cUAmg2IsUkq4LAtyTnCW4OYDYC2sH1FS4vvNBTBFyD1ZGGaj960OuSg8CwkhLljXM3JJOBxmAFxG9+nTR3y6f8DDwz3WbYMxBD9wWrZ2oDNkkGLGtm74+P494rohFybZ5+inQSEDZz2midehrqWQomQ75coHpciayOD9MMI5dhhN8wxnHW5v74SbQLLGrMU0jpjGAdZavPzsLZcETgOmiQ2NWDi1c7AGo9sLfj1iTPj2T9/ju+/eY0sFSyyc1bUFhJAkMqROZAHb6ME71b1SgQvpbGqGBztt1AYmw0TIWUol+UMStazmdL+72tpXYACU1t2uf2e1+vs9rFFy3asG1jlRVK1ELeUCkxKcIZ5noEahjNGIH5CED0O7WNUMGDEulUNJDbdtNTifCDlyN8dXb0Ysa8YSNsSc2LHUG8xC4musGkKiGNXIgz5zaXunMNhPibtF+cLZriEPvE9LxuP9BqKCm9cH3NwOyKlgPQWkmBE2zsRiMSEccepoIsm0EX4nk9nI0czaFk1VZU6dnikIa8ByCZgnLj3ZthWvXxuM44HXYOIoojFlJ0f0u2Ymavljf/Qgs18sakQCexBFhkvIiAq89xVIxXFAiizzjLGI08JZAH7AQuygJ2QGUkR1Laux2567B5n6XfLTcmLDxhpY71jvFg/DSh2nJWIhwM4eo3X1s4BGlFPT1ypP+v1xtQdKbqUwGUb4xwwsGXhjMHsPImBNidchMpZtQ4iEo5/atit5dy//Wse2saGovFrGGCFZFQeHNVW37kBk4ShjCAG9gQXRuWxD10LYKh9653oz+LrOZ/K94iro2tJyW9kfMjc58nWstbXBButBhxQjuPkr7yNrLIySw3aOqybv2mGMwTTPiDnA14xbyZiBwXyY8fLlATEGrJdFMCb4TMbgcJzgB491WXE6nTj4dEkiqwLOpxUpZNzcWsyHEWYruMSIXJg+oc8QYoeWFwyFVvMPXTvM/6M8eP0aqs/VW7nygqlZri274okhRCzLCYRCRUrnOWNLz65zpF2TATVwFe82LFxKqY6RRtCMKuOilIbllLAsCx4eHpiEXfB2CBExXmCNYMo+eGlKXbdPnU3s3CORfTFsCJsEnNaNS8XuXmCeD7x/DctC57zosTZ0iQwyZUzThLtXL2GF3DznjJgzTucFxmxAydzIJRqkheU3MXwSaokWRCBZXzAWVngdQ2BepT7DZlRcvq748OE97h8emKdy2zDPE2f8gaTEjcdtXVecT2e8f/ceKWUcb26whQBjLIyUJTpnMU3sMFOSzij7O+eMsEnHaSIUMeD98FHW5YDDgTPGb29ucTxws5ZhGmGswTSNGCfGdndv38BZvpZ3LCc0QOOdweBa8x5CI8Rf1g2//92f8Ic/fAdyFmYYUbI2zwmsN0iDurpe0Ij6a2BPHeylXqdmdhR1jvJcecdB96RdKXNm/tMk5aB1fZm2F+Qlaw1KceIMU97WpkI00JZTqVkdKYmjoK5n6Q7HfewRYkY2nL1PmeWD90N9FhTAFGI8j4JEQMkkFCLNQdMaMfCHYmTdZKkgbhbOAOPo8PK1RQgZnz5FhMAOBlOxn2YualZYNUZRhUK3+/rsqBA4C9gXAz9zR8eMwOs9E06PK4wJOLyYcLgdkULGWWz4kji42PBAw2tAa7QBAxRpEsANqrgpQI3LCnYlApzggPWyYV0uGPyIh4cPABLm+RXbFoAktbD4tban1lGnpNyLaXpqJ0o7B1g/Mv3PpHaoMfDWIVPGOAxgR5NBTEwTMk7sANqmSw2yNBu4CG9l8xGojEbVEdgf1Q7nbtmpFJAzGEePAuZriom5m07bhi0Bt8OIgYl7paKlZUnVoCOuuAKxdwvpuIrPu2I9Kx1anLXwbgCBsK1MwWAssGzM5Tc4j3HwUN67ei//tcvoalquTKspZjeITz2ZnSFYnovK9Z9VAwTV+Os3bP2caunug31MrgKaDiypwytJ7wRQr6y7bi9oAmoH6sUhtltI9Vc1mIy0gVVlzKAsFwYE3rlKPFg3onhTvbMYBw8Ct0lVQwQg5MwGkzW8oJw3cMFWfow+i0YwK3splRSyc7bp0KljqYcGdQ6ubFyNTGqZElUJ3zZX6c6Fq3O2FxQatrP3kYiayUNoTPqlb8NMtfuKlgwVY2p0OKWEEEIlpCR5X0oRBha5GFDWcdXSzTZ/zfnUAUe5P117nFaYYBJHUF1KMCbt3l8/c/X4xlqM04RxnhDECVAgJGwxwVgn3eqs8JZx4iTvGQaQyimh3E3aFpeJ5vmqHDHh6K5GgUthIKV8TTFGJpDOGUXWbDVACtdTb+uG1a3Y1hVh2+T+pCxMyg5ArVY8F1aOqaDeQxXGRPUZrbVYtwBjLWIuWEOE8w6HEGCtRTpySGcYgBt/4DJC71pqfuKMNUOEoehIN4BPYDl1OS94eHhkXg/D3UdKzjtFXfdx2afodstVf9sBF00dLyhSm00i5Eu9h7oGuhPpVUv7RU/Ie/Tphevfdb/q/y3rT2QsCaAm2oORKjulKwx7jqocVSxDWdZulV37cSjiBNL0d3amF0QLkCMMo0Vi7C7yR4FSOwyp4dzKUGpESa9S2vMyqAAgzdbVKeQ8g/WYgLiGOh7G8eeMZdCnXWqgQKkK7Q6oycz12Q1GU6V306T6jD+TM6ephxCxLguWwTMhLJU6vKUDFNdHEeeQzqHeG+mE9LNff21gr1+z1P2s+qyShosBncWBTmLUgVpWkc6vyt9+bT7REbtnaIYDLBvTheS7zCmXDpcq7/rnV8cSFWAXGFQUhKfqvn623pcCStbzXuREJgKy4ewWaZ+ujlRd1KoD/jUdTqrDAFQg2h+77KRednRj3cDzc+uk6eSds6nsx//6aBiCurWkRqgA+kLIlGsU+5pUNRN14lj2VuewusYIO/0PKYtyrpZP8Z9kbxPBOXZCqfOKMxX4PrzzGP3AhNKVPwpNVqUMlzKIHLznjGJjifuomPbcLaupRc9VkNW1I1gV3b7bzWNVR21M28A0HNbkL3VzQ22s1AOgGKXbF4qX9nsGT/6ur/XyCGAdzTK4GS2akcM+S9UDrG8BwOZcDbN2zSaTroOaVOV9M4oQ+dyaKc7cTADIVsyu2TZ6+wYFhTgTaDpwVviyrhxYLJyJnSVr1loLmKTbQJ5ZMdSVjVK4KxOT7qdqNGmTHhDEQcTcmNu2SfOXKBUIRROCeU3K2GbBP9u2YV1WDkSPAcZmeBjWkbAVQ0EbIxWDKHtOM3pygZCKE2LMMDbAuQ0x8jpPsWBbI6x3GA8csEuFO5B6IljPTlPdE6Uw6S/Ayzprqaw4Qpkvix0il/MF9/cPGOaJM8ogmU2ZHU2A6lQNnqBbcc0+Kt3fFbcwb29BH/TVNZupGa6lZJQE9BmHLfjR1rzKoyy1p/tKmWvJo2ujXacP3Cj/JgfK1XEk1zFd5pXuaWqcO8/J2CYbmvMpJ3Z2sQOYZc0wss1nLfNfGtkP9QmK7jOglO6ZVB7tHrW3+/TuABQDY6nSxxQoFxE/j7WEkiWrksVr1SeQddiM4/at6Q50NrWugval7ytgbJAzNy7athVbWDGMUQetrpWK367GdOdwuzr2gWP91umbiqF0rPrscMVMuem3nd1+Pbd7m+LPHZ2EbJ/TwDEMZxURyb7U7nC8TrXjYNF/V36Rguvr92NGu6kobVHLX1Xnsa+CQEhRaG8oC6URVWojtQd0Wfy47bI/frKzqS18cTahtG4epdVg18h6zhz1FEWmxOAVyHfOBM2S6UFo86Ry5BLUSpV6rh89Y7NT2sLWsoJSCrLLoMTXDiEiELBFbkkapMsDQLiZ32Aa75AiAxLrDEwBNA2gbi60skBnLbx1mAaP4zwghYgSEkou2LYFH6Sd+72QH3OWjgIGK18ORtpZez8hTxxNkibION4e8NlnLzE+LnhYmI/GeykRAxub3NIQoJLlHmXTF4126hirwFVPaGkbUmVoB1hySlWgaoaAUVArlmMBqvOHKqFgJ2DEqqjZKCpB9YK6EaDruHNQqoAAO2hyLkiZ608XIbMkWaOODCtSEjaWwoYhiSHESpG7i6SUMQwDppGjVJCaepSuNTWa8NL1eTlfELaAYZiQE7gjyHzAMAxyTQBEXCI5DBhmdjQN04S0bdiSOBVFkEGcBBkE+BGUC84h4dt3HzEPHp+/fYHBT9KxQ8WKfJGF+tZDjNjWBbkk+GlCAjB6h9ESBksYvYxxClguFzgXhNTPoJQE55nYL8QN62oQwla5CqKAO+12x46JruRIvvnBYhhsXZUV7MpMh7CCIuGhZLkHh8uRWySfzyeM9yMGP+Dh8QTvPXfkk0jsODBB+zQ4TIODsYaJRy1zVQ3W4XK64Ps//Ql/+qffYjgeMb96hYKCGBeEbQFKFPvBdGuwfect3QGEavzpo/Y96vbiXQFRlevq5KjQq1vjsueI2HHKzlC90JWDvT93zhCKLuz4gEQYkzIBQkkAweUDxI7HnDbpGKTcSJ1MKNoyuAj/lGY25SpDAHY0PT4UrAtwfDHgePCAyXj92mDbJPOr3jePVZaIClCQhFukH8OdvSaGq3bDKSUjlYRUMnLh9rPrsmK9LIgxYblssCfO8hxmi3Em0Kk9n8oXVdJExIGAqjNVX3BWg7UOAj2eAZCc7lwsl/P88MMPOJ9PmKcb3N6+5P1YxFnM1i7LTa11753SpQDiSGPdRWLPirTdeezEMOlXnRhnltiots7Byjw6x1H0nAkpsi6IwqOyxYiYI4gKXFbtQdjzIVZkgraiJQtJyr7XDJScufm1NPcgssBgmCD4wq1TLz5hdIYbGJiO90CWQMWC4vAEUCObLRVdCHYzO+tT4bnl9uDcRMGrEW4MBmMQYsEZTDx8WjcYeoQzBtPgxWFRMdO/ylFFJTUMocCau1bxuKtTisuPOp6sok5KRjwcUEndZ1o30woqoRiKdhiKo9DPRX1RMRR/VjPUUR0NMWfkdQUAnJcLQNzy/vGe28XTNy8xTW+Qi35esENp09wWGu9HZx2885jGETfHGTllOOElW5YL3r9n3sHHxzPOlw3WOjglsM4EZAMqlnctWTg3IGdukmANv/flyxt8/sUB9w8bHtcHziBooICNDsog8Bc6HVZNhNIPMGR/NDnXH41zSwSNIqqKgfa4gt9XyTC6r4w+Zk2FsdTuet06rju2dIT+gtFQipTORKwbE0Bf1g05FVg4FOJGIwDTOfCyUudHAUkkvQBwEhxl/DMzN9O2STBLy/t5XIx0wdTMk9PpHtu2tA62hjFFAWe5W8mkmoYRzg9wg4cbPMgaZDAHJpGBcWIDgx0zOQOrlHl/Oi/49t1HjIPDi7sjpsmzXMmcmaYYt0jXyiRt70PkrHhrmYpgcBajI2wWGByvtxwjlguTe7tBsjGKVBPAciBiXTGME2KMoCRclwAsGVipOmgZim09eOeYqgCc2dQwFK/TdbuwDssRl+UE5xzGC2OoyzLj4ZF5Mx8fzuxskkoQK5lP3ETGYho9rDEYJs9UHiEirxHnxzPeffsDPn73PY4vX2A8zqiBrFQAW2AqX28BwI4x8Ut2gb0mt/jWeQ03uhGVY20ZEynvW4/F1FmFihsqPhLMY0SZM+43O52lGt4QB3OLZMVV51fV0dSEs35evXEksqAUxLDUUkfWQ2JfaRl/1m6OmvVR2nfBWjEC9w8Zy1rgxwHzcYAbMhIIYctPnHeMoVp3aMVmexu/KVPFGDEGyWYSCoRcsG3cuTFsEY+PF6ZrWQy2lT8zzsA4GWxLxnrpMop0TorMO2UYI05KZBBZydjtOJu6W3v6AmFdN/zw/fe4nE+gLz2m6QAC4zOAmA5B8Alp5UjFCv3zNydSC8aV3YWLbjHRSxroAhkO4pu8C9J7P4DIICwZJicgE0IMWMOKlFjOgYrAMno6F7KIqfJkilPIEGCF7ysl5BLhjMHoGbu47DGQRc4Bl8C0KN4mOJ9g1G9AxLqCDYEOE6JWVzzJui2cuZhSRipsb2al3iHCQIRRMaqzcDDsEEyRCcOXFY442WBwro53Kyn+88dPdzbthlDKpuR3dig1UmfeBGmX6qWplgI79o4lOYca06WUSo7oHEnWUAPq1hjpukIwkDKFzjBUAKZeSgZznN2kLV5zKYgpIuWMy/mCDx8+ggrhy89HvH554GwMZ2C9ESdVA/o6BupFd8bCVWeTR7BAKAU5JoRtwYePXDb38PAg7R4NCNwdhUicTcSRN0PsbCrwcFYEHBFubg747POXcOMZ7+7PuCxRnE3NC25JyxFTJ9xlZLKWH/DBclFmRCa3B0zqCiMxNgmAJVuVowpkbkkr56yKQ6JDpQPY0NIZ4uv1fCXiCCOgCuMWlZX1ZzibK4m3N+aMNafa1lVNJk8WmQgBQBIElpNmQ3H2BQphQ4AxCaMfMI0jA/ugdfvgkg1wVlI/KiUXLOcLSikYp8Cgy3k4Z5kPAoQswtF4h2GeMMwjO5vGEVtKyHlFRt4JZN6vBPgBAOEcIr579wmHacCrFzegI0eX0RHFQsBIIc79iDFw2+Bi4McRhQjD4NnR5Aij58gFUsB6LkjecRmBdIxx3sFYQowb1q2wsykmADLOMaIgS/SJOOOJDPzgMY0zjJWyCu/A2VjMsxQko0q5tXLJWJcFBQbeO8zrAdZxCqf3A5zzODye4JxnQQh2Go/TLB00HKbRwTmLw+HIRJpuwM044vR4xg/ffotvf/uPuH37Fv5mBhlCjCtCWGEos1G6U375SlHo/t7/XApq+e6PHSS8EOUqk+LpOcV84RAjquejf28tb6UKPooxUD9oi84w4FJHMBREi3GeCzubgIKYNqSQkHKUlsx6/sZzcW2kpKzAhuVASgUPDxnWAuNxwDAOcL6AyCPFUskH+cb4HnOSNV6YkyJX53cHLAuqswCFxFkkTQM0+lwcyG54vAfe/8CE1MuyoZw4Hf144zEMDqVExA2ShSSOt6J8CNxWlp1OpYIQzjx1XAIEw/sN7e86f0YyWWOMePfDD3gYB7x+/Rk+21aQsTB2rJGpIlljrvgr59EzYICAlubzBJ11iwzQTESIDuRnKrBioHrnuTQ2FCTpXBcDR9xDDIglgQpzG5FcV0MXex3XHIcgKYO2BrkQKDDIpgI40bXeezhyOF0KPj1KlDyws8kbwzpVwFFVAWp0Nfujyn51OO2dTcwJlyElYMawswmsB72xKARcSsZjUWcT6+Bp8HCDgSP3PNHzv+CxdzZpdrAYKPKddU9zDETdA1nLY9uez7kKAh00KLl4vSaIu0Za1d2oGMpZ11Q5+mgpZ7iqkacyTb/HnJHWlZ0LYUFMEafHMz788AnWeLx+9Uu8eVNEXorTBQAV1mGKHRWvEUGcTVwyfTzMLCMi85ss6wXnywNijHg8XbCuGwZPMMMAgmH5WYjpHSTYZO0A5x2sG2GNh3UeL18c8dWXL+CHC759twA51SxzzZowRh16GdryRIf4aaZiyw5sJPZNymu3Y51jtmv2DmdA1nNH/Kt4VY2JaqTotQoBJTJw62GULIdcmtNRUXEzu7lkK6WMdQu4LCt3HEulYmkrj711DqqUWIAzfmMnfAhcOu+9xzxNgqE4czpTrraeIXUkcTADOeH8GAAAk5TSOacZzAYgzzLYOUzHGxyONyBLsIOpz8M8IlQNGDWEYwaWBMQEfDwtmN59wGEecbiZMLuJHSGxMs3xShRsiZwQU0CMG3JO1dnkrcFggcFx0A6WkFPE5bIwLiGdZ25gAzIIW8CyrBinrZLWr9vKdlIGkHkXGGcFQw2YpklKSkcp4zQgoxiKCdJjYidWLuyEJWIKk+lwZPl7GjEMjKEebs5MyF64cYe1BvM8cRnfwPaKcxbHO8ZQWANwWnF+POP9tz/gw3c/AMbgxRefMUbMuZVsVgyla7btkZyV+DzX7qco6iNo9pzKurrH5H+tRtmXBneiTta1mtiGOCOkZu5KZtrOiQUAxsIAyJSA2Fd88B4zkmHXa95CSiGh188IISNuAblwSVxvG9bPyThkyZTTwBd39iOEWHD/kOA84dUbg9vjiCFxVlqMuXkM0LABd+blqoGU0r6zJ4CaXEBUK3JS5sz+XFCdTas4m86nBZ8+PCCEKM4m7uw6H3zlVgqhyPX4MRlDqV7IKMVw4FJkoTZ66DNXd90l+hkphG0NePf99zg9jjjevMCrN6/BTj3uopxB3AmXCLaYpwG4uh74/+sqBb1wL7WbH4rtW4iOKqVlgpcCOD8AZOBMgimxOpu2uCKngFIS28ck9iman0Qt6GsMxVCLQNYgSSfkggRjMoaBM9J94YYmlw24Xy5IOWEcEnxKcGQwwu6s9H6N8BM3ud2NFDSzLmXOVlJCECs2lgdhlNMYa+EI2KJ0x8sZl2WFyQneO1jJpMyldcL9546f7Gxqi+faV9iBwgof9opZU9QIVMs9NFuhoGU2GWFjJxBgeQANtYW791rKdZK2YpaUYAFKpbQuCCjcCjYnTiMN4pWOUvu9LAuWywIidkxV3o4OANfIkwD93Rc0WiidQTzgYYXyhLN8QgiyUTrPJJgoLUgHn77UkOQ6RjI7nKaZ25attJsftHuRwdoZj/3BQL5LJXyO4Gz3AVTnUntjA2F13svzJ6Hd7e7vp4LOtnCgPiYtCSro15M6uxpw1lRH5vtq5VsSeqn3qLddQQ84nZOJxXmdqldbN5BeuztDtx5z7cKSEoMsYzhCS8JzoHxRIQSAWvth3gMOxnAaqyEAxcIPI4yxyMsZp4W7vp2WFdNlqLw3Ou5ZQGkuBUZS02MIIMsgomR2yKi3fpQIXEpcokkoTCpOnG0SI5N7bzGgEINgEgA4Goshs1LJUpKqUTdrLad/FuZlSFLuYYi5JphjgdeitUY6MUnZoOGxyyVLq2Umn+WOLENXoc8Klp2BnILrLDtsXYgI6YQ1ZSynE8LpApNVwPN64pTlxIaE7dekrKvntgAB1/tsP//9qtDlW7pXntl3uqbqa+gcPfuf274quyYIXErTyIabk7i7LxIS/ZSQlQS+tH3UnP3d3V7Ji16GlyfPwob/sgQ83F9QCrBtuZUXVEdNkxM58SsMlNQZR/U7PwVBW12og1wjiLlw2YS29bXGwFtJfQ8J2baunsYShsEi5e65Kn9EGyfdR3wTBOVS6j0fT9cFVV6nGBKImNfjspzh7IBhcjWbo8ic/ph8vdZnbU08fS91/9XP9bJU7qsYNmJ0PEssKFE4MAJnthVxJOh91TV0pcep/t85nbq/kXy2ZsxoMMhoK3vumBlyrtBLn6Evs9L716yJGoAo7foFXeaOHJVbqKrqNr+KMyDGiAYpUi7QttX/qs6m7vsOw5RSx6bKlPqcYlAZrmHmKH4j52aOniyglWBskQyihjFqx9duXxORGC5dNmMX7Msik3nt8r4KQTobpSyR/YwQA1KOWKRzlXOMm7x3sM62ddx9V2wjT1/XAQS0e+c4G2NgPBMCk8iqrGThjXrPMSaYjTsHqW2r68sIn52ztmLOvnS3zg21rzovKNUY6WejzzqtcvuZTbtbWqIX1MFaunWKzpHYjMceJ5VdbI4zXwl9KZDuooaVBOd0+kjbx/c3Rob5GpV3suSCoiTQu2fZY7Rcs+pQy/MZOxu44hiH1be35+iGAwTN3uNS1zSk+kzOOVjn4TzzOIGYu6q3AWrJo21Y3TrHRmLh7PfH0wUpZ5yXDcM08t4rqoPVsSfOXCKJ/EtzE2uZS8hxVlClvKAijg0+SxZ9xk48LkcMMcGlBJDBMIzsFPKe91hGdQwCLJuskoiDZJ/J3Ag3Vqzd8FCbpdRSTzKIiTlx/TjCCrfTNHGGU0pMCg7STJeAkhxyitxh2XCjonR/QvrhE/OibRtGb2EMIabIxexVf7blwd2+r6ZXFWtb4f0yfXJw1tRT3pc9FpJVWK/bYQt5b1VnV5/T/WBUWYEdU33ujcqkhqXkszlLyTnV7HG9Zr36lX1Q7xV9MsXTd2jQcLkwhsqlYF1iDY7T1WBpVgrLZw3y82LW3U9VwKoN1QXssnIllionnSEue88FaUtaiyB2J3EAvdInAF2ESKb5ChnSnhew/u1q3kmwFuPGCCLCKuWxhqzwQanO67HPbogFZl75BK4wURU2UPt7f65eH1d7siaqACUXxC3UMtqUouDX0q2pDoETJEH16T7Y7RX57A6/EHNhcZdUpebh4F6U5juDQQtq6xMpjpITUZHmCvXRFfO2YJRiL81s0mwvInbDW9KySCurQpq+WOlCfmU//HPHT89s6mq1i7Lli1BRJ88u8kMN7Ax+qIOhxiNHMoxkGkWeuMplZOCtF6ARuPtI0fTEslNy59NZSP0SYpb3iWDW7helCGG3ePSCksjJ/eXInmrvR3zzs4L5cMAwTZwqaqoKbxNE0i4XVDv8GJIsjWmEAeFmuoGzHlvYsGwLEwcKuWA1aAg4XzhS1wxAjVhySt80jZgnj2maMM8jhtPKY95li+l9WDHeeS2zA+F6V2l5QgU2wJNufjzNTbCTvrHumObIqql83Sj1+qETAailfJKizrK7b2vNh/KeRCEIb/fUDIiSud21NRZ+GDDOMwBCyieElAAn7UoreOu6YFCRYniOrqWUYJ3D4XDEPPkKOHIuNaOndy5q56VSCi7nM6yxGIcB3lqM8xG3t7fwfoCfJrhhAFmD+/t7nhsh0jPEbXsBoOTEXx4YpxkA8OEPv8Of3n3C6Njx8vC44Pb2gFcv72AM1fsLkZ2nRAbL5QJjHKbjLW5vZ+RhxPFwwHyYASr4LL5ECBseTyvOlw1kuHscMnC5POLh/AlkHLac4fyA1ymDxgnjOOL29gUGP7KzSZTXsjJ/QAgb1uWMnBIez4+I0vJY94b1HsY6OOcwH2aOBo4z/DBiXVe8//gBMSUMw4xhnHE8HvHFl1/hcDhwCmrJWJcN3377A86XBaAMogxjLOZphnce2x/+hOVv/xE5bLiUFQcAQwFKYYd2SgEhLBy2vSJ/b76AUuvNnzX26enrpVtfLVNTJHwHjNp32eP7JV8VTZ/RoYpOnWF6cSadZiOzdJwBfEop30oFuQS5Z4NpEFmdS226kPt9XPeofq+7GZql2G/oVJh74LtvH/Cnb9/J+PDfrHEwxgvgb2ShdRxyr6TU+a5twvfjIncjWZMFj+cV5yUgbhEH7zASIaSM+BBgU0F86WF9wTAxj0sMBQ+fIsJWgJSgLeKzjK3yY1jJILXWSZvj6koBruQfB0nY2DufF9jV4N279zgc/4hpPuDNW4thmMSQs209UDtHbzT1Dqf+tRaxJF2AdXCMgKhMLEcLcZMIjvh6TIUdc8v9hniOCI8LlvtPOH98j207SySSATRZCQUJ8aYaT93tXk0IryV2frMhZsXwG6ScNXqPaRhhyCCWhId1xeQc5sHBkmXdqkDSCkCiFpnOAqhJuuxxhh2T1OcCQIwFKw54292pOgicMZiniR1MIWCJETCELTLe4MYk5rkn/Bc9CI0TqdedlVZAHKS8fnhvjMMoYyTlIOKUN8Yip4QYmHxcG1WQYUwAAOu6SRaKXonJyrVL2Pl8lmxDxRUZW1iRJRCzraHOBwc3eM8UgDkGiZiHJADzxPw6Ny9ucTjM0hm3PTjbxsqXI/LM8DwYcFn04XiAJYsXd3cY/ID7h0/4+PE9E4CfF4QQ2fkg93N6PONijBhVLAPZCjG1xOswD6yjnXBvyKgTablbc5I2PxhLnuYIV3yzd9j3e7g3rlS/oDRHbUq50yGCP8Wg7Z1XOyyteqVwcIk/zw6n3ijtDRo9n+pqMSHr3wHGUYMfkFPGOE1M0r4FLIGbfCjpb9MV3HCFZH0ulwVkSDJeOBNonma4I3eb3QRzr+vGtBSGYNy+dDOGgNPjY21W4v2AwRgcDkcM44jpcMBwmBFjwHLmLLoUc81CHfzATk3LJVI5JhgYxBBw+fQe7377J8zTgGEascaMeRxxc5hBxPZDTlz6t8UAWzK2beWs6wIcjgfJnp4xzwOIEt7GW6bd2DLWwE77dWVceTmfcTox/nw4XxBh8NkXHi9fv4UfBhzmA5xTfKmNZ1bEmLBuGy6XC2JKOD1cEGOomaLqVCPDGVC3t3fSzIKN4mXb8PHTA1LOuHnxEi9fvsI8z/ji888wTSO2LWJbOSPq2+++w/l8hnOcxUJEGIyFJYPLP/wTHv+X/wMFBcM3n+PtmxegyeN04VLZFAOMGLBsWkiL9JzQlwMSpPkFUAPsdcV3EQ41gp8EwK6dBegxfMMSzdnU2ZxqhCc9V1dOb9QRAng37NahVoEQ9lndmpUG59gmlUynilu6/VZyv7d73IdatUNA7YS5rXzNx9MnxN9vohfUiWprFr06mIDW1EX9fi3hgce9jmeH6QCuOlE5c37csK0ZSMBx9MiWUCJw+bQhzw63dx7eATh4OGMQY8HpMXHDFbX5ZNzTbq4gVUfPlNHpQMhhVLakgvtPJzhn8eLdBxyPt/DDiJvjS6E0IICYDLQvO2WYzBnqioueOiexs/MVxO3xlEhG6czstJJF+JNiTPgUPuL84RGXjw9Yz49YlxOINkBKjr0VnQwJCqjczaUWYe+eX+encBdGS6yTDLjAwTrR6wUY3IgtWYQEPC4ZoyPMk+UyPFmvuu5bdji1UtacAWPq2KTMCTcZzSmolWKWOHBrwN0LLRFgHIKfkUpGyhGnLSEhY54zjxGo395/9vgvy2wqDGV3HWrk/2cFhdxIbSOrziZxGBjb2nX3jgRjpIMYtUwQVdx9qV2MnMoaArOlc1euLF7fXB08uXMeZCHJK0CboAIgFXC2hZFSHic1vP0otNRNoJFINicEc8dYspjnGaMfsawWRThY6jh0EinGVEnx6r2oE6kuBFtTsqszqTPKmle+U+Rq3HXA5nnD4cfnvGVb9O/tDdPeOOU06QadsUc//XnFQ8sE6pqhQbv3FjFy+653agDuM8oYUDrvEbZQQdmPrf/mZOOsmxAjzLbBC1h0zoES13ArqXyfdaL3yoSEHAEuJovHm8v5Bu/hhwHOexjHUb4QuF7fDaN06mmlDTmxMgARjBC0ZTI4LQHRRTycF3hr4YYBL1TZFNT9wGmtXJ4UA3fycNaiyD7iGn2PeRrhLGHbuGUujxUDpZQjQgwwtrAz1mRkYpJJN4w43Nxing5Sn81Cy5wXbCEACztRSy7SQjnIXmZjyYMFja1Zeg7DOGAcR07xFaOHwCWJfhhwOMw43hyBnJgnAiwsuQSWnQbGGJQMOBtw/uEDHv7xt0BO8K+PcIcBFqp4NaKTxG7oCQz365yNhrZ4n6blPrOgu3P0f+6V396p06/zP3OU/XlVRqrTS02I9ub9ebUNL8s9VEWo99M7v/q76SPretu7+wCPTi7AsgZclgu4BIWEqHWAs2JMxIRrvbAHkyyzjERx1KBqf29yJZeCsCXu1JMzE10WBrwlZZSY655whqQxQ4G1BclkmPy0BfxOb6nS3rlZOgNSH5xYmuaSkSLrm3VdcL6cACO8JMLFVKrO2D//tXPp+p6unVDtoP6OUJeqrA3NuNIueABQQkYOCXHbELeVZRYgCa3tOWsUUI1odCffPQHqcyn/BpHwBtI+u4mjgwlb4kYXGpgiUKPCkHnudVWdkysjRMusCWhk1UQ1Ilv3bUGVsTCG5XNpKeQmE+xVs4z/fx57J4O+iLrW1GmjnUPZ2eQqJxBFBuDMO+YqllJ51hoHNOzE7egDcxCGUHVJKVLunBPWZcVFysY1Gs78NlyqYj13Y5ViZ2RwdskweCmnbqtIf6pZV+p86pz4VigJvHM4Ho6YpgkxbjidBqSUObO7GhwctgohSgBI5QWg/GO1y5zTsdJrlXZf1H3vjVsVstVIeTpf13PXr2F1EukOotKCsk/0z48Y273DCXX++us3A6p/Bbv90mG23aprWeFaMqat7VVvdjdST17lcYqgLFyR2wbvmW+JuUZRCWX54xnlyrFL8nzahS3VigTObNKsJitdylpmB+8D7eioPJLGWm4KMnAZ82MGO31Swumy4rBwV7hDYfmTU6m2gpLvc/Z0RIHyfmU4b+EsB5OnaYC1hFQ27hxdimCYsrtH5pUDjPUY5wOmccTt3QuMw4iYMmLi91l/xrYFwFywboG5SFPGtkVY27q2Wcf2koevGfPGslM5ikyLKQmVwYhpnnA8HjBPE1YX4CwHtJNwR8VIQlZO2MD8hafv3+HTP/0Oxhp89uUrzNOAYA2W6pxPwhfWcLTiN6BhE9YBur8aVtFJpyc/t5117Wi63gu6DXYOle5a18fu/aXp1JoVttuDaQ/RSgtGsROCqrCogbGr/fHjWEpe6/Q508Nyh+XLehYKFc7qYWcMm+dJMZQ8ZRMFbbzZHmq4IWvWo9xyltcYo3N2EwoHZIozCLkgrsxtjAKQATt6BinRN4qL827c6rMqLqJ9ZlMdkKupaZlPBXFj22ldVizLglIIaU6w5do9QXgON/3ZoN2TMzzzUyf3yRA3P4NgqALJbNoQN20QEEEm1woJXcgkMn+3nv8ZfKF+gz4zzxCTuDvJsDKZOTJDyswX2pQVY1a9ttyLYqNep+hUVJ2gOpck2CLl56oaVVJbxVBZZKOUYuZSahDjeRvp6fGTnU2qjY0ocXVu8M+aUtqEkLEGRtocVnAiu4QABCXnjhHLsuy8yfwhfvu2bexEKJnL37pIeZKoSW05TjJRzoGMgx8IR9mwzjEZnhHHhDEGwzRKBxQLZz3GYcLf/Lf/PX7xi1/j9WdvQM4g5iCGQwNFZEiiO5BJUiJI8UKjYF1WlJgRUpBJ74gaxS1NRPADp+nqfuUFyELOUBEenoIPHz7ij38seDitMMZImZGvrelLabW0mbREQrcaNYfeHjLJt72gJDTDFrt3Z6AwuFUnRS9IO1t2t2wgwqkCTFyfd/+Bul81q6wKV82iY+1ljcXggFcvX2ELEfef7nE5r6DLBSGl2nmDuvI+jpIr+M4gIbmMMYKshV8u8G7AMIy7Fs+aHs1ryUEfSxVsjBw58sO2S11XY7k9837sCOKEMQ45Z2zLhUvywsaefxBOa4axEdleQOYjR9tGJq4kIsnEAJIQhI8x1Kj24AeM4wQO+ByQosfgPG6OM2LKuKwRMWWUu5cYhhmH4x1++Zd/g5sXr/GrX/0Gf/EX/wbDMOBwuIF3XvYZr+NNyAe3bcPlwplN63JGChtOj49498MPCGHD6XzC+eEThnFkAlJrcbqc2XufC6yzOA4eP/vZF/jNr3+DYRxwc3cUY4UzHMla3L18AbIOl8sJp9MDG0N5QSBO9bbjCGsIr3/2MxzfvMCZgE+fPiCkhMv5hJwiEhWkxKnD/Xrv5/LPHQ387MFGM3KaEdOvgfZ5tA0mL/SfAzqF1ylBiFxVhQ6ClAOIcaC8srowi2ZPNcBkACYgdA6U+LN7A6fddS1hLRrp07WLSgJJBPg8oRQrazoCyDA0wNqRT+Vy5WXYl33oc/P9qsItAId3du8U8FCYiygXQiqEYjYkWzAIF4zNwHpOiBmg2WE6cETTeYOctdRCHFrEMthCDHOJqvthgHWuDve1PNtNVdGIEnA6nfDd99/ixbbi9eu3cIMF0SQ8eiKfIVT+dUr3WUz6+5MIHbW8tfp/Kbs1xrJEIqcGKN4ChjnmtmVFWDeksCLFDQkZWbJ2o0SqTSkwAravo4NVeeh6lQzjvQEhuKDwlwFh8APIGGyBdfeWgVOICCVjNAaDRr2pnqYDQAbqQNOH1sYQGQBk/Vlj4Y2FLVqoD1UZsCAMxITCiSwiWeRCWLeAHBPLRvevl9lka6txbVbRrfs6/63MS9P5AQ4GKM9ZJ1gAMFffKhhKD3Xa5sLt2Ld1E2dSrntav7aVjWVrDd8jAc5P9fs43TCB6MDkwtY5uIGdTNM8MYGz8xj9hGk64N/+u7/G17/6GvPNjAJ2BmV1EFCu+EnxlGbBWsmiidJRdVkWlMwcm5pBXeWSsI0bQxgHBycltDpGlAFbuDBpWc6gEvDxU8Q4nfH4GDEMHiAP51l25SJd0rRpsRpwsijZSSTsSRUvNbyae0c2cUA2q04B8JTpb28A1DDdlXGtx1MjS7/0bJ1zuPucIRL02paNYmgCJBA14NXrV1jWn+Px4aFiGTYs4u6zzMGn48FBDA40ZTi3gYj3vbGWHZGlcKkxOBOUOSBROVf5mZjbLoYN67rADyNiDDDRwYvuIWMwDhOsTQi0IWwbUISflVC5YnJKWC+nuh+mww2GwSNmi/OaUcqGkh9hDWHULLdammrk2RdYN2GcHIgKBu/gnQXBw9wckXLCNEUcQkIICY+nlTsejp/h5Wdf4O7uJf763/2f8PL1G/zsZz/H1998A++5OsFZznTVTN2wBTa0140zDFPCcrkgbBse7u/x7bd/4qYO24q4sIPLON6DQToMO+/x5vVLDMOA3/zia/z6l7+A8x7jNLFt4xymaYb3HncfXwBkEOOGEFbe/1vkBiXjiLtvfg7rHe5+9hWOX3yGT5cLHu8/ssMlnWHzxtkcrnHAKTUKWSuwnR3izTez1xVFBTQAzRpUniYANcHg6UEVv7e93mvA5mwwyulruEmGOt2rQ0yzPbLyy2oWYnPwEbXyvtbkqoij08DAoiB1xnyp9wE0MvzW5ZCDwuqgsI7HK5exWvmG1CbgpgZss10/J9BDKZYEzYHG2KXTayR7TygzvHfImcmhaTMoUiKZcwZSxnIJyChwlrNUQfy95AIyuZbhl8LOYe7a2JI0qk0q46A6+dlDgFZJBafHE959/z2ON7e4ub0DhgFdHTOPLA8INJCndmobe9SEFnXi1yAUydh190OVxkHHsmWWWUss82NCOPP+MynB5Sw0gYy4uERRMpmeAEdFae0ZegzVpohTcfR/zdoePfM4pxKwpQKihPO2IVkDB8DLWioobOeKviKRmVrerYk2TAwudyTrxUoTNkNNp5AQ8VsAIxGSISxECAWIuWCRZlqjGTBY/yOTuz/+izKbOBop/EsiSPRvu6MUqZ32KOBSJOXpyCJImESOgcT5cqke9xAjG83LVgkHtQROIyBFQAcrddkMcj3nHI5Hbpk+uAHTzJGtm+MthmHEPB9wc3sH5x1ub28wThOGYcRhPmIcRvzqN3+BL778Cna0MI4QEju6iBrfFHUPb0hbTfPvMWdQLliXBckEzmqi5mRS4rySNepmGPjIxmCAnYWwsTBZc4l4/+49nDkjZQNjPKaJiZk55c7UMeFb42uS7d06HXjaTxVQnR/8vtLvyg7T8IZuKZ38Wq7nKfXzeqb9+lGArX/ZORd3NyavWR7n2kGkNAJxCEkvkcGbV28xjDN+mN/h3YePKMYgnk6I28abl+yTZ9d1tIUNFAOMMQgpwlqL25s7jCNzJw2SobQsi3jdS80a6J8pBu7wNo7clUWkYDUU9w6HFrWHeJWtsYghYLucsK0LwrYKOTnhcc0IJWBNGSFsGL3Dl29fYHBcOqgZgiFG5HLBHEI1VLjb3ijklhElR9zesJd8XQPef3jAGiKm6YAXxeL151/hf/i//t/xxVff4PPPv8CXX/28tukVW52zWmWCCUxeuUr3xZI2lBTxhz/8Hv/bf/wPeHh4wP3pAR/vP3ImE7ht77YlxJgwTTNevX2Lw+GAb775Cv/9v/sraLSHOaM8yHnYYcCLxwvcMKK8K3h4eODykRSYuDQm2HHCOA74/Bff4PXXX+J333+Hf/z7v8OyLsB2AmKEoYKUDIp2RhRE9BOd808NcfzYBzsH69VrKGq/q4O2GTBQOat7ToxNlZdsYcnfK4VCkWwvdfwagFShSa1/TChSKmLIsVMaSj78fJaTyhR1NumzGzIgy50zqThY4ujuFi7IOcLQCGcnfm8qKEblhlpybSxrGWPHzXc14rzvc4YpgHdsusVCyHYBFSba95lbHy+niLIlTN7BeibR9YMTom7mCuOoDGdysGOP+TSGYcQwTDDkxTmkt7t3FnauZAatKHh8fMBlOyHEgJ9//Q3GeYS1vsqeInwHpcur7teSGqu7zIpuDHrPkkpYXTsyc3VoiQjkLZJhkvXtsmK7LIjbihRXZJeQxckSRC+ZzATjAGCb2+a52ahRLb1HlrESYS0AcoEFYRw8bLLczSRbUAIeQ4RLwN3oMDiFH1fX6oI3+twM6KRlNAFFMlyctfDGwRaCydQ4cVT8WotUCjbD/EYlA+saEIn3Ag3u6fX/hQ4NUij6rkYPemcTgbRMznB2aM4ZccmNCiBpl1/RYduGy+UkGCpUWoFt3Spu0qYoWi5XhxoGhgYQ2ZoRYZ3FfORGD4Ykxd46vHzxAtM0YpoPuL29g/MeN7e3GKcJ4zjj9uYWwzjiF7/8NT77/EtkZCQoJ2KpTvTmyOmz4GzNxIohIJuEy+UiAZS1OWQFC6jTgwxhnDym0Qv/ImdwmKxZXRmXywkxGLx/f2aHQvYYxyOG0cF7K0YTarYW+vtTWatOoc5O7o/WEEFlmf7cyu4BVEeoHqVz2/bGx1M9I6eX81RZUfbv3Rv2JHuzu2YdxyzOJm7y8ebtWxjv8eH9O3z89BEJGWndkDamYqhVAAB0kylH5rat2NaVM5BihnMON7e3uJuZEiANCYaYEiNs3MXQkgc5Ux3nJWeEbcNqLvDDiBACjHUVpxkyXHovnR5iYAqEKNxizrPDMYWCy+kRl9MjKAPz8RbeOWzZ4nGRMrnLAm8NXr+4wWEaYWCE2Jtx3OVywXyw8AM3UBkGj8E7DI5wHNmIXhN/LcuGQg/YQsSb2zeYb17j8y9+hv/L/+3/ga9+9jWOx1vc3t2KQwsVQxnbpA4VSKdQsXMkg+I//+d/wOn/fcbDwz1O50ecTo/YYmD1bgweT484nc94++YNfvmLr/Hq5Uv8N7/5Bf7qL36NlAvuzxeEmBhDWS4lfPnxAUROugGuzGO7bMghcPbVr38BPw54+fXPcfj8NU5/+iMefveP2LYVkwnwJnMDhjTCCMepOhe0o6DpMEx1c9Y1yE1+1LhQB+m+WU7+kfXf9qXKgus9pJiUq1R0z+4DOsYwjxsRV86UBBRSYvMEdfoDzSnvrGUdDcX9VhzepjqyKs9r7zxWm08DNKKXuHpHggkEGOsYi0l1jjMe3g1iIij9RxuJ3obQxi2M+XUQFEfw91y4G3s2BYMHACaoppWbC1WTJRYs54AtJdzcWEwzy1gvzYVMTkha1i68UVru6f0A7zycddy4qKB1KH9mNvtnQQEe7x+Qc8TLEPDFz37G2UPo/JK93UmlOpxUpvYFuhUuidOkd/hU6qnSzlv9Q8Q40RB3jSwg5JixPS5I5xUmJriSEUtBhFJ0cAUBZbbb1eHauW7QY7giazyjSP8vkdNFi8n5WbwhTJ6TZE5bwhqZMfe8FUQDHLyHd76NkeIH2QSsHxtfozYPSUX8A3JtaySLqrP7qXCgxoEwGsFQ4lxLKeOyBthIcJOD9X++aZIe/8UE4bsUPXQzJod2IjA2wArIuKwrQgwcaZPW8prSF2LEsi7IKVdHE3MryWYyhkuLSqkZPOqwIGNgpcWzHwYMknZ7c3NTs36Y3M/heLjBMIyYphk3t7filDpimAYMfsA8HbgN62HCMDqQ7wB3+ZHN0gEHxtjSVSQXbCUgUQIssdDLpaa4a1tYvT/vXPWusxDhhcotBj284w4Vx+OILRIiCCmTtHDvXDt1gakBTW2sqCOr1Xsu7Jjab8a9U0TfV70LpctIQPf3bhz4rW3sqmLRc3SmTNGX9DNFNyXt3qnlm1Q6OKUbw1AVePM8V8flsiwgSAoyaTmiq+trV6JZSnWExhgRtk288+pU1LTKplDaszceC82AsinC5twims/oTvUsQxwPKTGwXgRkG7IVqGawR5l5AoBlixh8EDJ0Xi8tiiJZDsQGzjCMiLEgR4uMIuUjhOy5G4z1GWY4wgxHvHr7BV6+fIW7Fy8wHw/wg5Pouywx7egn00WQVsXGSpQ8ImYgpYjTiTkMYkqAYcEcpYXytm3YtgA/DLg5Ms/VcZ4xeCblSykjZmpcDN7iMI9AKYjbAWG9ZbAbI0piBy8F7pQA7xEyE3YqIaYpebfmWDmpAwIVpOxXcp2pZ1/9MRVas9m0tPQaOKnuIZLSCtS1T+0k7VxFo8m6x/vbbCCqOR72F9J1wablc8+xf//TDC/af6L7kcQgvpYFpVr7vcJVY2U/Vvr9x7PKWkq0GuBFszCQpR23vDVlFGMEiGpJRgEGAgohxgpR6rORMfK1d8hr9F8wiNwnRO43RwsgQDMm6fi2YlsXODOieCH7pP3I91lN/Tg8/3sHpKvO6edjP+Pq5NbEUC0VIeQaOTUK1cSJczVDPzILpTodWyRRZ5fqWFApkgrOxoeSMxMp2JE25aITzP4i7XmoXy8cdEg5M6Fpd02j11ZFpfOme6poiR87BpkMWJxXRSOf/0pHAbikSMYvsZNRncmlmwVDDTssy8LBhFpupIZQkWwM7qAVQqyUASpXjHXwup6GQfaR8EEZC29nGGMxThNmdTbdHJjku5ZYWdzdchBmmmccb264a+jxiHHkTqs3xxv4YcQ4jbw3C3Y69lqEVHlc11SuzrScSs2YCTFVQ0AbpTjrxAlm5DULNg47468UJnUeBwzeYJ4dDgeHLVisiZBydze9TEPdQlXHle6P1AmEa9neBwqupr2eZ/+RHRLqoBhdv/HJuPHvpcqp7ixyrh/RT/1PMi+axT0MPL85c6lXWUN1KpgqJzUTInSNHiBzx5lQ7ODc6r5Ux6q1jcOujl0BQC0DN6XEZa8x1uyQlvVXJJPC1nPq/gkbZzzFEBC2gME6ODdUJ2/OBbFk7rJXgC1m+MiGIwQ3Z6ECyFloLyDdhv3AHYozgJJhS4FDwTCMuLkpiKng7vVbvHj9Jd589gXu7u5wPB4wzQO8lJOKXwGGK3t3mMNaJgbOKSOuC2LYsK0rzpczB+NzAll2dC3bCiLCFjgryhqDu5sbvHxxV7vNUcrwjoOViqFGb3FzmKQEPcMQOzeC98ghYggJ0xZhvUM2hEWC/ypP95l7VAPtOhe1AZICqt4JdLV+dcX2Of/7pXtdQvd09VcdqeuYFHupboA4gbjyZk9CXoFK57RRDNV0bp+1pM6mhteeyW7X+7iGj4r5nntWY2ANZwnmVLfkk+es50LZX7fDhXXs62dUJzcNzfsQjKut5fWcitC5FO7WKI46a/lmnDMoiRAjNxi6FpjmCkNBteqVwGq45ur+AQmMRCbjlr2MwcHYoTtJd0LR95rVWQRPo2JmPnspbdUB+7Ht7diGy/kXA+XGBIokyxhp5lSHt5RaQWCKYpmGaaFrC3t8db3O+umt+sewvitEsMnAJnaCMYZim7Aoft49kBrGXUBC/lp5GTvnLmOwH89AqxnzNXCiJdIkJXXq0Pvzx08vo5P7SCkhhcgp7TEI2WyuD7EsS9flhG9k3VYR4HlXf6qKV59Poye1I4kxmIehOo7GcYK1BqOQFjPh8BHWCYH2NME6h+PhwGSDg8c4jLDWYBon5oORCLYxpitDIwFVFi9e3mGcHW82VYjdOBa2YQQcSs2ytPiMIWJdNqQYcdouQAb86DHOTAo4zwdYa2sLamsMbqWuOueElNkhF51BihnTOOLu5hbT5PFvfvMKv/nVHT4+LPiH377HsiRYalEAI4Sgzll4bxtS6pZ4FfBFS+56SaAbpM12AxHN5aNdpvp22Lo2mjHZWvIqGbjAZ3mXXqvA9rurjrF4XsHZXYWtBfbyS0Qo5bIjELfW4ng84Ouff43LsuCf/umfcDqdOcp2OIrThXmCti3g3YdPFaAzT0FCLABRxCkDcduY8PJ4YK+9NXhxe2RHSQiIsZEvAyRcSQWXyxmPDx8R4gpyFn4cAQBZ0jVJWoz36y9ImvTlfMIPf/ojHu8/wRkv2VWcRZLJYAkcufXS8efhsuAwjXhxc4QxXE4R5N4ATm89HI94+eYzrJdHfIoLYgC8KXClYBgdDnefA9bj86//Ep9//Rc43Nzi57/4NY43NxLZY1BinalROeEt5GqnAkwO8INBjBl/enjE6f4B3/3hd/hf/+N/wMPjA6bDgPFwQEHBeVuRc8Hp/gGX0wXH4xH/9q/+El988QW+/uoLzAIMB83WI4NChIMnjD97w4Tk22tsy9fs3Lps3MkxBJSFydzff/qA379/h3efPmJbHhDDBm9KTZkvhYECyZ4HUDvX9SCjKUTZJ91WeRY07HZTb8J255RXWuaGKMjStRDtTmRIy3NTM6jlXrWMAUUz/lotXYFGFhmIL9sKQ4TJGcBeOWy7Q+8rZ42Staym5rQCIMYst6i2iBFYVi11ikjFMMAhW5U3J+WWq7ElNKPB9GKgey8/myWAnIOzBdFwJCnFiHQ5ISEgALhsCTlklG0DZQdnLF7cOSADn+4L1rVUMs9cMjtKvZc26QbGYRf12s1vnVyZA2oR0JIyYk64nC549/13WJcL3rwtGMcJyivHFhahZYNSHfM+6ipPrnAZVEmK9/X/giN4DemSIdajxlkkyiipYLswobqlDG9Zlhpwy+IgGYmjYb5BQ+qUkXWZ+8ASr4OYeOySlAoVMTRqi3twCv7RD5IdJg6VkhDygpAzBgCDkTRtaRLBpO2tRI/qoBOAhJAS1hiQLLcENwQ4GDgwYNbOtJUbMRf+QoE3wDw6Jr1eI1AyXOAuZj/q4/yvfOTIgYIYAwffSutklaTRQ8lZjMhcje+c2fGSUqqvtYhucw4TNe4zYy3G+cDZrePIHILO4TDP0nhEMZTH8cCOI3Y28d/n4wzvubPXOA61dN86J1nknNlgna+ZT4MfYI3D8XiQcheq2ZcMm3TvFeiSzoJhUg6Iibs6nk4X1qXntWYAOC8Z6jc33FhDYJm1BjfHifllQsAqMiiLbLw7HPDVm1eYZ49f/XrGV1+N+PBxw3/6+3tcLhlUEhsSRgjnxTmqvFdQ51Fue1LdkwWllfrroYAc2DnQ99plf6iuILVSqy3V5hid7iight+eEeMNWz8NPhBa97aUC1JgniHved5Kzvj511/jcr7gd7/7PR4fz3DW4cVLLtPS4NgWAj58+Ihti/WCJRds6yLOqISwcbbTNDOGMoYrDnLh5j0xRhkvBndBeB+d9zg/3CPFAD+O8BPLUOMcQAbDNIGs6k9+um1dcXp8wHpZ8PDhI5bzGe7FSxzvbjg4AYMtJoSSsRThPjErzluGd4R55EzdLQaEU8YwzhgGbgF/vH2B25efIYUF6/kTcorwBqAMHA4TPv/Zazg/4etf/xW++fW/wTwf8PkXX/JecgbOJubAkcwT0zmedFaNA+zgsK4b/unv/4g//PFb/N0//AP+09/+J1yWC16+foHjiyO2dcP3H75HTomJhcng5jDjr//Nb/CzL7/E8eYAGC7BuTWTrAG2BQ7DhMn/DEG6FofAMmU9L4gh8lrYItaw4fd/+iM+/tNvsSwnDM7CGw8LggXvDT+M3A1WuNl4vaJtdt3zIs+rjAIaJihtjaK0/CTq9GFdx1l5oQrUjjBKUFxYlypOUKeTkYuowyhKJzFQy0RMOUrVDfPRaMl/Czjx95ASlk1IvCW4VdCI+KsNWw38IpyizN0IKRFuwUcSA5PgjIUdbaXBiJH5SLOVjJnq3KDqEKk7W2wndiLZNia9PCh6XwYGBcNg4H1BcgSTIlKIsHSGLREJBZdzQF6Bu1vmeS3ZwiSDOBIeT4R1Y6wqeSMACMZbWO+ER9Aiw3TtKNEB5jaw+lkrVDcxJOR8gXceHz+8R4wBt3cF7m4Q7Ni4Vjlgs2/vQd16qRNUOstUgr9ZFqeiK8VQ9ZsMs4FjDJsz0hpQQoAzGYMHCnGGXikFWypALvDWYlIneF2l3SKqv0pJYynIHS+0ZgQyByXBW4ebo+NeVlbwZsmIiEi5YACQDc+97Zyiids+y9Jo5Ya5FK5oiZEx3sDlrhYEp7ZFbd4jA1EKUJirzRvCNHrOlo8bUAq83eCs+ym+pp/ubKqesZxrhC2sm3R+k8HLmbsxCFjStO8tcK1xTi0FXJUgCY8SkQIXC++4bbWxFn6cagvPm5sbeOdwOBxwOBw5jfvmFk4yWg6HAzug5lmcSgOmeWKgNAwSDWtAQp1b1YYwBuM0wDpCISD2A1ClD54KwlKA0sBhCAlxicipYEKB8Sw8nReFRptkOhEG7zEOHikTYhRhWQCDzJ1ZpJPKq5d3ePv2Bcha/OG7e273mxWQ8OaqhImar4sqpUSgUw2YqRdcI+y7WVYjpm7a0gRY6UWZgp3SW2LohWJ7J9V/bTipfQRtY+ipNUrIkTvavY/rtVMtCWByPU7r9+JU4vJGLlPUmnnmL7Kw9hE15VA3o0SZtVOPU6JTJbb2njdsDGIwNjDJTr8oHFsrAy6N6srY9w+rqbjGWiBwW98QAy7nE84PDzjMN5gOE/9dojUxFyHCJ5yWFblkKSVkwMbZUeqA43nyw4BpPqCUyFldKULRALkBZn4B6yd88bOv8cu//CuM04yXr15jGAewtkhixHA7eajDCUV4NwBPhMkSIoCSNoT1gtPjPd69+x4Pjye89W8xHmcptWKAs6wrLpczSsl4/eoVvvj8c9wej3CStcD8HXwHGUC2FtbOst4PgHSmWs7syE45I5WM5bLgh/MDHj9csGwLUgwoicupqCeXlQdpGSddx7VqWKM7+jXYUxHrtihtDes2ovZ672jarXlZQ9xlKO/+pqBJ17euA+UVaMZHqcZnO0G7X3YQRBhDSMUJ1wCwvyG9572hdF3atfu5EMhqqY+Oq9xPyTy+aA4ZfbAmVnrZs88q6u9HS8wKJCrM6hXJe5bh21Kj0kgyFuJANobgB860OZ93YhwaYa9Ruf76ZSe8gE7+6Nzy39p45FwQQ8TlcoaxhDshWWa+NCag3YFN7DmbdmMLqvenIF5F6tPV12ZdwanhTYtSgBTZEUNgok9LcrZCCNIVKYOgnn+6AnG6UAhUHY6c0I1aFtgbE0CRgJFFFrk8xISYgJCJM5tA0n5hn1e0c0TuFgNzI0TJbBItA3ZhEnPuaNfEIuXkBYAw1lgCvDGIOWPVucoZcRft/pc9ev6PKCUzMTS6gCCZCsuyIkQmKg7SiTd0DqictZsun1ezelsAwwk35cCOo8MN5gMbz3e3t/De43A44Hg8wjmP29u72ip9mjiz6XA4wHkJ0EyTcL1pRoly3FC33rgUieQe2vhDkT6AJg/1qE7swpldjJ+4S1gAd4Gd5gHOM+mzcijWDmjGYBhYTxMKcuIM2ySwaBw9bm4OOB4GvHp5xJs3E1I+w9lHXoEVv5W6nprzm2++ZiuAquGmW5DAhu5zcuu6dB4yDCr/9gPBA1b3fUGVedWY7c+H0mGKBreenLa/J30PsWNYDR520DIuHqcRNze37DwcOKNAHY3TNO32unKL9c+YEjf02MAyj5uBjCDygktNXc9Kyl0sP6M2CtFyO2ONBLQTBxnlupwdNciYpnrd5XLBtizYVuaoQwaTjNuu3EWcncZkLBs3SjiQw0HWLmfVMcesNubx44RxPiAYIK4noEh2OAHDOOHlq7cYDzf4+dff4Ne/+Qs454VIXOlGJMvcShMNyY7oZ8gRwZNBiQXr+REfP7zDhw/v8eHjB6zbipuXN3CDxxo2XJYLYoiYxwnWjxi8w5uXL/H52zcclJV1NLjWfbAA8NZg8K4anmqvMIaKWEPCZY04nc/Y/vh7fLq/R8mBKULIMq8fGm41EtQw2t1Xy+279cD4vFuFnTO2Lt+dEwa7faPnaXJDnKwqe3iF8jVqm/TW1Q3QvcljzzhFz9cCWboP9vKpCTAdKzbgW6Z1dbDhWl2pY42xZn2mKje6vWt4TEqlQ2n4Ts2kXf6Xeur6Qz1S1aZpEIaxVsN1Vh1YpSA55kQtwdRsphyFuy5nOFtQTMY4AI6AZRH/Q7WD5Vn7rCYyO9mk9/JE5snY1pJFyWgNG1OScDLJ1s2r2J7d2Kg845f3GErf0DB5aVOg4niXcAGRwXJfIBRJnNCgkDEF1rQuc6W0boGVbgSoX82kEBtd7qVREWA3ML1T0ZLB4LiEbXAO3nKHOqU0yyBkgqx+ahOuE9SNsd6JZkOjFDgZO+WIKjpu+hGx/Uky+gyxYzSiIAd2ADOG+jGOtf3xk51Nv/3tbwEwM36MiY29GPd1s0WJ1NjA8MMIgDAdjgAaESSRaZ0mnINXfpxxgh8GcShNNQI3aBbTPMFZh3Ec2ZlgLaZp5nOIc0l5aqzhMgtO/yU44RjhTBGqjoy9dhaPqXhN+7advXGnRkn1oKLt6todbR5AhXC4mXG8PQIo2FYmfz6fzoghwIoSP8wzYgoIQQCpAGHvmPxyGr18jRj8KhESU4E1qHX6qmmkT5DHXgA9Fax1BPodorsZTTCjgneCblYRUvoZmLb4NSKvm2h3UAVsJF2NWO2I19oUILMAyZSr0lTiZEMGhXi+Yoq1vAAgAUsjO/OmibuxzTOmea6AOITIGyeTCCXFxZxeHIvwPcQNXs5DxF2unLXcAUQy9tjQIazLgsvpETlFHO9eSOcnNoZUEFnDAt8SB0a3dcGnjx+xns+whtf0IJFo/QzUQDUOhYBlK0glwpgVoz/BWcmAQGbC2HUBiPDyzVscjkcslxNevn6JIBlU6+UCNx4wv/oSfjrgy5//DK9f34lTjuCcRJKEn81YgrlaTzpeBBa4l2XF3//tf8bf/t0/4Ld/+D2yOFitdzDeI8WCuLKwu727xcvbW3z5+ed4fXeLl8cDBu84pR1Nufb2iiVdTnxhQwaYPFKyWLaA9RKxhoAPHx/x3fcfsS0X3vOOIz6quXXbaGYQocvUa0/3jHJs53jyF+pLotghwnulj5y0/XRtiLQ0dHkNzfDQRJr6l9IUw44kU0XRlXOkoEjaq+kcVLoeTcsehCpult/chcTUsdrdK0gMpwztIOQHD7JqhDTQZ0ijbbyGuc0slxI8ITXegbcGkGr2j/zZGIL1DmQJ8A7ZeZiUMabIxMCxIK4JbjJ4+9ZjnkdQDnj8tGELhLgx8CTp/gOTK8nj09hgG15006gjqc9FMMgx4+H+EdsWcDy8wN3dSYyPQ3XS7ld1e3YA0j5ZHTB72Vl2o6inaOtUx0YNZgJQUkbaNqQQWBalBOMAZywIhM0kEdPUuHwUzNeH1Hlo5TAoBWSy8Fb0TkmqDRksmHh8MITkLAIBWx6Awo6n8xLhDWEQHV1BHpVuzXW6pz6vqTpQ6MBErlq5L1nbxNxRBYDXRh62YLMOiXi+L+v27Fz/Sxy//93vAaDrnFuq44izpNUAAuMnP2IYZ55Pce5Yyxlo3AZdsoycYzJgyfr23nMA7nCAtQ7jPGMcJ8ls4u/jOGIUMvxxnGrGkjqthmGAsaaen4hauYzONV0bEEUMgSxfpcGjbi/3Qaf6yZyRS+JruxHFFgwjd249HEYcbzj7+8E+MFlyiDVzZhgmTNMMQwYxihMjscPJWYth8BiHAePoMY4e3uuq0KBMqevnubbdxlCNRRA4Aw94BtP3z3NlENUi2qp80A1eh6HUCAYru5bBhqY+oPqxz3pAHdXefWrQnLcqUww4mGol2xfgdcgdCsUFbAycHzBNM1cNzDOmcRS+QL62ltahfya5UskJKRJQMi7nE2IMcM5jGCcAzIPknEUS+gz2FTB1gVs8lvMZJWestwvGdYV1jik1pHzaeo+SE7Zt4e/riseHe5SUcTgccRg5+NzKSHRvyXhkpiKIiZ23hthxaZw6nVJ1wn3+5VcYvcO2XnD69B4xbDhfVlyWFYebF/jqF3+Jw80tvvjyS9wcRwloi/Eta56Nx2Zz9PNIAEJIWLYFn+4f8Lf/8I/4X/7j/wcf7z/BjwPM4GAHj2K4JHacDhiGjK8+/xyfvXqNX3zzNeZpFDJ4XkPNZu0CuIpL5NqciWqB0SM5gxAXLMuGy3nB48MZ9/ePGDy3WjdkOfqeE7jhhWa3ZBClbnHXC4vcqlJ9pyP6O+ssqPYT7UnDazZKN4bVkaNlPOY5ZKaH7hclGFe52wjC2/tKGzO9q8KlQxrEMQQUa6QL6D7Qwu9v2VwGBjCqw1pgSR1LVruLEsH7QcrcmmneO65J7qXhobbvuAyZn7O5TFCfW7Gcjl/FUIaQg0MO7Ki3URzQuQAlYbCEF28sHHkQNtzfJyaKBklXbCClAmO5gkMztv780Wa9d45xx+GA+/t7xBgwjNy0yFkHQ47LvwhCJ1DQV9FcB+56B39vED+5coOrqAFlhWm5IMfEpX0hSFkvBxAdWeYlJO2yK7qhh04ddtYRIUOVvJsLY1qSiHI96WHks94YjM4jCjdpLhlbBM5rgCXCwVlYcQ5dHwVdF18JrOr1bLUvwVU3RhuziIwg4nWOAq/ruRQEckiGk4cu2/qTMNRPdjb97d/9rSiEUpnwlVBKb56MZYBgHbxnQGMtR8m0HvwwMwA63gg59zjicHsD6xwOhxuME6dvH44znDMYBum6Jg4CI04kaxsA6sFuFe46zEXrjTsBXKVVmw6VekUibMWYtvC6oew/2zoLyGSBCWidtZimA6xxuL27wYtXdyglY13PiJE7dpwfH2GNwWGacHO8QYgr1o25bkqKQAbzDIwD5mnEPE04zCOmkTvCcHSvGSNGeTHUyU8/Ug1deiB/9Sf0rxcdwcrYn4Wkm9OAScYLgBgH+Vp1VL0hwudqLFXVqqBVB56COK4417RHEc6yM4yUbRQQe1hDkJboPJfeDZimA4bB4zBzVFcz4oy1GMYBm3S5KVLeUO9MM/WIcH7kcrlpngFw57RpPsIPA9Z1xWM4cSRM2okaQ1xGt024e/WaM2vIoJBlpYQijib+MgCW8xnvf/geKQRY43CYj/CeSxZAwuchnENkHAqA85aBLSHFAsoJ3hocJodxMAhhw3K5wBiDz774EncvXmJdL/j08R22dcUP332HDz+8w3S4xZuvf4XxcIPXb17h1dtXsp6Z30UJlUnWzY7rpo/mCv/V+XTBf/wP/xv+x//xf8KWI1LJcKOHHTzM6IGSEORZ3rx6jdd3L/DN1z/H569f4s2LG8RSELJyyjSQpqvGNgTF3y2kk2NBesiIDwnLsuH7dx/xuz98j8FGHAeqkTeVoqVwh56UATJartnrHL6G6WR3jUBce6BUe++iKp0zG0CWjnEcKRGZ0YEHXXxaMqflE3rL19FB/T1LRO45BdNklxoxWZSO64x2uYfeySUGvjEt+mdMA09P5EYpKCUBVDBMA1x2XMaShCNKFKgGIwAFBTxOwJ68s3TPqs7zZlRRBVgccXbIxaJsA9Lm4Shh2jjDzWwF2zniMFh89YXH2zcT8kb4/o8RBsAl8DpITIbGzibJHDHSUk0dav3aqZNWRVyDLQSLGDM+vPsI5x1ubl7gxatX7AAYPCwMlK+nd773Y7r/SYHj02Wnn6cnr+ky5c5fJSbEdUNaN+QYUFIAWcBXng3LZeEgxFKk0LET1dX5iDafagSYunBrB6LqMiIxdAFMxsA4j5UMFslIiWnDKWwYrMF84CBU5UhAKzWs+qo2BBGwb227Xi6102KdH6hTlF+wxqIYThlfXQISByi2qJme//LH3//d3/EjqU7TgZL7c5bxzTTN1SE0zbNgo6NwTo6SkeRwc3vENI3cLfTmCGcd5sOBu145h2meOTt8GKsR46ShiJUvqJO7cwbpd7p6rT+aMdUeg4NvvbOp6+LbPav+K925uJyFM5mGgbPRb25vMQwDjjcT7u5m7hhrCJfzWbqNRSnTmnE83sAaQtgWzkCgLLw1DtPAuGmeBsyTxzhY3uMls6FaSuVkZKNGN3jL3iFDnElOAKfk7dfMNeaUBxPesN3ANbhJnUyBRruVz0u0YClPVmfNygUbjKwmO8O+lGr8FNAuOMHzIcWuFnBWCl1Txrpyhksh3kvDMOJwOGKeJ9wcjxjHkfeYOHwHP2BzG9TiLFDScHE2lYyUOIOKjME8H2GkumAYOOtuWVesQlRdEKuj9fzwgBQC5rsThiNXMZAzsHDsOJwOiGFDDAtSzlguZ3z68AHeOrx9+RbzOMlcqk5NMjc8FikXnJcAoGALBjkZOEsYpYoiClWIMRZf/+LX+NWvf4NtWfDpwzuEbcO7dx/w4eMn3L18hX/z1/8dbu9eYD6MmOahm1KZxxoN4BnptbllqwFLWPHx/gE//PAe/+F//d/x//x//U8YjxNu39zCDR5+HFCIYDzLAmMMfvOrX+Mvf/UrfPnZW6YOMYSt9Dx0+7J0tYPaPckaEMLnx/MqjqYLPn58wIf3n3B3N+PF3S2sMUhEyIH3YMlApiK0KLnD8AKc5MKaca9Otd7ZpPdUCG2NyosE4kASAMoExCK2ppyJuFCJAEC6GpOCNqgTqXcg9TKtNPoXdfazAddlW3XjRsKTkwrvDccBzFwSO1+L8N/pnpfrcjBcAnnd67uc9FIEB7HtMI4jct5399KycF1D/KOtuE4zoZR7EWhOPeVb1UoKldFQDDV45GxRgkcJDiUl2MAUMZQzkCKG0eDrLz2O84i4Ffzpj5EbbUgpfsqcbWNSQcmEUszenuqPJ6q2x56QUtwNH969w+lxwDgfcffyJbIf4R0npaB0Y1jtymcwKm+B7rq9ztVLK765SkApBjnyOo8h1o6+TODOnZ29tUhEWI00LYMG7Przd88s59a5AIqQdBfh7eIvKs3ho8WDg3VIw4AtZWzJoKSMJQbEyBhqMAa2ZoDoM3R6SHWOsSBb2F+gzq3COorLyNmZV/WFIamD4Hv0ZLCCsNiEkrJkYC/PzfST4yc7m9TTSlAuDmoeWSGRNMZinOfKjzNNk3DpHLmjg3R9s9bicMPKaxhHzDdHWOcwz8cagZsPY8dy7wQocecMaxopHTqnUA+9ReRU0Fp9vb29WDdwZz10IKgtxqcHC8lmLFQnVc5iiHftNWWytbNBEfenKr2YNKreBKQKCM26MPp79wUI8NgZReIg0lV3Zan0DqUnaavVbu0s3WefXyNvTXUWGcemSmUTd2CpxjIEgLXLtut0KqjaOs2/188Tqve1qqlqePN4OdtFwLVUpnZ/40ywJGCkAjbScowikQcWBikljkaDo4DcJrVUbooi0X4AUi4qJJcpAsYySaPp5q1kBCF6DNuKuEm6uOwnNaTKj0yFCo+YC7bI2YRDIrgk2YVyj70SV6XKKfMD3DBinDjbyw9e0qVR94PAXZ08yVgoVXCrgI6JhfHlsuB8PuPxdAKcgR89jGfeKj8MSCnDOg/kjHnm7kVc+mpbJ6tSngRF6i09XYbVCLZStuO9w+C5bNIiS/eqDGua4dD2RwPgbWz3FxI/0t7Y3y/Dq9c6J5yuZlGI7bpNUvH2pArInkbUfrohrPe6f43qtlAnc3NQUfe4T6/TG5lPDU7Z9ztwxfIYJTOPz5Wseu6Z9j/vX9MyC322/rp6T6RGr2FHe+OKKYhbQooZ1gDOAePAUdoCwFxIHOfcmcZKV6YeGGgmUUMzuF4e3Y2T+mU4rRoR2xawSaOBStzfMCM0g2eX5dadTwHDc8utyPXaLZX+TivAyDkjxySNOTjzUY392l1VnDSc5ffsSujvbv9S9zsRJCmqA8b6j7RjnYEhBtg5A4mU54sz73YcDKRyrkWaC2GnC/c3sBvFq/kq0mGlNFBZnnGe/gse3jN/n3jVKugkQ3CWO8tYazELx80wjpKdZHE43tTOoupsOt4cMI0j/OAxHw/1sxrkmyYuw3Z+gHWeO79VYuW+4x/t5pPktR8Rue09+hPtX+wxBmRN7N4jSp3Asp6dE6V1cZWrWMP70mhno2e/igR7kpQzdM8ha6RfP0+ysuhKtl09dCvNkIdQHVWhhmKpXtaWuoV1/2aV+aqQ9YzVAOVxqKWg1Eb7OgBYsyNVb5BmPV5NxA4U8g23q+0xY3/oFFlDcM5IOVgnzxVTWXE8I6MUlcVX2k1kEEHKR4WrTDPIqIiBY8A4SpZTkkwrJQrvee3qs0iQMWwrsnAaavafcrE+v79FH8tc5FSEhN7ApQxrFKdLlUPm+1L8nnNmYn0/SvbhyNUZzqKmfz/Rr7oeFEPp31kWhRDw8HDCw8MjLsvCXYdpwnw8sBw4HjEdJjgbgMS21/F4g9ubW8zzLPPwzPHMbfSCkeeaZ8xZi3FwGAcn/H22zpviYXVi6DrqsftOKsheUDmyRz0/fuwzxPf32K/x6xVOoix6U04DZ515s7vH59bGdUCtlw087/tM794mYX28B2GaWac26m6fXu1roMdQZfds+ny4vr/+5kVX6qmJuNrEwPzIPoA4y/iaZAwoM+WAJaCkgrAlpCHBOWAaCeNIGD1nhV8CAYlLqrkTvAfAer1O+k86rjEv8zcRBcSwSaMBgzzlq2dn5dKXMff26z6r8ZmDuvMAdS2z2FadxHJGA/7VhS94JquTCi1QzGYASUXC8/Knabk2VKTyQH7u3dLsw5UEBWJnfymEmCHczQXZPJ+Vr/q4quSqf3/CjmQlxZ+TnwmlIwunXSbtnzt+srPpV7/5KwCEwY8YhxHOWRzmGc5ZDMNYySPnw00l4VZn0zSNlQxZI2zDyISs+hoZA2u9gH5mv1dQRMZUgcN71nSlGZpKiWqRNLDUcYIosNg9lYJOUV5EyMYgk6mT0X/4emoUPGRh0N+WFcv5AkMGh+EIawxiCHi8f0TKCY+Pn7Bt3G0spgLKwMf7RyxbBPeYi6y4M2CMA4GQY0SOnIFjRA7VbAFjwZ3rWk0xQLC2442Bes57ILQ3EplsUiJrqWs3KQKrr81XDKTlL6xuuhI3GZO9aC8sLCp5n6RCokVHNSrSQy8yBaRtPdWRlUrnlCsAsQHFYjWCygbKAYPNOAwWzmu00oPA42WIS9W4YVVBWLkdr7OcUsodURrQK4UJWvPDA4y1iDFJmYHlaB+InRqZSSBTSAhlw/nxEQ8fP2CYZhxfjXDegys9EpbLgg/fPSCEgPtPH3F5eIAhwmGY4YaBx6uj8FHHUxVdUqq05YKPl8gCJ2VszmA6bIhbQPAbPn36iGXbsJwf8eG7PzIwKxZ2OGCcj7h98QLz7S3Gycs8yTXVu9M7P2Vq1DHiiG/j0+MjfvvbP+CHd+/xx+++xftP7/Hi7Wt89c3XGOcJNy9eYjoesV4u8JbJXX/5i1/hVz/7Gb54+wbjMO50E6lF+c8ebQ0fJo/x7R1uZ4ff/PJrWHL4+P5P+MPv3iGniBd3BxzmgfdwgewzAQC9RxN141RItQMrpMpExqL7yE6+KPkzuO67dP/+zNPs1pz+3E1DvR81bmr2V6bd33ifyd+zlucCIURQ5rpzJ1FC7S76Y6W1lbS6/n1/f9zdS7OYgGwsLKclCim7Km+JAOUiWZLtS8e477al59cuRupYrGNVpPzROmCYYAx31MkmIiwRp+8XWGTksMHSiNd3Fn/5iwPuHxPuzwEPp4jDYcaLN685QOIOQHIohlBICNlbP8lKxt7mq00MgWVYzgXrwsS3Hz/eY/ruW9zc3OLm5gWGYURB5kw3UN1jZAws2TYWdSJlUDontRoGWZ+fiMsHrkB2ygUpZmzLivPpEcvlhJw2IAcYWHjweA7OgUxByRFbirAgDMVISvbzmDHrWkCBchzUTE0yUpiJ1qkKvA5cASbrYMngEgLWwO85bwEpG4y28X+QPH9Bc5jXHm51rZkmp64OdVLpOiPDuqLyLoAAYqLxf63jv/nr/w4gYJgG+GngBhTzDOcdxmHCPM3Cl9Q4J8dJOsWNI6zzgreYuFgxlbUGzksgTiKWZLidMQkw5T1MrXtNlXnovref6Voeor3l+qivdUqiQHU9aotlMsRZCt37q4M2BATh2olbgHNMfTAME1LKeHy4IMSAx8cFl8uCsG1Yt4RABR8+3GM5LcgpciYxCshYDp4UQlgjNmcE5+yd4L3ThA0XdpwgS0ahjGEuSmCPSiSsawxiYBaRpSlH9bMApL7Fzo3ayQygyZECbQsPHjQoKbLIPJG9BEKRMeXs25axocZyrvIzV2OjNZPgbJSkOKroHuZ97wxQTME0WtwcBvjBVRmuOJx5UEekOSGsK7YoGEpKLnNOgkeLdHJKWC9nDjgZrnYYxxFEhOPhABDT7OXCRMfrugjlxAOGeUKeDxiPB+ZniwFxecRyPuPdH/+Iy/mEnBJu5hneeQye9wl3lgs8B5IBxvtA9FlivRxSxuM5wpiEXAhpSFguK68xa/HpfMK2XLAsZ3x6/x1SDLDDLYbpFsN8AzsOMKNDsoS1z8zuNkg1JnWuZX6MlPp+ePce//P//B/x7v17fHq4h5scXr99jb/6m7/G4XjEfDhgGCeEdcPl/gxLhF//6jf4xTdf43icYb2vRaHSxBzVnNxt4d7B0WQ8ALy6nXEYvsCnTwf87j+/wen+AQUbPn38BKKC4zRjHAZQQS3VM7LI++A6ZKw5q69zdPROoB5ndM6Y6iDuxoiMgel/v5ZC/UDXhNgOq6DtH94L7fI714XYfPyeJPJJAtDKlZcJwYJtiZylDJW65+nOSFq6lnkcKv4ru7eXgmp3GbMPuABiA4OzfVuDlhYQ17peHddSMpIozd7BoIEGFu3qEBfONOdRhhHGJEyBG1dsjxHf/vYB8e2M8a8SXr0ifP7G4udfeDyeE7bvErZImOdbvHnzOaxzMDQwxrTETYWu5qp3hqmQzHVeDaxkzV1OC9aLwacPn3Bz8z3m+Yh5mqWSYUe/XTFv72iq++uqJJrnucjV0AGc0vA7ETfq2gK2lTuEb+sFW1iQS0QGc5d5md/gHAxlUOGmVZaAYixql/CrO1C+tFxtc76+IaGnqR8qyJnL7S0yRqEN2KyFRcYWCEtk+31xESgSdO+7QhKvFa1IK+Ch0+okQwaUFFO3Etvd/hEOYBDbECYXWCn/y0XI4H/C8ZOR1qvXnwEADvNBynwcbm9vuB5+mnA4HLgT3PFWSt9aZtM4Mv8MmcYrZK2QvZJE9yq4aYNPXf/IZ73QpcVp5SM7b3g9X5X+beFfb4Emdan2T+vf8zRqpIBYDKTImSzMxcSlPYbYcZFXbgl7OV+wrNL5QRw8y7ohpgxrC7wVxwoYIALosqU0atQbmVSFRzPc1BCF7OWr5X71Ph5n+bm+3gSC+ZHoUNb3V/dQ6TycbBroTyzAJeOrkJQuyd9KqdfohUWbUE7l46yXbkY6hxZUeCIDJYJKgjXA4DjKZYh5wghCXEdckjmkhM0tbc2Yxg2TcyvZAYCYmIRas6RyTtIVcYK2ElU9ULsLbRvW5SIpixwl5FvPSDHg4dMnrJcLLpcz4rqyU2xkvqmSIeWq6jmQMSs6DLwYYuGOMpaAkQCTDEcjUkKOEcuyYIsZy+kB9x8/IG4b/HwHP02wfsAgPFaurzTbrX3JBOh1qcyTAfeICOuK9+8/4t37D7h/eMB5ueCWCm5e3mE+HnG4ucUwzbDGIV4iCMCrl6/x+Wef4+WL29qaGGj7rBrcT45y9RP/773BYXCwBLx++RKn04b1co9ljYhxw81xqoZ6XToSvdDU7Hpl6q5De1mx2wl1EaOtTZ6qij8UwOiH95HAZ56pPP25Ly27vrDKoIp3ehuyn8XMJag5catnckyYXk3KnYgQ5d+NfyubITHI2vsr8JQSC2vR2tMbgW8ZT+Zz71RD/V6bSEiZoDXafaZTat1NE3HHRhRODTfFYIkZl2XDcrQoOcFQxjxZvHnlYW2EdwxqrPU4HI6SuevQtSGtc9Nn6jydA/mtsxxjYANvuSx4fHyEMdxpphqgnczU7KzdvLcBqs7CQn3ghO8vQ7J8QPtbKzLfwimn7cBLjgCydMQ0sMTZCxmEVDjUAYhTR51e+zvqDOP9SGgJXDVzSscTgJbV5CTQsBRCTPzZkLh00RG18vWrca7PJwu2Rta6Z6/R7VK3t8hkBeQElKyJRdBypCdo8F/o+OyLLwEA03HGfHOoTU84C3zG8ShZ30LmXXkCJXJspcTL2j7LRGSX0eiu7LuyR1OQYVBS9nr0jib9QbFF94fnhug56azvrZqzYhY08Fu/t89oJnBOnIVXDHdTtcYhpQ1r4E6r6xawbhEpZsRUYCjjclmR1gBDjBlJ1rVmKibJfCq9s0n/9Q57vX8x4HqjV9dTqXtrPyKKXUrJUqLT9niRzJ1nPrCTKbkUcUTr2DTDux/dglKdrLqse99hlVyCXyq2Km1P9M5/RYlGnFdKYK2NeqzT0op2H0pn4ZxDCnH3ervnVM+PAsQSEJOWK3LWzDAM3F2OOEqfpctpShGc/b0hCGdTDY6miFQSwrrg9PCA8+OjcHJxd0Vb7Qkxzknvy8iYCg6T8qZcMmJkGTR4xlIxJsb0IeL0eMLp4R7L5RGf3r9DShF3ryaM8wjrBpBzgDPMmCnY20GmXKcZV0tAsbdM9fl8wR/++Ce8f/8By7rCOu4I+dnnn+Pm7hbjdID3A+IacB5OMCC8evUaL1++xDh4bmOvc1BlQAtS6Mq5WoT1JyLuNHUzD/Cm4PbmiMNhxrJEPJ4uICqYtBthv6baGcQx261dlP2iFDvleWFCO9tGHTw97tDzlNKdF23r1h3X6ScNSvH+7bWvbj3dOC2zvMeebfxaUI0DYsJMa6jNcdlbW+2zHU7rx17T+ERXqnOqXruOiz77HpfvvWbynPKVJWCn9pza2JVPs6hsEu1tDAftMvMD5ZKR1og1RRwmC2sL5hk4Hgl3tzzPznHAyvkRh+MtjLHYNq4m0IqubjSese90fppdC8GXYeWugevlgsv5xLZ0ZpnQz/oOm++wZKlraG+zKy6/gnNFaS5QMURKnBWeYkRMzHmpFBZEHGADCNaII1+qSbSSoQG+HkdfT53geLk3xTRg8QXmFuNfnWR/OgmirAWIsg5jyohq32i3x16n5TY+LWlH1paOSVtZ+zHtAhb6Dk72UQn2ZFqfPX6ys+nf/vVfgwCM44RJ6qHnwwTnGAgxObcVoso92aQSCWoKLn/fc5fwoYpAjau2dfdKt4HupyLnySmf/P3HjubVlv86uViBxpXjJWfugHU+nxEDtxRszjM2hNSBYayDs567YUgEN6aCUjiTJpkki4rJvkJg8sQQmfgyxYCUotQZ52r0VU9pShxBs3a3MADhNtoZd3tDbycLGZN379tt6atR65P9nj+KClbdXKVtMFVAFZyq0Lw6Yx+5U5BtihFuKoiw0PvLsKbAOxKHJn957zHNB0ioFRoBvJ7TKvQhwAxtzLhtb6glajq/ZLj6XsGoIYN1YUFJxiBK6/llXbBKBPdyekRYN5ScMXgGSQDVqOn+6NWYPqcI8MIO0hAT1pKwbhvWZeGsQjfAeS7jOZ/PWJcLXATsmkHe1455/78cp9MZv//DH/Hu/QfAGty9foWXb17j9du3mA4zyDiQdjCxBqYQpnHA8cCkozWjrbQn7b/vJcEzI1K9LCKUvcU4euSS8OnhHmFbcXszYD4MsKQRf5EyhTMJi5IK/5nnpPqf/CAdhBTMPPms3ODTdN7u3aUBtwqMrvYp6qeaa/f5u3seTBJI1pZwD+QCk4BsqSrdH9vDKnf76LpmS/SfYAdtQtNywhWgMp1y5S9RPqEGXJsMyCnvsp6yZDZmMQA101WdLfyUam0ZcMjFwBWLITtQMnj3/cLNGNwBr15PMA64OVrME2GePTeZsI4dzFfdap71d+7moD1DtdtlaLZtxcP9PQiEx8cHDrwMM8bxuDsN8y7w+VTuqK5sWV/tOv3y4bGiTvYBHLW0yImzbvMWkEMQQa/ykk9hr+e+SFmbKTClz+vSeebuI7kUFFc6Q7cZC42nA+x0SrpuCsRuhbNGmnZwMwyKBY4ykuF1YUlI/Uubi0J0lYX4zKH6RLOqqieKx4WI4KQ8hFJESD8BJf1XOv7q3/5bgIBhGtlQlVI3xUq1wcnopRTISWc3Ji6uGEofv59IalHJJ4tWjSBqGEdBJp9BF25vIOEZRN7/qcmv+pr838yAsgPWGjTba3cuUV+lDDunDOd8F4BQI8zCWv6b95x1mBJHk3OGNJZQrkGCpwzrDFMUxIAU2YGRU6pNbBg3la48KiHnK/oDiSDVzCbBW1VmqmEjY1I7SVXDtjBviwiIvhHFkyAeofJjdlPXTedeF/Sj/fwcddPTprvKE11LBDBBeNg4MywnIDe+LeXH1G6HfhyqHtCgQK+vFKNZwaGKlfjvGTkB27ahFM3GB8s6SBZwKdIxziCsC8LC/JPb6YQcIlLkhgfbuqLECGeYNN9JUI85u6jqEUA6laLpHL3XAiZ+DjHCoGBdAVMM1nXBum1C1wF477AuhPPlgm1bYYYTyJ/g5pFLgBULoNuabbCvME3DGklajT+ezvj22+/x6eEBx9tbfHMY8dU3X+PN559hPhwkc57LjUPYJCDN92WdFdS7W0pP18MzrzX7Zm8EOGvgncNjCHj37j2AjFk4d1k3sQwtpTQy9c5ZookCTzDbM45dIuqIy9vo1QSEktHjD/mhjnezzRQ7dGWQ+uCK9fuqiKuxqb4fyDh0DqfWgZPxfSKeN1e5a/uweycT6zPspGK9XtugXaBfMeO1HN+JZmrPpXQZpcscV+60am41hzkRJxHUhIFSUMC8sjAF1lvh7MxAJMS14OO7DfO4IEXC27cDhinh5l3A6ZIxDRbTNICMlUwc3n9F6/J3T90d5emP12t0XTbcf7pHSgWvzmehABnhneLZfNXcRzLBKhiDzCjt3lOxFHTMBX9ZznRNKSMF7hLLHTE35BRqpY3QenKyBNjxpM7mTMyb9qQ4Qzw6nFWaZJ00epVecxIMiuEcKlZt3PCCwE4ngODkXkHCdRul4kS65Wm1EOeX5rbHVfY/M97tVsW5ulvL/J8thMHw826py7b7Z46f7Gz69//+3wMAvGNuASKCdbYj5dTImtkB0P3Rfuc23ztNuvdgQ51LTTmwcuvOUyfouWEr7aUrAffkqBsCDSh0Sr83xnogAXBnmcfHR9x/+oRt3dhRZGwTusIvVQA456sjwUZObQsxYysJTFLMbeZHy/XTlthx4BywhYXJEOPa8fEUQARrShGRADIOJl9HNPj/1t6zCSZ+Polc7Ya7bUZtPd7OdDWcP/LLTgbIIBY0hv1mjKPel1pTfVZRw9NKCt6XT/CmNgALgsJNtZ0DxpGjWVbSBsdxxO3trfBkmMqTpZwCVeAQgTSSRmUHIEtKWBfu9LZtHG21hktJdX65Q4fB6eFeuAgytssbIBd8fP8OHz58YNC7rsg5YxxHzOOEPhKr63q/bHugJAMj+yHngiVFJCScLheczieAAD/OsGSQYsTH+084nx5AfgX5M4qziDHC/DPbY3cHO/DE/3/8+An/x//+t/j4cI9iLT7/+Vf44uuf42fffI1xmvF4OmNZNjgbYa2DBeFwOODl3R0O87jLnntuN/dA7YnpU9qqLCLMh8FhngekHPHdDz9gWxe8eDHjeDOx/PJCHJqF58MUmKxA6cfGgq7+poCRwOSjPzpgTbyk/f2qowFlL1euZQy/9vzPeo3dwJC+r+0zztzhtFx14KTcCESfSOorubzPdtIIWTM0CkpVOn3b8JY5IFw9hgTw8Odj5P0RU6p8dklSyrM4NVDA4IeYM0GjKmrIQoGZNSBvAQM4ZMylANHg9/94wsf3K/7yNw6//psBx1uD168sPtwTbm8G3N7ewBiHsDHRf0oJIW4cpbbXNfBPgWqbFx4HDS5czhesYcG2bvjs7WcoJeH29hW8n1pZkzxninxO5TIx8pzsiG1ZjXwHBUa6W5ZqUJUOyBegJMTA5ODxckHeVqAkzv6A8hcRvICmigshBk3h7iNOF70I/ZQzgkT4Sp9hI2ujdh+U1woAygnsCCgYDJCJMDqLxXsAGVvaEFKGJcJomF+NsymudDJ1c11X7bU20iBCn33X/m7IYJBW6Etpa+1f4/gf/v3/GQC4wYnSBNhG/lrDNtVopbrfWmfcXja07CEltC+KiaieBprx1Wes0m4Md7bV3tB5xuH0nENqfzYVQI2DTg3AXOcRUMdTjBHnxzMe7x8RY8I4DHCCMRUDWmNRLDD4CaUQDFkOBOXMGVFCVJylM+YEC18KYkgI24LoElJYkeLI1ATi1GYeoQQiU50U/Fiii4Wng0vkeCiUWqqIo0vHhKCO40YxACjXC+1W67XBez0vbUT3juzrowXpUC3Jpj9JujYpxG3Zb4qjTQEKFeQYENYLZ2CmCMqpZp1rGbNzFuM04nA81nvNmcvxUmHMok9kDMEaxlAxJinZE0MLGZfLGcvCpaAhbpIp5TlDVTLHjDFYTycsfkCJCedxgvUe958+4eH+HoaotgT3znFJsGAdxVA6nloCSZTFCKTaVTCmhGXdQMgwZUPaCOfTGZflDE00GacRj4/Ap4cHXM5nJHNEpAlmGhFjVjuyYoQfwzAyDYw/Cl+75IL3H+/x9//5n3BZVvz6r3+Dt1+9xRc/+xm+/uUv4YcB7999wMP9I2KMWC5LbZ4zimO6AEwMXrq5v1orzy0hIv5ctW3kdW8tpmHAuqz47W9/j1ISXt69wKtXr6ojkYizzGJgon4j+1X5UZu10N+DyrIOn/CKQe9mZXkkURtqwa0iuZm7jCUpD6qlbqXjVe3uoDq7O91Q5RX110XVM6pTubyNdzA7qBOcBdMFoHHwVIcRejnJPJa7WaC2W3q814JOmrl7PV/8GtOoZGTNBiy5ZoTrnmz2M0FLyLOWnws/UwE3R8pkkA13E3ZDAGVCXjOwRYRTwZ9+f8G2FNy9OOCbb5iK4J/+uOHhMeEwexyPMzub0lJtk4bdmiyr38r+pacHY9rT6YxUIpZlq9VV88wNoAAjXUxRgwZE3CWzchPWFoXNOa46tc/8UllgYWHJIqaMsEUp616RwoVpCMDBPwOmeOkDcgFKbwAEZJRiYAG4Oo28ZnMW/l8qsLCNT1j+Vb5emHryEJQrCfDSGXx1Bi7yvlljRqQCooxB2pw7cpW4vq75aoyQwoZWtaKaYmePaCAFdT/wuFqhU4iIHV3Cnzt+srPpcDzwB6yDt9wlyxhTuVV+ysXK1UPxPu7Bo2IXVfhNPVfhUN+qm+harPd//5E/dW+hZv3tb7Q8fanulQ4wKVgKMdbFXtW9AKrKGwEWmiSde7LJlRsAAmgYHLRnqpEj6eLTnEQibJ8xMnsA2T3B/lme/KXdL+G5IWnSoc7Kbmz/3EA/d8gYi5e2peWW/Q12SpyHXbMx9u/B1f1xuYFEgtEQIk9ty5zoDZnew90eSQ0+VLJzfR8biQnFKOEl1RbWTCoeEbcNcdsQtg1ERrrmcQvyPlOvd7TWKGg3zpri2+nFJ/K6QDNXhKBcrqHCNZeCVNjZZ3S891ZC+6XfPj+yuVVIhxBxvlywLNyKej4eMEwjjHWVULGmRIOVKLekdpyK21283827GG8PmuWFOnpXYFxBEz9v4S53KWGNzKWT8wBI5kb/2M3z/3Q8ns+hbEOzu9fqkGvGFrp1txvSDpwoeMLVOnwC2roN+sQRtPuc7uweTDXZkEurLtatt3vqJ06m5w6q89pOQXufgN5PJ8OfOMx0L6KNgQ5D3XPU85ZdSTfdOyQks6qfCmG5RIAKti3i/8vcfz/ZkmR5ftjH3UNdkeKpki2ne/QCCxCLJUEazEgYzPh/wwhKYBfY2eHMdE/3tCrxVKqrQrjgD8fdw+Nmvqrq3p4Bo+xVZt4bwsP9+Dnfo1EObTxNDV2jMNpj7RQ9eWncZzsrz3dYLlwxB/JJmP+KiliYAnaaGMaeoe/pujED4rwvCw/847sHZqV9Xvg8whBmIJvkaQILqbhljOjIzLQgccVcXyQ9Xdpnx9pMBR/K/4/rVILxYqjz72dvI3xZPjFaU5kYCeoKryChMJIUz0RoN9ccSuON7/oUfZ7LsRmoqyx6vlu1gT/OsVoLhtImGZmYnXUUDo0CjWe+EzdUVmopZuZJHs68Ac+sFaokgLPPFtOYNqr6FsX1ScBQUM1CVs+0kGt/Bal1YWOqm1Yp5amIaovMQIwYBhcdegFit9cMJiJx6IXxNRvFfelkS/9CObREbPHHjBnO92f6XEVwElS5EB8Qmumb8pQz2s10ndfkw/dKCkrpBBLMoDKuyQYntVzjcuuSMGZuAy9dSE00eqfvF7s6KrYzUw6ZjyfMRsTo59HLSflxXovDS2tQUq8mwVvvmUtTVKL0heBjBJaVosZ1lRW1JIUTT1SpE1e8l2yh+Ete14RjpDOh91L8OGMo78SZaWbHutCcKtY7TfpyXzwpM0Msh6EkXchZoftxslIQPXiatmVzcUG76nKRc2st4zAyTZLZkIybRmtp1DRrHUuscoZn53WRXx5F152NVVIMHT44xmkS57cxmGZRlWqelzynZ3tAFeNSyzHOwkKd7ZpoICjmMa1XiBwkhFTuYuYlC1xfXFcORi0mImHhpJizwIF53+T2xClCMy97Ma5iW589M23sp7jpMntkxhCRUh+/R5rDzN/i94u5WLxigavSOM8xjMpyJr23RhEcHI+WuplYrR11DU2tqCuoDCgk2EFFo9c5vlvI54RxUWeLUhjNifsDidCaJssUm62M40hdTzEiMmYlhOJ9F/MU3QRxPUMx9wvaONej4w3KhgCie6egkGL8QaRO0RQPKLCMmlc8z3/+j4K+Zt4VKPFMmsyZHnXEuCbquES55kLx3Hy1yvMxP1MVgiKel57xBMtKh4rrQlB5Ds6x4zcd39nYVNdiYjNaSZoA4mn+8GOSYCteW5XfzaAjC4UF4Dkrk1bgpuWH3zI7T5yx3LqhOH0ZJ6UieJ5BCY+I0nvPaeg5pDQ6dNFuFUYrBocUqmhMg6kUVR2jGrQIGA1UKkRvTU1tKqS4vycES/Aj3vYEN5IC40IBooyRUGId07mWU3AugkI0AMx1oNJ0qtjNSePz9+esegm75uec79cl0ynXNhQfhWJrpGKC6d1mEDOPvqAb4hZ1DqYJZR3KKxSaVddSmYC1gdNxwPqB06lF72uOpyPDeGSyPdaOwihROONmpFe8A0jx29RxLnlog/NMDOJl8I5pNKBUrhF1POxwVuqlNE1H03ZY66iVkVjISlqcStSJyQJHBJ7Pit5cUD15eIgtVWWmpPC61OQJKFzw9EOPqTSpg4auKky7xjho15c0qy2riwtJZVnM57zzHq1xSLJIBHw/TDjrudsdubl/4Nj3vPjBJ2xfXLHebjn2I6fRsrvfczweCZNDB4nau1h3PL+6oK6iwUnFwqR56kt4L//PBYLz+MTan85LkY/9MLI7HBldwKzXaK247Qfsu/dsViv8tbQSXdcVbRWLn2ZpXO4UtXhS+i0fYTbdFKavSD8636l4pcLYFPLf2XhZgvbiLRdrgHg+iKkZYuCGnLulCyaVFDsdaSgEXDAEr2Kr+6RwB2lTH0JUNlgYP/Ozs2cj/T0L5AWmjfUxMk8PxI4eLp63BKEhzIbBVGsoe50QD7T1Ei4dlHhik1wMSNiyj/tBOKOEGK+UIRB4+6bHa8/1s4Yf3nVME1xfWL7/iea+f+C3v/o5Stc8e/ac1XoT6yOF4l1D2pTzQj5an5kvJYOKdQ47Onp94v2bt/THI9Z6jKkzn5aizhVV1cz7PCn3PvKAbBGMqYMLWkm0L44gYwzBKaYx4AbHdOoZj3vscEJrSTHVMWUFpCClBpxW2KDxSMHcMUCrFdqIUVY8rcJ3vJKWEJKxHT/3ASm67/EJKJ6BfqXAoDEqsGpqSS/2jn3vcU4zEeidpzaalpRmn6KUQlTwRCldmn9FhnhmwsxdDLNxI6VqKLSX8xtigfBvUrj+iEfy8Aq/yXnqzJSc6PpcXichXUSmFDJRzi7xktwzp81la3L6joKthCVeyFNYbPLMs84uJUPkxTeZ/ZyNqLxGgLWPXccmhlNPfzzhrIstoJXwOKQr2RQxlFKGptYZ5nrv8VqMqWlulIa2qakrTdWo6IV24CzBWkkTA1BaaIqo7Kl5rLkkU67fVmDNQjxkx19KcQxx7KGUCctr0i9zVsCMPZcsJhQrvJzB1NJcx6LeqJQ+kgdW0FL8mQ3yIcqutGs8BAd+kp94lPKs2hrNGucD03Bi6k9ZEp6OB8ZBCrU7a8UQpVKNFOZnApJSLR2uBEKlPe1xbqLvJfKrmsbYiddQVVKC43Tcg3c0/UoiVusaj2LVSRv01HAIpXOUYkhFE1Vsd5l5qlrurzhvk52wzkqBX68wXjFOI6eTRDatV6tYW2pFt70kmJrN9TXbF89YX11gUlMDZvy03CNpTdO8S3MV6zy3N/fs9kd2uwNV27Bua1588jGf/fCHaGN4++49znm+/uJrbt/foX2g8o6urqm1Yl1XcxpOVEITDalClufxnRvAogIQEN0jRR0Nk+PQT4wOaFu8G3l9c8MwjVxcXPDpRx/F0g/iOFSxY6Q4C+bI1kUDh7Q/09ynOcl8Y+ZNAmlMviak9DiX0vYK5X1hYPEL+ko6oorvmgIYdBBsIIYEZiU83yNNT6wXGWu/Qoj07kCnGmsRuxTrW+LXmTumYAP5NPHOEPRcWyhEuZVSwdJ4mJ1HGWkomF0mntR4RVKEl8vsAOW8lCh0MRWYxCZKZ7fCBoXykja4ahvw8Ltf7/nqywMK+Px7K+o6sFlNXG4m7HTH7377K5SuWXVb6rrLpV3k0DPuW/C3xE+XGrnwRoNCoiKnvYWguYlZCsPlEKNQNSHW2KzrhqZpl/QdcWckJpGFCA0VKHzBD1LHVqcCdrCMxxE39PjpBG6kUgqfCq1Ho0uN1KgKCmxc29E7RqDRCmX0nHlDEN0tlYrUcc9FLO1Cknuy5imuVuZPWq/UWqKlfFOjjcI6z2mUuocjMIZAFaBJ75bsJAuZ/ziyqRBNxVGikLn1QAgSsFAraM2ypMaHju9sbNIpZB5FquYevsHjAiVjU099m06alZjz75685+M/SnMR8ZPHzH4psBc26OIrNWO+eKLKOPApTOqDZ5rE6uqci8uRxiUeu2GaAKnFJEXSA8ZImLJXEILDkLp7KWlVrA3aSIe1gCN4S/CxyGuYB1RGHghDnEHR+Sx+wNGSmWIiyFTYLwGDDx9qwSgypg3z9yq2piwHIzK+5DqRnlJXLEpDUx5pFuZqvkL+9l5amTgpzqaCikaMlmGwnPZH/OSZxp5+ODGMPdaNOD9JWpGXGhDB+1zYuJzARepYNLSoKAScjcpV8FirpNV0JXU2plE65ADs7+5o2k7WthbFUqWWXeW/eTGYvQBne0nFSTzf4EqSVRwSrWGnKaYVROZdt+jGUXcr2vWGpusyQH0SHJWfFVtFKxUjmhzDaDn1A4fjkWGa6NZrnr18iTKGYXIEP3E69fTHXoBSkK43bd2wWa2W4cJqfq1wtoe/6VgU4gyByVr6YWQKAd20KO84ThPT3uIIXKw7Qh3E0KRTcLTQYTIwlwanMppC1qiY96dcImezec6lSm99ovMyqm55x7Cs47EYW6SLwLz58gZZ7svcptRHQRfXcH5i4ikfnmdV8OrzJh8hpHdVBaiTPZre85tyuxNYTLVUymlNtQUUEJyELksx//g9smZegYuvUGtNowyjtTzsRgZrubs/cTjsCWjWK8+zK8W+P3Hz7h50w2rd0q2jiM7do8IZLS6lzVPTlbeqD3jrGIeR/e4Ba0e61ZqLy2sJ80ZAetNIJ9c58mAG3zPNzXOUIjTSJOkCvGstrYeDCwTrceOEHXq8HcXYY2K9ujj+5KsXRVCBhyF2s9FByXyq2Wha+uVUNISpSG95nWN3Ul9E68g5ETsERRM7zw3WchhHSWkKHhsjDEIhIxYRb1rHuk1L2pmVa4r1C8s5iv+FuN8kRVATvono/4hHFs0KEscRUXuOYNTZdWfc+YzwvinqcBZi6bOw/JOZfXzwflHpOcegKuGQ8k4h/5Z/Pj27SakTg9M0TYzDFDvxLtN0nbOMEUNpXaFjt10X025t0Gid5JzIk7oxGKMwJqCUeKQJLtcjynXemKMKSiV4Ef2UlJGzWSvfcU4XTgIsZN6X7v1IyOZr5g+jHShimw9ymAUvLv8tHpNwbFY2Zp6caDD/HVz+p2LKa10ZjGoYJ8vQn7DOMdUNY90wDUOsZyIpiQmrlMblc0UuvXZQQSK7SelO0kXZGxdrvNaYGLU2DT3BOZy31G1N3TQ03YamXcVOglWuc+dcCl/yhYG1wMNndJ1KXbicchVwXuG8wjoXoygqVl2HqSqquqFuO2yAdr2m226oY/RRxqJnS1yQS8GLJDvG+sDhcOTu7oFTLApujGZ7dcn1ixec+p77uzuGYeTm/S03b29oK8NV10FlYhF3s3hOkoUBpMg98tysuz1BTTrRYjHUyXmG0cZmIhUBx8PhIF0Cg+fF82foymCU1I1JfDWx3ERZi35cIZHhYzy9UMUiQ0r7KRtQiSnSZ51sSwc1mQajazIw32emBNFL4vnJgZP3h0rGkXSu1IyrYimCEMThgsrl/Clj/pKxcblz53snJ5aKV4l8jM8Maa/Ol8k7uyfg2ez8m/lWOf/lEaP3vCJF0QpNJKdoMlYqfCQgow2VEiPGzfsB6x2ff3+NUhZjAk1j6VrHYTxwv3do01C9jLUHKXh/lhNqpoPlL+UUxXmSebDWxsjHkcN+R8ChjaFu2xjUUQmVKUXTtIv3TfJVbj3TRnZeZSpV6NiVVsUSBgrwkzQIkJpNontLpQ1dPkawUxBDk1aCV200WGqlisL9BY5JYjnLDBVTh1Od0lhiIeFn5jU2cXbbyqCMYrSO02RxyuMQi0Fm72diJz40T/eHkEM+r9wXBQdRGUNBrVWxXz58fGdj0zIEN73B00N9Cqt8+NxZCJYM71umIR/lIhR3/fDJ8ZdZvgcWXc7yGcXmYAYfnO+bMKfRpbBbdJk+ExZFJhWq6BSQiuPpGB4upqoURp5S/CTyNwrW9E8j7fyUmSOpYl7MPB/phSMjibtvCU6Kn8zvljdiEgZPTWcCoB9cqpCfmSWgmudSqXky05QuUgnOHhtCqokAuQhg8NGAV9GtNnz8+RXaGPaHW47HB07HnnEI6GFCBct42jH1PX4awU5oAk1l8niyJZz5xc7pN6XolPMy17VSeCUeBPG0OUmj6U947+kAU+VeJU/ujfK+af5zimb2jsvG97G7FCFgncUHCbfuT1IU2Vkrc6kkqq6qPHXVSPRcVeUw+WXnx8dLOit0KvIgT98PHI8902Sp6wavNXXTUDeNKAORztu6xqzWVErRounqimmyvHn3nsqY2EhA0dQyptI4kucARLlJhJKlefpF6FsiDQcOxxPKGF59+gnD2EMYCcFSNw1Wi4fAKXCx1excRywK7QSQi+ckUPOI3AulK4WPL4ypZ0rZzMPll2WayTz3JfkvYOK5UFaIpeUpZe/s71RYP5eAIfKWGCkV1GzEWDwj/lz+S+8R8u9y3nJflLxu8a4qRXvoxT2T5y8BJ0X06pVKeZC5ViU/AZQxSKSCRIx6YWYEH9jvR778+khdG7qmY/WyZd+PrDtHIAEFybVXed2L+Qvlmpbzw9kxA0sdi/73JzGo7Hd7Hh7uqeua9fqCutKxDlVRu6dwIKR0OBV5cgLmGYuqGSjOcx6YBsvQT0zTmKM3U10fVAEaYuFQjaLWBqc8Q6r9AEzBY1CYEJ0oQXZAgFwQVmsdo1GSuy5Esi/pPkTYIPSaYgG8lnorst9EudFe4XzAaSmg63yY64oQwSF67p6VlJM8+5F+zpflbOdKOq/miRP/WY5SLieD9hK7hCfO/bZ7fcv551js208p8WX5gEdjfHRkXPSEthPgKRyR6FuUigmctLYuSScU1ybDhBRYlVWei+rrOT0xGVgiZIfUQa1CV9LApqqI9TVnuVrSdfm6KQ4IQKX29hoy79Lz/lUhkLyWT75zgcHi5ObpTXMvRYojtSfnbr7V03h1IUYyjko3fWJZwmzsqauaVbeiblsurq7Q2nB78577u1uqYWScxKkavKU/7BhPPSpYKh1Qhih/QBTZ9ICkcs7117LMiW28y7XNxuqiBIDVGqVF6ZSi4mCqhlC30olaS2RKOYFlE4GQV2/+fx5IEHnonY+t5z3TFMAFhmFg7HuaqorFyg3aVJiqwVQBY+qiPmtayzBPslqml5OeHGZ1wwfP8djz8HDAucDF5SXKGIyWcgtj33PcHxnHEQOsu5aurtluVqyaluOp58uvX2OMoWkaSU2ua0xd56LFpZz4tkNSBz39ODE6y4SnXne8+vwTrJtQzko+YtNwtBNuVGjTUuta5jbSgNhLEg4S52+K0EhrlNY74Z+59uMM69I+yd0dCzmfCTpjKKKCnqI2ZnpLEClHtyWaJKU0Rso4k78lTc7YJepsquzuFgixI5ki4adSXyijWlX+XUeHSC6zojKKLMbxNA8pYK/oitHYnlTzlDqb9S8vzp8Fz4l8J/FRFdctxGYyeAvB44PCWs9oPfv9xNv3J0JQbDcVn36sefdgOE0RV+TC8BEDZ57zBAMqgxA+RJ4q4SDP8XiSWllVQ9utqKqartvONZqKKCGKJUh6QcZTmY7SfBV7NNKhi07CoZfMFO8k6AOQ6LBkFCTk++jYqMCFgPViNPJB4WL/ADKNzkZhVNT39dyYIjOIkP+3fKXI30yAKkDQ4hgQPc9Lp3vmzAUbAlN0IIaoSyUMmHF35FnzvMu+UqpcmnlSQ8QwWmmq7wigfm9jU0kdH2ZgIZ+a+c7i2uV9U1TTt7PDP+YxM6+ZOSSGeL4pKM5bHt5Ld7JhGBinkcnZGMo6M4yscCHxmi61940Eqo2m0oramGxsSqGR2oHyYlnXVY2pPKZqqCqN9w3e12hdxVpBCVSpebgJaBQMl2hJ16ZkeomQ5X9KFZuyWOdzxjfP3BMzHB6fufR6hexZL0Nhc2G/MyU8QC7sKUYnh3fSIrlpGl5+9An/6r/8t6w2W37zm1/y5Ze/Yb+7Z7KO42HP8dhzuNsxjCPutCdMI5UKrLtKrNEuSG5uAithVqKFTmM4eAyb9jGvv/SwaBNA6Wy8SO1Sd7s7qroGBXXTSpe8vB4L3ng2h7OhSSzuS2Oh8hCQInnjOOLGE21teHjY4Z0UmPexfkFdb3C+pms3rNoVXdNSVRpjVKaVcnUW61ishQaC9+weHri923E69bSrDhMC3XpNt1oxjRP2NBBCYNutqNdbWlOxbVsqrTmdBv7xF7+mbmo22w1VXXF9seEytv9um3pRIDEJUMqRRU6YRuaDRBI+7Pa8vb1Ftw0/+eu/xHrL7v6G03GP9o7RS4TTSikaLUX86hCjHqJXF+aC4XPb0KcNTskGNtM5SH73rKBJQeYiUkXNF4bi3cq75H2VcVP5VEVK9ZrBGgXdJo+9ADHxwalceFokn/zTuor1xhwhTI/2clK85m5Yy44f2RDiC0AZ97TzLhrbZ5pdGNq1RqkQuxSKGA7RMB2czLUPSKosEExpeE3zHxOolEZVNUoHvJU0Beu1gDnveffuxH/8O8/VZcd/9Z+t+fSjNZPV/PYrx+gqjJYWssnfV053Bm3Fj+WRFknlU7QxVPHv/cMhYoQKUHTrNZ992tK2jRTE1hLlRJjTm0WHUjEKII0j5LXQSi94ARFIWOs4HXv6fc/peGQYjvjQowwxYqConxKHXSlxXFjvOWrhsVMIKC/GpiooeZcwU39qTW90JR3ElI6h/smDt4xkU5DBYIWmigajtW8xtcNPEi1JUEwetA9M3jNZAUo+gUOlspHchNkzn5cl0v4H5VIcjNGaWunFOv9zHlmOqvnv5Z74A+/35He/z50eS5+0P3/vIxqPgi55wfJZ2agQC3o7L1Ek/dBjQoOhRuWC0rPCV2ID531MH5e0bGWEh1VRNs/deoMUclWx1EDTUDcuOkV0NDpJl1RSR1I9y3gdaU6Kg6f6MCnvRmQnpLWY+b285xzvcG4IKo0vScmDxL5T+YLl/J/pUPN8RslQNptYfk+RF8jMxkLAxRpAbdtgzBUvPvqYv/zP/yu61Yq/+9u/4Rc//3tOxyPeeYah57A/8nB3yzhNaDfS6IAzsY5IEJ7rM78Ps6QM895VEOfXLDBUTsk2AaYhy1+SYnM4UtUTuqqp25Wkf3uT7Vzz/ko8uFiTs/lXSuHj3rOTxVoH3nEcRzSW7XrNabenAvz1s9ghsaFuNlhf0dQtTVXTmAqjUxZAoVJEnJZWp/wuraW3ntvbHV99/Y5x8nz08afoylBVFf3pxGG35+7de+wkHfeeX12walqeXVzQ1Ibb+wf+w9/9jK5teXZ9TVM3XF5ecHGxpTIaU1dFcebl8RSvmSbH4TSwP/Qcp5FTmFg9u+Cn3/tLfHDcvb/huNujjOZ27KnsRNVUdGYVDaxyX51pOaV6QvBOil8Xyv7CyJjq0UJsL0/EdmrGSSHqCzEa1ceyGzE5KV4iuyQ3EclGXRWdqqnQOBmPqTSGQJRZc1pQrjWqFE65GbNoI7hFRUOYjoYEab26mOAkr9Lvs1MtkqpzpKyOMsXYx3Tf4Jf3mtcvRH1EDLfOaHQQXUAFnefaZz1GrjVG43MTqVTyJfJ7bVBVI0bF2LzFB8cwePrR8ubdiZ//0z2rVc2r5xd87/OWX/3Wcf/gsDGw0CNlPdL7pcYKhYAudGoey9/i64Q1vXPc3dxKpzgfMJWh7Vas11varokd789sEiHdKxCcz6uejtSMJc1nippLkbaH/YHjw4H+dMLaAdSEqSLg8HGQakbllTG0WmO9Z7QOj0QvjsqjUTRKYQAfYnMCRaYnExuJaaVjeP5iwhbrn96xDkoKmqPpahcj06U2rdOKyYDSgdF5+QxwlcmEl4uSJ3osnqjyPxXpjKyfl7ZUY6KT8Ttghd8/sonCaixf5F9nIafm/6tHp/GYuh6d8KGzFsc50/rQ9ef0vAChi1+ScjaHoT09h8sPc/vcMwI5B2vJ7rN4rJp/WRp1ZK5NpaX2gDGYBIpKNpmJvQwpLd7zWwHpH4a0S+twqRCX44/Dkk0eo28S0c6/J44wG5t44mcJkJKGPodCRgXMGJq2o+tWrDdbLi6vCCGwWq/xkYGok9SnqbQW5kzAq5h6EhypOVE2uxQLNQPBMxCoioiNAhSLsJUid9ZaQMVOKZJap6vZaKG+ZR3KsM803XkcMnGx2GRRTK+usbFwvSi/FcaIcS53Kcjd8zizYj85CGare+rkE7ubaTEWmNRJq+gappWScGuV5sdz6nvcNNK0DUEr6qamqSTKQRSGEFNJdRbU6b3PD6ViQU/rGSfLGCMNVW1Ybdcx1fWE89Jph0noxyuVFXqlK+FswWXjxQzjS8kYsrKQ9x2c7bvymxlApLEm/pL2zdwxSMWtsPTBpns+yU8SGP/gkiXD01Prmx5cGCvUkhLLZ55748ufiphWXe7TBeiax0Fx5Twf6uz+zIw6zO93boDO80DUZ5RGaVk5H+L6IuH80xTYHyxNbVFAXSmaRtM1GuV0rFe3lFuPJ7T4+eicx6gpvV9q8T1NE5OdqO2UFZKnlPq0XosIhW94UooETec7K80LvJPirqkD4ew5UwuqEaUgdZPTKCXgTNrtLusvyS5ICkXhLIrK1VNmhjyncmJGEToC8YrApCR1xiN1uVINigSYKRT6BISSJJyld3qfJyJyz4R+Aln/UkeaH4rnfmj9y2u+7Z5/nONJgv7D71aAnaXn+PFjs+HJe0k1KFhLOT9JwSoNv4muMm0nuRZZj1ZQ15q61oKfUppErOGRjTzFWPKReGFxz6cJZqbL8rOSBmUvPzVRxaUJK33TMcMlkoSS+n3lCQV+Ku5XYrL5Z5Rn8TOjDatuxWq9YbPdsr24RGvDYbcDAsNpgBAxlNEQDFYrlCPXi5mV4+VY8joWr7xc3/n8EFKnLSddU510cEKpyNcshIqgvdQ9SXP9xEQ/wvphqXbODXg83ltUmBinVJB4im3kxVChtcGYikWadeRTc3riN+ykAkMFRC5I0e/YZMYYwWTWSYdF5wmxu7GO6XreO6yFw+nEOJwYuhV13dC2jqquqWrBUCp4qujMLo0d50fCONY5Tv3AqR+kw5QCU1esNi0ez/EoUVZiUACHRJz6KL+NVnlPZUyk5r34yFG9WO8kW0pjVMHRC9VKJUPSI8y1REyLtUhy5xy/lPR3dotQ7I9FREyJu7NhbcYvvniuOntGkpXMl1JSS+CpvfM0T5hl3YyBcpQKy71Q8sxzY3T6TPhnTOlTSBTMGfaYJs/+ILqM0bDqNF0bqCtJ0Uv6XZ7zvCVKw/P5GyzngMWnaW9LswDvkw41dxvM9a0KgJsjxTKfnH9/Gm/NxuGEN7yVAv4pg2Z+maQLFgSjZjyTgwjitz4+1wf53M8sIF76WH480uOfmCEVn5UwlElyNMgzM4aK7xPmC/NUfZPeKeMKLPdEkivz2EqD2zcd39nY9IHRPDG4b73og7f4Q+DOOdNZfPfBSXgK8cTfYrpGCEU61fnPYrAhUHT+EoJM0S9VVWGcw0x2YYhTpLSdVACMrJAoUjtUuLiq+PTTLZfbmlefXnL98pLDJIaRaXRSqyjMER1KUeSfFwQfyC0inZMwuxm4h/xDFBYZZ8prLQ1SC2PWYs4LtJTPU0s6LQ0VSUEIkEItfQixE8nsvSy9CvOGS2a2+DMErB3phwO7+/d89Ztfst5ecHV9xeef/9fc39+yuVjz8HDP6y9+x+svf4u1lsvtJublTwzjxGQdu0PPOE1MVvLV53cBKcDHPK/xVbQxJANTMqqJYUnAV2KKUgh4RGnD5Bx103J5/YyqbjG6yvVnZqGgHm2Gx1FOIgwmK3nF+92e0+EeP450OnDYbPjo0+/x/NWRcbQ0zQptWjHmuMDYT7x//8DxZLm46LjYrooMbiLjjeQRAWmIQiMptHaaJMzcSDHHuq5pm4ZaVXTUeOcZT0dO45HdMPK73Z6QuqkoxWqz5tWnH9F2LZuuY9211MZw0XU0VcWz6ytePHsmnoymiR7Rx4J/tzvw5u177vcHbncPnNzIpr3g+tVzKWTcaFaHDX4amfqjeNqsZ2cnNt2KZ9cvqE3FeDwx9qf4/QmCYy7qmOg4MFPjYzAwfzbTewYDi12jcve0oFh4sNLVIe5TEagpAjHke8o0FCVJQwnW0k+J4xXSUoVRQIyMdWXE2KZULG4dMvhOtMZCeU97dAkSEw9MSvxibtJ7qCdAJkFq/8ToMq31XHCaGZTHl5ci2CGkvOT0sRhQG0nBmezE4ALeK5qmoa4MdvS8ee2YhombuxNXl4a6Uvzge2v6qeJ+qjk5eVetEsj5Bom0QFXzZ6H4UilNYE75leLEUkPG6NhNRIEPc6vxdAdr0ztHY46evUizojTzS62V1FmyjqmfGE8j0zTg3AkY0CkSDiE4RYyGQABmHaOrmioQtJa21nbEh8DJTrigGILDZkOClhqFQUFar4JGEvDMr5SUhMzDxQjdGYPRimAtAxrrA8fBMmnwYzSaAdSijOUIuzTNYd6JaQ+US1Qql0nWBpDaUB8uI/bPfpwbctPxSKk5+/2brim+/SON8g8/AnxgGJETBnJ0k48RMUElniNRSlVVYa2NrawTvxFekQOHQowc8QGXWqN7cYKsVg3f/+E1V9uaF68u6dYr6sZFLBQkisYIj0k1TRYYpxDMOfohY4KZ1mfunvhv+W+5TskQH2YmP+OsEodm/BWfEWZ+pHUkXK0W1y8M1NFoE6kpKxbJthS8RHGqAKfjicNhh6kaXn/xO7YXl7x6+TEff/I593d3/Owf/o7d/T3vX39FW3+Fc47n04Dzjn6cOA4jk3Ps9gPj5KIjyuWtKBAqOWpSmrx8V0aKp7mfpgmQguNVNWHshEdJCQIl0Q113XBxeSVt0JN8DOHMwVpg07xcpUwSg9Y4DlIb7HSPHU9USvH66orT4cj1i5dcTw6Ppl1tUWZCK8M0jPTHgfv7A+Po2awbtusmQrdSsQ4LXkWJoeK/yVr6vkdpxXF3oK4r/DCxbTuccfT9iePxyMM08bvjkRACdV1R14b1esMnn3xC13W0bUvbdDSV4XLV0lQVr14+46OXLzBGx5IFZwUXI+28e3/L3/79L9gdT9wfD5iuot2uuXh+BUjjCF03EoXkRYb1wXNz2LPu1nz04iV1VdPvD/SHE5qAzQbkmT/PtRuLfeTLpkdpKxT8L+6NUhVLim5ZF6fcb9nAE2vwpE7gSUdDCT5QTsWurQnexei8MPNV+dsyO0qScUH2qOh7Bu8kap7o3NFxjNmgkPQEZrmdO2SGgA8u7/u0p59Sb88NdKhodAniWJMImhglFmYHeCL7hKFyRFUylmmDaiRtbXQwjhPBe9pVTdMahj7w6386cH3Z8P2PNrSm4mKtefWiZbQVkzFYr2IaZ8g6cnru/C5Lvrh8t/S9HFobUnF4nOBSrUJRCiJkjDVHeacgkJT6lqLJlsbt1Nwm0ZzxFSFI1OHYjwynATdNiHl12Y0z0WXSBLRSVBGbVFWDR4P3TM5KR8wg9UYnoZBMj7ocE+l9OHvO8slz8I9EaLdGAggG75lCILjAcRQMNU6WKTabQcdOuOdRYCSMVI6j+C7M+y3rgSHR/3cDUX+4sek7GZb+MOPR73XNBwxN6TtZ1OWkLn+Wv0bVxnuphxQPYVQfGGyg6LQUN71iUctCaz2Hhob5O2FkQsA+WiEBnBViMabi2fMVz65arp6t2V6taO9HSfmyXlrYMzMS5+fuUEuPaWRKft5caaJzZEFSJgsmlons7OUfe4xnsRBIDLsU7o+V7hTOIZu88F4Xzyj/lUavvCbxd+cmpmngeNzx/s1X9Mc9n3z6CT/5yZ9yd3/HaRq5v7/FTyP97g7nLG6zJnjPsR84nAbGaZKiuAMwTEyW6FUvx+Ozop42pUoVcgXtEgAXlcQQ11rmcBQhrw9Y7+m6FavNVupvKY2k15CZ/5M7IQLqsuBO8oLZyXI89Rz2B5R3bGqNHSf2+wN932Odoq5bTAUmdo2yk+Nhd2SYPE1tuNquSSnP8yyfxSnEBQ4hphFaoXsdlWZTVVSmioK2xjvHtN8zHk/sdzvefvW1pPsFyYDeXG45Bke3XtFWFU1d0xrD9Ur+ts6xWq1o6pqmrmeBlQRYDBM/nXpev37H/eHA/nRiDJZtpdlebdGVweOpmgo7jfTHCm8t427POE20WtNsL2ibFhc0TJ7AgJ8c+KTonNXwCIk9h8f7YTFZj39PYiLTUZxzXxhisn4eGUouLFncMe3ZOe20eFqhHJVfSoqWikWcEz0rSCHvsZBGEqtKRYBPWX8JQgRFWTyGUHw2v+UHmXkyOOWFFDAgwFFl3qQUUm/Ai1leB535wblSrrSSovsKBqXovXRSa+saHQy7ceJ+b1E49oeRw3HAmJZXLzv6qeL0vuJ4VIRsXPzA4L9B5CyOrEDGrlkxVSDVdNFawpCVSuuS0ophCQ4jDYTwSFFI/F5+n1NRbGwX7OyIDyNgMQs4sXwNHWUWQfL/vVOSwuYFsI5WjO0TXoqj6kS3Mb4oypelPJ4jj2b7wjwGAetSK0oHxRBT/FwIDNZhQ2z64GJXvmRkP2v1HSfsyWWaDQfp5JmfJcXijxcd9PscS4Uo/Z49zOWZ32J0Kq/9w440Ob83+vrg3Qru9cHtMrOmObIp6EQqMb3A6CLdYTb2EGaHXbqRDwEVMVSIxt2mrfjooyuuLxsuLtc0bY2pDSGkVLxZwX2MOdRirCVPXSpNcghPSgaTJe9fRiHHd45jV9HhoOZNshjHYsZCMpCQ+UZSZpV6/B7JKSCGqBgVX2CaNNvDMLDf72nae+7ev8dNlh/+9M/5/Ec/5ub9e/aHE7eb9+AmXL8XXuZWhODZ9QP16cQwWSYHqIlpmo3lM+IO+f29ntOtSp6WnK7JYScF4jXGeVCpXmlNQNN1Hev1Rgo3ey3F2zJAeIrLQfHyswzyqaHKyPF4ZDjt6eqa29tbnHMcTz3WSYxs3axASwMYO06M1cjxMOC9oqtNjO7JrzkvGzl5OZbzKpzM8Z0lakgxnE4MxwZ8oKtbvHb0hwPD6cRht+PN118zTRNN18YyBFumEOhWK7SS1OamMjzbrGjrGghcXWyp65oqyvJS8U8z9bDb88tf/47DqecYLLo21F3L+uICFKz7Qdqre4edBvCecRiwfU/VtLTrDV3bMfYT1h1Q3uPdJDJAK1Kb1uw4KsCUKhT5pEPkgaZRhvmaZDiI4Do6qjOVZYNDGXGU6F+MKrJCSYYkk2ySY8nYW/Iol0sjzPLHI/boqjJUlUQ1BTcR7T9Rd5wdhamxR0SOs96TeMJiv84Gkse8/QncmXQ+DSpI1kaOWA8en0oRaE2QQocLDKWI1ypDQOOA3okTrG2kS+QwOh6+HrBDwI0TtXasWs31ZU0/VdwNmpgJXw7rA2r6B+RNcW4ZieZShFGYa23N+HOW9SnCPqXoAhikmHaa1/yoxCcTX0p6svNM48Q0TNLpdLmjF+8l+10iwpNjVmo3gQ8WG9PivHfoEHAqEM6MXyla75tkeDb2lH8jtdnq2CFvUhKM4gkM1mKRQJTkIJwj11NYwXLCM49OD3hEdkK7SVcPwaPKmnnfcPzBxqZ86+/wEFX+fHS6Wn5/9vv55P9hwPBMAeKpeYyEX4DSvLiFFVE2uUj6xDCysugc0zTivefh4Z5T30sHj0kIXkfrYyDVVYpAnSAWwvgMXYOqoOtqNpua9bpCEehPI9MYrevaoIKO3QXUvAzFpvMRMCULdzZjhHnMcqriHMgRMh+f7+dLz3UJgGdGDws5DmehsMsw1gKosWSqpSqRvsvvdkYTAkrFUn86SuTMu6+/YNW1jHaiq2vU1RX9x58RrKXvT7x/+4a+P2G0oTYaFQybrqE2GqO0tFj1nmlyuOTlSHNHSktaAvTcJlWX8xINgc4SgsbaCT0ZRq3pYy2EtlvNxeHmjVUoq/O7likrCaSlgprpJ0pJbYq2ZbVes91u6QfHoT8xWUdQAaMC4zhwf3tDVVeYMKL8hKkkjN4Y6YxiqiSgycIbJZ7n9brj8nLLxcWG7WaDC0FqoFjPcOo53O+YxpHbd2/Y3d8znE7c39/irEU3DbqqxJtoR/SU6lEhBqHdDh0Cw9Cz3+3Ybjb86Eff5/LiQkJGjcF5z8PuwDhOvH77ni9ev+U4DDgV6DYrmq6VQo4ZwMfVMrGDizaS7680qqowdcPF9TXbzQXTcGT3LjCNPSFIEdUUnrzkQGmz8OjT/HsBcFUGMEX6T6L7ZEwqhFgCaIkNJZ6UFPxEDz7W8wpeimIv1SQW987Pju/jnMfq6C2Kxg8dQuYfipkuFx7zBJJYev0/IKUKrDgrBXkOyt/V8ro8yyEpV3PaJxRhy2FeZyFWTdBS7inpf1ppvIfbu5HXa03Tai5Wa5pa0d5ZCQWnIuhYJDyv7TyO8vVmz1Yx6BBmKlGJf2mUBmstx8MR6VY54uyEqqKiROpEMs8z6d3OaamcoVBEQChF8IFpGBn7AWcts1duMcT4WlHZ9oGgBHIbpai1xuWINsUQAqP30vFPBaktGAtiJlmW4FhKJy9HOg8vS1GJniVANMAZBDSFGCmVVZIYZZxoI69LlJ1ZaVzQzSwTs/c3HrmeByVP/5c5iphREtj/JkxTejAXCKm8JCzPXZ7wTcixPErgX4zt8Qvkc+Y7l7ObDIwzlzvHfUse4jMfUIC1I3awVGONV4GqaaT9dTQ+aG0y9pqBevlq8ryq1hgdWHU1Va3QRvDLOFrslKKnTCzsrc/2WKIZxHgV91RSSjI9hfLF5miVZGw6n7vs8Mtdd8tpVcU9z/d/sSzz3Z5gRkuaT9cmrFJ69BeGBjVjKO8tD/c32GlgvVmjdaAfRi63W5q6QtkRRWDsT9y9f8swnNBa01SShr7pJHK676OC6wOT9TEVjYLMdE4rWe4/FVPV4kJErOWjQUgHzzQNmLFCK+hPR4JLNbjaKKtiXZICQ+a75zkqZe1cKN27VAdU03Ytq9WKVdfRdR2TdVg3MY5TpvHhdOT2/VvquiaMl3h7QVUZ6fRrDJWe68ul4SQMZbTm4mLNi+dXBCx3u5ZAkK7VQTH0Pbu7e6Zp5Pb2PYf9jr7vOex34lDWYCqFd5ZxGlFGGuUY7ZjGwPHhTspEuAk7DWzWG77//c/ZbjeZHqx10g2vH/j6zTt2+wO9nWBV01QtVSORUHPRb7nOVIbgFX6AyUmd07pd0XZrLq4DVdVih4H+/lYiQ4JHLeoZzZhIjhgpvVwt2VVh5jDZoBDC2X6ItJ40h1R/LdN9+XPGDuhYlw1JIcXEkaQ9miMM1YyFMlWFKMcUPkgnQ4LCmCryzmQYKaIKmQ1KPsquRYRSmGdh3hvpX5IdnH1/PglhSfbZmCXz6HwQA0HBN0p5mDABSkvQRQjZGOe84Klp8tzvRt7f9oyTYruB2gb2k8UNI2hNqIouhfnuKuPbYiIfy5lMHyqzOBVTAKZR6imFIIEG0kVTMh6IvCJhqHleilWb4Wf+O3/o53tM48Q4DPIM5ZBJC4kqMy4MhDnKXspVYZREOU1axW7lYlTGOYmkFSKVCF4ttZpZ0HbJoM/mKmMoMv2oELtcKuEBUvvUx1RXjwtz1FuixwyjokyLuyM/q8SIiU7Ss+eqZktZ9U3Hf1oa3ROHOvsJhbDMOss8WU/BrA9Dr6fP/bbXTLD0/MzH14ZERksgkCY5WoiJBZlFt3Gkct7WjhyPe4IXLwFKU5mayjQYo2m6VgpS1hV13TJrj/HZQdLo2spQGc2zZytevVpzta3BO+5vDxz3A2AwVYP2BhU72aWQPGEmfqEkCsCJQjURZ365EJmQyhb9cn7EaR6LchYpYUqZR0phujbkq+fZL2XLfF2c6YIQyoiCzFrzuwQZSwJLMe2mMjVN2xK84/37r9FKMZ52fP2rX3Dx7Bk//PO/YrX9mJfXL/nxj/+M9+/f8T/9v/9H+revqWrPOkz4WtNUYsDYHU4Yo5msZXc4MY4u1g9IzEBHsBtyRwkdU1CUkugQ4StuNtCFOXrM2wk7DhEUt1xdX1NXsZZENdcDyHs85sLnCIfYuUDqdwXsNDKNUqB+tBMBRbu+YH1xxYsXr/j040+5vd/z5v2efhiotaI2ilPf8/bNV3jvuHn2nNfXz1mtVnz0ySes1ms2m5bNdiVRDyZ2forrUlUVz59fs96s2Z1OfPzqI0ZraXUFveX+3Q2/+MXPOB4PvP36Kx5ub8TbbIU2L589Y3N5yTT1HE97bJiw7QpHy2l/5Otf/4b+cGTVtmy6lo8+esX/9b//7/jB977HZr3mYrvBTpbf/PYrbm7u+afffcHf/uznOODys4949vFLNhcbjBHPnvdSvDSg0U0L3hGqE1YpvDGYtqVZr3lx/YLry2sebm/5+d9qDg/3uP4B1+9QKmB04Lya9/JPFZl34uMzI/5mhiwgSFJ/ix0UaWo2FqmiAKecJSlvDu8UQTlwpUeOSJNnj8sgB4bJYn2gqQ1NLMwemEPAkzEhtbJPHqMk1CGBqBCf5/Me13qO3JnD5+fxK6XEziI3iZ8vEUjCAiHAZD0q8jdTRR6kFalauIq1e8WAKMjROlEaAxJF4yfFr35z4P3diZ/+WPFffv+aycGX7wYqN6DoINQyAyGGYQfFHHe0HJvKP0spc6ZAmQqC53QacW/eMZwGTp/t2axXKDRV1Qmoc6lxbaIBRep4BWUKQlrG2QObrnDWcdzvxNg7nFBBgFKsjDUr04XSn4KSQjQ0mcrgvOOkNE4Feu+ZrMUYqIyiUuI8aZtGCoOrSAPBZ6/XzOZnQZFCxiUSN8oiL7a2Rms2dYMLnmEC6xUOiw2yrk2MdNF6hu7iFU50WHoLRXaF4r9khhVeTU7d+t/q+C6GpkffRtzxxNkLbJVPzj8/xHvK74TWynueX7V8dJrZ4llJRiPgVrzkC6w/4xDvY2den9fteNxz2B0hKPRriSCp24ambaXrVtthqloiaJta+EA0FsVAOIxWXF1UrDvDs2cNXWeoG8U0Tex2jlM/goqd6UwFpoqR7HNqustFrmXgLsz0mmpglLOezUeBjIOW+p58tow8j5FGqjRMzbIiFDygjEdUINGReQ3kLB35RHKAngGr/Hu5J4jzXtcVbddip5Evf/tLjNHcvX/N7/7pZ1xdP+dP/uI/Y7294O3HH/P2+z/i7uYdf/M//T859AOVqdh2osQ2VYV1nt3xiDEBax3H48AYLCEWxg0hKaAq8tWowChpeoACrUR5tKn2nA+EcMopUcE57NBLN+Gm4eLikroWXJqMiPNz0l4SWaaNRHA6n+7rcDZ27bQWF9M2r66uePbsGdfPrrl+dsnkJNVtfzjiuobQ1hwPjrdffkEIgecvX/L85Qu61YpXH39Mt1qxWdVs122UwdGoEVeiris+++Qlq3VH1xke9g9Y62lNQxU0727v+bu/+1uOxz33t+85HnZ5u2ptQD+naQ2T7TmcdoxukJpNVc1xf+B3v/gnTocjH714wccvX/LxR6/47//7/wvf/97n1FVFXVUcDif+w3/8GV9+/ZbX72/48u07glE8u/iYzfWWbrPC1HWumSeRPFr0F+85Hg4MdsQpxXp7zeXlNdfPP0ah2N3d8eu/+3vG6YHgevAjEDCpnnBhMArqMX+KuvxcYDptsZCYoDpjbSpHums9pwolY3KhMxfbQTr1eO/xdUApi1OKkLGOpJGpaIxd7PmQ5LFislIj0mhNU7dRvtis0+n4qt6Kc1hw4dyBD2beMutI8eVyt9+5lIdgglk3LWcvbi1SndyE9ZyXvSdjTxhqjsQT+1OYnUXKQNWK0cJJ7dfJKcYpcDg6fvvlgXEaefY88Okna0areL87YfsB6pbKbCIum6O18pFtK4FzKVcags6vUyiOhyNvX79le9nz6qNPYLuBYObGJMHl61TudFzU6SvpibN58pLROY2O037P8WEnDmc1Ca5dWKiIcxvLvRAgpibXWjoWeu9Ex1CKyXmctVRK0yoNGmpj6KoKFfRCT583RpqTAjMnPJ4aKoQgUb5B7tc2jazVNEktW6+ZgkYHTaWkg6ZBpf5AS1+kCvN0RxpMRlFNKuGQym0kHPdHTqP7ThFFC0timpz0swQ0Z4T3gWu/89jK2zw9sEe3LQ2H59d8WCmMmzBajs8NkCFGsHgXsN7iA7R1Cw14lzqXCLCSIoNLI1YoxqlzmJ3c3PmAtR7nhBOV1vo53PJs/EnJpYw8OFOGouV4SeDx/YrZeRTOnd96OZ/ffBRKpIr3foIUzlUtdX792dnJ+BKcx04jAMfDDhMCpq4I3mGUous6lKkYxpFutaZpV1g8yo14JXVtnPciiGsRLJXRWF0UJCzmL3kKHu+NWelJkyNGSumq4LXGKSv1jgLYaZLIJwxViNEE8A37QBVrGukxeohJ10ULg451LySVU4wEOlq5p2nidDriraWqGrSumCbL5uJSSEAHTC0CVCK+VNFWWGoGBGC16ths1tSTpRIXsoSkHw4cDnv2+x273QMKhUHWytpJin86yzSOswFNK/qhZ7ffc9zv6U8Vx9jadLfbczydxIuIRFD0/cD+cGR/OLI7nAhacamk4Lipqmw4mYXybLjLwp3Zs9uuVmwuLrGTpenWDMNEmHpms0qZt61mYZDXpohqmYllsX9KA00iq7Ru59yxpKMP0Vk2QMU1fhw9eH7dcrMm5coHSWNKCsiMyAolJQGRzFuKWy48HMt9cT50mX9V7PXFay3mqVSiJQpH+GNkUxlvll40hYoKR4o4yJ8SApxOjqAc4+iojKSw1doh/RdSqHsp8J+Yw8U8P1bM4+RmfqfQEp4dpFmBtRPOSZh2WqbSOJkVx8XtPsBow/IcN8Xi/d5R0uzZ3ZbrGH9PXvhkbASFA2wcpCGKjdSuN69NIoMoOQpjSaLCZWpSWPBVTUw79hCLeBHis1Uxv+fUPd//KVqf56SM6P3Qef+ch1JP0DpPr+n5m8zUX5xw9u0yd+HJE7/DUT65vPbxfH1o32Y0f7bps1E0pFPCfC5yuvOOaRxEqQpSt6fzUo/SGzEipIg4ZWK9Cy38oDRkCMYSUCwpJEoaWro59Swid5YpBfPYlCrWJvE3ZlrK0Ugl7grpBk/jytnxQH5nmfJ53kvT8fmSzDst6wLxi7NrymX5Rjwd8WPcywTPOPai1NUPGKCpGzHqxKjni8srpnGkXa1pmg7vBpz1wkNrSZmqa0NdVwJDjEI7Nde8JCmF52Ms5EWsRYVKJQlivUqClEFwFqUVdhpRIHgipswoE4p5Wu52lWSlIirfCTeV/4gKlV6kciqlcoqftQprBLsdjwe8dTRtS9U0TJNlvdnifUDTUhvmCAa1xIZt27DddGzWEkE1WScdQ32Q0ggRQx0Pew77XSzNUUtkt7Wxrp5ENklAaIi46MTDbsdht5ci4UBVVxwOUlaBtqWuKpz37A9H7u4eOBxP0lgF2WdVXaOr6EQNycmsov4R8vOsk9pcpqqpa+kMVpkaO07UTYeppe6Nd2HWA895Xsj/e/xx8cfSCEFmqmX0dcIv5zrSkuwLDUPNzTFCNFJqrbMhaabPx0eSXxJwHXLHu3mNVX432eozP/lQRMjMe8jyammASZ+rcsssvpO9E4rvC7kbxDEoWfNxVCEsDH4ZL2kDXhFwef5DkACd08my28P2wtHUsrZGO6QQQr2co/jbIhpLFeOKTPscDwprDBk7hCCR+OM4Mg2j6FPeodRs0ErGn2S4fjS/JKxYoof5N1GnfNznoqfMlhnmhVngwxn3CHaKqdFJvycV1V9GBQk/0pn1ZHz9aNXKvx6/VBqeZu58GKK+I1zzHJ/OfPFDCCFjridBx7ls/8BNiuOPHtk0P3wmrOVGLcHtEpA+eTzaZd98fNPkfZerZ8AxhzWm9CQXPaFSP0QRNPFpAn6sswzDgLWOcbTShaxpCI0UDRTHREBXNVXVorSOzDm269Xi3dmuW7qm5u3bnp//zHGxqfnBn7zk46bDeQkRVlqhg5bc3OjNMQn4hwLEk2oPJeFegp1E2MsimMIYHzPZOXUrefyKmVv8PXurlp/Os5z5TOI1C3QWBUBmho9wK4qoFMW24ZWp8CoWNY7v5f3E/v49//Af/mfqtuXy+Suunr+ia2v+9X/5X9MPA1/85pf85p9+xjgOHHcPuHGkbRsu1QWT9WAM7TgxDBPH0yBA1c2ezWRwwsdCaSpZfeNrCNqdC9VFhOiDpIgZ53i4v2OyoxS8vLqmaVuUntvWpogqHSMOQpBceVRgmoYIrA3dagU4tDE8POwIPvBwf89+98DxsGcYTpKWNvTYYSQEi7cDEnFx4s3rr6iqmt/+5tdUTU23almtW7qu49NPPmG72bLqWrbrtaSyVYaubfns04/53/8bw2kYefPuhof9HjuM9Kcjp+MBO45SVBIIseXq8XjAKzidjkx2xNQ1VSUdF6d+lDkZRlxlsFXF+5v3/M3f/i2v37zhz/70J1xs/0q8pqeR/b5nGB1BV6hK2lu3XUfTNtS1CL3VSupLjOPA8Whxo+O0O7J7f8+F6Wi1ZtM0bFcNF9sWo57xoz/7S47HEzdf/BM3X0BwI356IPgpA3Tifit2yWNd7QMMKfOqQtAmz0FWLs6A0mOAEvdHBJSKaqEkzamv895OhJjTMEOAGK1krSVoJYbaaKzxqTW18088f37FrDvGZylVhJ8rTVVFFSBHQLHgN0pJmC8xMtBUKt7D5Xp0NsRoQUB7hY8dH4MqhH3cK23T4J1jmCacgqDEsEQI3N5PqL3j41c9t/dHtKnYrms+e2k4jp7bg8UHk9vpiqdzOeePZ+BDkkx4VEAil8Zh4nTqubu9QenA1XWgW12CUhJtE0KMCBMfuA9ewrPV3JK9pIWFcyFIzbjxdGI4HHHjGFPzZmN0CWVU9jwWh4teTxSdqbBKY2sXaSagdFikH5XArTRePTlLBe0kg6FLkSBanqmUpgoCcp3zBG3iNpNoGJSWND6FtGpW0ahYVPsuDXbpb2ttlGFhVvL/Nz6eim5KPCGB4nx8E1D6/4N3yUdkBoEQPcHCQ5y1YtQuPLLzNYHgHXYaOfUn2QdWDMt2rLFDA0phRdTGrlstRhvaVhRc4ZtSJ9MPK/pVixpqNmrDZlXxyfeueP5qg1a2MLAkJ8dcE690ziXlOHf0Od9z8X1DUuwyIyzmojjODfClvpU/T4rKGQ0v8FNSQpmxUciaUvqsUN4KQ2T6TPjJHJmdDMfaSGoywTGNB+7ef81//Pf/d9puxfb6JdtnL3jx/Jr//L/6t5xOJ7783a/44le/YJpGpuMR7Se6dsX1VY11HmX29P3INE30pyHOZYywLGSlz0g0OVFiyqtW0bAhBdyttWgt5SpO1ZHRTvjg6Yc+YqjnNE0X6UFu5FWKyTYYUxNCYOh7xnHA2om2lewDN3SEiPNvbm9jSYwdp9OJ00mKdB8PB8YedjrgrWM89QTnOfZHXr/5Gm0q2n/4B0xVcbFdc3mxYdW1fPLxJ2w28vt6vUIpxXq9YrWWaL2mW3HqB778+jV3d/f0w0miY7x0yfPBElyUycFwOOxBBarjkVPfo6sqt1Af+oH+eMRZy/F44Fa2Bn/z//1b3t6840ff/wF//tOfoBT0w8j+cGJ0nqrrME3Nartmvd1Q1San3qxXK4L3jEPPYXcv6UwP0h5+ejbQ1YbtqqFZdVRtR90Yxv7POe1P3L35DbevfwPBosKION31gj+fo5qlg04VhE5eVzJeECOnlAFITvzZ4HOOoXws0pMKNKNU7jKoI1/w3qMCkk5ejKd0J+aIYyepogSNM0aM3HmHhszvEvYp+cg8tNIYPX+noshPNYAD4F1hrI37Phm4dMSPQQWqVBPWSU1fif4hYrnZUJ+MueVhKiMZI84xOYsTLx9VJU7m1+96Hg6Bpm358Q9HKlVxuaroLzU2OEZv8ZglNn50PIFlzz5NlCE1b8XgezxYtDY8PNxT1zXd2rPdtmRjkw+5LlI5n2IImjNHSmyslMyLQ2pejqcT4+mAs0KvUTJkw9AM0s/kdFx5jUQ4dVWF1VrwiRYniDJqmcKtUtDA42la3ntOb1ekmsBCVwqJ6q2RPeuqCqUlnc66RCYzjaUoc61DxlepelmWEYkXB8GmwcVigTFVebYrfPvxRzc2lXM1A6ly+MmAED9LoOqbvC/fYHB6Km/1nFi/CaOVZ5WbPo0f5tBnHzu9pYJusyVSrnExd3qaJvrjIMWTp4rKVtLRZxqka5yuULpBa8NqtaJuaiG8KChwa/yq5ZaR3yjHdt1y+fyKF68MzkVjT+reFHTsUlQoRiHVZCkZW8nQS4NT/DvP41PzLHOztPYvo6mWM720UJeAKhNvuUFz7/flTptpp3hCoYSjlKRgpHa0OEKs3ST1ayaO+4H3798QgB/+6V+y3m5puzV/+hd/TdU0mLri7c1b1PFAfzwCI1VdsakbrPd4paiGEWV6RmvF4BgcqaCIMB8VUzSkbk4apFKp4PHMyF1U3APk+l7eO/rhRNt2NF0bPWkKdMUsqOR5JtrFpV2uAHiFdLFq2xalPEZrDocDwXv2+z3H44HT6cg4Doxjz+7hgcNuh1HQVKK0HQ47SQFFoWIBzKqpqdua7faCv/qrv+LF8xdcXV0QngfquubqYkvT1Hz06gXXL15yPPUM/+t/5P7+ATdNAub6HmenKABIGRb0px4XAr0xjGMfC+slI2HADlbCSiuDMwZF4Oe/+AWv37xhs1nzl3/+Z1jn6PuR42lgnEQpVcZQ1Q11Uy8KYnZdR/JiHvwBP3mGQ8/xbse0vaJRmlVdsW5rNmsxUnmzYRgsYRo43NxipwOT3cl9oiEggfrZ2zErAd+JB5e8qwBJicaf4otPpf7oWJ8IBVpXGdyklKVk7CyPlK6ZUlqcVzgvvhejEm9l5nv+w8am/DrCFOe3D4XBKTZd8PjMR0I8PcabzQpGCBBk3SEKRBTYaIzxHu91TlmdIw1kDBLqX+OUplcVHjGSaDTOO/Z7y+gsN3cDD/sTbdOwbjXVM8P7h8DtzkskRGVkL0ZB/FiaLEFG/igUf0NO/3B2YposYz+y292jjKdpN/jgMehYKDm98wy6ffCPCume/555vHNM/cB46rGxXkbIQOkxPw0hMfKl0cqgaEyFVj7OpSjfitihMaUpxFd9ki7ODSmFcaUMDU9gz8ToCmMMQSmRh1HZzOMPIab0Sh0s+dhnp8pTzyoLqYeSJpNx91/siAYE1GNS4mwOP4SNzgFpOP/gjzXO3/+eUXWMV2eQtEi9zbWaimeltBVrJ4ahxzsnMsAF/GQIU4UPnt1pYLQWUzVUlaTWbdZrmqbJ0anGGJTbMq061NiwCpbtpuHiesOLjyqpd1kYwXNb+YLfSsH+YnyloSmXC1j+zNMG55nWj+cpOxe+YR5Lw9TZlyqfM39/xnLmywv4vRA3xOjPiB90rPtXaR07SDrs1DMOR27ef41Smp/+1b/mxauXrLoLrl9+LImpxvDmzWv86YQeBnCWpmmoWun4a71Cm4H+1DONNhaODnlsWW8LUY1XhbNTS3qgL/a3cxIZ6kOgHwaMtUzTxPF0pG076mYVi+Cm9RXVL9VIAeEX0zTQ9ydQgmeMMUxNI1E4PvBw/wA+cNgfGPpBDDh9T386EcJE8FYMU9NEcJ7RTozTiPOBaZLxXlxsubzYcnFxwV/95cjz5y+4uNzy7LlEhj+7uqDrGrrVmsur5+wPB27v7vi6PzEOQ6FzeEJwBGTutBcHYUAM/4fDAZU7lYpiaHtJATudxGjlg+Mff/lLbu5uWXUdf/bTnwCKYZw49gMWqZFWdw1d19GtOpn/aDhp21bmzjnG08jQ95wOJ06HE9M40daadVvRbDqazTqWtugYTiN+OrF79wbvB3CSTqeisUfW44kNkz9bOrdnnriUh9kZo0qeWeoT8/XBiTzUsdmFIqVXq9i4IynXsnlm+XEuPyO/cCmaJuC9zul8wgUT3/Bn8unxK6cRLr+beZWOlicbPM55cnQlCUOJ/pEd9SbiuIihPHPnT8Ffc020UiaCOLCbRuGmiVFpZCok/TjguLkbUXcTH7/qCc5ijGLbKsYNHEZHf5Kun6YwKj4pV8Sqn7FemtdzfTRF7Ix2ZLADxhgO+wNt20rTgLUTfuZTh7kzvrxQSEvDSzI4pXkQvWoae8ahx7tpcc4jBJjGWvBiHd/LKEVTVWjvsd7hCGgjgRSqcHAInZzj+oSJz7BCKHXM+acKEs1VazHa24ihrElFhAtorkBFs5sERCQMdT4CMo35WNw+KrbfbLN54vjOxqbsKUxwYrYoPRrch69fEtxTXr3zIwvRbzjvKc+gyr8t7vKB68+f+fh+TylZ2cwU5sDnpPS0dQ2m4vpizcvrLT547g87+nHEWhgnUV68t9hJCvNKXQ/HOGhUsLQ6MAxr6gpC0FSmyp1ZliGa5TzMCvDSsCTMNXnoyjdUKnwAHKkMbOQeyZKaoU4EBo/n+BFLCU9D+qysq/PPBMSVFJNQSbbmnikNKCWKWu4Ik5RXef/Tfsf7r7+kXW0AQ9OtaKqKzz77PsfDHm8d2jxgA0xBUflAMGs666h2eyYrXrUQTgQvtZFSiauSVYZizKkzwjzeWHMgeIJzEuIYQiwgHjjsdjhrWa23bOpGwpnbmhT5obQA4WkamEYx4qRQUgHz0jVDrPOGw2HH3e0N+9OQjT7WjgzDiUprjKpBz8J0so7D4R5rHTpGGm22Wzarjoe7O16+eI4dB5q64Xg80rWtFNyuGvphyJ7Cruv4/LPP6PsT99sNh/0DwzCy3+1xzqNNNFwqaXMsoCa+nwsSIu6DhG97z2gMx+MBrRV3d3e8efuWEDTbTcenH79kxPH6/hZMrGVVAnWlqKqKtu2YximDbq00lTbUdc16tWKzXlFVVawRmOZbBLzSFVpVixVOFn9Y8rGQaSKdXtD+cuORgYViFiqlACk8f+X7LNhZFHSqfHb2WujHfKsQVvOQ5J4pVcHrGHr7BN9LtLi86dnPfOcifDcbReaT0vgkrFt+d/Omysa3pXEgj+LJ55acRinpphcC+EmiT50H6xTOK44nz7ubgfXK03YN6xXs+4DWLna2kloM82vmxUJwXSFjSkaZBDvnc62l3gaKvh8xhyN9f8LaMc5DsqeEDAA1sxdp7uTzGKAnp4L3EsXjJhsjgc4iURdA7AkgH/muUUgrXyTiyCSDVLEOAnIKPv7oCGfPCMX+SAk15G2VEl01UosneeoVsl/V4r+nj0d7BRZ76anP/uWOuOejlv2UsywdWZ6Es0gsNe9z+TPtgwTaF3raH3CUkuwPmx+VmFriHyF59UN+j4UBJ0SDU/xPKcW669AoLi46ri83OO+o7+459oMU5Y3ywdsJixfDZDDgNf1JE5yjNWCtik66GLWQeckSkSb8ludtBh25nqWPiqNfLsDZu2eqnz8rlN/EMz5kcJS5KeXMB046u3z5+4yAs0EZJXgtJANCYlVzdBcRTwQCVW2Kh8j67Hd3vPnyt1RNx+rqFaZq6NqOTz/9Pqf+xM3bltPphK4adN3hvKfbHBjGifu7W7wTR1kYRiZrFxh6dpTOfD2kaIyEoQjkWjfe450FJHJ8mia89xwPO2nX3nas1mvhG0XUinOTRH8OA0Pfo42iqnU0iMZuntaJU2CcOB4OPNw/cDwehQ8ZI4604YQCqmh4d84xDNLZ+OF+zzRN7B9WPGw2bLcbNqsVu4d7nj1/xjj2NE1N35/ouhbrYLKKY3/CO4dWisuLLT/84Q8Zx553b1c8PNwyjhOHwwnvfXwXh0qGW61yhJp3HmcnKXaupE7SMA48PNyDCtze3nJ7d8c4Wp4/v+JH0+fcHPa8vrvPvNZoU6SoBuqqhgB9lXCQoq5qVu2Kdduxahq6thHHl5O1k9pCBpQhqFjdNsqMkmKXFJ4MKBFbFXtgVr5nw0uuUZs6pGZ5pxZ3n7d26fCY6W/x/AJHaaUJasZB2bxT7ks17zlRymWfK/U4GjKN7TzKcR7CUpeax5fof8mnSgyVsGEobqy0Rvk58inNRYi/hJDGM+/DxRFlsKkr/GRFzwg+mkY0+6Pj9v5EU1u02XCxNbgDqKM4mIMRiT6vQdrcaWnSy8cx5KHHdUjvnuFxXJOAFMw/7GnaNc5bNEbwuw8Iv/eAXqxB2b05R4/lcYj+4Z3D2ynrTCn6aLEyj3Rv+TDZnQRDKSqlQM/YJdNLgWnF3xc9Z+obJG8IZ5RRjAGhTZ3mSoms0wlDxb/T2MrXOJcj509R8ySRBOdjKv3m4z8hsilJ1G8HI7NuMyOgZAz4rgan3+dYsrDfZzrOjhC3d/bKPQ4ZC2GODAixOKrRmqvNisYYfvzDT/iLn34f6y2/+eprHvY7bu/2vHlzJ6l54wmHeHCrmOO+Gw7sNYThOVfVFcFrgq9p2462cVTRe4dLDLgEzjMxp4kPITY6D0GidUJKWxEGabJlGanJk25wxhR1ThucmZ14t0OeCxDD1SP8rGY6KHlMOfblOsf87sSHEm/VSopKysTjCZhYl6gsZOd8lYFUbSSE8f1Xv+X1F79htd7y+Q//lM32iu2Ll/w3/+1/x26349/9z/+ON1+/ZrSeYRLL/8uqQWnDzc0bTPsbhv7Ezbu3HPxODHfRQ5eCA2IjpTjuGLIavOS1+8RQZZ2sndApfclJUcq+P1JVFR9/+jnbiy11XbHdbKibhnEcGfqBcbIcDzv2u92iE984jhLxpDwoB37iqy9+x2bV4jCMVHgvHfvub9/T1DXm6oKqqsQD6QK73Z6f/cM/cH9/T4qo6FYrfv2Ln3N5ecn3vv8DfvrTP6VtO9bbS5q2ZbPdcPXsGc457u7vGIYjz59f86Mf/7cAvH8j3ejevXvHz372DxyOR47jQD8O4B2TlTpbdS1FK73zDMMg3m2tGbVmmkaq2rDb7/j5Ly7ZbjZcXlzy05/8hOfXz9j8w5r3uwcmH2hi6twstGC9XrNarfHWE7zGO6h0Rde0XK43fPLyJR999ArTrXA+4L1CgFJA6wZTdQQ3kTxx53vkTPubUyCAoPXy9DQoUrOP2Vh9fuJ5+Hc29CT6KnSjfN8gezvRhRgYo8BOFySJWOw/kG5pIV6bwqtzRxbmXHSNXuT4e3yO9ptFbWGADYEQ5vobOZIlpYXFemneexw2yVwBUyoWdVVgvMa7udijQi2ywHJkWOTdWsXGDE3NcR84HXqsC/STYnKa1+8G/uPf33B10fCf/6uOj1+uGJ2jfjvigiag8SnCSvk81sAT/DaB4zNyKDV/rQxN1aEC3N7e87Df0bQXvPzogbpuMbpFq0qiJ4N4rXVlclTpOI4Lkaa1yvVExBjlmSZLf+o5HU/S+VGYbMFfZ2qb32GG94nClZZGFdZ7+mkUHgb4mB4pdS4iqAliRF9Gv50TZywiD3PkASAh5KmygBi5am0wIeBMFfezdGmqUBgMWuKa8ME9aRAt6eEpI1P+7smr/uWOpwxji++zvJ2VmcfnzDstBQf/JyKffNf/FINTWm8fYjcy7+bSgiEpPSHzBh8cAYneaGrDR1fPWLctn3/2ih//8DPGceRn//Qbbu7u2e+P3N7txFnXT1gCpjL4VtIq++MBQkWYXvLp81c0bUOgwlQmF5lPtXuS/hNCEPyT+FOe8VgINYjH3J3TmyJHMpT/z1+rOWV5/i5Q7sM8Y6HASWEZabCUMU+tyWxiCsX+ToavbADT8e/iPaqqpolRPUMvHViNaaWltlcoI+m8X/72l3z561+y3l7xg5/8NduLa55fXfPR/+n/zOnY84//+E/c3T3QrTesL65AwThNOOf47a9+wd/6fy9pXXe3uGPsKFV050uwNcQmF95JYXYfJIVaorAc2lsCHiaFsoppskyTpa5q3Ghp246PPv6Y66utvFvXoauK/tRz2B8Yx5Hdwx3H/Z66qenWq4ihJoZRymEcDwdUCLz+6jXdakM/WrTStE3L/d0N79+9p21qnj27oq4N48PAw/0du92eX/7iF+wfdlLIvq7YrFf89te/5Nn1FZ989hk/+pMf07Qdm8trmnZF26xYrS/ECNaPNMbw4nvf49/8m/8CCPzmV7/mzZs3vL95z8//8eecTifGqWeaBmT3DygUTdNQ1w3OWvr+iLMO52qCr3Bu5Ne/DXRvOy4utrz6+CM2qw1/9Rc/4X/3r/+av/mHf+R/+P/8L3ig0obGVIK3jdCOWRlc5xn7QYwHXrFdbTH1ipfXz3l5dcWLiwtOTnEaA35SBGqpHaNqAjUoFzl3DMNOaiQ5LkeMzSH9FfePaOdR39Axm0FwnuCGdKVQ0qwcK8pczaR35g6qEeMmvJDoMOEXnTrUhaXekwk1/p6a+EBM1yZgjMJoMXxI5FM0zyQHoJrvmR0KBc8t9Xs5LzYpYDaGaaVRVUqtJOobIZY6m+dBaaknlQw26UV9iI1w8fhY4uI8+lhrTdW1aFcxugP9IIWnB6/xQfPl24m//8V7tpuGzz6refWyRb/1fH0z4q1IaipzZmiKs7ywIaiCh31YfimtqUxDCHB7c8PheABVcX39HFPVBJ8itoRWxOgndbSkVMSU1yEZoKtKMJTgF4mUHAYxKHtn0SYioydq42UDXjGvCmkEgFJQVVjvOUZjqyLhJpNxrFYKKhXXxEcnYZqTdPOoJ4RiX0gIW55PjdCVRKjK830w2KaJeFsjrTDmZk/JULmQ+bNQjAZMwaJpnVQsp/P7YIzfK7JJoQoF47EALIlkGTYHofAO/7GOJEgfWzYWZxVjSJ/N5y/B3tN3COVviuy5Wty7uL9Siqau6aqai/WaZ9cXWOe43+/wwTH0E3Ul3loXRFfSSiySEFOtrOSNWgfOCaFLC1XxQGml8KoYnSrnfEkE5WvPWyXMtPWBCSi9x4t7Z8a4LNymFFERW942RAvTEkwvgWy6z1Pgi7OrREYlRB3yplOktJylEq61IniYhp7D8YSbLIeHe1SAixcvubi8BmVYrS9oVgeYHF47UJqm6TCm4ng60jQt3jmMqWIh24CO7cIT45q9BwJckydXxdaZszWbDHBTPQvvnCjyxmDthDGaujI0bUPbSleIYegheOw0MY0jpjKFlzJ5iEV5885Jfv1hD6aBZk0ICmcnxnFAim26rMh6L/fd7/c83N/H0HVPfzqxXrWcTke6bsWL5y9p245hctRtx+ScdCzxXtq5O0dd1zx/9lwi9nygqxuC92wvLkApnALrRVF03maAn4R/qpOGlzxxqxTDOICC/WHPzc0toGjqiqurLRfbNeuuY3AOo5Uw6zgXyQumtYpFw2O0hjaxGHxN17Z0TRvTMGcqzH6AMprvnB5Lei3+L4JJF+fMER45Ei/MHt1HyXFPMaRHDywEQ7k/wuOLHrHJrJgmVBPyOKQ+SdxPxZ7MnrN0XfH5uecmDWYBMiiFZeIdZONF0el2MQ/zvkrPKt/ubFLC/HlQMdc/zrcL4IKK7YoVwxh4eJjk2d5TV4GqkkKXRgVsTO9JAlyp1B0nrq1KRhoxupcyZmF0ivOYwuEhSJFwD+M4ME2jAJ+qjiiFbFDPXs0w135I812u6cz7Qqwh4cjh3d8qfmXW59NiqlrsNKcj4E9FJ8ublhi5BKvn3uJMSWcCIkWzJJZOHnIyaKW/ClnxaPzncuNpQFj+rZ74/J/zCOXPtG0L8P+U462cqvDUh09/8A1P5xvOPcN2T9z3Saj1jfgrLF48Uc9C7yDxfuGASoE2mq5rWK9WXF5seX59xTCOXF5sxHhhHYfqiIgIcQSq2G2QELATMdrF4qPyMStwiZYeU1IZ9RmKgSd8l6K0Hr1iovmzGXxs7EwK3eMOTTN+JPNEKD47Y+xLUpnfKCWh5bGoc0z2xF6IGMqruebJTKAzUx5OR4ZTj7OO0/6Buqpp1hdcXD6jqnvW21uGSbHeXrC9ugalmGKR3ffv3lE3DdU4xqgZaaueupFqZaIReik1waOCiynexZhAnLxKSaORaSR4zzCcRPZ7R1NLOn3d1Oiqiq3MY/2w2KRBm2XkQ1K+UqTTMAycjicm5zOeTFFMslaegME5Jw7Boeew37PbPQj+0ZqxX/HuYss4nKibmqtn1zRtx+igbgdWqwnvtUSmO4dS0tDm5YsXaKM5HU9Z1G+3X8v7nySiKzkZyn2UmsFYK+lNTnKgOZ1OOO/Y7ffcPzwAiu99+hnPnz3j8sutdBMMIaZRntGwUugQitpGmqaqaYw47Zq6oqkMgw+o2AJe9sacrkUo9kCxf87lT4m/Zs0j1pkpaq3N5yY5OZf5WJB7sWWTUSfpLMnZx/K0+T4qRYtGOZxOVKUJt9jHyVCQ3302/ma8Fa8qjUxPRxuHjB2W5yzxUOIXKdK4xINphHm8Z7o5Jc9bGNVmfqljui0Jq3pwTmMD9EPgYT/GsXi6FupK0u3J2GWxUsvnhnJMzL8/IVcCyeGqISjGccIjtVids0j9RpPnSvhsivzyeU+nsUjTrqUsyGVzYsZIwm3n1HHOv2cKTv8PSFy6xBvphJHV+RqzpIuIr0tkOzudvgHnRFpK+mA2KKl5r5QYavEaTxxLh8q59Chl2nc7vntkU5gXurC2xD2n8u/FSJOEzG+2fM3zQYaz384E4ncb4pPHB6HVo4VLdwlR2Ebvu1IxncDgjcYrIQYf8xZ9ZO6V0azaltZUfPT8OZuu4/Jii0I6Uby4uhbwtLnk+uKZeHkleRMfHNaLxfhht+N46llvV3TrjnbVSGFoiF2AYliwNnK9noUBFEwovnlQKhcQSy0Ly9kJBVHntur5X2Fhzx6xxKDjd1oGNoeWF8wV9ZggC+VRqfNVe7xahZ2rAEEpUkIs9qlWgzYyT2g9d04LRjqktB1rJefc3b5mv7/h5CYejkcG65ksdJvnaOtRk8vGk2Ea2B9O3D3sxdIdoGpaGlNhTJ0LvRsTDRerTrrmOAFt4ziyf9hhnc2GJvF2SBQWqQBzCNhTj9KK7brjT//kB3SrNZvtBXXd8MUXX/D29dccjydOpwPDcGJt1mxWK5RWVEYzTRMGT60cTV3FwqlAkJTN4GHojxx2D0xNTVuJwWa3O7DbH9jv9yigaWpW6zXrzQalEGPp/T3v3r3h8mJL2614Nr5itd5yOh54uL8H4DQMktbQ9wzHE01T8+r5cz599YrPPv2Ezz77lGEYeHdzw+3DPcfTkbdv3zKMA8PQMwwj4zAwDiPjONLUBuoqehbkeH9zy9/9/Ge8fP6CH/7ge6xWHau25j/7s59wmia+3u94uN2hPYTtJpZrEEJt2xUvXr5i3F6yUZq+63j16hWb9YqubaQbiQbtAycCU3D0pyO3t3cEd0I7KWypY5HiRO2PjxK+pH1ZAIJUXyEWu/Yh5N/nW8x1Qx49IRo/8reFlpMFiprBzHmEFEnhUmmDiXh0TuBarEgld0reodS5RBE7lMxvn0C4UnoxHyG9U5YBajHG9IU2RbFyiVkpSjKGPMxUvDODici9TAypT0aL7NlP/wux4GXXYJzHa4VxjskGXr939NPEu5sTV5c1dqx4vmkYas37g2I/uFi/oFrsX+FBPhuPEoBIwO+RwSMSgTKGgJc0N+vZPTzw5vUXdN2Kly+/x6Zp8pqH4OmHE6Gf76IU1FUjEU+Jx2WwKF2fXIrEUNJ15jxPesmSZ49ZAaclokE7FIFWG0JVMwXHyXuCV1jvmZwoe2KMikbKM5VbhaRgI8YzIv+LEU05vQo1d4+M3mZNqtUQQEVDKBL/EsVOEtkxfWGGtIs3DGefJk+dXqq1/5zHYl98w1lPf7o0IHzT3Yud/o1XPD6+aSZKYB2WH5+dle3fkc9pFTBGU1Va6MMFlA9YrVBePKQuKgGVqbhYb1i1LS+fPeNys+VivY0RgS2ffvQxl9tLDseej1/tZf/FuZn8xDD1WOfY7yf63rHZrGjamqqpUEYiFSXSonyXpEDOSs+MoeLMpC2m1BzgWLz8HGlJNmQu0vVi+nzGaUFnXSorEgoi2Uc+Mo9FhlM+j+XvS32JyAbnL5/QLmYcFyMoTYU2Hm0qvHKoWLIhBIXRFQpP03YYJZ+/ef0FN7fv2T7suDiccB6mEGjWG0zbgalxzvGw23E6HXl/c8Pt/QPD6YSuai4uLtGmoo71trpuRdM0NE3LZrNFac0wjILBhp7b+3eSbuxl8BLpGbtFhShrlGOaRjTw4vk1/8W//leYuuLYj4zWErzjzdev6Yc+G6/quuJiuwHAjiPeWemwu92wWq2oKmlhnlNrpon+sGd3d4vtOjZtRdPUPNzfcnvzjqHvWa0atLqk7VasYjHw0+nIMJxouoaL6wuatuM0jDTtmrpuuGtuUCimSQxiUoh7L3UxX7zk1fPn/PD73+P73/uMfhi4uXnH/f09x9OJt+/eRwwluInJSRT8MKJUoKolEsnHefvq66/5n/7nf8fLF895fnXFZr3iarvmX/3Zn9BPE3vneP/1a1YXG65eXOcaegFYr9ZcXV8zrVZcasNGaT568UJq0wCdiTTvHG4cGPuR437Pw/0DWjkuVmCqSjITkjOkkBtP4ak5QicW89dzzcBYfQhiXdC8l7M+lyIySn44K++zgcXn71LaVAYeBQ5buvKXXDmAmLwD+DAbtXXesPP5GU+lRygp2L+IDA6xHlTWvcVgpIpOa8kQbVKUC3O6fSDkz4xWqFizMvnfSHpcSHMMFLglG5uUIigd9Zu1lDqYAtZDP3i++HJkdxH49LOe6+sWheayqxi0preaaQzR2WtQKjkzE2aamVYyGTw+1OJ8EzN8h35gHOHh/oH379/Rth3b7TPadkWAOA+OcRyEvWuZp1TLLTeGSGw5BImMyqRQ4OS0fDMhlKSUJcn8M/JWJfWyGqPxtSGogIvlQaz32OBRQWHieqc7pAcuJJEqsEzx06c6iGrG7TootA+YEEsgRGzqfMDpQEh1UFN6YDTOlUEL5SsXrxplpTwr1cH7tuP3TqNLC04R4VSGdaU1WAjvMG8IuWIe3NOGsadh07dBoW/67hyqfSjsvvQipyu1UlSxSLEzcbNE4Z8I1HspzNw1Deum5cXza642W7abVcyR1zy7uuKKwPMrx0cvJF9dVxVaG4ap5zAcGKeRL782qLsH1usV7aqh6RrxvsSJVNqgtBewbMTSPxucZN70Yu5UtvdLCcgPbGeVg1uLz4ghf2TmHgIxzegM6PiiBsd8h/lHydDyN8uohfPrJFqgjAgp1yh6+WNHOq0rJDQRUGIUVKjY1k5RNxpT1Thnub9/i3OWh+OJ97f3qKojdK9oV9do59HWY+1EP7yjH0aOp57dfs84jmiUGJualtV6K53gOilS2nYrrq6uMVUlIczW0/c9N+/fM40jPnbTsnbieNhh7YSapjinnjGmlG3WHT/+0fdYbzZ0KwkF393fcTocOOz39Kcjw9CzXnWsV50Y2pRiMAajArX21JWR8NC0Kt5JIcv+xGH/gG1q1rXG1hW7hz339wcpmAlSAPz6mo8++ohxmvj66y85HPZ0Xct61bFarUFpqb+ARHsopehWnRQTHkfG0wkDPP/sJS+fPycQ8OEvcc7x5ddf8+79e25ub/n7n/8Du/2em5sbbu/upBPEONIfT7BqMAacN5n33N7fcXd/z939Pf/67V/z7Nk1XdPwlz/5EYd+4P5v/543d3tJv8nGSbHzt+2KZ89f4saJDTC0Lc9fvGC9WtE1dX6XoAI6elT7vuf+/gEdBjZtkNSCYo/5sKT57KFmVnzniLY5hxrAKwndlZ5gSx416xchG00WPjiVgE8oLpP9lUKC02fZIZB4dQIuhaGCENuDI10tlI6tVJXKz09KTE43SeNUKTxcOnWm78quU0pJZGxqSZuAmBhvZJ/qHBUzAzHymBPwEV7oSQYJfTY3Tx1SF6/uarSTwv/GeiY78u52Ypjg/V3P8/sK72qu156xNtwdFePkaahRqopdagphH72pZUpdMjjldy4IIqUE+ABuFFB42O149/Yr1usN19cv0eZSsLJPXSsH7DShtRS/11pT1cQ8fPK/FF7vI/hwwQFeiqjHOciRTgl5ZKSUIiJL6euJjUpoIs3joLcC3p2TtGyUota67NcS6eTcjzYjyTSeDDpDwvSzrCLEtDqdIuzEcCmJVnL9Agj5D1HA409DXKh/ycimD4/mj3HPmUeQZfx3fdKS75zfeXmOevzV2b1CmCMUU7SiqTRVbSQCI0itwqQ0ohTOB2w0Nm3Wa7bdiudX11xfXLBdbzAYTFXx8ctXksIRixoDUstSa/bHPTcPNwzjyLv3e3b7E+tNR9NW1HWVa6WlBIJscAoJ5M9vCmeYJDraSm98xrGKHH1XtrY3xe+Kmf/Hm0fFOKmvkV+WfbHPxjDj60LAxJ+Cz8qVWmpHC4UJohMi7XlRXo2u8MbH+kap/o/IXal9omhqDabGOse7t19inWd1OLE5TZi6o1s/o15vME0LpsI5z8N+z/39LTd3d9w/7JjGkYuLLW3XRsPSBVVdc3F5yXq9Yb3Z8OLVx1RVxfF4oj8N7Pf3fPnFr+j7I2M0QE3ThHcPTLnQnRgb3DRiFTx/dsW/+ld/gTYVX715x25/4OHuThql9FKEHqCupFQBwOl4ZBoHuq5jvd6wWnWSnuklysFbi58mhuOB/f09bhy4WDfYRvDZ/d0N3nvatqFtGy4ur7i4vGIaR15/9SWn44Fu1XH1TAxR4+Ro23VUfiWya7UWo9s0DBz3B8JKugE/f/4M5x2j/QustXzx5Ze8ffuWm9s7fvaP/1hgqFsCMIwjfX+iqjXtqkaFWGg9BN68ecPd7T2ffPQR//qv/5rPPvmYi+2Kv/zJD9mfev7DL37Jzbt3PCPw7OUzMQ5FQdOtVlxeXeOmiZd1w1VV8eLZM2kmATQGKiPyzU89Yz9wOhzYPeypq8Cma8VRjhNMGgIpgOFpg9OMVXIjJa2zg0oHLRIhRWKXQgyY5XOBnc5+LtK+4/4s5cPs2pudX4vxFfvYxxqdHhWj9mJ7+yS1wlLvTVenot4JViw7x80YUhxWcymUtP+l7IGODrAk3kPkVSE6A8E4JXwmDYaoMX5AFiZjuVbi5OpWAecCXnu0DQzjwJevT+yPnt1+YLSSZrltLbUyjLZimsTQZOo0p2JAI6a6peeU87EYQDKKkXRSCfIY+1Ei9R523N7esFqtWa0vMJUWfGJdNEoPWGup6ybWcQtZn03zkqYj/VNhxr1KJ0waMfUcfpQpqTQ0+UTBsW6XBppKA4YpOIbgsV5jgxibdMJLocCLzDJm5uYKV85OxomzQTLhKB0kRVJDTrcLeHyY1SKVAb3cLpdBOBfuavmuxP0m4vu7Yag/sGZT2syF4eBsMOrs90VO6lnXMSLInQ2cKi9UOhQffqEF63jCiDQP7ZtAVXG/gvEk4n70tIVF3uPxWGeZhoFJxTQeggCjyaH0TIwS8h2ZmA/ZAJFCq40RC7KpKrQxuZ3nkuTI2L1gmfm7wBzFNAOeeaMuwFWhcJYevbxc0UBU6qWZmalyVktmHVikTuZBFkwzEXo5juIC2fTn6z4LpjKMNBVCM1UVLd8CTudi4WWcBGKU0iIQRhs3nfUoHM753PFkv9ux391xjPUFjNF0TUddG+o6GZuk+HRdt7RtS7vaYIwAa+882tRM1sW0yAlrLVMspI1SjOOYybaO6xSmiX5/AB8YBovShuPpWERxzbWahv6E1gZnJ1TwMsaupYm1XpyTWhkuKKybuwJZazkc9rF73YnT6Yi1Vmo5aWl1u95sqMZRiljGXOe+76Mxw0VDgUQCBqVidzwYegklt9PEbdeBF+OoqUwGA10rtQM+/eQTrk8ntpsNV5eXHPZ7tPMcDofcuaGqKokWC9Ju2DnH/nDg69dfs151PH/2kk8/+Zwu1Ky7lu2qo9aasR8E/K1i21jvGPsTbppoqoru4oLtehXTMCO/UqBCSm+MHs1YfFGbWrwz2fMUzqlzcai4WWahthTqc+h+3jYLhqPOdtasUJYPi8qlSmrGnMqklcYrvygimW4081u5thxHEkioIvc8e1LI+24GiElgJ2CQ9nDIvH/mTsX8qDIEnMwbVAIYxb2yChWF6VNKYfbUZx4z3zfVNwKFNh4TIAQDTuO94nBw3N0PtI1is+qoKkVTeTQWhZ5BCDPPE4N3WteztVdFShmPj1R7wjlPf+rRynDqT6yGE8GL4S8EcjqcAMq52GOI07L0QM2gPHntsuEhznG+sASkeUwlac3zrxVURlMFnTv+eA/j5CRiRM90531KtBOFXoEAszBHUM0LFtfMz+BPFe+jIEc7uaCycuxixJxJUVOZREoerx6tSXl8OxL44x6hiAj/DmeXF8ZPCnlZysW8ZuHRZ8sHfhMo/DbAmJHck4/IK1aAdvX4ksfrEfdUTuO2FjtO2KrO7+u8YxgnlFI45k5Dif8Q5lpgohhoqsrkbqQpCoL59MVbCC5Sy38p7SDykOB9dDCq2AGzWJN0n6ygzrhxYWjKczDvBRV594zayvuV805h3CZPbnpGAQ2foLEnJp1ivlTkX9G4ZKoa7eWnMVVsVGDjPvPZuaJ0lUdvbSAoF2v+Tbg+1j8aBm7ev+P25h2no3SOapqG6+fP2Wy3hcOuYntxQbda0a3WrDZbtKkIGJSuQSmePX/FMPT0pyN938dI6IFAQI9jYmbS2EAFprHn/vYWZYw0STmcOJ1OmY8CEGnudDzGrkxe0sEaiVDvug6QJiaTdVg7Yq1gOO8Ex+13D9RVxel4iOnQirbrqEzFer1is1kzVoamqZkGQwieoZdaS9utFPomEGlMOjIqoO9P7B4eGIdB6mk5Fxni3D1stVpz5TyffvopV6cTm82Gy4sLDvs9uMDxcKRpDXUTI/+V4IBpnLCj5eFhx+vXb3h2dU1dt3QxImTV1HR1jQHGYcT7QFXX6MpIY5vJEiZLt9lytd2yiRgqUZtOcxvLPXiXGlUotBa9RmRL0fAi6XsZA804P8myWf4VneiShEsEnW+S9ls8K5x/rvLny9/nMeRnxojqEDTEOoEJ2xFCNFw/LiBdZo3ALPvKUgKZTaZnkwwOBT9YAMA0/pkHzBiq/EeWr5T3S7oc87nlUToHS71Q+KLKgQ9GgzcS8e68xlrF8WjZPQzYqWa9MlQVPPSO4Kf4DvWZXC4x4lye5bscCWOoqHf0pxOg6PuepmlxNmAnlzFDaoKQdMWZrxbvHI1uc1Rq2S2xiHhLZTUS/gp5QPMiFUYjkAjtWlRSRudQSMfDyVqq2KyIvGY+U065Oj7ebnbzFk7C7ACZqTBKn+z0IaV1hrlQemrwkiLMz41NSV6lNznX07/rev1BxqY5uunDEGUWkcvNpx4ZmuYzypxVcdOoszOWV5avGc4+T0fmGx9+nQ8eKcFMAG+KZopPEIRE8A7rHdZbjscjd7c3uNWa6eOPCesVfT9wo8gWQKXEeqmCbNhx6HHBY/3I5CS0t6lrNpst6/W6CAE3EeCULV3lxYKKXeYIWVkV+C0KtNaSN6qjppTAQo57ULOQSJbRVDwzgabMoOIc5BayeUpmRbVclSQAQvQ8KaUwwRQ3DssbP1q5D6yNknxbua0GY6irQNet8d6zWtd0XS1twMOJ4CUVzDmJxDHNCq3A6Y7DJCHGmhEqpBOJlS4kv/7Vz3n7+ktS6lHbrvj4s0+5uroS4dxtYsRBizHSPrdt26xEJyD9/KNP8bENbd+f6E9HlDacTgfG0eLCDh1gawy1Vvjdni//6VeYuubkA5MP4hkyFeu2o+9WYqi0E2/ffI1WirZrqZuKrtnw6sUzKRZZGfrTCY/CKoP1XmguhmnfvX+Nd45hdAyDk3oC11e0bcvLj17x8SefSIeV8UTTNuA979+/Zb3e8Mmn3xMDTixoF/AMp55RwXA6sXvYYbTmqy+/lOL2bcvF1SV1XXNxccHV5RXPnj3jpz/+EwAOhwPH05G7u3v+7u/+jvv7e+7u77i7u8V5AbLOOo59L0XG+xP/w//4f+M//u3f8G//zb/lhz/8Ie2q5bNXzzEKjtZy9+4WjOblx69Y1zWH05Hb11/ireVPPv6Yzz7/hGeXF7SNsMLs8PGe4TTQH0eGYWKyHlUZ6u6SrtW48YgfDgvFOZwTaCgUaKVzra/5XInOy9E/SY+gAD/x5LwbFCQjfNqvAEGVXefmOmZBBSoMSahbK3UeSqEY4vsGH3LrU+sBB5WGuoqKWsxjf4qZzgobuUV1Nhaljmg6AbNkwJi7Y0gqVuqCIzzOJfdLMiBE/mWMXvJ0Rf4+pVIlA33iZSoaLNsgKWYhwKTlXZwTT90XXx45Hnt+9L0rfvj5FUoZXt9abvQkKVsuxO6TCm1S1zeXlUadAfDjCZq5WYrPkaK8IVRMo+P9uxsOqxPbq9c47/BOYa2s4Xolnm4djcg6Gsy8d3kZxRAacsOAupaUXqVVXG9pw6timH5q4hDs3M5WFcoCiOfQeQtIAc1aaYJRjLE70TR5rO3xbc2qqtBaiic7H4vA6idmIgrtRKk+Fk/1qeNLnEsjM07QITe3yK3PQ6CfRmkrrCoZV+SzKW0zgSJdLdPkEq2lY9FV7J/5KA0T+f9PgpPHY8oGie8MZp4CgX8oEvqWx7CEt0tMFkCFLOLzO0R+J7wHpskyDBPD4UR/v0dZKeQa8PTDEFPQ5zbaLl4XCDjrsgKdygW0bUtQFd1qRVWLcouK0UQFcE6jV0h6hUmOvdLopACnwaWU5xhPGoqozRgtJfxG7pqLkOcnELFZ4nfyXXKDFRozaa1CSM9Jn0XezmwMy23WE0Gdg+QzPOZTqkS8Pmiic66OWFC60q26iq6tpHubl9oobhIDQlAG026lQ6teMQwe7SyOA6Ya6PuB4+HE8bDnb//mf+HN11+xXq15+eoVq9WKH/3JT3n56iNMXVO1K7Q2NF1HVTfCv5oOlGLsB6ZhwlnLy48/i1Hptzzs7iU6O8Bhd884TYS9pGeudGCl4eHta/7mf/33BBSvb27Zn3r60xCduWIoc95x2O+Yxh5jNKtVx8V2w/XVJa9eSW1KDzzsHrDWceoHMaIdD4x9z3g6sL97B8Fz7E8c+xOr9Yrnzz5hs92yvbjk8vKa/nTisHtARcP6zfv3dOs1z55/RFPXOOuYRosncDpM9EpxPO65v71FG8Nvfvtbmq6la1suE4babnn5/BWvXn3ET/70zwDYPTyw3++5v7/n7/7+H7i/f2D3cMfDw03sNjyJc+N45LQ7cNwd+H/8j/8vfv1Pv+Gv/+qv+D/+N/8HfAh89fYt4zDgUTy8v0MZw8WVGANtP9Lf78E7XvzgB/zpj3/Auuuo6xlDBSBYx/Fhx/7+IPVFdSURjs2auqmi/Bkf02zelbL3dCXNk7TSmLrCaBPrSiZ8HXIHxbjFED0pUv1iDzCfE5Vvk7BTcoiEuZamroxEhOGpvBhenfWQ9uQCc0GKTFJIhO4sUWcdV7owhwWOS4amhPsW2s9CuU2RVbMRKDdtUUrKQARifV8p1ZHKdEgKe4iOoxQVXejZ0ZKRnFMqGmYCs7GvquQdXWzkop1nGivGvuZ4gq++PIKdeP58y/c+X+G85v448u5uxJgORZf1YDHap07coJRBpwJu30lOSUaLCoqhH3j79i1t21HVHeM44qxnmsTRenl5ySpmXdR1nXG4c75wAst8GC3lUaqqpopRnj42MNEmGqCiAi3yK5QLmNdFlstL3ScFbWVodY2eLFNcx3F04Hq6pqZdSUF+qbfmIz4+yzVaGIOEElIanfc+ZjiRx6BVoNI6dz2fnGAp5zyjl1qltdIYpfJYfcLuxGyFJLPmQeT5CvFe3+X47gXCF0t8/sk3XLPwmqrii/Nfl4rS45udA4Snx/Y0vHpk9nr6/LPdnewhiQmoOI6cU1v87uOmmYaRqaoJXtzSznvGyUqqV9xkRhmMmg0RzllcsEKUXjZHVUnnFB07pyzHqGb6U/O8EfllYSKP7yGKnKdgaEEq18+pjTMgKi2qjw1Ny4J28rhZe8gKb7nGIW2Mp5bgm5jKEwYnVf5aMNyoXJtYZ8CYCmNEKCmtY6QZ5FpTxoDSBAw2xpRq7yGCXDuNTGPPYb/j4f6WumlpVyuquma13nBxeUVVtbTdOnbGaDCmzmPIHtE0/JXQialqdCyw2HSddKGrKkQ4emqtabXCTyOHhweUMeysY3AeO7lsREjA2E0T49BHQaCoK1nrtm1p2wYdrf5eaZwSxuBjQrJzjuPxiB0HJguTE6Hf1DWrrmPdrVitVrGeQscQw8/7YZC5DS4qEDP9eS91tJyVVDhQcn5VsVqt8CHQtC2r1SqmH7Y8u74Sz+DpRD8MXGy23N/dyTmVkYjBaeJ4PDJN4iFxztEPA2/fvZPueg/30lWirlh3HRfrNfZ4wO5HglaEyQpAcJZp6AnW0laGq4ulV64gWnyMRpMwZoEAumowdUWwoxgekqKuzoo3CmEye49SvSE974ek8C8MtWSaFtBSeM3CWXBrNhg9JaBLQKJzilsZ8UO6shAuefuGIgORwvCVLkqGYmZBVDhAFvO4+F2lPVEAzMRb1DIKc3mbFLF09p4FL0rnlT/TXEKc/6h0aqOl25mV/P0QAoejQ6uJ4ZWlbUAbRVMFqljcXwxn4jgQEBayIphlwtnYF3Rxtn461iLyfsL1UiC8P0mEofcaZ2Wft7GGk4rj1hFQ+iDA8RGYzopyAjziNaRwKgSlcsfEUKxjkhvplmnsOtKvCQngpZpzDpu91Amskw2KhVllXksoaHkpS8tl1SrJJJULXaa19lE5CCZkGk77KHn6UqH1DADTs9Nn5/vpn/kImeTnmZHPZ8wzT8G5T5x8ZZzA5d8UADcZLii+lDOe+Gx57QdGzvkaftvxBAwge4UXo4ipJ6kgs7XYSSJHQkwNcN7hR5F9VUwXl/oxsc5bNNanVAIQY3NVxU6NWi/mpkAjxeBmHJHATrmHlAYVRMlIrE8h6TshYbJilkoem3HVApMReWHINqIQ5yQ7c7OCOmOoNGO5nkzm8WevExXf+WkFTjx/bxREGUFIRvAQO/dJJE7JF5KzUpuaoGuCMniP1OKyYjDpTyf2uwf2ux33tzfc3byneqlZrz9hs9ly/ew5z199hDYVVSM1Lk3dxHQtifgU2jZoJe3Hu66TtVZKZDrQdiuGoZeI9ohzU2TT2J+4efcOD9zcP3DsB1KNcZU7rXrs5HFOGrJ0bUtVGZq6FgzVtfS9pOBYGx1eLmF1h7MTQ7+XKCdncd4SfEvT1qxWnUSHr9coiJ3ipLPmMAwSuRVE2fWJqKIxIiBdzYZ+QCnFsZd3XK/X8t5ty3q1pq5rmrbl4uoCU1VcbLccDwe22y139ztWqzVVpXBW3iH0EKyNtUQn+mPPu3fv0Urzox/8gLapCEqxbhvWTUMfAqd+BKOx6xWhcQQr/1TwtE3D5XZLWyjwmSqDZ5omiYxKtS5TuQtdFd2tovxJ2CCxiUjfc2RTvN6Yud4TcyTrzDtnHJGjqhcyspDTC8g0x5GnazJ2SPuDgC/vlHl3WDw/7+WSi6eNPr9y+fBH+7L8o+QRSQ+V1yhxDhnfzY6b8glCXwmLyjUqP35O93+aN4IYiKRYOLm+lFXSlc45OB4tDw+ei23HqpX3r4yNNRjr/J6JzSYcMwuy5cSc4+r06vN9xPDuraM/9fgQ6PsTbSuRTc56jKmAEHVDM0d8L7D3vH55Dpmxck71LD1oWZyd4/Kl3prksTHivKgiLSf7wBSgjrWGVb424psyPLiQ6aWMSHrE+aLN9BDxagixSyFR5gpfDybRa2HbyHNd4IzzV1yM5duPPzCNTl7m9z1CnMDZoltMbDxj+fP8+u/22Yeu/QaR+/jMBEQTgA3Ju+qzMPCJzQWkwJcxtF1D21RUlY5tL6WIoUJhjICZCZsLstV1RdM0DJMSJTiIl11CAGNHumlimkbJNbcj1lmsc7F7hSbouajXUv8MC8JXaXcsgOC8uXPw3DmvUarYiCX44YzQnkCY6ZsQMmgJsf3jYwp+/NzyJwCe6AUXRgYxesTPxqYUMlmGfiqjUV6jqwqHxqoWrwxWdzjdgtISteE99/e3vH/3lnHoqYzm+fOXbLaXXD9/Qd00XF1d0bVrEZgqGYpiHYjAnKq0EEDyd1U3rNeSJqn4PuMwsF6txBM7jbC/Bzvy7v0Nf/O//Ad0VcF6DXVNSp2w1nF/f8vheMBbi5vGWFcsYPC4dYcKnjL+wxhDHUOkr66u6E89x8OO0/6GCZct4yEYCA6Fp6oMq25FZSqur55hTMXtzQ0Pd/eMZsJOE95NaK1ZdS0gKQ8Z/EcDn3cTeEsfHDfBUlUV/WnPuzdS5+ry8lKMq7HAu3OOzz79jI9efcSPfvAD+qHHWsv+cGCyE3f399zciKdOBSlgXFUttw/7mJontRbq9zc8HA6M1rJ7+47D7Q3BOz65vKI2hk9fvODV82e0dZO9W4nWnHXsHw487KRouTIBU1e0qwvadYMbe4ZJ0gqrWoyHCQSEEgAUaU+JRkpyNgsj12MhmwxOOXVBJJKckwtQhiUECrNSkD7SSrwbSttMR8T7JWVfxcKrMP9UKLRRGCWfJUNlSdOzsH787xwspJhKRYy4CUXERhaQMq5cK04teUF6Led9jm5IpK61iWBKZzC7hMDiNTLa4RVUVaBpKsBzPFnG0fH+duTdzZGmqVm3ms9fKY6D593+hPMVbdei65oQFFp5iVQKSFRFtJKU761UWT/r/Ihgxmvs6Ll5957TaWC7veD62Ssx/K46Vl2HqSqC89EIKBMjdCEFJpWzoCamcRCj1fHIMA5MPsobL3SQJjCH1yfCUvrR6LJJyEv6jApSANZ5ONrA5DyjtfTDSG2kcH4V6V0X1ElItaSeBjPlE0UxF9qronLhQyBMEyo2VJicQwMVGmXkGUqpFJRB3gSRLmZ8GOk1hGhw+8Cy/DMds7KQfg8Rbjx2siUP9vzz8b0Wfxf0tsRV5RUlmP/9MdyjowBVSqlF1FhSbpJRNmOnzB98jrJJR93UqM2abrUSmZyUSpkmnJkj4Hw0DjVNQ1UZbJAImMlK4f/JIr+PE1OtGccx1u5IKVfpFXLc0eMjJAxVvG8qEF4YOFMXrBzNEI2vYhQJuVZmUmDS+5fG0RR9MK9beu4SI5dbNvO+NMxyqGkjhfleSinwwrOEpiT61WiFU8LrvY/FzFOTFZ1azQecCegKvKqweoXXDUp1aC2tyIdTjw+em/fvefP111hrefXqI148f87zF6/4/Hs/oG1XXFw9B13FjqCTjGaYklmO5JRwzuWaNSHSjtaGzeYCYww/+pOf0p+OvP3qGetuA3bEjAemaeKrr75i1/eoqoKmA1PhE7a2lt3+nuPxmE0DVWXYrBrWrSH4CYVgKG00VTCYylA3LdY5rq6v2d1fM/RH7LSPqc4xsjKkKGFPVdVs1huM0lxdXBKcY5hGTqcelTAnUFUGo1dAyGUOvBdllIA4DL3jGDx4R1VVnA4H3r5+Td00bCKGkmg6KZ3wg+9/j88++5Sx/5GM01oOxyPjNHF3c8v7t2/RWnN9dc2qlfm5Pw5UVcXzFy9oVyve3t5x/Oo10+DYW8upMtRK8ec/+B5tXfPZqxdsVp04IEh8TOjNWsv+YcfD7QPWetrVmqYx6LpDVxVhOOKcje8fMVTBC1PJAXEcxw54GUMp0a9CwBuI4GXWZM4wSTok/XDe0irMfDWLQ5+i/+Iej9so1UX1RtY6jQNYNLnIKVYphReFMqBC2nVusae9n/lI6bwq93EB+2Z9LBorCntRNi4sjGWqNHar6KAKUVeZ60gl0WByNP78fjrWTRQ7X5BMECvlYUyladoGrT13Oyk/0q2G6GR2bDp4eQ0Wz2gngg1UlQRUSKmRJCOSwy7pqmdlCNJazCyOnObmwQ4O/MTD7R12HFlvLri8ek5d17RdKwZprXIKauKxwmci//ZiiB3GkUPfc+hPDNMYI6AC3seC2D7RzownFvSQYHQsMaIAXIy6D55OaynUbSd679AoxmbCG+G9Rpts8ErvR5gDW57EUPmd5G8xbgnmq7SJDp1ACOLImYLPdogQo8NRUVItcL7K+zK9m/elEfe7HX+4selMNj8Fls6PxACeMvs87kp2di1nG3Axlm8HTeHs53c5PzGPUnnykXg8olTOYdQSmpgKA9aVKP+jcxIqp6TmhY5t2b3zVMaw6q5ZrVYE5VBDNFZEgeisbNxp0kzTwDD2UuvH2ViHRzzt3iv5XRfzox7Pl9j54twvjK/zFg7p/+VEJaZ1PkdnSuTMnEO+7qnzZ19E+kIsuCXgK5XL8tkznSnm4uEaVKwJFFvX68TklYoMP6CDQQePp8LRYUOF0yu87mRUfiIEy93dO37z658TfGC9WvP8xSuev3jFp5//gKoEeaoDAAEAAElEQVSarfPCnxM40tGQJmk5SdAt3kcpqqqhaTpCWHN5scV7J4Xgu5bxeOD+S8dw2PH23Xt+/avfYuqaq08/od1uqOqGpm2x1nJ3f8vhsI/58yPGGFaNptFgxw0qGR7jOI0xrNcrlDbSScQ6qkrx7rUi4AjB4r3FewPBopAC4+vVCts0XF8/k+4ph55xcGgltTWcHWmajm4lqYODjYZQ5yTcPkYTWe8lUuxwDyjevRUPQ103rDcXVFXN1dUVF5cXbNZrPv/sc5mXtqXrWpxz7A5SQP/du3e8fv01fd/z+vXXHA4Hqqrj9m7HeuN49fyazXoNBF5//TWHaeLmzVv2xwMvrq/48fc/Z7Ne8fmrV3z84kWkq5lxKiUGvd3uwP3dgXEc0CZgakO7vqDbrjnt7hgnAUqmqtHKZIqAMCtdsUtiBk9njFPHCLtHimaU/iIcomEpJGPwXGB7GeAau3El4FKkjCilBTjHGk7z/owRU6XhoaBulESyGK1i2vBcwXbm5/EKP4OG8hDaX7xcmqU86ToW9k/6kkTSIB0FMzicPU0+SHFqHxIPlAKYVWViWPQMsojF2DOfUJ5KW7wOEv3SSF2k/VFaer+7GXn7/sh6XbNpV2xfNby587y+PTFMhrqpo7fMoZQlJUYmeVFGXH6T1yeDR68IXjGNjndv3qPNHZ9+9hmffPKpFKpddXTdikA0WvmQC6WG4GPfPsBZQDNOI8fTkePhSD8OjM5iNFRB5XbUM52U414eMxyWKCaJ/NB0usKpwDEEJucYJulCaY1m3XbSQTIZEAMSvl8oixnAQ/ZO5ydmeo2d6CqDqqtoqELSq1zAulFkbgp/D3FOBAlFWv6AGSEjwXPo+i9zCJ6eZchcqiTMlqj57CcNIYsznqSxcHbW+XePZe1/0pH3W2HxKGgsRS5lZbygvWzsBuq6od0YVqtVNNIGUUZcpIucVSD4K8m11arjNJ6w1jJOE9OkmKximizjZBlHLUWlR4OdRgKeR5bGUgs9n670faadQjkt+aDoYZkm8TIjPs1NUqSyclWsX6LdPJ7zAcy8Ne2h5QMXqzq/SqmNQjYES2S3uKRSXZoQNNrEk5WJHX01RhsIAVOB84qgGpxe4XRLpTuUagjO0R93TNPAzZs3fPGbX1HXNT/90z/nxcuXPHv+ko8//T7GVEze56Lw42gFE8diviScjfD+zC1io5i6rthuGjbrDZeXlzhnudhe0tQt42HP3e9+ydj3fPnFl+x++QvqtuOj7/2I9eUV3nlcjFB62N9zOh6joPQ0VcV4ucavG4IbIXgUXso1KCOd8+oO7wPPrp+xf7jnsNfs7t8wBhdxVMiGphACdVWxWW+pjeAbQuDm7pbbu1tUNMgoFaSTcSURrNM04pzDWgfjJLLOys9xGDjudoDinXmD0ZqqaVhfSJH166trLi8vWW/W/OiHP2S9XkmUVqz5tNvtGMeRt2/f8OWXXzKNE4eDGOeoKu6PPauu5eWrl3xWGcyvfsNvf/sFw/HE7nbEuonPPv6Yv/zLv+ByK+UaNqtVgR/iWilwk/3/cfefTbIkWXom+CgzMycRcW/eJFXV3egBIMAMICtYkd3//ydWZnZlMY1Bk8qqyrwkqLsbUbIfjqqamkfcrCzMdC9mLOVmRLgbUVNy9D3sPTw/PvN4/0iKkX5/wDmDcTuUNSQ0wUt0PK5Da1vnuDjnhZvJGIs1OeKtcdgVnSZZhYoxG1RkkreG7dWg0q73rEAX+ZpyemzM11ajz3q+NZakpbhPvMJyohdmsEKRIwq0AZVWHQRV+6kY4ev1rRHhWndoljHFWFScKrVqnq4irIoytWImleVmNdbHiPexyiEoFYVL1d3GsFcMPkpS9lQIK+G4MXS96LX3jy/c30/c3k6M00iP47gzfP/e8DwG/vQw42PkcNhhrUMR8DqsKXwpotC5IIO87LXTsojb1SApxqLFe8KSePzyhcvpGfNby/FfHei7gb7rsdbKOBeuony9vL88zQcx9l4mMTS9XC6EecnXJKlUVwyKVXa3erba4pos0+UMD0ljEvRaE0g8z5FxXtAopm4mWkNvHdYaiiFMYLn8EguOqj1Roq5W2S9/C9WDRuUoQkeIgtdilP10zmtGI+l3eSPI+1aDCyv2XtdQO2d+7fHfYGxaN1Uhgc6d/GeBdVGKWk/d1hJ9tSe+jZWaCffrQVIzSX/N2UXpKoNc3oHV+FFoV7XSOCvlW/e7HTc3Rw7DwJCJEJNPhOz1skasymKU0JlXBFZPiAgQyRvNiz3JAgw+EJZsZKoDrmq72uManG7hfCPM6nhdKYOtMpkVtnXBN89RqyGu7dzaO8WudXVd7WOVlZ9MuFa9083zrp8lQlTVhVCEZ7Xos86zImhL+Gup4idlhw0Jg0g1UeKWeSIG8Y4aLQKvHwaGfkfX9ejqeWF9fhHmCYoSXZT2rcpQWiubn8qKvNa6VmRxWjPf3KKVwkcFl5moNbNfYJoyKW5OhStVPJA8YqNLmhZoncn2yBUodFbAkdXnnJO0uGHAdZLDLPIlCQdTbmPIBiMfQ928SwSUpLGNnM+nTB7Z1fmqc4lVhc2kl6oS4JcKGylFQkgo5ZmniRAil/NZAG+IPD09siwL+/1uAxqUkpS+u9s7dsOOFCPj8cL79+/o+47OWqwxGKMYesfdzRFnJXKld5b3t7fcHo/sdwOdc3nsroyfWamfxonxfJH5kEnZC4hIdUyzoN/IIlV17V+WULJS3ozgY7v+aM4pm20qSyw1G/MbUq6sjdKiOl+r9rHqXVUGZ9C8KjW5LRpIagPgStSLeF2uInjUuiKrF74ALrKeVL4rLaxfryHAEpm19mhKwvVTPL+yJgUA1lSYr/S4QqIdS2qhTopitE5oZg9PLwsxwt1xYLdTdA6MLl7EWNe/sSbLbNP087bv132xkbdvtEzei7Xfq3LeKpm5N/P30nO5L0PER88yS2rtNF+EoyPLI4lMShuD09udVDyh1PVR519upEpprVyaEt6Llyx21zddFevNmzebfZ1rung2136swJmG46vOUTKvlFReabPmEtvz6vy/wvJvrZd/vmOd/+uazZ+34Od6erSAqC5dtf2qPb25xy/Ln+bEK0Vse7RI9o3bvIUdCgpZRQzFWy0KQqzrRWtN1/dCquzAhMR+6OlzxFJUhecsVR1O/qVM+N8asuSBuvAvFede2c98zFxwvxDN9KqLCh5M63zN8nM1NBUp115bcND2Sa+iFgqeKLKRslbUOkIN1s4TfHPv0szX4/F6zRXloX5Z9pmM06r8rSkc2WGXtCjz2gIme8OlsmaMwu82z3NN6z8cDoKLDwf2+wPOdXUf9z7gK8bwsn94SU1LTR+nKmQEU5BUHucct601Gks/7Li5fcdkLcvzO4zRzC9PsEi6+7wsmGnKjt7MExOj4CSl0KnwdeXxFEFcMadQF6iKowqG8suE6xzeWxKr0yMl4Tf0Qfg/l2wsgqLkCzXAOF44n04416OGdU5qrbEGkpP9QMVAKPip7L0ximz3BUMFzu6E1poYA89PB/yysBsG4hCyoioOp2HY8f7de7z37HY7vF+4vb2p+MkZg7NCSfDN3S27vmOeJavim1spqrIb+qwUb/e5MmtCjMzjxHS5YJ3CdcLZBMW4ss7LkupPSrWSZfmsGku4Oop+kZ9f9qzSnmtc1UazVCFZ51qqMlUWQHFmlysKpthG/LT4qxXTkDFKTNkPrZp2loiYVM/bOn7eELMbAcKm2ERdqnpN6auXZR0jpoQmF4kpWC2umTrbwjXFWVee1zhPWWV5ubfgeoniDF6ybeYl8XJaCEHW6H6vmCIoQpalq8HHaCNVistYX4Gor9kWrrfKunrqmMaMTeN2jJt7rdQScr+weOY5scwT8zyyLKITlkIwthim6l6wYttNW1TboiLJqXZBndZxU3kO+FId09gtHmD7a6sjl+CO8nvlxC76s2rGCzF2aiVRrBU3phwhR5sFcP3U18cv2XveOv4yY1OzmkRxyKw/V0aBX3MT6RK1GaQKCt/YNKvlfHOr9Gpi/u89WhAaKyN8nihKOAOiUoTsDXGu4+72TrwrxvL9zR07Z/nh22847gbGyTNOC6SEIVUeihVFJ5ZlymlyER8SzvSYvaWzNhuaPNN54vR4ZrwEUgA2LctCpRGCLUCsusVbCiRvANLUjFIq3aw23f1qwhfQVTFMbl9NzWgJ++QaLbt4XrAyI7ZGprcUcVU/L0Kops8RMwlxOV82MQE5kagMAYOOhrj0hCSgSSmIwXP/+TOX8wvLMmVOJsu3337P4XBEa0uInrgIGCJJVIp1NrdbiAMr9sxtTWzXRKm9IUq0vM3x5h37w5Flmjgeb5kuZz7+/CeC+72EPk8zz+OItZbOOQC8nzFGPP9OG6zR7HeG3aDoO4XRCa2TeJKskAqrFCAmjoc9ruvpnOb+5/d0Bi6Xics4Ym2H5NrPnE8v3N9/JsTEy+mFaZ6YppElE7f+9Kc/sswXbm/v+Pb7Bes6ht0e13VoZ0VoIiHgIQOvaZ4yAV6oHB2X8xmlFJeXlxyd4vjx9z9ineP29obbuzucE+LyruvZDXs+/NsPUpkv2392w8DxeMRoQ9cJJfa37+74T//h3xF84DJNLPPCMPTc3hyxxjB0Tkrvbia/jNUyzXz+00/8/PMDMV447ge6vs99n4FbKeOgNMIzscq0mvZWDTvb9VGeJF7mNWy8TJ+6OUZ5TsHcCQgFqKVIqLdcw9dXb02RW+W1RPnSKZMv5zUnHCiJqEuItaRD+uBRONLgRHnUQu5fjEsCVKQyYCISYmjW7woQC4/cJr20qKO5zUUuViNTNp4aDEon0BKx6HMlwjJvQghCvG5sVgoEvMQMNKiytvQNNQIKQJuEChEdwIeOiOb5JfGf/9dHbg6O/8d/2vHdB8MYErt+EaMUniUIt95uv0cpVfkBYK0Y8kuHKHSpysRiIDNaePpIiWkaUQqGflc9u5K2q6Svy9hqebd5nIjLzOP9A58+/YH7Tz8znh8Y04JD46IFlUvhpjIwLQCXH0KovlZhqYaRLPdUrsbjFPSZP+N8kVRe5zr6XiSfqu7JcuFaBaqAXiCH0ofcLzn9OUdaFHCuAKeEdDzWKFKJHPYh4pRip8wKgk3eszK+iG+MR5nH//JH3uvq/9/8evNn/bD57q2Wr18rvn7W9UW/hKP+AnzVKEoCgBWJNaqwVtVNkqplU8BHwzAMfPftdxgUO2PZGUdnDe9v9vTOEnwkzMW5IpEv2mh0VlxJkWm6sCwLMcqC6PuBQXf0nSOEhXlOjJee84tnHiXZrcyvSCS+qnrbgOkCPTfGpiJfV5l23VdbBeT1/QtvkBiS4rqeaaIKIPNTsZHppTk660+bujtFW796dKlEJvdO9TkJcTJFY0CFLKebeaOUkIdrg69GGCs8LUmwU0iReZr48kUw1H6/53/6D/8xFxr5LYebW1KCl9MLKSWmJQjJcIgsmeBdrSSB9R0LSFJKZ7JeLZXvsrIqLVW8+/A9N7fvmccLH7/5hsvpmT/94ffM//hfCVEq175cLrkARSmYEXFGsFPvDM4ahk5np0IgRC9cTq6rzzZaotSONwe+/e57ht4xvvzM2SlO44QZR3pniMEzzyMvL098+fIJv3ghuo9RUnReTszzwh9//APLNHM43vD+3Tc4J9yWXdehnGOfMdSSI8ZDCCzTIoamEGT/XRbOLy8orTi9PKONxlnHH3/8Pc46jjc33Nzc4jrBU13XcXO45Yfvf4PWCmfFkDYMA8fDQa43Es38Vz98y83uP+VnyULoe8FQJhumqkGmFg2SdNJ5nnn4+DOf//gzH377gbsPH6QoT1yI8yIFLrIj1FibCepzWaOiJ6HqOm0ndSvVyt6p6lxvjQltVMyqs0gE3TaqR6Z6Jt/XJl+bDY5aoZAiTUYbkimpncWxq7YSNyX84gkp0TnD0HUYLZFspdDUagSPOYiAPC/ZyI3ipIv5vqsEKM+L0l8JlJIiL0UfNGalEtBZdk3znDnIPNM0EWOqlTtRa/W91Xmo8ojKO2qlSRpcxlBGRbwKxKjwS0dImvsn+Lv/7YnDwfLXf/0t33/foz8m/vjxzBI0KXUkBpQxDDvRaUrWUKo4cDsub+93a2qyOBd0HiuRS9PlTIoBI2aW/A4Fg+S0XGOwypJS4vR84uXxzP3HTzw+/Mzj0yc0L2gCFoUtvH2p2CRao0vBOSrLmJwwmYI8N89RU3TqBDafG2Pk5TxijGDTPqclt5QcpR/k3lLwqnX+iwM4Zwhotf6D7BxMWAVJa+aoWJAMgTl5PAqrFH2moSjKhqgvKzfzaxPM9T749ePXE4Q3C6Ao1MWzsio1ry2Qr7z1pJzKRU6d2m7TG9zzNStv247mvF9q+9UVX4FQaT2/vWdaI2rWyCb5TyJTOolkOhyJGHpr2O339J0joSUyOiUsUQZdS5nZBMxxEcLBkrsaxYhhtK2hy0JiKNUq/NISUq6KQiuM23dLr36/mjDFOJS2aVcUoJTa0aHZBLga67R9dhYOxQB/vVmsXbslR12VsDfAWbZAt1+V8dBao+Lb0Velkp8OKUdmSFRTiWxSkCNZpHqKNoq+63GdY78/cDgcCTnkNMYidK94rKqg3PTCZn1sPJoAuVqN63qc3bP0UlbXDTteLiNud0+aJ/xpYp4nrPfEkEm5VarGFufECGqtkISLAUbGr3h4i9cIIs45jOuZxz1DPzD3vbxf8Bk8SMWyxc9M40hIiWWZMzlmyJ65xPl8wlohXT6Ot3Qx0vU9SgkXUTWMlfHRCh8DFOBCzEa6hZQklSlGSYd8OZ3RxnAZR6Z5YRgGXNcB4jG9ubnFOcvNfsiVZdZeL0a8oe/o3DtSSiyLJwThoer7Lis9pQpc4TpbAUMIgfF85vzyQtcFXGergaIK2Ksp2sqG4n28nsUlFW4j96phtKCQVJXp4nJR1TCbBXsR/I1B6XrNvPZyUTfmEqpeFSK1Rr4BG6/XupWorCCtfVAj1oohu5xZrdKbJjRrgeqdU4rGsJ8jUtIqazUKRBRK+efcPolU8FTlLDWpsw3ZJ0jkEtWoJwBWqtppdDa6aGPQEWYfuH+QaiYxRYZB0XcRZyWlAiSiqhRykLUV1rTFVGRYOxpv71Ht3knjMEhJCOoLV0eMOd1Ar7IkplirHUIieFimxDzNjOOJy+WFxU+EzOlUKLmuW9Ia97NmVz8vAGmdtMVQKAZQo3JUqJew+hJ9uY7j+jzFCho3e35bcrf0R3l+c55WEs6/6aPcD+IdlflbFPbScMErr40vqen/f4mjVXggbSNRyndXzWxlRf2rbKy0b1Nkl2LL8PQ20nnduLf+XNvzy1FAqoLClGWKjPF2X5cU3oTYG1NVDIyRtLnD4cDBdexdjzOKobc4owkq4HPJ5gymhODfGRKJxS9ihK7pBbIfGmtljcccZbJkMmi/zs91Dsi/ElnHRklt+6c57891Ynn3dlwB1C/MuWYPkvap13bAdg9J69TJb/X2bcvsUK1DsnlQs3ett8jecsgRRErkj9YQTTYmlkijiA8L0zRyuVy4uTny/v039P3A4XjDMOyY54XLeCGExOw9Pggv0eILd1/pGlXbpbLhTGtIOs+uGNfK0CIo6Icd7njDPE1Mfsbu9jydTnTDT8zLzDSN+DDldDVXsa3WCms0nbPimNM6VxPMBsDMD1oN30oUd+HS2xGWTEa8dCwhsCwmV0kWBXCZZ8ZxXLFTkn1r8VIV+XR6ocu4Zj/siFF0iWIosJ1gKKUV2mu80sLbF3L0VOEX8rLqQgxVHo7nC9ZYLhfhnRyGIb+74uZ4w7u7dzhn2e87wVBlDChRpHDcD+x7t51HKhfaoMCPrUKREON+CIHpcmY8nYjhHbZzKBJxngXrpdXJppXO1c+ys+OVbvNaL2weKdti3SzUm/N8dejJvCvV2VYcX+I/tuulroHre2cMWEV3MYjkD6IAFqLJ1zQ8smXd1gicK0X+SuuqPbzds6pGt8rfvFnULTBj77JllLjz2Bi6Yow5QrSRVS0WJVX8tPajyoZbeRGdVN5jRa+d5sjD44wPkb/RicNBMzwFNF7WdE5TlPVXnNIxB3FAjfxS26CKt/on5ReujqryedZptDcZQ0VWQzsVvxanVAL8LBVRp8uFaTozz2eMWcQAnXKEWO3/t1r2GtO3UXBlVyzu3hKtnVJi8Z6YFCGllla1tq3ev8Fn9ZxrDFUvWMdReFAzhqLuZOIwIKJrbHh5ztfa0LYm8VYfvHX8RZFNdYCbzt4aC94guXzrswJDkqpOmHXyZIlRFa56o7+kqV9pffmZNpP17bOL92RVThJrpbEUFTGCMZa+6+j7nuk8SgWuRfOsFLO1+Y0UqFRLJMYktv+UknhPYpB/QTjErM6TMQamaSEGxeNDx8ddYgwavzhSUEUOCPgIUqWjALgVfPzyUdPY2E6ZN69748O6mJQS8tZEXWjX93zVx3VNJKEMrhhjBRvlR/tdqaTQKpBr89bxTWXsFIAmpsC0RHySSBS0zlESF6bxwnK54McLw37HbtdLVZYYmaYpj5W01miXc7BlkaOoY6uadrcNb0FsPTL3l8/jF2Ok6wa0sXzz7fcitKeR7tNPXM4vpBiklCkJpYQY2znDbnA4Zzjud9zsd+x3nRDUm5JWBwlJw0Qpuv0dbjjil5Hj8UD0E84adp0jRlj8wug94/nE5fyCj5GXpyfGaeZ8fiaEmRjg6fGeeT4zjhemacS5jtt379ntxIh1c7wVI5jrhHslp8AlMglm5h0LXsLDi7cldygpJMbziUcSJ+dY/EzXdXz69JGf/nSLdZbbmyN9NvYe9lLhru+7TDiucTn0qVQp1Loh8s7rp87+lOqcWeaZxy+fefj0M9/+5j3HOwnNj8EzjYEQfPYaKCIyNxIFlOaNL0+BEtv3y+raqjWsgCKDo+w5S0nSl+pmHIviz0pEqRLkCkmZ3qcutm36xrpmhE/ktQwof/uQSTVJJYimTu1SGao9X/pVZEFLAPxKQUsreKoioxjB0gqUxC5Zwq7lUmM0XeekOlWuMmK0zlVPSvWyHLJPGSeqka1UtVI6oZSUNO5cQryXM8/niUjg/vHC54cX/KL57s5w3Cm+nBeeLycYdhxzmmaKEjIuqW++plOswEDTgkR5vxW8ZaIUIaqMicv5wsP9F4bdwG440Pe5ZHCGiyGHhxs0xjgSsFwmLk8T49MLy3gizCdi8iQj3CtBVENcQTJZEU5Xo56aeahQK59exbQCXDprwSQWr7nEREAMdedpwmrDzko1zCgzspmnkMIa6WatIUbxbheCd1G0RbEkc6NpQGWvuzOGoFT27iUCKVPXKJHFZXJfLbpioE25343dAqx//qNM+sbQW/fM8vurK6B+nDa/XZ+3AnD1lbN+oV3N1StIbdr2K+6wTpJ1ryvycK2+SF538p0xEom0G/ZE74WDTymYDZ0Rj7QuEdIqy+kUq3HXLwtL8PjFZ1wk6VYKiD5w8Z4wKx4fLMMA5xlCUNlYkggEdCSnEqia9lLXa/m9iOj88VuQNDW/lK4TZegr6CprHmV9bZSEvIe8eky14haMrJqbNae8OlZZtI6WjFPePbIhVxRyUSYlVU4pJ4VoJs80ByJK+D20YZlHwU855cToHMGfDdGnlxculxEfAvOyyJjFks5Tt4q6XFXZ92RHzZ9Qya+lSnOJTlrXUwwStXV7+479/pBJu2EaL3z+XDCUYC0QBVkBvTMcdn02vPTs9z3D4LBOY2yzp8bAvMyklLDOcnP3DkXg5rBHJ+HN7LoOlGKZLizLjLOWoR9YMs/m+XzhfD6RQiCkxOP9F/w0cnp+5PLyjOsc7+7u2O/2dEPP4XgjBNmuQxuLMYrdsANYK+MlMdilmFjCIgq2UsQQWGLkfBICc+cc8zQJhvr4mZ/+9DPOOW7vjrmwUcd+N0iV4K5gKEVnc9ENVqz/1qQvM2qcAtMceXkeOT8/czk9odXvON4ciGHhZXzGLxOkhLWdOLDyGks5SrzM12J2quvjLR2k2ZdqOxonTrsHS7ptwVBrFUsoKZJKjDK58EhMQuYdUxE9RSfMSlqDS6qozNkVKSXZ53LkEkVlL4bdjJ9i08bWWFCr7VXs1joUCqZa13ZKjQMj60Y6A9BYsFh2yGtjhK6yE8NbLdCTK6WVcS5cTa8caQhXk8gMMUQHlTKG0njv+Xw/Mc5wOknREq0S746B3mkWZsbziOs6hpsd2lhmFkJc5J1DiSjLhV6KHSGtaKW1LagiR5VUWfR+4Xw68/L4SN8PdG7AuYGUCrl709daonpIMF8mzg8npucTKYyQJhKBZGScItKXGlaDzToB18WQ9ULIkWBVv1jniaZgKF3TbUOEyXtGLzxOVone1GZgvGVENdbkVGDBwWXjEEcAKDwpkQMRNCEZbDDEpKrhN+acvqLDFlxeqEJS+5r5TXSh+/kVx1/I2bR6OvIyoEzy65f/FXe6AkZfQ4bbzfbXwZ5rILCCnutPv3a/lAcKJeBD+FrIVREiUeVqOMYKieu0Y+GJeZzwKfEwzTitGYZeiJnFMlEt2GJlTvjo8VE2CO8FiDkr5VuD98zTyKISnz8pTFoIpmfpb0nKUgpQFYLcGGLDabF6kN/oitqXqqIi+a5Yvqu4/zNjWS3nrXEwr3wFYqlmncBr/6b6s1i4S6tU1tIV67uUo5BY1jFKzW0LclcRlJEZptZQ0pBmxiUSSKQMlMI0M04T0+XMfD6xnE8chp7jfo82lhgi42Ws91ZKYzpLCXOvlQ0qsWfT/iyw6xhkT0hZrDFXKfAhsSRZuP2wZ1CKrhu4ffcN43jBdo6nx3umy4nzyyMphgyAAn1nOewHOme5O+65O+7Y7wec01grhialEikG/DwBiuPdB27fvSeGmdubG1SYCbse72emaeanjw+M48z5NHB62eND4OH+C5dx5PTyhPdSNfHL/Yh5VNx3PZ8+/iwEle8/sD8cOR5v+O7D9/Rdz+27dxwOR4w19Ltd5dFISUjw51E8XfOsq1ElZIX9fA6cL2eU1nz+8gmlJFWncz3OOd69e8+uH3j37o7vv/9Wqtvd3TIMA0PfcTwMGKVqpZYqKNMq/NuFUTxd8zRz//NPfP7jH/jmuyN3H74hxcD5+Rk/z4Qwo42soJBEKTashiGz8bLIDChroC373h7XHisgh6Y3YCTGzAMuxNAxu3h1zblPzb3W9y3esxaElTVjEBlSN5SUpLhLNvr4mCAkrF6NQipvSsXDVaOwsoel8AIUjrk2KrQs1a18yoaz1EBMlb3MMW2MViVkeuj7zd4jMkSQooQbF4+eavd+UGCtrF8dyKH9kRglhWKaAg+nyLgkPt6f+PAJlOr5zYcbfNCc/mnip5OXyCZn6fqeEJD0DiAuhZQ0p1aqdgzLe6RVdimRRaRMBBsi55cTnw3sdjvu7t5zvLkBBTpzlZQUCoVFdR0qKebzyMvnZ84PTyznZ/z0QnCeZDVRaXyWQTqBfaWgtrJ5XSMlSqzdKFOeG70zOK25zAvnRQDLuHjUJdE7x2AyJ1ohicqGf6UUuRAhoDDGYYxE/FaPea4uFGMkBSl7r52kGIZk6L3Fxyj/ksSoFp5kUQK+pnBTnQbWmjwP/gWPsgRbq0V7VK3lzUub397SukpUU/3gzau/ctOr+xb58GsRFxQoIaC0eMNXjCAVqxJSY6B4dQVb7XZ7/Ow53T/w/PSMURA7Q6cVQz+w2+3yQ2J9WIm+XJaZeZmF+yfmKMZMhh+95zKPzDpx/1mhVMDj8OxBqcxnJlGDIYixyaAzEXkbqbC+5LVxtu2u0gmihLQ9mlZrypUJSWXNI0PE7HPQ7ZV5+bTXrWlkVw34MyB5VXTXeVjkuCKpXFk3j5kuSrUqkYSBcfIkrVCDFL84zTOPj/fEsBDjUlPbFRJB8fT0iA95PyicfkrnfSQrt+S5q1YHocobUlXMc5R2SbkSZV6MLOTKbVob3r//Fm0Uw3DgcPuey+kF818Mj/efmMeRy+kEMWKVRM0OneXmIByON4cdh8OO3b7DdhrjdJZf4mCaR3E8uuGW3c0Ro6Ok5SPcSLMPTPPCp/sHpnnBakPf9czzwpcvn3l+eWE6XyDI/e4//cyjlmpen3Z7rHN8eP+ew37P4XjDN999h+t6ceIdbrDGMex2ojDGEmUeGEchFVdL0TJlLyElwrJwenlBofn48yeUVjjX03XCK/vN99+w2+95d3fLt99+oOscN8cbWXeDw9zspUBINn5uj7T5NabE5bLw9Dzz+HDm5emR8/MDWkdu3x2Zx5GXz55lumC0cH0WUFEMOmXuv6kVXou+Mn/zlyUTs1XMizJcgvsrCT05UyGvSaOF6qNA+dYoUQ0FeT7qhv6jGEyryMwae6mkGQvZey7gUp3zeZFopUhaNyTha+RRkXN1jepV92nXNJTbl/5I9RlaqU3ki+CnbMRIKxVJdcbmMsDFcSoG/RJxtB7OGNCGECJeibE3OtBKMh9++hTYnyNPz0K/YVB8uFOMc+Lnx4mnF80ewfOu67KjO+aKu5IqajKGbnUpKIa4dYzX8U3M80SMEeue2d33DMOOw+GW/e5YC42UsRRjkyZlfXk+TZw+PTI+PpP8GZUuoCJRq0yfs06/1QxOTndbcZ0MRpFfTYW3Zt/XGnpjsUozzjOXRXSe0XvMPNEZi3GmpokmtlHbqukbbV2dSwUHxxxlLnhT5rLNqYYxJaYcDRwy91skL0Clalq2LM0yucsqKxM+obXNVDJ//vhv4mx6C7Z8LfXpl2+3hUbr8ZcAnDe3/q+c2pyp1i3/7ac10K7RAdtQtRKGV6pb1MiMKDwgS7aEUvMmZbIZYzDOkpBojiV44YGppHllUmUlkZVUMamVWK1OgD/XheUl0+uv6hf1HctJr29aF31ahdralvayBiRtOrD8uXZoysJ3faw0dk1TUvW89lZFKL/OI02bZ7Tfex+YplkiUdxC1JoQPN4vm3/zMjGNY64U5inVwooVV2uHyhZn4UvOQiU3dzXg5Y7Pm1Wr7L61looYKp4HEcCBYdixzBMpeMacflkIwI3RWWkSRayQ7K2gLUflRSqHjdIK4yzOObquo+s6gharNwn6rquK8LJMkqLgF4JfIEWsEeOiKWsoxlx5LjFeLoDkvZ/6Z5ZuxuQqELZzDCpV7o7iqdA5H97asnFHyOC0islsmKqdnCTt7nw64ZcFrcE58SwmYJ4XlqGHFITw0kmkk6QeFmPG9exO+EXW8jxNpOghBYmiGXrCsuR0jLkJyV03nO0GsC4hdfX/dPXM7XH9rXq9FK8e8Fru5itVWVvp+qt8HXXpq2wE2yC13Jy1HK/gwBJs/8qApFR93ut1ubZzK/PTtheKcaO0j+xZzieJJw1QpfJkrM+pEY+l3VlKhZDEI1XKqJdz8+ZcDGZax+rZS0lKxV7GyPNpYegttwcpbOeMlMRWKVdRirLOtTbo2O5pjSyjUfB+8ShAdSWRneeZaZrQRqqUrEpnC8XF2eBnT/AeYlirsuXvUxIHR8sk83oNrOcW+boZszoR5GzDGpoNAgKXELG6pNO9fr31Z4l2KuBb1+8KEK/l3a9uIWk9pSiCyJMiK8ry2B5i/ChTfGvs+ctwy/+e49dhlb+wPVen163nVzyvRjSmMsYtWFhl5LUIKbjraqe/emDu40SdNyLTGwyV088FQy0y570nkphSJJqcqqWK80keYLTGWEmRWxbPsginTdkzykALRgsoskE5RKnGWUI0ucKF5R0bxWbbX2/J8O2LtxFr0vbru3zleW9Ar/Tm6atsraemPL/bVql1bMt1670LriqRFGk7jVKLtVbcuyyeaZ5Bg3VS/bJgqOAX/LIQvWcaR15OLyilmRepINnuWzpHpCqVBHfU9f827mze/PW3dUDS5nOJch4I3tMPO/phRwwRpc6ZwkASR6wxmYagYChVnTdFDtUeS4LTjREDUSmwYq0TnJiN5V0uuqIQsuFlXohhgRTQKuWU/MLhKgb1ZZlJMXK5nCkArNsNdN2UjWuimJOoEaClV2Tv09hkSEhEfmQtJiRzMUpEdlQU/pqYIi/PL1KNLkWMVoKhQmIZZvzSo1V+X2slzbCQ72+QTZ1STOPEy9OJ8XxBayURyNbmCORCKB2F0FqXCPDSyQ2WYpVJW3nWrsACYl478L6mj5bnKV2wRsFYq8wrNn+KYRZFyxP21l1lW27lxrr+RA6te5eMvZKqdirzPqnmPuUOvyjAf/n92lPaM1ejVcxpxqmm+NUXV6tcjLGpJrpu//Ve1eGoo6yfKJX9QlR4r5imwPni8V7Td1b0j6dICgsp+lUGobLxucWEqWK58rxref21jKoQAvO8oLVhmWfmeaJktDTDs45RFMNgWDyxYChKEZaMJzOGMrWvvj5Ar4Jw2MpiEhnLrjhUASFJNoEhgpM1sPr71OthLwamPFdXvWE9MbXLJfej0cUIq4mp8GA2ASP1+usNad3jytb+a0w//w3V6P77On4deLs+rnvmFyYMK/APQZTqECM+BpYYGKeJh4dH7u/veXx45PHpSaI2chig0RqrRUFwWdnd7wZujgdQME4niSiZI8sk3vDUr7nTKUaSynneIaBMEg+hMZImU8Iiywagij9gbb+siTXihrTCxK/1wWqsWb0LbRRDTVVoe7UqQS2gz/erlnquNpQiPOSfeCZTFdzXe9C1AJef27DItvpMIc9MKfH48MQffvwZTEd/A9oNjNPMOI2MlzNPL0+cn5+YlomXl2eU0hjbo7TBOkff9xhjOd54+mGPMQbbSRW2Qqor75PXajJr2YHXvZUBb6KtjONlUFFK47oBrQ3ffv8bbm7v+Pzpp8x5sODUglGB/dDnyCYhxtZGiFhNTlsw1mCtJWUiyUTCGsV+PxDmA+++eY+zEOaJuIwsS6DrB+bFc7lMPN5/wnvPeDqzLAtOBd7f7jdjEULKYNPzZf6EUpp+GPjy+aOEad/esd8d6HcDt+/uJFz9cGC322GMo+8HtLV0XU8ic8AsUyafjsLtkKRaQ4wxE5ImwjIznk+klPhDJol3zvHDD7/h5uaG3X7H7d0tzjpubo/sdjuGvuPu5oA1hq53EsaajxgjD58e+PLxkZ9//xHCzNAljrcH3n/3PZfTMz/909/z/HCPVVMu3arE8IikHBi9GvnqnL1WDFg3qdScsgEE+f9lw9hU1JDdCYGXrHM/ps0eoTJpeYxlQ5a5dj0Pxauc52n2gOkK3rKRO0Z0Z0BZtI7Ccqhj9cDFKJujgIEMctN6/3UzXQF8opEzSNNK5bl1Y1ZVEdKQvY8iI4zRG0Uoa1hSwjiJoT7GyDSL7C78RsKzl8ONE0QjfeOsQutICD3W7oDIH3+aWZaJv/pN5K++v8E5zd1PgaMJOCzTeMGHhFaWfujRi5FUC4pXUsghBdwVSVpG+ArtQPYuylw8n84si+fTx4/4xTPsDty++0ZC3rWQ1mpl5B1CYr6MXJ6emV9OqHnChFm8hCaRFCwpEJXCaoja5D5+wySUipkurW2sf6bKRybGOegU7Dqbq0t5Tn6BBD5lfp6USekbMCNDm7KXvcsVOIOQrCuycqIIi/A4FF2yRJJ21oo3Tim0DaiUmENEp5RJNwXQV8N/fokCQkmZ9+e/DUD8d3+UVfXKGPTWeamaHnh7Xm434RLdDg3oTC24ztIrUZz5RC+VTUNKmZtDCHSXZWa8SMro/ZcvjM8nLi8nSIkXJG3YaC0ebiXkqVpr9kPHzWFPTJGn52fGaSIkCDm8LZXkzRRy5bG1UEXUBmVyynNcW1wcM9Vh0PRRUiWBVaFUKbN+rWs0sowi00v/FdVZvTpf1XNpt4ba/aXYRDHWbdZlOUnJu9fqnhsLQFZCrj3UzZhtjBKxKF9C61D2Yx8C9/eP/OlPXzCu5xA0tttxOj1zPp1YlonT4wPLPPH4/MSffv5JDEhKk3Khlq4fMMay3+/p+h5jLV03oJTGWofYarYOjPU9Y6avCKjQRCReKVXztFBw1X4nRUM+fPdbumHH/eePXM5nUvTsnKXTcNgP7DL3o3M2R1hqSV8zBqUMKCOKaK4qN/Qd79+9x6aFzzd3UnyFLGcXzzAMzMvC5TLz8OmjOKGXC53ydDvDcXeQsY2ZSiAm/DzhmSTlSGv6oefT50+Ssnf7jt3+yDAM3N6+xznH4XBgtxPahc4NKGcZegNqR4ySTlSc4YWAOoScYp9CNg5OPD3eE2Ogc45h6Ok6x/ffZwy1G7i5u5UCLbc37HZShe7u9kYwVGcrUbT0f+Sn3/+R//y//D1PTw/c3O5x3ffcvr/Fug4/TwTvWZYRa5xwSKnsUFTFCLQaoOpKTOtakQc16d+prIhUaQOqrtMcsYnuKYYvr0JzbeboQtqgk8op3mS6jUbnuF5bWhysEkEUr9awBBWkqHGGjMcl5V/2Mw9BoXUC1srPbST31qG//bud++XdSyqV3Atq1UUNVllMygYkvRroU1YWy9pPDbabJtF7tdJoU2SxlagptOhZUdMlMCYyTY5p6liWxJ9+mtA68O52z1/99h1KWR6eJj4tZ9KS8P5DTl1OdJ3Fe0Xwphq2Qgjr3LgSusXQ1AYwKKUxRtJMHx8fOV/OuH7H7GfhkLu5k/FXNmNNRfSR6CPzZWI6nVguF1RYMNGLnh0gKMWiBUMpbciJDW9Q8KUr+Z/pLygGJ8GFhfbGKrBa01kn+6KPvJxnYg/HgbVysmkNqhnLZlofaw1Ka1IIOcMJlBXDXgjCNwxrW63WDH0nOrlR6GjREZYohl2jFMZIQIxSa9+WiVaDbUIkqFL26peP/66NTRvo8oYF8aoL/uyx3bi+drftJxWQp5Uwt5TcjkmMUOM4cTmPjOPIOElKUC11mlPdtFJ0Tqo3+JSwToTsOE55I1dSJnJj/sxiMKVantBQytlr4dJQNP/eFkLy7mTD0a8wQWZryVYd5tW1r9Mn5Rly7ha6pqvzV09esUoX0NP2/zY6Ql2t6qJEt91VBBSpRIWpbJSLjNPE8/ML2vYkN2KjyiUu13/TPOGDRLYorbE2b+ZdT9gHrHV0nXADxSgVWpROYAwqK0K6KMnEdRctHfTW0XxcIi+MLvxgsN8fca7jdHpBWycGIy1KlXNWyC0zCG9JCNfIpixQm2phzllc7xj2O6KfiEYRDXgXQGuWrBzMkyi8fhmJPkf5ZMLIMp7z7HMloMTiZ2JMTOPIPI8YY5mnif1uz26/IyafCTFT9qIl9LDL+eIWpS0xBrQuBNABKJVrRKiJ107W43gZ8dmrvSwLzjlCiNzd3bHf7xmnGeccSwgcZs/xIAan6IR3YTsmivE88fj5mdPTCRUD1ii63jEc9ng/E/zCPJ5RHcJlgBh1FNt+b9OY24iBovwVroz2qJGeW52tzu3VrZQNMEqtpOGxGFy3k6qkIJS1mco8TM3qVE0b6wLKXpdUUsIUKUmFDbIhM+VUpeIo0lGv1TNKU1FViyqGphLJ0hrcCjYsc7Z5g8wplc9TK6FiSd9tI6lC/lmq5YU8L0KuHqdL+B6mtkVFjdZJaJNU4fdyJAIvp5GUFt7dDnQuMQwwWE+nPZrsycfSdxZjbOVqylP1lYxcx+btXUvniAuJIghE4Hw+541fcTjeZK9UDs/OofCkSFg8yzQT5gUVAzqGDcdXoU+OTb+/1Yqi2NaxqXOPzfxQiFHSKLBG5oUPwh+yhJijqNZ5ynqp7A55vEsBg7gkPEGMkwVgaYRLIF9TsnBKxT6DpPJFLyArppQ5JNp112CFzXxZI4n/r3v8mXerxobVtNJGahZrVGrWa12LaR2X7e2aKJn892qUTlWRilHGTDDUyOV8zvvGnIGsVE8lCVjXSkmlUSPVe5x1pBQZx5nLOArvmSkp7mXG5wIGrBgOvYr9Daap8rv8WciBiyzlSn5ut4+3lnqxDalXhqbtRdVA9JXhqqk81dhUmtFuFqkK05iazyipaFXSbh6/OjGo90jNvxgT3gumHceRl9MZ2wXsYSIpzTLPuZryzOVyYZ5GLuPI0/OzKO3GoY2h6wb2+5sNPwwJgglZ0babPt0o2KzKWxnHNbp/HZyEFFZIeXNy1kFK7PZHQhL+ImUMioi1ms4qnHM4Z2uxhxLdWrATJdVPqVrl1FrDbjcwXwb6vmfpevKphE4MT8viWSahP/AhQFwwSsiYrRUMtSyeGGPGUCEr9jL/x3FkmoXUfJ4Xht2J3W5PDFGq1RFzgZgO3ffC0WmspMnk/pEUJ+G8KxEqZYBjlAIUz48PjOMoRTO0FDwKPnK+u2O333MeJ1zn8CFyXKT65zAMJEctmtLO09PTMx//+BPzPNL3DteJ4axGoKaQq4+Kc3TFRM2Yt16zPAOutA8KZ2taP9qc3/68nuclikenRNRiXQ2xLtaM51adqkQ6tohF9jBV1zdK+A3rvpJW3TWGBEj1w1LpVWmpkVZIp2XM4q82Ll1Hrmy6bkNL0gQvqJXDVquUq6U1/GmU6SFzRSrlxVwFOKJNwlD494qRjWxwSpgoRi69GEiGGCIvL54vXzxD59jtdF53HsIEYRDncaasMcZUXqmChYsjVGc6lGuDUx2V1PaXFgqUUbjizpdTLSixOxyzDl36UK36vfeEeSEugqEKB2gRraHul63c3YZ3JFZDaJG4wCY6b40mlSpxJhsIa7ZUDHgb20fU8U6lT5q5oXNVxxhl3wNqSmSKxei1ThathLc0ao0lkaKGkCMfWblYJaoqvu7vph9qEMmfOf67Njb9muOfDSamdUIVD3kBS9fGp5LuUMK5iVmxQTiLQvAkpfBBBMt5nFD6hFKJ4KesXFv6vsuTBlIMlddGKeh7y83NAK4jGcmjj1Wh/YqlO/+/BQ6tzfXV+a0wvvocJLpCp21Z9eunrQtfNeCoKJNbo8umBSmr2jWNriGVVfWU5v7b+V8UxyoEK/cAUK364j1LWrMsMyEqpmVmmSdCECNIPOwx2tRSt1JS3WCdlXKwxuS0rzUEEtYqWTVEVUmJytoEpVhjIUs/vJ69JQJCShIL/0SI4CMM+yO/+au/IfqZOD2SlguHnZA6OmvoXFfbbp3FWfHUWWeJ3lQl3ShJJeut4+72js5ozo9fOM8XFOCsbLR3tweMVoQQuIwjPvg6wimRUz8j8+LpulmqzCySEiqkfpEYFiEZnyfG8cy8TDjnOJ9OPB+PdH3Pze0L1okRz/VDFXbyU9P3UpbUOpc9dR7vZ+Zp4ac//cTL8zM+SPqFtZbT6STVVt6/57fzTNd3TNMkxO99z+PDA85ZDpnXyWnDzjlSSHz83/6Bn/7Lj5ynC999/y13391xd3cnno9FQJIQm2duEKUqcWaJ3il2pGvjqMpGnaLMFw/6ds1tlYeqnKfUVDtMNBfkDaEYoK7mUgUhJWJJIn/EFpot4flZZe4qsdaIUSKJV05riE68TaViUFHMit2qXF+4PtrQ3xUAfcXcnfutwMd6XV5nhehSst8VJboyQaO8ymdCmLoaQMs81dmAa3L0X6nSorV4/2SDlU3fWktKMC2KeIKnl8jD88TBR4YBfvO9YU7wHC74GOmsKCwpxaoMS7tC0/+vx/eNjsg/c7U5HzifJK1Ca4N/v6CN5NxnilyKR9fPnvkyskyScitW9lT0TYKWEu9eKZYk0Rlt4kprCq1HKk6DreKHWq/VSAlfFFU5E/6mmZgCnTJYVbgmWkNPIbLPJKzFmxtXrq+YybYqB2fzTJTCaSOcWwnmIHtmqUpmFHRa+HdUjrCRaCZDiRAM4dcBpf/zHG/v7X/2kua6avTefL1qMwk2VTWvbrR+Wg0j2YCRDUcrfpJxDiHkKCcvZN/Lkte9QRlFKJ9lo6VByszHHIIzLzMhibfWdV2WP6rBT2K83O16bm8PLFheohb+DQWlGlaNvnyl3DWe//rLL3RnNcKpaqAqyn9rzLpO/GlvWxSSoiRvj7qLXI0RrVUmG2a2113LnOtbF0VNU1Jr1vRio41Uc8vYyC8zCSXp9UgE2m7YVYValUj77HXvuoFh6DDWSUSMM5nQVmXDSMjGer1yuOmc5pFxtlIKE8WuqCAr7mWvzKAwFuNBzFWEF0BhbcfN7Tv+6m/+huQXjD+hw8xu1zMMA9ZKZLRgKIkIl3LwhuJgoRibjGHoO5bdnpvbOyRd7sw8XSAlemuwSvHN3Q3OiANtXiZCLJE0Mq7zLBWG58XTT44YIvMSaiRuioGQIqeXZ6ZpYjyfWeYZax2X84mn45Gu67m9vcsYqsd1fV4rQuBsrPRz3TMTXC4jl9OZcRz5449/4Pn5SYxNRiJNL5czN7e3vHv3nh9++1u6rmeZF4bdjv0w8PTwgLOWXdfRdw6jNL21RB94+PEnzj//jBkcP/zuB+yu43BzZBynbEiLGRulyotbKjNXGohmHb2NGBSFh2bFIKrhw1xXRmqiuetays9AlSIkCpUJtFuppjOPU0pgTMoyRSJI6gKquCs7wnLF3lDwSIws3qOjwhmV51NRHtboraKzlDlvcmXot6L86u9FDl910WpUa87P/aNypk3SKWPVhCqpchk7xaZgjyypUj1O45yr7VOVImY1FhZ5azOx/OnsUSpy2C/Ms0ej2PXw4Z1GdRDDzDIbnBskCAOYjKm6tuw96770Oo1u+/5KrGqUyBuA8/kkTgZtuIuBgp5q5kDmPPbLwjJOhHkWPT7FHCkvka0+RSIKmzQhrUa8rx6p7HlbnKUrZ530l1FKMqBiZEkS+RtCYJpnYgzYpGqtuGIYjBlDga4OYSk0Fqo+rFKbKcQGHpg8Xs5YUImYPEFLpKVPgj+1UriyH5ZqoKkQDAr2LLrvnzv+T29s+t9zXO3N62CwbgYSdh9ryfeUJKKpVDWIOS90mmamUf5pBcPQY6xhiiNTLEq6TO4lBF7GCaUUVkuqwWFnud3vKqltDAsx5KpGRrHbd7z/5oCn40ImKlMlaqEBSFUGrUJ3NTZdebBQ25f+St9UY1MT2vnq/I0hKL3xPGrEwnrm1fPydU1uUKO4r++1wrStEC6KLtBE+BRlPApQch0+KeZpIuKZM7lojIF+N9D12cikchRHjlhx1tE5J14prTAqK8G59T5kgKBU5SRKRsLCxdik8/5SDEn52EiqbKAqYTEZNy0hMfvE/uYd77/9IBU9Pv0T48sD+95we3ASJWQkjUuinRyuE04m13XEZcFoMTRYBU4smHz45jvmw5GPfub8+BmlEp3TOKfZ797xw3ff5KiwMUcPeeZFPBHTKCWn52XhMk6EKF7meZHKQJdJDFAv40VCO43BfRGD6vF4w25/oB8G7r55h+s6Dje3HI43OOs47oUMs+8Hhl7IYWOG2KeXF56nmfEy8Q9//1/505/+mNPthLT53d07ht2O3/3udyxeANKw+4zreilZPAwYozkOO3Zdx8F1fHe4wST4p//X/4d//F/+jv79DX/zn/4N/bsjw923xDngp0V4m/xCcpaU7GrkVGqtBAmUYgBFMa9rFIl8K+vj65vVVtEoitP1am0NuFvjK7WkbCERF9lVUtzSZhWVEGsoxuQ1GsBn5a93jtjlShwFLDUyRwjYdbMO13fevmgT8dL0T0V1+T1Xg+NqBCsKUEq5AmCSVCrx2Ar3RYgxpzCMq5EugXWuVik0Rvg5EolSJUvntFZrJT0gRsV5NPgA7+4DHz+fmY6O/X7gfzh03L9EHv/4zLhMHPdHOide9BLhBL6Rnash8A2/wOvRT+INTdHz/PzE5XxCacO3yw9oY7B2TS1LWZFfponL84n5fCH5BRWFn0NHWTcBQCXmqLAqoFG4rLy3jaoqaWosPM2+UeUtAlisUlgtRLo6CNl5THAZRxajoeuxrpc2VMNg5kLIJcLbkH0UkBXLwi1yvUh0BvbaaKJSzMi+mpBogeS9GOCtpUTOqpRQSaGsqgYAqX75f8Xjlw0i12eqr/zWbOvyS16j8n1ex7xlECmXtIbFshZTxU7ey14x58iYaZ6ZJ0kjGnqLNZZlnrlMs0RzG4NFMU5n7h+XHO0k69pqw363Q2ldK3WRjTzGaA7HHR++veM8w+VZ1pdWBk3mD2qigt96j9IVX0FA+bS0+Syxes2LElZ6bntl+UXV+xTc1h5r214jqO1YFQNMaX5an51ahVptzle5qEGRz8X4ZLQlaVVTn5LSzOMEi8cvMyobmw6HA6T9quwohAxSK1w3VPqBYejp+w6lTC7goqqSq7VBirpprE0obDUcKaUIJmJ0VqiMyXufzDGVQGUD+7wsYoiMAdBY1/PNh+/4/vsPRD/z8vGfmE8P7Iaew2FfeZtKOr7gJ5eNAwY/T7naaMBZw2G/g3Dk/Yfv6Pqexy8/MV2eUSmxcxblFLf7Hb/9XpwP43whBM+0LIzznKOYvBRJWbykgsbIZSyO60VwV47gDlH4Xt3nTxhtOd7esN/vGYYd795/Q9d1HI63HA43WOc4HuWn6zq6rgeoVR2Xeebl+Ymnpyf+t7/7Oz7+/BPaaKxTWOv405/+wOFw4De//R0hBPph4NOnz1grGPqw2wmxv+vpjWWwjnfDHhUjP//df+Xpn/6R97/7nr/9N/93br7/wONp5ul0ZjpfsnOdvIdnQ6bSr9Zf0R8KBthunGmzBL6W0VH0kmujbfmtpiIlKRCSVDFsZPSvDa1LJuZ5KN6LlQJEFcNy1t/Ku6UUJRV1kQqBvcuFizb/xNgdKdHaVEPT6/dJr/qoRLW3/VOiTdpI+2IQs8ZgrK0yqRj+awRj5i0VvsilOhFFDhj6vq+yTO4pEcUqUg0c2hhsdk4+Pk88PU/sdx3jZcZquNnDb763TAEe/UTw4JxECWqlsWbKhrpAIUjfZMawlYCtjljwphj5pPjW8/MT0yI8vCH+gE2uEbdJ6AZCxI8z8/mMH0eJDs8YSH4klnx/myJdjLUqXenbN9uX2GApmVc5AixjXKs1vQavFCFXlvQ+cB4vOKPZ2a4WRSgR3OseUuwTiuhXY1PKNAXVoJkNdmTDl1HZOGoMxioWlFR0VZEYhY9UKv9KoZc8swUzJ8HOhWfx1xy/2tj0VsTLL5y8/t4uCtqPi1LW/FDFYPZ1oPTmAmzv98Z5X9+gi5h480mrssgavpxag1QBA+n1ncXau9qti3VYqTUnVjZLSEmqBagihlRaF4JCvO1Gwg9TUhuegbdGZANk3mhbe2Y5p/5OuloybygeX7tban/fehhkLa6peY3euQFyRTFo7/P1jWRdvWLxzrdTbbtzf0Qp7+uURiWFb8INizA1WhMx1cMgyrKkoK0l7cmKUYCo5Wdus76K3EgUy7NEbKU8H1JZ7Vdj1xoOW2BevrPOMewHol+Y+h1hHjFuNXKIt0FhtKRr2lwOvpBimxK1QiLFgFaK3f6Ac47T4Yb98VY8zTE0z82lMWOglIZNCXSMRLemQBZ+pRRKoXkpSy78Ziqnv0hUUtSReZ6yUhpxJ4ddluxxEW4HqyzOZU9m/lwZURxjDMzznFMgRUlpj3mRv8/nM+fzSSJE8j1S9noarVFLwFtLsB39FDAJpsuIRKco9scDu9sbkrXM04xfpLrLavi8VgZaEL8Z2TfnbxnY9dtmzVytpbdvqZoGlI2/iW5SZeMt4KQNCV+NO3WjbLWVPBdrSLiqGS0rCXNVjKif5JZUg2lrbLr2Oa5tLM/LkuFadjfgqvaWWqMg12gB1RjWc78lUVq0FhlaCE5X4/y6rktkk9KlgqUgmBg1i0+cLx5rYL/vGHpF50DjhWQ0c3bUd1ZrfzQj+fr9f+EoV8cQCGTOGb8QghOjIXGVewkBId7nFAXxHpd9qMioEhUWUztPmjnYAKJXczGtpJDXbyaQmbU8NuBLxFIq8VdXvbFqwhWg1/euuCB7M1kB33qDPG6s0W8pOxtKzN6qVKxvVbeYKwXkn/vYPKvFPbR7XLsnb4+636t8r3pJe21+x/z3a/XqbWmUmmvLKttG3qxCT71xxebmG3y03qPOgbQdm+uWUNF9Y6RCQJNwRPgaYaqUwgSDUsW4v+XLk2WoqsHJWoMJCdXwTBQZ9TUpvRr510FLdU01zd68kfROvbYY6V5Pge3vX5H7bwRB12dsrrtuUnPWn9+rivmwMVK1r5YkHqBTioAipCgcumTluDQy1wYvzs8S4aQbWZtSJIaANiVVUdaw8PblxgrZ5poyl1NakoryD+G9KdEOJVJS50bHGHJkhmA0bQzOOvpeE71j6gf81KGtq/jAGMFOEnFlxNjQRDZJRMK6Bowx7A5HUCpHNp2kQFBdJyIZYwyEtKCUROxLJTlxkmhV1nSm54jr/b3PUSiZ24mU0wR1qkbZlJJEHi0LhT/SZQOsC4GEpBYrrQRDoWrq6jSNUgE1hpz6LxFQ8yzO8Mv5zHi51DkRU0+K4vbTShP0zKQNs7HofkanRPCernN0Q0+/39Hvd6jLwjJL2jkUrLtGOa4z8HqO0kKLV3O7VP+9ntWtI63dA762/gp+KlFVZb9Yt8gVO0m6UgYuWZ/bhN6+cQhuunYW5sVQn1X2gbeiK6FGqGzetH0DtpCwbXuzj15f89a+3P4DJB1Wl4jwNgJ0FYPl99JHxkiFveglO2NZEpfRY43oLLtBkxZg9kJQneKmn9/CUBud77rLa5coNl2XqI6NytsXPeAqFqgOkBhykEfIaziJMamR92UMU4Ko1qp0Zca9jZFUxTJFGG++T6k678pbpyRBDIpEbMgly7Pl94IX2r367f2k/L3RP1Nao9OKbqCad7xeJQLS30Bzf/74CyKbXr3G64n6lpGJa0BXOlmvA1RxzNUAXB0VUrUW6q8Ys7bN+rrB4no0NoOUMs1rU5IyiwJSpJZRJANdbTW2twIqgmwaOiY6bYkpMs9CsmaNxdoOhWLx8sTBzKR5BmuwvcNYySsfZ7JXyLDfd0zecJ4SQvC0Kk2t4avB0o1Qzv8rQLVMmAb9VaChQOelQSkjDNk1zpuCsO3AVgmvc0S1IHhdTK8nrV7vXRZQ6Xu1nlMelFgjrnyMxJSjgZAyu5ILHVAxsg+KH3TPmBIfQ2JMgd4KsW+IgfGS8H6uSo1CctIlfFxnTpfIOL4wTies6+h3O7Qx7HYHXDfUZpd2eR8zCZytynslPjeb7QyFEg+P0viwsMyzvINRWG3ZHQ+8+/YDMXpCnNF9jw4LS7gQU+Km7zn2lsPhyM1uj3UdxnVoa6Hv2B8GAejJM54eGYYDf/u3/w7XdXz//W/58rf/hnmeeH56ZJknzqcT5+dn/DKz+ESIE8KnHUlJQoKFF8fhl44YE+MsaXTz7CXVIUf+FYL9aZFoj+lyYbyIp+H5+Un6cL9n2O/pXMftza140A5HjkfhrLq5eY91PQ9fvvCHH3/kdHphmk4o5Tkeb3j3/gMAz08vXMYL9/ef+Ye//y/s9jv+1d/8DwydJYSFl8sIKXE/zqR5wcbEPy5ibBr6He//6jtuf/sdf/3v/i37b+748fcf+fH3f2A8PZHCgjOlRG7mMooBdISkV3ykyoiyysK0bhRFCSmGzpRSTgvJIKxspvV+K3RdJXGjDmbgo5uNtmxsOm+ZKQrpn4DXSCwKUAzkxO712oL8E5CkAmKIMHnJL5dqOGKwTSnUNa5AvFpNRTmFpOCGsG5fqXkLcl/p8rjcBlPSYhXElIELNAbc7E1MhaMlEYJEopbKnlprDrsBay1d11WvXKlwZ1QiaqmAQoo5uskAFh80PvXElDhd4D///RPHveY//vuO3/xwwMfI3pxE6Yln5mUkhCjRqUZS6kpU2ZU0rmt+Pbb7q6QN5kS5mPBRlIOnx0fmWaoTdX2X51Mn6XHTwnw6EcYLGo/Rwr+m0USFVPZSYojxeQQ61crV9NVWtW0uEaoxlb0RbBTeiU4ropWKQ5fJgyJXgzQSVYSVMYuRsAjQMTqnxShViU3bVIoQPbByZrSqRSE+tQiHWoiK0UsIflS6cixYJK2u7k3S+Joq+i9y1KIabxiYC0a5AtCt0sRGqVHbgaonlV9WZ0q5U31u2n569QBWybKdCSrnxX7NaPz641TJ3UNODRCFlVw5WYnMRKOsQ3cOPZmcIhUJy0jySMoTYkiYLid5TuFfUxCnCT3PkuZ+I+WyUzYoExUqRZw19L1lGAwLEhmjVaoxC+WtSWvFyraPSo/U31vEX76pGkBcP1fynhKwtxYPWfv8ehCL4XW9/4qkr85K28+rotxgiqTW0WofVzFiY0hLiEIc87pYkiLmlKE0zrB4DiHxnXbMKfEQAjOCoYahJ4bI5XyRaph5/kmahuAnpYG4EJPncgpMWtN1Pfv9Hm0MgxswVirhCoe/VCkMKeSomxzFFEV+KaXQqXyWauGCMnOXeWQ8vYBWdPsB4yy7w56buxu8nxnniUlZoaRQiagVu92ew9BL5PWww3WdGKLQ4Gd2w67ymszTBdc7/vV/+L+hFDx+/pnHLz/jl4Xz84v8PL1wfn7C+xm1TEDAaKnKlVLC5pToGBxh3wuGmiZm73ORloEQIvMc8F74c+YlkKI4xsbLiDGGp8cnMXztD+z2e5zruL29w3WOw+EoEePOcTwccdbx5dNP/Pj7v2ccR4xJ3L47st9L36SUeHp65v7hHts5bv50y26/47vvv+em08zLzHk8SZ+fJtJlwQF7NFYpbt6/49/+P/8jx+8+8O777+lvb/A/3fP5559JfgQVcL1FG0TpT4qokWgJXcjB81TNGTu6wVBlgdQVmVNgY6IhYs7IqOg7eVZovaZhrf+Xf5s0vrpII+0aq9G3IFQK+f4xSOXiRsrmZ+kqiRPgo2IOEv1THXEUbFcKMGULhoVWr43Zyb0xAkFD1VHIsqUanLQhO1mJ6EgtABN8jrpOccvrmKRqXgyQKET5hsOhb6g5DK3cEoNpTl2vWMqQetGrpujxPvH0HPkvf3/P8WD5zfd3/PXvDnx5THy+fyRMlrjbE9MtCYluNLpEpJXei+s757FV6Vp+rnJQa0mZRwnNSZpgulw4PT/glx03twrrrBiZFvCTZxkvTJdn/HxBq4Az0qcGyayYlSYpRVAwS2gCVhWdVa3gNa2OlaZhdQ6XiFedN0MdE46EIbHosnNHztMkKYna0Ltunf9lPqRY+S0LJtamJNxJm0rkWoEN8iNBysTrUTB9VBFrFFHLHhny+4U8P8qoJ6iZFiiFvuJt+9rxF0U2lQdth7ekijQGgmJCvjYl5/Pbpb7OGuqnXzFjrPevd2qe96veYf399Rb/1vmlpWn9uxns1bhTQhU1ympUyKXbg/BiWK0J+e/gJbXBqBa+IKFzwaM0GGWxRrEYVaWusZrOGQIaNa0C9ZXRpwGrqenT65e+BjSt0C1/VdiZGrbj3A/XBqc1ymFN5xELamtPV1993trA1VNRwFD7/frM7IVLhdxuzTkWXSKHyaeEChEVI11U3CiLUZEvaUHFhNYO0/eE4FkWKyHXqSykHFFmSmqQtGrxMyEEXPToXF1C7fd0TpTyQlw+Ry/CICaSWKryVM027qS2c1dJRIhWSnhLcglomRMaN3TsjkdijPTHW3yMpOlMOEsYu7WOvuvou57edTjnUNaC1jhj6DtHCOJBWKaR/e7A+2++Y3+8oRt2DDe3TNOF/uNPjOMFbT6zTFLeWJsTWi+AxlnZRI1WJIQEMFpJHXJWCCQnt6C1lnQ7O+O9Z86VHEMIwpW1iMfxfDmjlOJ8PtMPA13XMU8jneuYpwvBT3TdgLMDQ1KcTyeeHh85n08sywxE+r7j/ft3xBg5nc547zlfztzff2Ic9/zw/Q+Qo6+WSQxf48Mz8+mCmhfs8wkL/M2//te8//4Dx/d3vPvuW/bfvOMPf/jC88Mj8/hCCkIarijGoczdlA2gqXhnGqUcqpTM56yzfrOOioWJJrKglVlKbeRwe2zWorr+LgMAHaXssVLZCJEq4Chkm6uekgFPzBsWEJKSEtZaOKKSkndPbFP4tEzYppUJFVcldiP/m8epq/2iGJMql4pGwFK+vqQENJ0sQCuHhMvWIGk2fdcJub8TYlZJJ9yScWotSos1SrZZLSHni3HMy8zHLyPni+Lfe89+UAxdpNMTs1KoNBNy2nMbdl4NzM37bresdV5sXqQ1QuZQcr8sjOMZVMKHmUTI8CS/t/eEaSb6BUVA62yUQ4hAq3EuX9kC3WK7eDXn2ja1g5WfWaqSlmgCCzitWALM3pOAJWSFESMlg/MeIVzNq3It/XY1pFm2r8YP1fwm7Sqrz2pxYCktSktUxUC1AnNp68pH9i8d2bTxe+auzjamde6rbZrV9dR49WGdQs1cUtd7a3P/NxDWFlWpq/Oz7Hklj9a1WA0ZV83e7NGs3v16+1J6XEvZ+OI5J0lp7BATRDEMxRhZ5pxqZS1G96gEMSv/3ntUBGMQQ3pxW+cIX2skPdwuEj1TFNrKm522eOOtbi+GptbDXoBgW3Go9lFCIn7a+6Yi67ayetVT2gioNcrljRHaHLknNx+002W7bsrbUA2wBW+VyqchidGYGMF7WDxdTByVZiTxHEPGtw7XD7KvT3PD4SFPK1Hj4qERyeN9ENtrSgy9QysxvAhGSYzRV74baZvIZUxpE6Qq/0skeK0XCIg8XOYJZTSD3uO6jn63Z3f7Dr/M2P0t+jKikicm4Z9yTvibhq7PxOGOEt1eqBR8nlfBL3R9z4cffkPXD+wPBw7HG+Zp5P7zF6ZxJCnDNI4ibypPi8bmNCmJhk8UfTrGiLWSUjgvAa3FcD5PAb/EzPE0ElJknGcWLwZ9fT6hlGK4nOlPGUPNI851TNMobe16rNakruf08sLDw71EQ2nY7XqON3vev3+H94HHxyculwun0wuPTw8sYebu/R0Q8DEIbYIPzF+e8U9ndIj0PuCM4ebbd3z3N79h9/49u+MRO+wIMXJ+eYG0sLMJa4szQZhZK3dTxiMiE74S3XL1m5yiruZ2u6+W85qZv3EyyDlaBmfFImVuQd2LQXQCkq6Or5QSKbzGZGTMUuVFIlfMFAegQdXVXXeF4lRs8RmrznX9TnWVVaxUIs9Vfec15U1VkVgiAdn0A7InxiYzLxv1Xefoe7euZVY95xpDEVOOIrXoqJmVBRzjlPj45cJl1Pzm+yN3d4ZpTqgwkmZNDEvFSqJTb4Mp2DhP8jvWjaf9fP2+0FqkIE6rZVmYpkt2Fh8paUIxSAZHWDx+noh+RhNJSjCNRmItFhQp06CEPHqpmX/rFlmwbKvNvh45meoyBiYb/gxSPCnEyBxkfS/hikajGcO1gnuq2L72Q8HEm718O+QqOwU0KRtIc/OVVDdt9RWKilLmtJI58mtQ1F/E2SRteLXU5fOMoK83wWvFSDU/S3DfX3Ks4P31vX/9scLPArDX90prZ9dR/XpbShpRSjkMroKc7N2JZVHHPKgCuWKUFKGiSGmlQVuStgQMKRmpUqBdrthwFTWRJ3iF3Klpb/umap3qW+DOerPywuXv7Vuun5V+b4RL+3uee+3DGyXh7U5sr33z8azArhVsm1DPGKvBqRHbaC3kouP5RFg8L/cPvPz8wJgSJ6UYAZM8VkFCynp2rpOysEGAVAieFMRoFEPIgEDAs50n5mXGGMMSIufLRXiGhgGduQiMtayTaY3IaLt1JUVUdXxCCBVI2J1DWfEw+CAeCdf17PY3TDFwWiIeIbIzmZOmVKYr3loo3DRlyCPLsvD0/My8RB7uP/Nw/zMx5+na3R73QXPcHVn8zPPTN7li34VxfCEEz3g54ZdZiImZISRsBtJFzZOqQcKhsXjhvBLiO888y7v4TOiriEI6GgMvgLGGZZ4YL2e6bmBZEn2/49Onn3l8fGBZZiH6Ph443hy5vb0hxsTpdK7jP44jIClISkmkmrMdJNh3PXHx2AR9BKc1f/O3f8Pv/vq39Le3xJg4P194fnri4f4zwV/Az7KWc8RfmdbV25SKB+Hrcm0LZn7pkLksG+MvKcZlzpd18vb6qUZxpVFEiehJKYcwb8+lXV/58xKKrIwmWZeryuWNRuX7I17idV2n7X3L5qsamaC24Kh4ZlRR5JSkacgek5W6bFzeACdyRQ9rSEmMStZorLEN0Wes73fdgyUNK5EBRjZUpQRaJy6XiRTh8dlz/zgxzXBzVDinGeOZl4fPKG0xdoe1VgzYvLG5/+otrxinpa988IyjpDQsy5xDwfNYhijcNyXdM88bxUqqblEEpVCJTG5ZzFUqK8VXj09v/f7GPGzAtNEalxXLOQVRXMlcTYiTpe5ZRdmNsVEc3zjK8/QKzCuOKPsnoNGghaDdxCTAO6X8biU8fOvh+5c+EumVN7ZGdLcG41ZZUg1eujJo/OX451olezNOibKHbtq4mbjFmLuCaNXOixqaeaXgsVWsCk+LGFVzFR2jZasMPitzgp8EQ6VcISiKc07laoZKlKCkpXplZFW6auEGaQSlT2vDc9tijFmBUa/GI7/xivTZXr/2bWtQLJ+uUQxbJ90ahVqeWdSTYvtvDdUF39W7f20SNPuLyu+W8g0qhsp3Su37f8X46v3C89Mj/jLx8vnE6cuJGXixmkkreiLkCB1rNKrvJO0r8wMu88SC3N+H/IaZRGZZxEhvrWWaPH2/k6gGK9wt2hZKA4mOxUdJBTM6c3yuc0qKkqxRG0tY8DFgdFaarTgQYhSTp+s7hsOBNJ45n050GtCGYdjjXF8NglWpgkxAbzJpeWCaJ+6/3GOs5eX+E+eHT6SY6J2jt47OGI7HI35ZeH6+Z55GwTTjhRgFQ0kfBPw85/ls85AKbUaMic5EfIgsS8BYwVDdLFXqJPoz5PkZWJYp7w0pc55NjJcLXdcxjSNd13N//1n2kpQ4HHY457i9veXu7hbvA/cPNyyLxxjL5XKRORKlCp/WBmOc6DbdDr7xYmTKnJh//e/+Db/5278G6zidz4TzyPPjA5fTE1oF7ODBiHFHI8pxu/7XufvLQvrP6X/X+27FZr9wr60OUTTFVWeqKV5aCkClZERGaS10DbKhsaZlZe7LXOhi5XxK1TmSYqjpqPUZqdWNVt20vFdZ/EUNVE2/beRdo6c5m53hoTjnc5BDKsZteS/X2UyaHomESj9QmrBiuvo/SpO0UrI287khSrVHMRp7np4W/BI5nRemeSEm2O8kSyfFF16eviApH8KfFpNERZX9RnDNdg/76qEUunKQyj+/LIyXEZLINYr+6BG+I78Q/EwMEvtddG0lGrhE9+Th8Hk8auzbxnPQ4Og3WnstZ9dotYQ1hk4bSbVdIkWFC6XYS3mWWudrG+1W7/nql3XW1OJFTVdqpTLOjvhgJFADqcBJ3kf1BrusOO7XHH8xZ9Or5a3WX8oGfb0Hqs3P/P8czfQmyH3juAaYf6lH8u3z23faKmqCndPmrPp5ar3Xq1dFIcTLSRXPuWx6KZRNPmJUQhGIcUZyxJ0QdWmNMo5kLHNyEAwh5eoQRqGVrd6P1lItjcppfWVh5BSRMvmLEG29VhtrRzGGZEBUNtYiRNp+Lz/bf6sHPuUFqnI7IaUSgXTd31uFW6nXgLa2uQldrX1evqeEE2aBXoRmbpsPgU8Pj4yXCw8//sTDP/yE15rzfod3FrcchejNaLq+o+uclOLMebvT5cLsF8Zp4nQ6i1Exh6ZqrVBWDDv94yNdN3A4HPnuux/ou57d4cgw7AkhMI5SdbAo+5QNIfdf8XRJNaXE7GfGacRYw2440u8HrOtYcs77sDvSD3vul4WX0WNSICJ8R8ZKqWGtpeJOTLKTWetkQ1TiSZrGkY8fP2HsEw8f/8DDpz/Q9x2/+c1v2e12uO8H3CAey+fTiXlZeH5+4P7+I8s88uXjH7icnhnPF0J8RmnhdSIkojMMuYrcEgQohRAZpyUTji/MsxjULuMFnyuyzOOZBJxennKbLc46nOu4e/eFrh94fHzm/v4erRU3t3tub498++23fPf9d6QoqVTDsOfl5ZkvXz4xTzPLMoFKQqK5u8EYQ9dLn/a9hJx3Xcff/vVv+N1vvmOaA58ez1y+PPLp55/54x//EU3gZkg4kyDpDCz0RuBLGVuudbpXx7WxqY352a6L1ZN+Dcba9UpKVWa9JeuqbC5RTioTQ2ejQyTzEKSSirCCrMKF4UvotbMwdELOGnSBGpV7QjdgrUQYlUZslLhscCrGN5XX9+o5k8o/Skllk4TCZENvCEGKKJQqKjnCxlqLTlJNqOscWivhrzDlnleVM1JW7mhAW147MSX2Q8JZxzzC09OZs4n89Gnm/fsXtLZ8+DCQoubvf3ziy08XuuHI++//Fa7rJHVCFdlfReyfPeoOWg1yMibLIkrfNF/4ZvyGEG5IUYEJBB+Zx4nxdGKZxipLTZbFGvHIBaXwJJY2vakaa3KXfG1vTVQAnQe8GkBSkD3HWYd1Bh0CM7EamRYfsUqRjHjgyn8xFUNUqrK9PCs3pkyddQ6p4sVuvLUoXEqEpHAuSdnezL+QknC0GfXrPHD/XMdqyN18us6Jq/1vq1Sse+91pNyrW371KJB5+1m68hh/7Vj353Uff8vwWG05WRkpMqmRcKvCpjVondOxJazfWkMK4OeYMVTIZagTunCVlWJQWuNcj3UG4wwhG8BDKobUHGGY03OKQ0DR4tSU9w1PimtFzYqJGry5jTra9mwxNK0yLitiqq2Sq6ryUq9slKdUO08+k+eFip/Ks5tZUv94ywFYFezWmJejp2VMSpRhzLQQjVKdnzBOEz/+9DPnp2dOn585f34haMPluCM6yz4sQr2gjVRE0zpjKDEkvbycmeeReQmM40JCooRMJeMWA85+f6Dve/b7I99++wOuk+hsay0+BMZpIkZJ7ZA9QktOplqrd4XgWbwU8pjnicUvJA3a6pwSpzK2i+z2B5SGly+Bh48jToPSHYfDLV3fi/E6z1vJmFcMw0CKEWM0IQbm84mH57NgtqfPTE9fGIaB3/7ur9nvDxj3O3Qn6UTPL0/M88zz0yMP919YppHPn/7E5fTMNF2I6YkYAq5TmGDpXGLoQx6fTOAcIuPoM5H4yDTPOYr7Iil2fhHeSeDl6REA57r8z3F7+57OdXx5eOD55Ymu6/jh5ttsaLrj2+++Y1k8zy9nkfckSd2epGKz6xzGWDo7CJF7P0hxl8Oe73/4Xt79uw98/817Hp5e+J//13/i8emFj3/6I0/3P2MN2NSROo1RwitaMHXdi1VaN6M60VPWJdpFt0aTlLnefLVeXtYuX9vbVj0JqHQG8lXGQ41slsAAeYjItpxqGoULbsVMceMIT0rSubz3YDS6k0qMKQTCBiwWg7B8VmhC1qarRo6U85t9Mcs7UHneCDbrewcKvI/EkKvNLVkuZIOuMTrPcYiSVItSkllTWlgJu0taeFp5ELXJcktLRckYIzH04vgPFz5+XOi6xP2/mjhdJkJM3N1Fhp3iy/kLnz56um7H3d33WOsIcWHdZ1Ydvd0b3xjK0ku5KnLKNB6BaZx4fnpmmRfu3n9DyrxzIRcAWsaRebyQwgTEjGezNE4KhzgyQsVQmoAE8hcp/vV5Vrqr3Tez7hCFjgKlanGnefEsDSXEkjOlCs4u61MI2iMpbg2NZXxSReh5j1Cs+3ijhxqtcUpSp32U0VdRggF0AqPNurCu5uuvOf6bqtFtsdJKelU8dOvafwMQVfAoCg9KidJyDSp5rZBx9d2b5qONwFFf/65pU2PeKK/05rPV1W8qP0Nn8kCTN7xEynwCRnLByXnw0eSJUlIshPTbFE9JQtJEYtngiqIpTyuTgo1ldxWUqwdmlbTFiLPeJ9XFusGN9Y+1Z9rA1BZ8XEc2rT+3StWqY6r6XPl1fXBrvf/aeG+9gaV5afvzK9ellJh9rgCyzFyWmaA1i3dC7hY83i8YDClZSMWAJtEVuqRjFAU3RoxJKJXLpZJT7OaFlKSSxzxNkKDrhwwU10o0q9cm1fFsvZBryfS84eQSos45iSipnwsXizYGtMkl34WILxXNuXZV2hoTK4jNAJ/AMk9MlzMqBQkjtYbkLEIEKd4JlKLvB3a7A8YY9vtjJtEzBC+RX3HxRC+E4j4bA5Ly9T27KFU/BPdK2oz3hfhbKnjEFCXaKUlEUvEUXcazgK3pwpIjypSW0r5ilJJy9a6T8HchKAyEoPHBE8JCjLYKW6mYYbFdh9sNdH2PHXps3zGFiWmcOJ8uTJcLfp4kL70rKWJllWx5yL62B67nl7n5Z05svl4V6nU8VV5oWznYLui3bpaqzNq2pwEvajW85G+yfC/GgbyxNfLkzaeplUfuTeNXs9mV/mjbsH0bVXUqJU1pFLTt22sNJTUnUcgst333Vs9sT5I/NTlSSie8NqSkCRHGKfJyXhh6xX4n5xoViF6AVaoG/fU9175S109ufr/WJIsQXddsCJ7gtfwMAXRAETNHYMwpdy3PRAMIyRi+GPFJVcG87s+vgaXGzFAdRu0UKPPLqNURAQJQg14ND2WxvDmvm7+/dqhm3rSflUqJNQK2aXeN8KhAbftO//86vtrXzfqqu29RXMpcUlC4G1HX17b987V595e9/dtOx7RZq6qcd60MvjrW/a8UuEhaKs4BYDUSdyc2hZiSkC8rJTw62Shkc6q7AilSgRDqR0A1fJulP96CGdUhpta58iZ+vH6XIsevDYW8GoA35Fv7XZEOr3YTUlJvtvmqEZv7KrUS0taxKeDs6s3fulv9NAkOnXMFtWlZmJaFYCLeW6Kilkg3JmX+Dnn+del2qbDkK75eHSMKrQPzLDjAWokYFwOWYGo2/SnjkNSqZLcdFGPAx0xBkMmIyz+yYkdKKKMxzqGMyQpkGXu1mdHt/NFanCtr1dnMKxUj8yQYSpMI80xwHdrYXHhCsGEC+n7HMBww2rDbH+W+xuQIl4Bf5lqUpeCfUBwqSozpOipCtICkvix+QWuJJA1ROJ18dRItFGPj5XzGu0WqMUfBplpLylPBUIAY+ZzLVckmlkWqesUYMkl6HmO7xVBuGDCdZGPEBOPlwunlxDyO4hxSihiNGEB0iTqppvRXc7+ZhnXct7P+6/O4nFT1j6+c0Ooq5Vbbs7dXrvqIIuf206Z8rZGM6/mlvcVpKFG2OQW+faHNH9f7cavbrtjiuvdQvJJdtc2qKYRypVcVzKb1mqoey7PI/bgKhqZd7TPaZ4phTqr/amLUeC/nTFPkMnp8gM5luXj2eD9itESLlec0InZz79eHuvo1XbVZZFDwovMVfa5wVMVQqsyH9fklAijJ76rB3jFjqIS4a3RpWOOYuBqZq73+Gg+2/ZgjiZSWYghJnHI6y55r5FtV61d3fAt7r89pPyj4CQqG0qBKGnNzx6tX+LUI4lcbm7YexzzxM3grRKHt97F4QBtwJOUFC8u0WMm6rmd/PDSkVvnr6wakZvn/8s7bXPL1bmgHpXjx82PW5zUKgzaSaqJ1JvGlLEwtxHo3N7gYcckLP1Dy6BRXBTomFu9zCOXK5+GMxWhNSIqn80WWlotgHISAWha6Tjx/xllMbV5pG7IgMu+KKox6Vbio1YC1sY7nXr7qylXci78/m1OqElE22bcMQLXimlrvFXOfbgDWG3wSRSkp996MVVpTwKqHEcQanDshY25UNlLo3MchJl7GiefzmXs/81kHkooQZ/CBZVRYopTE9DPWWvp+YD/sAeiMpMOArpFNZeMTwltpq/eLRFz4kEkbLd98+Ja7d+/ou57b2zustSxLZPGSn26uyi2HEDifX1iWBWMMx5sDrnMcb28ZDpL37r28s9YGhcINBw7vvoOwMCXDl5eZqDveJfHux1wRLhYmeyXgXcWIVtA5i3EWP595+vxHTlqxPH+icxY37Oh2e5SxmH6HthZtLe/fvQPgu2++yzwaM+PlgvcLD1/uOZ9OjOMLj4+f8MuCvlzQ00TUUVIWU6K3Bh8dIUT2uz6ThwuQFYPShM/yIuR/j48PoDTTNHEZJ7rOobjL5XhdLe+73+2JIXG5nIUbIiYeHu75+PFP7HZHYlRY5+jnmc519LsBFHR9x85pVAw8Pr7wn/+/f8/T0ws//eGf8PMz1ihS2mWQIPOMtFYClGo1bbTFZhaTXku1V0cq0jvfQOf1FuPXFY4COVapVn5/rRlpY9A59DvmCmoqexVLNUWdihcxIFFQ2dARQ+XIuiwjSzIQQ05fiNWo2RqZxHC6VoqSZugst3Sz8aXaxvoWWmNUTonJa73YKYohSKHAFtmTIArgjlpLKV5V2tFEFbLdG0w2LJc9JsVMWqCgM0YicnxH5w6kFPj508ziL/zw3YHffDiyHyzHYWYwMyopzucn9OJJRKzVxKhqedhW+doaVtaRXEe1zAFZ60TFPEnaxPl04vTyiNULne0Jc8SPI2EeicsklaJyeWaC7A3aFz6x7LVKkRmp7NVbizUOUDkq9/UcK8O3pjsVxRZSm+KWCzX0xkmEiY+clgVnIqbXwhtCxDgjVeRyiiNJqsbQ7i1KFadrVU6lMuUa1i+yePVAOpNJPIPI5UTCREmTrjhC0WbB/osctUJjBcAlkiRVBbiNAhav8IqhIKdh5LlUoldd1zEcjjlapcyx9s3WuXQNRv/b3v/1VRmLy7tk0aNyRxfFSGstHvPM61GUGGsMx+MNflkIF0s0IoPcYRDFffEsi8/GClEItLFYm0syG5kvPsGnL/eyt2ZF3xLpUyAFS0Lhuh6zeEiLyCVS4w1OVb4Uq1SV5SmteCOt/dkqksWgWxw6ZQyEeDj3g265/AqmViumbMfsSil4yxDbRkVtlIi8YGtVtIwHymBtWlCqVsYsoUtUV0oQwYfAaZ55mibO0XOyCXTIGMozXiQ6ThtLv9tjrWUYBvb7I8XRNs97np9fOF+m7LAI+f4JHSRCaRrHWiXt5XTCWMu3337Lu3fvMUZwmdIGH6VKkzESSaWFaVqiwr3ncpFIKu0cx/e3wtV02OF6iWzyXmRouacb9pj9EZ0io488vZzYp8Rw2AuGzBgqhZAj8SRK3FqHyQsqhMDzeOLLz7/HGst8uqfvekw/4Po9Shtc36OtQZuOD+/fkYBvv/ueFCPzPHK5nPDLwv39Z87nF6bLiZenLwQv6dNxnjEoht6QoqGzmrjr8SFy2MvPaZ4Zp5kYE9O0NAUzJBL46ekegHnxUhgEwYEmOzWts6AUu2HgcDjw8vLM+XxinifuP3/h482Rrus57CeMsUzjRbg1L2eshn4YCOczp4dnPn76wt/957/j/v6Ry8snFBMKTUo2k2unvE4kw8NaMcwV4v880bdrpfwli2ldP/XzK6MEWe5ANiK8JfFKRJBa94ftTTbPNcaIcTCEHLWkJFUfiFGqB8aUUNqjvZCGh6IH54yCYDVO52IiTbR1MSrFBkfFRne7jl4s+29Z2Fe9VOXORl9KOWVKrxQDIQmflEQmaVKukq5T0QPzhRRDx/p/MTraeobsZ2TOo0TnbM6Aj1zY433gjz/NKH3P3c3A3/z1Hc5aHs8zfryg0sw0vcsOBkmLFxoT2R9/pfpPCYJRKIwyoKUPLpczIXgu5zOX84k4KZaLYbnMhMzXlNJCSZArBOUqabReOX2XJNFqk5Z54LTBKcGSMWMVXQ04LbZbI7WqTNcrNlUpoULEAM50aJVYQuL5csFqw9A5iezUCq2luqQq3G8pUU0sStU+aDpFeuYN/V2TsEoRkcjTpMya5ZMSIQpFRpmXxSj7a7PM/oLIptWCoCgPXBdBWRBiGZRFFUKon1UPQE4DQpmaq7vb78G8etI/+7E1OLHOBbJq2Bh0dPZwyyCt5jylNV3fMww71Dyh5h2GyF5HbDa6FWV/zsYmtTE2SbTTy2Xh6WkkRFDBoCyoENDLjMqpOsbqHNW5Gt4KrkjNRC4Coe3JGrr3tqytwFD+v4KmNRZGVcK+tyZqsQS/EgSrhTBP/tcN+FpEU/F8tN/XqJ/W+EhZWKwYLS+0lGBcFs7TzEv0vOgAaFzy6JgIy4RHSthqBcE6OtvRuS5vLFpy68eJwnVT3qukx5R2xbQwhZmnp6ds7JLG3Bxv+ObDNwx9T0wziw/5/dTGyJZSZJom5mlkfzgwDD2u79ntdvS7XSbYlnxjlRVt2/X0+1tSmFnSxGnyDEuohY/KBidKTaniB8J/kavtWUNYJs4v96gYmZ8/YZTC9gN22GG7juM339INe4637znevcdYR98fMMZlcvWZZVn44x/+wMPDPS/P90x+ZJ4novck78W7l40CzppswADXyfqYlkVCR71Hay0kmfNcIzbGy5zT8QLLEsiOSuFoMRLdBIq+71gWn3lzJH3vfD7x+HiPD5FuOOJ8R/CRxS6EGLC9Y/EdT0OHM5ovnx/4w+9/5PHhicf7L4TlgsaQUgeYqgAmVkWqRJx9XX5dq3rX366GVNKWeLFGavyCYK/bf93X0qvvVSYpTYnsIJD03qJg6Gyc0VEqOZJTcmtUTQyoAHPwRJVqlS9QmValMRo1e0RtQ1XiWH9u+ofX5xZF7wr/ydpZ5UBMEYPwaVXy/aLM12tzHzfKWmvYSAkpKpi9wtZokgJvLcYMhOB5fHridDnRO0Nn4bDTDNbj9EhMlnm+QNQ4K5GrSpXqStRnrwbJawXyShFF1TEjJfwiXBzzNDJezlIZ0c3EORGWmeiFy0l8buSHRohSuEK8YtkbpxJLQNZlNDViL12NxCuR3o5n7rfa2pRQUYCS1ZJqOvuA95Jm4K1BYfKe2uwntHtUEgOmVrXk8AbUqLRGFjQ8BuJjlvtaJUUMCsFlRFIGC19SIl3Ntn/+49U+V9eHGGTL3lZ/hoDP1TsL+bHIPsFQ1rkcSQ3DgY18EMXkVQv+D3iLdPV7qr9Wg1NpQ3nn1KwzdTVnlHA0DcPAbr8npEAIC0YlDqbHKvCLVDQtxqYUxVDgug4gR1pGnseZ59OLGDqHPV3XIbt9xOS0F2MtWmejcrUsfb1nah/WsWrOvrp2E6nU/F0UQtUYncoZLT4qzUnNwL2Ftcrnm3OuG6zW73SZDGV+FMW1KJFlfMSR3dw7Y/oQGb3n4hfOKXDJqbA2LeioWeaRmBCFUytCdPRDT99Ldd4QohgmpoXywFp5NSoxiitJExbDzoXw9Ig2Buek0l3fD+wOR6ECmBai9+JwMAZjrBRTCRIZtCwT0zSy6x3DUSqzua7DWFvXVck+UMZhuw7TDagUhHtznDCd2+g0MYSa0l32e4ncUnQIIX2YJ14ev6CB5fwo2KobsN1OqsN984F+2HG4WTFUtztgrGNZZqbpwjxPuD/+yMPDF84vjyx+Es4rP+MlQByjNCQlBWmSGDK63klq3SROOO8DRttcGXhmmqRvxumMl5xAkmjfVRZrndMTLVK5tes5qxPTNOG95+XlmafHR9F10BhjiYtnsZYYPcPQM48jLIH5MvPx42d++uOfuL9/wKgzWi0oDK1jqqwPow3WlKhz6jypiw8xfnxtDVQt6A259zUMdY2nCmxqzQKlfe1u0abkCtdgyo4vMTQllbLDTq6NRV9JEnDgg4eoWawGo7NjS2UZ0+yvzd+vI4jWfbOVUau5p5GzGTvEulfKZ5WjJxYKCLlQG70aE6o8j6/k2yYYY6PHJNCJlPmSnJXKxd47oCPGwMOjJzEDiv9pbznsHJ0bCf6E1hrvJ9BOjNFaOPyieouF/e1j01K16pIpJpZ5hpSYp0ki/GaNny3LvAjfW/BAANUicgERKqeqyboDlGRhKORzJyXGqQE2iVcTcjPGtZV54uf9UcWISVQjWQgzc/BYE3N/ZnldK+GtekO5t1G63PnNDa4YtwoaqpqLEgesVRqfIkuZP1VuNzf7C0DUrzY2TZcx3zyHmCXWXNRmIheDxgqeyMKFtVweILOHlUC7LDhakPKVN2klSnoNGn+tpa25YjU6NQKwHMVCKABHS8qS98Tg2Q07Pnz4nr4fGHc7xl1PnGfC8z1hngCFVgalwVmNKcamvDh19irFFJiXCR+R85OUpe46yzA4Dscdx9sD8RxQLyM1gK/YDtLWAFiMgmWWFYBTDGVVnteXpNyIN9ZH7iPVdHt6BW7Xz+WGq8CDFpS+uvOVYr1+/vbG0Z7fPr/1BqRmbiokHHE1dZXvpEqdENQqYogEFZimieeXF/EaO0nF6Yee9+/f473ncr4wzzMgBHsoJFAvK+ylydM08vL8BDHyeH9g7AeUttgc0UQGMpIa4/GZs0JbS7cbONzcYDuHdbYSoNpMHikRbArXdexvbsQaP0YxrC2ep9OZfrYYY8WQBrWcvaTPCTiTjcJgrMO5HSSPLWWhjfCLpbgwn18IyywVghbxalm3QxtbQ9RjjCgVGXY9St2C+ishaL95YR5H/LIwXU6iMM0lNDsQlXjgyvgppdgNkS4YOper6MWIm0rU0wzMWZEvG2WUTRwq31bh50kpcno5cf/lnnkKaCUcBn030OUS8ssy4pzDX06cHu95fHzm8+c/8fx8YhpfkM22KYurVkNsmdaK1wplnW+0m0y5Mm1PbMBCNZRcAaXyvlsRly9WzVJTWaq1wEWtbUy0661pc9lvdPZqJSCJibWkCBujJV0lJVQpa02sm+WKI9dcfjaGM9aNVW17MOUNTbFGFcjpmlr2PZX9LlVwKue13j6NTtRoCwnQWjdm2a5WsLQ92vQvkQ3GRJwzaJ2IUTONmtM5cf84kVLCusT333VcvOLj+YVpWtjv91i3L4htO975nVsgq9aPr1pDzg+UvPwYYJk90zSRjMOmmbRAWBaSXzJYokHNud9L5TiScAcm8VR5Smn62LRhBfoyBXLf6lzqNq/TMk/rLiy4FIUYfBRy/xTFuDV74UuR1OCmhHId2mJ4ojA8r3tXAW+Jlcy5kbelvG9V7DOYThnIx+yoUXE1NvxLmpzGyzk3lEyNlol9C6FsKlFMGf6FkuacOyTjqjpGMUmIfUz1+zJeK55Zn1+WzKt3Vqtcyldd/bw6+c3PE6sPTm3/n8G+1pL2rJyFBEv0zNGz2x344Yffcntzy+n+M+d7S/ILahIPdEKhjSXphEWi5qwRJwlA8rFyfy0+V6szUjnVdpbdfsdh13HY79jve86ztDLGlB0WpZzFCtjb9y0ys8qvtH6zlV9ZVrVrrgKtdZ6vIKpctoL8qtzVa0pbWhz3GuMmWCOm1NVVdY0WXA1KCU9fymuhFD2pmH59pbpXrPIzy+ok1wmXVtxE3U2XCy/mqRqFO9ex3+95/+69FDqYZP+POhIIRBWFyqDBZinKmnl8uGcY9hgj3I1JmeqkDT5HvC2LGKtixA0Dyhp2hwO73S4bGIvjEqHtKAOlEt0wsL+9Bb8wxcjD6UQymuPlQh86ihNJ+j1HqmQMo7TFmF5S0bouE4snXGdzFeOESgspJObLM9FPxLDglxFtLK7foXN6XbmvUYn9MGBVwqqEDwvn00mqyi0Ly2UkxiiRgF5I0CMJFYQEOkZbOa1CiDhnxfAaI3Z0UkXOB+YlNPuhREAtWT6X6FUZh0BIkZfnZ+4/f6bvB/y8SASbE1Lw8XIiBo9zjqdhzzDseLh/5PnhM5eXZ/o+0veZvyxHBmkjUeE1JDXPq3U7XudamYllXso0vFay8zkVNpX18HoNF2fS5ii4hLLblPttTyz3keiljOPLQs/rJJHynCPLZnH4GpNTg7WWbJckZeeNaukLFGthhC01SY1+Uc27NTKh9JYYwpr1n6+pBY/bStiKnKWRsgwqhRJYn/FqLF7rYqUNKmPPAtm01pgkqXSus8QI0+J5eo7c3kQulwWjFUMH372zRMDPZ5Zl5RtT6GoUW483Up3Xb+qQlvMqF6gXPc8vC8s8EydFmISgf41q8ii14tdKKpMfoEl12oYUpQqqLgWZtq1JpKYrVS1EsxnHdm4Xqx+FjgCCJweqSKXKmBLOKuEizcOy3S2uNJP2OVVnLnNr5Wkt9kgFOeJRVwyVohIDGyuv2V+Cn361sen5/kEalJW4VbnPj4uvgXtpdFXKGuVCPHWZ56UItw1BaBMS+NryUTfPzeSritjame3xS5bsauhqLikLvHAyYRSdy8r+PKP8grGWf/1v/j3LsnB5/szp8TOX50d+///+nzk9n3K57Q6UwpaBrBEtCR8mQvT4uHAaX/AhSsi/XTDDwOFww+1x4MN37/jht9+iHy7845eJOEViEoGlCk9iyuOgpMR5W+5S51UjimYBM1vh0ULv+lsmE6aApnxdimv/toKm7TeuBMP1768iHq6OEiKu1HpNaURMoJMsbh9zqlgF6oVcWMBQ8ZrUd2fdbGIMaL+IsWKR6gjeP/NyOuGs45sP79ntdhyPt9zc3uGXhR9//APz/X0GV+Ktsy5l8JvLd6fE6fmJy/nEy26HXxaGYeDbb3/gwzffklAsed5fzifOp5MIdWswQ8/h9o5vf/ODhOtm9jnJ+c/gIK+33fGA6XvCMvPw08zTeCZdJtzHzwzO8M37D9zd7EAFdAk1D4E0TdhuQSkJAe76Pf3+DpVmnD6jVU77YSH6hdODEEY+VUOpRplOqrfsDxxv32OsxQ4Hbm+P6Hd3/O6v/haAabrg55nz+cTnn39iniaenz5zfnnC+wV1PhGCRxshSo8pMnQ2l8sWs2qIkZfLyBICz89nHh4S1uYxTcIbMc1iEF/mCb9MUhI7SUTO548fOb08cdgfeX58wTnHrt/RZ3LZYddjjGEYerqu43K58NNPPzFNE31n6J0BJeBI5XS5VzO7VUiab0uJ51gjf9Rmble51Cj4pFQVfCgpbmY17G/W0PpvjZjJGCcrksUJoLTOG1NWHoi5RLyqn6PEsKRr5R5EodAOl4Rkflmyd7hX9DmEuoDyWBwIpLqxbtpVZclVW3M/hWxIMCZXIlKqphPWcPJMDEsWT1qpXEFWQVKZEFsi0FTtozXaMamQdbqtkVt+FQNa6euUEq6D3c7jveL52XI+Gz5/ifzjHx95OjluDgf+x39/4ON95Pf/y0fun0GpH9gdhgymE4XoW95DZcAX82tcy78GNuQ0sxgkRDoROZ9HzNMLg1WY4QxLwo8nwnwmplHG6xpkxEAuHEWncrSPAq8UNkW6FKQ/Gr6EavGhzEO9ejHzeG34TUISsnCt6I0hKsWSDWQ+Rc5MaK3Y6wGrHaTsZypjV26b57g2klYhMl1Qd0xJ6keTyVpZq5nJ/qolksVoYt/JGC6BJcUceRXqfX4tOfb/Ecfjly/yftXJlnLKYtHq837aIMcVpK4pp2W2lGi/FCJ5Q6zTRoDrNnquPKadaTVirNlji9LWXrNe+RrnrYA8XZ1bztZoI4TH2lj6bhBlTYNPUmH0/d17Yoj8/OM/8Kff/1em84mHH3/PfJmEWy+nSCcn699knpkYo/DzxIj3C+N4wcdESBrrE7v+hvffvOf2Zsc3397x/psbxqBQ6p4YJM0j1fY286/gz6yUFfDdVokrhnA5bbuKFc3S234q/xLUZVaMthS5Kc9QqlUItjD4zShXde3CWN+sNXDVlIu8xgQnxcx3VaH8RnHTWhxXOkdGyrqVeVMcdhHPMk2EZSHMC6dn2We//e47DocDfddzc3PDPC/8+Icfub88kFTI1UtzcYfCz5SkTQ9fPnN6fmK/PxB9YBh2HG/fcbh5J1EK08wSI5P3zH5Bac3u9k4Kq+x37G/2gMqcRwGTU+5RuR8UHG5ECvhl5uXjH/n85Z4Py0y/G9j1AzfHPfv9TooNZNzr54mL0rhuoL87orVh2O3p9weMiuwHjdWlX0dShJf7EyVnoPDVGtejjKUf9hxu7sTR2O3Z3d6izXuM+1sSZDLwhcvpxOePP7FME+eXB8bzs3AyKXGyKZ2wVpGSYhdlnoWMg30IXC4jiw88P594eHwWgmqKs25hyiTsQh2RDU2LFHX5+Y9/5Pz8zG4YuLu7xVrLrh/oXSeGp90OnSPNtLFcLiMff/7IPM+8++bI0B8yB6mlc91KPaB1NTgp3Uz0RnatU3p1KDfBNBTZtNVByp5fHPtaIm4ShJDnflrvK4oStfCLYi080q41k9OXVb4upkgIOjumNEUOCL9OzFUYfeX7McZCSsxLRCVP12mMkypgOmlS4egiVPFQdLmCg1o50BqFSGX9SifpQjWg1Mr1Exv5VvYZJclF8ppRIoSVQpksq5LeSBZ59Tf0coXgL430e8aeSoHrEsO+I3jN6Txz/+BxduH+YSSlwO0e/v2/6nk6wf/64xdO4zN37z/Q7/aoGAlhu3M1k+SrRxk2rTTK6kwFIVGy4/nC+fRCmhTxxeDHmWU6EcMZlMfoda9TiKFOZz5lXahbFSwx4FXEREVM2QGSPS+yv2TqE5kRKG1y9FiZrwWf57kWJTpcay3FFoCJxOwDIaaa9qrocuVfVgdIYmPLSLkytNZFFjR8wGrd65XKMqJgKGNwWgufnesEK/nA4nPAUM5WQ2/x8y8dv9rYVDwWMQZh3icbm6StlAiSNp2pbnVVdjQLoxg6cie3qVGqOaPpka8eqQiK5ryt9U69+mxzlDbXazcYPXcogK7g1hiDjkEqM/Q9RhvivMPvBsI0UsIny5vTAP/ST8Uw0k42SS2SKjrCM0I2CBjxlljh70i5oQIWs6Cl4v8GXJS82tKf68RsR+L6k9KurUW7jFk+I62g57W19KpDr+/9xvj88rGFUa9anNqNY+1XAexqTWurb7wC/DYKSkATpMxnI5w/sfICKSVk2c65nMvqN9dLI0QwF7LexRjGUSpE+WUWQxcCCFIGVT4ElFY4LdU+jDXikTOaXN+CbbiqPM8Yg8uKSFIKHyOzT4xTIkUjvEf1bdfImJLuKh9LdJO1jpRiU62m6Z9sFK56EYqkZwrvTtf1QrbpOrS1KCV8CmVlFcWg3wl/wTxfCH7BeEuIIQMlj1ISrq51bmd+dx8jfQhor5icxTkxCEg/S5pdqJFNoYa9l013WRbZUJXhcj7hrZPIAeexVhPCjNGaeZaxnaaJaTyzLAvOdOB0nYY1HUSV6KY/M3/TqsCsYydRhmXttvO4nfHb49rw2n7VTP6y2De3biVrHXaBRY2y096iyKxV2VnlVypKf2rvV5SpdPWc0kOl39amtJ7yCv6KfLlua6pPf+Pz2kV1w72Omrp+txbLbmXQen75uHAcRC0+rRA1y5I4XzzOwc0xsd8Z+nNC4cUQEEN1yJS2lXdT9TlA2r7TV7m9VpFeq9p4JCoSL/Km8HAUL+Xmjcqz0zomRRIWAuYCOouiu3Za0+H1pus+0cp0IHtK174thn4B0WsEhWqU/HXuvp7fdWbVPtjuG0X0bnbcbPzUJIKSCLWV8DO7Vn4dTvo/5Ki8XdLZIvszb1BRXATUlrlZ5mCZONs5Wa4p71PGo40u3h6J9hKaU96KBr+yga2XNIaOzTzZnJfHtlQdRlVCb2MMJaJWxkf4YkhJOHScI+SUaHGmKWp5qmycbTuhYJ5W1BWOnZjTMKyRUtpSkKWsvlXevJrfr607lGj7zfObbtx202t5u/kq5RakrRySR2+jxt+6X/tdXQtNmzcyp7bxjVa2mCmtUvetMa+Ka76gtihfS4OfSL7yjcUQajpM73oUwgliS1pbNrBJutFqbIOUCbITi3XM04hWiuhD1RVSLBkUOXJESXqp6xy2c5lcXPSWWmmvOGG1Ai2pla7r5DkxcpmE92iaPUYvhFKoZ5VCmUMmp9ZpidYx1kolYCJap5yZHlE5Gm+NHssyQCmUXzJnYpJUv+Aw2mG0QRmpxItSUozGSAn5ftihlKQaxejRi834x1KMWCmBidLeQi5ugiGEiNae0YkuIdE3sfJiFn4quV9YeXczN+d0uUCSKF9nLYRAdMIx6jP9gTYmY7yZZR5z9Jmve3qtDqm2Tqi8cb+at+183KoV7Zq4EgBsMctbx1syT/apPMppe94rXaWodS2GytiDcq7WqBg391dKZWoLVvlTbljut9WCt/3E9Xu1GKq+nMyDeo/WuLC9XrBA2rxzwQ9KbY1MbZetkerNmF0PoVodqgVDJSM8lssC85IYJ880SaGs494wLwqiJ/hUebZyL2x0+df47msyV20/TiuGkmhwLY48L5VPhWeu0MLUySl9UmRIKnOl/Eeu3dcGyZTHFfm8/bzVnVe5m1YsmIpDo0w0+Sbk0vNVnqV1jhRE9aoHVDuKzbM2+3/aDLCCyqlZoqhjqyew4qxfc/xqY9Myzfnm6yYmxKqqdohMKF3Z7rd7eO1hgBzRJPeKMWbC4mYyleuuN/3mKMDqGuheG5VehRyvK+6rWHNNR1MrOK/KvgAlbQx48RbM08R4uTBNs5QjjbKpLFEUdaCmClVrdIKYvKSNaMvN7S2LDzydJy6XEe0Xno1GJc+8zOWNkfDKSMpcTkmlGtm0gofsudLr+27Baf1gA1I3CgYFAGSYEsTiKpv8Oq6bRVMWyC+AWJpxaZ95PWnXe6+gdi0pukYdtAR65eca2RRxztF3PdZcEYPlMGrJa1Ai2JRuwskjj08PnC9nhmHgeBDPzDcfPvDu3TtO5xNfvnzKedhLJk9WaFHXMvmekHS/PD1yqRXTItZ1DIc7tBEvm87Gpf3djRgv+47LPAnAK+HGSiqaQNE7lESBRBFz4zLzdHpmVhBfNL01WHeDMnusTjgt61NAxUI3zOJZJ+CGgcPde6IfSbNHqnAqVBKBqnP+dem8BMRsLAvTmafPiwjDjz+RlMa6DjdIml3X9RjriBEOhyP7/YF3797nsfMsy0gInqenJ56fn/DLwilHPfl5ZllmQgwYJWSlThsGJ+G4fp54GSd6a3i+OQKKp+dHLucLl8tZlO8kEWgLgVP0+GXGaEPnOiH5tJqhF8Pe0HV0XVc3FqfBYFApyL88t43RWG02FQYLCK3gI68fibhIKx4qxuEMqNe5nTZCM5FlYzH85aWzXacyHgLcmnXOVhYUQJ9CpMjscugMihIQriJUC0BpPYZiEzBoJWpyjKluOlKdsXluuWiDjdQK1LLlqTjsgpISsCXiohi0mkTndflucGbp45T7NCsTCTIJ06rYlOaorxkK1eY5Iu811mmUNsJn0Q8sIfIPv3/meFDc3ew4Hg13c+K7W4VJCtTE8/OzeKisE6NmjBL9Q8qZ4wpRpL/O9ZUyhJBoL4tSME2e9HRmsWCWAeUT83QipQlYhDv1CmHETGqvkBS3oBQeJXwjKTIHjy57W2lXCkCefwrW9AMZF5XnRlFK1pB6AU0aRWctOy3vPi0TKURmH3DeY5SmUzZ73laFucDtohgmxOhQU5QqNlr3roopUxLlFnDaEPNrhJymnChpmnqzDv65j8JXqXLknXi5zcb4WTCUyoLm68inrEsyp1neB6/x99uXNn8312w+bh1Iv6aTtkC1zBkxbmaOm2RFiS7vpmQMgg+cz2fC4nk5nZgWz7wIf84ShTMoZpeLGFRfe2tB4VzH8eZGIjdOE+PLmcEoTqc7OpuEB0SSRitOaHB9QVe0Ss32KFh3ldMFrcaSCgl5z4QK/VPuwywPC5VBiUCQOZv5517Jdla81HwUGwW2fnZlpASyoa6CsWqggTxfckR4GxW+UX7kJnR9Tz8MnM4XSU9XOqd45PSyknaVU9djiYiMkfvPnzm9vNAPA4fjEaMN33//A+/efcPp/MKX+y859V0iZiFHhSggR9h6P/Nw/1nwj5K0f4l6NVkuGjpjcJ3j5t0d3SCVgH1O916y4aRWy9Ma13cYK5xn4zzjfeDlPPLp/pEUFXf7J/a7ASFQFU5Pm6N0Q0jEOKNtl41bPf3hhv3tNxAXdLyQkq8amwYwEnzY7u9ljSzzmccvc55UFjBY14lzzmiM69HOEmPieHNDOh758OGDjGNO6Qsh8Pz0yPPLsxCt54jxeZqY55EYIlZ1hGCwKtIZmX2X0xOXy4ll/iCcWDHx+PjA09Mzl8s5R1Eogl8YL4llGZnGs9BL5KgmYzSd6zBa03U9rnN5xUi1Ma1SjYYQg7PIfGM0RunK9f3WUaO5i+x/ZTkouKrBKFVGxipvWn2jGCiz5spqWEF0q8IKkFb8s6YWloJFq26qM3deikEie0ky2Fkxe7WuVal4nUSjL/fJxVZMKpxaq37zlrGp7B1AI/tTnVcq48e3ZFrRZ4uTXVVDR6xrUGesViqjr7h11c82UesUvLK2ReX5Y6ym6yzaix6jdc84Jv7hn574cm/413/zgb/+3RHjAvvfj4zjRPQjl8skbYVqHC0p8RWnNXvoW8668olG+ME0ivFy4eFRoxeNPnXEyROWGVXc8wVkbjiKZEIYpemVIgBCJZ6Yc4SlRqKeWg6k3HMrbsn/1bFKKRdNoM6HggxR4JylVwPESIhSjMp7Q7AmF6AoaXlUrFYL/mQnTzuPWzvLtfMWyBHg8rk1lmiSRAyrtAbfJGrFvF9z/MWRTQKGyKkkuqaUFIBUhHGDB9ejmew+JVJW3lLhzdH6lXGpCJE3N/9mU1w/Spufry9J7R91dBq9rPl+2+wCjspmpbUQ9E3TxOVyyUJ9kapzKXt4YiLl8GSf+QSK0Cz2UFRCKcNhf2D2noeTKMo2Jk6uw2nwOTKjLud09a9Z4qunsREMUHN4K3Spp619Vi2c9aLyvaqCu4DctU+ueWSKcPw6SL02NLULoPR56et2XLZRSG0fsPkpZSwFRFlj6dzq5WqfIS+YjU2ZdyCmKFWUYuDl5YTWl1ohzjnH3d0du92O+/t7LpczeprwFyn/q9BNaGFOI4qB8/mEUkqErU70wx7b7egy+BZAYRkOe/qdVH6blkWUXGUxyogh16xgHZXJP2MgRM/iF06XM0uCkCSN5XgzMuwWeqewg1wTgqQc+LBkY1PCdh3D8ZYwG5bwSIwL7Qal1ZqfXYRnqQzk/cR4ehFlcp5ZQsC4jm63w1jH8e4b9ocbrOsZdu8wxrHbH+j7vRgW0kIInk+ff+bLl49M44j7bJinkelyZjwnQhSlLISAM1KRYZ49nz49cjlPnHeDpCIC5/NJeLWmMY9tIgaPR0Llx7Nwp1jjMsGoou8tRit2fc/QdzjnuD0ecc6iiaKtEqsCXDz0lfC1yLtiWCk/GgPHNUhqDThbubQ5ayOT3vbGrVXrNjdJZetvn1U25zUkW8BAzv2mlrLIsE5t5EhtnipbqXhYJCNB5bbo+izNqogAbSGnLVipahsEJelcLYCsvzYyptpS/n/E/VmXLMmRJoh9oqpm5u6x3iUzgQQaqEJXTXX3aTbP6R7O4XDO4RN/Nsk3nhmSM1x62Ft1dxVQhURud4kID3e3RVWFDyKiqubhN5HANGoMiIwb7rao6SLyiajIJ2RKu43hE50NIvEl27ubQVgA5ovufNm5LOWlhSOM0XWyEx7ThG/fnfD4xPinfxmx23pcbxn3V4S8APsUsT8eEUKH7kZSRCxaT/5fyRbLmv49bXFeqkkuSxSujkAYeA+KjBhPYJ7BlCoINVChlo29uyfS1B/5nZixxCTGgvONo2PdphKpJRha7q36e9VUtk0aSDEABMwx4rRMiIkRk3KsOQ+EoM4HlP4wyW8qYLXb21jCprnNIVccjqxrQvnqosuSQpHrfLLIpzOU8ic7shWGIAfoppwvKab1J7jwYj60a9jWdkqip0xHrzYD6HzkypXnpprioOazspZs+bVXnRPsNgC3OQgVXNvYlJSZCqhAJAU4jocj5mnG6SQVyWISR0HKsk6kcqZsNpRiJPajoNqHDrsdYVoiPj4dsT8ccLPtcRpP2G6cphuJHK8ghgs4L+9J7VvYu7WRAdycdo6d5DNC3SAoXgUijWgpU7RcS9Q4cfFSzlNtiKDGC84mGxP7bZtFqojsYY3B3XA0tRjQmlxvqg6VvqR/WIGRKuuVw0NToG2Z5ZTw9PQI5xxu7u6w2e4Qug6v7iXt/sPH93g+PGOeWaI1UywGY3Faq97fPz3BOYft9gZXV7eamrkR3kDn4IJHtxmwu7rGsNtiGk84Hg+wyB0zqkEyZ0LXIXSdVLYLAeQ8TtOCx/0Bnevw8HTAsmRstlv0w4AuePhB1qYY31EdWAGh79Fvdthc3SIvEzBGcNR5qqXkbe/DOdsIYcQYBY/No3BY5Yx5TohRNiT7zRV8CLi+u8Pm6gq+G7Db3cD5DrvdFTbDTt5PCdLfvfseHz+8xzyP2D++xzJPGP0ejhdkT/AUkJODJ0ZwhDlGfHg64DTN8D7g+vYeOWc8Pz/jeb/HMk3F3stxEZ61KeOga7ALEoVvGyreOWy3G2w2G3RdwPX1lWy6GrdcFp4j5z28I3hvtiMUQ5n+rrLesH47v+0wvVZXjvzrRVRgqyvYNq1rKhmV+QYADnB5dY9zZ5PZK1I5T/C7AyMTlBxQNa0DkM1m4tX6hKvzm2GQvjoIfNngtWrSl9c6rMfI8KfRMtR31pmHc61Qo9XbH+trbSKM0669V7XPajMqx9HqKVQDNYLy7ImzscM0R3zz7RH7Z+CXP3+NN693mOOEoXtG5xZwnjBNM7x3GDqjdlDtwvbMqocuHetuIiHOJmCeZ/CB4RePbkzgKSIlcR0RGvu1xVCWRgeg03efIag52oYdETaNH6QcJhO5OppaeW/0GI6N6kJxLBjBe/TkxHk8zhJ52PhNLr2v+StaOh2pat22yzAhFC4q0tK2Ce+lKxiKnepO1Ii1/+KRTcF4OYDVQ8wgsedVkEIl+qIAX24UbXEYyM6KKzGFa0VbXqTiqBfHJyOXLnx38doCrOVBBi7OgVbOjJwXMGSnxXhi9s+PODw/47R/wPHpA+bjEeO0IGaGA4OguysxKSmzpuOp8SCFdzI8Ejr22PQ9dpsNtpsB282AYWM7MI2TpSF0tEoHZUfKKk6B1ylzXI2ulWMHBgjtNKonl3G1vuHm76bXVgbpy9zi86MNh3z53Xn/rwXGGRas8xEmFuu9xcHTgZnRNQ6nIpg1jUF2hWeQS6h59YSMCM6EZZ5wPAgHQReCXJcTrq+vMQwDyBP8KGHKy7wAmTXtRleIKtQYF4m40TnkQycRNdttqS5kfEBVuaEa9GaEmCcblUdFIhK8Oqg8nA+I7DDOEUmKK8A7mY8g3cNIUhLXOUI/DIiIiE528iyaoi6+vFp/VZgJf5LTtUye4ILwpjjK4DhhHkly/xPDuYA4j5j6g4agm9IlbLZbCbF3DilGzOMJ03jCskTsn/eYlwXjOMKdTvB+wW63gEiedXx+AgOYTgdRJEgYNh046xpzVfYIcaFXfheStjoIR4yCIK98MfaZa+dsxe71YFlFBcRAd4RKFGCd9+fgoU2b4OZ+KJ+cr7VzZ25zv/M1xefgyz6uBpQ835zpsi6K8nFOyti2a1xljThmtR2uytF1uLmZZWsevgJziqghjaK0ua2KjM18A4yF2NJvyIAjpRJRa7c9798VoDQHlyk0NABXrxejqUVODRD0DmCHZZH+2j9HvP94wGkEbq5Evi+PGQ+nSdqYttB0/pVOk3Fcj7MZW+dj3jaDGeDEiLzgxEdQzIhx1q3z1lRklMgUIq3YRmUNGIknoG7GnJUXQHknml2rAmCLoW7jWoFo4Tckc/wAUH3nnCvVVcBSpYqYwJ5NCVXCGAVE5hRlQCplNdVA5Zo64NVQqYdjBpOF8BOyE5JLZgE/jggvJsuf6DDd40h388n0gkXMyE/mJOugcTi9MKRU97eRKWTyh2ow/SedQM3Bl068/NHZdZZ68RKjCfYowqXIrJQSGAuYgWWescQZ43jEw8MHnA5HPH18h8f3HxGnEcsShW+GhYCaWbhPWPksvBI9k3LpeSYELzJqMwy42kUxfIceQ98rD1udryscqjKmyPYKhurcPO+cF2Njl53JEwFdZlZUR5PJNTrfqFsbDOfPMNl/aQOhtGOlqy4PZJ1etJqDaK5hCL4YhgEpRXTKk2hIy4x2oXyQ4jnkUmMfEBgZORGmccTzfo8QOuyuMvphgCOHu9tb2SgzEuwk/JlQfsmcawQKM2OeJxwOe3T9IE4w54HggE6Kr+hLwCIHMxNcVmdBK3tz1YvBB9kUCJ1uQvXwfgD5HsvCOJxm9EEK94Sy0eRQN2kYPgT0my2SI+TYS1pNjkBKqGlJ56lYhjccmD1ydqqHs1ApOIajjBwnLCOk4mhKIBeQ5xFzf1AZKUUbHBE2my36rkPXSeny8XSL8XhAjAsOz89Y5hmuGwEXEJaIMWbBjhCeUSEfnwBO8B7YbAZwwZ8y5ub8LdiTKobynhC8kBd7/Wk35VCcPbYeq16xpcaaQQHYOLVzVqVY+2FzbbtO5JD5I/QVua5xXdt1nXK5ly1StrXb/LSV16xhBJQ1JBQQxl1ZdZg4Sew6FHtNfXBF/pszoOCT8/X8AwdZ+5u/z209GwjnGJ5bhzMk/VPbVXFKI9gbIU9lQOWFVo40oNAZ5MRFFtjjLbUZyDiN8rz9YcH+cMKyJNxcOaTU4ZQzxumE7AP6sAGRboQ1/VHHpPbXCjutcAHBqD9yYsQlIc8Z+ZTBsxT9onY/xK5vUrXKRlrWNDNSSMPAQpLKm51EO0l0WKXgKDx51qc6/5sRK5ibdSwZEiUVHIHYITpf5s2Ss0R8WRACr/WHNbqt7G7rpz0YzUc6bpbVattxzgQAUclY8O08+T3Hj3Y2bTYbbYjtepFtHTcP40IsBziwDio5jxJu24COGCN8SsgxIYFAwcOdP7hV/JeOs8X3hziaLl23vt6ElACnnKViXOaMU1wwpYj9/iN++9Wv8fDxIx6+/w4P334LyhldltKFpYQiZ0zLjJQSggvogoScbvoBoQ+gHEFxQQoZr25vMQwbXA8DXt/e4uZqg2EIkEmakXJCTAkpEVKSSZETKYmvX71TjUZpBcfLCamYAzX4TyOu6t3U2ZbPBJgRtLagp+xLtz38Aq/JufTi7/YzPhN0RjjMyCWlzymBbso1ZcmAkPcO19c3GDYRV1dX2AyDAJhmHiZz6swzACc5/KGvi4qAOI84Pj8h+IBlPGF3JRU3fvqTn4KI8OHxAc+HA56f9/ju22+0PDUDEEUeuh7OAafTAfN8wu5qxPXdK5AnDFc3uL66FSLUrhNy48xInJAdw3VZ05wIZKTYqEujYwcOHXrfo/c9htBjGHYILmBMDu/3EwIl7J2Q3t1cD7i+GsAAUhwRF6nsc317j/nksTxvkJdZBCUsLzlJ5SN9JxkW6fcQPKRAFaNLC5KlmzkCkBHHR8ynRwAOzEGu8x3IdeiGHtc39/BdhzAMePXqLXwI2G52wgOwLIjzgtN4wldffYXD8wHPTw94fPiAZZnRdT2macLhdML3336lpcETYs4I3uP+/qqE5Dto1ZVcHSfMohw6L3Or7xyGQSpldUPQqllSldAHMhwrAFsBmOkhZuiuFsCl1L2MFBHgggCzSqB9Pt9VgWqIdzFOyjpZr7M2mqOKySrHrPrnijeoXZGt8wgyXpICyuBUnWbOZQUNuZGJMgdSyliIwY7Ql3BdM0KrQVwdD6vVrs2VTpTucnAkask7iZwt79IAL+V/lj4g5SwihjnkS1+o4gSjhHMr1II5XE0w1XBzaycLOE3WcPkJwWMzBExzxvOhB40Jv/36iPvb77AZBvzs83t4FzD9dcTf/e4Rud8gXl3Bhx6A8hawRF/ayFUneTVXL8lLV9IdxcmQ4ohlOgAxYhyfAa+RG/b6zXxxBUUxkLTKHmRjImdgUr62oGlGnZYeB7TqJpQbReeVK8akOjvkIXBBI7j02c4TghpDQ+glnY0zximiD4xdZ8BLUDfJNNAxcQhavSxHSe8FWAk4m7XDVb8Uo7kx9nvnQIGwMDBCdAV5SSf8hzqGzQBq/icttN+VtymnReawk7RNqFMK5FbrWtKhM4Ia5JRFTxTnTnP/1u9hh63RGsvyhx8Mczs09y842qw1kWk5JSnAkYSE+Pmwx/G4x+PDR/ztf/oPePz4Ec8PH7D/8AEEYBOCROCxcMgwi0M154yu7zH4TqLqQwB5h+AyduSRQkZ8dYftboPP7u9wf3eHm5ttSREyvkKLUMgWSZklKrkF/ww01edQZAm076qhez6PqPS+9TO4ptsZ1mp7sR2hdXo2VvO7PKFxOJ1/bkfhRqO6WSLGMATi6eZCSQvKueIhvdZ7h/u7W2w2Ax4fHmtKhibLpZgQF0kZcy7Img0SBS73kaineZnx/CxFc16//QzX19fohx5/9ss/Q+aM77//Ho+PQlvw/v0JKUa44EG6ARdcQAZj//yEOS7YXV9je72TVK4hIAxb+C6ITs5Jom2GjTiZ8oiEVCK0s86pFGVtDcMWyMB2c4WrzTW22xv021uEvsfzmHEYnzB0He6ut+hCwO3VDte7AZ5CkVv9sMX13RvE+YSRF6QpyHylCYKxE9rZxRCZzBop3XWyKWoR42J0AoSMOO4xn57ALPxNAMH5Tir09QOub+41UmvA61ev4LuA7fUVXAhYxhHzOGE8HfHVV3+Hw+EZx6NGLi0zumGDcRxxPE349nd/j5TFxgAxhsGjv77Rmco6p4RAvDpghAKlU6fS0FcMNfSVK01sVSXUzhadSEr1IVG+baTdmszYqd73jT/I7A0qOKHIm5WDqFbbgsq7WlWsWbkG4oozigsnWFY+q3aNmQPJlpuknDmw8xCuLlshtZhB+dH3AwPRkaZWNxG9tsnCEGqPizJ6jd/atS84gdUZuM5GEaobX3SM9LEDUSr/rs6QNXa0vjen31oGNUWpUDFMZkZOrHpMruu7gLwRm/L9R0bwGV9/c8Bnbz+Cs8eXX/T4/I3D33wV8e6rDwj9gM22R3C9WKiGwbNFoBGcxwsp3A6ttZGcYJq4ZMSYwGMEP0zgecGyHBGCtr4RyQVDQTc4GCClpAheHTDMODEjEKFzFu0mXFRgpTFA1Ts2T+shWAzOg2xjRM/rfEBwDgsI0SeAMiIYzzGi804rlq9tEVI9Q05SGJnR8O7WzbnV/OH6W3CUjjEJKbkLXlL4dG14CJH4jzl+tLOpTY1oS9yumysLwkJV7ZyVxrYzLwgF8Nlyss5i2a0rjzh/4icMqR99nCnyFztFus5FAKZG+Ejq0jiecDwdcHh+llBfANddX6JPWMF7VIFFcPDajyiC1LiuCF0IGBjo+x59F9D1VspU+7fts6K8GE2nN4YuUCDnunPBrX1j+IeqUHppHNYxq/3D9QZnxwvHePsFV094Oxdehsmuc5UvjHRpZHGYmaLQF/RBALvklmu1gEJ4rUSPsJ6UxZVdLk4de2pkRvIR0zRKGc+ulzQr5zH0A5aYME9TUYxihBk/iLTFiKy7fkaKi4ZtQsjHXVPlzOZk6xAgwto5sXr9asaQg/OdlIuGU5LwDKYIT4xt6hUfVVJhp2HleenKfFxHNtnEWlHgQUAUlVBxrzlLbbRGIexmQs4RzKTk4h4pb9D3AwInAYrOIfiAzUYivXJMSJsE33XY7Z6QsqSUTuMJPnjEuCAEjyXFplJmVserKDWnJMGk7xzNCaMGhyMpBe+cOAK8q7tx3lNR2Ja/3iri2jWNwSXYs+T9/9ij3ZRaRTm1z3xxUTsSf4DMa55xviNuysgaVdMxqGkklSca6SlgkUhcXnxloDU+tbbLSqvZRL5eSxUKtuZcu4PW7tZIxPraQFsLsHPHnkVLnX1PddxK+1tHlxoHkgIkoO40JjztJxA7DG8Im8Gj7xYQRyDHwqlDQF3jnzqavrs0oibLmUWOLfMEXiQEnFfEfZ++L7Fob+K6mo1DJjHDZ9aIIwWOF+amnF1lg8nO4gxvztOAe3hyYKeAiy2Vp9ysgQmN8wg44xWis18vUy6b15WWkVbIIUnxaWi5/8EO2wiS/j9XalXOWqSI8DW4Zh5YVEx1qgJmH1UTtlSkYXwSNxUHSLnvD8sObsal7ff1rW2S6KzQeVAir8GyiZIkdUh+RyzLjOPpGYfnPQ7PUpnVO4ew3YGC8NTkpOntSZwE3rgjIZjJKnd6IsA5MWYYGPoOoROuRHM0mNius/dsLpRuqe9ypvJWjqYfcxQ8xgYmDXT9MIY6b1Lp6TPs1D5nLQIb53u55gca2t63XCscK32WQinOuUJOa3M1pagGl8ptB/gsOChruoc4GoEQBCctmq7e9z0AYNAINCnmIUJYdKluXmsvxbgAEyH0ndIAiL1hEcil/WS8OPK78KWWoaiOH5Nb3kk1Ne+koprzHVKcJAoTCfOcABbOJp3kYtSxVj3uB0hEUAf2CxxnUI5AkbWabng2oi1/XDXm6+hzioUaIiYGM8G5GeQkemnQ5zqvGCoEDIqhOt+hCwOcD9jurnWjQtZfWAKWOcI7J5kXWbMvnKylELxgKJ2n5ryJzsY+g7NQq1TM5F78OHOcnTtQbRy4ztX2J2sU449ZI+fL8Vw+loG38wvOqDh/tTYuPKrdwLc13V5j0U3VmKfm8xZn1XMEQ6HMedHvLQhRFP5ibf9wR4gt8LJvCIJlM4RLKwOryCtxTpmT/8VMfYFpa1/Y94YZqFTgax1QIqJlnuTssCxASsBpTDgeZ3jfYTMMQO/RebXPknA1WWNeRtM0ePkTet3UogHQMsdSQlom8LKAtSjX+j4vO1rofsU2NUehRagl1I02yWIm1Je/eDvVMRVrladz/bcj4dk0WcEsgRKOzv0wzfu2bSZ8qmsuXyggrkQ2tdFptk3647SfHD/a2bQ2sOrAluBFXQ15RbHPaoCev/Z6shTS55XBlps3eXm9fXppxa0U8MWBLTP25dg3jie7f9Z3ThrWG1NWXoEFcVmEq2kcMY2jpPiAEBIjKSlq0jLNBvwcMrKXXY55HpF5kYiMGMEsKYtX/YCrocdut8NuO8B5j6y7TlZ9C+ytm0tv50KeVr3IJdKsgKzW4KqdtJazrO8O3QEThejPUkFqNACV1KAXDpELIoBRF/unxs7y7M+uAmApjVqq18jAdXEAMmYpScMlP5hxdX2N129eY5omfPz4ILwQSyz9LnRa9h6uGJW2mK3SyuFwwDLPmGfZZfUhoBs2uL+9RR8kAm2ZZ5zGI+ZpAjOQclIHjPTrsszYP31AXCY4H3C1uwa8B6OTChbG5eFahSFVCYmcAnlCXGZM44jpdMIyzxKBEEhCzEMnBNi+Q84LxnkRUHRcRDC6HsscMfQJXejQ91t4ZPjQAU7CxDsn6ZtZq0LkHJFyFMCRImKUHUTnNQKCJYRYeeRkvpMDfACYwEqkaFntnBcc9h9B5HB4/FBK5w7ba7gQ0HU9Qi/ly/s+4O7uDle7DV6/uUfOLGR5OePxcY/v37/HMs94enzU6n8ZrDtwNsAMiRhrpoqUgldn0mazwWYzIASP7W4jVYyUSNz5HgyJKvFchW0puS5qfKXIABSy5vVOzMvjTPK0i0Kbb+sL5WkvQ52by8nAg0Yfojr1DTjamjPHjfFLtaa+gBNJVcnqLHBWMpyTOBCtwoyTCAwywlxbWGCgRGvls4YycqqvUIAYN47mZi6RKwsCzIyg0VgSaUaFlH0lP/hlv14CTTWEXc6uQNeDu053ZW0tMIZ+g5wTPjwm/PWvD/jJZ8Avfp7QbYH7O+BnnzksDEzziHlmDJsOm21fUtiw4qqzGfVpsFR22Iy0lRnz8YQ8TYjzBM7KOUDAS0DWdIMaoM6KdJDgWyYgspAwu8YhYqWeV6ldtktGsnNGMCecgiZdI8QM6JrpNeV1SgkxifE1LTOYEzpy6GwzQN9VShXLfVISZ4UBL5kWqn8a45gVpRFQuKnMsQZNpZCdZUa8TH3zpz24jmN1oTaYqjG2LL+CPDdnK2qkIkUlUidlUBO9ZmNdp0GLuQy58fmy+ENeo96xQZ4VtpmTqQH2VvkqC2/gssxYlkX+nRbMy4RxnuBJ0h5jDEVPA5JySgS4nGTjDxlxMuJ1CD8KIGTF3YDtdoeu7+A7Sd/MWm0IBcaKzC6OMx2brNxDJXpf+88cfeVkWwsXeqc6ACvRK4ga4+Ach7Vo9BxDXT4unZOz9JM5apiNmLzONVMDphotHQ5mQEGi/4RUX9Pb+x63d3d49fo15mXB/vkZy7xgWaJGchNIo2DbyN3C+5IzQAkxMp6eHjCNJ2x3OyzLJJFQPuCzt2+x2+1ARJjnRTBGkqiphKjFDBhLioAjPD58xDLPuLoT7iTmjBB7iPMpiCOLldIgJ+ULEh1CuhmclgXj8zOm0wgkiYjuug79ZoeuH+BTJw4Yzng+LnC0yIwwntmU0RFh0/e4vrrCHBzicQsGw3c9hs1GscgEzoI3l2VG5owlygZ0SQuFVuw0Z4Fm6bELIvcco1NeaZMYOU04PL0X/evfg3yQlL7tlVbI6+HDAKlkt4HvOtzc3SGlL8CZscwLUsp4fHzE9+/eYVkWHI7PmOdZ3jFFXcu5RlVq6LbNce8IXZB06e12wLAZEHzAdtsj+IBu06HvO3SdpmEySj0I1nm22sTghrSeUfSKRWa0+MqVapXaxrPv62+LKqxz0vizbCOy2CrqtHYWLqP4RmRq3eiv3Gn6jNK+lzLB0jq9cjc6JQ4HVUzoQ4fggJyE+gKc4Zr3WXPpNTJAMVvFnG36+7otpsKddF7h5zE5TRrVHmPFcC18qulzXJSAUyebc7q2mucJ/xSD4RHQwaUsleZYbFPvNwAS3n2Y8df/+QGv7nf4p395g92ux7fvT7jbjYADlumElIQDUuaRRnCxyRx5D3Hu/B7ZaU4gOHDOmMcj0jQhLxOsEnkri2uETdXTNghedbTmewGQwk2RCJ7M4aS8tw5YBSOUKHGjH7jEv1oxlGORNeQIMTPiskj7F4mwdIbBij7jVUReTjWy9jwat+BLBqB19YhJOKQYoKwbWSyBF5kzgv78GB/Wj3Y2oXRuIxDaj/UT81LbYFU12nIqNE1rgFW7O2c3Xe8gXeicF03k9Qnn37cfNmDh/NoirNR4gQKQmMzhJCWnY1yK42GaJ0zTBAdCx0B2HsuyYNadGuPk8aTOImQsMSOzk3SURap8DFcDumGD3TBgu91iMwjfQOYmjcFCTK1XuLY7pVwWYn3NuhRsRH7w4ApEbdS8dxfATWuQtA6oHxiEH3psMwYWcsqreWfzQh0WbFVVzFlUr005S9URL7tbu90O96/ucTgc8fD4hBglHXFZhEMi5fZdZYeoC0GcQE3qwul4xOQI0zxhWSL6vscXX36Jm+trDH2PrpOyr99//x3mSUKoJSy6rom4zDjsHxGnEbvdNfjVBEIHbvvYVePXhJD3XhWJpNXFecYyTZinEXGJSFEMet/1UkrXd3AuIC/AmAicAHcSYsvQz4hLAqeM0HcYNjsgLVLpRastGldbUmJWqWIsRk5UB6nzXrhYADCTinv1ghPgSCsuEUEKqwOJlUQ/Lzg9HwVwLFF31RycEn/ubm5xdXsHHzoMu1tsQgfvbxGUMyF0UkXu8XGPd+/fYxonfPvNV3h+ehKC0GfhIMgxlXQuC2c1pemJMHiJaBqGofB7DBvh0wqhhw99Cb81jpQyD3NW51qtCFfT4Kq8qyloF2c+UEyZlydYFAgAXYcoRoH8t+GygYnLuh6dGh/WB2ZgrFrAYrSeN9DG0aKHGOIoYQZSzFKZpwAyX7hjKGew8xpKXtHl+XpmBXpWZaru8prMb/gA1AFcxQ6BYXOPkRR0LMuCuEJZZxFbZ4dFLK3Fm1X5yAB5sILdLsg8zV2Hvh8QU8Tj/hlPz0cAHokywsC4vSH85A3hMDJ++3HCcZZd2u1Od6acVhEtRubvV9nmGLT8+YSM5XRCHA0oRYDW0aDagxduJpxGgAbhOgmXXlhWSJ990ZGWqiDD7NTgkDlkEQHmHJf+RHHaoTibgI4kdW/W6ABCxhwXMBIo9OjVaW3h4ynVlFLbDACZe6C+U3lOA7htHhOLo6m4XNmczuJs+rGcA/9FjmZKmrOnRGbZ9zpvi5McWFcF19SnlYNEMQFxO5eqjFrxNLS/WivixzQetJqq57OWz/5dIzRtbHJx2AqVwlJ+UlqwxBnzMhVi0uRFP8/zDEm/8PJ5TpKunUkKXeQsKQskmzFhGDB0AzabAV0X4DunMiuh3dgUm1OFqb1e62wi6W9m1HFaYcwGl5x1seEnk85kxu2lTc5yNOvnRxwvI5yqgW5RR20E63qDT967vpPqHl23rOlORIRh2ICZcXNzi/v7Vziejtjvn0XO6oad3DKXuUa6gSORQvbsiJwJz/snHMhhezpKZdy+x+dffI77+3tsN1uAgWme8fD0gP3zInPG3iEl8CLvvX98RFwW+K7DdrcDEZDiAjgSh0sXAEh0e3F4VqsZgBTuGQ9HzOMIzkk3mDqEfoNu2IBTj5wT4jzhcHiScxzBgdENPZAzAiSKLl9dwTvCsd8ipwzvJGqaOSHOHjktyBgxL1ErSkkqj/jY1flVlr2tcSrpsQ5Kywfoxh8jpxnH8QjOGTHLZjg5Bxd6kPPY3bzC7uY1fOiwvbrCLmi0Xx90A1l+Pz484Pvvv8M0jXj37jscDs+YxxNOz3vN5ogVP+jGneFT75ysTefQD+JY8l74Z733CEOH0HcIwShVGgcJUFLmTNfYlDSkYJ8JBkorjETs1Lm6/qnrojq6LVIPK+JknfCplWW6ge4dKMuGpNPc7hijzMEzDEWE9fNXC7xxxpASWsNoDqI4OGytKIepyCoqGFMWpWvuzSiOclJH+rlcOJP5xZjQ9jptC8MhaJ+Lj0uwlG2kNtKyzsnmjsYn+yL9FxopBYdAACMjOYcuaipzlk3cnBM+PEyY5yNiBP7lv3B48yrg/pZxu50wJ2CcT0gzQLsNhqED8zoiC1ZVvOEs/KGj9FHOmKcT0jiC4gxwWstfQs2uatYmINjCOK7KhgJQsEVwXPW2Iw3coDJXwEDiVKIR14NVZbFhKMqMoI6imDOWJQKZscQIIqBzQatH1qPY0C20L4qb1s/Udyvyh80ZKXJHXbpIYEQwOpZMkR+Dof6IyCaYJaM92CpeqAA3JnaHtTKsL1ZC66gxQJpnlB23Viu3L8SfDuP6lMPphb+K0PT+2WvYpVx3/S89i9QJ45WvxELNzFPpfJCUuUbQkJ3rNEdZuQxK+lJh+a8VXM4dOGXOWF81n9W+rd1W/HXnHdC81wp3Nv3ejuE5uClpE58ArZfGgj/1/Sc+b5VP23QReQSQ8LVIgY/q1BQASoVg0nsp4bvEqFE/QXcBNdd8Myg/gO5+QaM9LM2uKLAMZkJOSaoEAjgdj+i6vuy8eO+x2+2Kw2xZBDDlJEDbOQHRBMKyTIjzDMdACB1ISX5LWC3VecUMjYqQXSTOCePpiPF4AmdG8Epw6bwS06nHn2TXRIz/hHlhTHPGOE4Y+h6h3wpZvRdycIZyhGjfSxUayR13mkrnXAA5BpFHw5IDVqVs1UnNWVu9IzrvtSqQyTxXhLEoYjCQlhHTUdICpfJLp2Se4mQaNlupJAPGdtggOI/Xr95gM0g1msN2JxUcTlLtRar2TTBHLQAER+i1OkofAnor5Rs8nBcOr9B1YHLCF1YACp2LpLoKW5tvNX/5ksjBp6QZaefI484FWL3axGUZhNKI9b2YmlgKGxZ9/nmkIZXrKjC0Q1J+WQjwE5WT1/hKCbsbQ07NkBL10j6riCeqH5rxU4xuqmrg/PrSVjtxdWNrx9rQWJ1KtalVnhm5pYWlq1xW0mvvHMAeiT1ycphm4Gk/YTMIAL679UKW/xDBiZHzUPgLqkOQChBYO9kuH8ysBNJV/ZZEAGZ1qOi9GnDEtL4noRoupcwxFEyoUVayJ3VwCtDl8zvVtjFrmLWG4BPlIktl9HWTRHkcU86gxMg+V6DYjNX5jKwowtzajS6wNoDLbqDdi3VnzjnZrWOCVnO7rIP+ZIcBP20zN9yI0l/qTC34qaajrY/61rJ+MwrZFbdO65UwKt+X0S5zvTq9Lunccp4JbG5IeS+JL2o/rI6M2nJo2WateOMbDGVRxd7Bs4fXaqRUolJao1SdQ26NmZzhKXNQl1bUfmllpq17BuCI22ldxqZcfb5Euc7Hy8cn5DYamQVc1g3Nh+2I2ncFNq9+NxiibUWL31Q2m4gWk1B33HV8ZZNMioAwAz4EbLYbJE2p886Bg0eAzNtuGGoRFvsP140SKF6zyqE5RSzzBDALhvJB8ZlUqLzaXYFInIuLRpIzV96geZ7gvMMyT8hxQXIkO/nJNpfk3cSQI+Eiyqlg+8ySlj8exdnkyGO7vULfb+CcRZGrDHEergvgRFhyxnGcsB1nTJP8ZJbnRG17BuDhxJHPBIQe2TmExPAhAZTgfIKTsLPV+BlWlyA81s1OGStvjhc2WafyUqNUnGMdVwY4I84TpuMeLnQAJ4me6QKWvoNzHv1g7wpsthuEEJBSwna7kw27YYsUI6bphLhIJawYl7KOiCyyKSiG8uiDRPB0+jsohhLHluJYt3a+thOc7cY6Z2252bjJOVyM9lrx9+W6Eb1OQCa0JBBlDaheQol8alOXG11EVeaZQ7XOa3Py1oCLT2mVNiKLWfBTsvEWqYjK3nRB+xlkYMOg1j+2MdbgUsNtJHPQZH7b2dY/Fm1TnOw2BFyfbvZIe5TzUJomzywpeNy8CsGiU0vqqlbYzclhnIDTyDgeZxy3HsEx7m47jIvH9BwR44yUxG5T2PQJqPRpnb7StaUzUQPudWaXSp5AcTRJFzTOGNHg4oghKhFeEpVt6WZcxqg8uPH62FxirvNZZBOXU8lVfS1yWjfPFLQaPYgvzq3VFtYFvfLSKVhdOTZYNpfrqiFWnjPTCUDhX/t9xx+XRif/OPtegY+GewK2IBuAU15EFJNXBvWcM8hIm2HASZVl4WsiwIjJP+H4ednW+lnOVV4YlvvBe1DzHDZHhgkUA3kS6j30PbabAX3XwQUPD4euG9CHABcSfO6a/gB818H3PQDGFCfJnfYdhjBIRIlTEmXyCKFH6HoV0EbQy+sfBmy/hkhINUG0clKtjI+VyFk70qoCqSVJ1wb12igt4JDq9+tzK4FbPYdW537qtwmi8127cn/9rxniLL2mqZzAEpMqXtkV6voet/d3cCFgd/1RIh/ciJgYXd/hs8+/wHa3w/F4wvPzsziKlqiRYhLSDAgvDGcCLTNGBmYnVeg+fviIzXaD2/t7hBDwxec/wZdfBhyPR3zzzTeYphFjkio7OTMc7TGFDtf7RxyeH9D1G2y7Ds57AEoMqzxCJX1OgUjQdLNlnvHu268xnU5AzrjeXWO72aHrJIzZ0hZADsPuBmDGcjrg6XACuRnv3j1gHmd0wxVeD1sBfr5Hph6ZCFmjGYLrZManALgASgldEu4ls+m4Gbucs3AjQTmbslWoaaJWSARn0JSgTAB7m5sJ4IRpP+Lw8E7mcy87dT70CJomeH33Gv2wRdcPeH3/CkQOP/nJlwARxnHE/nmPZV7w/vvvNNrpiOf9R+QUAUhovHeErZLRDsOAoevhPaEfxNkU+i18t0GCw5g8EjcOY6iEU+WTywSlwlFQ531W3h6VH7amcX6YVkOtZOFeGg6mDNpLzGiqMtfkrX6qEUnISdehtll3Ki0svKYpNQaKVe8hwAdSgEzISfmLWECT8fMU+QIuoAjMIKvSUhSxtKspdlGbTiaTePWZdmi5j+F5cZByMTRFgTch5TY2ZQwawCX+VSDXMrR2SFQCQNlVR5P3GPoOKTkcTx3GscPDY8Z//vVHPDw+47PXt/iv/uIO7z9k/N3XBzxMGXHymKYrXde1n2zWcwOG2/Gz912jcY1wYZ1/6sBlhlbvsvMaDqUCCqUHgp7CBGQnYNw4zSISMpmzrel6bp+v46qcbZwkGkKwm805TetRUJbB8I4QvDx9ShFTZoTgsXOdDjqBtARwdeCSVjhDcZJao2SDR7kmbF1khpS6h4QLJGlV6ALIS9nxU7SQ+X/Iw4xtmXQ2B8rc1LRvcQ5eIt+0uZthxTGQo3JhUQGNRotrmxRAvZ+NI4Mrr1PTD6vKSaXNzWl0fsVLzE+29tGuYUP1DOeA4B264NEPAcPQIfRBK5l69IqpfIxwnbTbKf4XUnCvoDwjpUXSNboA54JG03iJUglS6AFkkT6pgU9UZGYxEFvDSYW74dK6/Hj18usIrvOhqgZaxS/cyB4FZ+cQ2+5rzklSXGrze3UeYNWvmgWqjrezNhp+M6EHeUdidQhnlDToZYmaPiRzbrvd4e3bzzAMe3z48F44EzMjZOGdfP3mDYbtBofnZzw9PCoZMgBLYSuyWwDDMjOenxKc84jzjIfhIzbbHe5ev0IIHW5vb5HBOBwP+N3Xv8M4jYInloQZwPPjR0ynIzZDj9vrK4Q0gIYegRih60TfOI9hI06UOS6YZklhi3FBXiKO+z2+//prpCViN2xw/fk1trsb+H4A+VC60wWgv7oG54Tj6YCn5wMWOPz0wwNSzthdX2F3daXCySFlRh+C8HESg7tB5r0/Aa5DjBGZPYhmGHcomJGthnVmpCj9l5JEMXlH6LxXEnTbVCChPgDgQobPyaYYmBnT4RHHp48AOfh+I5HooUPoe/jQ4fr2Hv2wQdf3eP3mNYgcvvzy5yByOB1P2D8+Yl5mfHj3LZ73j5iXEYfjXjCdbhgGRxiCbNpu+g5DL+tvUOdj2O7gN9cgCoDrYPZNFywn0JxFSt1h2MfVzWzWiV6cGbCNjQQkc6QYGXaDoWwBkOhJuZfoR8qGAVgr7NmDXIOjPEAZRgNgfFaGEeR5NQ3Vlmxr7BMqWb+lTXknFZ8X3YQGOzCCjD8llBxKRNhGozktTF7JS6kTUknBDUcAMI+kiqEqb1jiBBVrCbYBkbymE1kkznvVL2bLFxwn7wwTI2h+Q+ZmTnGFA0TmUam06kjsmE0/IOWEeYk4nBy2m4Svv3nEspzQ9wP+6i+u8PGJ8P7fn3A6jAiBMGx31Y6wya4zY81gdK6V2msMYJLwCGSqGIuNw/LsMN1QHAhS0c/4FZmEJiRmxoKMkD2y7egxK3+htoGN8wmr/rQKnKYpBfdUp5TnBMdCRB5cAIEwx4SYkxQd870001wFL3wwXMZd/mu/M2jFxiQ4RbLwCJQlhyCQFDOg7JBSwnGZL/by+fFHpNFZc4EKQHSQqb5USXtodlKqsWQ79XR2v0ZIwBRsq1TLCK+cGr+nqWsBYEq9OF6aE5v20KrNXBwk7fe2CAu3j/3Aduk8PKFsNtqjnO7isXovY87FKVJLMavHv+HvWUO79TLjFgECpX/LLoKto7NpYUL88p0LMlg5rX7oWEc+tf2+nivn93kZ+nppDq2GSMdIPrOKC7JJZM+WH4leAkgXSdd1Eq0ShNzbSKm32y2urq6Qc8bpdAKgpG+6a+qs+hGrYc4kVTlyxjSeJJScgGs12Pt+wGa7BTPQdT1ijHWHNQvvFzNLKtwsZI9teiSaMWydFu3755QwjyPmcQRYIqOCD8XYFgIvCbc1XqUZDjEBS8wYRynpm1KWyCbnAfKwqCa2/rfoKvYgJzm6kmoXJNXFADCq87JU/FPeMkm3sfeSiefMyEcNtzUhJ1Fli6YiQkJcnYPvBoQYhfxy2AHkEHyHznvlz9pK2t0wwYUO8zxjPI1IUdqwzCekuIDUoWWRTU5357rgpYKW9/BeHJ6hC6Asc0AqkDQWSTuPC0Qxxdx+V39Tc64pnReDu5roaOaePonXp76UEO16UQ4kscxRXBrt4ufzawmfkrMVe9T5aQCoRk9pW8s6tneXvtHZ0qzrVn/8wEutDpMVADTaB9z0SXGa0ZkAqSr25cho261/rd1c2y9gibRwAwAI2WVcgOfnGV1IePvqGjdXDqeR4V0CsZDxJ035MdJU8NmTV+18KZmp+WNdd6O+x1pWNleVd7JQfmu9gUWNbODcwA6u176YI+u/y2ZEq1lZDWuT6wx1DjlkZKTMAGUktqtscq2eVObNi/nA9Yz1lw12UH1kciYDNbLpH+rg1a/yr3UUr62POkOtI9bR4ShOQLmT9m+1ypqnNIAHZ9FIl3BQed6FV1iDidUVRVdceumyKGvqvzkIJbrJMFPFUkIu7CEbacb8qXrD0lG0TSVFxuRRg0Mt4kmmzsuNSm67pwqORm7ViL5L25y/D4uWPrIl2KzN1RrVuX0ePd5O4zpn2oavWvPimevIqRZbUbmCSmN4JQfMaWsBgk4dCNMkPEveO5u06Loe290W291OIr6dUy4cSeVzLAKrctaL8y8uC4gSRndCilK915z5XejhgkQ2+eDhFocMTYXMSbmihJYgxQXknaQ4N+m3RBJp7oNkGTgfJeOGWaPTJfI5xwS32WHYCD+Vs90HnQukmQpMsqkyzsKDaZFNm91OnuG96lgdA92UcsrJ5EOUKHNI2lTykqIGS4MqDnOldmBGzMpBylpkQcGvOC5Iopp0MEsMX8r6e8EyzQARYkqyYdd18HFB6Dr0wwAiIQPvgjhqh36HEDqpygzCMk0YTwfEuIA8IWaprE3K3eQdpBodCYYKyk0UlCA8KIZieGSjWjDHBQzXGNUHi3A2Xi1dd/SJZWa2xkudgWqnoYot+13X7XlkRiuoLVKlooUCfhrpaz9lWZ61weR54Zwqmzh148t+WgmJRhassExpR7k5QCiRicA5Nw+3VzbtrjqTiEoks9nKLX609yboefKfC/eU3z+UDWQYijSqFQCm7LAshGlmHE8zjkfGbtdhtw2YI8PRjJxEZpRIVjTYubHXbezaxjVScN13LO9CzaLls/6pMhJVlem/W/p6jS0Tu4e5RDYV3bXqo7M+Y5s/te9auV82a8vfgDkDk2XbnOvlF5jDGn4+l9bfrtBDc0+jL5ANV0ZGevHMTx1/mLOpPbgusTW+qMqwdXCYoi9KzM5mJYcDCk+DOYcAXoWyAS+dFC/bVUT8J762tDiAPiW90EwzVeimtK30NJIRU+eyWzYMHe7vb0EgDK5DcBICHtBGC1iFh044C04Jx3lEzoCnDt4FdJ0I25SBGBNSFELmCqRquh1rCpjXkFTvasQYaWisVd0qb6YrpVmjZ71FaL3DZSxWFmDtz9pHa5BUx6o6vOzzS9FMl0BbC5QugSYAq5QcUS6u4Rtal1MlVdabrkfsew3Jydhstri/v8PN7R28F+fLPM94miNSSvDwsC1CA+qya5ckzDoSHGeMR+Dj+3cIocM0TsLHxIy3bz5DzhkPDx/x+PSIFCPG8YBpmvHw+IBuGLDdXaPbXgtfVPDwVCug6QSC6yTkdDwdkGLC8+MDTnshLN/2W/SbK6mEAioRBtJcLk6s0PUYdgA7h+8/7vF0OOH+8y91R8mVyCHiiBRnMBFcoEI66DR6xLijgErw2Pa1KdaUJKTUFc1PIM4A8Xr3wBQE6rNC57BxsmsH47MiAiGBEhCPT+DlBB4PSKe9ONickKxLKqBUobnabZW/4Q3AP5ceyeJsyjFiGY9CJh4jOEWVUgmJISXg+x6OCckRPKtSN+canb+DdEt1VOcKH9wlhaYRCWcYgqDOCMju2woctf2mgKL1f1VFReWeFkVqStlp1KCRK2dm4RyuwyROVmjECFtaBakDV9a8D0reqQoWaEk7zYAxcKlrlR0sPNewIrcI3d5LDbD1LtNaJpA9iqHvQupA9qv7Gf/B+qg9xQrsK/hoMIsVsWAu3GkAIXQZLhP6vkOMQsL63fczjgfg7asZTBl9D3z+2sMx4cgJx+MRzntc7WrKSW3nGgCujtXH9tJN1UgWHUo6bgSUolcXuk76TcfbMaNLwosyK0HtEhMO04TgHDYU0Gl6vKUrC9eERRtrxIwjEFk0qoy1OQ/Ayq8HRuckkjEx4ZSEjHhZEsY5wpFD54I6n9vOqXO5ARB1yWm5YC/l5hRz6K6vh5RGzhmz6v6UEpYLZJx/qmPlPDgb7xZDrSF6CWC/dMNyX86aSs7tuQZy1wLK9L3psQJrGwfnS13ML9q8bnF1MJfv1mi5GhjkSqq4VJfLBVvtdlvkV/dSrKHvEZyHz4TQCZZxKkfEGUXCdRkXnMYRYI+hF1ZAyhlMWr1OnwFoCqU5kky3FrvO7l3Te4wfjrSfzos91g29RtOefd8OV+tDPkeqhl0Mb9k19t2q+1coWu+3GrMatfCptnK91eo6i2o1B4HcO1eD2xxB3YC+30AcMhI9dH//ClfXV+DMOB6OWJYF4/EkJN9A7XvtACm6kkCUhTQ7Cy6gbx1C12F3fYXNdgsC4aef/xQxJTw+PODpUbgYj6cTcDphs9ths92h3+7wargCUUCaE1JM0qfScCGL7z2WecHTx494fnrC6flZcKHzGIYNtrsrhNBrpwvXpogvkbmZhBPTD1tEJnzz7iP2xxP+rB/w5rO3JV1MKuBBosOIEJRr0bmArtvAUcTcR2S4UtwlK09WUgwl/E2EnAWqJoislC7UgcvCoVIjTnStecky6eBAXiNGXai6mAVDpdMz5jghTwcsx73gTOoAcqqfpfrg1fUV+k1fHMMg4cfKKSLFBct4AKcEpAXIQi+RQUAG+hCw2WyQ2WNJAcxObRPjc1RMY1kshj0cKY+kfax4RIs8tEeRPKb/zgIEzO4wHGNrwlkRAHN+serVVow1iyUn02sAs3GBVT60WqjIlpRRo1iaVF6tV5kTpBgqS3QRc8FGL+UJiSNOv2PU57HJMY3MKgxlzLAYo5WTr9wXuj6hxV4YuZDWVy1UdHA5+WwA7L1Y5IRxJLYdKRhKOYrIuHUJXewQ84AYCb/75oTDYcaf/2KDn3wmRSLubxjLnEBuxng6wXmPYQiKLVBtnJUD7Nyybf9dnZ5nr6f4t2o01ClYz7F5qhjKM4QiQWanYKkYcZoXeCL08AjqgC83q9zd5Shk+G1bbbOfnGQGwKFzhKT27ZISYsxYvPLoghCwHuP1oXqKKj6wMZH1EZE5oekG8WdoJPWcJUp14Zfr8FPHH+9sQov3PpXi0ShXA8NnDp524bchw3XxaHhvo5rPgZB5/H6onas1wbbo2/Zdvm41OQ186OsIUXBWT2vCMPS4u78FmCUPuyAFgWJOJ4wN6rIsWDjiNI9gJnRugPcESgAFgqSeJ8TkSpvNaCy7vM52Br06nLzmXxtQEpGfUompa96u4q21QNMXbKE+t9/Z99afAt5X6SoFCDf34fPvGrB8YUw/5Wiyv1thXfksBGR5JxVFUmYsKZfKFg7ibBq6DmkYynLcbne4u7vD3f0rAFIJZRxHPD/uizAM5Gu3EBQMxPKRy8YjMMM5h2VaMF8t2F1d4bMvvhDSySBK/3Q6Yb9/wjSNeHx8ABFwdXPC/ZsvsBm2wNAL0ZsZjWDZBegk+ul0fMZ4OOL58RGn5yNyTLjd3eL65k7XlCk1rqOlxr0PPZzrkdOM7z88gYjxiz8/qfBxAqS6DXg+Ii0J7Eg5oKpQsvQkc9wmrQ6Ymipk5uTMujOadb5SIwQJDOVGLO0kIiEcJ4Lve6V/ljkG6E5pjkDOWI5PiERYnMfoOzCAOcmO4LC9wtXNK/jQ4Wq7Q7i7w2azxfXdLbz3svuZMsbTAQ/vvsMyTzjuHzA978GckNMkxrsP6PoODupsyqJUWCs7nHPhAGYUoQJ1VCUCE1fcSqZm/pb3rfOeGoPnXNYxK1jR80xumQha34eKvLZxNIDgLEWXbbdInUR6Xt0LYJgXg0hz7sl4enKTdoGyXtay04CZOpxYT+RWFjTCufWKnBlPrKDGTmMNbffeI6yIEblUv6nGWu16hl27HgXrT3nvGj0hu9eEDsJv0XcdUp/AvOD770947DJ+9UupDNd3wGevPHrv8LuHhHcfDvC+w3YbQEasv7ImbeDW77s+qPwI/LayRayf2fzjMgbt7WtknnzhGZpmxuJYA2NOEYeZEJxD6AidN2ezRqUZKRtQquqZM9ggF0HC+52mNBqhaqd6Z8mE4wLEDMwxY5yj8Pf0Do4sxcIGrUkpa97Jeqjy8jisMAkRglMDJDn0CSDKmL0DsuWV/gMdZ7rO1udlLMLrf34KrDArD1iNHhZDJa8uXb1mmRbc/GH6vlFyZ7q73vC8z6r8aj8xx4ltMpJWdbJ0gpxSKQzgnMN2u0WnhpnTawN8Gc+gqTqykSHzNMYF4zjBUY9dUn3nWJxNGkmYirPJIsUvdKcZ4VQpCEplIJUtxbjDGqMQGZ5RA+WFjK7OgNJF3HJk2WOojFXBw3aO4ad2PPjC+KDBiY3sr981DqcW3DXfO0ghii543fSsxVrEeezRdT36foAPHXzosNlu8er+Htc3N1jmBY8PD3DOYTydJAoGEK/vav5zSbFflhkpSdGdcZrgfcCrN2/AzBiGAV98/hN47/GVC5jniGmasD88YFkWDJst+mGL7dWC3e0bhLBBGrTSm3c69wi+CwhdwORHTMcTHt69x3w4KZebR99LBcNqKEvVaJR+VGwdeoQ+YVFnU995vP38M03ZrBHzGRDjj4Tj0pP0Xd8NiC4gLBEJDikDiSZxTuWElGtkg+ArKpWhY2ZNR9SVyqb7m/miz5NNpR5dM11E10mUrUsZcdyDZ8IMwhFOeKxyLhhqd6sY6uYKoR+w3V3h1f0bOB8wz8KFOZ4O+PjuWyzThOnwhPm4h9AGzGBAoqU2GzA7YHZICSDIZq3Jd0OEtjYtrR4OYDXKndk+OHNklJVB5R56u/Jd3QDllfM5Z+FXNLtJ0tdodbkjX5V0FoeSI2jqcuNgYqgzQEePqyO93Zgv61vXnqW7yr1SPQ81wpCoZg/VcACuuKWxzYocgTiwBHNS/bbYarb50OBDJ7JO0pAV46JOrSIyLugjNkcoDCeQVF9njUzTtD7nHBAIcGIzkMsIsUOXMpaU8LtvRjw8MH7y+R1urz1yBl5dZyxTxDHOeD6dtADAFSiof6CF0kWeNjL5RWtp/a+z1ynBE23RnNZJpximpdiRKtXmbGIsiTAui1KhuBpCzlBn6EtvUw0qqa/jLMKSLf2aEcDonRCFj0sUwvCQEZcoQSc2ny/oZrtz63AquBay8YdmWsmycCBIsEPvvERxOY/oLweKnB9/hLNprQAFJH0KEDdXFQPmwgRlbhZiNQMkEqNyNrWKsQ0Hrp7TdkJcVsIvn92smfYPbnoaKINWvd8GPric5pxELTEzEFMzxhp6pgBGyMQJzisfj3OlZLfxmRj524ognOpEdOcG3Y8+DKGfryz71U5xfefVSWurqI5JNWLl87bj22fxhe8vz6F1yPenjqY9jf1k1ztHGLoNAMI4nZC0jKuEmWYdtxqy77Xs7WYj1Vd88Kt3orNHagMF+CrPRdac+aglbucpYBxPCLq7NwwbAMDNzQ2GocfV7grDZiME4ylhnieEtFFeFyrEqVKic0RKEYf9Hse9lOsNXiplOeebvq5Ctk7vGnoJR5JzyxLVYKlumSViyYeAHJ1UpjDnka3TVWdT+TEnaFVKtjuja5Q0q8+q8tkOhIbW1x0GI+E2fpH1PFx1f318/VR3jnKasUwn5LgAJFVbCAl9L6WBHep6HDYSNu4JGPoBnCNSHMGcsbnaod/skLIAQYaE8NeKdFS74/LMbNraOstfnCF/G6A6m/YlWqQ1QExRQO/dtOGTfOKo7ZBrLC6Byj1qX7byuXkRA63FgaDyixlcnNw61wwkqQKtUVzNhkQjk1qj7aW8+VR0az2vXGn3s/dru127t8ivBkiVSCGya9etacFjjbLQSErOiEkcGMcxYf88IS4O240A2A9HAmXxrnLWXSG+BHbOhBlobd833EVtdcRLR12zVV+f69rqc2jeV+UCQaJjMzUOJZMlrvTWpaH49EENiCHb1WVE1ZscGCw1n8t8IF0brO20T4G1jjDg1PYj6/sY56GAxDYN8k9/rJ1M2nriMiaf9CXp709pQZUKLw0vRjGyK0Ti9YVU++a8AW20Tj3o7Pd6oNe3uaDjqWIoBmt0cI38ZmfryCJPUWUUKZG47fzmGjVnhqJESVUHNulurPdWBat9D/pkn/6hx0tnz2V8Zd3Cpq9M7xVYthba7WWFrXOlB6rsP2sRijEBG5PLb1tkPvOLMxjidAqaTnU8HjAvcyFGlkhHpYxwwiMZQkCvGApAiWosbTdvmjaMUPUI66YU5QyihGWZMY0jAGBWB5R3DrvdToisc0KMEdvdVugRnKTRxXnW1LSiqMCcEeeMOEtkxHQ8YTqOyDHKtUo+n3NWw79J6wKKg8DWq/MeRFKVl8BaOVP6mZwDeV+4r7QJTcVkjVIw56uTaHwGgXwu8jer8VpwFElUsUAOuZMDI0GdNKhytRl4k54A2nS0RoISSiSQPRvMSGnBPJ3g4wJhZYjwBIzDBt4HjZTOcOSwGXYIPqBzhDgMgpGSVGPeXV1js9kiJWCx8uuci6PEshMIbePP5mnptzp/qmxrMJHdqah8Rl0Pum7YZCYpD1yjR9T2KtcWAUwFp8hzDTMBNd6Kyzi04/5SPbcO3wzmhJwJWfmDyOYQIEV9uG7utiO3fvdWnlX53Mr/9uzW2dXigzIEZHJF+7voCpR3tLVs7bChExgv616ixM32qJuizgGZqRClC5eYrKl5ZhAyxjHiNM6IkbHbOtzdBMRnRh4V0xvn6ap/20CXc1xI7Vk6DlYNOVcsVju59FWVsaZMaxBMxdxNEiTJdUmrVWcl1G6fURxLBS+ftU+xzrk5YE2rpOQyZxNLlFNmVr+CRd2tx6fIqU8oQKIa4VqeZ7KIueLEgoUv36c9/hdFNv1eQIkKWKjM1ypUTMFZCk5KNQKnjXpZ98c6sumSR424glJr54r66YcbjE85q9r8UmYhGE1K6kcEdJ2HpwGcM5ZxRNYSpBb+1tmOBwnBHBHjajOA4xacPZYlITlCl4EOwofTDwM2m15KvJth0wWEwEjRlZK6ZVGgGn/MrWDm+n15sUugphVS636vf0v/VNBji8SjTfeR8a4TvXVCrO5MTdQDsBr7tWF9KarNFoa8Yebatpwy+s0Gr95+jtD3eP/9d3g3jQCECyinSZxRfYd+6NH3Pfqhx/XNNcg5HI9HfHj3HsfDQQ2umqJiIKm8kYY+E0vEAzIwnY7ISarFnaYRvgu4ubnB559/jpwT3r59g6xVXULXgchjHics83v4ocd9eKs59T1cCJhOI/YfP2IaR3z169/g6f0HhNBht7uC97IrV0SqrTeb+AaUdAfHh04UHAtvyRITpnlGTBndsMEmRcx5RpykP63kbFG0ok0AOOVuYmTHoJxkDuRcKqkkViWaINVgABg5OBHgpTvF4WcV9CQZQtaODa5FarEY7kQSNeG1eqDzMtcCGC5l5PmA/XgAILuW5Bz6zRaH23v40OPq+g6braQdvnnzRXU6BoecIqbxKFGLYhZhnhfkhyfhaMgjZl50Najqt2ifRumTCvuiaLXi3rnDqSjpc1sOdS2Y4c1lh9kAKwrKdHqTImtbkPEJjVCcfOzqLk1OxZmeDRwCJY3Yot4z2840hEyehOuKnAdBCytkC8U+B4iuiNqVS9vSHopSr20v8/CC4cRcQauU3FYC4WzRdvWWFt2Q1cDh5hmWpgxIFJ3V4nDQee8ITiuqJE7IBAxDD+8d5tljv5/AecHvvpnw7//je1zvBvzs88+xGQYclxF/+9UBHDvEZSv8GU6ihy4fLcCpk4MZQJb+iDEW/jdDgW1/FXmq35VSuFhPM+MesEonGRkTL4jkMJNHYNlQ8Rph5IOH16iTUq/bwHAZ13O9a89leJJChs6LTowp4zmO6LxH33lJe7MKOmzAUipmwV12FJTIM6fpDTaT1EmcEwNZNnV670HufxkE+mOO1omzds58Avl96miAsPDmUSGJLoYxzoFyeXS5luvuDFpwfo61gEt2YDPQF15j9bE6JjQDFZwZ8zILlyFkzEJHgPNawXUU2eLqRl3fCU+QlGKXktGbzRYxMrwLmOcFzjFCp8TEocOw2WDYSCl2KzLXAvSLBxvY56pMmz7gpv/a3z/6aCO+c1bngaSWfrpBtfpVeV6jNwRDycbXS7Jww2/GP2XrsG5Q8NnLmQOoHwa8efsFutDhq6++wsPjo3AlsVRGC96jDz2GrsdmGLDZbHB7e4t5nnE6HrF/fMIRB9VflnZrr8X6zvIZUxZU4SQN5Xm/xziO6IcB42lG6CSC6mc/+0dgliq/zBldkKhx5zyW0xFpntENHfDqHshZKj7HiMP+GQ8fPmI8nfDdb7/Gx/fvcbXb4tXdXamuN8+jYCRvlfjMuSCGI2eG8w7d0IMVJ0QC5nmR7xkI3YBu2ILjDF4mZLBG1wkeAFl1xQCXGa7LCMMWLmdgCXApISqfFKsTI8GixM1hXg3boAVEgpcoTgYpdyIVnWDp8uK6UpJ+SPqx9071Xk2BJiSk+YjH8Rkg4QP13mMYdnj+8Aoh9NjurjFsdnA+4M2bz4W+QrmaOCfE+QTmhND1CF2HaY5IvMc0LYiLZAaAs2YmSMQLMeteir2f4iY065Zls1SVfmODNOtFnSQWAVlxgP4bXA1qqtcbdYEKz/Zu1hqAnBQ1sWwBvY3juikb47x6pqw7KlG+KUX9nZBTLCm7zjv03qEPHZgzHGVk7+praTsYpHyna/DY/nclz802yozEFineBnk06xIovGngWnGs6FQSzCJpvxkpmZypGM+c2CklUJaRzE4iVpNSaAQiZA4glzGwZJDkOOHpESAkfPPtCb/9+iO8D/jyix1+8pnHv//biK+/fwL5DvFqC991JbPF3pZMJ6126Oq3hikzS/TjskSkGOGZNXZn7YMov0kwSS52tuBCgOBY1rY3bAOR7fMckZzDQN5i0OG14qEFOIAvbRgSSkR/CxRKdBghkFocGmm/5IT9aRHqD+8KriziVvGgRe1eDhBh5RP1MFc3FOdLYSEuVek6H8D+x2GoP7waXf2grMXL0SxyWESQnffiNnavdkGew9OiNGn13aV/FQ8+X/oW+JSRAjSDeQYs2nsXgxEQIZbLfpNEKwWPnICoObUCAjQaycr7QgbKOVLB7JHgsEQBwmzrRBe78xbeKc13thtCZ4C7HYcL71LADTd/XxRQ5z33aQ/o+rzGoVSAa+09FOj/8ijC6cUCb1/l8tWCVai8DuvEFIPcYbvdod9ssH98qFFiYFFysF25WnpZIpsG5JQ0JJqKkjZ5uvL6sr27Kq/MYCcE4ICU4k2QssFXV1cYhgEAsNkMuti1mldmTEtE5oiUYhEIxjORU8R4PGI8HnF4fMTTwwOur29wfXWF4AVogVsAWUEmt+1vgLat4ayRTZyz7jAEkCsJbLo2qenw9QjUHQvl41DgKHPZwoGhXCoV7DriojCdngutxlJKgIPOl359LpryuSTv6jIAJxVc4rQ0wJyQ4wJHDqHr0YUOXeik8lE/IIQew3ZAP/RICiJTSohxxhJnEM0IYUSMmiqmhov9ftk5pnhra8u7QPthdZyvGZtXZZKVeXZ+bnE4tX+vUljPjBScg7N1+4vzx+Ryc2PiSoK4jnriWkClAF2G81RKE7dOtnaWNr2lTaigYCXpuZLVfvIwZarz+xIILeTcmSS9s9EvtLqG1kCmzHOJxHEkoF42IYLwbmSHGB2Ox4SHxxEODpuBcHfbYbeZ4JEk1143VwgOkjO0lt+lG9r2nL2KRRwaF1fdKGmNzfrf4oRoZanpADYIK6Hh2UCmq5FNIAfHXNYaEdXy3KZ/rHlNW9t5wmV2icPOGfCJ4vQmrB1itV/0HUgxZDMWpd+ad7K1uYoEaQxtRw7BnS2cP/HxY50SF4ZH++2srY1uXP1gLS5X6/7sO5HV9d/1vhfaekFEWRpP+ao5R2BA60ynsmaKobXiT3FSUZYSUnJgZI0Cd8WBLIYx6TzhAtgJUgGs1D8iKhEj5tBsO6H8aYDrrL9o9RIXuuJHjmX7TPvVXroeizO5Xi74xHMbgFSiEM6EhCybZoA/haOa57RneOex2+3Q9wO6ri9LSJ6kSbyF1F2jw/sem80WOWeNHqwzsrS/ilzFKMILJZFp8pBlWRBTQs6M4E8IXcRmu8Nut9N75BUuY5aI8hQT0rLo2GYlDZdiKoenPcbjCePxiPk0YjcM6PoeXSdpZylZpS6LcKobzPZjKSeWpsmQlM2s6W+kaSzJNk5MVucyqqh8MVSKrYAyXNaVzgDIKlBLbzOzbmoWRAVHQAJLFINmPBQ8v5rz60VOzSmkFVaF66fqz5gS5vkkz/XCj5NjBMGJc4+kuI5zTjBU12Oz2WAYJDo8TifhISKI3eQEQy1LRtkIb3SCGbe16qi+DaH8hjmbmjepr9nEmpjcx5m+0+ddWgrUrJ9iJvBZwIPNWT2pfKfYn4zEp7mq1bl238S2KZuL88uzl/R0LdbDTGCvTsBs79IMHFt0+nkDLzS4+e58w6OdFyWFUDcHzClXw0Tkv6VIQ3aC9ZsRaFPBcsHmascQ4DLpEHHhBfXeIzBjSQ6zMBDgeIo4HCcMA3B3I4WANkMEa3pmVs4gh+atVf/VQAsTvGvZWueA0eFIZblW6F4SleZ8Occn8q/qAHaKX81RlxSnkclDxcgOhKxVHf8QjUJsqabVL5E4A5qybDZfGRdu+ka/L7ZweTf9D6n91URmQikvmGugAJEl1v1+DPWHb+s1DS5zszT6wuk62GbwVoVzfk+sgOAn1Pv6z9bgL7+5WQ5NG2uDBBRzvUVdd8aO205KM7RtEVl0YEJcZvkZR6TThKBpqMwE8gFZF5ClYoUgVcJyzsgxC7FfYqSk6UVO0ocyMqIqMUsXbaeDVeJgixjhrKWKs+6+y84tnEzo0r2X+vWT4FLObsH8ufBctercgCn3WI+9jY0JpE8d544nUgGwvkQFZwEsooQdJKJCKmN0uLm5K2G8n//0Z/j44R2OpwOYCKfThPE0IiydeG71WRIS7otjUVan7GI4vJx39q4CBhIoaelKLfm7pAjnPR7eO6RlRvABw2ZbiIYJEiUyLQsSM477Jzw/Pmg1HpkDh/0ejx8+IsYITw73d/dCitlvCthuen2FHiXCJpd3YdOWTtKclijExcRJKrlttoinDmi830RagncSAyHFReehCk4z/liiDzxL6GghxIOBtToLEqNEM+YABEjFOuuXKsfqDBZg28la9PUcW9YG4JzzCJ2sXct5Dt6D04LEGc+P7zEe9vChw9P774RXYDtIud4Q0G+uZKeu6yQEfJvRD1dYloTvv/8W8xRFeaDuElX7RVOArcOpnSt1l9murYC5SjKgOtBQHNxWra9R6PbejZyoDiDr9wrDSivOjHTSPgMLQOBMtQSrkc0XRa5rNBlAFSJ4ThmLy4ghy/rzalwmKzteny8GJwroKAwzbTPb5Vd0BwvYJDozxLiRMxbOToXI0gyBihS106gCd5nLrATGAGWNEHXiRHXMRd54JSGXUGbtsy5g6AZ4cjgcM776+oRlJvzVryYQBdzsEr58A4yR8RRHPB8ytpsBIQy6XE33ZIA1BbHlKirNt53GhMQRCQkWtmFLpurBCkiruVEVoIFmkHLaaSW6DGUUYGDiDMcZPROC7uquYzvrPGK9v8mbDAZ0N3fVzxAVJannDokZMSdkcojMWLKU1A4aBWA7xoQaOr5qwzl2IGqeV7/3hTyWUEq//4MflxBONWpXZ54B4PKb1+ewkf/LB2sHU2OQtPMAQOMUvAAay/pqerrhGmrxlZ1aDEeGGF4MwBnhLsNS2FNaMM8TlnlCnGekeRGHkiQ4A94LGXPwCMHDOSEpdY4wJyGTz0sEx1ygG0iim41QOSclIY+sUc+2t9y+gLTYnAHs1vN6JWLW2PwPOBpTTefl6p6r59URaufy+lRSzIOie9v2NRC33NkM6SL3yzm8xplqyEt5dodhGPDq1RtcXd0A5HF1c4ePHz7geJAiJQRCnCakEIAMaD3mwtVWx51tUjSKquI3k12ZJX0L2SJ3qeAM7wOYE+bphBCE0NtrJFxOWXSKVpE7Pj9h//E9yDm8//4bMDNOxxGHp2ekmLHZDOg+/wzbzQY+BBghNhSTMCd1ODWcO2e8XcwQxxZnTLMQ1UvFtgDfDyBOSNEVIxTMiGlGXATfW2RfTg1HipMICA9Cx6KDc5YiKzLuuUHnstmQ1EkvYs10khQQUmksMsFwh/fqLABM7kiqFhdsLpkcAUMYwGAlPRenYoozOEfsH99hPDzBh4CnD9/Bh4DNdodh2CB0Pa6urjU6f4vNZothk8C8wTQt+PjxHd6/G2Vcy5qrMmgVgWdyupnnpv+pke31dy5rznrKNjbEdyibhc7mqGiVsq4K/505rBp52m5eCnVFdQI5R3B90HnOcImQU8ISs9Z10cnjAMcO8BKJSFmeu8wRkYRXNneSukoIYseRcJUyoBs7VFLVcN62F0fV/C++seVYZHm1g8kwRXmE6nWSpEGCFAsyDJWLgy9XOav3cI6EvoIZ2UE36wBwRibZbPYEuNxhCj1SAh6fI37922fc30a8vr/BzQ1we824v2ZEzkjLjBN7dMFj6LpqKxS8SzDO5HVPsBCxK7ctQwpsZGqYIc8UZXXmwwBPPa3gLirzzDILEkQXLUkcwj0xOuMENJR2dj9WTAxzXhNDmeMLfCWIU9ZBMRQccmLEJN8vzAiKl0SOqrNbMbzxvJbGA2f8XypLM5drbfZYIH7iVRf94PGHOZu4+smqA6YaLZ++rFXZDRm43rP8th970YvOCxSAzC+/af5dB6XdYmV7FtVJUw0xbV9pryjmnBnOjA8HOCbldJkQ5xHxNGI5nYQAugsiHlwAk0foPPo+FC+xI8I8R4w5AgqChKZCBYcz0B3F4cTaYzYZWb2w5Ydkd17DFEXZUiGuawVRuU3TV9R+Yf8w70DTTy+jA1qufDmsqkx7tH+2Y2ZRYuf3/lSU3EuHk51XlQ4gYa2WN+0coe963N+9ws3dKwy7DfrtBl9//RX+7re/wTjPmOMHzE8TwhyQU4SR2kpZX1+InqtzjVcGyosZyrkQXqecsOg7EYnDMc0j9o8PGIYNXr/+XFPfVDxnxrRMyJzx/HiN/cePAIDxdEJcFhz2z3j8+BGOHF69/gy3r14jdD36zRYEp5FJ636sovPcucfilPSirOa44PB8QPCkET8B06EHOwfiDKV5QowR0/Ek/Cq6q1CikAB1VqiiFQtRHJ+KZrlZX4yaBiTzWnZIsid0XXUmWJlf+clCsO97VYZSvcZwgoAKAVHe15BrK6cMABwXRJ5xOuwRkxC8O52Pm+0Gm2HA9uoWn/3sz7DZXWO73eH69h4gj1ckJOQpEd5//xHAAmBGux5ItTfbNCUz9qjIJNtlJ01YEr1SQaHdhzStUIq7GU9AdTbpE5v5p7L5bO0YN1DbRrt+Tfyq45hJHAApFd4eS99DXW5aXcgjZ8YSF/ntM+aYdS55iWzKtSJUo+4FtDCQaV1CtbyZLTtFO+sIDQOHrU6q31slR2LlDkAuaSjVMVMBtnUQGciCRe84cWC7M8BJ0kfsCD4T2Mnc3vQDFnJ4fj7gNJ6QImGeRxACbncRv/ic8HRiPHwz4uko3AO7Xa+DpT2zIvPESofJeUbmnhD1f0SyTm05tGNdLtPOLeCL6jn2mddqdBFQ/cOYcgYog7zD1jWOPr2rgW2beeIYMmdTNa3PdyCJgC6IXpw4Y0kemQgLM1zOIPLovO6d5ajznktVK2tzmePyMmh37AhadFSXlndOyafPHQ//axxVI37qm/PPSopA82GZ+0Xfm7ytt355P+ujZj2eGSUiTwnnGKosMz6/QtpmnES2y++AUsZcTsiIccE0j5inEXGakaZJ06FkY8D7ADiHrg+KoQAPc2QtOM4L0hKRYwYn1WfqSBRHk1ZCjRmx6EaZgfJe0k+29k1Eli7U7mGzVFUPnUPX0ps/AIPLuFWrpBn6Ro5zjfF4EcWmh6NmFZmMa4eObMwujDi1a73ufBOqBhODSykbnMdms8Xbt5/j7v41bl+9wZe/+HN8/dVX+M3f/C0O+wPivGAZZ8TQAZnF0UT2Y5w45mhu5y6V6dC+KnMGx6U0mAAsM2EaTwA5TOMBz08P4gS7fyNk2zFiiREgggsB5B0OTx36QXiFHh4fMU0jOBM4SUrY6zefYXd93cgLlMpnkoqoFfTUwSktNoWu7WepGM05YZwmHMaTcI25gNAPyGlRjCXpd5mBZV5wOgmGmlMs1efs/k5LZwbnVbdmxJgRo8lWxQzWX5kLnQccaWo2hGifPIQuobVrUHhjDUqXOW33deJ8CQ1Od+psYpYUMTDj9PyokU411XXYXWtxllv87Jd/iV0QZ9Pt7RukzNgMd1iWiLgs+P6774Vs29VI2ToPzAax7qZGnhGsIhsAKSLFNT1OHCZGMiJj5oqVTiBN//aF5kTtpyIs1cGkqyKzFJOxx5d1pPNColckaiUodyo5QowOKUbEHMV52Ux3w96OHLIGIcR5AYPR+YC8UYxDAeaWYNbK7RqRy7bOWaOkmk0lKp3FRT5wWXDtodKgvHqDZZ30BTlWPuGsc4/AGgUn7131T3XxWcSq/dQKf1kxhvGzsXMIJAV4XGac1NH28LTgP/9mxE8+T/jn/yTh7gZ4dct4c5txWhIe5gnzDGw3A4Yu6JrUNYyso09lDq0kqnCIAFk310hnTZGdXOdXEbBUus8wWtubTlWlnZ0ALFk+n3MGZdmERdANs7LuUHEsauaAlWFmEgcftTKdIRv7JPYqHDDPCYsylZizyRPQWQQ3p2LWlzms/5bZXgzIYscUjhpiTbnXNDuIneD45Yy6dPz4NLofe+KPuVcBHFwU7er+FxfEhfYwrzD4Ra9uW+ZHVyGhdWSRAuXmWjqblHZvqv/OnDXXVlPpsu4sWrUDzcfNlBGRi4IndTbN44w5SpnClCT6xVkOLDJyXpDSIgTTswoznfAvgiZp/cfKqdAgI25/g2o5X+uhBjV+CjjViKMWLbWL8VPXtZiCms/X16zHsDEYXjSoRsisu4OKMSKOwoTD8zOIPECM0AuJ5P39K3HipIz98zN8FxCXBdNRAA2RLxCcz9rQGurr9hpAvBR+mQGWEO24SCrXNI5qgBtwlF/OOXBKWKYJIEKOwp/jyKHvBjhykv6lHGC1V9uIsTYKzNJXtT9bTzZkiszzjMPhGX0X4Hc9gld4qEo3awWUElHDFloLTXugMyukeSHtmTakUz6sUXeA7miaF50zEosgIxOUavRY2qFFpZi4MIdKgWHmrCEqO1gMyDolKq2Se+s1WUBmSguWeZJKdOMJoes11H0Ag5BzLELa8PPl2X9mMqzFzOqDdi6dzysD3TA4dMFRW8ym87lXMP7ZDo+ByIbsuswb+3fjgLoUwWqVpYhMsWtVwpQU3lmEmoxFkR3a5WyPWpVj46IaGgmDaj/VOVxAqM3L83a+cEC0ndK8R/mOm4H81DlyOMicysgaHk6aVuBVR3jEhTDPjMMp4nCcATBurj0SAcEpV4U64swZSg3h/KcPBSKcV4bci3lIZ/+4oCPX17Qrsso6IZ7MiI51B3wdNXRuNZLq2ap6LR2ijlFpVeMIraBYOE6ya2SprbfzV2s/aMFb+5W+hyN12BKVEtP/ax91I2X9GWB6uY5dqz8LjFIs1TqZud7osjK368jO0c9aQEUMi3IpQs70W3vK+b0bNVMfb9KhRglI6kJWnhsN18+5RBjnHMGc4ZCxaCpO0sk2TxPmeca8CLdNUlJn74zkOSHGCTF2WOKCuLgyb2t/QufUy/4p+h11jl6Sz1W80Ce7Wr6vfXPJD1Tl1TlCWt+g3MYE5wvYtV67ZRZ9omErbU3NfGvmX4wRz/s9iKRSmQPQ9x1evX6NaRqxf3zCY3wAA5gXqeK7LEt9RhUQZR1WPPKyPRYRYGfYqawpSkkLrxARRuVGTSpDyTm4Tjb2OGfEZSnRFo4cyAvHpA8BPviGK7TlrmrxbYvnqo6weSRySjh3pmnCQfk9AeHGzATdpKlk2NystyKXQJKKRFJ1jtBGLpv+pLI+a9KZ4TRprXFwUpYKldVWaCZeua/xAKmjvpWfZVOG4IxfSrFA5lwKGdn0k+lliz4jp4gcI+I8Y+kmzNOEcZSKx8KPo5tPZQrXTeQXm2hnw2F/ltHg2q85mx4UbFixUp1/hiFqNGAzDxt9ZViqiYduZgmKPgNYeUVbx5U8yzkH1iIFBC0elNcv1GKspBFuEt0nMs/bWOWWILzKA+N7K46n5lVo9c6tTVD7w/q6zKiCp1C+s2sNY9ktrHiXOdLJMsTQHFzOWMlJa9u5XeVIycIVi48TY5oypkmiWZ0Dbq493OSwXxJyXMA5rDZAXuCg9rB+UuwFFpvDLJTM622Xtp/qM/jT8r7xFdTtMKnYHZPwMrcoi9o/2meCzmAxr75bRcc2GMocQazUKFKNc3XjgvWtO16+A872N00GyQXGsQZYavDvx1F/NDtm2Tn8o7Bavc4AkivKnPGJvm8GvC7+9rwXYY5A3SFuHBN8cWRt8QHtNJM5WUMqmSQSYNbdiXEckTQMNiEjZkktWpZJyJCNoJW5bEbPS8JpTog54+k04bREDIPHbuhFmOcJ03TCgWa8fxcxnwZM042UMjWvOSx6x9UFSsZFokKp7WPz9rbv0gClVldg3QVFKb10tpjSQvm39Vl7nAP6S+DuUhqec59eEHa+zfkifHVHxgePvguYxiP+w7/513DO48uf/xxf/uznYAL+5b/832NJEf/6f/5/IxIjx4THhwc8Pzzh+vYe96/eCDdNkmontaKNlXo3kr+XpSvX6Quo/Q1GXBZJNVoWzHOsnBLOo+97vHr9BsNmgxwTHr5/pyVjt0LAebvB/e1n0oZOHU0iVcSUIyNavwyeXTNmdoqkw0V8//33wDLh5nqHX/35L3BzvZMolUVI4cglJAVOwXuw19KXJGXLOauC5KS7FmiIl6tcN8Li1hdgkCjmDF5kp895gvcJfRfQBYkWJOdB5IW/IwQAjMgM5gRODMTYzAXhgfGdVZxrUli1IIFUoPHKneYKAb8jIC4zHj5+D7d/xNPjR/TDBs4FdL2QOu8fPgBQMvQCUOrvS7vS59Xh2P7TGF7teLV3K5/bd2eajs/Xej27yDD7yOaJzedViDgMPHkhZyYH6uWcJS5SLcyMWwhPHXungF/id1NKOJ1GhM5j6IVjBeQkBQJcq3g2csejyqccWVtSwaDtThqoXYUgN/1QSVCh8po0RxkFLJ1rgNbpZn3JhRCTrNNWRQyAJiIsO0ljAyEEYLvboI8Jx+OC4zhj/0T4m18/Yf98wuu7G/zFr+7w8SnjN98dsX+KcClgmrZwTqJ4vDNAVo2LFR4myFxPCUgLAkcACRKXaeP+IxVzM29A4qhNrMUOnFeSUmCcE04pgreM7RAQIG5EIYCvspiMTLdBK6uqra3RzNBNmqhOhAwfACLd8VdOveBDiUEyp/GqQxRsC/Gqkb7bHJLnGgkuQ3bjMgNLiohL/HH99Cc4zp0XK/xiEIlQ53M9u15ja9Ec6I0weqF3m//KdbniIQLAQvYqpzGsSqhFZNpdXgBlvNTprYji9lpG4Spbloh5mrEsS+FuWvIELBM4J6R5RFb+iSonE8AZpzniMM2IOeMwJUwxY7Pp0HUdnHNYlgOm6RG9n/D42IPzBkvcNtxNqodQI87rLm+LZXK1SYqzoB2z9p0JZ10un7t23rcyq8Eshtd809f2nCIGGzlXZKKdqpENbQMJWnDDxr3FZ5qKRU0atx4l1Ujn1ePHj/jX/9P/iOA7fP7Tn+Dzn/wU277H/+6/+z9gnGf8m//vv8b/53/6H5GJ8O79O+yf96VqoEWb5JThPRBCWMm1NuK1OqUI6+lERd8wC6l8ygnTKBQIzkkF4a4T7qXN1Q7DZgByxuFpD+cddsMWfneDEHr0/QZEDq7rhASXZZwLD5yORXHg5CbSVTofnn0h2B3HEcs84dtvv8XVrsd2s8HbN/cYhh7xCIzTCM65jBdz1pQ0BrGXqIrMiBrtQTkjZUaiXDieiswjTW2xta89lnVtLYnBS0JKAGGBdxld5xE6M/VEw1sFRzArHYJFraw0o+Bedd7B28ZDBkdJ2/bUg7qu8Kk5w7OUwXHC8+N7zKcDxudnPH54D8AhI4CZcDodBBuwRaHLK7ak3evxbw3zIngKppOiAhIZRE4ZIkjJu8k2+/VK4xZvHE5VXpVYR5hTvNVhxqMq2N3sS+m/siYZmhmhjia1G+MyI1rUnkb7kxLTp5TKT4wRx9MJwTvstj1CcDoHU7EnLW7LWcRoo4urw8PkRNbcJ5H79u5+xVkoetuhoTAxRaSRY0V+2Y8+1ym/a+k7W9eNsjBUosNRZBh7J+3WQgk+OGw3G8QuYIkZp48LOpfx26+fseQIH3r81V/e4HHPePw3I55OR0TPWLYbyWBop87ZfG5/U0qgeYGLMzxmsJsBEhwlDJwXsNf572bO2Ptnqi/siDTSjTEuM8YpgzcbXPW99IFmfuRWxxOVokjmZqmGbuMEbBrBMUq8GWcEJxGlyxLBKYM7oYUh8w1wdWSfH1X2MdhwuJqL3vtKq8JK8TPPWKZ41s+Xjz/C2UQFAL1UCp8+LkXDtJ8ZcFpHGK2V64W7VlC2uidWi4UuRcBcmIPnjqYX7Tfgxyx5uIsQOWeLaAIKWWtcZvkuJSSNTOEkhtYcM05LRswsO3OZ0XW55kPzjMwL4gKMo0fnNVKA1qTgJjyLt/Hsp7S7vOvlyAeycWht2MZwaPu/eqbr39WIW/fdDzmZVhEZFxxN63Nr+9v7VrBX55WsFSqkovO8YP/4iJQzdtst7m9vMex2+PzznyAMA7757mtc3dxgOo2Yng5IU0TXbcB30m82nkXBnPXv+bE2quruj+0YZK1mAiJx5JB68bWMLIEQfJB5cjwJf1K/0Uo9A4ZhB0AIl+sOsYZQK8njJcBbIwtU0DfAJ+eM0/GEjyzh4ClFmH2RNGovm5BjlJKsJkyZRDhzrsqwnXZte0qqS/OLm7mXdLcrachyDnVuWhguaWU5BgPJdvYE0IpMoqLRjFzfaTSUtFNTOzSU3DmSSpENxmFOGMcTyM1Y5hnj6QjvA/rNDs4FzNMJQAPOdOGYRIO+11q9NWutTphqXDZz52IUERlUPFs/dp+mX2u/8+rDdv62zpN2x49LZI0AHA9pm0QPmKNIgQTZLkeNkGJmSU+kRomqohMHUG56oBpcjp2OYQXR1LSvvgfVuYz1WnSAkHg3DidQjcYsYHPVr60sqzxVK1Vk550hDwmBz6s+7ZSbjyggRYd5Jjw8TXA+4u7mCvd3HRgJm8AIiCCOWpEVq6p0RRbD9M/ZvNHqIA4S/SE9VPe72tlzCQpwO2FK96pM0d73WnZ5zoumqgRENcxc43h4oVNgBO0su58XGlD2UpMyRFmxAFI5oVEvWQly2xLVtdFn96N2LVWdIAS4zWrQ9qyJyP+0xw89ZaUD2eCVvgtVY2uNodRhUgwxbu7TrPkL/3qpS5vP7IOVwVEm4uo+n1pLFYSv9U29tUZAZiFuLkS5nBFVD8V5Qo5R+N4SA5yRcpR08xRxWsRJOUeSbAhmIQ8nQowLlmXEsvSY5wnT7GqafxEC6wVeHU0vx6Zt+/lnq+9o3csrvEamx9ZRUGsHlN2Mig42/NCeQ2crocyZ1dqnatCtXrdxU3D9y64zXh97z3ka8fxxDwZhsxnw+vVrhL7DF19+CXYOv/v6dwhDjxQjThrVNAw9tttN0W9iqDakwtpe2VxdUzKcO6bbXgCksIJgpYh5XkBE2Gy2AFoiedE1cZ7hQ8B2d4Vh2KDrBmw2VzJHsnBGShq7jQFQIvAa4+Jl39YvYoxYlgXHwxGPD49I1xFvXt8p76TwKZkjwt7ddCXUsE0kRiqpE0H4bBqjkMyJLzjb1mSRvzrGFhEjUfTy24daXdUQhEWHs+r7bFGeXDGU2RVlU0oEMFwGSnqsbjo6Uk5aZxvTAHLCMp3AKSEl4bQS7LYByEmEv5NUdFuWVBcL2gWwkidgFABq+iq3UZJckqMdObAkNaCZ1rBqxufHal2rnLLUyjLqRNUWM9oBVtxUgC/DiuVIu4O2MYGy4XVtYxPZZHNeUicjANlQFs5Ir+Mo42QBB0WuNBHRa/lUgwPMXqr9Xb+T60jmIVXnkmwqynfMTQW/evcXdmIqmNbOafCc/seqxhtpeBvZFIK89zQ7TCNwOmXsDwu2e4eb6w6vX3UglxHcCRwXcIolqq3aoy8Gd42hchaHU04gEn62bE54e7cL9/kUXpDr1PZpnNOeZHMrJhnTbWcVrmklH+0eRYesns0Fb5+DLbleoieJ0ETR6cahl7dyyu9U7LfVI0y2mWwBNMTShCKkWqVuTjf8Y7Z5//uOPyqyyUBtATufMI5eHhWomF9ejF0FSrnp8PMrL92f6wDbOe1vaWvtvEvRBp9oXvOmukANwJK8c0oSETLPC47HE/aHA1xO8FmJ6Vi8fXKeQncWn+ucGGOMApBIvJgMqfzQO8JPPrvG3U3AEDrcbjbYbntstx7TNMtOLKmyclUJrYGHrfA1zGwS5j59UPtb3v9lRBO0X16G/9tjZV3Tan784GN/zzlVWLbRHy/XXnF0ZCVRzwk5z0gp4eHDN/gtZvSbLR4fP6IbNtiGDv/1v/xvcDwe8fd/+3fYPz1hmRf8zd/8Z0zzhOfnZ11QGZEiiBxCcIUgTQAFisA4n4PUOCC4HRdmgKyEOwGUwYgY5xPIEfphg367Q/BBd+wGeN+XyDYkbp55NnQrrVrXDhdBLJX3QIQYE+Z5xnOaEU8SqbDEDNYyuN51ABKcE/BT6wAp8Z0qvsSppMHVssuo78fVfinglls5gNI2QIAgI8OlDBez5CVDhGXKjBy1wknYIjjCZhhwtbsCQLpLLoTUKUXhNIiLGpb2zDZtTOeWOqWc8h6Ql51P7wOCkvxndSDnvIDVyVfmZDEIUaqWrcZl3SMAbHOr8s28cFbC3EsCLle4u7lfpShv11CDkBrZRqhruY1sYohRZ9ESFVQLOLFoqPVutDk9c3UYZQGXKZMAcSUJ97rDU9aCgRFVZA4MdqyV/n6f8mK0fDvnYKddG7mUVob2p+5W4rJsMidINZJX5sWq40nlNzUxx+J0Es6Zrtsgc8Z37yXK6fX9hJQXOAe8vfOYpx6HCDyeRpALCM4j+IAVu1EVIIDtaueskU0KljjJ+JG6gNpdap2LrUxup0hryBpWNlDvYIkacsSccJpnLM7hKnTovSvzyeaWNbm6RwysrIZP16M4iTNn+N6h67QCphKmApCddCIE49uhF6Z2Gdt2Lq9wVLFWii1Qojp/P0z60xzt2qMXS5vLkgdzqfTXnmUbIQyAU0Krf9CcDW5msOkGwzNA6S/Rr5YHwaunAbZpR+Xc8h5odAzXTY0KjiuULQay6tRlkfSjp/0e4/4ZjhmeNVQ2SVl0I/pmoBDjTpkwRmWYcEIpbgZ8CB4//9lr3Fx7XG02eHN3he22Q98DS1xKBGY1qGtnWdtWzqB2zeh71c+sv1/Ox/NIqfZRK9xytsxXz2me0Izoy4N4dU2rd2FyzF6okCdTIfovc4eg0YZcohOyVmTlnPHu26+QlyO6zQZXr9/C9wNe3dzgv/1v/zucTkd8/dVXeH5+xvPhgO+++wbzNOF0OonuZMY8z+pwshQ2cVKYw2Dt2GsxlBrzjUwR+S2OIilhvmCJTiKJSDDUZjvAhw6d7xFcByKvFQtblkWpB2X9REQlQhawX40u1W7NLAUN5mXBOE/YPz/jw/sPghHyT7UKH8l8Y0YXurrBo7I2Ke9lRpboBOYVv1ydz6QgcQABAABJREFUoCabCaWQAEzmCTcTkCsohvCVIYuxmUIuhjzICIuFvmPY3UgEvTkIIbxSMdnm4wzmjCUtyDkV3dlOVbs3EeBDB+cDQugRQq9/S0S6vEdUx4U6XSDk/VYNVReY9JVWgiZbMGUYKk5JTRplWZMiLMo5JveEAwnCwcsAlBy8HdzVCmueV7CQvbfiRXkn5VJilg0zrvpHZIngSu88sg+a4rSo4V43jttNQAkwgG64SAtckBT9kLXCb+OUM6dN02ysUGfRm6YnqkSy/xJBbQzTo9B7143zZD3S2jvKBmIBEI4c2KpSo8r8VcSUdU6d4fJvR/DBA0TwvofzGyyJ8M13I8Z5wS9/3uHzz4CrHeHuxuH54JFDxjhKlON26IX3rPS/2amtLQbBT3EG0gJi2fQDQTGUTD1X+rJqPQKt+EVfYNUih2Uee5JyLjML3p8VQ0Xv0LPwosk1BKJ2ZRkAWN+6zisu3JjMYo0F7+G7UFQ4q76VlFVGoYdpbPkVVsIan9d3rA+2eS5BCLWS4u87/ug0utqCl539w06nBuCw8XtkUBYjZbX79OJxLx1ObJUZLgCts0eu29iCg4t44UzIczPpsuxWLPOCaRQl8/D0hDQtyLPkkg99gPOEpDYBQBIq6hzmyJjiIu12Q+HdiTGh7zx++eU9/vEvbhFCwKbv0HUe11cB42ksOznee7Bz4qwyBdkYWsDaALD9rR8amfbVz6OkKmASAZ4vTq41CLU2/BiH0w/Pmfbd2mvsu6KzSsUiUWQRnBekPCHGBe++/Xt8/OY36PoNbl99hmGzwy//6p/iX/wf/0/YPz/jv+//B/zu66/xN//xP+Lf/Nt/IyG56jyUlDKLYHCwnY0QRKjFGC84mtqesV0C66cKVI2ANOUFp9MRKSXcOI/dVUDwHYZhIzt3FAAnucmsnGDrLm0VyosuLEaA9xLqTCABStOMKY54WkYQQYk2ldvAd4Bz8C7BEyvppxfhkmUnjnIUnqOcEVNCLBFGrih9e11z9piTpTpoNDycCBmEqM4K8hnOp+qsIFlTOSY477HZ7tANA169foMvv/wZHBFOJ9ldHccTnvd7xLjgdHjCMp3keWUHxKrlkII1iYSSUH8PCgOIpBKSVyWf4lx+IyfYjoIdGZA+8etxoNU4VUuG0SqMT62p+kuH8sLqa8Q96QXnl3Jd19KfClrN6M0JiRNsF9rab+mX3lJ4KSEpn4qEmEvbpfoQYVm0ek7KmKMo8KHrpLQ01NAyx586Jp2mpTKARI3z7sWL6gdkc91kBxXHj1xaxxm6a7sCDgxYOHntWCpiv+xAExVDv9W/JtPMwWbptCKbZU51XY++z8h5xldfH+H9gp9+PmJJC7x3+OnbDtvQ4TffM775eAQoYDtsgL4NBFejqhgeupRSApYIxAWU5AcQoORIUjHaa+z1DC6bAZWLZQ2wAp0sXQYPwJNU4DPJtaSI/cjovEPvCL3vpb9caz3bfKxysMh3rrq67EinhJwTur7HtuvAIMRFndYQB5cjEsfWBflGTLJTaBigsTdURaxnj8mgLOkKvx8m/Rc+rFEtWG+M29W6Nbyp3g9uTihOXwWdl6JEyr3LH/roBodlNscxYNGa5nhoTZEVUP/Uq53rcdttb8lU1fKIiqFOpxEPHz/i+fEJLjN8FuMgdBLxkDTyAkSa+uQwZeC4SLu7Qcqwk5coPB8If/GPv8Cv/uxeIvBYdN5mIKE3iEsxZku12dX71XEpr0MEizSj86leh6ecW5xMaLCU3aZ01kVo+iMPk4P2q278VbdWu+Gh+hi2QbSOAGAYKS2KLrL0N+GZHJHigq9/+xFf/3rGsLvCZz/7M+yub/DlL3+Ff/Wv/hs8PHzE//X/8n/Gb37zG3z73Tf4T3/9H5BSlBR1J6ky0zSDyKHv+4KhbMMuxqjRHC9tijrvz3GkvEfOUdKTHOF4PCLGLNip66WIShjQ+Q0yCEvSsdX0JhkXjVAR75t836zNlWPWZFjOiFGIwU+nEQ8PD3BKo5FTKu9lleJ87xCCVBazDZWYdZOOI3LWjbRk41CUEarLX1LSrR/E8SPOJrK2k6DNlMQI9N4hLpo50akDTMc1dD3ubl5hd3WNu/s7fPbZZwCA/X6PcZxwOj1j//geMS6YT3ssSgxe1of9qMnmVO91wxbOdwj9AOdCcTgxM3IUHi3Omn5j/QmZe2DB2RyoiaJZY+sazSFUFrFEV9j30AwCSFFX2Hq0zREuEXxVJzTrCi//trNNBwl+FEwqelTwhESycWOXQTYvAfig5yAi8lJkuGEoi/zLOrcAiYjxWTZcvdobUtnX0lTVviAH51gdC+fCxRxt6lrgxm5ElRlkunw176nI70hGVC7ZPSZLbFzMrnBExVNjc7fM1xXu18ECr+ZQ6ALIZ/h5gPOSAfSbr4749l3G/e0WVztp8+t7j3liPIwZ7w8noSPxDp05m0wwFzAg64qZpQjBNALLCMozCItgIOeK7nP2rmU89VZkDvAGFOpCoPooScdTXk8GITIwx4TDPKJzHhR6eBfEOmyaydYtxTqq+qQ6JFRGc9YqhRmhD9j1Qn0wRS6bNCknMAmVgI3zOS5i5lLZsVYfhL1wcTgZtrYNiZRfUslcOn68s+kcsLSfv3AAvVShP+hMUEBVsJbd0gRLc4/1blztpEvOphLVVGcZzOiuntXafJnzddDBjd3GjFIOEyIUTVBEy7XVXGtHQnIvVeLYCOXlfsZno0KudawVwcOyi0MAQpBIGu8tT3gtfG0BNJ3/iT5oP/s0yKn3qoKyPq9BSufDXgcNNpmtKRcdTc2fdZeK1kLocgvLxZccUO09izFoYaopKfnzjHk6gjljGo+I8wROEVfbHe7v7nB7e4frmxtMk5RlTkmUoikaAePiUCkpRwZQzoAoc9tlTWxZATRQYZ0VvIgzcVlmIcF0DjEuSDGCvJA1tu8nz7iwtsiiGZo2V2RVxlZ0pFbaKOHptc/IOVC2kO7cDPrlWXQelgsDtOR0x4LB7EEWEQMG63ZMiRKxjlxJRCqVFlPOWGJCIIe+32Cz3WF3dYOrqxvJow8dliUidB0YTowLqDGWItJ0WisJG8cWzFmYdGMkA60CrrLEPl8phHLRapE0ffei5158UhSOAYT23DKpuJx3fpbco2lDGX4DsPZNBWj1HzUSrr24dTyboKx9+XI+cDaF2G4U2LX1fBtz29mTnZPqgCMDhp94TiuL6KyPjMg+N+O5hgTtdc27QlZ9LeHb9o89l1QWKnhD+50o95wdliRO0nHKOB4XMHv0ncf1FWF4zCAk1SlcdMh5KDthPe5Gikaw9YlSOSQbcIQBo/oK58bai3trFxtezIBWlVLAmSVlL2VWCKX9SXQ2MiojzkQFgQR8meGmXzrILqCoYYLZTgaUstNNDiJU5sK6w73eNeUqR9DiBPtDunDFlfCnPlpnUjMGdee1OfX8D2p+vzihlUvrR5lerpE5JvSbedCMQfloNWaq01HlSWtsFhwDNJ8bvuGCdazvzQ3JWmQlJdukSPCMQi+SsnDCiTEud+VskYlookfVAclrLMgsqZedF04+44WRqb5ew3Q2/Wtn0wqL/iB4KldYm1rthfMHlBuV1Gjw6t7rdXsBQ9H6D+MVAqipZmnfnd/XPjuXZXVcq6xH4Z3KSv4clxnT6QAiYBlPyHEGMeP66gqvX73C/vEB1zfXQhSeY6NTaltYOdlakOScbe5W0MwFMNU5vF4zpCmYSdu2gCCOxWWZAQA5RmSX1JAsDTDJh6LJz/rp0kHlRPneIgzbH9NjVqDE7udcTYW7OCnsto3NwAzlBwqAkzUBtihydbhkuciRVE2l5n8wHNfMp8xAykCAw2a3w/XtLa5vbnF9fVPGqesn2Uxl7VOHEtkclwVQonAJa3GA1GyFbVSWtC+rAmyyt7yU9TEXrqG1BpHzVhjE5oMZ3Kg/55ZOEZeGkQhn9zo72e69mh8XB7/ivGaOrHGfRQVpK+oUX62r8pxz+Y1Wlhn5PQrmeqGsm3UlTtzzTQeVMnat4reCB22urF+zvhkBUHlK531g/UTAix7TOX62ylCjFBuMXfpFnGIWOeacRB7OMwBkjHPGPEfERBh6h6udxzECnKNslKldcb5BZ/+16Dmy1DPFuQVzUR3BMm9Ku8+6Xl+jfGzzuelH612reM0sDkQwkDxjNVJn84lXnzf6wXAS86rPLaWVYZQS0pqUMtgxsvOik9VuFZF/jp2wmq/14BfLrkL/34+i/vDIptYjVB7K57PzwnXrP8v0I0J2VaHnpF5t1B2G80gd+8w6+zwVpU5rLr+LIcamlM8mkAo1zgTSXTTLaZZSullHUnKr57TgNJ1wmk4Y5xnjLOTE5IMAYy1XmVFTTix8Wyo/CFGi80r6TRJRMk7Au3cnDC7g7nbANgT44NAPAbvbAcMkQD8r6ApOCesgoh7MShba5EGXPm/7v8WudeJVQXJh8Iw01AR71R56r5ZA99Pz4UV7SAwNA8IvFEbTLvHMuiKE13OcC1jxwSEkD0aHzW6LEDu4NIOyB2fG4fAefAD4rxOeHt5h2Ozwj37yj/CXf/4r/KMvf4af//KX2D894j/82/8Z33/3jaTkJYlqiVF2xIkIMRkBtUcIVtVrvSgNdMtcW/U6GLITknNGoqT8UB7LPGGeThiGDYCM8eoGw/YKu6s7kJYk9r6TlKUcZYazpAwZ4SmokigDKBGZlhbmnAIHdTQJ7xihHwZsN1schw2GfgCnCI8FTsViQl1vWYV1cKok+g4hMFISbjJmhgsdgg8gcnBBwpatAlHOjLRoODESWLlnjJ/JhSBkmuQAL5F8x3HE09MR19c3+K8+/xl++uWXePXqFT7/4ifqUJLdwmVZJPU0Lnj4+AGH5z1OxwM+fniPZZlxOh4xjSOIM1xOykMT4KhTp57sAuQMINVqScxS2abznURzLRqd6dVZRqbQ6so4m9GoZ1QwdU5ALbt2FUgUJ15j2FU52Aj+Cwq/OIecMGcydDeOqCF4rulmEg4kt8pN852mXXTBI7MDz7Iri9I3UFkq95sX4bTzLgCbuiMo4EQz5BWQlDmrxoRV+jTHLlYyp4KIErFpip00GktTzrI6YFJOoCTrhNjDmB3MxopKMiptUSPBeRBcjWbW+1iKiZHpBudBAUip7ih3wSFveiwROB0GpOTwzXcL/u1fv8du2+OLt2/wxRcDnuYJm78fsaiz+TQt6IJH351DwAYspQReFrgc0bkku39McNIILJkQmdE5QqfzpZSoNeBCqMBKit0ocHCl2qRnIVjdBI9AhDlHHKYJjgibLsB7gieHgULhcLL5bbLHdqvtGxN8wrMDcSI7gnfARk9IQRzAY1pwOC2SojFk9N6j8x22YRBdqjyIjKzlp+ucL69K0HBvAVmZlUMhZylKgH+go4iEiqFa50gT5H/hWlp9xVDuDCWHVa5ZTR82vdhitbo5V+8pn0kEmZ1jHSf/qTQg3IwuoU3lEei2brM5A2x9Zt08y8hSYpokLWeaR8zziGWJWGICuQAfghRiUTnRRn7GaVHZJZErII1G0XefUwRNhG+/e4YD4dXNgF/85BbbTcB2E7DZBPT9UtroQAhkTu46XwqmN1OBauUs61szHADDKM0PyhR88e86GdZYunIl0YvzBUNQ8cu8QFcq48t3jVFCq7uYHjG+nnNdQSUFpgseQx/gHSPHASl45I6Re2nzh/dfgd4TlumI54cP6IcN/tlf/iX+t//8f4Nf/91v8Itf/Rme93v85j//O3x8/728pqaILVEiNxwRcpKOd85pSl1WzkZzNJn8t8GRDrYNWYAlXX6SAiwxLoKhpiPm8YS+3+D124zt7gqh36DfXollmVHSMsm1my9tz1MZ06JHS1cK7hNOoigYEZJO3vUD+s0W3SCRVQRG6AJCCMXRI0uOCn0IOZHRTkFvTigcRMOwQT9sZMPOS5RMwY0pYZ6EVF/GUzCUV4dG3wd0vRZUUf7YmBjLwhh2PX755/8YP//FL7DdbHF9dQ0iwhIX5JQxzxNOpwPisuDDx3c4PD/jeDzg4/t3WJYZ4+GAeRzBTuaZA4HdAPKD2kIBBC9R6kgVr2tfOicb8lG5b7136ILgLkcMMhySLQKpzle2VHhWXkmCjuPagijVxch0Xs3xMPuxYAteG9/F9KG6iUqW3md6FDaxTc/pZjTbZgzBNQDCe1l/NfItNtUbWa9PYE5IGZgXib7tO02xJ9SFZLYEARbZRpmlH0QhSFqs3ZoA4eKssg1AKZBg91q/c5V5DAeXRTcTadn7ZuPYIm0sigxkzmq9xojGkzRN7CJJo5VzPVJOcAuDCei6gN2mR8qE49HhcCR88+2IX//dA7wP+Oz1Nd6+2oJ+PeN33x6R4BHjBkuSquOB2vlCIE09JE5AjqC8wHPC4B0SPBIDC0TnTCnCcUZwhKCFG9jCPy3bHA2FhQoKEQ1coLrXud6HoFkEGU/HCZ4IgTyCOoJD0TW2QBp5VJxBaiewOKliZrHH1P4KRNjYWvCE5ITK4nCaxEm9ZfRB5FCgAICkuJPxkhWMuF6nNvol6pUZSX9ibtfbp48f7WyynXt74bYD2nOARiC33zUCwNLLRXm2ClIdJYU1v713BTDth/a5/dYnNLisuUnjHTQX1IUXVcUOwJ2lf9kvkqpbS1qkok2SynIOpqil5LdViDBBljmXnVlo+KWFEjMgpJiRcDgseHic0HkHTuKhDcGhGwJCpwZpZpMbKmjqHg1nBrn23erb0urT2i3UeKXatJT64i0I5rMf6zoGLox9vWc9fd2OxstPtHrS6jzT+Day6+3XApAJKCSRmV2pUEOWwx4XzONRUijeMcbjAXevPsOv/uKf4Isv/xG6zQZus8XDwwd8/91XeH5+QI4z0pKLcmdOqqSkTb63iAyq7WqmsKUl6B+orlCdvxnI1ApqAelxmbG7voWF7PLmCoQACl1xUmbJEyqGOMMEd2OoFg0CdUa1ZG+mKGWOeO/RaRU47yVlzikpsAHU8iRdG077nr0Bt6QOGgJ5goek7nV9BwsTzqxE+854gBZkjtpMI2AUp5jsOKhTNmUcxwX9JuP6+g5v336Bu7s73L96s3LYSHUScQz2ww7Pz3s8PT1iihnTNGGOAC9ZiZZZiXa9/JCTnXOS98zJ5py9M8FpJRu102DTv4wf25pcg5+VMVMMjJdHC4ScknMS2bwHTKqWiI1LR6uwSB+ojhQDb2KqW961GpXlhmyWTr2PA5w6JKJalGJIvNyhK0TvVu7XkPtKo1X54IgADbe3R7cyvu2vtTwr+8VFnpC+rwEcZo2O01twOU++X4UDl8i2GuW2GhcjbzWwZimJWZ+vn4XgkXNAzgExMfaHhG+/P+DVXcIvfg68fh1wfTUjOAGWKSdwFK6GLrjGYLc3RukUyhmOE7xaKM6p054dIgHEBN+AFgOcpQsbIWuBffYsezdj2eo0RTIuEXNMICLMKWHOwjNoc8tuu4rr4NWj2leoM06djEFv5Z04hcbIWJYo/eHVAW1VOAU0rFPo9CHyjnXyr3ECFcdMOpuvf9Lj0nPaz3iNk847jQohcD3HEWkqA4oOyCvwtwZRfPYRSt81f9tDqV7TrNRy3godkEWbnEXgmF6Abk5UzaFpjAtiisq5wsgOVkZK5gXbCCtHjjmLiaSMvcozG19L5X5+nvAxeGy8APBBjdgQpAKT4c0y16nKDNPJ60N1wdnnrYHWOpkuwaCLUv7F+LdRSOeITZ93Nn5NN69k/Tq26rwhVB7P+gLWJ9YA5wghOABSzYwIyBTALiAuC07PT4gxisM9Zty/eoN//Bd/hc9/8jP0mwHRAY8fP+Dxw9c4HR4k3SehZANwToKRtcCC830hjH7hMG1xpv6HmpdlzSrIBMQoVBZOsc4wTNhd3YiTxjmAtyCWjWCAJH1f8e6Lud4MZIlWKgqca/q3OXr0EhckHd/7IKTlUPoCR+Z3L+8hGILK/HFWiaqk0wGhC3B6r64TDJViKtWSxWmXVnyK3vZLOg/feVlfUZzyMUsVYbiA+9dv8NMvf4YudNgMm9VUiTFinicsy4J+s8N+/4SnxwdMU8Q0jVjmDJ6TkJqXPvOACwAFQLEUGFIxuDH+K1bSzaWcZW3aWtTOIessU3+NrDK8YsUf8hncauWldrMucGpuyc1YNJiqGfc6I84Well/dRO+PjXX++Q6vihzk0qKvo2ZBIFVGWnRn84Rslb1rbOUYLZE06HCR2XvwEAt5tJiKHeGl9rIqJe4TGRflZX2nelTKVKkmzpKhu9MpigrACkmKUTq0KAJyVWzrT+VR1L12DuHrgvAkjHPhJiA/XPEh4cjdtsBb1/fYrvp8dW3C5BncPZSlMvoeGweNOCHSpnsLBvNkM1ysEPlX8+69W3OIqAx6+Q+GpTZiliZY+VlS985FuLuDoR5mTEu4mhfUkbkDA93FqlrD8FaDrYyj43ygMu5wm0r32ddQzHLxjuRw6ZLSN4JL6LNR+mK8gwRY+0cbzux4oX6/Ev68uXxB0U2lX61h9lDViG7P+ImzdG+TwGMWXYHbPZ/6j0a+fPj2l/AqKUlrG/Q+kpkjRp/VBWKFGSQ52XB4XjA6XRCXKSaEKkyIFDhm8hNWUMz5wQfiRfaOCO879F1Pbz3eD7NwEcgpgWDX3BzPeDNz+8wDD26bgKg1SoKUqhjYG29dFjIqgnmimLr+L2IbDoTqu2/qF18lzrxYiNW+kYvqZEJpvSLY2PV9h+4bQFhXMBTe38Dws45IHTYbq+Qc5Jy7BwxjXv89tf/EU8PHxBdwPVmgL97hb/6q3+Gt28/w8OH7/HN736DZZ7h3QnztOiOjI1z1pBtBzHxZOXbu+acmo6rgPnFoXMlxgXzNII5Y79/qHwGjhBCj+3VHbp+AwIjqEPI5tp5LEQZyqaaHgAE73FzdY3gHOYjMB9n5WO0OUsg7wHOyFGMW5sPhEpkGMhh4xxyBqYoVRbdEDBsr0HO4/rmFtvtFXwIGIYB5NTZpLvwcV40fWguO1zTJGSUcR6xTCNSing+naQfMrC7ucHV7R1u7u5we3uLYbtdjbNNNomEC7i6ukIIHsPQo+87xGXB/mmP4/GAOM+YjnsJtedcxirq9qPXinV1blVnJoNlLaeMtQPH+l5LyTagxILcbWTOHRnNpG6UTltRpkyVctfihOFm1VBzH1JYYTIV6shiAzUmZ2n9APuIq+wqABDSD8LHkdFmbteoUQnhtUoxrsgXV8puAxVsnffHeVNQe6QBRy+1ANn4GIBkUvCnO/o5N3ezFlv/1L628VzJNZWxrnmH4nQiKgaT1xDpEDL6YQA5h3GO+O7dgpgcTuOMJc7Y9AlfvPE4TQ5Py4xxJBAGDH0ojssXHZHVScqMQGKfe5J4hUySdsQMhOKwFMLYcxDtVHYwtJKRfKFGj6vGVefgGOiYEYJySTAwxQTyTqKTDSh+4jCgba+Rs6XF1e+9jS0q34Hx4mUWDjDvvFZXaXQP17VjUXxF1hHgNVIxZyBGLjIuph/HN/Bf9OD6W5fgS7DGzS8V4hdmef3SDGfW3Uf7enWTP7SddWzKnDEMUz5TByNXAwdAMdzBKKWWmWq/Z84YpxH7/R6Hw1GjARszqwF3bEUnGlBtkQWiKyOYgd55DKGDcx6P+wnztAA54bPbDuM44OpNj74fEELlBTLsUfEHKt5rDSv7il5uUprRXP44O6j0kvVkvf6Fc66cc470LxzNdUXPN2tp1YDVZTpWl+YEyVwq20maamI72hJN50EdcLXbCu+PA5bpGc974O/+9q/x8OEdxsx4+/oNrrZbHP7JP8ebt5/h8eEjvv/mG4nicIRlUb0ftbhBEr4j6xfbjEbRT6sJvVo/ZQwKBmTEKLyNOWfsnx6lEtSyAHBwIQivUNdVqbXCDk0fN8Z1qaaXpaqw94Tr6x08ZfR9J5U1meGchw8Sped9kHVTdJEMCkEwmYPIuB6dkKhH2ajb7ra4ubuH90Ew1G5XNgLN2ZSSOJymaWr476Tq1el4REwRyzxink+IacH+cMQ8z7i5vsVnn7/B69dvsNtdFfJySwEsmz+OlMOScHt7i67rsN3usNlssMwLnp4ecTgckKM8hzOrE1gLvaQESlo8xBkGqeNl0T2GTwxLSw/pRhVrHGUr76mZ71TXF+lwmZ6TDUt3tp4JFW3Y7aqd12bItAwVxQDXscy58tu1G21l07eRLybTisOpmU/e+7Kpe14ACSTVviIBnfdKxG1RQ9BKr5W3GGV+lQmMkmrVtKe8YMFpa9El41M32cqmsmtxlZwrnFMNljXlo//krBQccofyAKmKxk00fWtbWt84ZPZgDui6HkSE04nx9Tcn3N5kvL6f0XcdrjYZ91cOcyQgR0zjBO46hI04esu7ql1pDifmLDjDORA7eMcgjUyPeo5nQtANqsTVCd5uUgh+0pRahlKeSF95JxG6HUj9fowpCY9bZGDKGR1JQMkl7SH3pxeOEIZsruQSvaP9pt8bRbonseOISCoJR4kU7y/ogaJ3m/vZvLBNvgQp7GGYPuV03rSLxx+cRlcnKxcQzpxLSOp5WcT1xfWfdcJTeTFJnZAKCZ51d+v3vcTqnpef/eIWBRi9VOf1eVyJ0jRqiAJJ6BkB43jCw+MD9vsnzPOMtCQEF4QFnwkpSp9kM+ogSUIMAdBed+/nZcKyRGy3DldXApQ+7Ee8ezziw0fg8IFwdzPgL/75z7DdbtH3StCn4bWXgn9bZVG7WPM4iTS0s3pSqTkPqIIf7Z2pAcTWcY0tCjQeVvDFsViBunIrm/C17W3FDG4W9er8ItSb9p6tx+I4VIArpMgBIQCbYQARMM8zpmnC8XnGv/vX/3cQefz8z/8J/vE/+1dwd6/w2WdvETnjP/6H/x/+H//9hOPhGUN4wnQasSwJp0l2Zad5xhIXeBfQd1sx1JS0MSufQEkBMmHFDX+AdYsq+7jMOKYIPwVkJnT9E66Pz1iWWcOpfSH67pR0MrUOzrRWpyK8LZpOpGMXOrx+dY/leofHdwmP47M6IkWIMREodNJ/M4Njkl26YAR6WmaYHDZaIp3GGdOS0G122N3eox82+LM//xW++OInCKHDdrtVUKNANjOWGPW39OE0L/jw8QHTOOPbb7/Gt7/7HZbTEe8f3+FwPOL27h6v3rzF/Zu3ePPZ53j7+edlnGUXyOmPvHMIHl13X+aMFCJgHJ6POI0jjscD3n3/DaZpxNPDA573TxLafDoi5yTXG1eWriXyso4BVG4GNApY9mwBFq4glFlu89nSXNdRM3YUpxlZqlcljW5s1TLvS8oSZaBUlMIKcBnKK6XUc6krUs6teVXNQioipgJmO0qFOiKp7GXGm76TpTbFlKQqp4JO6YMaCWE7sm0ZYHvD9pltBIKdVXuFy/dO0w3kWuV+IquyApUvrbAQp6GAVUnVBepmQR0DVCcNZXAWR5vIUnkv79TZTAStE43tNiN0HY6nPX799yccjhlP/+SEN688rraMX/0sYH8E/t3fjzjsZxBn7LYbfc+1jJdqUQmcFjhOCOrc6lyCUwfODJHzgYFewbBEE3DhYgNpeDgRFg3lz0Rgr/xqTog2CaSAiZDIoc8CqpbEOEwL0DlcBavM087Qs3nUOM6YxZmbiIXA1VHjMENxpPbOoQudVn6KiCkiOI/Ekiped60r0bWHrwaNpXcEkVVJyw+brFhSXM3nP+nB65X7wsVwZuye2QxrsNJ4FwisYQXSB7bmit5s3q9RvRcecuH+5fcKkqKuPjnhYh8SajnuotOlvHTijOfDAe/ev8N0HLHEBJvpyQw0S3tUomoQ4HzrRJTnzvOMGBN86Avx9Hfv9xjHEYfnA276hNf3W3zxy3tsN1v03SLvkzIQbG03zaSm78q7UJUzLfY5O/eT6PfCF+fDue74S9+9PMzwgYk3u7bcot7PXsd0r51H7ZeoHCJivErUs6UzW4l7wGM7SGrWMi84HT9gPD1i//QAF3r84i/+Gf7qX/zXADm8efsZDscj/uY//Xv8v/6f/zecjgf0vUNcJszzgsNRypbHmJCSOGo6HUdRBWLcmrO8dShVnKqDIhMHYMYyjcgpYwwdMgN9v8X17Qk5M7puwO0rcdywdeQLPXw2FuocISf4njmh7z1e399h3vZSKCUu4JThvUfoOgQlKDddKxFbxZJT7JBlo7rzUjJ+nDEj4ub2Fp9/8VNsNlv87Gc/x9u3b+E00oNIq+7qRk6MsUTd55RxPJ7w1e++xuF4xLff/g7ffPMVpmXCh49POBwPuL17g1/82a/w6tU97m7vhC5B9TCABkN5dJ1D1wG9nlMxVMbj0x7PhxPG8YQP799jniccnvc4Hg7iJJmkimHotPCK46InvHcSMecIbvKQyoKsxTYsWiwrvcFqUqsO1qphymVblkJjW5iuLr+dKwa12dVlHSguNp7C8hnwQi5bUESMhjtMTMrfBesXZ5TJZI1u40oGLg7ETjastQANTHcRNPIzIfgASfwRXCh4I6vDyTb1bFPd+kBXStMGUI3IvnS0GKoUFWjmhaS6mg0GxY6svFIEanmPITY9M8p6Lk4a5wDKtUhJ0z6rVOlD7Yeh38K7Do/7EX/9N3u8fT3jL/7/xP1nky1Zlp6JPXtvF0eEujozq1JUZSk0GmiAY/xCIw0kv5B/l2PzA2i0IcbAwTQaPQ10V3dlqRQ3rwp5lLtvwQ9rKz8RNyur0N3wrFsRcYSLLdZ6l3rXZxesFg0XJ44PHml2g+LdbmC794TVgr5rUUbP9BhBgZOsJpDki940eAV7Z9EqiENFir4xXtFG6hbrUjMcEwPZkLyCo3W4ycUO80YoBiK9CiihAQmSSamtyK8xwHayLJuGxXyJM5PdHEkjFYODzgn9QbQltIqZWMhrJsCkNaZp5XreYkeZg4XvImVFWSslK9LMnGkpeGuMZsTimYSGwDmx3967msrxR5XRlYcuoEmMi7nL4yHg8V2Lu7pI5UAhS41aDzyEafK+pvxMToqH75/y+/tGqfpgzkoIJXKbJjoRXCZiVxfJE4LzkUsii5wcL3LKo33q2BSjE/FvVKqHBOsC4xQYJy+KNtWLqu8UFTNwl3e9QjzI6oGFe/T7Q4cI7jJeM4AyA6JH30tAKP9NzvaZO4zSWWvjhFlL8XzGP9o4iAoBspGvowDT0bnlQ2AaB0JQjMOeadjTBE/bSdvck/UJ5xePaJsWJo9wZU9MNgrhDFKre4z8VmTizvpnGYNjZ0NR6B6lEmm4Fh6n8QDANB6Yxp6mbaX7VZVZkIRDHkZ1BNC9lE0lh5TIyrRKoyMzZjElosf6OM5+S2MIiqZp8cqwWCxYn5ywWCw5OTnh5OSEpmno+2UsN/Q5GmRj945pGpmsRes9St0Jt4GVbIZxsgyTZYzpoMvlkuVyQdu1mbTyu9bFnA+piaAmZiUBq/UJpmmYplgWGzsROmsxVX1++i9tpDpjKBsj1TzONg1lDyWSvjSG5fWqHIWyL+ZL5Dh6lW5HRa0TDcAsAkpELwGNnP8UZUKohWje1/lq1WM9INvr9RW/X9ZfyOBMytRKJ8f03fphvs/eLtchj/n8OevfQ/U98msqjmmK+hUjpjxnKrcKYb5vk6gqt/oeSRrvITnkQgjYSTNNMIyBw2DZHyYIhvXS4AM02kOwhFA6swZdr63qXwRp6X4S0PBJ9lPKl+Zz+PCRRW2tP+LalpR/idIZbSJQi6V/IfUwS1+vxl3Jmrwn4xIArp5HVaMnIkleM3Fv2VCihyH43D2r+kY1PnHEQlE+dVZfHYX+Y7XJn3rUGKTaXAW0V58p3ykyZt4GOQZ0VPlO2s+1TrkXIJqdfCat8sfI32UGklRIkq/O1Cy/H9971nih3Fc92slITtwz8i921AvgfQTCwRMbSwlGqryRIld8xlDBB+HVDGK7uNhFdpy88HvV6yWt8/RK0uGoo9eTTK6G8Z5j4mhoQ13ecv/9gnfyF95zovQjoI5fjv+X7q2W/d991BjrD312fpRASWxiQMCpuAqCE3wyTYzDjmk8oE1L23asVoqTk1POzy9om4at8gwHmQ9jRsAjVBCiG2U8pNNarSPTqqqXNYQcEK6HMTlFlFNCcK0SF+YAAew4YJtGov6NIpcWJU7BI1lehlwMaGcnvLMZT4bEHxcS5k1GtYnfTQFHlTdHWktJf5kQpEzONCyXS9brE5bLJSfrNevVSoz92NU1ZQyH4CsMNWEnx2SllGicbPlnLVPsFmxMw2q9YrVa5cyl75pzIGchySFByNHKHGmjGYaBdmzzXnbWQsxeT07iPIZECZYcHwUukDJ0fKJ3AHHQqXD02TyA6U4pxk49thX+EaMiY5J6bklwbTbz5Xr3At4JRT1k76qjtRjvN/G51rebMILgw8TLVgfY49VCKpHMeVzVc9XHfTvjnvJX5Szz+65xUsouDPnz88C/nDffzfFYR/1SMFSYjXl6htmdHw1Oul6NobxT7A+e/UHW9zSJg2i1lADa1c5LlULsUOizfIxjFvVQoYsI+ZkThgpJ3cZn8A/hw4dGvpqOjIujPjGI7DSxaVWIhbwulOqn+fzdm53ZtUMoOajVgp9h4mS6SKMNObVPmDAca5V6HirVECAcrZ80p+HeO+8//mhnU3ysylEQEWCSnIm/4fufOK/I1NUBpShxfEjK5f7mS4Lp6JQJ/DxAXBWqX+rzz96IT5kMeBdrygkxzV8pvPNM08Q4TuwPI9v9gdF6xkmix9Nk8c6jTRPbnSZnU0RBMfVMQFJACOM6mqZldbpitehZN9AvNG3fMg2ezdWGw3aQiHPX4ked67919Jjn8sNKCKfUOsln8jFyVYzmmdBJY1rZ5tWaqxT/XHEoqBxD98+Xt081zsGHzFEUQgEVs+smPZCIXCvAqqPy886XtRj/pZroVDes4uebJp7DSwq31pp+0UMA1wpIvbl6xf/+l/8zXbfg6Qcfszq94PHJBf/Xf/f/5HA48Mu//d/59puv2Nzd8uaVpIW3jcLaNhP6+WCFayiWoSTuAx9r+2tHWxrPe0aCAh8czg4QHLutpEk3bcc0TiyWa9YnJzx68kRay7Y9yrSSbdQ2ZZ4ymJHROex2DPu9kBHvbrFu5LDf4NyAt4M4soYBpQzL1SluPHAYNsKFEKNdSpHrywXYB9Cai8dPaPol5xeP+fCHn9IvFpyenrJcriRjMWZKpGglhBgpDbRtI2R22z2/+eL3vH79jneXr3nz9jXjNHK7uWWyEx+vVvzoR5/x6OIRq+VyvmZmjo75Mc+Eg77vaBrDYtGxWi1wzrLf7zkcDgzDwPXlO8ZxZLvdsttt8c4yDnu8sxnoe2IJk06EllH25DTdxO0zNzAkApWAh643RrX+74MJTyh7Ib1fKW7p7iNfyW2c02TNgFklwxOYCIl8MMnQyJXiJCczkUjW61cpRRMzm0LT5FR85wqRIMA0Oe62O4zRrBY9bRNbAWtD0DorP6VUjq5EbJDFWZI/aTyLqJMOGwmUpGihpHuHTDYrZfmp1l2hvJRmpUyXpC6y4x9K59Dg8xSlqGe5waR8o4GTPyPR1EYrVqrD+YbNZmS7W3K71fzqdzvutiNPL8757AdnbHaB37y85e3VAXzDfjhImW/b0BmDlGQGpAuQBWdR3uUI3cKIY/igvZSz6oDzlr2XkrPWaEwCTymKmFvSx26NClQKjWklRgIqZ0L1jeGk63HBM04Do7N0LkhmipF09FQuURZyKodJKypyHnqL10GMiKxk4l6JpPCdgpUx2BDYOo/zisnBYZwwWtPpFhONOeXmjBkSzZU78d7jtcY6j3VWsqpS+cG9nfdPcxSgnXThkdPrSD7VDij1B5wIyZmYMFQ2YFRZnCFQ/FURc6WxStdLxlN2/fkyQmn/FedrCm+8756QCHK2PUJGH0qJDLSjZxoth8PIdJgY9YiJXBiJn6kxLU3TAqIPhQzeFV0aKTjMfs/d5o6maVksetYnK9anHY6WyWqGwXPYizHeNIYuBWqOh1UlsanqlwqoL09XnjWUAAGzeS6Zm8nBnS5YO+Tvw/nZyeX9+kZD/VbExzqZGvVaeUDep2tX91K6IJevFMeSlgYPQdNoT6slq8c5cYprY1iu1gRin5EA7159yV/++w1tt+Dxi49ZnZ7z4YsPufi//z847Hf88m//mm9ffsVuuyWgsHZiGp2UhnkJPIUAOlULoOM+T3yPfvY8tVGZxtUHD34CPOO4w3sbHTOWpmnZH7YsFksWqxNOzh9jTItq28wFlsnDkwUewI4jIXg2d1fst7fYaeSw2Ui3YDeBn7DjiHcT3gsGbBYrabM+7fHekh1rqnAMKSWuLt20PHn2iOVqzdnZOR988BFd17NarejatjhDEQ4Y6d6pRQcHyTI7DCPvLq/4T3/917x6/Yrdbsduv8NZyzA4UA1n5xd89ukngs1WyzThOSh33KwkjXFeUVEHrxY9Xdtwsl5xfnKC804w1CBOveura8ZxZL/fst9vJcM2Osa8KBtSoBMitUIsbRZnQeRx0kp0Q03iH3Vyyiqu92RySoldFHF4yg4PgtxEytVZiSJDM5eSIgcja1xe/hWuoly+F/Vo2tPeR6sv4qGETzNeQOySFnBeRxqHiIF8ulfZl9Nk2e13YrN0XXT+6dgjImBCQEUygxASbUeR1Q8eR2JCso+aKvs8OptiGbPods09nZUszBjMz9y2+eSCoZLuSNUAITsT53pQRQ0k9yEVIsulZPPt9pbbG8lq/t3XG6y36LDgpz9as9nD9fbA1Y3FtoFhXGAaIVZPxNpBAJA4it2EChaFQytP3yqCNgxWMXmHVbImp6jHjC7rYLI2wiSd5bwyiRQ9VhIBpuL/DAiGWvaNYF43MUyeBoVrvdhXSpVMPpWmUdZ3dneEgAueKWX+BWnQkgI7Kq1nFWgNLJR0Qx6t/LQeJu9jJrlkpRfPAPFacc7S60GCQVMs37U+st6Z76ZPSMcf343ugSNQ111+Nyh6+AShlHYcectqg7wolvJ3eM9Tlojed913AX1lY1bvep0fJYQw6+zlY8cMa12OHEiXCVF6wjnjaduWDrlQIuEN1uKGIZ9LoZj0GOuuA6f6hMWio280bScpcNbCYTcwDRYdy/BQOooWlRf4PPWbIkSiMC6ypX7WB+YrCoX0qez8D+X3/M3kjVf1Fcq4pUmaDfGRcJkbKHLt5I2eR8Gra6vqaUIdW5dDjOPqby2ptyHEKKd3qNhVDBCOlRDY7e548/oVXb+gbXsMmvOnz3jxyY8Yx4G721uGURwvd9eX0m5WgWsMw2gZIgdRwEsdsDFonaJHJVW55qlJz1NAq6xJ8eRPKDzjIeBsEAPUw2G/I3jLer2i7WIZp5aubybVzWdFKuMagsdNE4fdDmtHDvst1k1M0xAdcBY3lfbBwgtFbGNbogwQIwBi4TAFIchfrU9Ynp7z9NlzfvDDH9L3i/c4gMrfKWCWohcEePP6kq+/esnV7SWXN5c4ZxmmAwFP23U8e/aU87Nzuq67Z6Q9NKbHckQpRdOYyAfTsVqtABgjN9Z+v6fpeg77PZhLBusIdsIPIy5ImncU/6S0ZZWWLkdy6T33l5wTAj4f2IMVcM77yhfwIe8fl+FFhxPR2aQzipBzKDWTnwkUyX3XUcbICZAMuqPdV0BBAWQmpqvLfmQGUpz3HIYRYzRdY2gioE+toCXb7cgJWxlt6ccsihZtgATAdYwYZa6hbNSlOS8RHuWLfHGZtyeCu0Dm3MuzHCB5o+aSU+U7S98NkA1DASOGrpN72O06rOs4DIHXbwcmO3K6OuXpo55F71n1nlZPECbhJwriJPJalW5vQYIVKqRUcLlOo2XuQ4jNEfAED1MINECnjMipOgvQhRzFS5xuctPkdufC0yIfb7Rm0Sis94x2wgWFDWQ+rkaXSF5eK3mMyvi5ELCh1PqLA7E2FuSTRik6pWKLbS061gVxEGpN1wowToZhvkZIYD/dQ5R9LmbCBH8UTfynP8LRL6F+jeJsLc6c73/eknlTSsYTKK31b0hKOC7Ugtpq+Vh9Zn7n9/DW8Z2q4zd13EcRmIa6O1As93ZWGjlM04RF+D0EzMu+67rAQkm5k/VWdJSzua291tKtdJwmhsOAbz2r1ZLVesViIV0nrVdMVhxbUqqlMY0ptA95G88Ns1m2ZhyX5L+7PxH3B0dKXBQ5NasKDNy7znvWY341n78YPNl4OlouNU4rt3WEn473aSgLos5iULGVvQ4SWEllQNZGUmfT0jSd6EIrtAKb20tef/st/WJNvzxluVxzfnbOJ09+zGHYc319yXa3BaXYbe6YJoVWFmc04zgxHqS0jkbGKZX0JGykfDUG+WcZiBQcTh2LnRX6iVSuZ0xLwDMulngfWK5OxWA0TUUrU3C1TLpk63jvOOy23N1eS4bTMBKcQ3mLChZvbeTT86AVpmklADEd4rwU+gsFpQQbCZJcXFxw8egxZ2fnvHj+Igbj7h95/iobJaCYJstmu+X3X33J77/8sqyBkLIdDMvliqdPn7Ber2nbrqwq/RBvzJEdBpmHrW1b2lbwMydrAIZpYooYSjcth8OBcK04TAPBefxUZ+gkh3haf6lkM2U2RQ2sqq2ZFDfRKZ5sAxVHRVVh9LhudCqND2XdpH1Vwu2KTOoMef3XeyQFw+brLo1R+p44XrSWZxRqxeOgQsh2TQqOoVK37ZDPl7Eeksk2jIOUaMbmPSJPIiuoTtirVA2UvfCAQ6CYT7M5r6kM8tIPhW1U6xQQnF9DftPxdZWbw6RAZ3LIpOdTETDXY5gXWCDLyoT1ulbhTcN217DdCSfmu+uBrvc8u2j56FnLahvoGkuwB7ztsE5KvHSFk0OQ9Uuq4IiUFyo6ZjDSfViPOnIHO2yQRBOjieX4giPyEM7AaDWgET9lXIzgtK4xgqGczKvVCY9UwryalLIqk8yPJfPBo0JKzonrOC7E2DoErckdV0erqqxfDxo00barEFjGABR6Ank9VmNFInjxdL1PIc6PPz6zKY/jMTCcv1Z/JyuIo0/N/o4gSUp49ExbHi/G5GRKIKu+bHqtNtbfdxRoSuY8yO8pxfEzZmFCMYy1MZSOASYLsOQ8aZtG+IG0RrdS7jTs9+ydkLtqLYCn7TppjRprmxvTYoxCNwYdOXl8avUZF7CPC7he27PsmPn/kTKMarArz/o+cBvu/1p9NinKPDD55EdgKJ+jCPfKk5TstNm9z2dIfpYEwVDmp36gdM3ZvEW+kRCiwNHMN0YgtVZP49o2hkXfYRrN7u6K4CyTHcRRpRQX5+d8/pOf8+7NOcFZ9vsdN1dX7LYbUOBDH1P7fSyr9Dg3iSGYn5+jZy3Pn9Z0IGTSR3GO9LQdGNPQHCRduWsbdnfXdH3PadvRLcW5Y2KGYSJWtc5h7Yh3ju32ju3mlsmO7Ha3ODcRpkNW8NaOTNOIQur0dfDsY9eVSqcX0lal49rtOTu/4PzJM07PzoUY8yEnygNHCIF376559/aKb759xdurd1xvbhjchOlacArlRnnmrufs9IzTWJpXr3e5t/vOrWLE3R/3shIS8beh6zrOTk9Z9j1N07BcLbHjJESj08g4HJiGPZO1jIOlpMiXqMxxtO34qFO7Q1Su+fXaWqCSeSFwLNJqGZfmpgAtlTuwHechyJgoUhFUUuz5THVO8JGISEDMZ4VNdkSmqOXcKCtAS8qHPRiJyKaMqvS+i7KxnphZOvc9w6qAsyx7vMcmh4MrrXkT6E5GedqnPltsiuBja2ooTowQI+XH0xnP5yKvQk5PDslZFYpOChIdEwen5/ZuwlrPR08HDuOIC3BxZvjoWcd2UlwfRrxy+MYQGlNkZNVNBUqKuI5yxSjoogPXB4Wbdd5RGcTFSUMppB19lDlypvSffCf5CBRgIolGoxXGyPdt8CgHjdFiH5bJSYPE8VH0TwkKJG6enOGEpJ8HJY6uJhofwrWkcY2nSXdtxNGm4h6UBGIXl64BrfL6S5lr0c75736kvQ3vl08PL775X3ntxXKyWhfX67F2QtUcPUmdztBarWOzSKtkw+y3Y/0eMnbKp9AqZhzo3CEslYhIRjIC0mMWopASL0GBCy0hCCFyIkJvjLS57rqWtmtoW8mEapo2YrQGbVqgMhRrwyDu7wSwQyzfSmOSfqZSihmmzLi4CswdT4o6fnF+ZDmZB4pyTxV2e+jIMgHEIIwn0vr9F6wdaOUkZKxWi7mEiVJWgDibfJbv6QS+0gFGGxoj2MTowO3la+w0cXbxSIIXBJ4+eUbbNrx78wYVFIf9nrvbGw67nch6r2KHwkS66yRzKJa4lUBC3RIqOd7SfHoIDucUzoFSE23rCKjoMDJSJm8aht0G3/d0XUvXLgRvxzl1ToKTzk2MhwPOTux2Ow77Pc5axv2e4B19o+kbybiwVpynBGjaDkeQMuDIKdlEgzZEDGWajr5fCI47OeXs7JzVcnVP1+X5qv5IJpBznlev3/Dr3/yeV29esx9GieQFsixtlMjtvo/X6/pY0pNX3XvXzHFm00MrMhB5fYyh7zrOzk5ZLha0rWG9XGCtZbfZxS53I+M4oEfNTkvwXHSz3IVOdqOaP7RKICfp63zl4hxKBr6Kjo6QFzmxiU7+RvXtkLFGwuc5O5S5fM4ZYCHh4jKCZc5K57gsm8sAxs7l5AxNceSYfJ7EvxR8KZYSH0nItC0JrxY7RsqPa7spPhQpo6oO/mY7Oc1fxi8lczAFapLsS/fgXMFO8jMlW8SM8NrBlRRAKH/KdIf8/DZ2kSv3kO9wdk9Kacl0DXB1ZVHBs2ws5gX0PZydah6dG7wJ2HHCmZBJ2OXmQ+zAHXJWeD1jJohjpNU6ekgiXqzxb1yfaT0kbO1DiP7MuP7S6so6VMXGJ4LPnZZAIkpl55U2Kgdw0/zUlkRZbirPq1aJRD/EdZPfRgdFE9elUQoX98NkLV4JB6+OLOrmKKNRkh1SFiCgTLYThfsvqtHvUnDx+P7OpuqXxCE7V6plUWRjqbrh5Pk8vqXaIRFi6h1HD5w+Vyv+DJ780b1BBiH5/NVPoBh16X7C7HaRhRJr0lOL6/hMWWibRhxETZO5l4xxhCBDmlJcl7GMqGkMi/WSpm25ubrCjUKc18UOdF3Xs1h0kgnV9bRtL616e0PTN6AlhTAEX0h5c/T+/kSH9FBKjKRUepPHo/5kqAVkWjzx95kWisK2cgpluU8NKItEyQJ2dm9p81SWY7WujtdJGvP0R8E41WJXaRPWgko2rWkaUBpjYkttCgCW+3MxutBKum3f0TYG5z2Xr79kmiyn50+4vXzDYn3KZ7/4l/zFBz/g62++ZLFec3d7ze9+9UtevxzpfcNiIY6gzXbPbn8gBIWdHAS5hjaxA4ouwjvkIYvp1dGIT2U+3nvabsFiIeDIWU/T7ghuoFGWxXLJyemaVXsWJaH4ukdvhfx3HLm7u2GaRq4v33J3c8U0jWy3tzg7sWgVi1bhrWXY7zjsNixXa1arE0atuFWlZDMrqtiNwLQtbb9isVzxwUcf88EPPxaHWNNmkFJ3+KizjWqnxW9/8yV//Z//jrdXl3zx+99xdXvDcr1gebLC2YnDeADvWK9XfPjiOevVmkXf53sq8OPh471OpmqNmri32qZh2fdRCUrZxjiMXF1dMRwOXF9dcvXuDYfDgd3uwDBOopRdbFsf02FlH/rZTcl6ndNbp58lmhzLvRLxbwTdMxBxpIyBbMQpJSVcKZMnAdIaMKWUZxkDj1K6EI17Sc/XdSZCKNs1gS0paQjRENHVZwto8XlfivFgnUNPCqVayZhDFJHWBhe7Ec4BHCSnSDGUyj2l64E4P0BlLjx5ap/HCVQERwLWJutk7iqQK9HSFN7WszUc4kXzTyfp6s5LVyCJk8n7LnMsUK13Td93eD/x7asNIYw8f7TjbrdFa8MPXrScrRt+923gzRc7rDcs+46u78DHiLhPGU0pIicWepOMDhVYGHEKHYBJKSGmdCWrbR61B+HFEUNMJ6AdQZQKRQ+YAK0WP0bXaryS9O3RWpwSR31AwG+uS8zzGPKPALlUwajkmAxCMq8UqJhOrgKdVugAi6Zk2w2jxWpF17SYJpKdN4ZkZIaY/WUnKZHULZhGRaPRY11MAdc1jPvnOo61m+zrtEbqrLx01HsvvjJ/M+l1H6RkQ4OUptfOzyKHZ7gr/6xx0gOYIoRqF1V6O326cgDkzENPBN+xBFSX0pamaWjaRspdI39T20gGggSJZC8ul0vOL84jRYDs5bvNHc7L3PZdT2PawuPXiiHdtgvaTkei5hiw84UL7XicE09hUEo651XGRN1SnurZ3zdBNV6ZTXUyPkMyotXs7YdwawhzGS+jInundrQLF6Oq4PP9OZwbmjWuLnvV53VQDOJUKm2UjTqh1lPibJcxjSVLnWAt5z0vv/yCyXqePP2AYSO44vMf/ZSLp0/53e9+g2l77m5vePnVb7l6+wrvAl0n9BKb7Z79/gCoWF4lmULGtJGT0Ef7MZU+h0hQLJ93boo6XIJpi8WSdfBoLfxNRjd4Z1n0PYvlkrOzE1ZLIdN1QXTubrKMg1Qe3N1cM40jm9tLdptrpmliv73DO8ej8xP6sxMCnnEcGPaSydQvlkxKcQhSCtU2DSpSByQn62LZcHZxwWK54tmzFzx99kL2T+R2Eef7kUygrBHnA+M48Xf/8AX/7//Pv2c/7LnZbqExSL87sUcWjaI1mvV6zenJKYvFYobt37du0tp531EkQwwKaE3XNKwWizj+NjuYLq+uOBwGbm9uuI6/391tYEhEw4mMusrayUZaadSS7jMFkQTDlzJ6FZ1oPnEvIuTsRxIsr/toLoEiy4Z0Hl85QZJDSCmX8Z0EtFLQmrh3pDOsZGqmEa7wl5E1gI1NEbTCxHIvpSq6DVIgiNgESDApShy6qcRYoQheOEd9ymyKJYoKL94dQi6Ry46X6EhJAXzRn1pKW6fpAUwqemSMXditD1ibaE6i08UrvNdZ5+TVkXCqLhmsLjbpcDGwLt+PKyHK3UCyiSL1Sbcg4Pjq6x2vXllOliv+9b8QbrAXTw3OtVxt4dvrPYGGtmno2tjsyPtIP+DIGCqt3biqvNIsWoP2GgtMeeoyisRkx2bs2BufgUAu/Zw5/YPsYx2k8YkP4IwWvKRgtA6vPI3SaJPGumQVpTPNMKjSoAVDmbiPnXOC4RpdHFvIcwwmNirzQSoNtMYoQxOpURKGSuvd+8hfGwKqE93tnZQVTtEJmhp6/aHjjyijmxsd6emTRy95ZmcfqBRwjr7kQatStvJ5K2AUN37tZDr+TPruPSwb5oK4/vmdT3dMRq2q+ygnlrcSWNFFeZM9mSJoEgGeRgCYifxNbdvQdi0hltkZndIik6Eo46qUOEsS788fAsXZqRfnIhyPcDY053bc7JFrozhO1kOvfcdd1Jc6wmNHWVeU9ZA3UDWvtWOijqzML1WE9/HaSO7dPJbpGUigK91XeUP8NAqpS/b4WGI2HHbst3dETxBN07Doek5PziAEIXJcraUufjzgnI/s/QrhOawjy2E2MMfzkZ4hcRO46PHXzuaSH+smUGCnCTeN+Kah1YpF16J0g2p6WX9R6Dk34ZzFTiN2GpnGAWsnSQt3DtU2QvyrBZAnHhsds/dQqoDQ2kgJqSRNiEC7vqfvFyQw+uAKqec5/m6tY7fbc3V9ze3dnXjdqVp4qyS8NY0RxdG17czB8b7rPfT6e+VBclopJRmFQNOK3WxMwzAMGG0YhwOH3QqUou8XkehWWosmYyDt2ZrKTLIICw9Akl/fgePi2ghHe7bI1dkzqeNPxPVFvcjme+bBMar2S20G1Xv43lEt5JxWfSy2QshgJf2cZ1wVWVocTtV+SYMVQiZAT3KjGE0lgwUS3019D0VvpH8J3BS5lUBFihzPnU1pLPJ+CKWLU3oMFSq5FO+stA7WTBacDRwGx/4w0baBvjWoE8Oyk5IMPOJ09lWBcpJ7swVRDGDhCQhSBa5VKTmhZLHMnHayQPI9ZplJkZ9pcMQFKapSunuKM8pF3ZhjsNW8yTqYy7x0PwncK6UktT3L7hxLE5lMbCWsYmQuiAPWJfCoNKkddPUg9y9IIhiPH1L3zI5/pmPuhUgt3sveOp7b4/3PA5/j4b1AFfSpf9brmLQX3o8xirP76OqBsvejwZI/pshcjiGE+HsxXurOiDlwlpw81J+NHIyNdANO5TshBNqmFcdVY3Ljj2IgJUylSXLh4QVSZGOWyenve0NyLLMeOGpf09HymsvQI4yW3meOoeq5SpUCVO/PMdT8gjW+mMn779onGUIp8rSkkyVcpcq41g+e9acW7OPsyDRMDPsd++0m82h2XcdyseL09JwQYLVas18usdYBUwzg6nmJNUXe3h/w+Rgm/rIQJDpfmvqkrqmKoD3OTgQ3ge/ojGHVd1L5qBQupAwOhx3B2YlpGrHTJPgpB0cip0t0dkh5aCzh0SZWPUjwaD6f5M90nXRTTEHshBbvb/FQHhnRXdNkGYaJ7XbH9c0tk5tERjcGnHwmZcG0rRjfQu+gs3wo2WL1mL7/+F4YKpXYN9JxzRjD4nBAac04jiz2BwiKvuuxkxMM5ZMToM47et+Rdykp8FICKbEkLcu3uQ2ROmWm/fa+c8MxVkr7KSG8uEHS/VbPX/7N1XW0Drm3d1R5LWOoI/yVsE3BULM7Lfei0hzNzzk7Knur1h3lGrFMK2XaVDgsQLYJRKeWe8h4KJD3bcKx6fua6CQ+ttsCs/GaJa8oolNOspTGEezkGQfpjBaCpu80J2vDbozYKRQqiIwxoh6oc77TtXXEUIJvwOUGQelroZqrOOsVzsujcG+smWEoFFUGngRB53lWYfZjJuPr6abox9yM4569G59LSTAx4XAQ2eXx6Lx+47WScKpuJ/lmQiDj4e9yQtfHfyNnk5qByAAxfbv8TbWRa7Wa7s9TdkoGRSERhRfPppyqbLhU83uMf5Igz86m+Lpz7t5iMNFZVMpFogBIoDQCfB+NFR3L+xSiHJq2o+16lqsV0zChjS5paDEl1FvLbruh6Vr6RUdjGsnI+OEP82TK5Ekmi45pldM00pkWrXrh4YnEq2L8+BjJiSmTSpR6qqVPHmryJq8jkvX4FwFU3GRpZkPGFSX6TVZ+ybRS9UnruQjpOgVopvXg8+mKEZYFfqAs+vooaGn2bHL56HVXKZWR2aZVKHQqrwjyd9s0YCTSndaSDrL5ondIMtNWC9q+QeG4vX7NbnvNL/8zfPPbL+iWKz7+8AeEDz7ibHXKDz/+nOurt/z2N3/HYb8DoG8arPXsDjZG1B3jKCV1QnwZAXF2wsVInfeM0aOcotHOS822RFY0znlWXYuxE0sCnz55zM9+9Cntasny4hEYzc3dlu1uz8uX3/L21dds727Yb2457O5QwLJr0brj4mzN+emK87NTrB3Ybq5ZrFY0/RLnPRMNB68INqCGSe4nCvFV1/P46XMWqzX9YlkB2TI/cyxYgM00We7udhz2B37/1Tf8wxe/ZgqW1emKxdmScZrY7g8o71l0HabvOFktWfTL2OY6lVf96SZjLSzfdw6toGsazs/OcGvHycmKZ8+eMgwDT589Z7fbcXUpPBXeSlkiborPXgH8ek9Vsiaqr3qIMj9NUtwJ4EDgnh4rKCBCC5ETEmmq/h2BAtHjqdmvygOQpEHpAhI7CAZ/dL1y/0kLzQBLKGIhgSshCCV371QqRTGjnKgeLjlzCmm4z1k2mY4qpLELeBcgcrL5mJacxFdhF43kxB58MEALSqJqqTQ0BBeXcNEbVXyuApRpGhWRMT/v5ZjfQ+oWJNmJDcsQmKxiGBd4p3hzNfE3v3zN6brn84+f8/jFit1ux2m/Yz9avBvZD61ky8VOcDplN2X+sBiR9KCCpzMCLmzQWDTKBSwWFwIG4XCqcKnokKgHdXIIBJWDC3W2uY7X65QGI+Ubk3cSOXMTxqV09OJwnS2UII5rG4QHsVOaRpdmDvXHBZgJFugajTKawxQYrMMFOEwTPnha07BsF6ToKx40mq4RPhKTAjYBrPNMVkoe/2Sh8d901OC/kMnC/X31Rx2hImYNAe2i4Zujw8VxWhvsCTTWQLoemKTzU5moIjkgSnaQiGA1A8IK0F6hVEDFkhARhwqCkE43bUfX9SyXy8KJlM8ggTdrJ27vbmmalrPzUylxPlOxsUeULPH6zlkCIbYL93iMtJVvmixjIBpqmfPMRUdBfefp4dMaKfMyy4bKX1H3dFC6lsi3yhGaRrUW9hQgn3FW9V6eB9K8qert+I6X+7jXwDff6/vXmIqyXjIiYtOaKFdVSJmdHpOex6hYrijfkc62MbAaygoyRrNaLej6juAHvv36t7RdzzANfPP732O6jp9+/jOcdzx+/Ig3b7/l9vqSr377G4b9nsCSrm2wznEYBnHieIsdHSmTKpUrmZQNEMdWsJaNc6BjhorjMOzRStO2gq2xEys8543mpz94wY9/8jOavqU7WeIJvPz2Le8ub3j16jXvXr3ksNtw2G857KThxfn5CcYYHp+f8uj8lPV6xTQe2Nzd0bQ9Xb8SmUfD6BU40Im3E0VQhm654tGTZyyWS7quf2B+7s9lMlL3+4Evv3rF3d2Wb755zfXNHbrVnDw9xXSG63fX3Ly5ZNn3fPTsIy5OTzg5WRdsHnWe6MhsITy8iN5zHIemHnrfRIfao/MLnHOcn5zy4ukzhmHg0ePH7LY7Lt+9EwzlJrw9RIJ3Bfj33FJlQ6Q7VwkBEbG0FMbWtAAqYakHH7V8znkv3cuqLSMVWAnjxPNpBUGyQ0yVtZ4cRnXA1tuYBZifrDhmvE+yucjjsu/T9QPjFFvPW+mGrlRykCQngo62eQ5vF2dPIDYaCdmET/aaZBq5qEckEF0HAkIsPxE8KJljLkgWdwghckXN9ZBL2e8VbtVVkoZMhZJqDKVyET8k/MeswmPRyVw6N7HfH3DW8+bdyK9/e8mib3lyccKzxyua3418+XKPsxo7rRhth/Ge1jlwDuW9YJloe6ogewEv+GipFW1QBGOYgpQzTqM0MDAEmkABl0qWl0+Tet+ALXNKoImUOK1WBAwqBAbvmRQ03tEEk0V/DdPSPCa70MV7N0r4MnPoPV9MZbymFPSNRhuYrOMwevBwsCMBT2sMCyPVKD6tE6XpmlbmLjUPCiE2Wkm0PsfP+vDxRzubsm5NSrjWW9lrWBlN79nP0Sc2U4zJWyabOzlT6vTlepOHvBBnwKjaXPU91+l49VEEA6SbUdRzFSKQSguRDLJ0Y2jalr7v6fuiIPLThyAp/4cD3kunDUJgsViwWJwDEpFwTpxLw34PiLNJIiZSx6xUidjJeCZDLqWFihBIizCBEUm/PZo70ShlxB5yNFUYXJEyfQroTBtHpSGLBkSS9iFf7X4+VkjjcjQPMm9/wGFQeRaz4GRuxKcxKA9bxejj1xXCLUIQ0nZXn88Xzh0UdH1LGxqGYWS7uQYUw/5A0yz4wac/5tPPPqdbLOn6FY+efsjLr3/L61dfSqcDH+i0Zhwt1oFVDutG6eqmNI3qq5TcmiMicSfZMgnRaJjshNaRHyyAnyaMc3QEXpyd8qMXz1icn3H20QtUY3h7dcPN7QZvB+l8sN8xHnZMh51kZ63XtG3DyckJFxfnrFY93k4cDlu8d+i2RU0tDs0UQNmAwcm+iA7Hpm05ObtguVrTdr3csKKU0WRjP41zySpzzrPd7Nlstrx9+46vX76kXbQ8+eEz+lXP5dU1t5sNBjjtG/rGsOh7uralbdoCnNMm/ROP7/pmek+As3RuOT09AWCaJlYnp+z3e9q25+5uxzQMUn/uLHmvpQWoqsGoj4iFVNrLiPGQIlffdaP3jYe4/49A0vwkWZLHfXOciZb2lEIrQ8BXRmllANUXSHKZOfgrnxEZIZ3qIiCJJS1tYzI5ZnZOVtdI+yKkDJ9EAqpEnSqItfilO2LKJpw595QYJj4oSUkPGqQpbY6ypShdDZRmEitHToUnSEEkSZT7LoSQ8tngS1ZU0zRpO6O0kNTebiy/++qGJxcL/uzz53z4tOfrbweWrcU58H7CTRaMoW81JqXIh0SgmgRv+btREskejdTrh+CxcY5mWChFTxWxfE3eTQ5/MTYrfYiUQwUCjVJ4NEEFhjhHU3BMXmGUFuLJY0kfkp4XkCr8ksIVIIZq4aBKyyClrLcxi2JyRq4bAqMTvjSAZVsFi4Lce2Oa8rzxvMnp74OULvw3OXj+5CPppSJHi277juzBfMx1YZobyeJwIn7j3po5m0j6MWTgmIzzfAfJgUPJjg4h4CoHXV2OpSNnSNpsKcOy4AgVKwhC3ofi3CildF3X4a2LZW4yn4nU1XnHbrcTJ9P5KU3T0HUt65M1hIBN5RzWMo4DwQWcT/wf5Ozc5NircZKPha+a5DCL41iPc0g442gGVTVmD85X/B4kP3SCT3m+0vWOvpL/SFDmAcTE8Ut5GT+4nss8zrI7SJkg6fc5htKpf3FI67RgrqZpCEFHjj0ytiKErOo0ir5vaQMc9gO31zcoZRhHy+rkLR9+/Ck/+vFPaboO3TUsz0958/Jr3r16KY1RlKJtG6ZxEieTCrjRYa1kMzaNomSziQh2LuQspika9k0jLcd98EzjEDM1FKYJ4C09nrVRfPT4gp98/BH9esnJ03MCcLpa8XL9Bj8N4C3T4SCcjeOA7jtWqzP6vuP09ISTkxMWfY+dJg77HSvT0ra9cNooHRsqBKz3UfZKJ4a26zk9PWOxXBbC7TxHx/M8n99xnHj96h2XV7e8e3fDdrujXy/o1ysW656b61u2+x1aw3K54OLinGXk9ixrqejK70ZD7z++E0PFazWm4WTdVJeV8r+uX7Lb7VFKc311gx011o3zbOH0pdreO/qXFkKyK3NZe73mj72x7xH/AQRTzLlEMq5KZqm8K86dlEmZ3gkKdCzblO84cXILUIh4T86dEwN8OJrjaq/HMZusQ0XepOAihjKRC6y+1+q8WZKEFFq8n9ElziZxXqXKCsWxjkznTl2EFS7p9eikTnxO2XmVZGiM9/mo91Eq8xMlp5ZCYZSpbipRwQA42kbONU2w2TQMo+PmzvLtqw1nJx0/+fE5Tx6teHftMWEiOAlCWCeJBE0M1M3CsFHepcwnDXRKStMGrSF2XHNBniURcsvURASm4ojGnwly1mMrqlGc9iFEDKWFn2uKnEDLKB9irvbsJCm3J2GohFW1kl4Kxdkk/zIMRXRvF8c38QkHApOdUMqjaKDGSzIlNLGDU1EvEiS23kv2vKqrqN5//NHOptmNxLtJmUY57S8tzMqmefBW1Fz55Y1WcXYcK8f8uQyWoiLO16k/r5J9E/8qRm7ipEg3V6fwiTgTIZMcTioteML885BbuqcSOaUUrTaVIhdgZYzGWYvTYK0AtGmSUqZpmiTjRUEXPctzo242AMWhNJe99wY4gYcEbEI4cgCl8csjlDBjnVIXxzF7lmZnyEMt45rOW4Td+6T5g3MbgXHy/M8/F/KzHCuduNvJpYcgGQA6WSxK0i8bhUILdyoehyMER334aLTJekyM/jqm7cfvuYntVngGusUSG6RG/ez0gk8++xm77R1v37zi5uqSYEa6yUUhm/IKxAAMPoAyOXuOauxTGvJqvabt2or7BoKTiO8wDsL3Ygwvv/2WR7/9HadPn+CXC0zXsdvuGQ4j4zCKseBcbEW7Z7FY0HVtdN40MfoPNnI8heAlA2yx4PHTZ3Rdg/YW7SdCEF4C5x1Nt2SxXNEvl5Gs8OiYrc/kvJUXp2ni8vKam9sNu8MAjSZoSSm1znE4HLi7vaVvGx6vH7FaLenabgbua+Ps+6Z0Pvy59+y3P3Cevu9RwOnpGU8ePWM47LgaxKGHDpXAj9KzXrq1nRHXXIkiPbBzojz63vZxyFsjG6UhGfRZ/oXsdKhvbb5z6/EuJw++dI0RonAJFCT5rKA0EYjnSzxPOsg8p+w04ySTIW3ZkBxGoVxT5ECVsaRKiZUnMEUy/RSdg5yzBdqjvJZIXCIND/kmJXsUIPN/xPOHRFIrYEAZE+9TuClKRkeV9UGVHq0CjW/QykeHisc3hkXXyfz4ibs7S6sd293IfhhoGs/zpx2rPbw7BDbDgGlbghHQqkJJCZe/i2ZWlCCKif+8Aqdi9mcQs1EFSDn49ZxS6dDkGqjgfP6wVkoicwGMFt1oPQyTo9UhdxwsFvZ8DabzKSUOLMlsimXks9T1JDOER9EoIjeUrAXrPW1ahzpigLzn8hOhfJlHn6997GT973PIM5aulPP9/V2bPe23xGvhUN7kPZXOnSLLBS8VZ2zqNpNALFCMoGoOkhcwE0Yn4yBhsXifCXRrJaVIopNBRePkmJFTqVTeI1m2OhKIN02bnQIBlXXLNE5SjtqIw1EwlBNemMnmDJZaDlVXy0M6t58qHVLtXRIOOpqODEPKBMa3KgwVM9EjfMqL8YGvvfdQipzJGY5+3jtJOn9I5MJFmt/HWvE9VfBzws7y2JrEqSL2k0KCntA0spZE3Meghk7yPs6uh+DFEZ2CJdpo2q6RdeBHhsOGu5u3fPPVb2i7DjcOnC5PcBdP+fiTz9nttly+e8vt9Q2g6aZR8FxQEPnlIJYYq0Ion8dO69y16+zsjL7vI9Yesxyy08T+sOfy5hofAl9/8w0nZxecPDrjqQooo9lsd+wPA8M4ME2jdE2cpIlK1zZ0bcNy0efOmErJeadxRCvFcrWkbQ1Pnj5lueiR9vQSeLYxS6btFpGrtcuE3Vn25sVztObiMY4jl5dXvH13yTANtIsW02rsNDHs4bDfs99tWUSn7nq9pn8ge6osou93PCg3a5vle51EgtnJ+XV6csrZ6TnjYc/ttGca9igdyLzZeT2ruL8qQ1xFzJQXHFlt5duabdyyB+TMBQ9lh7wW/TXPZqztkLjfVdn594MXUY6okm2UzgMRD0XOp2T73nPuqKQ/kxDwMYs7MMXbJGhc1UFd8JlUaSTbWiRUEHlH7CFBeT6xc8VWSQ4JeSofg0zS0U8CeqXxShoeHeWJVOjE6ylit/qoc1QpN1VKso6p9JWK5ynYAVTQ+EYLZR8SJAjB0HVt1AGKd5cD1sI0ObQOLHvF44uGxQBWO4ZBupd2ihqIzIY5/Uv3kJ7JRMQQtCKE5GRL2KnoxrKuKgyV8WCavwK4TPQVWGCKTRgm7xmsxShFr5ty6ni7OSCaByeZuFWAUJE5NwMJA4ASvxlGC8dlSvKwTgKUggVKw4DaUMlO1uraEjSqP/f+449wNj1gHaVXQtWNoiZdzGNfJiF/O0ZTQmTWDwSCdaKYYmtFfQSY6uuVf2XzJyGTlKeKDgaInXr0EYhI95AMpSBkcsS1E+pUGEA7k8v7kjBKnr+2bTg9PeX07ExK5ZZL2kz2prHOcnV9LW1AfZvvfzgcmCIR23A4oLSi7VY0rY+ROfHNZ6AY5s8PFTfK0XSlzVxvg1KOMx9LeUyVFyxGR44cyhjGjZbu5Rj1JGGvo/s6IOmV79M6edzTeohGkHNWNomqzJy5tijfAUpWVSRri8+u0WKkRIWh24ama0R4BIcmMOkJpaasPAIxrTIKaG8tOBc7komQmQaLtRNvvv2Sq6u3tN2Cz37y5zz/8FNWH37MBz/8jGma+M9/9R/4+1/+De1+h4+tmrtO01sprdvvBpyVatnYexzdChhTWkoyu77no48+4uz8nHGcOAyDOGjeXrLd7rjFocLEzfaO//RXf8Xb12/54JNP+ZeqZbE+YT8OHKxlc7dlGkfsOLHbbLi+uuLi4pyT9VI6hvR97AwmmVvBWYL3LJcdq/WC5eIXeGs5bO/Y3Qox5s3NDYfDgeXZI84eP2axWMbMprIGH5pz4tJRSrHd7vni17/n7bsr3t7coPoGWsPkHH6Am+trvv3ma85O1vzkhx/y9MkTVuuVrIvZPngP+PknOtI1tdacnZ4STk4wqqU3azZ3t+xuLrm5vkQbad+ugFn/3qR0qvMlOVhK7JKyrZ/rKEr3wDPXznZVvZb3bDR4HhLTKTOpSgTPCqto4zLuKUskCmBSq+l0LkXCfCXCZnM5DvlZm8gfobVE6FDFoZJwXQDh3vCx7CVGyYyK3RcJjNZleZH1QK4BS84WpIQuZs5Gj5VE06KhaplEvgeZBhuCZBoGiUY12mC0oo/lObOgSQYpAjAlghUNY62ZtJQU+BPPYtFhhw3ffLNlv1W8ebfhySNN1xn+5c9OudvB//bLideXG9RiybppZUxdKveVyCJx1sRxg5BMEuhUwKqAVYpJa5GvNoHIkl6dV0ECtClLKgIWnbrVZdAKbatpjUEpj0X4TcZxYrCjGDarJgKeosO9CxVQlVYNwjEl85iyWbSOZQcJiCMOi0YpeqPxywUuBIZhz2g9Rjkm7zAhgv4o80sXHXHsp7a9LpL2G/2Ac/y/w5EiwCnAcI9nTD4V91Xa1SUCnXloYsfUELx0stU6dvWSPVAThKdAiq/X7pFcKrw8QbhIlcqEokDOFvZeIuwhQNDxHhSFeNYY2WMaUnlcMqK1MvT9AoNhvVqyXq9omobVak3TNpK15BxustzebtjdbSSwFw2N/X7PZKdICG3RxjCNE7a3pE5HIgpSLD/RL0TcSYIyVZAn4sMcfU+fCQ9wV6X1Fb9boguy/3NWemXYzr5cHeWr9X3ez++o103WRfESznspd09jfw+6319bPnefSuTI6ZMeFbSUIipP04lski5vELzLMkJOKwEr56VEw4eAchaCp2k1q9MlwQcmu2UY7jgcbnj79mv6fslnP/1zPvjoU56cPeXDDz5hGAf+5q/+I7/6+/9KOw6AkwBbM9G2kqlw2A9YFzNHvNASpA6ixhhU17FYLPj000+5uLjg7vaWy8tLwS+3Gw6HA++urgjjxGq1olud8OrbNzz96EN+sv9XdIsF765uuL3byNrbbjnst+x3Ow7bHYuuYb2KGKpr6Izkgg37HVutePr8BU+ePAYCZ6dL7Diy32/ZbG6x1nE4DFjrWJ2csT45pYs4LK6CB+f8WOdvd1u++M0XvPz2NXe7O1ZnK5RWHLYHDrsDN5dXXL57S2c0p6cnPH/+nJOTk2zgFziRN+U/y5GsQdMYLi7ORD9MnmFr2W3u2N1dczdayV4zZT+IylakQrS0R1GSQekAHaR0VzBH/K5P+zwUczo5gSjjKjjD5Wuk7NdoomSsplSq+lA5c5QQbZ58CK5XyqCMWGvJOe9iyb9zEgQOweNtdJLnPaoqWZCeB/kc4FCCVRTSGVaX7pGSlVxK7L0XnOaDgxjYMDo5fVS2t0P8XA5KEMCO0S6WTPAQAjY2WQkh4YhAMFE2Oo+JXJPJseWDNNqBQGPaTDvTNtKRPekhgWPJaVacJdq0UXYo1CQOq/W0pmt79oct//DrOx5djPz8JwNN43h0rvjppx13e/jNm4mbuw2+aVj2XZrIjCvzstcq3q+iQezlVgU65XEaRqMlQ9HGBjQK0dW+6JKkK7z4bbJ89LIUcga+UtAZQ2sUg1KMQfTz3k4M08jCNLQLGZva0eS8F67KEMtDk3MJWY9aS6OfVOKeOOdC9VrXaBaqk6D+ZLGTR+OxjcfELrY5GzddO9Je+BikQiX/wP2Gbg8dfxpn00w4hexsUmU3xreLB692TGSslCa7BjohRbOPARBxYcwVZXjg/AU3h/J7KJ8vQiU5qTzepg4ITSxtCvWJ4mI8VtIq/1BKuj+1bUvbNPRdRxu7cSmlUZOKAsahtMJOqUWqlYVrHc47SVvORvTRcKN46C7yu6o405LamKW4PWC45nENoXilZsps/nuZ0sDcmzv/fFoL9SeSg2B+/nQrIa+XPO/vec5716uWXDpHiuzWl6qznkSmCEhRyomgJMJNn/rVlTGEqPB8AGURHpaRYZpo24HxsMfbiaZfsDw5wzrH+uSM5foEpeCw7UgzIcNnRcCKFI7RP1/WWuXM6HvhtDDGxOkppJnOOcZJImg3t7es+kv6kzNubm6ZXOBgLaOz7PeDkInHriDO2my0FzAsA+m9wzsxWJJC6hdLMU68YxoH0A1Ne8BYT9N0NG1Hc0TY/eA8Hx3OOba7PXebHdNkc1qL857gJPNpGA5Miy5nl9XZU/cy48L9VfP9nVC1kXX/3fedOz2zdJRcMo1SJul9yAK7nCT+EJ2WV1lSVeUSFdh44NrFKfUdR0jrrezCh/eUyo6hfJ0KeFUPm4V32aO1jP1++zYRt6bIlSLglM5yyqkSDasdFfV3094R8sqQnWQuO6eK4E9ZNElsyc9KdufnVfF/Cu1TWU3In8niMY69KPQSUT+W19nZX4MFrXFKSMKbpiEAdtCMk2IYAvuDZXcYCfScnjQoDW0zQZC9l7JR0qymY2YwRLAkHA5gSN1mKKA8niXNeZ45VZ7yoaOW5zF/NIPb4IVDwPoCQstni0Yt8xHvIc23KjpsdsSJS45HrWI0NOqMdM7gfWwiWBwkCTOUuSn/odT3EVH/ZEeNZXLgRc1LFh6MksfnEVVX9kc2gryXTkxp7Vc6tYxHtU+OcVYlpOSzMcBGaj0tJZAAwbmcgegSb0/Xoo5kdMIMfwi7mEayL5qmoes7mqbFWotSU8SGHjtJeXmtA1000lJGT8ZQ/qHx+45DVfgl/j1DObUgqIeqetbZ999/ifj5+nv1tY8uNLuBPyRh03jLZwuS+QPfqu6h/so8QCu8cQQkc0kHvPLFqRV53rIBSxY5xTBXHqZIFRG5WKZ+wA4DKgRa03ByekYfS9QXqxXaKMZxF52rVfMHrXK2wwzDxtvXMbtpsViwWq2Ypomu68pIBsHg++EACq6vr1kt36IWPU9vbunHic12y26/5xADw9ZOeBcdmd4X2QXZSexjd1IQZ4pS0PcLGmNw3tGOA0o7rAuApWlaTMzCOta9eUayalZZ76bx2+32bLdbJmeFu0oRy169OF4nuWejC1H3fEWUv+5jkD8CQ1Wfe+gb78NQTWzGIiTpPWM7ICXAKUgmAzyHJ2ldlgSHyoygyJvyxYxz6lutv5QdcOmbZU88ZGomfakURTdX62/2uVDss5kszPZe+A4JORvFSmwHXMSSKNl7QQtLjyJg0jhU15Ax9TGwIwE1rYm8UTEgEZK2TioijkeITqVQja4qAcX0HclqLXtfqYxkqyEpGTg6B4fSPoISpoprPiiClj1ttCIkDBXAW8VucCx6xzg5rHUYEzhZG4IKGB3L+ZTKGV5JF75vZScJrGNGdSg3RjXN8wURs0nv2+5kbFnoCmIpodboxGkYx987h9MFE9eSOeOd43utxjq/WN1isQbCHENRdawORXfU2dHlujXODWjud8593/H9nU2zHTZ/TBdLc0AiXCbWyDdNkzdxrZuzs4KjVG8nwhutInDU98BUBktpUSfjtjQeyGDWOS+KwXuGQSIIqUTIWcfNzQ37/U5sfBto2pbPfvRjXnzwgSwMHaKcEpBltInp4yFG4cV7bCdp6TmNklrrrcVPFq105hKw1nG3uWMYh6y403OlkTHaoFMb4GnCTY04BawoINOYyBFSQEkdhcszUhk5acE8IOPvAfACSo5AcOKyegAk1c9QFMFc+M/mr1459ThU68P5UtOsSSCngOx8m5USqI0wSHwwhTxP/okRotKX4t9CgJzKZGLr6eT0Q8gcJXosdb5t16Kj48cHAVFvvv0tdzfvWJ2c8/iDj2najo9efMDjR4+4vnrHF3//N2w2t9xeX3F3e0PXOBrV4JznMEzsDxMBcoo3iDBojGGx6KV8rOvo+gXjOLK92zBNExoYXcAPE1+++pbruw2vNndcT45+uWKKht+7y3d8/dVXbDd3DIe9dMlzlpvLS+yw53S9xK+X9F3HqjuDxkiL3+0GrTTjMOKtA29pmh6lGlZnAbNYszo9j62mu7mz6YHjuNxtHCcuL6948+Ytu8MerWX+b+/u8CGw2WyYplE6xhByzfcsGnO0Do+v9U9z3Af9qYuftTZzNklWnURphI9O7t8oPVvD5DUckJbl9XXiR9I+S1kPqgKeXvax9z5mBMb/Mot24gaTz9dGfclG8gRn5bFillFyDisk2qSMvKZ1KvONmU9BHBoheHQlh53P4cRi5keFmkBGyqhEidIbrYtKPmVYRYMXyWwKkUchd6PLYyOKW1Fp3Cq9PQuCEIFRAB80LmralLHgnJLMRh0IXrjdcueeIB0aU1tbXa3BoIpMS4ZMkr0JPBmjaUOD8Z7Qe7rGEOyCQ7PChsBvvr7jYHd8+OIJP/v8CcOo+dWXjstLGZPxMAqxtvU0EWQmh4KMQ1yV8fFbraDVGK8YPeIlCEJyKVkpItNmSXRJbxB5fyh8NkoZaY8LmcjdKy3k5XgmbXBYbIAxEoS2sSwqzVPqupLmRLJlJCM2pdQnJxIhdZQilhyDNtAbjVOBSSmcMhCUkH6rQNtG8OrLPdbAWdLQ4z6MwYd/jmPuzKlRjIpZDoe8flJQTFX3n0BgrVPF+Pal7N6m9uEIhlIxYlxlMc3kVnQg1Pg0BQ89ATfZTMx6GA9YN+Emx3QYsdZye3nNfrujbVv6hZAb//BHn/HsxfMoj8TgTgTwNX9qWruZ8HaaGMaRYRgZx4n9YYhjI7jKWsduu8eOVu47c0lG4KtihqQxeGeFV2eh8X4iBC0Au9GCoaLs1UrLP532btEtlV3xwPyR5+8YW+Xs8Nn3CoYK8+HPslLu6bv15wMwbuYYm+HKANJVu76b96z2bH+Ve00l0in7M3UOTI5c4aEJgp9iynyIZWFiRBl88DQ0KB3pERBem65rpQwy38/EN1/+AzfvXrE8OePxBx9hmpaPP/6Yx08ec319ya9+9bdsN3ds724xdxusc2hjov0h/8T5IutcaC1auraj76RL7slaMhKGw8B+d2CaLFprrPfsx5Hffv0lb2+uefzuDVe7A+1iwWa3ZXcYuHz3jndvXrPbbnF2QKuAnQbevfmW/faGx+dnNOfnNEZLswnnGIeBzWYDBHZ3t9hxFN1nOlodQDd4F+gXK+GtU7I7auPy/oTLXMk+sdzdbrm5ueX65hbXBlwj/GqHw4CzlsP+kG0YHzNcUunssXM/c+scr61/4iPtCWsd4yCUIpKN4RFeK3X0Wcl+lW7gwnslNqSP+CTal8Q9E473abJ2yn6ZYgfmWdBeq2rTxbFJsqNqbW99bXcI5jGp8U+QcdQ6ZqlEeyNYH/VqlPmZjDw1c4gX9iHPXUrE8PGn1jpXc4R4X84H4YyFvI4Cviotjh3IqsY1AZ2fpdhlMmjZ+a0iBoxE0TrEMQ8aHytekg3llASfdGrt1gj3nolBPBOzmXQcI6VUbqiSMyUjZk7VLyko1RgFNBgdCMuAaxt2u5H9fsFmr/n913co7VguV/zkx+fsD/D6esvl5UDjA37U2ADaSXVLaXxT60aRnwrotGbVaiYfmJwX7OkVLhXlRPzlo8IIUHRHiBnLEUFL2ZnODSNCTEdtlaLTBotmcoLPJucZrSXoQIPGxIBsIV8vvFNGqfwvYeq0xlOAFgXKSadHrQyt0ZigsJGywMU94LXCmNid/Eh3FPwWss5q/mkym4rTqL4F7z3TNM3+bgEVvdU5dZujfRsnJgFy4VKQRZAidLV8SMZYPhK4JwqNHHUvxGTOCnnkbrsVIHM4sNvsGIeBl998w/XVlbh0HSwWS54+fsIPfvCDmJMWnznEsr6kDI4cPELwLREPO004JaVIohAGhmHIGSipjX0ixk015cZI/ampo3XO4a2UESik5j1xJSQjL7H6RxvhQeCRxM3DDqci1ETwFfFUnDkPZAgdObGOo2K1knoompE/E59X5c8Vr7kOurRwVHmW750v3Uft0gwZgM+Vaun+o7IgFdDkJcMIKexQlaHrovALMVMlNA3alDXtg+fy7UvGw285f/QcrQ3L9SnPf/gJj59/wOvXL9ltb7m6egc+MB32+EY6KImXfc8wSvcc6VoVMIkHzEgHj77vaTvofWAYRpbLBftdh3cOO41Y53l1+Y63V1e8vbvjejvQdD0e6TK122158+ZbIVC1o6wz59jc3TCNe5Rf02qLCgu8X0HomKaJ/W4PSlKy7WRZdC2rRYcygQUNpncsVtIhSIgtHwYnJdNs/r6U491ydXXNYA/izLCO7fbAZC37/R5rx0i2fWyAxTWU12/4g9f7xzrksvW+EgCQHNoudkPSvvAvpM8VAT6/t1mGyREYyp+JSrA+hUJFEtfo0CKtax0/+8D+q06bMY2XjmyEgMpsP6FcJ5Jry3f0bLylTMeTqtJCSK8VY7D8Xv5lx3Qkf05RHSjlcbmUOMRMhbTX47WU9yRyThV0cbCRgItcTWVZWYNrIuF2KSdSCsnYCD4HMXTQOVskzUMySLOBSgGVUDqgyn3I9YxW0Bi8V0AbAyE9plngguWbNztudxPrkzXPn/Y4b3h6tuN8oRmnwO4wgQ8skkM+LqyZSIxLJChp3auVRP8bJ1lj+IC38X59kfapS2jSLVCyyJKLQLILTVkvwWMQ7qbkNEwtwyeps8HQyFKijHEIoZQbUqKbyVmdKbMD2VFSjAyPVkFWqNJEpi3pcqjFyFSC7UoFUnpICrGmoeoe+89wlLXj70lJ5xzDMGRMkPbvccvph3SpZPTEMijnMmDP41zxgPij9VhnZirKNVJXJBcNZmstd9tbhnHgsNuzudkIhvr911xfXrFarjh/9JjVes3TF8/puk6CZsJKnx1NmUIx37zcv7WOcRI6gdSFdRjGiC0HxnEQkD2F7ARxsYSr7XtM06CMQRvhHvTORwdVG40sJ2V8pgQJy35VFB+ninLiyNCuxj/Js1D9HUdzjr++02PwwLoIxZCdCfhy+XvHPV1Yjysht3evz1Xju7Ku5s9Jesb4fHVmU9pcks2oCVqqJNO8hKjjUklsiHwzoqudqKPWFGPVe4K3vP3297wcLI+ffcBitWR1csqLDz5gdXbBq1ffcH13jek6IOCtOCOMkbnecGAcxVlgo/1gTEMbHU5t18majIb80B24vLyi2e5QSmGDx9mJl29ewZvXnF9dc7cbabqO/TBwmAb2ux0311dM44jRAaPA2Ymbq0v224bewNlqgWsbyUINsgZ3+x3Be+5u75iGga7vWSwXYke0HSFAt+jRSoy7eirqfXJ8TJNlvzuw2+6522zZbLbolUFpLdlOm62UNR8OZf9H22O2atXDdCX/9BiqzpwIGTNMk8VOySFWW40J68n9FKNd1mRp5R6DwJQQeigKhACF4DkdQYiSk52XEgtCmG/hskeRgJOJstOl90PR+1HgFQcWKBUzygJ4VZxHITkrvBMMhQTUcmOHzF9ZZHriu1S67PEkk5InJCA4ygepnKkdK6nSQ6cHi9hH1zZSLIGTxiqq2MBxDIteSY4nn+055wz4EPGYwgSNciqPXcZN6fYrDFUHQtP8J0mYSv+89kCHd55h6Jhcx34IvHyzw3Pgx582/NnPVwyj4uLv9rRYjAc/yhxkCpfs2CtYtwZUjdYslEa7wM5YHJ6gFU4ryfRKOFdFyVf5JJJzSAK/Oq5bEx1mImN98BilaZQB7Zki4brzPmKogNZN5uFM/oPcTVelbO/iD6Ba92Kjyi868SFrTdto6WaXx1q6uAYfs1cTtvXyNBm3h6T3ZL2Y7ykfvrezaZ5WmAyF+xcpijhOYPUg6X05kSojkb2o8fmiUUa4r9AVqb48dg5ykjrtXch8HsNwwFkBb4fDHmstm7s7hnFkGkb2u33kvXnD3d0dGo0OBmcdV1dXvH3zBlSMnlOiO21ruLlZgIKrt5cMuz3TYSSlf2tjYoqxeAhTaRyqCMYQZPOZIOjb5Ci5PHMIATuN4s1eNiwXmvWqYbFoaLsG0+hodHkICTRlmFgAU5mletTLIIZKhFcyPH83pI2eMhcKGCsGVK0sZhByPtfvOd6fiRLL4ChGatG8Sfqr+c/aoH4AOMlXQxaE+cETiKr4Tor0EyMzCcEQTFQixThN2SpNo/FdQ8Cy3Vxh7UC/7FEqMGw3nJ8/om07QiQuHoeBu5trpnGkaQyLRRfLEKYqGytE518AFTBa1gBKYxrJrkpky4RA0Aa0RBAOwx7jbKztJe6DEecmiDXbITicHXEGCEtMJI+LOQ0En2qspZuDc5bddmC/ia1buwXKNPdmulbI75trIR/0jNPEYRw4jAcGOzC5UYherWQfto3h7PSE8/Mznj17xovnL1gu14yTdHozpii/43WkjmTP+47vC6bq8yWBK6/L+9M0sd1u2e52ImvshDYtSjV5j4ZAJutOazaEaFwnA4Va1yWjoAD/RBapqnvgaB9mBROVfU5wOnLW5SMkA0EVmV3JeiiEkFnKh1TSkKKmlSI6+t0HKrAU7zNUhK6pq0WtJ+QjMfMgcsU5R5D6OXRWtCU6lgzFer7SGEb/AxQIWh6/xp2q4qerNKyJctPHTLBZxWicvxrAzsY6zXd1b6mspGkk0KAUjANsg2e7tez2B5RqOT1p+PDFiptbx343xZIhV+Yhz5YiGZk+cciYVMMfMjeS0NMKFFJEAvQ0OPG+TIyYytIoeiRFj1GRPyvyLqnIEaVVLDfWChc8KghBeooQp3UZysCSMhRB+C4kq7UQhSujI3FpniGSF0mILhtU8NjYgcw0GqXF0E4OsHRdnzZOJhv/pzGkHjoKhpqZL9U/itEQqsh2/FzZ6qp6LWSDKM9SNhxjt9rgSyaDfEsI8iOfkXNpXl0McnkOe8FNh+HAYbfHOstmu2EYB8ZhYL/ZMY0T19dXbDe3eOcwTYvznnfv3nH66pVkesZGEyo6m5RR6E5KiW6urmN5jzTyMLljHPG+SlZVAsjB+EhvqNGRA6906pV14QPYaYxR9p6TVcvpSc+iNxij8r4tIjNtyrgeeUgn1IYIFWhKL1X7/mjOi/ER5VAR8+85all+dN2Mf3jvSTJUyvcgr86dUcXYgyR71XvhYj5zxlDpWUzGKuggZM5pDuN/2kvmocJn7KTqKL0CrwLGaEIrmWh31+8Yh71k1zmPHUYePX5K3y/FKAuIA/LmlimMtE2TMVQIgi8aU4d1Ium8aen7BcELX9tMpxPE4aMVzlv2+w1majmMA8M0Mh4OBDdBsILPtXTICs5K4CP46NyXvSddpWOHxVhlMU2CC7axqcv69JSu63Omw3etBo4cP9PkOBxGDsPEME4M04SZAqY1TNZi3YR1I4tlz7OnT3n29CkXFxecn53TmJbDYaAxjqZtKodzwfbxlzw+33X8KRhqJvfiw4/jxO3dht12I8H54DDZ6s1KihTlOV7rNfBM7paCQ+pwdNSccW+IrIj/MjqIr0eOKFTKiIy6CZX3Vrn+3P4KvlwnQOS1S1yLQIi0Fd5nB1Jai8WxFMcrYyp59iwGQuIplOdXLgbNA5lD2cTy14CO1/GxC6wqDvfsEEtnn2PKZKenIdbpmeJHQ3RGBwTrGS0NAnL3v6BpiI09IrZT81MXmyzO5XF2b8LCkPa0YA3TpAYTnu3OcnkdePFsxHvp3H22Njx/1OEGxbiZsv6bYcA0l1nPRke7SXySpdw/RBxVMKXogBTQNJFzV4fqQaNhFILHO5G1yY9BiPgsyikVnagOoQ9oIxaKMdecoZxK4pJ+pbIJtC76MXd6nq1NCUyZOH6EwOg8RgW0c5FyRmX+rIT3Q4WhCmz8w/v/j3Y21YpG62oxJiEi44EnLfgImrKhlIRNNUHxYTTFK5pSwB0hk8nquCK9FWPUTpa7u63wuuwH9nsBQm/fvGK/37Hbbrm7u8Vay3YjkThnJQtJIsoj1k60pmPRrun7nl/98oz9bifpuH4iZxlVpLSBwPXmhtvtHfv9Aa10TiFv2xY7Tex2O4ZhyG19A4FGtWhvpFzAJFAVhY8CEMV02E54F3hyYnj+uOXJkwWPHy04Peu53YziBLAOgomdmGLEUCUPZ179UWhV83j0kzgnaXzTovEIwZ7WiuCTAZeS4CNYCIkbKQqnasEloPG+tfS+xTkTLqpWCmGGs2afq56XrMTKa8LvEted93ixZeT7QaPTxtUgJUzFYE2keU4bjLLlEoQcvfchoFaBtm/wfuDbr/8epTRX716yPr1gffqIH3/2M9puwZfPfsc3L7/k9uaSL/7ub5jcyGLV0S46SX3e7oWwzTlGO6GxJPOwXyxZnTxiOAwslkuats3kqYRA17fozjCFieubtyKsXGwZbB3D4RC97NJZwrvANGzRYUSHJctW0bVglEMFi3cj43AAFNM44CbL1dvXvHn5NaZt+eFnP+bs8ZNsDMwjZN8tgIZxYhhG7jZbLm+ueXdzxeD3DH4vzrhRoton6wWPz37Ihx98yL/51/+GH//4x5wu12zutjRNw8l6Rdd1svb1+6+XFPexI+pPP8o6S5GE7XbHNy9fsbm74eb2lt1+hzYrlFqgdeRwolYWxWEpe1VXp64j6DVQCrmzh5jlySFcH9G4dhIVE+NfFJ3RIm8zkEmeoHhvOjkP031R7I/JWqbJZjmjVCInTkZr6XqSIlxTLHsrKeAgTnLy8ytEyabuMsHF0kAlAMo0hkUvzhg3WfzkapWTHQpF8cYsJxUjS7FjkiSrxk52semChvKKUtEG09DG0lon96wVmRTZWivZptlAUFF/VcZaAgC6Huv0WgKMkrq+XHT40xXOjtzd3HE5Or59vufbN5cslwt++NEZz55e8Osvbnnz1Uum7YhvHaEp3WBkaaTsNo/1Fh8CnWowRtEoASxBSVc6G2UfIaCDF/moZQ5a09Bqgyle0XgNcWSHWBrlE4eU1jTaoBW0jaLRDQTP3lu0Q7pYtgaPx3mYnJRXemJ2rzG0pgFH7ibYGCl3ihn4MgephEBBiC3Nu6ZBNYZhHNkO+0jUOeFsQ2Malu0ShcYFj/VSRehjIMkoYivgf56j1sPicAgEZO8E5Wv1Wn2n4K6Zoza/V+Ra3lWByKEkmR4uuEhaK8BRA+N44HDYYSfL5k748g67PfuIW969fct+t2O/37PZ3uGsY7ffMUbnkLPCWzgeJOtpsVix2UmH06ZreXd5ibOTZPFGbpvUiQgt2PDt5VuGzR5nHY1p0AtN00pE1QfPYdgzDgNt2+R28E5L1oo2QrIfqJy/KuCDRTnFbhwlE/nZko8+XPPsyQkXFz1dr2jaCPRrhKLK8GtVHMkP9jeJe1xFeSEvzfXKfBqTwyg6eBOuCUVPpozKLDzufT8C/PqGjz9V46pYGjn3ERzzN1WmUjJmQinRyc772ExADOSYvQpo1aCUdBUN8bu6LbIi3ZOOcsJ5h1MuG6YAzjusEzxutMI5g7U7fv/r/4JWhosnH3J68ZT+5Ixf/Pwv0G3Hb3/z9/z+91+wvbvFTr8ibBzrtWG1XApdxd2GcZoqJ3sQg0obzKJhsVzTdXu6vo9jH7PkANMZTKOxduDy3bcopSRwNFm5/2mAINaN9w6vLGFSBN2hsbSNwpiAdSPj1DBZycpzzrPf7zjs99ze3nB5dUnfL/jFn/05J6enNLHl+PuPyv6K62W3O3B5dcfl9R1Xdxuu77b0oaVTLdM0sj9ssHbi+dPHvHjyEz588YKf/eRnfPbxJ2ileffmkqZtefToguViUdbA++7gHx1DlSOd6+5uw+9+/zX7/YbD4Y7JDcKfGB0ZRAehytxWUnqffASJk9XHtVocTdX9Q1LZsaQwEWeXRiIpEOisjRyLsi5QhWQ5ZYplSRIxaGOiznchBmvLFA7DyDQOEa+K08pal2W1j1gqpPvPiRSCGdJ+TsHx9PyCfUpCA04umJz4WhuaJmIoZyWwrZJNXWOoWFqeZVFJ+Eh4qfQqk/EPgK/pGpIuSkHIWFaolaKJ2fLWO1zsepcnRD+AZJXO45mCmjoKtqAUjVEEpVn2HafrNSFMvHpzxas3e87PThjsQNe0fPrRgmXT8frljr+/vGIcLF3roImOvzhNKShaawetNUZJQK7RkZeSwBTHx8RHcFpBpFvoTEurG5GdLsntANG5FChYTa6kaLXGAJMxODpQgTEELI5WSXZ48GCDx7pA0MJFZXSg1VKqjg84G7l2m0L7o2JqeV4/IYCbUCg6o0E32Mmy3Qk3ogcWeIxu6JtOLI0Ak/NYJ/IPJY6p9nvu8T8ps0kUZDK2jgRPXjzxe/H/QzlRVnlFbxZQm5wKJEMoLfZsZIFzE9MwME4T+52kiu53+9jmfeDq8pLdbst2u+Hu9hY7TWy3G6ZxjEBJHASpPbZrHSoIcNlsNlxfX+ODdL7wsVuAi0IlGSn76cA4DbhpQqmUdpkiJSqWRNlIDijPK9Fyifw2JqXEhRipT+MUciREK89iYVgtGrpOxxTwmPGTODeqsZ5t04cUQcKic09T3uvziQsxAyPMvnw/W0Qd/YhALiGp9xzvz2qa336KCuTr3n+c6gth/gGKU6q+7zRHIQI/ksMsEeapAgBnxmIqaUjP4D06plDqxtBoGAfHOOwIIWBMS/CethHOgOX6lNPTM053FzhvpfNI20ltcxBA5EYT78yjHTHKkJS8pm1afOslk65SetkLH9N2JyscatZO0eHk8d4WZ7ECcZNLpohC2pWmzCa5ZuJZKNcYh4G721vaTsrsvmuOj+e7zIE4Kax14sCwE+M0MoUJF2yM8kj2Vd8tOV0tOTs95eTkhPXqBIViu9vTxDLDEIJ0toh8Zim68NC6esjRWWfq/bcc1jr2+wP7w0E4SKJ8SeEQJSOe/RGEOsujKP2kfOQj5fd8v+nT4Wi9h1LWJVshAYX5us9ywJc9mo0dRVQsVWZF3B/el45ZiUYhl+/URjEJ3FG25EwcVJBiZoDXe7wYcigVS4gFwFQpLhkgqSi/dOzQJc4eea1SPhke5TWe5BUBHV/1EYR5iN1D4vkSPWCU4wUoSekteeijzCLfWDHecov1klovHVkapMOTEIUfDo7dfkQbHbNbe16vTXQEp8zEpIOpFlUC1eX9nMGkil/eI9dO+S7Zh6Eih5KObYaDmi+xUKJq3ofCp6B18mdKaYGPGTPptuJY+bQ2ZjOd2AziOqp1morp52mfxLfzntUStZW1KJ12rFM0KpUDkI37+Zom+TL/UY2m73eU5ywIJ92Tmj1//ka+97jCQnWeeg1AwU9enFjZIRmKPJgmoRQYx4ntZsM0Tuy2O3abDYfIT7Pbbtnvd2y3wo+z3x+YYolbis77KOOUNrFcB25vb2kXPc5OjIddzubNGXExY3y332aeTqXFEaby84kOkBI4kwlkvU66SgvnTwBcMhQpci+WUmnlWS1aVquOrtWpWve9R9nTZUDz1qp+UeohXVL/nuRhlb2Z5zjdZ33dY50U57egjXJ/92HOex4mnSveZ4W989v3cFu8lkrPWYzQfCehhpdx96pEYFJKralwQ0hNHFJ2pyoD4b0GHeWGCkzjxGG3h6Do+jXatJi2Y7lY0S1XnJyesz49J3hP1/dM40EsQS9yu20iLUJ8pjKLUsKim4bG2go/UeSOSvLdMU2ynsdxkhLdXIIUeTdC/IkYkUnGzh1zPjs+pELCMYwDm7uNOBm8i1xYf1gGHWMo6xzjODGOEkycnMM4jXHSUVUMwsByseDxo0dcnJ/T9z3GNEzDyDAMtE3LcrGIjgqFbmQQdIWhsg574D7qe5OPfvdzHMPF449P1rLdiVPO+Skb42lysj5QSW8f2w33SwIfhKhJToQol0RDZH2ejpR1IvotzMektlFnYCdd4ihgFwrfTnLmJGenBOkq2pga24WZUIqXj2Oi0pXqLN5qtyY9p5V0q1OQa9rz+JcdUjudkn7KSLSIhVxIIhhCZVyBluunpiFSlqiq76areFSp24/4q+b6/e71lCSSZHSFWN4fu3wPkfT/IJmxjdGsFppHZw3b64PgJxcdTQWhZJyahr+ezFzqH38nY6csNvJ4qOgYNce6PKvvQsKegrKkcsZ4HRUz+R1uhqGS/k4rJV1CUWR0wVAhY4o0B7Jm03dSZpTcqyU2ZgpgM9VPsliSczUUXVg9+4PNc4+O7+9sqn5JDqc6Xatt5VQqOldqfot6AmtwVQuvtGETkPGxs4mPM+CcZXfYYu3Et199xcuvvhYC45tbpnFinKwIXefY7fbYacpGrBijDU0vA9ZkkrVI/G0aTNOCUVzdXDI5EXI+uLlgVRI9Q4FDCNacczTaoGKfxPEw4eyE1tC2Bq2JnnMI3sYURphcXeom2lsZ8aCu1w2NVnz4fMVnn5zz9Mkpy2XDMAyMoxC/aa1FwSaZo1S10JMij2+rCmTXq+Te5JaFqsqX0wVmTpuHS3Hi/4Vq0T8gNGpHU/37w5/5/pGUOpOgiWsw88aEQJNKSo4USv3dgqEqg+BIW2UlBnitY5ckEQ5d26JW6+jUcQz7O64v4Yu//UvafkWzXPH86XPOToTnaL/f8ubbl7x++TXWThijcNPEfj8QVKBtBTg5a3Pap1aKrm1ZLpcxwlzmNylb66zsN+9EFUUQBhLpUyrQdw2rZceib1l0DU3kDhOnqRh43k5oY1j0PXQL+sUS3TTopqHtusKXUc3RQ2AkjVsytIdhZLvdsdtJl5dxHPGNF6eCUbSNCMiff/5TfvHTn9E1Hd9+85q3375jc3vHzdUVxhgeP37Earng5PSUx48u6LqeJ08esz5Zs1wuOD07zaDyfevsH8vY3O32vHr1lu3mls1myzAOTLbP1/RR0dR6LDuAgOwKCEVG1oC/WBrpp4/14jX6jyT4leEQQsDaCZTCx7ktESfwdsrEmlJak8Ym2QVy7mlyWCvOnKDDzNlUj2XO3oGYnkvlAKEC4CHzrsz+5UEIkXhWSA1V5NjRDVlh52uWGY3347O+yRwKilh6l8rExCzS0avlgkRvDBpvdGkbXBGyp72U5s072UvSFl5Xd0HlCJsDqFpvgqJpDb1v0DrQdSucDWw28Mu/f8f52YKf/+IJzz7oubpa8IPnK+56QzjsceMYDe/oyIxgQmlNoyXelPazIdAb2fuTSQTv4IwWXaeLRExZYUoRs82I8k2JAyCC85T6Dwi/ooJGKRbKCEF4EE6A0XqG0WKtRMWsTyVwJnNASEo8hTgzeFwVFC5egCjnQnQcpvbDIaAbgwoKp6SNsAoxYKKSc9tGAFWyeI9LcP95jxRll+yuvpNMi+Pyntk3KgMq4yZfRe6VrH0XS3gCIRPBTtPI3e0N0zDy8uuvePnVV9jJstvupKnBaDMx72F/wMbmJiFmPfZ9R9u1IjuSsynu/7btUAY8lqurdxwGyWhydoQgjtwswySigXWWVAqhY/ahd5bxIE4myZQzkqkdU/7xVq7rPC7YNCgV8bh0Knr0eMGyb/n4ozM+eHHC40drmiaw3wupctrHM9Cc1jwVPFJxliosk49jz88c7saPBJIrNT1rXnJZZ89OSlrnBU7NddSRHVRdKxmN6uEP5lMUp9Px6ldKSi6S/NJBx6YTSGlMbpZWHJ5AKb+OY5LWYx0Mq48QHzwEkekq6jSvQLUKtRIdZacDt1dvGMcDDmj7Jabr+PzTz9nvt5yv1+x3W969ec3bV6+xdiIo0Xfj6DgMDpTDexsbdujIyaNpW+HCnKZxxjmb7lkcq3K32sQAQ2z4IZlSQTgslz2LvqNrTR6CZJTqZIgrTdf3QKDve5q2iXytTSSO1scLYT43R/MdQmC/H7i+vmO73RGQYCVKsiXatuWDFy9ojOYXP/kZf/bTn6MC/NV/+mv+43/43zjsduw2W5q24cXzD1iv15yenvDo8QVd3/H06RPWa8FQZ+dnscyu2i//KBgqyTgke8cH7u52vH79hmHYsVjuadpY6tPEDnoq2SIaH9J+jVlP2SxXIi+C/J5LBNM9RjlDSAE0kSPGpD0qjXkCxCBtkMYLsWOYMuL8Tg504ZyzeC+BUilzD+V2ypMWHYToOKVUIeFPe0Sp2AhKxjZRCPiMo6rSOxVjYZXtlx8z34CHmPUkuFBRwk5lfSWYk3R6opFJc0wIsdeNEpqsVKZejbyPuC3jEpW6q1eXys4O+ZJ3sZulBqOKIyyvkiP7rw4YSfKFpu0MS98xWRjHnslbbq4tv/rVa07WCy7OXvDk8SnBen779zfslKJhkkxYIs4JkfvUp7GMFVcxW6nB0+tY0q81Yww6+gy94x4J9d6t5L0oe5kzFzOqEl6NeEVFbNoqcXg763HAqB2j9kzOM4WADSHiWBPxQn0JGV3nUoleXlZ5nkK6HqCVVLoYPCqW23kCk/fiO0CceglD+UjCYBJOpH7e9x9/HEF4MpTiyXPkVCvatpVtHsGiTmVW+bvVg6YXUPkcdXZG5gFR0UurVeQMuGU47PjNr3/F3/313zAOA7uYueS9GAuyqYTXRkXDNTlymqa0FZXHSa18NUoJOL++u+H27oYURUWRCbxVXNxoaLoG0zZ4H6SEwGjwMA0T3ltJp2xjJpJP5LYOgstpyiDrM3kyNcImf7JqWC8Mz58u+fiH5zx5ckK70AzDhBXGTVGI1Tgm4FwM09m0ld+r6ZRzzBFSBjjVKZQqXvNjnfJQRO7YqDr+7EPv3zvP0d3eNwruA5h8r3EDaJNKlxLBuzgLZXOkTVgcaAXkR8M4pq3LOr5/7wZw0dnkg9Qnm0Zn4u/D4cA43DEedtxcX2NMy49+8Rd88NHHBAWPP/wQ6xy//Ju/Yru5ZZoONMbjXAMarJuEjDd4vLUE50hp+F3b0vc9h/2+uq9yj4WcuADapokEdSqg8XSdyc6mrm9znbHRsXuUj84mpegWKxrT0C0W6KZBmQbTdbRdh2kavkvcPGQwTeOUnU3DODCOI9qAjg7BzjS0jeHzH/+I/8v/6f/M5nbLf/hf/n+8evmKb776it/95jdorXn+4inr9Zrnz5/z6SefcLI+4fOf/JinT59w8eiC9cn6Ptg4uq8/BSw9tO53uwNv31yy3d5JG+JR+KcgAXHyfERdQTYNKqdTWndp4rIjNBk3uYY/lNbemXCxOD2kQZCPzkr5nI9RoEzmGqQsOcTOjXYqIC2t+eRwsC7ypxAIOjqdjhyd6uh+c1S8ku8p48s5R5h8vu8yuHGAhOVTMu+ichQAY6IDzVJWfRrbksUBZMJxH0RPeZ2cGo2Acyr5GP12gWT8xlvx5cz1cwpYlRiTRuWA4bGMfegnlLLPphFWCq0VXbfETrDZTnzxxSUXj5b87F94nj7vuH7b88HTJatGcf1mYLt3Ug6cxtqLzNIotBGS7MRpZrSi0x4NHCIRtwRUBDAVziqV/9NaRRqbtBZi5leIUdikPyuuiybWdCsfGILCe5hs4KCl2cXkPC54IRWO3eeSQaZV4tOJZK/Kz8csLv+sl0KQKCVyD8YYfNB4PGOQbNFUZJqMAB/z5VXiqOC/1zGXicYY+tiS3Zh5hPe+/KxfL05XAZGRQ8ur7GxKdfbjNHJ5+YbddsOv/v7v+If/+rfYaRJHv/NR18WobNuWoEPMcmj7LgcRUyZRug/hmZDA2s3NFdfXV1FGiZxoGwlmKK1zQFLH7rrE0j4PBGuxsbTQaFCNBIdCKleJJS/iqJbxyE1SAig8RhueXPQ8uVjz0YtTnj094eJ8xd7vOAxSEgVFrpHkXWWwpSPt85QZBHkZZvmdseLRHEEl17IsLHI1C5yyoh9YJccYJ2ZV+ePXv/vI+EDNXytR8PK86flFRsTouxJZZ1Si0fBSJpNlYizrOVq3yVieZ+VU6E7rHLAjsvPo1tDoFu8D+/2eYXPDdnvD7e0tTdvzkz/7Cz798c+Y7MSTJ48Zhj2/+ru/ZXt3h7UG04D3lru7PcO0A+UJwcbM7kbkoTG0XUvX97Ps3DRvWb+E1Hk6yr+YZdIaaI2i7ztWy56+6+jaRoxs5o4mhTRq6PouyviepmnF2ZQqIv5Ao4KQfxYsetgP3N5u2e2EAFwnQ9F7+r7j+bMnrJdLfvr5T/jX/+ovePv6Df/jv/9/8Zsvfs327o7bm2txSn3wEScnp7x48ZxPPvmEk5M1P/3p5zx99oRHjx5xcnKSHRXHa/S/BUPJIbvJu4C1nu1mx5s3b5mmPY+fKlYSq8IYcTaVyxfdnTKdardHSO+pJB90xiXBe6borEl6ITv5o25MHaoTNUDisgOxK1IgOzmWrB0z5904jlF+mZJdS8LlNpfepaT3+3YSkYdSvlnvmyTrbSTIT84d+V49/rX7R8YlyTeTu3GSZWk1odnOl+BFwZryfnQ0qRKoSaMO5CZeSoXY3EWcUrlJWPEToYgZ8+FIz8/GYi6LswM7E5fLrLex/NqMsNE9eMvtreXXv3nHo/MFH/wPH/DJJ6fsbibOTzqUDbjJkaoccxZS5JgkjlN2/GmFQdNrgw6KUXsiHwIe+Zl1UDUgCkR/Hs1Mynasxz1ZAEYrWhTWeYaYPT5pz6idlLEFjwWamA0q+15lpZQu7110nFHmKsyuF51NwefMcm2UNJVCOiwanfIKS1aeVz4HVzXqXoXV+44/mSB8/iaVzky/hOrT5Tt5zVZLtBbw3nsBiT52wdHiIPLesz/sI4+A/HPTRPAOFSTqnQhjTWNQuonkosnQU1Vns7R5k7LXaCWVlyVCFg9V2l4rRawrpXLoRGPGeRrT0rUaHwyehui8zJxzTUz7TjxLChUJK0UYamNojObp4wUXpx3nZwu8d4yjhREwYG3amMT1VYOXozl53wKIQ1/mVFFNx/c+Zps/1CnflXCrFnqa4/emRlbOr2Rvfte1i/Krr5sUcnqyykCs12ZtaMSMJpWyHRJgJ7sCRLgdgSU5b9rj1XNGgZM6ygUULjh8UOx3t9y8e4VuW8xqRaM1Z2dnfPDRDxkOe64uX3HY7+jGQNsOGG2wk2U4HOj6gXGQltOTnXKUpL6XaoTm40XZv0YrmujMSf/MzPiS9eC9dLoDBQtQukR7lHexc9Ao2VXUY/KHJY/PKeal3KdtGrpFQ9e1PDo7ZdH3NE3Hu3dX3N7c8vbNW95EUv/JCifDdrfH+UDTSIvj5XKJ1oqrqysePbpgu9vQdR2LxYK2lY55y+Uid3bUFch7yHn5fY7kPJ6mid3uEMtNhOMhlckl5e0hC+eM8wtGivcR7yVprejUyI7Q7LwWwI9S5Wc225LhGSrFpghKODdqZZiihakjWAjzdZD+SiBFqVDt6fvGcJ0Zk+ScTwZZpeTks2XsU3DCxAiR0UG6jukStcz3G8iZScfyK/nq7s2mUsUxUxlV2Y5MjmhN7pQUJNZVjgCpS40AKTe7UOXzfe+Rx0ar/NkQAsZrurbF9ZLJtdsH2s6x2w2SrWtHugb6RkWy8sCsdDIPar5SkaGBSBCu4v7XkslFzB5T83Var9Ws1uOJZJkpCNFITATNxGsgvFBaG+moA0yxy2biYEwgWgBniu6VtVaulRx7BVwWvVWu1yhFoyWTSsrpqmwfSiZdDerSXPxzHfeCKxHMy5tknS0fCw9+t8b9ee8VAJWBrPLJKVSMU+8c+92OzeaOw2HHNI2R+zHCSyXOJaU1TWxAkSdWKVQ0xgKxU2y196VswGSFmDp1qshH2ZgmO9GycZhBjGTIBedpWk3XNvgQGEZyZ8p0tKqR6yuViVFN5BpLWKPrDE8erXjxbM3pumUcRnY7jdUWr0tpi9w45T7y+BanCVTbKY7lrJnAH9AZtXFVfotjE/9OmUsPnkrVe6I6i3r42vfWcyhfKO+VOZW/kvFWxqA+XyL4PUYUCUOpfKoii5IDp5azNfYrXSnT881lO0rksDGGpmmkPMdPOKfYb264fvtaMJbSLLoF5+ePeP7BRwzDgZvrtwzDnrazNI04isZxYLfb0nupchjHAVuXuj80dumhZx2a5TdjDG0rnTmN0fk6upKFpK6JdkonQmkjlQ3ThNYmdrGWjtn1lldhjlGPZ1qM9EIFQmwm0y96lqcL1qslT58842S1wjnP119+zbu3b7m+vmazlaxrGzw4x26/J6Ak26ptWC2XaKO4vLrk0aNHbLcRQy2XdF1L20lWvTEmOpnn+P77HPUWCyEwjpZptLF794HJDjjX4IOJ61HGL8u7oz1YZ9ClYFO6F+8DSvn8mUThkLOD0udkUCseSkrWUbZpSjmS4Py0duP8RkdmcsDrWCFQ1lfKQim6qMbOOVNYzURvxHhJ1lc2TaUrUlBc6dg0Awl+m+wsrdaXzqBH7is5rxVVx9/785kcViULtLKqQrIzohNDpxLVEryT64WCoTiSxw9cc379unJCzoVSGMQp7htN0zS0bYf3gc3GYszEYRixdiQES2s0XaMZrHA4FjsyD3aWhcfYRziRBWs0xuCD8E+lSsf8+biWqumaHYJdC19e7SSSpBPwSqoUgiLyA0uwzmd8W8mHjJ/T/deDVuRq0hv5bwRDNUjXdRMztyAl/UhA22d9k5xPZT8odXS99xx/grOpPECKlmQFHbKZIwZ8IhAP9eKdvZTOnoWA9x7rLNpa4bExmkZrJjvx5s0bbm6ueP36FVdX79AhsDSGttF4DB6DMoZufYJpJEqYPLMuxEC5VtXGqzKbkGhba4wMOKLs5KdkegRCJNoMBC3OK28ddtjjrGW9POPifIEPnv2ksN4yHkaGw4BC2psao2mNoW9byeCIHeYSP8aiM/zrP3vMJz84YblccthLZ72VXdJPHYedpJFrRSR11anzZ56nxBMzj6YXYPDerfzgm6r8C+W1tOkfWiP1Z5LhmKJ/BVjVFtr8imk5H7+RBVwGL/Xz3b+HJKOzMVkdKRqaIk+Kkj0VggIfQXW6n7grU8QrRY0F4EplADkTQK7RdS2mMTjvOUwOHyZeffUFb7/9ipOzCz77+Z9zcnbOjz/7nM9+/DNub2/4m//8v/L27Wt08w5vhVhzv9kw7PY4GzBmiXWOu7s7AQ3DIKNVg2OlyBwyEYQIx4ZFqcCi61j2Lcu+Y73oWfQtfdNGpZQ6bQSmYWB7c0O3XLE+eYRuOjyK/TChnefm7g7T95ysV390pNU5l4FWiq6u12sePTvl0aNH/MWf/yvOz855/fIN//5/+V+5vrriP//lX/L2zRvp2IAAgXfvrkArvv32Nb/8+19htOF0vaLvWi4uLvjoow9YrZZ8/PEnPH36lEdPHvHZjz5lsVywXq+lBfEDx72MnayMymcS8HDWYZ3n9nbLq9evpYtNu0HrgclNuAA6xJTsyFuSgHVyUtb2pQ9RCWZQFbIhGULKkJRskhQdyZ0nlACrtF3F+JRsEpQS3oHcoSSSOQZRXFoHiR4y35slel0y/xKjYtqPKR3d+1BeR5oVKAVYISou1nIsP4t7M5XWGa1ZLDqJPkcCQq2R+44ld5rI8ZG5B0L+GXzqciREjiK/deREE4Agke3S9j6pUO1kvxkUWotRa61DuULiGADlpdW3dx4bQua+ynxWpjgwj9dTjpKrMjY+8o01jeH0bE3fdwwHeP32jt1+4qtvLrl43HB7YzntA81ac2dCbG+sk90n6zENfK0Por3eKAEWi7bBaph8wE1Kytpi1m0IQtqbTfzK8aiIkTttUuOb+H9pBKO8DKCUZuh6dIDJTkzDGLPpog6AzHEYYoRWIvwmb7OEOHR8Ll2No4+lCC2KJp4rYLAhsA8jo/NYH5gmh1eReNU7Map1zKTSYgx8H6D0j3HUuilnBqnkGC52RCJOh1rXhfy5tMfq7JEULXeJ0kxJlF1H56DWhsMw8O2rb7i6fMvlu7cM+53gksagGwO6Bd2hTcNitaZpYgOKmEGIUrE75Dz7R5w/klGeMgSkjXsQI7gCpaJZ5KcLQhLvvXTg9c5yfnbB0ycXOOe4ub1jHMeYVWBRGtq2yXulaySgKMESnR2Py0XDv/6zF/z4swuM7nj39orrK8PqomNx2kbSfxlsadaSDMCjuajgfCo5KNjkPqb47qPalEd/1wbnMabKxryar4EEqP+gcX+MAZXszbyu8sfqZypsJBn9JbweiFnvpculUqpI4tTRr8J4iXMt7V+A4Hw09H2+klLRKJUiAUxQ9Muetm9xzotzdBx5+dtfcvnyS07OLvjRL/6c89MLFj/5BT/85DNub2/4r//lP/Hu3Ru8MoyjBMturi/Zbbes1mecnUvZ3N1mw3a7xUe9wtG6TvhfntzF+ZD9tOhb1quevmtYLDv6rqVLVARaRzrMwDSM7LZbyTQ1Ug1hXeD2dkvfWW5v71if3rJomzKX9U9Vr5H6EH07TiPWTYBHG3jy5BEffPwBF2fn/NlPf8Hp+oRf/pe/5X/8//5P3N3d8utf/4rb2xvhuGwMVgXe3Vyjb295+eoVf/vLX2K04SRiqEePHvGDH3zIcrXis08/4emzZzx5+pjPP/8xi+WC1XJFv+jfs/gqh+LM6Tj/lLOem+sNu+3A27eXXF69wfmRs0cXLPxCbDfE6eljdz+lTcw8kb2ZAn4uOo9cVVrsowJMmbgSwJdOZcSAnVJkvtMQFM7JvdqYvZd1oFKgpbxU1oiCoHNWmWRFSZMVVXmlkxNJqyZ+pyqdq3S1tZNw2JEcN5TM8gAhUrvodL8+G92kDKzWaPr1Kia0SsBOZqMQbIsJHHkWgcjbLeewMlapwihhKFH3yUY44vWK1/dxqwQtVTqCl0QvCZRNT6XRKsr+UKhAEoaqKQmOj9RcCzF/UYAzCt2AaTQnpyc0TYd1O3731Q1n146ffX7D86cLpvHASW9Qy47raWAcIMRUxITJUyl/tqnx2QHXxeeyXYMzhsl7dtPE5KQULeFl6Tp4P4Cg4gYwKeASx1BwevxwHFtCQDct3nsOPjAdDvgQmAK5wUK6R+8dLgZmU+OMkrgR/ReKyGmqoj1Rys99fHYbqQ+sdYxeeKMn6zBKVfxpoXTdU1q6g36P449yNimSoimGfjFpkjKaR0fLR4r/NgQx5I8nQgwpT/A6O0xMUk7ecxgO7Pd7DsOBcRwEWBght8spyjES0kRugWKgyT8RBunetRhtlbNJUlt16UiiSllKdpiEMIt2++DwzmJUoO8MHo3XDdoJkLajKPmubTJIWvS9lDb0rZT3eVAusFw0PHm05oPnp4RgJPXfBZpli4lKFyB7K1X8o/qR5qoGN2lBA6hwv3yufPDhl6tp/MNHuq28Y1VeO1SKpwClMP8y3wWi1NHP99zove+EvD6TJzt55lNGTxI2OYskGuEwV5b5MiGfWgQEajZAJhFQKoWyFoLnsN8wjTfSUXA8gDthfXLG8vwxXb9gfXbBdrdn3O3pOulQZ63FTpZxGBiHA9Z5pnFimiSVVu7v4eevjZYEsI2W6HHbGJrGRIBUohXp8DF7yTSxXElrAgrnA956xmmSTi1HmU3f50h7PSlbpRRd17Jarjg7PeXZs+c8vnjMm28vefXmDdeXV7y7vOTq6orVYsF6uRTlPEayf+uY7IQCLo2USD26OGe/27Bar9HK4Kwo22fPnhJCoOs6ur57cG7nN0uO/NYOqLQInA84K6WBiSB8oSxNmzpPlL3j896M84Oq5GK6XFIVZT3VhmXObErWabxHURqSEhuSUleVLA6BECNtKRtItoLKBoFYDUVp1vclIEPn9+NXo4KOwCQRxRLy9i8+icqipoyDqgwp8dUI112jVS7bUMrl8VJKLJ7MJxTKqCXvlVLFQMrPePQvnrAYlOk+SQBAoZSP4LDMmdYpkUzlcayWSpYj9zMh5d2UTSclcCCqXl5r2xaCYhwMhwG0Cex2A9vdjmmExkBnVOzIks6ZLprWZZ45qNcsEjVrtBJOAB/ApfmMQaM8TeWBKzws931vHAMhOPJIBnHYSYQX3CSthomGR0AcX3n80vUqjJGOWtrPtETUZwmSGmJGXFzbgZSiL9k1CQvkh6llPv88xz2dFh+qzhBKn3soAzgZbvVnUpCPyrDzPpTMvOwkEXm+P+zZ7XbSNj4S1SYDAq3BNJimoWlb2raDaZrJMIU4q02yxOP9ixM1YijTZB4Jlb9ZHjrPjQ95skN0njdGs1z2OOfYHw6EWIYHPpYgCV5qG0PXtZLJ1IgDSgONCqyWDY8vVjx9smIc4O5WLIpmrel9W5w1BRHdWwMPjf+Dk0et8ss+mwGpIJg3yZaHzvHgFZLu1vd1+J+ekafurfn5vqrE9OxI+oOI4YqM0/ley1o7xniyr2s9W2c2zeW0nF+upUPKPnZM4wjes9/esr+7FezuPI0xnJycsjbnNF3Han3KZrul7/e0bSOlvNOItQ5tGvrFimmy8TVLcuoUWZbGuBqHjFPk2YwRQuKMn0yd2VSwgXceO1l0gNa0JbNptCilGSfBcdb9KRiK2b1qrVgsF5ydnXJ+fs7F+WNO1ydMw8SXX37Fbrvh7u6Ow3Cg6ztM2xBAeG09wn07DIBkmTdac3Fxzm63Zb1eY7TJ9scHH7wARF+1oat0+QMYOf8ejl6XPeFDkCZP+4HhMDCMe7yfpPNpWXpZZngXMY4Oc/0/k4lxvea1RuTLFZL2lBGmgo8lnMXRJBlOrtiOeX3GVRrm8jrbnqrq4lar/PJDKgiig0rIn33GEMJVrPGpVDWkfZSuU7CTvDCXXHUmYdMIr5R035Vgcyg+ZFI2ilZzbAPiiPKVzi+YpuzrOrupHMmZnQcmY6HU4AElASutECyqfLVf0vAmHX1/3ah4IykxIBUmaBUwSrKlmrahdeCmA9udRyvL/jDGrpCOxijahKEoOoh0SVXL5YiN4t8pT8UYTaOCxFydIpNnpbmvhGgN09I18vglG7HCRsl5LzgrNj8JNjtSs+9BzbPLanyQn6AaR/k1PotKK6c4nIyS9UlQWHzebyHTLVTzgASeCr7/w/roj3I2JXBXA9n0XvxUJZx9lM/VYq4A31w/p9cTD0RMq1aJhE0IqRb9gtVqSd91GVxIbwhJxfMETEgOJZNH2PuAHUfIkXUzM3DkRmVxOC+Eo0IUm5RkJHILhT1euLllE52erCB4zi9OODtbopTixK/wAUnVnSaUUvRtmyPqrUlgTQRm28CyhdWy4cnTJWePF9zdel69HPBB84PVmtNHLcbYauDCkRAgK52HjrLYvg/AlrHxweN8LJtJaX0Z4JbFm7yn+UpJUCSver0RqoUZgp/fTAVOyvIIMRU2RGAspW6+9vh9x2PkNSUaRzKQmli7r2PXgHidDDJnN5DuSM1+TwZtAlI+emLzM0duHRWCtPJWCt1BYxQqDHz7+3/g6vXXnD99wcXTD3E+8Pknn/PxR5/y+puv+frsMYf9jlevXrLd3rHbbxi++RLrHDc37zjsd0JGr4TkztmB8eBIjwlALNM0WtH20gZ9veo4Wfd0bRuJLSV9OjsTlKgoa51k5ekWQoglhtK6XHnPYT+y3+457KW8L3Eh1KVpZbzmGm3Rd5ycrDg9XfPo/AxrJz775FN+/JPPMMbw5uUb3nzzht988QVfffk7Dvs9ptWcXpzRGukoI5kWsq6cs+gpoUORBdtxz6t3b2hvr9nt93zx619zdn7G3/7df2W5XvGjH33KBx99yNnZGZ988gmLRclyOhaeWTQnBRIB92QdN1cb9vuBd++uuLp+x2QPLNYN/WpJ2y9QekFQmtGNjMMYyUVjdEjNenkAxI5dCTikDLUKoGkTb0CXvVdFnpTS0biUSIQOOrdFT4ZLzsZLf1RGkWzvxJESZiA4gSn5TNzTMUKd0tLTXCslPHpaSRZQalFeypdD5k0ijkfXGvq+EaAUfIzERE6YBMCiAEtYIf1QlXxJSjLJ1/SpVCKbyUVz9CTu77R+QsphKN9Pck+emQiaNDnzMa+bslaOHU7SFaZyNsXxV0GiRX3XYrRhHJc07RqlYbN1vH27wW8agm9Byby6LMkFEM1Elk98RXPwhwJDoIvP2UWOJOulRn/u6ImZP3F86qxNAgRdgd9Q3KYB0Z1d5Mc6KCQDLAhBOATavmO17OiNpm+NONAKPitGRHqAypAoEbvy/0ZBh3AZtBqmuK4ma7EoRi/vCZJQsSW6ZBx+D2X4j3OkbKakSxK4rgyl7/x6AqRx7kJeq4kINFTvSQYACrT3qCBz2S8WLFZLmlai70RdkTJSiN3rtDaYxszuzabmAQkIzu4tlasgnA5xXaaouhwlyJj0uiLQNpr+fI1WgYvzFSfrnhB1ZipzCjH7pO3bWL5D5hQLTnDdemV4ct6yXDasT1qCgmEKXN84QlCsHgs/mmSuC6hWihxYFHk8N6jy80V7Ij5Glj0V9D2erfxiCOC8FdkaOfOyyCjQI+M4KAYsKq2XIn9UiFl+qtYL99fK8d2o+HpqAiWZCLVsT7KkWm+UkriQHzhqnWhEGiVlHyEQs1fr8xEbqCSslPSPymMa4l5QPpXI1LJdrqtUoGmayBUngeNp2vL7X/9XXr9cc3L+iJNHT8A5fvL5z/j4k8/49puv+OrkN9Kh+uqGw/7AdnfH9nDAWsdud0fwE2VRK+wUCN6SdIXoKOEta4xm0bfi3Fp1nCw72sbQd4KfTNPEUlOTedKct4zjARM6mn6J1gbrA7thZPKBzXbL3eaOs5MVk7WkTOf3GW85MKIU6/WCJ4/POExbnj97Sr/s+fSHn/KzH/8UNzl+9Xf/wHgY+M2vf81+v2GyI+2iQ7U6cr1E80+HIrSjEE7XP0wjr9++pb25Zn/Y86svfsXFxQV/93d/y3q95qc//ykff/IxJ+s1L168oO/7+d3W+kSlMraUVSH4xk6Wt2+vePvmhrfv3rLd3aB0QOkXdP0SdMNh9GgVcG4keIt2hiYGhVOyQcIkaWMW6B51vSY6qQxa9Rmbq2h8S7e2ZOdIqo/NRONEzUEUdpWiIsydLEmuV1xgZR+WxIWUaZRsSmmKYfHBx70SrxvlVMreqre2UmQMZaKDSfjxmhhEd6jYXEXFrPXcUTE67hKeq4VYdqCll7yXho+qUDooZShaPzkjCmLK81FhtFRaVvMM1pxu2YGV102SN+X+tCoE6uU1DbpBGc+y72i04bBfMI0LrNfcbhxvLvfcbR1eWTDi6PM+IPHX+mxxijMpYDW5UTY1BDoVUDrQai3fD57gSkmdfLYKSEYdnR8vyrEQK2YyHI/j0gC9EQ7dwVnGmFjgYybequ1ZrTpaDX0MIOY1Wg2hXF90rw8hf1+p/K6sH6AFNAGrAzbigsFJdtsUAjYFAaKQTuf+PscfXUYXApSOhTFCPlO4EVD5sgjTIx2nAYfyByViLyn9ydkUnCM4gwqwWCywdi1e+UbLwkUSXJOzSSEp46lzgdLisBrGQc6rBEQTEvRJ9x6dWyGRasnz1J47H2KaJsk2kTSy5dmKRiseXZxwcb6ORnsXjb44CkpIMrXWwmMQU/OGwxBL8BSPzxSrlTibzh8v2O4PvHk3ME3w5INA27U0zZgmJIOVGVhKZSvJyEmjH8FA8WcWYfbeOY9C2ztValLV7AP5SGOUHzb+6qiFbVGU8xMc3Ue490p0Fim09nivc4rn8VGDxORQzGS23hOCi0aUGHVNJMQGcpaQgJt6yyZhrObXCMX5qihRjZAbUxbhItlygVbIVnBu4OXvf4l3nucffsq03bI+u+CnP/83nJw/4fe/+w3r1Rk3t1dsD1v244bd7o6bV6+lW9BBonJiiIswcNOAn8Z6pFGtQTWS2rtaLGgbw+m652S9oGsb+kUnyqlpMo+RqF/NZB0cDmjTSlZgdjYBePb7gbbds98dGMYRrTV9r3LK7QOTk8ev7ztOT1acn57w6NE5Pnh+/NmP+Is//9fcXN/w1//pr7l8d8mvf/Mrvvz9bwgh0HYdp/1ZNqoUQimqAGcNptGxHn/Cec922LPdbyHA73/3e4LzdF3Har1iuVzyP/wf/y0//xc/54c//CHPnj2jXyxm930P8IVi8KXWs9Zarq5uub3Z8fbtO66u3hKC5dmHz1islrT9EmV6glKMU2A/jDRG08cOfvJfqtMvAEZFArraeTGLJKdJjgJfRwMqfV5SyQsfxXHUVCtyC9ekdETBilRw6VnF3Chjks4WlWciGheeAxudOdVnlcpBg5DAEoVYNpezRhLGrmtY9FJijLcQu1IlYv/U0lzVsiMZ2kkfEWVbLtGQ+8gRPmLmV6iLaMuAhlA69dV73Kdi+ewrK+S35RQq+xEgrZdieIqzyRTAEXeb19Gh1inaJjAMS5r2FGUcm63l7dsN7dSzDELEK6NIdrZmbRvtRe8i7K645nSUPSYBJRXoTZwjp5h81GtR2GulaVJZW/YhhlgyG0GgztIvWo4J/EGvpMRtQJxNzntGNxEInJoF69WCTkdnk1aEyRGmEuGfYc44lpLxXIHh+F5DCoYFGiVZcYrA4CwqwBRLA33WY7GULnu0/umPQgg6f7JAvU6YOSnLd0P1M322JjZO/5Kui8aOghAMyqcS1SWL9ZqmbUlrUjie4pyqgA7EMpsm35v3Hjf52VqWez++L+nUm/HVDDNEGVN9W0HWSV2ruThfc3LSodCcnqxn45S4SFJLbe8dwTmG3R47Tjw+7/ns0zXLheHktIvOJsfV9YT3iuc/jM4mY/J5FanUpPDtpO6Is2esMNW99fIgjEpGUnToOI9XCkMhOb4veYrcTw6HAJn7M/kDAwVilVyioyMa9snYU3muCg4vfDTMHF3ZjAspkOtnBrFktym0bnMgyyRHQiRURqmcLau8zwZy7UyTTlKp7JNoVFfymxIw0HGdhGAIQYj+p3HL7371N3gPH338Iz5yP2G1PuFnP/0Fy5NTfvvFP9A3HXd3twzD33PY79lu77i+20gzjGGKTVeSPAE7WZxN4xFlWdOglWDFk1VH2zacrXtOVl3sIil0CcY0YtDHLMGgFdY74Y8KgQWgTHE2NdZzt9lycnfH9uyUabLoXOpNnP+CCWZ4WylO1guePj1ndAeev3jO8mTNjz75Ef/i8z/j25cv+cv/+T/yzdffcHP7lu1uQyDQLXp6vZgRFKd1qBuFNlQ6PbAfD4KhfOC3v/sd3jn6vufs9IT1es2/+7/9O/7t/+Hf8uLFcx49enTkbHoAQ0FeS6m9+zRZ3rx+x9dfv+Ht2zdsd9c0rTQP6BYr0C37QebJ+4kQJgnYexvnLWGfskVzNg1QOCQLPmqbsv9rs6UGVkGEmZTtZaUedVyS5RHzixwpz5icSKmEr2C5ELFHkdeFI8rHLtKhcCVCzhz01T4q4yu6DqQcWjjODK2p8GVw0UFDxMoTLpYS+9hIqBAFFOedUgn7RH0TiB3YZWy1UgStK6yT1H9xbKT/0ge8T/okFH/dbG7qeaiCSxFjKeYBO3yyBXTGkctFoG89wU1sWDJ5uNk4Xl/u2G9jd1bjSYGV1OUvXpJ4ZZFlQMqiB2L5GBg8nRKnTRfHwHlx0CiFlLnptLdUda9z7eGDlwY4edXN5XxvDE0IDEjATHCu7AXTLlmfLGhQdCHQAMF5sMlBn3SXyhmpiStXxipdV34aAh0BS2BUSMMPAkPkkxuDx8Y9ZtR3O8UfOv54Z5OiKk+YuWvqD+cdHAizsq18HioPbV6lebXGz6S35LVEuDwjpMsLEipTqFznyClxPDRiMx4BznpFRM1+L+oYgbcyWoiNIzGZ0YnouxGS8qjpk/CT+LwAc68kNTwo6DvD6VnHcik8KofBMYwB68C6VNJReX6PnicZwDldOynwLOAoDqc4h/kEc/zIbNeVQSBt/mzUqnjhKAVU/X2VhyjOSIpaPQyis6F9fMzmNnVw8LN1kS+b1lzl1MxrI/2ejbN597763lJLzzR+aUzLvVabLD++cMl4Il/WbOxmkDn+f1KOCjuNHHZ3aGPY3l6jlIbgOD07R2l4/OQZAcf19S3D4GNHwoC1ogokcpHmUWUFqlAx1Vu4wfpYgtA0DU3MsMvPMpsW+UO4NGxs6+pmyk7q2l3O3LPWYp2jCYW3hXqNzeA7MQ29Zb1e8+EHL1gsl6yXa6bJcdgPXF1e8fbNW7abrTihlRjppmmi00IMGh95dnwysrJhEC8dc4ITaLbOchgGAoHrmxvevHnDyckpwzgxxTbg+/0BpYQLRGtF13d0XfeA40cA+2635/Z2w24vJM4oJ90rmhaUwToZkGGcOBwG+q6lb9vKYK6UbLpnVZRAcgal6+akAkX1uSPBr8qPJKtnezok2UxFUnx/D9ZbnAqgZnFdnbM4tI+kR7VvoNIfaV0oZv8ykMnoMZT7Vyo1AclAI/ELVMNEBneVLsr3oKr7ihmtx0+eswjig8lp4r3k05Z7mg3CEehM+3we4SzjXVRfNZZaRwNGYSc4HKR7Shgm3JC4JIjYN5BKLkMMwOSbfOAQYCEk3kYFAQ73PqPK+kpZU/mUIc9bLftQ5BJPAU0livf/5+2/uixJkjtP8KeqRi5xGiwjkmcRAI3uRvfukD37NHPOPuyePWe/9+xOzzQB0EChClWVlSwyiEc4u/caUdV9EBVVNXePqsRMA1blGe6XmCkRFfkLX/CZWtwulqt2TMTFsj40kyIZ0tqmPZMinjYbSWIydM0+CAC8M9k/5XT5b3U9GLn0gDysaWUZBSyEUhue7hp/aoBelIQig6yzi+jTjMYU+FfP0p+6iO7dMS3HXk0nY6i7QKNgNK37Za0Uxu86kU1S/NsKfqo2Sz7rsmGAGIhW6p3RGFZ9w/FxT7+yhAi3+5nDECUFoJjo72FAXbcHr0Tf9Vm6y9/uv/DBh6SlqTBUunJMeKVwqUMrL+kdLPGQoSnDuSyo0/di/W61v/m9+vuJ20Y1XsaCt9L3tPRA7gRYGZEwS3kkfymlpefYhJdixJhknDSpW1iK7MjE9JBcUtGQVmEaB3Y3V8QY2N1cJzlhOTt/TNt2PHp0ARjs1RX7acLPMw2G0Gh6dlphxfWmBDS0reCmvmtp2yaXw8g1Lqs1iBjqMx1SbUptriLMxxAiGY9M45ibvYQQCU55WjXfej3Sr13fsd2uOT094aOPnrHd7WiahqurKy7fX3F5ecnl5XsOh0Oak6RXGeekLp9P9FFFixUHk8lKszEmR7HGKLWi9qkL8tXVFRfvLlit1xyGka6buL6WWljOOVYrMch1qXOxypEih03GUNdX1+wPh1QbRiKvmqaDYJkmkSshTIQ4Jn7RJjq0GUNpUL2en0yP6e/S2EQlUxX5XMmiWP1tjFk0dalxj9LNXRo1SzJIZFw52xZ8e8lbs/Oqejs/r3q/RtRZN4R89u6myJWIcOGv4ngxqiilZ+iHTJk7GsgV780rRzM9MMaalhQnZYz7wPrU/LDGvNl4/YAOXuwJ1X2Uz1uDdQ5jIuMU2e08h0NkGAPTVAJH8r1MxSv1vFWy9i6/dhiCIdUXRbWwekLkWcTEV03BRVHnrLxU9VfFUGnOanjMxufFoAvk1OeU2k9LGvkQhlpKxVouC/34oLU8Az6IzUL7j/8RMXfv+snGpjy41FFGBI0rAD9NOjvvMsip2h5SEUcl6LIQq2qRqIIZtagu0HYd/SzMS+/otUWykdDViCH4kHNyfUipcyGk6BJTUFF91v8UOEjfq5W2CDTOcXJ8LMWWNxol0rLZHNE2bWasakUWS6YUvAxIuidEzs5W/OJfPaXrLLf7A19/f8v7N4H9wRKjBP07V4qzZQaaD6SklRktQ2VMLtgJZAWtFHAlF7D7ENRWXqRKhVrrpcuCKnMFEOj+6ucFKMVqtZZGnZrhZqJXgGW0Gn64MyLyfe4psRXoySA5jU1fm2efx25TsWBrK+YYYy4Ir7RpkkDUdptRgXoF6k20ElkXPFif9iCPtjCwNA3rHOvNFohM445XP/yO9s2K68tL+tURj59/yi9/8QumeebRk0dc3Vzxzde/5e//7r8wHAYO+720cE7nI8aIn6ZUh8NkWu/6lrZp6VrHdrvCOcd61dB3jXhBnF2sm256xDJNE4dhBmMZhkEKdIZANI4QPfvdHkKQYuU3O8nzblpMI5FQMZ3bnKde0dN6vRIA0ndsjk/YDwM/vr7gu29+5Ptvv+V/+1//N77//nuaFppWPNrr9Zqma0skzey5vbpmHIfCPxItYaUAdpuiSOZpTgXXA+M4Ms8Tv/nNb3j99hW3+z3/1//+f8Q1Hf/5P/0tf/df/4G+a3ny6JhV3/HJpx/z8Scf03Yt2yMpnKvLNY4z3/zhB7755iXfffcdt/v3NK2laTvW2xOwPdc3Hj/PvHr1nqurNzw6O+HkaEvXtZhg6mVPa1SF1OazXjGoeq8+IEJU4a9EfXorKQ54JCa0Nl4vwYvFkiOVYkydvu58Nlaf14LPsRSWzJ9OBXzVY2RUmBrtcJe8K8aklFNJ5ZTaASYbuTSCK3jP5AeRDylqyhiT2yNbK61qIyVkO5/7at1CiqKtVzIG9fiRvMwWbFo3ozwHtW0sL2Mqlqh8pwKXkRwZFLS7jBq7Kp7WNI7NZoUxgd1u5M0rjxknzN7j58jVYcan7oAxpScGH4mpvYpJSlAGqkZBm0bCCoBeIevhbSULUgpI3h+EJjMxJXTjnMU2CSilaOF5lnoYBjCpQLVDupFhDDakNAFBRSK7gy3rrpEWGnZXGZGWa13hiDRHXVdnLZ2TyMz9OBKCdDua54BrbE5n19bk/1JXnhtFKZVmOrU8LP/W31niJY0ej3nvk/CtDAS2RDblIriGru/pVyts40ReFZiGKhkx7aNJjoRpmrLczvjjj1wlUf8B3pRfNklOGfq24/jomPW6ZdVJvSfnhN+7pq3mlZosJN4SgwUTWfcWGsfjp2u+/OUTXGP43e8uePXdDfPYEuJKok5SN72lRnknTZayHkVhlU+lJc565WJ2D0638FY11mizDmctxqk7oXyxYJp6nSvgsPj9/tKWS9ZLeZ+JSO0yhIdlXqfPy/pJSokjKRdaNkJ5WJAIcSlQLIZLNVZHJGUbk9KUE64i8eaQ6FCcCI5oLTYGfIqIDEajN0zmhybdN481j1OcZZuNRF4edpd887tb2n7F5dV7VpsjHj97wV/91X/HOI08fvacd5cXfP/tN/zm13/POAz4cSTMHh88c2rGoi3upWOnyXXC2rahbRu2m5XUFetaVl0rTqWq6UM+iun3YRyYLi/pNzMnT6IUj7aCFecg3SGvrq64vd2xH0Ywjs46miRgYoq2z+UeVDG1lsePTzk+3vDs46c8++wFu2Hg1//wO/5//8t/4MeXP/B3//W/8ubVKzbbjs1Rj2sbNtstTdcyDCPDIDVsFA9FX3Qta53I88bh6ICI72ZCKta/2+8Yp5Hf/u53BCLX17d8+eUv2Q+B/+//8r/yn//jX3N0tOEXP/uU4+MtL1684MWLF4Khthuatugm4zjy7Tff8g+/+i0/vvyR2c+0pqXrt2w2Z+xuJ66uBryfmecrfNhzenLM6ekxbdOmSBBdl4r+9VwoXFL9DyAWDK/NGu45HWKJctSzbyjdTpcHTna+RFQpZlGnh/IvX5poVfqPTalcMdqsa1Lj2UjmvzruGKPI8cRnsgHYGJrU9CDMqufG/Dibau55fGrOQWnCgBG+lKIMJZow5uLQ2nmxnrvo2cpPVJaRI4NskzrTBuVHYngIpsI9uoqx1B9TzKJOvTqdN6bI8+II0c8X/uyso+9XWBtSKvWe8TqwexPwU2QafbIZkFMX1eBKOmMCax4YnzF0aZ36FLwWjGHMO1qu4rhTDKW2BEl9pI50j1KgPXiPCSFluKYamLYhImVtjBGezuwTT0h0GooelK1QBUJRBNsSb+i62ZTW1ThL6wzT7NkdRonammd8qpHXdU0qbfHHsUB9/ZMjm8ohkYWpq6KXl9U7R176Cj9l4B3r+yjojpJHS/V3vfkS2aSiTUGYUVpLI6xTOzwaIldau1OspJF7BUlF8anA9WL+i0URANd29H1Pm+reOCcFmLu2zYpijFGUdZ9qsgTZ9FQIn75vODtf07SW6/3A9c3E7iBRTblnmlnqmaaed4XvRLlYKo55Zao9yVbye1PT92vzzvL97F3MGm1lka8XMy6/p4aih56nqTlKOwvwV31OXosP70m6MmOK979TGEY1x8pgpYxdKCutcSV0sgcuRIIpqTpKO8mSV5agyBTyRK0oshiYhoHxMDC4PfNsaNoVp+ePOTk+kRQkEzne3zIcdnz/3e85dDsaZ5jGSWrhzELjkzP4ec61qKy19F0nYKlxUpTeabveZVHwilrQv4KXFrHzPGXjrQhZWYd5nhkHKSw5zXNuby7MO6UdpTUxubKoPMW5FPLbtvRbCSG/uR24vfmey8trXr9+w6sff+T07Iiz82M5VykqK4f/JyHoU82OrDioUcFKKkhm4gb8lAoWB7i8uuQw7vn4kwsOh4FxnHj16i3/+I9fs+5bhttHbNY9m82a80fnhBBYr9fQRJTU/ey5vr7h3cUltzc3TPOAcQ3GWZq2h+AYp8g8BXaHgdvdnu1mnUCq7H9uLW20XkVc7IRZHHxTzkp9xYd5VI7aq+jQ6FlIX4xReUQk14hSmG8qBF0J3fIZFmdED/1CH1XhasUSniO6lPZqvpwEubUmG80VjOSnWZtSMxIAScYmjIR1q+DVFLfsGTPlHnnZYlkL7bKksimvl62MAjVrNQU/1HPVJVusVGaWd4R8ZZQr44g5ZQg882TY7yBOnrDzRB8Z51Bn86HGFt1rk/6TedhiNGR56IzUO7Jlccp2G1PupftaCVqNQKsjm7TFtICpmP5NnatSsedq9cnx3boPWfldKurVNwotq4xWmZdgvEQ2GWZDbk08h8DsPXXXmYdl2z/flUFxdb61+OhDhqbFd3lAlvGADKxk3N0fAzk61FbpD8sr8f7EV33CUEAqAv7TzHMftkeVmADlA9KVt6XvepomUZNJtUfaJp1RifqIc0QjjZXXOyc8Yb1uOTldYaxh9nB5NUm9upi649U1JauRZDoqfyUCM4uII5OAVuYN6VYlSvwO4Mk8sbq34hu4c7Y+vH6CO8oDP4x6FjOgaBmqTCjuruRHzdcTb6uNO6JoVjj8HoYyy7OUsLPFEE3CSKnobHZqxZi6I0kKi02YoTi97qswilPrdZBsNTG4Hw4D+/01TddjXEe/vuX88VMePX4ixebHPaujDeN44NWP3zIeGqahIcwz8yzRRyFISpf3Xpr3NDYZm7pcmL7v2lwc3FmbC/xW0rrahcjsPTEM2LYVXlwZCwIwTTNjarLifcjRTaoCKYZKS7i4+r6n7zvW2w2rkxMOw8Rvf/MHfvzxFa9+fM37d++4urzENSdsjntJ0Wsb2la7+005RVIixKsIRuOS01U7SgttBGeJKbo+hMDV9RVv3r7h/NFjdvsDbbfiu+9+5G//9lecnx3Td4bzsxNWqzVnZ+eEEFmnDsD6rHmeub6+4f27d+z2u2zIca6laVZAYBhnMXzPA94f2G6k/lXTNLl+IqixqTYPlKtE/xgl9FTXUM/tPcGdZcUiYEI/VOvE+mGqtPVkdNLUsaJ/lTvpCwuHud7R3M8cqh0TypPqDI17c1X4lh5lEsYRp1sQo3Ylf8u9ZUL5vumMWmNKSlkVrFDkUC23C6+3Vp3xBR9qAERUjBcr/F5lL+VI9jvzz/8q81rsmzjKtJzOMARubgLTLrDbz4Q5or1sCgSpeVuadyaJ5f1tGmcgYShS+nHirRolVXOyisrSXJD113qrMiGC8eVbUTGU8LoQK2wdC/3ku8flQ3IwyoJGy9cL9ipvF2xomJFU4DnzppAMnPdl25+6/unGJgWR6QCa9J564LRAbAgRW1XfzIA4TVoLsAqRiZXSp2Lg0RiMFiELQRQLxArYtK0okI2TZHaPAHZV1PTA54fG5eKbUsi61FCgHHrKgUxv5H9ro4EcpJCKPzvapmHdrzje9ljncBZi9JX3MTJPUyp4Lj/GwNnpmtatOD/f0HROCsJez7x5NTINDc71kp7nnA6MwkzrENAlUT9MBoZSMUHWpWCdJWPLzC/l5IOpioKaXAw0fWpBA9iimGWraTAVw7g7pnqd9bWSTpB40Z3Pl6sG3PUBuGtsUiZbxitt1WtDUzGUyvdcAuULJh8MEY10SoXj/ZyNIDnaItYrWs9PUkv1JbHAd2AsIQ5Ms+f1j1/zq792tP2Kzck5x6stn3z8OQbY7W75w9f/yLuLN/hpYt4f5JldI+fTFEWwbaUdb9M4Vp3UZdIudNZKC2lt/6wpqro28yxe7XE8MI4HhvGA91PC1JH97pYBGIdBio13Ha2ThvTWGmJjk0CXejAAcQ75jGm0kwAag/czw7AHIo+ePCLECduYVPsgcHu7wx4GmkYAE8bS9r0U4pwm/DTVhAKox0IiZKI8DNs1SixSh81LJ7thHNntd1xdX3N15Xn79iXOwDfff8d//ftfsdms+fjFczabNcfrDaebLW8vLvnmH/+Rb//wA+8vLzBNxHWWtu1pmzXTaBnGmWmcmEMyEOQOa6lw4x/j2ZViUpSkmqZqvvSBU1/TtwLK6lAtz4y2CS782WSOUiRZPg+ZISrAsSnVtRaCVIqYAAkTEuBRaZ4m4aeZaRhEsTVyNsQoo3OwSUBD41qCsfh5JkSfphTzuGqgE0lnIiknNgM1coU1Has1ViJx0M54EkERE1+IPlTPKVcGlA/ug8mjUnmXPVBUilbil85Z2q4hRsM8N+x9xA+B8VaMTfMY8F48X+Q6fVE3It8vsgyrXmwJ0Brh603y0GPAx5DPa+MEOS2cTRTyibm0VZLrpG4pBmwyCrTW0EXp+DrMDRGfoo0mjLN4W9LeitxJNJR+QoyZrxY5TwFKRhVPQ0PqmonF4lJYeMhpAxLR6WiM+8lte/9bXLE+P2g0bah+rwD03e9WEYaksxlTZFyM5LoTiqE0kkTPvEb5tm1L33e4phGvbtUiXPnyh6xvH4ogrmcoH0iGx6x4VBwrA1uNfpQxNE6cc33n6DuXzz/R50h1jThMWjg2RJwzPHl0zHbjOD9fM4wCiq9vI9c30LeW41VD27VSF66AljLRClfd37GCcfP2Lb8teDW9kgF8BfNNdR5rZn93n2vDoDbrUFms+3v/imVMaRrxzjjr94gaeXnnAwtcW/HQqDgzKV46/nT+JfJU5YmuSqW+G4lqjCYW5y9KzyEXBSfxRYluLK3sl/pUNdck95THu8axXvcY65iHHcFP/Pjt78Xh1La06zWPz86Jn36Bw7Db7/j+2z9w+f6Cdp5phzE/XyNGmlSfRbvOOSflCJy1qRSB4CWTHOD6GZNqioHHzx4fpYW5RAb4gg1DkDpSbcM0jLROOlU3xmoneqlNG6Xt/ZhqZSYEm9JNU821aNLfEfB0fcOzF09ZbzuMhdkHwjjCzS2uGQCJrm+B0HU4I47KaZzSihYNSOVHLttnLU3bJvwmOHH2c6pZEzkcBq5vbhnHA/z1wGrV8rvff83Tv/5btpsNn376nO1mQ9+09E3Hj6/e8P13X/Pm4iWH8ZZu3dKte1zTSo0rH9nt9szTiDET2vHWOXHsRxlkkgu1znkn9UkNgzVNZWot8jm/bmSuWj8seFGYrLHZ6ZrRWX5MzNFhyjMMgjfyyGIZo/KdEoxS8QdjKpJ/6OxTHf+Y8YRL9Cf0YMC5whRiMoEYwKQOohiarAwqjIgF8qVx6f/q1yBhqDsyQ6PMY8JwBqHNaKMYB00d7Z2Zj7wWJOqp1sP0ngujXb0kBjHaRImQVDkv3X0D4yCZDeMO9vtA8JHWiqGoAXKwVj1nChcv1Rar/QHpMmkgWhhtWgyTokJT/pvL9gb9Xsk6iEFsGOX9yuGGdKUzxtBYR9cY5mAkGp+A95FpnCVS0kHM2SMmy1+9r/K14AuGUv2rPgtaeL1BdKY5Y+UivzSiVTCUpfkQYLhz/WRjkxoSNLo9I80EahbeD2IOC7y7yNlMEsu/SmTeC3O2GEwVim/SYWnahja2uK7Bto30nvHa9a6qD5GeJgewAkCAdtgBNXjpaVUF0FV5vfqWpvdVL6aC0wSJUOnbju16zenJFiApQBNh9kx+lhDd5A2Q4p2GtrU8frTl9Ljj7ElPt3JMc+DqcubldwfaZs2qa+l6KUCY0r0L6MzDKVFPmVllhlHmUn6VNc+AwGqhXAU0xXNojdSgqlSltKcx8yNV8jKNJCZJ1A4KOtwlUWbDD8Ad5fSeN94UetLvxgXN3QfB98BZMjQqwJU0A6ULncuyXoZNXQ1DdV+NmJCuO2IMnSpjU462eEAhLVErMafaNS7RcwgM8wE/R15+9xte/fAHjo7P+av//n/iyflTTo5O+PJnv+Tm9loKwdvAtNszGJmLc2JMkrGrJ9vmIp5tSht0rpHPWkPT2ASUGgnpVG9klIimcTzQjB2Hcc9h3DP7SVI1Cdxe3zBPE+PhwKrrpQC5czhItVGkFeneC1CKAeZZaKRxpK5shraxOAthnjjsd0DgoxfPWB/13Nxec31zzRQC++sbYoxst0ccn0gb4W69oukaxsOBwzwngKscIKUqUZWkdgbnWqEua1LdBM8wjgzjwPXtLe8ur9jdXvHq5beMw571asVqteL4aMsvf/4VZ6fHfPr4GV8++4h376/5x7/7O77+7iXvD28wXaRZOdpuRddtmCbPbpikrXBIXSxNRFq+hpwWRoyl3k66oqmBe+XxSkSV2VEWvIVul0CrBjDwQHZ5vmkpaFm+towBWUa3yDjKc/Vfm/b+3mUkcsEIiWAzn0gd7RCh7ayl73uathGDYExluq0D4xLtekmlSbJI+WJejoQeslHTltbUamwKkIsj6/pqLTNAUm+MkUhYq55+oFqnRaRShBQGRb1sxftNVXw8rVuVZqpd5Bpn6fqG4A3TvuEwBcYD7K5nog+4GLB4bKMTNWi7cAFeid9rs4tKKtbb2xrZh9YabCN7NmuXFiAk+owVwWUlZNGfIejw8zMkHcfQWUtKKGBvHTEY/AzjIMam2Vlck2aRvGY2FyoQp46umzppTAZKCdCnWkTRGJpEAN4YGuNS2k4gmgBWmiW0qa5iY//JlQT+D18PGmZCMWLqZ+rf6xTv9GI+c7Fy7Kn3PKQ0RkhGJmPwIWC80FzXdaz8Stqe59TJJKBTT+qFIekO2H/Ig/6QIVI99JlNZLxXbhm0MnSE1jX0bce6b9msm7Q0UnIgJKcHUfk54MUz3XWOj1+c8eyjDa6LDMPMYfBcXXveX8HJ1nB+nDBUKgyeIxuydlHN745SJw5Jk9e9YiyFv1QzrRWi/DEjhghdIV0vddjpui0cdohHP4SITxj37njrKx0VlDXrbdWFqNjm7h1iVtzi4rU0IFTQiK8gfdOqCpDwV4VqchSzkW6iGCOOYcD7gLFzogGJxvbGZ95PkFRgaW8v576OmKgkXlnL9HvTNnSdKNnD4YbgI98edrx8+R1HJ6f8u//u/86zj15wenzGi08+5+bmmhAjo58J00hs96JjaB0myA4Tl9K6rZXfjRF6lbqsBtPY5LgTAxTWSo3LKN1qx3nGuIZpKhHiMRmFd7c7TIxMw0DfNKzaViLOY8GfIcJhjOznxAeSQ6irDGLWSB0VS8QYz2rd8MlnzzkMZ7x7946LiwuYYZik+vl6vWa73YgxJa4IbcvhcGCe5qQ2LB1KEomVVtsaMd5aaYA0zRKZNYcohqH9wOXlNfN84Ouvf0UIE127outWnB0f86//4hc8OjvlZLXlbH3ExeUVX//+17x88wPBzXSbntV2jes6jG2ZvRRSn6eR9Wqkaz2GmNNt88hMoYoseqt5LKJVvHx26Wirz5MQfeEJUVJA9fwbLRdSeB6UiNB8M9Wj7LIGV33FKrp3ES2SMYP/8Hd1hwLE1DnPWikzgLViULEuO1Xz7GQjRWYmJ5NL9dL8PMl5zG3VUkqZYtBQ8Xgja2FtLbdMcuI36bsSKBGJksJrK70c4bHCE1THjoQgeGa5d2XSoQoUKZFaie8kvNE0DX3bJ54AuzkyHjy7nZy/dWfpWtndLjsMlvc0SZfNSLweRJTz1howNjLYgkt89EzeyFnJ/qylMRMopYMWrxU83Rgx+nTOMNuA9YZpnggB/BwZkrHJ9yYbtXQdKGRVGZt8jk5S3TerDqnwejTQhKSvJd5ijcELo5GsjUYM8K2xtD+xGMH/qQLhi8lUgKM2AmTbhwKk2liR3ogf+DH6exBmogSl4dwxMbvsXn1YDufrobCvqBYTdEL62TJumdWdvytQTSz3kVBtLe5VjDaLZyRasMawWrVsjjqaxjIMnnHyzDPEKO0UTaUgybfToagUSf21ZrAVyqvGXgNHsrGonlttQCoW0ur+xnDnvFT3lLvpQVVFQA1YIsQi1O+zHMNPve57+fQZ8d4+13BFF19pthjBknD54P2X9KMekmA0Lejeh/Mi11ELukZl3+oFVgYnSn/wI9N4YH97ze3VJc2qp9tuaa3j+OSEx4+fsu+uuZrn5PENyjPQZg3O6ZkxWYm2qcaARolIMVYVHHa5aOkMhuCzsNICs+M0MexuubySQtv7/Y6ua1OqhpOaRMZCuwLbpegEWds5iuElpI4I0oJUDAzb7YanT5+wPdpwc3vE8c1RalW8Z55m2q4TIZnSp3zyfGvKbF0At6aXckZNnmJtJI9Rwvub1MLYe884T9jJgjM0g+Pq+poYA8fGcWUtN9e3jPsb5ulAjD6nqbimwbkWooToj9OU6tDJnn+IVRU2UYEgqjMSkSL0i3eX1wI03QFT+fje/Vp1CIuyUY3VlL/re4vSe+dmqpgkQXFHvFLd9d4c1PtS+Eb6dGp+IIuRzVuQa5sUvqhKSOY3FR+u+ae8VjkcFjiv1A25SycPLV9RvO4shS64kWfXn6lWstwnM3Mtki4gLwaTAKUYebK3NaqbJa2TXQJB3Qa9Z6H8mNdMHHIJ2KQ5hxi1rMXdmd6Z93IOUY0W1Q6reVG8m6nOFJE5hASm5Hk21pG6SqtLelPQWTtVdP9quq7npYZFvdVdnPEvdT1obKreqz29kSKj732/NgxUry3mFIuTp56ntTZH69U4QbetxioPcal7srXCefcVpYrSK3yYMaOevju4RMsk5Hp2Ssu6JiE5kB20jaVfNaw3HT5O7PcDh0E7ikkL86WRrCgMJfIqTya1dV5CyRJhU5iE4JeaLy+4dLp7SXWpljWdQ31INfcH1rceg55vXcb6ex++7hvQqrsubhRVQHzgPopra16Zv6P4hsS3YlycXdLcJPpAo3EkDV74lFk+SmVI+SOt2cM4r8asJq1r8DPzeGAauoShrog2RQm0HccnZzx6/JRxf8v+CqKfJQoyanS4zf/mSNgUcafnxxhR5k2KRDMLBS6SuyBXZR0MKWI3BA6HA9HPXLx7xw8/vGSz2eRy123XsFr3YC2T7Yi2LXXtIkyWXKDYWsMcxCG/2W5TjSnDPE+s1ytWfY8PnnGSmnmNS6m0yTk6z7NEYWlH5lhUw8JjFBuk/TbynvchG75ljyWqZPZGIp78BEaiTfdDw9XVJSZ6WA20h4H99Q3zeCCEGdPEpMhqTRjpPC1NaJIRxPwRMv0Tl7BYTQ0tZ+5DcuDBxyRZfn8cJaMm675RWd9D+gSUAo81H9HH1Kbih3BedR4X55hs8IqK7fM8y7PuRQ6WyeVx1ecs2zCU15ehL8dtytrqc/RexYFR/ZvuUvSx5XRrp6lJNKerkvfhAV6j/8oaKYYyec7SXV7SfGMykNfYKUfyUDBUxpgRtEC1NVIsXM+hyt6gc3pgB6Mu84fwh6mMXIntaYsL5XGB1PiEqjZfeUK1QvXeVPNSPSh/tzgV9XmKoZwxUoYE3Tqd230D2oeu/0MFwjXtQEPrQiaSxFxj5YGCQrg6rArAE2NmxCFI1yuTrLTBgPVzyvkONNYRm46u6+lWK2YzMe/3eB+lUKlxOUpHl7sAp7Jxuu0F3CXG+cFZl/HrXMWDK1ZH76VYcdAoK2NSgT0FdDYXPiQETJAUmtXK8fTjI158cszN7Y5vv7nicJjZ7aFpN7RNl7qHuWxw0ns7Kx4Uk9smxjzSUlSYPM/iMSugy0qELt7HnBKpYNMgIYZyIEIh8ryGcmmGnSh0GlWjBB3y/sqNbX6+tYZQpdZp4mzmPzF+cEM+dD6jCvdEb4uaLTKwnGOvIb/W6YRKdMGiKKt+36TiwxQGMTNLGHiqsZJztKV/bKlboIAskriWZoovUaiEnja5yHsIMA57fvur/8R3v/8HHj19zvPPvqRpW/7yz/8Nf/mXf8XL77/j17/6rxx2t1xdvGZ/c4VzlnXfFJpBgLcUXtZCzjaFmEv3H9d0WNeSfGO6XCmfODKPI+Nhj7WG4+NTDJbfX/ya1z/+wDSNXF2+p+vaFKYZOTs75eOPX7DZbvnZL/+M5x9/QowGH5rk8RuZ/Ixzlr5rIMJqfcSnn36KtfDv//2/FQA1D8zTyG635+s/fMP19TVvLy748dVrhsOB9/sLdrtbpmFg2O0wGNabDbZbFq+LURizySCRHIU2eykSGmJgs93y9Okzmtbx+u33DHHEbXva7YrZwLevX9K8sQzf/YG5deynmduLK+I80FjPZrNlszlivT5mvT7i/fuBd+8uGMcBE0aaVJwx+/0zcC+AvT5galgyKK8NUuw8BAnbT17jZaXfmBUavaXctj4L1WOiPotKcCyk/fKg1WAjf6xWlqszWdDWHZBx55bWSJH9GNkfBgGsbUvTyj2yPhMCfk7ANn3H2AbjYhlDJYsKDNH1UP4jZ0E80DHvw8IcE8ldgvIAqPlD4QW5GQUJcqpCkvPxJfVP5ICX97X4thVlS4FZSK81TlLAvLEELDYarHqcRBrhgmWOhafmIrKVYUaZtnViiYrBS6oVUToAR8PKGLZtiw+BwzDJmTAW7dSuil6R88nolUlDvaaVHHLypgvy0yDRlViLjzO7cSI0gXF20hUPg9MdMHVcezKKOVXqhJ8RxYOY0xJnn+tuWQyNifStxTnD4C3MEAn4aWIKgcZFJvehKL//9lesZHDGJgmVh6rYt9ajU8WtXtea5mKKCBFZkZRZn4q+plQKY6RhSjDSvrhvO0LwdF0n0U1zIHrBcBaR4Rab63EseNSfxJQFyObv6riVEVHJVTWkJgw1zyEVlnZJsQ/p0YqhIvPo8SbStYZ1B9tty+NnG568OOLHH9/zze/es9vNDINlszpi1fci9yzJSFBqejm7kBAFrC/WXde+8M4C9snnQVuJWysNDoRebWYbmhFwF0ctlaUokZ6Q11EwZ/JGO+3EpzesFLiHdqNa80JBgudyaq3uj76bFIiCh4uCR14bwQ8xij4QbRmvMwa0y1xVWiMCxqXzTyTElB49GeZU5BbrwIqRUSMlDKkTVly2Z8+XVdwqAzZIrTtRAyIxHBhuPb/+2/+dP/zj3/Po6QtefPYVnWv4t//63/OXf/nvefnDN/z6V3/NYX/LcHPJdNhJJ7WuLXIu8dfW2YSNbY76b9sOay1t06YoDlvMeDFKxEnwxHkmzjONbdhuj9nd3vLdt9+xu7ni1cuX/PbXv6FtWsIcIEQeP3nEVz/7gs3REZ//4hc8e/Ex3geGMZTSDdFLGYS2JcbI8dkj/uIv/5KubXhyfkrXtdxcX3F9fclut+ebb7/l+vqGN2/f8sOrHxkOBylOvruV6OvDIPM6SjpGTSGVoUDnN03S3XecJeLdNYb1dsPJ+RmHQ0PghmmGfrWiW68IJvLN99/w0hiety1T33EzToy374CZrutYn6zZHh3TNitM7JiGwNXVFd6PrFeSXqeGwIInHg44WBgwskFDanPFGGkaKf5uqPRBnXVRDUnElTGVSV6cWscSWs8KzH0nXF7MfLIWmKNAo4KR7hzhxbOAHIhBmrpNUXW7/V543HZN1/XYCoP52aONUUJy0KpzDsDaBmxKuYp1t8aEM1zxQik1hDxekz+vpXJmP6VIJJHMaugpal6RC94nY2Klw9lK5htj8ATwPuFQjUIsa6jGQ2sttrHgE/4KlsSsiMYweWmAYJwjOjUsu9S4gUV9NZ2b6g+yfsJ7WqR4f+8cqzbVi55nRu8lWjyDywf48YeUWQrktIALkSbttXWWaGGKkZthZtVYjtsmNWpI/DCCTeBN+JWuSUsJsBGZoxFx0Uv9NtEdJD2uN4aNc8xJ/k4JO47jSPAuNd34aaUI/kmRTWloCwtabdVSIKRV+DUn/yEFRA92TmfKQlNyuWOqtVIMJTF1QZM8U9c0hDkUgo3V7pjF49LOVQS5nFn658OQU49ypPJw600jaMe8UqBVDS+STuiSEJxtApFWiok1zrA97jg5X7EfB66uBna7mXkC5zpsSouytvLAmeKt1bnqe/Whq/9LBUiWYaXl0IcQsfk+CdwXTpofUju7Tb2mOqbqscUyTwYxNRbNCmT+yF2qun8Qi5X84Z0qQ9U5GtS4qcYmTL2X9XzKd/T3kECOxSzeV2ZWor9qBU8s5bo+WQHO5vGyigsMr5FsMZmjorSZfffmR1lNEzk/f4TdHvP0+RccnZ9jjePVq1e4pmN/c8U+KdJaP0D3wRhDkw0tNhub6h+hWZuZoClbKV1I5gmDoet6mubA/nDg8vJSBIufJdppmJinmafPnrLb7Tg5PeXx06c8e/aUGB0hWkI0jJNnmKZU9E6e45qWk5MTVquej549ZrXqIHqIUoS77zou3r3DWsv795dSA817xmFkGkamccJYyyrznZoyKNETqtgTJW0pxnwO2q5ls92yH3a41mGcxbYO2zcEH7ja3cDkOYozp2FiiDD5iIQOSy2Dtutp246m6YkR9vs90zjQt4HWlbNs6sEVIlzQ2B3qTgK5hMK6fCJjoa+KnkskXTkzpa5BMvaaeOc8xTu/3z3X9eCp7r00ZmXmrMCtBlH13bPSJeHf8+yTMTpkI3h1w/wsBWtYk1I2I+JtqmVSTMJzeRWluI6wTLKjmn4ukKy8Q+9ZrdMiUkZfj8r7YlZU0oPLHqO0UEanhqr8nahd05KxLG1zBGbAR+GbMRVuUp6zkAPpmSozsnkl3ctGMfR01jKlPQsh5no+eXimPLuMl9xsQ/8rQK3wU+36ZpHIJkckBphCwBntMGaz/InZg7HcNWtN2nVT9srEpPSH3H0NY/KaNTmFMi17TEZmJJk03HvKP+OVFjNJ3OrleOdH8JDUM6tHVxa/YK3738+WwOo1xVDOOlrX5OimYKPUvYyI/Mn+U/S4ld/TWB+OEC9yPV8mUUPFE1S5qG8r+IPcXKIYSZ2slnO4GDFGmjwYAs4Z+k6jmlo2Ry3mFVxeHtjdzvh5IzzYNQu5DFR/p5nWPOsD21YrrMoADVG2JxRFyWAxrszBZoNWifg2+ft3MFRdvy+f3yUSyjwjj9XkfcmfTPx0oZTeVXKq34qBPnPY/PddOaSGv/zc/EbBlMSEE23taEuZCRpxHE2SYcq39EfSOASLhHyWF3ICXbPEnCpyBTGGWROJ0UPw+NFz8folIFF9zz76mHbd8Ozpc/rNMRD5/oevwcJ8uGVKOFUipE0OsJISBC43RTDKz6yTzsZWi9CbTPf5PMaYI5ystXRtz2APXF9fcfHmFbc3N7x7+w5rLH6aCT7wyScfE2Lg7OyUR8+e8uyjZ1Kvb/b4IOlrfp4lrSWxk2615smTJxxtN3z1+adstxv2tzfsbq+5vr6h61ouLt4RYuD1xQWjGcVgdBikXuI0p5o/iVfd4e218SYivFuLhWMRg2LX0q9XBCbcriHgcL2jWTUwz1xdXmKmmXXrOG0d+xDx05jOtaXrOzGG2waiJfjAMA74eSTELjlxCrUqR1lwylqIZ8OGvKYyPcSYy2RUVqPyvTuR2UbINmMVfU0/kYuIK+5ZrN1PvSpmUysHdw0Vscy7GKZU9wjS7dwaQlxl/GONTevkM22GrK9XZzxn59zFjUtsoeNQGaRjuKPUSVZEEEmbZfxdDEUtv0i6Yp1CXniHrn+WFXmxyv2yXqZ8BXVBlbH7KOm63laBGFb12Iqa9Bmm3Ld+lk24yJlSTH9mqVfU97qrvH5IpurHhZ/GLJmtMdK5M0bGGHBe5qKOSm39IaxXbmDSQM0diSI6d1WnVRTPvK4OQ5sCDrLWmmUd+Jg6j/4EFPVPimwSYEk+vLIYJg8yoqAmWZltErER9OSUushyWHRfDaRc5WRQSpOVQngCDLWQcdu2dKue6COD0U4BqkSXqA01CMjTlwekzEgnUoSZHjYVZkU5NFhn8uESD5Cku0l6kEG3Ovg5gzz5icyT5DQfbRrOjjs2mwbbwDiPHA4TN9czh70nxpa2s+LZtmYB3O+G+MUMmpTw9VDmBJE8N1gamlQZPOwPHMaZrm1Z9111SDOuWkD/Ap7S60ZTTu6tKou24RkHh8wUM0i6x5FVy6lZfbVduiemHlWZ30MgvAZGJkUdiPJ1Z36meoCOpgJKdWHftKqpXoh47LSwZ55fkA4DAryWjF0EeAF4VoWbcBW5e4oQOOxvefn91/SrNVOcObp8xDQc+PyLLxmGgaPNmvfv3jCPe4bde4KfJa/daFcRVdKSh8KWCDwBFrrkZXw2McfDfod1jdRZqdITAA6HPa9e/4jBMI0jfvbs97fc7m7YbLYcDgPffvMtp2eP+fzLX9L3a4Z5lBQ1a4l+ymuxXklB/Hn2DMNE01japmO9OeKzzz/n6dMnPH3ymM8//YT9bs8fvvmGq6tL3l1c8PLlS+ZpXhTiHJMHSz04Gr4PpW6XDz4JRI+xlrbtcE4isHyKypMC/RbaDmygmcCFWZQgL55I1/Ws+p7VasWq37BabbE4Dvsd43igtQHj1Fic2vA+QPw5GsYUBazW+hSUC55V71pNk2KY1PMrx1wrUNaKBPmskBXgh6BRvPeXUfSvT7wvQzPvINN3vPe+AgVTCUKT1nz2gXGcktfYJSELxhTPqqA/SyoSmEKPxUCcTk9Jpcr/I9O68PA0yMRTi5oX0zovjZe1AS8Xsi2qjjIQOScsi0Pq66DF6xHjirNgLM71GNtkZhTmQJyvIBwI0w5rRkKaXcAwR8OYCpb3uWBqVKRxh9MkOWE06pPMFxsrXiwL3BpLIOBj8mQZiTiyKgjukoQu3+LvEk0rkbERZ2DVNXhgmgLTJPMYfcSamZVraBub9yoROFkXzry9AqV5YU0lspPyEQ0utVF3JHxhpP00MRCsyfvzL3ctAXweeqxaO2v9MmuklTxFvkedZ/11UzovOiveW1V8jVEzpXzONY4mNMko3uGZiYlHQs2blj93Z3AXWha8YO5jqIrPFGeHns1SH61WYgVD+bwu3otByvuInyOrs55nH29YrRum2fP27Q2XVyOHwTJO0hvIOZF52TlXzcCaZeFTY5LSoK/batCkGiRKkylX1fuC7/b7gWmaWa96+k47lcVqnrpOd3DGnd8LNC2rnOulZOWLku2elTFduYKzyt93CKY6MwtjVyx4DgTn1BEICiSNYZGGr9HQ5fwbFpEmNXbVhfDlszbJ1qYFY3zqjqaO5jl53kvzoWqqlS228AljxfljosWYJqkiUq9rd3vFd1//hn614dH+wPb4HBMiP/vZnzMMB9788A1X79/ip4Fxf4MPQWjIafpcMTJZ0uuuwdkGg60aJqQI+5iis7xnv7vFtZdM40jbtDRNKymF88xhv+Niljq1fhZj0+wHxmnP9mjLfjjw8vsf2B6f8uzjz2i6jmkaGacRYx2NTxEJ1rBar3FNy36YiOyJAdp+w5FxfPXVVzx//pxnH33EF198wW6345uvv+by8j2X797z+tVrMWZV3aemecrGDSrZYlJAwTzP0nUvEZCxFmsbjHGyb7IpqfYu2LbDYGmsocMyR6kpF2dP27QcH5+w2R7TuB5ig/eR8XDAh5EYN7nkg56lQEy17wrtLgwiSttJTmlEmhYdrOXUfeaaTmGkinJaHCbk8aVW64K5p99D/VriCXrzgkooNFwPQeGGKemjC+PEHV0opufFANM8i1OXUkbDOJedriJfDSHVUItqPU831miiOm20mM+Vn8d8xhdzrM99Hud9LJkNmPodQ8aDmoWj+onqvcZqZHOqtewc1jUYY+mc1HONEXwwhNlj5ksO8w7vLM4cIDmpPJLhMnlp9iVj0PL8SxqqZi20l1KCdc8aC72TLrgTUtR/jpJRYTGSnnuPfu5fRR4W3dUYwU+ttfRNR0MkzhNxnvEYphAYg7zfVBktWQYsJpFoVp2JFTbV9zRF0ERokOc3SUZCwlBEgrGYn2hG+qen0VFFNaUDpBE9MVkxY5TucGqJi9FkpadoGArOFZsbiE42xbmqxoMALWuQzjEx0vYd/WZD9AkYB/m+tU32MpiUguAqYFqPuUCa5VUfZCFuEVUY8dbk6JvUCcZYl2ppqLAThjBp/nNUIBkZx8A8R1bnHZ98eka/EgF7GA7c7Abev5sZhkDTdvSrLnlNSmSTMlcFSlEPXjqk+rqzjojkwyt9aYrXXXYZQ+TmZsf17Z6j7YZV10FqPewKP1yuUXWX+q5qSCzLnTxBUYxsZBqJSTmtDsK9jYAl0TzwEVPAmBrTNPZK6/cU630sjCoJPqPFHNN7JRgwKb6p4G5UPbSObKhoyhgJ3XbGSUHPpq2Uh5BSf+Y0f+kkQJ55soAr/UjRFNn3DOyE0e9u33P1/jVN23F5+Z6jk0c8/eRT/uJf/RuMtXz37CMuLt5w8foHfv+bv2Y87GldQ2sbjEn6bFqmiBhiXUpNyaHfifvonDWvf3d9JbWHQosx0nFRFYXb2xsu3r4Sg80kuf8i8AxN0/LrX/+aj559xJ/9xb/i//3/OeL80WMG75kSMnOyiDhr2W42gGEcZ6bRs91u6FdrjvoNT58+pnGG6AMEz+Fw4He//4b3l5f87ne/47/89d9we3PDt999y+X7Sw7DgWEYMr0Zk8JME+cNKYx49j51U5mx1tF1K5qmy8VZjbGpqwXYKF0wWyLtPOLx0sRg9jR2Tb9Zs91s2GxO2KxPMcZxe3PNOOzZdh22b3MahzVF4U+ElAW71L1IBVLjkl6s1jShKkZrNV6lCGnlFzrf2iiigt0YUgHasABbBTuYRTh4pp8HDu0dPIUabvSU31N6qnHktureJAwYmSZPjAdxLjSi2DgrtBsx+NRGNxoLthGwEGdIwl0jBdwCuKQ5qbGinlTmDwaJ8pA6YibUYcJlfWTvwkJgG0wKK66BUgLcqHdf5JjXNTeWmMBSvz2nadeiwLQtYfLE8S3G3xKmC5y5lLOFYcYyBThMQTq6GTEapVV5YINK+q5JY1ADR5c07UHPvLHMwOBnCRG3ct5zQdT8H/J61PgskowFSREwQGMt274lWMOtgTlEgokcZk8I0PSqpCwBZqabJAejT13JalpDZXPMUT0GQ4M4uxojzzdE5uDxwMpZiO4+UP7nulTexbQ/SYEQjKTYKSblOmCinvOEu1TIYihathpKFJeIAdNah1PHm8pJY2ibBgj0XUfX98xYxr1PCpeR7n3GYUxKajQRm/AERkHrA8pFGksGdMnYFEkYSD9vxFsaIzhsjnaL0ZSfGkMFn1PKY4jMc8BPge1Rz+c/f0LTGna7a65/uOHN2wO3e8s4mtQh2NI0VtJJKvCtGMrZEvFWnDGi6GRUnXiRqYxiijECEINEYt7e3rLfD5h4zOnxNsnV1CU5q2cFw9VLVmfsmUwfZayNcwRb0r71c4qh6kikiswKTlmQYPm7OCap5lYG4LMmVbiJOHwTLk11f0QJJtW7qtbISpFhdQ6gDj41YKUFcU0ryq91NI2kcoS5EYNrmPK50DOv+gaUYxAq4zZejNtYlxUhlXU3V295//YVbdfz8dUNJ2dPefTsI/7dX/0PRAO/++0/8PrV91y+e823X/8D03CQTomNy3QDJAeedmVqJfUIlwqbVypeKMam66srpjky7A90bU/frmSdp5nDfs84vEnF0aWcyHffRf7mb/4LXdfx9e9+xxeff8FXv/gF//P/8//F6fk5h8OB/ThKg5e2y3J0c7TFGsPt/sD+MLLZrNlujlkfnfD8+Uc4l1JrvaRb/eOvf8PFxQW///3v+Zu/+Vtub2/57rsfuHx/xRwk6inEmM6LyDUn4XvMPjCME/Msid2idFlM04JzhCidq6Mx2LYRGuh6sA1thBURH2fsFIjjTN90nD96zHp9TNuuITb4KbDb7QhhJIRTqUPqVO8RfBRr2WbKj0QcikGi6HGxwr3SQIEYMbFKqTbZHJQPprEPsL7Ey7Wm6QKvZX6fMl/Q1Oj7Dg7BHEV/Ij97qYQpD7N5LGUwNufWlhI1h3EiGmhdy6ZfpU5iopvHJCti0s98hf31adogpaSy6UBqnd4mPblanHTeMKTOw9WCVaiQrEolXGELBl5wyoUMsUlmROYwSg0y22D7HuMaVtsz2m4t0t+0+HEm7L4n7t8TZ0vrbjAEDsEwRmiiONU0s8Tl/ZGxKkYUfbuM0xoxnkYv9NNZWLUw+YRvEGPT5L1EPRmbdZ2HAPTDEcMpAg9oraRm03YEayRIZI74AIP3GAK2a7BNK7pBqGiKBVElfqr7LRtlshxJ0W7JONYZMco1Nmb+PnmJVlvZphST+hPXP83YdG+BPvCETE9KfDELIzW+ZH99Bv0xF6uzBqxazlJFd7UjCMMXJq+5o7E6IKowL8LK9TksGUVWEhY0Xe5V6k7FTB/6fjawVXUYMiuI8l3N340hFURMwrhpHat1S9cbfJg5HALT6FPxssJcPoyBl2/cjX2oP7NMcfjA3bKeZRZ/C0MporMoAbHmf3kUd5nD/dHE++8/pIAuxqYHJlnQs4L9wOf+1O0eAMkaoikAqPbOkQq8m1I8u7qP0nD+RloaEQJa8FK6KmBS0cz6g/XYFzy6MLgKouqDRajNM+Nw4LC/ZTzsmIYB1zS0bct2c8SwPWZ7dErTtFgfIOVB545dilTv3L+sXUar+QzN8wzjhDcaOUFmzDOkSCIx2mgk3+Qjsw9cXV7RuIZ3FxdcXV7Sth00jpi6HOoxc7WhN8j6asizeBsMxji07WeMhvVqjfeB87NzPvroGbfbLeM00rUdt/sdtmnxfmZOeepZeMSYa6352WcvHkY8rVIfowLS6cx774mpIHlu0ZwKZDbG0Pc9Xd+legdaZ2RknkZCbNDQ5KxMk3iUMQuqqFMx9XOFMMv5XNDyPcq6s59JVj7sobt7mYdl4l2SzGO98zFjFjw3GwLy+1RkVvhsfb8Ii3SuWH+55muZYd0fv8m/L9dXafghXrIQzlS8RU9lbnKgC5FApO5XZikVoFqArfSvtRANtu1wqzXWdXTrI9puIwXm2w4/eppuj3Uz1gqIyDp9FIO4jxETikErluqT+fP56bFwluw2MmUJrWHRHS+nMYrglXMfI/righwUyFSrqPuk79skZ1RZM0Zq0qTgwAUUzVHUtXC/v1H3lrU8ttQvcEbSiOW8+fxRTVf+l7gKF79zpXmWP2NegNLJu3ghdW4JD2Z+BuTWxoRACD5FhUsKY4xVEqJNXWbtjH69GMGiWHe0QFithMQPhfyXvS57ppHLBeOR+GgBwUaUHpbnTJ1ExQmTDFTWYFtL2zq6vsG6yDQH9ruJcQzEaCslbbny+byamnLrTVh60u/yo+UuLv8sEVv3pXb9UZP5Bnk9Y5577colY+PlGCs6iWWtyov3x1ecEoUvP7SDOdLhgffuXnexjHKVgl7yw8GIkbeOvMjzo8h87SJlAykFD9nPVOdSo/ce2NrcvU3pU8eziORHjQ8zZrYMhx2H/Q3DcMI8SQp+33UcHZ0wjwe222PGpsEpLed51nOvfqojsJQgMtd5mhjHQerSJieyrYwPakz0qZ6O955plA52l5eXvHn9mrPHj9nd3oqhOBk3TIrQJt1LI0ODDyIfUpSSpCgaJBsjMKcas+vNllMfePT4Mc+ff8TtzY5p8nRtz+6wx7WNRH97LzV8YuIzUXDfIrKJki6Zy0xonZ6ElUKQSCbl91qvjhhonGW9XrNarQCDn3yKtJoIYc73F5aYmQgPpSLpuTXVucpZGHeNSRVdPwCtqnsqXacoQ+4c0QdOz0IG6/lTuqz+d4+1GKqTlDBPhclqnqEB6/fmE2OKzgtLXqGTNAW/ZANSXs+KXxmW6xuXvKrctCxDLdbuOpAyf61Zbead+pklfjLJoFizYuMaHJGmW9Gtt7impd8cJ2NTizEd3k00zTuMucWYZsEX0lTwAayNVd1SXfx0jitskzW5siV57aWQ9hJvRiIBQ2OqL1VkUo+lxs1Z5i5WWINAtPGJpPn6KIatkJes8J/amJf/qf+txpOhdYQavwv8EwxV1iLmMjN3Kng8eP2f6PtbrMfYUJzvNSu2Jg9aI1pC8gT76FNrW8kvjaG05XPO0a1W4p2bG+wotYuavgEiXdOwXa1gnMBEfJCoBO8FOE3DJB6GmApeVWMwCeSWodpMKTFKa/YQSgqcpkMJcAItRuq9FARvwhaCeP/0kIQQGWdhwvpsawyr3uHWhkePV3z06RZM5Ntv3/D+8pabq4g1K9oGJBw3iGCwFTCrDq4xJlXTF0CZmxpURLKUdvKfhQiMgDVstmts27LqulSMvNQOKEBWu+Kl8Pi61bgywWxZXwwmU6+C+qyYpEnJ33cERTL0RFKEUWQpMDKgzeKhmlQlAmoDRgLRwSZvi5WCpOL5QLwuaWwmKUKNLYV7Y4pm05BZ+UpSYBLjlPuaAopSnREciabIZyV7AW1az0RfasYqayJM0DUtm0Y8WOOwY5pGpunA9eV7un7Fsxef8vzxU06Pjnn85BnDcOC73/0jr3/4nugnpvkAMeCaBts4IpbZG0yQ1qXOJsCShExICkuY4Ob2Fg4jptlAI11O2qZls9mAiYzTHu8N0cr9nLB6wHBxecG79xdEAx//r5/w+MkTPvvySz765OOKqSXjCi4BEFmP3X7POE1YZ7m+kbTSVy9/5LtvvsVZy9OnT9luNvz857/kz375c2Y/8/rtBbe3Oy4uLvjm22/Z7/d8+913XFy843Z3y5u3F4yjFB3f72+5vL7hdn9gN4xEY+jWK7rViqZb45o1IVgO+wk/TVxdXuGnka0PPJoDU/BMw0Dwnu2q56PPnrPentK2LfNhZn9zy/uLN0zTnsfnzzCmSyBCAWos4D8DkPqcp5DepLRZk+glFUDNdB5q4a1RAuWsq6IT7hpdFgBZzzcJMN6Ri3eBSoJxH9JOTAK2tcE6n8NE64tUqxoIJqDoA8whiHcozd9Yk9rvykzUcBGDXyQCKp/MkWLp9RAjcU6nNpLnnN+LAV9ZPmyTlBy9uVGFMeJckS3OSYvhOdXvyw4HkzxSGDCBaKQoZbs+wjUdx4+ecfbsY5qmZ705p+nW2KbDtWumw0i4/BX+6iVzM4mCgqR2tNZC9OzS2nTO0lnhW7mzWwaVBbgoYL5LcxYxBq0aS4gNMUamGAgY1k46LEoRyTmTWl7nam9jLLUUQT3QBYDFGGmtoWsbTAyMITITWHmJdhISF1keQmTWkG6/VPOIJV1Aeb5BCwrLeGyir03jcG3LFAK38yg1T6LhMP8ElPTf6sprXYG7RGRZ4UBknzoylMaDF6NcTKlkgkFCorGQ0vZLKodrGtrgsc6lSBQHJkq3p2jpXEPfd+ADB0ipxBPBj4BnHiPROzmfGvHoyeez7h6mr4XkNYkxYueEoaLWjkqAVzRUgBS9bukbUUolVVmVbolimmfBltFLZ9VHZz2r3vL4Sc/myDH7wPuLkR9f7hhHS+tWqQ6YREiGWFBPrDFrUsgFEgSwkioal5NKOyKvFryhPBIpEG0MR8dHrNaedd9Ja28pY5u/r4YYTemT9Qj5vgWz2fLEqJghZL5UlAY1bJfv1oYsHaDJkVmq6JVaKFCMyTkSBErkUHU06vMdUr2OrGwvZAjLiHtAc/4yfcZiRASJwlPl1to76bcGQhA87FNUeDAhy0ybHxIkcy8xBpvHpXsnz2raliZ1yb29fcv+cMXN7QXv372h71c8ffExP//y59w++4inT59xOOz54evf8ubH7zFo9zzEUeAcRMsUUpmCKCkn9Yrp+ngfuL6+wu4HhingWkOzaug3K9YbSQ3T2kfWOWIMNBHalaRw//j6NRcXFwze88XPfs6Tp085ffyYo7MzUXJTGp21MQUVBqZUmD3cRoZxrEfEjy9f8t2339C2LV989hmPnnzE+aPH/Ju//FdM08zr12+5ub3lbcJQu/2e774XDHVzc8ub128Yp4lpHjG3gavrK+Z5JOBpW8dmvcbPA227ksjxKXBzdUuYPePlDXGcOLcN17ZlH2b8NECYOD3e8tXnX+Kanuu3gYurCy7fv2O3uwQ8Icw5HTomfKp0WBNincKlKeNkeV9lhtSXOsSyYSSfxMWelq8ZTXCpdr3g9jq6SvQAdd6mz2pKZpUxYaPNOqbcT/WbpfGynOHqvdxgonx2Dp44ySAbjUhMcjJnbmAwztGkphLKs3WudaQYJPkDSZeX3xUrgur6pcSAvK/GY5POefpd+XOMaNRuCKnhljYbS9jQNU3mUQFwbcv29Jym7zk+e8bp049xTUe7OsU1q2RsWjHe7rn+fuLGjjg70lqHiZbJOuYgZuRbH2gC2CbQoiUZDHkRgGUNr1r+Cb6yGLq0N13j8FECY2YijoBxDa1rkqFW5KMah2uaLbaH9JxKKNkYaWOkDQFvDFPTYExg7wVHORdZJQwVZ5+zEiqIn7BFCUcKyVhtDLneoMhgoRFjJGp+3TpwLXMIHCaJuJpjYAgTd07Sg9c/uUC4AGbFsBluZsGnQjr/16SS36kDhk/1JeYw51op0yQtLcOcjE1NI8LfOXz0WOclTakVq5qzhq5tGRoBUIGQDVcBIdRYbVAh5gjGVu3qlYjIioWAt5IjLsxBgFzM8dwxtQkN+K7VFcjgRZQk8RyotInWsu4dXevYbFuOzjq8D+wPM29f75mnBmN6nDPpOVFAS6zGXjiQgDoUgJR81vuerru/3reWtn2LaRraVL/HZosLFYpYMnEtgMjinkLGkYrAq/Ev4Gksy54IrOxHvqqNqX7Vf3MdmsW1nP9dsSHbkc1DqZ6SRibEUivMAEYCU+VzgYDP38/KjVVaV1oKuQCvpG1ZqTNjVSqlwpcUJdemCQVSUb5YQGPMnxaFtW06YoRpGvHhwDgcuLm8ZLXe8vTxM443R2y3x5w+fsowjlxeXPL6x9dF8Q2pbpCKnATQpM5NOhd3DGwRzzyMRBuwbYMzEubdOEkva6dGABKlxpNJhfxjCFxfXnG43bHdbvnmD79nt7vl/NE5Lz5+noWjTLbJtCH8Avw4Mk0TWK3tYPj2h1f8/a/+kVXfs92ecHx8ypNHJ3zy4gkYeH99w/4w8OrVK87Oz7i+vk4CQcL43168I8bAOI7s9wcOhyEBJykE3bQtrm2xrk3dGwzz5BnHmdvdLdNhYIflgGUOAT9KXYmubTg9P2G1PsZZh5880zCy390wTQdJpawOZITFWalp9T71UhQWq9+rqUM+oWm+hebLuY3166rN1HevHr7wCCsfWGoy+b8f6q1Qj0QAhhbxLuMqioUaJVLBWIqyEELMtbNwKVhcBM5inDFaVd/ys7PCrvdMkw+hNryrkJdxLVIycs0bI50Bqy1RIFavl6BPkWPqUcaAw8m5isJHrDV0bYfrN6yPzzl/+ilNt2K1PqVt15imx3UbxtuBN5s3tM0O59ZJpkpKgxjNYYpSX2mOoqTbZFwq2l7Zc7mixQ0AAQAASURBVFPz0TsEl9PVraF1hjnAqNlqNtXcgGz0qff5XmTpQskrUWA2pvEb6dolxhOpPTVF8dBZYpazWmTz7rNcLlpD1e0UqPc0BkwMWKBrGqnp4D23IUVHYpge6hj0z3ypRzofYUp9sXu0q8pEUvJDkJpFEm3qk8HJM09jrvUEERtacMKXg3UEa8VhZ6VEgTQzaJib0mFVOyWK4w8IVbpHLKdFjQk1P4jG5Jop4u0UkFwwlMwzhgh+xgT5jMEQph5DShenOJK8T13e1NhkDZtNw/G2YbtpaDtLHCP7nef9xYSxLdb2WGcy3tRnZ1hqdG3Jh2FhWKnBwgPXgm8areFjWa06SQVt5OyV26mpXfFN+lHF5S4YQ5Uu/V384mrAXciPO7DwLnzKrLt6s1YalRcu+Tp5/RezqD4SYsRWxqKY14UM1dLDACnvkI1byThQj3Jp/E7PsA5V/p2RtGGpianzkjOvtQuzw1Ug/mJh6sdZa2k6MaQPwy3eew77HbfXO9abIz568TGPHz3h6OiY9WbL/rDj8u0F4eVLSLzERPHt2JTyGZLctRmHL/dBo/eGw4HoPAHhpbYx2fjV+DkXqxZMWVK3Q4xcX18z7A8cn57y48uXxBDo1mtOzs4wxFwPxkT5XSNaVH5q97VpmvAh8PU33/P3f/crttstL158wubohJOjNU/OjogxcvH+it1uz48//sjp2WnCUBCRlNfXr98y+0gIIzFMDMMhGQMlzb9tW9q2xbkGa53UoDqIw+6w3xPGib3rGByM0RP8DHFm1Xc8evQIQ8vV60tub3ccDjum6YAx0iymQJK7dHr/MhnMx4wxVFf6KVehnfoMPPDdBUmrDlH4jKXmsTHRbtFBrS3dQxdADUrUklnScvUJ1OkXta5ZhiOB6KVLpg8zpEYiVnVFfZyxD80qzzab3VWN0blQRIEYhovOmo1eer5Vp4nKhyAE5UdFnpjUPECKuIdsbBIIbzPqNbGhXW1YbY84On/C+bPPcG2Ha0+wTY+hxcQ1Q7ej63+DNSus6XApws9ipZEAgTEEPCm1X3VR/bfaknK+l5sUZWVpECNmYy3JPJHcDjZFE4tGGbxKeCWZ+6uvQQe1nkCMNIkInElOzCgYcI4w6fiT7KXCN/V9xODq8j214VDtXiksXXhL66TcwzgbDrMGDQXm5Bj8U9dPNjYFbeucQrRljDIc7zU6KTBNo4SJGiPFSpUoU1STT8LGaz2bWCKJon5udhCkMKxNgMk1Dd4LKJn2e/CzuL1lNSAGYphFME8RZrME01m5MGh9GlVC6sU1aOrMMrJJPXx6mGXOgalrmFLOslbcFw+DwzkBiH6ONM5wctKx3Tb0Hexu9kxT4HDrGQ5IfiXCBLyCkNrQdMfoI9MuFudsgb7DMpZhectLX2+cGvE0ZNlUoEFILTPtgl6Wz8nMojClReJYerv+agxVy8wEJvLvkWxMirGuclTSoAqAUfZTz225BhiDCcUST9rXaG32MFAxPfU2BP1sta7OutS2WVMlk+CTh6WaFBE8hDr8OwliYsqDzgxX9jcXrk4F1XWxUoBgjp4zBlzjMEEKEMfomacDr374lnmaaFZr+pNTAE5OTvniq19w2N3w7vV3TONAjIFp9kgtogZt0W6dyzRFUkicc7LmiY4aZ1l1HSYE1us1m82GaR7z3DfbrRhrnJO6R5p2Nk2EELi4eEuMgevrS8bDnv0w8Ob1W8Zp5uj4iO32CNe0rDdbASrOSa0Wyplw1tL3HU3bsDvseXf5HtcYtkcb6Yg3RWJ0rDdHfPzxJxyGA23X89nnn3F5eckXX3zOfr/n5csfuLh4yy9+8QuOj49Z9T2b7YbjE8/l9RqQmgTjNIOJzPMkPMIaTLDYYLFB2sc3IXK82fLixQu6/gg3tszTxDxN0hkkzEj9E5vAZCWoElAsXti4+ElEnM5G8s7lg6j30Xo6tQBcGnCXelRRAD8MYuovlg/d/WgRmEvdJS7eq8LHzd37FKVQdAehtzzemCIkAjiXjJgx5Awf7RQZbUypGOnwJK9MVqoo57T2mP004PnHFqj+VKy43nJ9iOC6jrbvaPsVJ08+plsfcXz+Ef36DNd0WLcmmhZDA9GJAW2O0qEoGVUkOkLrh1gCLqXTmeRF06iRSjmOoNFNRaknCz6RzbJyjTWsGid11YLw/NnPjCBRkIt5Jd6avX9J68vITNcaTAxZzqlhKxiJhgzRMMfIMEl9g86ktFrhcIs90CLWIqN9SrMVI7keC/XoqWxsjMFYi4+yPiHRgP+J+/rf4ppnjdYqEdeKjXyq/RNiwM9TSoFL4DRGZj/lMgPeqwdblclA8FUR3xhxviFGSdeRznPSWbOZGiKRaRyzQp5pNgYIU2rSEqRdcpbiLDvr1AaL/G+doqIYKp1tlfUxEr10Q7KmwVjHNAl+muc5N9jQWlHOSfFaj8c5w/FJx/lZj2vg3dsbhsFzOARilCiT+iRnQ1Oiu7q2aAbSiZZMqln2AXiTFayFFlhukutqWo3mr3jvPe5SPeQ+7yn4Sf80iMyhilhYyorlnOurdNytjEOVXFFeWPOoNKXSPDe/WQmKO4rjXQuL0TWlLkeh8zVIuUyNdlBS1DEaohPjQEBox1iDsTHVpfF5YaxWdc8qETlaQjMplOMACX/JHlnXIHX9DH4eGA7ww7dfM44HqZnXrwghcHb+hC9+9mcM+x2X796IYRck+tUi3R1di2uk8L7uPxHp9OkQI03CMa5tsG1PjIFu1dH1naTxGXGwb4+29H2POj7mWWphHg4DwzRxcfEWY+D4/JyTszOGYeDi4h3zPHNycsrR8THONXTrVSo3IpkhgRLR07YNq/WKrmvZ7fdcvH+H92OqYWYY50C0DZujEz797DMOh4F+teaLL77k/ft3fP755xz2e25uLtnvb/jqq5+x2Wxom4btdsv5+RkhTlJPZvREG4g2ptpFSWeJYH3AxcjKOjYGzo6Oef7RR3hv+e53V4zDkHTKGZvqUrpKfum51A7oFbyvZD5/9MpnUIH2n7xqvqI6RdHR7p1oo/SnelrI/FHGlzhw0uFKSPkSJ5V5CANZZHhk/rScghhnNco6JB4ltWp5QG/KkWA67jx2OY+Fp8q/IUoknb2jbxWDzJ2V++D6JoxC2QPVZ5cOQ0O7WtOuN3SrNaePX7A+OmZ78pS2O8a6FuN6jGmJsSFGgw+KE8QpbOQ0isMrZTZFAt5EPMXhpZ2e766r4Ngq+6eSbyGljrfWENpkZPXpHHsvd5SK+SIt/wj2FJ20GL5ilGirGELOwnFWDN3By/3mEBknKUXkYkXbWbapCasw8JypYwwmuoTjE73YEj3aJBqOqQaiwkf/pw5Yun6ysWmapGNU8DMhhUhL2KdYy4UhBIZhL+041bgQYz6QMQZ8Ch/LB7PqmlT+NQx7lwCky4Cp73uMMRyurgijVGLPhw5P8IOEek87eYa1uaJfARlF0au9sZo1UXveo4ah5vEXA1RIB250huFwYFitmHNElRFhZQzRS2cJZwxPn6548mSFbSLvL64YDoGr9zO314bGGdouLVpSojSXOQRT1kyVB7QGlJVpWjUILYk1KkHfIYhqC2ibRsB4kfqY1L1D/m/z3qQbV3xE19KmA2CyR7H+rFFGi4Z5JiL39xBNPgh1t7rs3c51dIrhSEMOl1EG5b51+gZp+UJaV2kCZQtDQ2hOvUzqLS7CQjr6KKMX635h+MLQfbbqS3kQLegntCr1fAojN1bCI2OM2ERzdRFMcp5sUuRIhV6NIfhZCncfJn77q7/lt7/6O04fP+WTn/2Sfr3l2dPnfPnlL7l4+yN//7eRm5srdtfv2d1e0zYNXdfjnEuGnSavD7F0YEsBURAjfdNwvFnTOcvJ8THjsGOYDrLHxnB+/ojj01PapqVfrfBegNJwODD7iW+//Yb3l+/42c+/Ynf7JW/evOU//uf/ws31LU+fPuXRE/Eqfv75l2yOjpJhrdQ0iDHSNI7tVtJQ319fshv3kmbVrmjblqbpcK7l5PQJz559hDHwV38lyvrN9TWvXv3Ibr/nN7/5Nd9+9y3Pnj/n6ZMnApLOADqub64IGMbJE+LMPCevLEaKy0eLDQ4XIq2HLkSenp7x53/+FxjX8/K3t9y8PWSw5FPHPedsZt4VHlrwxFAZRTPZZ8mflI5Y1yjQw1nouzpMi+u+MqZ8uP5EXPydSa8a0DJ60BSgVO5+ZyAVv73Dj2IsIdk2iremZjE+SrcQB7RGItxCMGhem0n8L6YuMxnoqLakZyouDU1lDuEO/6lZZiyrdkcTrSFIvlVcflCHEhIP6ddbNueP6DdHPPvsz9icPKJfnbHZPAaTDLsYommJoYMw46fANE6EWQ2WYogBmI1lMmJAmDEMMdIinVF0v7KyWdcLsxXQjZEwz8zzSDSWVdPRNQ1McEiNHYZJvNKtsaxck5bLVLxdU4tSdGa1Smp0MNGI+y8VDHXJOBSixUfDEOBmnGmNwXUiP42tGjekM2JTt9mQaqiN4yjpTG0jsjufj6SMWnF84SRFoUHSH6R1sOdf6hrHgRhTnZPsnJsI3kvXoHEiBs80DvjZLzBU8JpWoD9k4kqnKgNTwQWiuCqGwojBybU9ETjsdmiFCr1M9Jh5lDWP5NoQGnvr1VhDEkOqJEXyHuvA8jkLOv6QDU+aQuWaHtt0DKuOcRiFxr2kOFkLrolgUhqen2hbx5Nna168OOLqas93f7hgOHhurj3edzgsphHsVs6lRhiabNhT5S4iSoNL9Hwf9z8Eoit+QOEVttG296XkwoPMN2N/szTA1x8wJB6fXrUmda2U2mxqSNF1X8gIKhxL4XmVLlxmUuO0WhboaIzGZZXFiQLGZI9jUfjTF6rvCmaX52s9H5OVNCmoLWPQtBzV2b24/SV1DoNHUofFlR8IwYqxFjSjUZxlaT18VMdFwKR6YFo/SFJGZJaN68FB8J5xuGU83PL3f/MfMbbh/MlHfP6zP2e13vDi4y/44qtf8vbNK/7ub/8TtzfXzOOBeRxoXcu27Wi7jrbpaFJzGJ+6UTtjwIiBxVuJJu+7jtXxMc5Zttst682GaZpSDUzHR8+f8/jRI3wIjH6WlP/9nvfXV+wOe/7w7R+4ur7i6OyU07NT3rx5y3/6T/+Zm5sbPvv0cz75+BM22y0ff/IJ680G2lTgGYjJibparTg5OcE5x+XVJXOYubk9lRQ/19B2gqFOHz/l+ScvMCBz8p7Lqyu+//57drs933/3Da9fv+bFJx9zfnpK33Wcn5/x4uPnBDxTgNvdiHER2yDFlBVjezE2NSZy1HeYJvLiyRN+8fOfcxg8f/u/f83tzTXDYU8IYz6j2jwnRkkvLli5EHiIARP0wN11wVdH0pgqFdNW5+Chs1+fm1JjKy6wRDkHC40mG2Cq+yyiqxM5GzWFhHJuHxxLBUbiEo/pvFSHDYC3XtLRAzgnhdohJCdy0b2xhsa6FL1a5qARs7mGXiyNlwglGKAuSVBA1B2MlMdfeJXqT/JaMi4j3d5MSDqaESPZ5uSMs2cv6NdHPPn456yPzmi6I5ruVDCUkWCAOBtmj/zMHj+PRD/jkgG6NWJS8mZmSjhgihId5DC5oVLmpxkPCs7BkppXaPS9lPKJxrBqO1rrOIwTo5eUs2GaCLM409o79f0evIzq8DqIRDMp6tsi+kQIMKd6z8Mc2cWZxho2jaOxhXcDkjpZ3U+yzTzTPNFQ1cFO9hqD1tYU50FrDCYaGmOJKZ15CuHe0B+6frKxaZ6TsWme8akVphqb5nmSArhBIhikdlJMO1UWR9LdfFo18qYtjE1JCJOEsAlBCujZgE9Kd/B+2UawUITcJ4r1UoViWr0MhDKhVwJU02RjxWxipfjrwbprbNK6NtpqPVupVbonUO2coW0tfW+Z/cywnzkcPPMcxeuWz+hSm1FQ96GrJta7kU35W3lOS9KOFZfJBtB457t3H8LSM/jAB/RTD9xIabxEMpSpVYpQZk4VuM3jv3/fheJ7h6OLTvQA6Ktyf/K6qcKUaKTiLXfWQ5UrDXs1OqsMzo0pBqoPXtHcX0dl0GY5PkwN7GI+K8qOQozM04ifA/1+x2F3mwDbCU3jaLue9fZImMs8Mk0jjRbCTl05cghvWp5s35BFzoLDpOdblwr1p3NpkK58XdeJsanrmL0XA1DbgjEMwwHXOIZxSDWnRqZxZJwG9vs9NzfXEOHm5poYI+2qp/O9CBsraXTWWPpVL8aJ1JnNh8A4z6J6pWLiTWOTEc3QdV3iMYZpmlit9zx58pRxHHl0ds6qX9G1LatVz3YT2W7WnBwdcX10hDEz4PFhZvajGD6NwQPRWLquAxybzYaj7RHRtlj2Eu3opbNU9lzZomRkw02muYo0amNMRZV3r2xYVXq5A04eBioLipPnG6qz+NB5qe63UKRM/m8OOf4j/KrSjArTL5PMvLO+RTZWmJDBzocYlKnvmRXiPEuKXFo89t6Zy/eqQBEs2EZ6vUobjjE/pY6Yyl45Y3FNS9tvaPst3WpL129p2h5jpW2vrww4cs8UkZGK0OuQdL3VuBBjUnNjlGih9LlYzzPqChfwt1jK9L5GXDojERtSu1WUOGdLPaGyRsvLpHUp1ehjLXaLgp7GmZ0BRHysEkgqMLYgzSXp5UHUEiJvpwL/tGYOmZdLlbP/GKn+t76maYQIs1e8IAWAQxBjk58FQ83TWLrtJRoOwSflRFPlWK5FWiEtwC70lmRQCGAC0QZy19EQ7jeRiSL1FttVy9aYokzyuaLIBdG+CrTLL1eKWY7ISuckeAhS+9JnxS0ubhljmlNjaFuDawyuEWXysJ8YDiEZKwqWy9NZ/LHci7tke5esFs6yxf0KL1FcIg6j8tFMe5H7tKrf/QmEdx9jFV5DtbZ371Xw0p3f/8Qjs+GrmnM+gRWfDpUxua6DlVNdWK6vnsc8j3zLwkMWurreweidlJ4NMdrCVyo5UVHp4j7LFJ0kn3LUYxkDCZNO44EQDKvdLcN+jzWW9WZN2/X0/YrN9pgYYbSWEWjaThqKWLdoJFPS1ku9LBMj0SQHCeQCv7YqFm6tFQzV9/jgMbNg0qZJKbExctjv2bUt4zAwzzPTNDKOA8MwsN/dcnN9nR1r3nv6VY8PKxlTOv/OWtarVcZ+IQTmeWaYJpoQJWU6KePOtZL23XWprIRhvz+wWu85HPbEEDk9PRVjm3OsVytOTo64vj7i+OiI/X6HGBwD0c6iS8ZIDKnEhLOs1x2md2w3G9arFTHVBZznOfFCxbzk9bwbpXiX6PSdrLBz96wsD+iSFip6vEOfNV8rQOLu4VqWLVi+o/Iq8qEPFYmo4/kJZ1ghZb7fHaN/KhkSYsVjKZ8XnlWdmTz3xeG8x0t1XLJ8ZQAm3eBDGDRr8AmEZHmiK2DKGRaniTgT265ntd7Srbd0/Ya2W0vanG0QRlwCJTTqKKZahgU8xpRGlzBWNY8Qc4yKjEF1eh1jwlBa06nGT7pWUltUo4JSFkyUDsTG2txUtoariyuvc+KplZ5eYE8pFi68sdSzyqaP+ub3nlNk3JL2zQLwZgdW+oZ2cg0pgj0SH6Tzu9dPNja9/vEbebb3+fBnD1EoaWZhlvpLSs2GVMvWSOnfmGpJqGKilrUQC8g1ViKDJHwsSJHDaPGpgISNga5paV0DxqGNrl2Q/O7WyMQiIXnAgYoxhYWSf9fooR8vFvOc/48E8MqGCvFM3nMYB7phz2EYOAwjEBknAZFdYzheN2y2ju02sO5n3l4MfP/9jmGMDAeka5g1kqp493CroShzhgipYLkWMzAhRVvkGeWZpflqBI5Yi8HkTi+5laMebPkLKZKbiCwZwgLpJNYLZjIeTkK8pMYtlF5d/5i8EVHDnAsT1eyLOjw0A6o8s/xHbumu9687YNgqVSmvh3OJKaqwknTHpmkpaW3JY5JoWwvQyhj0fkZjKgjJ65sjBLK3r2ayxRsdQgq/TnuyUHKrM16maVI4p9DHNEkqV5OMRAakcxURawOhjczTLS+/+TVN2zHcXnN7+Yy26/mLf/VvMdby+vUPXFy8YhoHdlfvmacpFVmWAQRd8IoBET2EgJ/2HA7XjOMkNZ6aFts0NE6K9626nk2/xjlH27RYYzk6Pub80SOmaeLi6pKb/Y5Xr1/z5vVrDsPAkyePOT4+5vr2lt9//TXOOf7whz/QNA2np2ecnp/Rr1Y8efYR6/Wavmv46ssvErEIT2mbnv1hx2Asbn/IoO3qpk0dIFNdqRBw7YaNW/Gzr37Jx88/YbPd8OyjJ3Rdy9nRzDDMPDpZEaZbLi4ueP3mNW/evuF2t+Obl9+x290SdgPv5wOrVccnn/2CzckRf/5v/jVfffIVwxj4nX/N+/fv2e1vCExgPK41tH2DbQw+eCZvEw0rmLbFEKW0nt4uRpPq6CU5ppEl8l1N9S00efcs6pZaIhpsIrLJLM5j/mC+g3IUc+9epHOrMjKfdY1OjDEryRmQW4vVAttJjihAqgHflNKL5Hw2SEP7mFrDC5/XH1IaAKn4JCYSbPIk2KSuRQT86tgq5SMhJJxxaR6anlF4pa5lqM5I5mWRlI5K5kPGGGzbYqzl+Owpjz/+Ge1qy+boI7r+GGubVCcgimfJWkmRDYD3+OHAeHvDPByk5loQo4/VfYwCMDyRISmkK5MAkw4dPdfq7Uy0lOZLAnIim2UsszNs+gYfokSezFIhutMOm2quMEEz6xeCVEGKc43gP9J6ANYZGmuYY5D2wKnL0Zj4obdWvPBR6SK7cKq9iLiuoXMJVJcSiSjwjglw2RhwcaIzcNI5pugYPIz/gjWbfnz5rYxegS8SsVSilVKxWwmjrCajnTrlPlGj0oyAVlUUI4CzKerNQLRJWwgQfKJlSeVr4szKNQTXgJHaCwAN0p65IeKMnuE5gZ5YieC0bkk4mkiKjK7ejxBSUXGNbhc6VSfejJlgnEYO+5F9P9GvZ9ajRIUMhxHvAydHlvPTFZu1w3LgsPNcvT/w+seBcYpMU4trXVEuSGm3KHZK/ABpmW2TJSgnAkR1aJliJKoQBxR+dteIE6Py0GVEX1ZIc2UFubEPkhJYqWOZ/2RtIp1hwZkyLuWH+uNDwqeUMRXjeM3DK0Xpj5B6jTlzm3MMNmmvMTniZjxyVGOqREKu0ZMfn57qE3/VZkBZF614sZYVEfxIwVoxpYeknxhTIxajHWoTxw8paiob902FFy3kSIukiHnPNM1gpHyEdRI92XWtQLHUZXY8XPHN7/+Otut5/uJzHj15jmsa/t3/5X/EAG/fvOT9uzepY9wo+LNSclXBlJIIifa9RDbOB8PBWg77vRh9E1bp+zbhUYux4IzFmAZi5Ohoy9nZGc45fnz9iquba7782c8Y9rdYE/no6RNOjo4Yhj2//oe/xznHb/7hV7jGcf7oEeePH9H3ax4/e8ZqvWa7WvGLn/9CZFOTIkhdw36/w1rLMI4413DjHJdXN1hrxGnoHPM8JwzV88VnPZ989AlHR1seHZ/Rdi2/+Ooznj46581XH3Ny1PLu/TvevH3Lm7dv2e1u+f7bb9nf3uJ95NIH1sdb/uzf/hnbp4/483/9rzk/OsX4W6Zh5PrqRhyUDtrW0rUNfdfinJXmAXiRM9YlhVwjM/J/UoAD+YzoCdaKW8pYi+6xdOwuz0hcYBr9YJ2BVyG3xEpiqZ0Ti75UfyhS7lXuID81ftJUOJPnqY7Lesymej91Npwjh8MsDp6VJYZk0o2VMyZF61gnsmNhcI82zbMYcfChrE7FF9Ug6LS+UhCMZpLepKtfbp6ZRtbRXSNRyiEEgvHYpqHbbnFdx+mTFzz77Je4dkW/eYRp1hjt1EuKYrYWZs84euI444eBedgT/UCua0hMTYyE10VgjjAGme5Ka/miJU4gd0Y2SgeJfJzUbGui1INqkm7iG0ffpSjsMdVYjBFnQir/QBp3io7LMkZubFODqWhFDzSYFPkvwL0xhjlIoMuMBK1MBilIb51EgyYMJVMQx7cGVxgn59qmbJtc1D01a8qG/yilGwyRzsK2bZgbGGNg+mOCpbp+srHp+vIiDaIoMymjKROagA1fDk0iHK0RoUSYmYKRfEpfVb/Ph8WWAyNnThZUnhNonMth4pGiXFjZd13jXCxPgU4GEhVgWgCIRHqoME+HXIWrGhe05d8cfUojnHLtAQCfOku43rHZNmw3jlUXaVvxZl68OTBOEOjEK6IHeLFxuo41y6veU4NTLu5WGdZMZlXZMJZYQTnUecKhmHIxeSz5maZYyMsmaRRZ7UUPGcLlIVb/CvnIuuY0s5hnkj+sI0m2q2pfYmbWi2WomHKZQ/mU/qaeo2K5T9EGiY5ynabshY1VVBtFsYTs4dHIBl2Reg0EJNq01pp2R/pRRaMAJaPm4zvKfPKdpihCDUkndedKXXyQsyU1PQbev71K6acN0UceP/uITz75S1abLaujDf3Rht3NFT+MgwgwfaqJ4AtgzW6dkIxN88g07plUubFSQ8clGm6blq5psc6JQQwJ2d4eHXFzc83t2x17a7m+vubq6gqM5fj4iM0m8P7qitdvXhO8x48CyJ88fcrTZ884OjqibTtiCJyfn/P48WOMNYx+FAA/S8FvWb1JjC/W4vYNxkr0UZPA0rrraVrL0WZLY6HrGrbbHmstxxuho+NNS/T/huvra377u6/57e9WvL+64t3NlXjhJ8+tlfP96NPnPPnoKS8+/ZSn50+53Y3EALvdTlod48EGbGNwrTB4DcEu0SkVv8u0HDN2zV6whZAu/NSlYn8RxQXVPfTwPXCZjH6MOAJitfflgFX309cKulLVbRl7lc5KXNa+E5Kxedw21fXzoRg/ij+PzKskpdzQjp7GSoHtxprMtlS5NClNK49Ai4KaqvCyEfCjjohsnEuCX86BLeAoJq5kCn8u3NHkvzM2S0ZgrUuEMakDZMN6e8Lxo49o2g3d6oSm2ei3iUj3S5Nqs+EFpPppwo8DYRKPsAFtUpqjUwSuwBQlBFydOtUGZcCrEblZsTVqGBMasmnsrTX01jKHyDDCRMBFSXvLNJspIlRAqYwpKs9Nr2hx97x/0dDYWaJ7gRlTajkp74lF8cZANkkasK2VTp8B5rEuRl3RYQaMnsYY1o2jS6Q+h0qu/TNfV5cX5RxGlRIh04rR7pIhqJUhf15kVAqfEe+dRIpjhJaToUrq4NhsHMhAAJ/4ekpXJdBZy6RKCXprk7oSSph+IErL6WRQqrGI4sEsl3X/VUbrW4rB0ne0u6xPBkaJzpgZx5lplM5VMQamSSJD27bn/Kyj7w3GzIzDzH43cHU1Mc3SYcw45ZKVEliDh1jx2cypEm1FjT4pk6u5YMYpGY5VRnx906SfvJLJSZWLmSgmCPkzlgrf5l9sfl79luLiiMlp7eGOoVSgRKz+rpDTnyBx3SOruSNqM8lYqbQxWQwZUXwbVwpaq7GvLj9R40l1amhB7fyTy0foa+qttwtcFWJijSFKt60Ys7zPBrdsQCgOECK5doo6UU1MzslUQiAaqcc6T3suXl9jbcOq39B1G84fP+HLL39Ov1rz3XdH9Js1w2HPu7evmYYxOz9yWLgsTlbOY5Cu234aiEPDNA6Q6ga6ZHCyzuY9ULneNoFVv2Kz2eL9zOXVJfvDntvbG8ZxwACnp8esVj3ffvMtL1/+kMsXAHz04jnPP/6Yo6MjifCOkdOzcx49eUwEDtOB2Yu+Mk4DYHCTzzVCJQVXosnbrsMaaJuO1hhOt8d01tL1LdvVGucsz58+5tnjRzx9ckpjI5dX1/z+66/5/dd/4PLykvfv3svZDp69n+mP17z42Zd89MWnvPj0U7brDfvbCT959rs98zTjrHSjbJqi9/kQwJd0YZXZmQorefTQGZEtEp6xlGflHrB0/i2d4CWoQmlNkcHiqZXszWdG7xjr85o+XGG/MpdlCrU60wtfKM5I9dob9FxLB7kp+uL8MeKUaKxiz7ImOSpPHZ8V3MvHK0Vcl8ACqg+kOVp1+KWznNbo/kpUGCq9plhEj7JtGtrViqZfsTk55+TRc6zrCKzBtGgQRXbwOcNsEIPY7AnzRJgmYkx1nYWrYJAAEh2Dj4apVocpATMSTEDiIyF3TNeastaIUQhTcGlrJdvD+8hIwAdSUfJ77t8si5bLk9KOdRRGjNAYI0E1SWU8GJu6wYqYr8eSZW8Rhml/ZdaukcCFECLzNCeaVsRm8jxTyAONsawayxwhhNRk5SdgqJ9sbCIkb0xUcwsqeYvgJovUJJCTYArpQ0a2V8I5BYhKvqAIDGdUt7VSDC6BADUoKUgpC2UquVIJtLToIcZUZ0C8vjGqB9gUHKJANi2WQgEhLFlET8F+qeuwCLwg959TzYWg3kiStzwEVn3Lo0c9/crgY2S3nzkMnmmCeUZsbmq0M4m0K6MJ1W8mL3MBRQUZVJ5P/U9iHMpI0+JkTieGDmWS1ZUxWkzEmvalLBrVAGR/ct5u+o5SQVrH0lVoechylEN6524aXDbGyIcroFgYn45Wozty2PLde82SvmCtIUaHRlf5kDz5s7Ad77WjYW0RVjBZxhxjAXxqRIuULg1qpNQ6T7kjQZDOE1M6I9nQYMiASZdZjo1atB2ulZg9ZxVcmcX6iCKvdS+kmOYw3HBz3fP2xx/o1xvwnrPjc1ZNjx9nhsOew+0Nh901MYgiQkx0GUpuuvdeUu+sgKO2ben7XrwQukSIINSw8JiAlOTZF2Pe5eUlL1/+QNN2rNcbjLUcbTZ8/Px5SiURYNb1PeM4cn1zwzff/IH+1YrTszMePXpE0zi6VYdrJNS7abqsNBvAxJhTbqX4bMQbg59GYohcvX/L7vqKo6MtLz55zmrV0/fyg204PTtNIeiB9XrFze0tp49OuNnd0lxe0V6+Z7td89Vf/jmPHj/i0fPnUlA9RA77Azc3t+IhtGJU6dqWVbeica3wkKAIWwC7t2qMMZm2NRJH6DkfmurfIqjvGnsUeC8jJeU/NZzKt4r67x2wVZ3LWJhB9ex0z+q8xQx41Ih2v45JPSxRFmKZG4W/CxuWtVElRvRxuYFzAefEcOeMkyiaFEscDXeAngLFxVLV/+T1yHyUiv+asp6isCQPfJW3XozyZF46+4BRx8QwYExL4yx934qnPni0fox1DdLgQ4wx0Utr6JDS0zPfS/xQCqYK7/FR+mb4ANaKwSD79pXXmpo3yr/W2gwG9D1ntLuKGBpigGBTZKYR8J+L/D5QfwJMaW2cDD6RxEY1Eywbx7TejfAzH8XLqA4kGWM1fur9kb8yuE3yXWt5GbMgq1RHBZqoAOiO/PtnukzysGuamioWgmeSKq3Gj4yhFMuAqQyEAF44tbQWT/LKgOQKhkhwKYw/SU2JgqogfZX2o8+VrjRk4RMzhopq+yQiOAiqAuAUWFAwldTAUNyl2z4nmjDpCz6f6VL7xGBoUi3Dzdpyft7jXJSUocGzP3gJ46fGD/ViL/+taVMN2uUc6z2Ko62+0YLdpm3TtVF2KEsYqw+Q8epdnifGkcKzaydZUQhMNmSpB70uRqxK4cMT1s+YhE8iSzxUf2+5BhrdXW5d8fhIKmDvwSVslLpozSntM+QGQIK1IqUrmrAsLVWQsGA0qR6ketWF12vEku6b1F5rstBQxxpzKgKenF5gCi66w46MrmcrzEf4l1nwQ+meJuNoWnEExzCz313Rdo6LN69ZrddYY3j86AnDcMAayzgMHPYDw/4ge2QlKsxGMR7FEHKHKNM00kDFOdquo+97hsMO7QRpkDQ3JZiQGrU0zhGDTw7tyPv37/jhh+8RR6Tc++j4mI8/NdK8aJS03H61Yn/Y44Pn669/T79ac3p6yqPXj+W+q1Y6VbYNbdslvBmrtvQ+lV/wGCONCnbTRPSe/dU1w+6Wk9MTPv/yU1abNU3jsE2DsQ1nj85YrVdYC8dHG25ubjk7Pebm5obtNHI0DRyfnPDZL3/Jk+fPOD49Z/YwTp7DOHIYDvjgabuWrpNaUl23wjnpKKhOYc1MCLZZOEHuXuq/qALeKtlenY10z6UxqBiy69cVOxX9rZywWH8oRh46e8uPSHOEYpSWMd3XaXTUhV9mHmfK3yW11aAdanUec4iEpPO0ztA0Jp/RwgeVqYf8vJh5ygeuPP8s8csCGcUEZRa5gVIIqdh0tb6JXwYvdSs9hnEcGKeBBkvXO1zTirMqGUWcc9jGMRuJAidEyciaRzA+r6PwXqEbh00mKJFPLkR8EBlZg2T9M+9DpW9aF4EmTVPW3aFRTnKW5hhooi1FtZNelI3zClzSM2Ks10+XJMlOxYAh0hgrUWkmpUpimENMTVYyFZEDU4rBIdOJIWY8q9+x9g5OSKNJTfVoEKPXT0mk+8nGJhNSgVuM1mivwn9RTi5eMJKATAqGpheY1IkLxOATjGGePcOQiulZsSg2qcirKqg54iS3lE2LYxU4k4C2GMRC4iAhRsYEwoLJQZMLg1KM+l25c34/xtz1JUVhJ5Alc/FegNY4Bw7TTDdOzN5nAwFe6hGcHjd8+dUWayO3uz1vLyeurmf2B1EI+i5tnMwKhYbZ2r74XyK7jOyMnt+k4NtcOBLI3UCsKTmiiVeWKyYipCZpuUdAPegm85sMdmJhI7r+mmpoUkEx7bIj0Q1QilqCGkjUiq7QKw8rFhCrDIn0r82MuyK/dMD1c2p4onpGZGSapMth4xpAvCNzijCaxikbmubZF/ScDqEWLi4tlSvF9a4Cq+NK+9C2XQZIMSmXWAnrVsaHNamGknoUyppEDI0leXDLzYviQi5q7qwTb68xhDByffWacdgxDwNdv+HTL3/Op59+wexnHj99wTiNfPf1b/n+m98RvMfOMyRPIli0LWbwHteJkmyA9WZNMJb+XY8KCGMLiHOpyF+b6jg1jcMQmf3M9z98h7NwdHzMZ59+znq95unjc778/PNUTG9m9p43b97y+vUbxsv3/OYff8s0TRwdHXN6esp6veaTzz7h+OSY07Nznj59RuNami7S2GRsThFYfp7BWqJPtQmGA//xP/wH/uHv/47nL17wP/zf/gfOzs54/uI5T58+wbmWF598jDXwsy8/J6bw+8vbW8Zp4vryHVfv3tB3HZ9++gnHx8es1xvapiOGGy6vrnn1+i23t7e0raVtpR7B8faYrmmF12gHKq+CXGi17zq6VujzXjQRUfhopi7QNItyfIqhSY9KyGf3YRpVAWoVfeVnViBLUdVdHrKkdki1zAwQrcNGjUxSILH8jsFgbcx8LyvDyQirdfFEcfFMfiImL0wMkb4zdK2AjLbvcYkPBh8yMIwqyKn5J/k5d2ch/1bVnmpQitqvTAZKwdjciSTLxfSMGCLjIB61/W7P/vYGYxxd27DdrhmnmWGYEp8Q422MUuXCRksYR6bDLT4cgABGQaTBGUtnSFG2gckHbITJBgiGNp1DKDy0QEEFsIii1trE52WDA5Zek+WiBDf6GBmieLfaRiK2/OyZk9feugoYL8hITYNJtnnBfdZAbwyNccwxdWI1hjEI4G6JdHmMCQvEWABXtWtiJDGLIvxStygNIin5rZFuKrO553D+Z71cahEsXLHQus7FgIwxebBlnmKMnn2iPmMyGJ2j1I2bZ8+QusvF0NA4S7A2tWiXosMCmktqU0x4TDFCBJGFqetwiFKYPYSQnIESdRYwqfZETN+JKYVS5WAK1E/4wYecrCb3RQqwKtoyRMYwM/mZaZ6S0VY87Z2LGBt4fNby+efHzPPM7357y/t3O66uLSGKA4d8r/qsJuFIJcYzjyzrju7Ih7Byet2m85YNdgsllKzwLl4PkWDIzaXks6n+HMg51sWvRiXPNfl+IZWZKKIgFURQZaNOHUL5fMhYL0bFh26Bie4ru3pmymcUO4kfNZa0saYhdFJwffYeM4ohSpph+PyTEVwyBqgRRYxSAU3/KeuoK+HzGMRx5QR3GIP3TXZ+mVFS0q11pYSCkw672gE7kQfEiHM2Of4Sjs00InNvXZcUVkvbNel5By7e/sBhf00IntVqw6effc4nX/6ScRx59+iCYRj48YeXvHr5UnSZKmFIHZDOHqR5UtNi25YYIpv1huFo5LC7FWdCSldpm6Zgyghd19L3HSHMTMOB8QB/+PprTIys1xuePv2Ivu/56PkzfnHyC7wP7PY75nnmzZs3vH71mmma+NWv/oFp9pwenXB+dsZqvebjzz7l+PSE0/Mznj77SIwOBqwTQ7P3auSOeN+w3++5fHfJYbfn7/7mb/j6H3/LZ198zv/0//ifefT4MadnJxydHNE0HZ9/8RnWwl/MPyPOM+M0cXF5yTCOTPs94/6WVd/z6WefcXx8TIgNh8lws5+5urnl/dUVPo6s12vWm47t9pj19lj4TJAUOalnF8RZ08ietU2To+3uGWUzf6igTnXYizJeMJPog35xzkhnuIJmgpizTlPdNttqlve9bzAu3FI/IwYAS/Y1LMaq/PuOIEtzVJ0oR7Anvdj7KM2FhgMxBtarjrXpsEbwuhqqpaC7GByzXh8Krlo+8yEmWhxDxkiEjpZxVJ7ZWIcYYkr2kUab5xrJeMbbHQwjNzc37HY3rNZwfPqU9XrLNAbGUXSpthMHtHce68HMgTANzNMea0dE9UsRO0gN2Ma6XIxhSBkHYwpccwZsapJlpUhS0k1j4b/6b6PabGpmZKBLZeZCDEzB40xkjkBKi3NJL/HJUO+c6IERFg0t9Mr1naOgKQf01tIkDOqTU2tIGKpJmAcjWDAX18/7p1kBJnfgM0aj1yOLVoNpHztLwgKG4pz+49dPNjblVINELOhCLKBElVhUKeJ1CoZJgicgqRPi1VWPjZz+YKrvp9/VoHHXWGKSwBX9IZai3/VrqEdOLH7F2PSh94snLxtBzDLkV1LTSCHNWuCyNk7Ib21rWK0ckUC4DgyDZ5oDiyJcOhddSVMxkVrXrPdj8aZ++wNXAhAf0DXLDReMLOaX9V9dT3Pn4yVM7/7Y4uL9+8xJQU+Z74cHqeAnR1mk53wQKFbPSVbFPJNMX6F0zPFeAIzUBEgHUGdmbLImazpcKONVOl8uYqXwlx9rbaZNDRU1KNATkGOspT4zEkggdGnzusb8jNyiWJ9rS2rgHKTAop9HDrsdYZYi/gZSh8cV1jWs1hu6fk2YpxQe6XOKpKYfEmMVKWBoXEPbhpzGp/tRhGSx0GdFPQ1yOBy4vr4GDLvdLQCb9VYMzAgjs86JgcoK7U7TyOEwZKVzmiZOrk8SuOg4bPc07Sz8p2kTQ60ARBQDhKZt7PcHbm533O527PcDq/XIOE5Ms6SmrlwrodtthzOijLXrNbP3rPqWtnd0bcfJo8dstxuscRIp5yUySzp4RrqupessXdPSKBCOxai9ECbRZKNtxulpX+XPWlkQsr5L/6qkLKKR0neXniZYuJlU6ar+rg0/+rCHT6iOS3/XiMjleDPiucf7TB5WrXDdXYAF+Aui7Hhv8FY9VfXwKz6Wxq/GcuVL9XqVWSxWaMHv6tfKY+5GApTnZN4QkLQnH6Sja07lsMWIooqVtVLXJhVPzm17kwJjFsuXeEsSHHWqSe0bzWNe7IN8wERyravSkEIoTVKqEnCVhUz3josbKw3nujeL674h/i7Etnmbq1QZYiqAWdZZv1DIthBHViBURmjb4MVqKehNhcLvDvWf8VKZYRFHm76mLoUc7RFKh9MMCJUhGJNj/H2KJtaoIL1fMOmkZ95QQFMtj4F7sEH4kdJwwTsZL2XcI+/7UJyJtbxKJrRseFKiUKmqNcpkr+tU2yLXnJNUM6nVIis0zzE1VlHeUKgmUozrSgdpUku+kF67x4T+2KWP+iNf+WPYZfHY/EeFsjJjMdVni/lpES2ZPyprIOOq+CRlDxdTqLBTwYMVf6fIl+WgqwdXRFE73NQzrxhKjUFyb4najtbkWwmGUpqXJ2fe/uC4y/gVV0Ri6pirfNShkQ3G2tS9LzFLU2jLZXnr87Pzc6w4SrXmpLEwTdJdbp4nhsMeg3SUdCl9sO9WGGPp+xVd16fzOJMj29N8JLVFDLyKqVzTSG1LZ5ESJULAyqt1TLbaO+1Sfdjvubq6wnvP0dExMUa2/jjX3uu6Tp7hSj2zcRwZhpHGSLT5OE2cXF/nmkz74z1t0xJ7aFxTlFJjCM5hUokJxTeH/YHb3Y7dfs9hGBnGiXGamWaPaSTqpGksTWdokChM13VM08zhsGO/v6VvO7Ynp6w3G/YHz7SfGZOzMUQvzuGuZ7XqadomR4+HuTiSci0j72XvU9TdXSy0oKtM33dAVMKrD51nfWl5umL1b3W+9K9Mf3d0ugcuxU8x1iNc0n89g7sRVvK1ehyV7L6DXmJU2eGzDoshFchO3DnLXJNZZn6iCgWj2FJfrpFqngF3o1/u4lodZ+YCUf8texyTEXv2c4oG17MPVtrWVfoKhHkmTNJFMQa/7MhbbaIWokmmNQ2MzyVTyDz27h5UEyEFdhDRchSKNbTcgUqdbNuo7xMformy4FExTpLfGqmpUX2RgvkKBoylLmfeFf39Pq8lYQej4sTUu1Smq2viMLkz8p+6frKx6ep6BwjO0Yn5FBEiP3LYm8aVcPf0XT8LMVtnUxqQhKqphVWML9A6R3SV8MTkDQ6BHCUzpyJ+sT755BKxUmDVmvwTI8xBfCU+ilVxAaIonjr1fxcPtcF1DtckBhfl2T4afCpuOvvA7EXQBh+lKPhpR+sip6cNXQ/jGLi4OHBxsWfYO5qmQ+qJ2MyjSihzOsORZAypu7QshXwMQrTqEVyAFuU5FXcoocrktctETGJoCmDSVYoGK3AshzNWByErpolJ5YNlyrjzIac+uDWrSgfOVAw7HSYl8nywNLm/Ou1iJIKcpwFVJEikSSlf2inMWq15JPuo62OcWLJdMq7YpAhiwMVKRUnrW9qfFsUqBikGZ4wYb1DFMAEi6boRs8FU0u2a7G3W9fUplc/PUzZghGoT66g3vXeuQ+UcsRHDVggT0xT54bvfc331nm614ujRY5q248mTp5ydnbHf7fjh22/Z3d4wDgeG/R5ikPxuLSAcpUDx8fExqyPDxetXsuJeAMTtzTVHR0dsN2dE4PXrNzlqTL2Pl1eXTONA3/W8ff2arm05PT3n+OSMru85PX9E1wm4+Ozjjwkx8sknn+B9YBhGDnvxyPzw7Xd8H79ltVqz2W5pu44nj8X4s9kec3b2hKZt6NYb2lYiiqw1dH3LL/78Fzx+es726IjTR+d0qxX7ceLN2wucs/Sd1FBoXUOTvD3SktWx3pywXq2w1tL1GyINu93EfnfL69dX7PbSrvfs9Jij4z+n6xzPnj5lvdpArIyVMqBK0CRDfFRBVZ0XEp1Q00fMr0OlYOlJjAL2jQkVrRbGUAt3+eeu4LhjPMgfu68gLY0uKfo0SrxtyPUU4oJ3K6BQPkBK2VK6zv8a9baWmhbWOwKBcZoYhknAcSDXdXAutfC1FkKJsn0oFP7OlDNIy+1t0e9pvbYk0FMFZAMpzSEyzXPaY5F7IUoUSjSWcTqw39/g2hYfBiJTAvqdKCxdQ9NYrq8OvHv9npuLd9xcveNwuMLaPZIposbKpMSk02+NSUVlk+csSl03paVcS8oUuaMAUiIkY97HiGRjtUi04rprpV5hShn3GNbBE1I6cg6Fh1IPqkqblXbmqiiavGaRiNX0ZKJEhxnDIfEc46DXDo6QU6+0OHKOCjXi/UQNNEqHVtN38n8SmIq0uDzGf4nr/ZUY1W2SZyFhhxz5nYbYNCaxBDVEl2ga6xzOCe/Q73ovmEhos3gn5TkJdKdULP2ORtQCOa0sGInEURaQwaaRvZ1CZAoJQ6lMSvStegeUyKZIzLWj9DySnDkhyUxiYNLufPrvHGh7w5PzLevecLRpOBwO7A8zl5ee9+8hYGmblpo/lfEi7bLT68WYpZMt2KWA/4eAPhnYa82RSKSObK55oyq12bmS+aH5QARd+rKewwWfVYeDjrAeY8UZ9SybOkrPZjxeuuaW6m61jFDckqOYKlxRXIiGmD3eqdmGsammVqCLLca2qHFUZI6R/dExmGJgkeekBNbEa6l4c47M0vGFhKGqOilN0+Bw2Mam8ZfmMJL+ZrOSGmPMOoifZ6bJJE3B5flpvobVejaNk6LnNnU/RIwv83TgED0/fPM1N+/f0/Y9R6fnNG3LR8+ec37+iP1+z8sfvmO33+HnidnP2YBsTJB6aDbSNobjo2Osabi+vGCepLnQNA6M40DbdqxWq4xZp3GUyCgj83r79g37/Y6u6/j22+9o25azs3NOT8/o+146xHUdXeP46ovP8SFyGCdmHxiHkWE/EGPk22+/gW+gX6/ZpLpOTx8/42h7xPpoy+n5I5q2oU+kYZCo9q5r+ct/92/4/KsvODo5ZrU9wgPXuz2HaaZpLFc3nZRcaFxq6CT0ienpNg2r7RZnLLNx3AwzF++v+fHVe169eo1nZnvcc3yy5snT56zWHWfnjzG2oTRUAGOSzpl4qqZj2ZhSEqvmSeXspFOVSTxKBEd1NhZnAsVWBd9nBGWoOp1R8JA+Q/VZ1YMqA8LdqxiDbSojAyL0tUxIiViUcVcFnysklzuWklJQY0RfkoL0iXemtRnGiSkVhV+tyZ2qrXXpHImGHdJ5XOCnDCfT8xU7JT6o+Gux5nkBYuZ1qruEEPFzOrc+SG1bawhW5PU4DtzeXhMxEg0bA8Yi59UYWtdgjWPcHXj93Q/cvL9gd3OJ93swJbpY+alBCm0HDLORUhvRwKyLnLCRjq/eJ0h8i5jS802u7xQR/LSSDDf61jEnupxmTzCe3rrUCIWqtqXyZVlMA0SvBlWTdFOTcVtinqguL6VII0NM8aGNpWs0NXKpty/lQbE1GHXUKX82OuekpxqxU3RGtfI/ff1kY9Nuf8iLbGxVrDiDao+xhr6XdJkMdIB5nLOxqU33m1NxMR+kdpFMWwSis6oGpZ9EFHMVdVIbPhS0Bon9KKgt/UQkJWGO8lwNj1OIG6K8n71Iaf/0F2ssEnsXUj5kyOl2Pgjwmn0qKu0jtjUcbxs2K8PRtqHrxKB2fT3w5vUeZ9YpxLNGKpXCpn8mgHk/bDuW+SsgDTr3O5phzKsoc1ZjU376UrnU51esMoGYB5hLtVYV7abXEzQzS1AnAyoF49GtqhVoqgEm4GLT2NToFGExHmPK37UxDur0EQozSymPjXP4ts3rrDWY1PvkGvUqKTmZxaFTu1CsCtjrs703GA0DTVFvdTHyttEieOlQpyKRpuqkB5ImEUJgtqaAw1wHoQa2JgtXpwzJlFSDGD3T5Ll4/QNvX71ke3LKZ23L5viE0/NzTs7Pub664vr6ljnIc324wUTpQFCiskS53PQboutYr9cYhAbHYeBw2LFer1mtVogSbPMcdC1vb264vb7GYPjxhx+wxnB0dMr26ISjoyO++PJnHB0f8/zFC54+eSJFDZsWjOHtm7f8+PJH9vs9P/7wipubG5JFkK7r+OzTTzg7O+Pxk2e0zYp+tcK1nQjYpAO31vHp55/y6RefprWT8zhOE9PVdQa01lq6rqdtha9t1iuaxrJdbdmuTjGQU1MOw8zFu1vevb9lGAdCmDk6WnN+/jl913B+dk7f9QJ4/ZD3Tw9CJuekHJa2qfUZNXeUEv3PkuELSEpwyJR0r4cNLNWD68Odf6sBmKoBd8ZhitAylQAqimDxFgpILGkG+RPVZ6uXMw8Qu5FNocypZlmEcfRMw0Dj5gRsG7q+wzaypzHLAVOMtB8yNFHEB2kWwYCN2qlPpYYBqmYZSIhyLtmcPMAh+CQrrBid5olx2DOOK0IYicwY2+aOmF0j3YiCn7h6f8XN+0t2uxvG8ZamGehciuDStUzPzk6gNHCf0tl94j0SIh3zPtn0ubIe1X6nuasqhoG+cfgo7b6HccSiRnB5Tk4nTAb2eu9lLXwB4UaUbwVKhpg7nQi+ikwGZiMFNnNEhFJM9YdRsGRKsVYBxUvayTDOgEk5Da0hr8O/xHW9EwyljosYIsOcIqLTHlhrWK0a2tbm/dUovhAjzgW6BKKUp5a6gxCsJZjk1U//UwOCTylx8nk9f4n3mPITqiWRNSsOuynhnSl1lPUqa8mZSpWsB035LBjKEKYZn+rTSNdbrdnkswfbmYaz0zUnx471OjKMI/v9zO1t4PoGus7Qr0SW5ugwBcWZlyT8EkIK968wVAb1cbHO1ZJAPmflXrH6Tv6UWUZP5Eicau8zVssPqPFO9YtZvlaeszgBQKlPqTza1GzTlMhSrWVSYxe9T4nG11eKIqmROWBy0wKNaCbhcZMcdm3bZOUtQip/USJzIClTVV1NxVMKz+oIPU1DmeeZYLR+piD0xjY5WqcxTdp77UJsabt+Ie9iSPVevGe2RlLrYnEZiCEujcuKsalpUpdia6qwS0PwI6OfePNq5OLVa45Pz1itj+i7FUfnj1htNlxdXfL+8h2HYWBmTvqKSAHFkdZI3c3NZoO1LX3XSxRG8EyzNBpqmpaua/FeDAJ+ThGxiS6urt5zefkuzVvGfXp8yknCUF/+7CuOj4959vwjnn/0EcY5gpUEv7dv3vLyhx857Pe8+uEVu5tbMQpYR9/1fPn5Fzw6f8SjJ0/o+hVd30t6YsKvq1UP9Jw9OqNpNQJKfnaHgZg6Anddm/7tCoZKBrS+lw6TxMgwzoyT5/31ju9fveHi7TsCntWm4dGTE7746jF933K0PsaY1FCpSrU0RioJl07PmrpYHCz3rvpo6dn7CeLAKCtR3TMxiToqM3+WxGvyB6tz9vDdqzml323WeADNrEi8wZSE7FpnK028FF+W+j/GONnLGOVch8g0DfhpFGe3a/EttMbSJkd8zMiGqmZTNYfIHT9lVVuSgksUr2YOVPEMg/ANjDTeigk3iK5miS6Clbp9+/0O61qJ+I6aQilFfpx1Ygw/DLx/85abd2857G8IYcSGUA1RDfrgYmlMElKH6znJTYtgIWvSL3mnVD6oYXzhHsVASmGTdWobSxuSw2X0Imt9ILiipy5kUU2fIRC9OOLUAb2QIKr7QnYYTVEMT53i57L8S4rL+ofSiN5PBEq0GoBiUCSvYqQ1BY/+qesnG5vGycsEjUYLicIeVCglsDPrghgjHsuoef0RZyPGCyjwydhUaokIeM/HM+tgaRETWNKUO90MQ4o2yJ0rNFxPazRpjQEBS/ojiy7PUsMRVKkHsRLJsf5JBiCUuYrRbZ5mgk9FzaNUurcGpmHk6p1lf5iZJyNLbiyLs5cepqRaj2EB3mIZlx5kPba6DxatVRTRPPQSc0QCjrE67rri8lqOKkrvKPggj0dTGrMNNg2rGMBMKiSUAUKk1HuKINZ42TOtvxSqe2TAkRZCax9ofr1NYbKqHKvXMY+7optCQ4UBSN5+C1iavsUlY1PxBurhlBDBEmlUDnTBo7oONuVWK+yuhY7B5GKhZZzmDh1o+mmmPUWPaXIGi7VNfkasen0roBSlutDNAvBS7SMwTxPXl+8ZtSsKokienp7SdT2XXYshinfusGNKNQV0zm3b4voV6/Wa7WbDwRq8n9jd3NC4hrdvXxMxXN9cMwwH5jml7xmbNNkSdWAMzGHmMOzBwpu3r7nd3eD9zDgccG3LarPFOfFyt42FVc+jR+dsthsxxkUBFz54bm9vkIYElrbrODk9Y7XZ0vcd26OtGOQaNcrZpOwLyLSp+KQYtyVSJUZpZiBGKAdBinUaq2H7MPrAYZwYplFoyQaaxtH3LV0nHfvK6VVQUYV659eqTYrx7ibes5PoObz3wZ8kAorHXoXLvXtVv6osWtJzEjeZmJfekszejX5clG1VdPLTkjQ0ULxjKL0tUaAaA6ON+LlhmsTr5YMYYm3wuJTGoS5/Xc56aQq/UKG73B9NC4v14c2D1NvHzC9QQ5uBSPKmI9FqwUTGcWJ3u8O5nsN+z3jYSyFvK4D9+nIghsCP3//IN7//R3aX7xiGK5o+4MydMVBkhvrmlY9oI4sZxKhydyPTyqunUusd5bulYts2inGksZaukWhmjXTxMTKFUOrGGdL37hpI65GmHY9pX0xMIDV5DrPFsaTTzSFmsKc7mUGZ3rMCW4unxvS8VEdQt0jqEGqNyX+Za0zFWJ012FBFNoVyhmM0zCEgQVolQkijPoyRepEYsnMkR4TckelihBTlum7XHVRuUGSGokdVKMq/Yrj0UcDrFEJujBKpjU0FcGoaXTGE1Him7JDsr4xnmiUtp3ZIhCCK+n4fCHj2+4APRbHOLKY6i3f52aLsQ7UXFWxe4ryEbDL/ygT2wL+J6GPF+vLc0vvl3ip7c/xg3q8y3nL/2qGo0dYhYaG0yhLlY7WrXSwRZcnAIvdJyErTK7OBqhgh9dl1pJbwYEOZnMqmZKxOaWYSJSFREDEGXHBimzFaK4b8/WKAK3zMKJI0qTi5lTQU1QkLOzAlBSbdv4iHil/fWbsCDI3wAJsKCseCH4VZJzmjeC/fM0WA1pY8gCgG7XEYuHx3wXA4cHRyInXPppmzs3P6vpeuu9fv8dPEfhyYp4kmuhQJZuhaiQpbr9es1yvmeWIaDly9f8+wOuC9nIHd7pZ5mvB+FmNV1Z7eVIZHP0/sDwlDvXnN7e0Nk584jAdc09Kt11jXMOwP9F2LM/Dk8SOG7TbVlBGH6DSPMm4CnpAx1Hqzoet7/v+8/VmbJEeSJYYeUVUz8yWWjMxEYq1tupvTw54Hkv//iffxfnwZkrc53VVdhQIyAeQeEb6ZmaoKH0REVc0jEoX67lQZEBmLu5vpIipyZN9eXEpdnJxBUQq0B99Ef2tGiXQKTpgxy+9RGrh7H4EcAO4K7GAQ5pQwjiOmaYJzwDAE9H1A33WF3iqSt8wHpYGWfvUtrVQwg6+dwyUt6s9VoMiYrMRLY0h64LAz/nnGCM7uXOnzEVy2wEDltgvuuXxkwSBc1sBeMVz9AC1QYxQgrVXkxcllhecZgqGQMsglOJd0xBU4LVkhL8748qn6vkZ/fAy8Fg5U1jHXn6lGlackkbDjacR+dw8ij9Nxj2G1gaceQbH/3cd7TGPEDy9f4fWP3+F4/xExHdENrhT/r9ihTbGUov5EghsyJNHWWMgSJ5pMawzzBlyb90iksfCuzhG64JA4Iaqst+YY1dFBZT0ZMgi22xaaltFnRukYa7LGO+kwaJdlScSci9Gsrj014+ciK8q+oaUruUotTNtXNmfrX75+sbFpfxr1adK6m5nByQ6hGhkckCnBW3QI6oaAtUkKhJByrha8rGirrLcq7sVbqt4vaZeZNY1O3u+cR3ChGJuyA1i73iUQIsvXmBhTyhLZZMCtUWYKY2r4DUGIRuoyWfe5rOBN7OoxC/EHOMRpBmWG4wxPCR4Zu48zjvsDphk47QmENRxCSckqaVu2+ai5okZhYgSiZn0aZuos5C+BEsF5VeZZ7d3NwRKvZa0XUS8uxGNF3Z1ZzA2sL96Hkm9a2BDXFD2QAR0Bxqxgh8ueiyXYaQV9Rk0nWAAgPbgJoqgBhOBzqR9khG7edFNiDTS4kmyrYyctlBk6DJtriXbxhBBEqDgPcJzFSm7pFTp1K3hfWZSZNC3iQusWcdZIPQ1FpLp2snn63UEKXqrSbQoA5wTO0PoDrtk4gMijCwNKNCFLDSKpjcComcFN2H5j/CqgTygKp9MO3//p9yByuHn+Ak+ffYb1dotf/+o3WG+2+OGHl3j53Z9x2O/w6vs/YX/Yw/sIn2Z0/Qrb7Qqbq6d4/vwpXrx4hv3uHrv7e9x/fI/bjx/w7v17MAgfP95it99L8XFIOp4jD9IUFyg9TPMRp+mEu90t3r9/B+cctpsNttsthmGF5y8+x3q9wc3NU3z22Wfw2zW++OKFGKCmE/bHI+Z5wru3b/HT6w+Ir15iOv03kHO4ef4cFxeXePH5F/jnf/6fsdlusV5v0PsOwXVYDRt477HZrrFaDziNE95++IBpmjHNCZxH6Sh3GrWeg0fXBXTB4+pqi64P2J9m3N7vcL8/IGNC6DJWqxWuri71vT3A0lycIB4ccrVLH5mHgyCeDKJSn8UOP4PASQUZmQffPOtLeFFk/LmAX1LkmdJz9mqRdO2fCOaltbNgEtoUNSJfebudFVNyHINZxGRMDVMzEgXVrmL6okWgkPIH5zzW6x6AFIid5ggmYMoZcc7IJAozEaEjJ4aKXFiGgk0Zd0lVpMZRcZZOuJRour6gUlRS2I7Tcgk1rWXWqIoZ4jG7v9tjTK9xOsz44qt36HyP1foSm22HeU549d1b3H3c4w//+v/D//H/+d8Rjzs86+5weZ2RIyNPKPJChlxgah0ZS3FIQJpuBKpfVuwbgBT3zTNyyvDkpZMfQevGkXZzZxAT1r2Dz2K4uD9JdOiYGRQjPAi9s1oJkmLDnEuavSme+lCANdVOHU+Q7Fw48ui9eKhniCFi5ozTrMYm77UmQq22UgppF7CEIs+FnyoQc23zCP2sRiP/va79GIvsdk7kc07moJG/UZbIH5e0EHrFoHLq1HAkLMJkKmskFzepVBLq7g3Mc2oM6GrgYo3ocB7kJZw/a4c7q20Zc8KUxOB3ihknxV7W5Zcb+VbqZSrvsVoVAGo5AIvigjmWxFl3PB7Rh4A0R3TOSwH3eMJpZNzvI8Y5YY7APHXajeosMhzCZYoKyU1tTkJpLmN4mtDWCVOsoovtnNSLesALy68NPzxTQOResqFWwH6ZQkeA9XM23GkYiwFrolKNg1CDnuIzSx9VLcR5AntJq40plpRMG18xwpI500TJJDJ8aGMUDFHOKglSWEbWWvc26UR7df0EXd9LDbo4A5wQnGCYYrSxcetClPSQBnsXQ703/CspUkCtcwSGyg3WaCOVJzqXElGpUes5N6mBIDACQJpdoWlJWSOOmIFsDEWKv4DJIZMXecUo4X6F3LMIk93uFoff7+Gcx7PPv8Czz7/Ear3C7373DxhWA75/+T3+/N23OOz3uL/9iP3+iL5nwXi+w/biKVy/wbO3z/Hs+TMcD3vc397i4/uP8F1AP6yQGfjw4SOOxz2YE5wWEF6YSnV843TCaTribufw7v0bOHLYXGyxvbjAarXCZy++wEYx1PPnnyEEj1998QW8dziMJ+wOB0zThNdv3uLN+x+RY8Y8J3jv8fmXX+L6yRN89vkX+M//5V+w3myQMxBdRt/32K4HhBCwXg8YVgNO4wmv376XSNhxhiOJdjodpMtfP/QlE2a7HRA6h9M44/bjHXb3O4QOuLgacHGxwlbLIAQXlvMGaSdCgkWPGda3Q1C6onOldy2ZXQyVRCipSMabmLU4v+qnRW5UK2YxDjDVjBpLHa4QvGpQmRp+38htsPDP1rgq+N+K3LM9Ts9zfYLJfKN3q18lr1V0V+5vDUO8x7Bel4CAKWZkchhjgkv23FyxBtQ5oFHE3IyprblY/10av2XVmn1T2VQwlPMlCpK1K5p0ghe9exoTMhj04RaRXuJwtcfN0y8AIqyGS2zXHqfDiH/9b3/ATz+8w09/+j3++N/+v8jzEZ9tRlw86ZAiMI2TRAmhcrZFzSNRvjGxcg4HDA4Nr1rubU6SuUVgNehXwzkADJD6kOveAZ5w5ISjYqspZwQ1IFfsLFH7EoEcqzzxRlea1cIm92XvvZ4FHxRDpSQG8ZxxnJMUEiftOlwM+8KvFwavltBs59nSoKuMl67CuaRI/qXrFxubYjEgZWXgKMDRHu4YJWe2vYq/lFXwKt4o6Vk68BY2t57s1vLWFpJk2Aa1h5uqgYVRopYyS7vexLXzXOVHLdnVq5HZzRh4wbTEoJJLTniFPBlEjDRnTDNjjoScAqoXwtZGgUbLeGxICkBaGljiloqWWMGm3c2Uofb98ntjVzdCVbBjxnmgjokXnzAGq3zZgOxijZp7cLtudWLld1f3cbGu3D6vVZz1/rkywPL+oow30Kh0aVmCRUcS7RL6FbyXGhk5RXAapSAhuSoINDfAwtJbOql3NYGldE4W2URlr3Om4oExxgIysVk9ERblJ8bQgssFILPGL6gRix4YGOq4jHxaoVh+N3yi7XEBYLXf4bASEN91HdabDTbrDdYb8Xj50AHaIUEMXQle0/66rsNqNSDOI3b3Egk1EYH3HgzCOImHjnOWSCDWgn5uaRCJqaY3TuMIZqlTcDoepXZB12EaR6yGATk9RfAefdehHwYxdHMuzDDlhHE84f5+BwJJK9Q4Y7PZYJomCen2k7QdTYzgO3DI4DyUfTPviijOAkxnRyWlxcLGY2Z4FsPzFKNEQoE1Kp3gfZA0wGI8VJDDDW+k5mdUQLLYwwXV2eeMB9hnFqLwAe3XkNlKZ+f0U1+3vzOqa0WIsvKtxacaAFdpvUZLkvKZh7zW1oBtTRpetHwCYB54p1Fp0sFRw705l/TmpFESkoZF7bKczbkFQC0AtLVazA4oc3hkBRRwAjXVzZwHmSWyKeKIEFYYT0dMo/zMLDVrTscR+90R97f3uP3wDmnc48lNhNOCGa1kXY5ejEIOIue0xHQtyGw8CnX/Tdks3wvR1RtbxJQjkoLNZjDU+aRs9WCaz5CAk8qIUJTbxUaaxNZnOrG4SHxz4ecSRQOjI7uL/f5AZqCA/nIm2pfI3sDKU/lxQvsbXDVF26CTjV1f5wroLTLFXnM6+CJTgQXOaeVeOblUaQMwGZvLnhcg2fI71G1jtNhJcJMZmSx6qbAGoGC4Vv5XltHQ2tmpkbpTUTzrbJRa8d40JxyPESk5MNe6P+1VT+bDdVm8Sb/TYx8uF52RBJ29uZkbN3yLmnfwcp5LrKB/K2RYcVOJZmI0zrl2/dDsH4PYYXmG80Ku1Ie1KO4v0zu1k7P5NgsltQoHDKsV0jwhOoCzeO0zVecCqKoDVufvnPvLkeQqL/K5DKl0SYu/NRFoDXg9P86FHkCoWQWqc7CBWWNUaO6n+6bnjtp764blxJjiCICwubzC8XiE914iqDcbbDYbDKs1YowlFVHwRAS0EHlQDDP0A9I8YRoPmKcJMXnMiofmeQJzUlwhZ9WB1LBvQ1LHfIqICRjHEWBgjjNO44jVao2+WyFOM9arNSSaXSKvu64DO3VaOwDIWhB9wmF3gHMOq/UaIGCzvcA8TwhzDwm9IOSUsR56gDN41ZWuVwTlC5zFcJAZQBSMbEo1AytmeAi2muZZouAJCMFJd1HvJSVuccharKNUS+33KkPAVX7Y9lUaWxJLKw9bXe8RFXF5UcVID6BG+7ORajv8VuwSUGo86QcfiqiWS2N5Rmxedtuz8VdoJ51KmSSdjtRhnjODXUbOTo0obbo5N/8+Nv9GDvH5D2WEVQ4zFT7YvuP8e9GzGZhOEw77PVzoBENNJwQ/IOeEmBJ2uz1uP9zi/vYW+90tkE7IawcfqGRStbOouBuldiVDI9abd5V/jdcsFd26WaDFWpjTxZOUCDLDFoNLZC9hGdXdEofRn2VAtHtAtp76MEfQMyX81HBnsuh+J07sEtlq938EAy3O2hntF/Srm/NLINQvNjaVpykoEbmxpBKzYOZCTPK50pLUOWEwQKnrUG4JgkWvtgoTqyfPquVbZNOsFueu67AaVkhzRJqTKhoZM4A5J0w5SeocSyQSt5ZJbjf3kRnr33NK0pZRvagEaPiyvD6OEygD8zQCaQLYi/ehI8wTcByBlAiMyjBt+kJsLJEMCi4SAwkkUVLZjIe5egbb/WiV1XIGGuo4w0lW3wEs3hUQELROarKxACA2YculJoKzQ0BmxhIwIutJsMjkApBghFweX77bQSM9+E5TIY2OFh+QATVbZQzLjBauzJWXZKrGGl1XLbLW9SvcPLnB5uJKvD6XF5jGI3747j+wu79FnmdM8yRpJGp4Wh7/eokHTTyhRjNW0NF7vzzQj1zLcO+6UTklqWvBQIoaVt7Mj4uwrSPLyihJLfON7JOuXRZ5VqRXpaHDYYfECfvDDhQC1tsLdP2AL7/6GuN0Qhg67Pb3ePf6R/z48s/wOeNqPKKbTgjB4emzJ1ivOvSBcdwPmGPGYRQveu8Z6B0ceXgaZLTERTvJGk03x4R51nbK2m6bwRinUbpP/PAKIXR4//4dXr16ia7rcX19g9WwQr9aYb1dwzmHF8+e4vPnzyRl6XhCzhnjHBFTxDge8eb1j/jY9fj4/iPu7+51/yTn+1e/+gZffPUl1psNPvvqK1w+ucThOOF4GMXDEiMiAM5JwJoa/rx3SDFivzvgcDiCiDEMQVLuWM5G4iR5ScyaUodSPNmi8hqcUU6K7VHLUwE5s84tqbL1UFg6qtFl+zNXIvrkZQbPhyhrqTQWXpbVnK3d1RYpM7w8AyYPglQSQk1kbg2QbYcq+aOk2iQxFnar0kVntVoj54QUxxoJG8Ug2pEWtlevUS1CrgqOBd0Uo0kV3ksbRuWpRCoDHGmxYxZFK3EpGGnv5cwYx4g5Abe7O3zc7XF9c4PLpzc4jns8e/4VnBsQ54zxeMA4HhE849mTLeIIBHePOI3SUeWcA5XzvNwX+y9pZK/xCQKV8TFzjWKwLpNo76fgi7VQOKTlbRec8FLOGCMDzksBeBJDNLRhRXEMKS9qFWCvRYah9REYLDXZQqfGJkkBxDziNEd4kmKUTj2MRkMWAQJYgU3AWQdLTWlhlWuUxVHmLfr1cRT/N7uqUU1+JhjVL8G4yJRlWq1zflFgGUBN7SGqHQNb5fxMYTLjoDUzSUkKqg9Dj5QZQaOPJKJJnj6lhNM8C34y73SRQ60B0dbUplGjpUWeRUSLPmmUHdKIhMPhCMeEeT5J7TUvETXMDjkFxOiQs9KwOdW4KgWmaFur6BilXEIgfR2KJa3e5+M7VHbj3PDavt9wBKjuqcn/bP5X5kJfdj+2hjBFEVnuu3yMCiZox/nYeA1H2btEfihaafQgmxs9+LS03ZYPNzgSlb5Kc5eshYkh2NX7Dp999iUur67FcOAY4+mIH19+i/3uTiIHtBhrbQ1ODT6rdFoK3+rZdiROLGYtiL9Q7NA4WJSvsSp1zdraOSrRYcn2tF2BBiNrDrJhDuSM5Lh5O8EK6zMzrJ4qoUZ17O9vkXLG/WYD4oj1dgPyHX7769/idDwikMPd7S1uP77Hu7c/wfkO3cVTdMRYrXo8f/4Up+2Ai+0e8zhinBMO44iUMjaDR+dX6mSp/A+Gu7PImSmJsyvn2vAmM3AaR6nX9lIKib99+xYvX34vEWpXVxiGAf1qwGq7BjmHL774HJ9/8bko9rsDMjOcDwAxDvsdvvvTt/Au4Mcff8L7d+/R9x0uLtYY+h6/+d1v8fU332C1XuPJs+e4vrrAfn/CYX8SnJei8CpP8FF4uoM0t0hTxOFuj+PuCE+E1aqXuqoxYWYgOEunZjhvdbkyUlxGNBnOtXMPagwcsHSgJlrD9ASuBgAhgypfHhi4HxzKosA2vK95lSxiWnlihcDKxltMvnhS88ylfK/3ffgsmw+45mQwSd3IcdRu1L04V/t+KHwtJikJk1yC2ESpFqUmNGtZj8/S0HQ2h6KItXtAsHpTTjvcMqqeW1LDdT1Tzri7GzHOGfP7D4jIuH76FE9unoNzxNXVCJc6jMcZSDOCY2zWHs+ebsHRwbkjTqdJa0cul1WMJqJgMWp6rZiAGAkOkcQYZPaDegNWmYzi6D6jCICl7lNHwlNnsjISQOSMU5ZspN5LQjSSxHO1GMrWXLC7MCtPYk8oqiAA6gKoCxIN6xwoMzjNOKYZAUAgr0ZgLvaLdpu882rfqOU9UrRGcDUIosq+ppzLX7j+CmOTjqYQSkNDepngd41ssAVyzpUJ1G1QAkQT7YGGVBdAqS5+SpJfmnNGCFKAe2IgzgLGYxZlYk4Zc5LOBBHqpbM5mOD5xCK1jGWx6SbYidTdyJjGGUiMOE/gPAEcQL6HCw55IowTISWRaNY63pihAX+pvyB3j6wpIAyELFExIuyXoW41QJIKgBWA1ix+c9XDrII4W2qZg4cW2tTuSmCAmArzAWqBR0mD0zDnku4IUaoVjOSzdSWq4ykGGKhVlywcuu77YtBk724JC7UAZWNAzNZPsMERGTJXzlJszhFwdXWN65vnuHn+DE9fvMB+d4+72w84jiNyzphPCcRAbwUiofTZtKtklnsTS/S10LorwPOxqxTBZJRw7wURKtjJ2cK8gRhVAbcOiwvE1LA+tuXiEhlgi59yrgYcPVNEVDp1HI97HI477Hb3mGPCsNrg17/7B3z9698g5YRuu8FhlLpNf/rT70ExYZxGrOYRITg8eXKNzarD4BPGbYf73RHT21swR3Re1i74gKHvpY5IoX2UMzBNCd4LUHLaVCDGKDWQJsbdbgdmRhekoHIXOjx98gzr1QbPPnuOr775Cuv1Gl9//TWurq8RU8I4z5jmGa9++AEfPn7ENJ7w/t1bMAP/9q//Hd/96c9ipMgTgnf4L//yL/inf/onfPHVV/j6m69wc3UBwgHzLLRzmkbdvwCA4b3shneEFBMO+yOOxxOIgK6XmlBmbMrIQBbPZNDi8ElDWI12QFRJXpU544+VoitYr3yz4ZVtXbvmvfZziZp7hD4f8nTj0QsSrQpZoT0jvnqDxyKYjO7E0EEo6XYsoLBGNQmIXJwPkoKxMdoKsRp3OwwreS3lGZykrgxiArxulV6uKOgisGuWSI3YeThbWxtdtbKWWvAWGunW1s/h+hlmMTaNE+OnH9/gT9+/xJOnT/DVb78GXATB4+ryBVICxvGEeRrhHfDkeoN0YvjjDnGOKDlAD3bOEKsptwx2UucuMSFmC39ueYUaeLTmS1sou+jZ+igHIKi06QhaE8AhzwkpJ0k/9qGcZTMAmbGTGkUWahAJ3qMLUtw3qcfehwDX9Ro6D5XhEWPKCGBET0hqkF0W9pZds/bg3ns478SYMseicGQmnJkT/64XFV2k9cDbCUNjIFDPAqzukTar+ASGsqikYkzVlyqvV+nJ1WFnRbkBqb03MIBpBo+zNG3RczelhFOKSJL1CONJcHbMGyy1GJVdXGVdibdr1kO9sKfTCZSBOI+Squ0kKjYzIWePlDxykwIHk+koyADW+ZFZOvSlDCRHhRcKBtCi/tyMr+G49s0cN4Z1y7uVrlOqxqaKcangq6LoFWynPFHT4+W1tsAxNWNSg3CzUMs9V6XIRs9NCQHD5+3yc/0ZbD9QwX6yD83HlF6W8zZeLApz8AFPn36GZ89fwA8OYfDY39/hw8e32B12mqKqNcqCYZYqxwyz2ZqKnDNFh+C1uojxlMVpb3iL6TmLCCfDoNkiki0Sj1r23UzYzqFhTH0mZ5hLmQiKR1LpMswsDtjeS/rx4bDDbr/HsFqB04z1ZoOvf/Nb/Oo3v8U0TcjMuL29w5wivv3zH0Au4DpNAGUMqw43T68xnXpsVx3iNOJ+f0B8N2LODNd79J0vNbJqeqDiUMWIYZ4xzrOkOU+17EgcJzCPuL+7BxiqN/Xoug43NzdYr1d4/uI5vvrV11iv1/j8i69weXWFaZxw2B0RY8T724/Y7w84Hvf44fuXSDHj//o//0/8xx/+gBAcNpsewzDgf/nf/jf8l3/5r3jx+ef48qsvcX1zDc6E42ESp2dKYAAuOTnXSdbYkysY6nQ8gYikrpR3YkxiSCqRNoxwqminOWl3TTH6lqhjNsM0GtpA4alkxqbG6Gm0VX5ua/oV/tyczUK/P6NMFlpbvl71ILs9tSSJ9gguIqwegQDnBqcSPZOrcd1ejdott+s6rN26ZDMkxdtzitqIC0gOcOzAzpWo7cqqqg5fB/3zS1AjaIXhOOdAWTFUrg4R+xkQGZFywm53xO444W5/i4+7D3j67Dl+9w//gGEIQHJYhWvMUwJyhHcZ61XAzZM18gTk4xHTNC3Bbd0IXVZjlqqTy8JKOR4dL5/NkaAp8fww2nbxHoY0RyMxmBommtVB0rlqjCklZx4Zq+F9w1AW2GB77H2AD0FqLJLThhsRY2REYqy1TMFy/jbOZWAQOSdGR5ixKatNrilrsRAwP3/9cmPTg4VsBTEDXAGUgdWajlI/bsy8UVkKCENRnNCcQC4HxoBsfmQzZIG8thWViANT3HJzcmsxU6pT+BSRnP+90TUav6MU0MwZKUdkjkiZMMeMaSLESODc1N6BGQVyuwK2Mouvtrt4PagogIqzeUEhVkdjAUXREYu+GEVUWKYkAthqRREgHe0JVuidwaBcU+iWQMfWRZU1RSnylppOcS7PjRZEQLty3yWNtGCAysdZV8s8dgpbqtBoQUxRvY2MbBGpHCJmxmF3LzVChh7byyvkmHBxeQ2Asb+7BbJ4sRArsJQbiwfOWGwry1pCOVfaHxM0JS1kYRiyuVVJY1bwGl9V5wlHcNymkVblA7Bw/FxAcPGWNuergGY1hMY4g6YTdncf8fanH0DOIeYID4ft5gLPP/sCgMNqvZEz570yuU660sSA9WrA1eVWohDniKhda4KTKJOUtXYItCYF1CvMkDommcXIyhmZveZ853J2cpZQ8ePpKEbn24B+1WG1kmiX3e5e68uFYmgDEWJKuN/vxYiXM3zfA2lGmmZkMO7u7vDq1SvEnPHtH/+E29s7nMaI0yT1MCTVg7Far+CxRnKE8TTCE+GwP2B3v8NhvxejZjEs13UXpa89J5XHmAG6KhdLlfhTfIoL7DwDJZ+4ClhYAKZmRITmHkW1s4edf+DBWNho+tGx1NNpyvDyxp+6mntCm0WkWICl1wK1jhy4FIO2M6DApTXAPViUOgR+5HUzRRW+Two9SIw1GdUZsNDtdI45JcSoEaIaTTAej9jf3+Ow3+F03IHZw1FG13l03ul9xdGQtAuR12ggFL6Gpg6OAhuyvq5ySfq41VuoksbkoPHgAiAW+2/KnIaCa2QTJcacCMnqCrKVDVl6PWtka723CThW126BLZmR5ohMpB5Ne7iTqEIQIqPUIrIFFmW7Jc2sJVVamqJmY6n5+vtdn/KMm4F1sW4qWwsd2xc3Z1FuWj5bZ0ULuVQUKDNGG3A8Pw/kQN5LRSHKZcm4PLPW8mmd8KxzKxExeGxljUMRrLZbmz9hkVbW2TgnYJ7F4BSTRgQ0cy+KoGKxErxXFD8A7TqV3xQTZu0WCdb0LpGDgom4Lq0KezOIyDgjYswlslHOjtNufNXo3/LINrXFMG+Lp4TdGxGTFn41XNyYSElxHpu1r667GRrbe9vEZTiqsDfn3HB6+RybPGl30NLi6pKmFHH38SMIDturLS78BRx5XF8/hSOH426H/d1txe55qaYt0V072opvoHzIojTKaEw55OXPizu02NLuV/aiPtEwqUWcmAxujbo2fqutWYxS7QPJaiiK8W6eJjgCdre3eP/mjXR/ZMIwrHBxcYWbZy8AchiGFbxzgqOch/cefRfgkZDSgMvLjWJ2SWMV/i7n0JosMQORGJyBwA4ZXo2tGZRtXr7wYovwkuLeESfFUN3HW/SrHsOwAjNht9vJumTNFplnxJyAGDFOk+CuvsPl1ZWcaSc85uPtLV5+/z3GacLzFy9w/fEJ7u+PuN9pR3OvPC1vVM4xDrsD4jhjf7/H6XDAeDoCzNIRuIYeF14meNUVgqx0YETqGhpr954KfbSXYZbF+f3EVZzODf9eGNGVohtIBQLjsVu276nzkDlQ4SMLeFLfz3j4Ai/XY/EzAdAAgsQSxZLUSAeIM4O19mJulHI7Z6Ku5MX9iuw64zeLoRIJFge0rh89eN043rkuJNjJop1ysx6Ci06HAw67e6yHHabxgBgZzgN932FyTpy8yZwMMlcrcm0lUrgMmQu1OJUp9loSqCKlOlCjT8v42y/bB+MfOh1HUkcxOIfee0TNEMpLbgIz6AEota6MZsttDfsVQ1l9f5qjuDHYCufIfopJT1Lr7OSUETKXKNZyX8UJusX4NG76S9hdrr8usqncmstIq1JUJJUQg6eSMla9kG0aWBXoTqM1tGyuYmmdrIV2p4QYZ8RkBpNUvBaAhJn3PcGB4V3SNs+Sg5yYS/FKISQdQcNwWsFyfi2NLVrcGq6Esc8xglPGPJ+Q5gPmqcdu5zBHQooOnPxCMKYsaYAgKvVGcs5gsmiPkqTWAL1KyDllxJiR54Q8SzFXhtOCjLk5BBJSbcpWzBmn4wlzTGXPnCM4ks5sFv3TaktScKwhEwUrVvzMwIrIaPNGNR7kM7pkMDiZJ6tRcHyN0nAKaq2QpaTFpPKZshtMC2ZX/QtsT0LmSpvSgSwgxYiX3/4Rznc4HvZwJPUHfvvbf0LoO/z46jv8+Y+/x3g64u7dO4zjHt6TFPQ2A5erAOiMdZYzUVkVCm1ZZJ4poAVMoZ4lKMg1WSoF8+v6wXZPGYjzToWlRlrpujMz0pw0oom1WHsDbiGdhhwkFanvpeDydNphHvf47rjHj999i9Vmgy9//Ttsr67xxedf4/LyBilnnKaEOTGGYY1uWMu4NhusfMbFdoNnT59oCtGIeZ6RkgCWzLlEHGUAs4bRhpAxz1L83AWxqvvOwc1ibPJRPiv0PyPmGfPHCYDD2w9v8P2rbxFCwOXlJVbDCpfX13j+4gv4rgNp3aTjNOH9D6+QkkQ7Xj5/jnk64bADUpzxpz9/iz/84Q+4ubnBj69+xNX1FS4urrC9vBKvYieg8OmzpwjPPwNPPT6Qw77v8cP3P+K7b/+M0+mAaTxJlx7XACSYYoZSv2GJ6dUA3ETsPThAi8+0oOghyFicO6NVKndZvMZstItCi5UnLsF8a1A5ewoAlMg9FMX24TlYjr9V0JZTNcDBmsprHpZ5lq47IUj9rdWqQ4yEOM/CfUxYQ7p7MYun2rouulbhK+9VDlIAX7MmZPymviRddfSc5ToHKzrLDHAmpMSYxhHjOIM5o1/1IEf48OYtkCMCDbi6vIEPA0JY4/p6jdO7AR2L1zfOGWmcpB13r91jNMrJ0jCFjzh47U0FshSYjFEdCFM2k0E1RjkF/sZPWp7V7psniTUYvMPFqsOcGDurw0GEmTN8dvBOWg/nnKQuCTSKFgK2hIdCowN0XfVvcUqIcQITIfcdoIWPsxf5MyotDpAIKwNKVgRcom0YHFmBGevcUIBz+RRj8fvf42piOUq9SkOOLU8uh4BIG0UoGC9NP+ohWRiZ2p+bLyvWnqJEhEetMZm0FIGdZh88gpPUBuIJmZMa+czLq7jHHgxd76YxQPnbzyprqg46mRNAmOcZjoF5OiHNJ0wISOhFMeUAZMNQSfGAKNOANPwgqjXbZIAaBsVQXFP5H2fGHCdM8wziDk58zsJrbAfYnKAi85NGRaeccTxNiFGKJgdtBY9Oouk41xScsh/UFMhf8FdfxtTyG1uhsoQl7KjSas7aFIQqZbXRrhblZE1SpI24yZ/GQLX4h3BuyBbES7VhjH5uPBzx7//Pv6Lrevz6d7/F7/7xH+FDh3/6p/8KcoRXL/+MP/7h3zFNJ+zv7zBNo9Z41KLbNoKiNAFcbAfURJNXzGNrYjUUAZTSDW10mC0XOaeKoeLDYlCS+znfnKOGPlmFNEMckzGmgtmiLiIRtJA4ytnoOokWAgOH3R0OO8Zhf8BPL39Ev1rh2Vff4PrqKfBrh/XVNVKSsgE5M3qN1KacMFACZYfL7Qo3N5fIzBinCbPqPVGjvqfZolCAWQ1PfiKE6JGS1K+UdHIPP0cxSnXWWIYxJ6lxM7//ACLCu/dv8d1338KHgMurJxhWK1xd3+DzL76EDx6TpsJ6Spii0MiT509xcXWF4+mAD+/fYZ4n/OEP/4Hf//vvcfPkBt9/+x0ur67Q9QNCJwXEtxcX6LoOz549Q+AXmMjh8GEPgPDy25d48+Mrqa+5JayGAaHrweyRmUTn07IF1iQgQrC0cw7sWtnddkNsz4fpHUIP5oRdpH6f8y+zPDRXsYHKIVGdnRfFu8+Jq36GVONvb6rlMjjry8vacfbZ8hrO6+5UAi5/1/w0EzeAFJ1OyheHrkfOAQ7A0PfwzmGOU9G/OKthMyY9n6kUYSvNmFD1QcNpsrpLg68so/xsEJGgdgI16NqBJmVFOUljsDhLnVjmBOeA3gdQZnx48xoeDJ6BzWoLQkDXAVfXW0y3PeZTQhwjaJ5BaVKe3Yutk+q+W5d7Z0YZMh4gRt0TMroMDA2Ptc0VGV15fZ1sg5NJMIsnYNN7XG5WiIlxnGfMMWnHYrm8k4Y2OWfMTWQaJSv7IA+TSFMtBq/PnadZ6g8TIfehFAFPTspVzPAIIAQYi13i8qR6ipUdAEvzG5R9bOpzAhAu+T+4QLgtmBmaFvKxCI4C/+RvC0LjApbKp6hRfs6Akn2kGp1qiCM3DMEsyibQRYlgoVSqYab2DOMNbWRSHc+ngafh8Lbmk+1V1qK0WUPWUnKYZwb5LPXztFOEMQEpLCzzIu/LA1ofz7neVZbEFLhcvS3F7mFrkqs3iBUo5mLoyKWFu65WZVQNk2q7QZWoJAX1VL5sJZQCaJmG8snltD1v799+L/upIC3LHKj5r4Kheo8WJHF5f0Fs5aDmzDge9gAcDrt7nPYHOCKs1htsLy5wf3eLYb0Bs3RsEPhF9b6EhnYqs+cmuq/u1yfW4FN/b8+DreeCgdnrxugtZFbowqGugxmcalRge/Zcc0su50eMYBK9M48TcrrDZrzEs8+/wiYlDF2P7skKMWXw/Q48TvBBDDnJS40iil7DMAPAjM47zHNAjBEnx6XYNiAeFmZNl1CvYU4OIWUkEs9zYI1yQgJZgT9qajtlYJpHHI+SQjOOJ/RdjzklrLaX6PsB/XoN3w+IKeFwklS44Ht0wwoghh87ZM44jTvsbu+QUsIPr15hd3eHm6fPMM8RIXj0fSdd61YDpstLcM44hh7zFHHY77Hf7zFN4ik0r7dRIz+y8fUcmYJDy9ewVA7qN6O7BRWe3bulw+W9H78q/2kNTeU1boH/48+x95rSt/C8nFWCtHubTaN69dp7Gy9sjTnQcHzp4tF1LDXyssoAbZ9tz61G2HqKG06LcwFq71h4w9F4mxpN7OeizWyCIreaUP8g3UinacRxf8DxeMDpdEDfMUI3lELcYAi9W9pzYT5ifKjpVvUSr6QUo5QTJs4Ga47hi+w2DlaN48a7HgPbRm/eiWcOyAVsAlTSjrzyWKqhJg/WxuSmVUUoT8iMHJMUdM++Tk070Fkb30XAUuH3De9vhX4z1/IcXv7pZ+wif5OLK/KXEbWDOfuxYih6ZCWX86Cz7/V59eyId7h6iYvsV1kiab8ZyFQwSPXaW2SN7qz+QA+e+Pi5INg+NbihKB8Vn+SUkBwhRYnMsOKqsLPPdqYqVqmSvkYZcEMb1VMLWOHxbF14zFgJ4xc6ayZtYlEV0eJl1+iKrGmohYehnh1iO6sVC9eVXPL+ZscXq4UFwF9iVWZenJ/6nEo35sjNOh+yd36Kb5k8segzIoPSi7HlnLDb3cGRx373HPM0wTuP7eYS/WrA7e0t+tVacJvbKx09RhGor+jePiJOFr9UudFGizw817bG8tNDHt8qjbQYSs0GKFRruLtaAEvdH7NDkCN4L0WV52kWeo6M8Thhvb3AkxdfwjmHYbXG5fWN1njcYxonOG/RTWqQywGBgE7pOgSHKUoR/RGihDMYIIZjhpTKYzWoOTjKSB3DJTUXq87B5X0JrHWskqZVjRPjcJCuYOMU0ffSCe/y+gm6vhPeCwY7AlIEqZN2tVqDvMP97h4pZ+x2e+zv7xHniCevXmF3f4/19gLrzRZd14O15uJmtcJ0OoHgkCIhJ8Z+t8d4OiHnCGwGeN9ENil9Zs7aHOScTB7lkIWPLjljg28a/vhQ7j2C5ZXnCb21NNi8cUFY9p7ze8vr3H6Om7PQvl/5XzFWmbw+e197zh4azIwvio7oc9UFvXZ6Fdxe+Qa39J9rBP2nkOSnZVSzjiBZt1zXYHm/Ogsba9vYQviaGHimccRxv8fpeMA0HeGoA5GkXhJJVFOKGT5n7axb+a4jlELatu6VVpbcKWWGt5TsMi/Dyks+fsbVyh+NC3kidN4DxKCYRJexlTWZ2tQwtr0rG246MBrMbPIr54KhkD0sSteifxmS7VIj3JtxmvwC4PQs2NaZ3HjsosVNPn39YmNTMTIZgVMbql/Bd5G6reAsOLCOqChiZAX2aqcbar6XwwG5d61FYwUYdSLBI/RiIXV5AnIqnt0i4B8oUFT+/jDEvQWD9e3Lrnl1mgzGacr4cB+xmh1SmNGfxJMbtBiwdQlKSYp0AgBThnPGRJWwk3XgKTfHOE7Y3R+w3x1x2B+wP8wguaGkUTlWp1Sdo3Ncfjar7Wro0fedrq+ETHbqlZOoKL/YTjvYAErrWXmxZYq2t1ZkrT63LqKufzlRZ4xXx6I+XGFAVL10Gtxfid4e1+xfZrP016gF51Dq43DdcmQnDOzu43t898d/x3q7Rc4RF1fXoMz47W//EdM4Yj2scHf7EeNpj8P9LZhz6frUEocVj3QLuqlsp40SkNaWVfk3bygDtRAn1wiJ9jxVWqyRL1aqwSq6WCRgVpebRUDZoElRmHSYqgXr5znqvmUFIRI9mHZ3+NPv/zv6YY3N9hIXV0/gQofN5hIXF1eI4xHvt1fw5HA83UphX4hiChCCh7YTJYQkxXs3wwXW5BETcJgdUgb6JPWpcs4YprmEbk/zJPWSTkcp0B0jfJhljNmixDRizDv41YButUK3WaFbreBCh8M0Ih6PgAsYVluAPHo/IPgeKc7ouw1Sithu9zg9PaLrAiI67E4R49sPeHe3V2IXj/LNkye4eXqDEDqsNxcIocPbt+/x4cMbMCdsV0C3WqHvgraDJ8AiBVjOvwEgOV9VmBqdFoqxf0yukB5zrobvx89UC5S4CKZyDOs7Gxr71FWfVH9vwf35Z6kIqVbB5OZDRGROsgXgWtoJjA+I29vaGOfMmKeIlDK8DwihAwPoQoB3blFjj7UegLOUrXJPNWhrm3NrQw8IX2Vwya1fXCqUpYvWMrS7hVSM6hzJnJA5Yr1e4cWwhg8enIHj4YTd/R0+fniDrlsh+BHerXD74S3ubm8RT3v0yFgNXTEGM1gL1KrnyQSIRmGYw5RQ66FlAJN6EwcHBFT5+8ntbn4wM50DMHgFTJ3DDAdkYMpcu64IWtLUxmr4I7JUk+roEZ7HADVgnwGXM5iAQATuegCMlGZwEuVqAhc54b1XxU6jjr0avPQZxYWhCnrKRkO2d78AKf0PuEr9D0vTKq889tMCQVWjkL1G0OYYy/e3dQzbDxTvaHvPBhdJdKvHynswJ8TTLPK0UdKKg6OR+a0RfAFGG1B+Pq9z7iOiPCNxxnHM+HCX0HUEPySQB7pA6IPcoRY9ZkSNDhe5qzgHYoxMWgQ9l3zLjOPphLu7jN3+gHGcMU0RjiM8YgH45+ehGI4g0T3whPVqJY6dho94L/U4HQgW4V3ovMGXxr/ayRfDdKsQl79XOV95NDdfzRo7wTv1LqaYCObwC1o5d36oXMhWr6jydonidtX4yJZaI86gD+/f4A//9q9Yrzf48le/wfbiEn034B//6b9gHE94+f23uLv9iHk8YTzugJwlop+WqmuJAOYa3d7icHmm4lZrwW3LVQyJVs+pNm6o82xlVnVsKrtCEbqgWt9LZabT6AuTnY5cOWu+NEdgjLPiEk2OSXEC5hlTnBB//9/RrVYIXY9+NYCcw3a1wtX2AtPuFsNqI+OZZnCeYVEfDEZwBHYAeQfuAnIAutUGTB6JHSZ4rW9GyElqpI3jCTEmnMYRp9MojrbjSfBTSvCdGJlYGwXkHJHiDB8CttsLbLYXWG8vQMGDndRTipmx6npcXD2D9x1SFGPAllb4nAZpwvL8gOl0RNd1cMMGYyYcb++RP9yCQAjqTLl+co2bJzeSssgSpfTxwzuM4066+IaV1mzyRXfI6qREAlw0wyrDB1f0MOHnXve57nuhJQYy5SVvbdO0jCaaH5YR5EXVr46Plv8VuWoyJxdcs9QrH/JTKVCN5lpy0cLFbfBODIiFdAuTV2xoWKuVcfpjVnwtTZM6dNQBIPRdj+CDWiWMzzQZM2VqhqHEUCrGCS58AvqzlZNoPl1wVjUmGYZC0e9svay2bfCCOULYYr3dous6xCnj/m6P7cVH3H58A0cdxn1AnBzubt/jcNghz0dse6DvehCoBHqgmY85KCUqXh0vzCU1OoMRwZiz6G6eCEH104o0UJlmy7fOttETMHjR20YPxCSfmVNGAmHwTpwrTrNWeEFO1T5SqND2aUnjTlPwAgh9J2brmBOOMWFwBB+aEuFKpxYxirImWD5H9zQn+TlnPqPXT19/dRpdJbi6AkuAncvPduYY0APVCEjypUaMNKEwxmHdWvT2xjsKgaiHeiFkGKFzWPcDwBlpkq5AUkiuWkPLmsgpXMzr8SiAM2He/GtAuTAsAo5Twu19wnFKSD6iHxyGwWE9NIKVJBQ0RjPrJoh9h8o9zdhEJMIFIEzjjP3uiN3uKJ0dDhMCRNA5lgPgvBnpTDFTcVrWDVgNtbW7RbeY4KZ2f3SzW0NcNgUHwKI+ScOI2Ri+7l3Z7iYsOjes1f5WGFcBR/W5NQy91m2SgS/3zpV7m1cOKOloqLzTOfMQMO5v32N3+wHrzVYKh988xYsvvsJvfvOPmOMMcg7rD+/w4d1r7Pb3YiVvN97o0GoiaRhiy4iXQkbp3NlMpf6BKLptB5Vl/nKNRDLgWefuFUVaU40ElA4ChX2TpfzUjzvn4H0otB5j0l0ReplTFGF0OuL9u3fIMeOzz77Al1/9BuvtBb64eY7Lp88w7nfYbC5BDIx3wQYmXZ8gQoK1k5APQq9hfQHfrzElAh0dYgJyEuNDzox5tlDxCdM0Setg2mGeJ/g0w8cRGRmZZ2SIJzGdRrD3YmzarNCt1wjrFYgcDrd77PZ7rNdXePLkGUIYMHRrdH5AzhnrzQ2YM+LNjBgnxHnCYX+L8TRjuttjmkakGDGedkhpxsV2g8uLCyl6vtoghK4Uie46j4v1FVbDgC5IPStCYxhTpm5CQ1LtDEhx+a+Bw80RYy2dQuW8VcWiXu35eTSl5RMCoqUP3UY08qt9wuJ9OHut8tqKghpqXnwv/F3fdT7cqmzVAWVmTNMM5xy6LqLv5dx1nUTTpVIcVjw9WdPnBEtQqclBrlFcrGgYUJVCrvzFJIJFL9RIB67RpNTsIHPZ75wjmCM2m0tcby7BzBLZdDhhd3+Pjx/eIoQBnZ/gaIWPH97h7u4WPJ0wbMXYJBFKwsTaOk3mYUfjAXZqZDIgmzNLqgWkI4mlajY73+wLPvEzwRFjcGJQ6oKk7eXEmCdZuw6MjgA4gnfSUQrWbQ7GjZZElnVOubE8UpYI5RAcqOtKcd6YMhwzRmbpUOeFz0iUoyh4gZwqaSpP2rMAlMLFnBgPiO1veBk2KvWUqPyzuFozmb2/mopq7Zumd0W5Xe3o29y5HOB2rly+HISGuuCxGnpROmdX0q64PXv27fyMYklPxSv6YG5VEamzVzDP0sH09j4hdIRujnCBsRpILKRA6aiashinAIJDBDkDGk1NpixF4e1Enk4j7u5H7HYjxnHCPCUEipjdXLFHoRX1vvMShwTn0HVVZpaUrDMs0v7croMcW8NQlfctjJ7KM4vhuzQFqaC4TZ+hds+bfafm2Y4I7BoMwZVLc91a4Y8l5bA6fKGddfWolnPEAD58eIO7j++wubiA8x2ePJXGK1//+teYpkkiKvsBu4/vcdrfI+ck0ZEqxyx12boTkyoBLZmZoamOq44X3BQDBzRlstYzsinX6Ba3uIfgNHtQG7Eitd+IalqiRRtYsxwz7sveZqRZxyAbK9hulPT/1+/eImXG02fP8fkXX2K1WuPm6hqbiwvsPl6hX22Ujx3K6XBaDNscdgQCugCGgx8uEfoNEgVMGOQkUwDgkVPE6bRHSjP2+wN2+z3meQbTndRbShE+ibFJDjpjnkcwM3zosLm4xNX1E6y2G5APYHKISJgzY+3F2NR1A07HGdMY0Q2M7dUzWfcUwSlijjP2h3tMMeL+9h73d3dIccZ02iOniPV6jc16rdFckgrbBYe+8xiGDsEDfR/UCW1rnOT8JIbamgECXLAz0xoXz2UaikHaKdCpEY/V6GEK/cL4C0A9pg/4mmEmxtnnGiJtI0mNN5I25ymBnkQik86wEivmKRxzUShWfn8MM9l4uJlrcVZB5O40T3BJikGbLtB3PRgSZZyjrHdOhMa7r6Kr6pHUGFyt8UE1KJmD85G9UJ0p63kpfFX3MDc4znug6xy6fo1u2AAgxDlhN+9xf3GL29s3cAg47QLm0eH+7gOOxz2QJlwMhH7okJPgBOF/DX90mmare+cgYyOIkSlBOsPHbOVfUNLLKsN9CJyrZlwvR0AfAJel2YqqSZiTlDQJziEoNihGvJb9N1tvN2/18vIcLZ8QvAOC1DSN44w5RsA7dE4xRB1u6dbqyC2DQc9ke5awSMHMv/D65ZFNbAKoTlCIrv69PXRFCccSXJEtIlFhIuZQsjaUZK/R2f6hChrbZ6k5ZC0s5YHJGJBz6PoOLjOiCtecpXbNY4wIaMFCPcCPgigDJQwRkBAgdBxnMDnMkeE6RrBCfVSZRi4KTJ2gGEes6Lasa/AOwypg6BxC5+Acw3uUfGUHD2JTmsxjvAR9hQmqVtqeD2r2qcKiBgSeaZO2d5UW6s9286Jm2oOMPzXjsk4JVN62tBDX/VYjYdkqWpza1qhVgJ1aXFoFtWXErfLcDBvMGePpgMMuYH8vqXTM0vns4uIS8zTi4upGOg7OI1g79LWB8UVI2UMX69M+1+bEsBWrtlRefGa5DVXhsM9R+6YCQJefJecUkD28Zwtai7Knc6ohmlS2c55HafGbIvb3H+E6j3ke0fUDYpy0cwTgivee1OPq4AF0nYzbhR4UBgH4aiR1BCCTtOukIIzMeZAL8DFimhPIBVCclNNnwPUAZUxhlvd5h83FBS62G4Sh1/pkWQvpm1DUjkAZ4oFUBUZsPQQiD+cCgh9AcBJCmxggh45X8KmD8z0yk3RtmmbMsXYvSdnjcOhBYPSdB/e9roEYmEWpcSX6goBSQNV4ZzVcLK8HHIvb97S09um0ucf1a1q83pLx2eMaoffzBqdW2NqYAHxiXJWuzUKyDE02/kJSALwZs3W4EeDPhZcIf26EiCkYBSTZ+PUUqxxhaGMFnBfKfWTF2GQJoKG0Bee2RuN2JZwWvLb3pJgwTzPADsiTGE+QEToPZimoX1I4zgDMMrnKxmsDaF+BGqo0qrPh+0tasbk0RGB/1bmRylJPQCCHiIxZH9mOs12pKnNYf6d2xyVS2jmwWfJJx9XIV+h2im+bFzSwHGizP2dyvHWQLJxff4frUa+5jbWVHfQAlhc6FD7JBToUrMv1d2cA9px0W/lv8pLMM80N5lKeTw7OSw2MrPLDokU+ZaRbyCMd+6Pv0UYbAEqaDEMil05jRMcE17PW8silPlPOZsq1OZydb43yI0egDATvsFoFrHqHrhMDpnMkDS08FacPnfEE4wtL/YFwjlLO8alRNC3+Vl+z+9rxNINWwV3tXOx7C4T1mzkoCg2c4eW2oAEVbFBHaJcpdWjwoRXQXcy12e96O/tB1pVzwuGwgw8B3dBhe7lFSgnDsMKT6xtQThgP99INK6Vlpy9YhR0uoqDlc2dDABEWE+HFm/kB1VHzg/FtfkR+mVm8puidSdfFOuh66t9KJ9LFDY2PVlk/TyN2Gum1ubyA7wJSTgjdgNTPmA+EmES5djD6VKcIOcB5MBzCsILrN3AIyGpsYjiAHch5dJzhUo8hS9HwaZpwGhOYAnKO8HGW2Wr9r9AFhC6gCwHrzQar9RreB8xxFnmYBRsBTmpCUdN5sfB4gnMBkvpM6LoViGZ0/QrdMCEEOXecE7rQAS6AiRATgyhCouYimDP2+6OeVY9ODSHWzEgyISR6iV2TDZDONh7t+Wr2mwrKXRhhuOwXN00QjCDr3j501KDoWva3llOUc/+Q89dHgOtZNzozfK5jaNWt5dOVduvNKv9odSJAavzmJT601GK7r429zhdqjBGe1WKodiCGzyqDk7vZZ+siPSI/uM7Xfrd9rdijptExSwQfWBr3zNMMR2KEZJZGKr7zAHmAaoOkZtKLUdSpGParwzTckdQg3mm3zGaSy/1o9b6z34nFGehYIsS9s1p/Mh4xTFoae8UMD3gyGt6u3x056R3RPLfgJ0iBcEvZy7Zn1O7343LdzsW5VOef28+z669Io9MrVysbsiFPZaZLuV+U1VZoei96YvCaH6rA1RGh81KlPXhfjEjVO6SREkxI7OCdFImT9AknFs8ggGgmqVXRrVa4CmskZpzGEXPUzlhxKoLkMcXHQIWloZU14BoF5JwU9gYzMkmnoMM44c2HHdbriLDdgH0AKGoBVBUUsFpEnQBDkq5D5JyEyLIWf2TCZtPjxWcbrAaP62vGsAZWa4/tdgNGAscOOUn9j6B1QASMOj23ckAdObC2ny84AgZI0OSG8gIdVYFe2VnlFwYMqHlVPui8fC3K+TfvoeDL7yaG3YKQlbmQrwCoLe54BgQEHMi+BRcMywGwulYW5dP2aJLvwXsMXQA5xoe3P+Lu/Rvsbu9w++EWw2qNL3/1DT77/EvcPH2Oiyc3OJ2O+PG7P+L2/RuhW10Jaxn5gGCKwakKCxu7/NwywQXrK2fJwlDNK1r0WQZAXuqkQL17am2uir2Ez0v0QFYarp5YC5tMWnzy4SUgZ1j1ADOOhzv86eM7dMOA/bzD5c1TMAVcPLlBv1rh3Q9/wjgloCMMvZ35Do48mBwGJ16y2W2Q3ArJau0koRevm9cVACdpSDFG+OEO0zRhmk8Yxz2cA1brgNA5TPOkBaMDvvjyc1xeXuJ4nPDx7qAeT4bzPbzv4V0HTwHzlDCmqELNgAcASP765iIAYAzjCeOknVS0gKpEo83IKWN3OkmdkRSR0gzvCKfDDkOnXfkutlK4/GqN1bqTQrxdr+lPwv5TAnKe9RkoXoUa0VAgD5rg14bU2jNhRtpfUqepFbIVOLdY54FeaUCj/FqBCbcfIirdNM5BOEEFlRnYVeER+1ADViDxIBYhCO/E8278iaTD4Ol0gncOQxeUp+pdyZVC006BkoF3ixaU+Wn0pIKqrONZQgYq/GqBQuxA6vusJk7OCTFFpBwLoJXz4AHtCJojYxon7Hc7hDCh7zOcHwCacfVkizwH0OmAaZpgkVj6lGZ/lgU77YWqX8p8xpThwBi8q93ejJO3yqiNtSUOwzzMcFmiOwcisPc4ZmDPETkzppgQNM3YF2W3xQUqg7RxA+kSQvdY5LnWuGItUpkFMM1EYO+QkDGBEQB0LCBGuibZOVHFjFEbkrBRXd2uB5G8f/PrwQlooGPrjGmwpZ4bp/LAkchWIsA7lihdSMQFKYbqvNO6X6YY1CcWgxShpJD22vGpCzUKmJwDvMewHhDW0tFzfzhiniI4p5Lubfct3xsjCQzEUsUazFRSOkg7HwEk6Vtg7I4T3rzfYbUa8KzrsHIeNGcAM6jQrDowfJA5OU19UO+8AHYxgGwvOnzx5RbrlcdqPaHvI4aBsVlvAM7wrlPlhbT5wxIfcLZGKK3jqNYuebC3je5RkavRmaZ+atZrqSxNRbUpfJWcL13H7E7qCwHYaqroWJrueSh10AhWccV44bmhuv2JkYsiFzptp525pNWVSGvrPlz+lTIFQ/AAJ/z48s94/eNLvH/3Ge4+fsSwXuGzzz/Hr775NT68f4OLy0ucTge8+eEl7m8/aocm0x1cxa7LQaryVYVRXg5/qaO2+lmhl6qTFN4pJVVFbdR9l4i4mmK7cP4tfkbhm1GLh6ecETkVPCtbTXBdADEwkNQI29+9x9tXf0a/WmFKE26ev8DheMD2yQ3CMOBw+xqH4wlD36ML4qjyzoNCB/IdXL+V78NT0HCNxB4+dcgsLeKtnlNYiyK+uRJsMo4jXPcGx+MBKc6IaQRxhnNZivw64RchBDx99hk22y12+wPef/yAzIyL7RMMqy2IPY77EZNLpZagKL3WNl0wjg+M0K2ROaEfNlhvL0EEdMHDEWEcRxyPR6QUcTrukOYZaZwRpxHeO5xOJ6xWPVarARcXW3RdwM2Ta2w3K4QQMPQDyBFSjDJvrZlbkYiW9WDDvR41Q0DxXvNuM5wW/EwE0gYNLR0YlvnL0kMxA0mAgNyDSrMYAOoLa2o0kjAHi8wEVSfxwvjADJSGUjruopJRxTaUQGa40JpDi1pAqr/FlMDzKE08ulAcDzbDYpQHFyep0/NqChdD+JYniaKxZgP1acbj7Gcun12onkXHq1/SdCGhNHhxXho9JHHWnQ4j7m/v4H0H5DWADqEHLq634BiAdIdx0tRU1SstfbLw2IbXmpNL1lmGmAAcU4LLDO+AdTE2t8vZ6MMPgLPNLyPkLDzBEVLvMc0Zp0lScIOrGMBuJnZmG5vx4Ir1i/PO9AZmzJpt4xzgWWp4RueRPCM6IHJ9jsOSlmtWTg1C0Hr8cv+mwHuVmT9//fVpdO0/tPhrMdIYJjCDm0EnIVD7EiFjgMsKZ3kFIK2hqSxAcw87oFZEeuHN0y/nPLq+g89ZKr7nn1e+Hksr+NTbiRw8aRcwJykEMWUcxxnkg3R8yZIOl1gBADdAu9RWcJVYNBTRkRT9DsFjvemwXnn0Q0QIGSE4hBAQAiGxV+Cha1YYghofCqhuQV+BUWVNbYfK3lIFpe1+21Y2htSyvw3GKvsnFhKgGlxs7eyfFqjSAtAtCV93pNUbFu+oT3eNMiaA0z7LWIaf6lOdK2lo0+kozNh1cK7H5uISX//mN9huL5CZcYoR3XGPt69fSUh60/kPDb22+dGPMZwWtC6FmN2qYcTN/MsewQRejauyVeDcROpw/fD51C1irDDzJClBzRuUDpQmNQdvOh2x290ijB22t+/AlNFvrrG5vgTA2llxGdYr1naSKKVuAJNHxoCEvjCE0lmwEU2AAkEwXIzopwS4TtNjpdbZejOg7z3CPIKCl24nl5e4uLpCTPeY5h1iTAjBa+6/gHiCA+codV4WSlOlIx9CoXPTVX2wwoQnnE4E5hkxMeIshqYUxSjgOGMOHjllBOfRdR1Wmx5d7uq+2Lk3sGYPO1uDpR5DD15uaaf+/EuV6Epj57R6HpV37jVb8MaGOM89vg+tVY+ProR+A4rCdMatMAcWuUME1MgmvXHpRmSDIuWJZH83QFbBAlG7tsqLDEGdTdFWoBgKzlkR4wFYsjVoIyig5y+njDhHkQ9uhmeAkdENAZkS8ijGYJNz5VFcIe+CJCp6bt5LUuCVuCit52TUgumyLs0Eja6I1SsHQiBNX2Yr3q3ghKgYSMr60fk62zo2+2VFOLP54GpKoAl/ZvUyojmb3NyPjL89ePHR65dBpf+BF6PQttFaNcaZLNS3csUs9ndTBEoov9KvpMOpM4EqN21Pi2EzWyPDUJ5tHA2dOgdPHs73cCnDuwkzRbnjzy0plZOhz2l5WiOrFbOAoZ2BROk5jRHkfOk2nLlGh0MdLx7NOWrOFGk3PVHuMrreYb3psFl7hJDhfdaORB1CyCCIfCtFcc+ZGpWj27y25NF0LlwrMEIR5Q1+al87dwgYbzKjYj2BErVZ7FOF/5ixiVFMMHXAlUf97FUYhnzMtfix8vAiVwwb6DOs9iMz43TYSSRw6DCsNtjGC3z99a9wffUEKc64290hdB0+vHvTNPg6X89WYVsOs4qURyUIzgmz4F4VDhYJwKVZ0Xn0eS0E/hg2q2OsPMYUspSTYn2AtQapOVSIAO8Fj8Z5wv3tB/SnAfvdHYbNBjEmdP1QeKd1irQ5CIYSY2roBzjfA8Ma1G9A7BFih8QEpBmMKKxSu+0FHaPzI1broxil0oQQpVakd0l0Di9lDnwIWG+3WK03OJxGSbvLjM0GcBrZFGNCJjsTtFgjiRwPIGJ1jmjdHc5wzmG9WsF7h91uh5gBmmfgdESGdMocpxnOATtHWkIhwXmHPvW4TMmkQjFW56aeVsmEKHRlx3F5xrB8C6ohVmWNylZit9A3Wuxe7lTuXZj2A3DUPt+U+AdXwSyGB21Nm4jc8uwlNmnEHxbYxBGInTpuqJ6HM76QJcwfi8Ju7T3bUOiCpc74pdUQJYC0qEnBhOfjrDdeTKncrd0X5uY+FvBAwj+0gUqKSetPAZ560Vsc0PWCoZCltIh3vu6N4q8W9y2ugq/s7ZLqbeVaauS78pHFR1uqOb8nSrFyR5JKF0nuWXBUzkXe02L1VN6pDmGv1DrH9fnUpLKUU0oCEJgsqd/G2QI1e8zSyLqYho1Gz/8vkTJ/hbGpCkhLbyrgcSGkK1ix6KTOCbP0ntB18l6vXYPArMq5eHy9JwlvVpAiURikUUxiZY4xamiYMTnpVpWiFWwThTDFjON4RMqMcRoxx4iUc/GSG3MCqpFiOV+bC8qcDPZZgUDRI5QxECNxQkYunav6zqPXcRN5gBy8o9Iy13vX1NyQu/uBwOxwc93hiy822KwDNtuI9Tphf/LohxP6mTCzw5yXBNZeleB1Llzfu6QtroRLdV3KkEwBZluVujZtaGIRNo7qepJ7wBSzGlnaYrEtuVqnl/M0lqIA6qYUimvvr7+UrjuqiFoRWmrGY7QsYwH6LugEZxwPH5DSCS//+HvcvX+HMAxYbTboth7ffPM7PHlyg8PuHu/f/oQUZ3BOmqqlUU46lhaMoPnb+T61kUgywPNuG2d7pN2CwDU6aYq1PXOcExhcaguAqNSakFpN0hZ3mqJ6/8XY2Y7MEUlUHgBPYtoahgG4uJDCdXHCtL/HsNpis12jH3o8efoc03EHQgJ4knQXFuaa4BCj7P8xZYw5I2VCztrxT5Xyx9ZIaiFJkeRh6HB5sdX9jABlrNcd1hdbOCet5u/vdtgfDtoZjtF3l+i6FbzrNMyWizG2pU1j6BkstQxQi7fL6gvYCoGwXkstmb7bSGRTlnpPQAblCHDCzA73xwlunHGYTgidw2rocXWxQRc8LjYrrIcepeW0AQtrNGbAvgFQ1jxpAaCIPn3+z9azBfMmZ1tA9sDIVH6vMqC9iJbr2D6nKFaPvQ5VDgt/qUCvOt9YUzItxF0M6syNsGwAZggSGQuNLAIgqWOMym+acbXzLMKc5Ryed5oxbpSs/TUA7+TcIGdw4sVt6/lHAWa1mCZJSqh1VZxHgKVDIoiQ04w4z8jmtYVQXqdyq9SX+ITWb+togCZxxswMRsYxJqzmCO8Ig9NilOf7hvO9R1kbI0ivEU6dA9ZDh8SAz4Rka0nqc83yXJH71WCyXH/bYzubEtEIIlASGvAAsoKbmEUWJGIxOjmG71R+ekmxqA0tDEzKpjmLrNXi7X/3q8jW6pRZrknFHVaHMXipQ+WdRC+JnOFSOsAuwxMWuUQQY79XmvNO24XnDIJEAViaWs5ATl5Lk0i59xgTTse9yopJ0xbU+WDTKdNaggvDcO3pb7e9ROopnZLSl5xbSSPt+wDvgRBQzg/pOniNJpZi01UpJACrjYcPDp89XeGzzzZYr4LIGfY4HCeEboKfBBPZ2TcvcBkoV/ppj0Ex/hUFxYx0Jkf1dVdbr1NzW6PHitvqOWvxaE0vlL+1yoHJA3MGydmxYvzG95flCor9vrmWakKNcmTU5gIlFZgVl7QaZKMrEgH9EOSFNOHu41uMxx3+PPT4+P4tXPC4vnyC7foCnDKunzzFcb/Dh/fvkGOsOLtZhxZDWTOGTzmMz9ewRsKVrdG1VwMj29qjNBeYtSkKs+BQsO4jiaGlGwJaJzGQIGlfFp1m8s5QbVX8vZdGPKvVgIurC4QQkOKIw+4jutUWN8+eI84jdh8/x5wmOAKy1p3NHIBMYNcj0wCmDpw9OEr9sjmKoh3jLHgUXHmb7WdK2K7X6LsOOc1IaQJzwjzvkfOMbuix2q4AIhynCQeNPDI9xdY1a6S5I6DrOnHKKS1CcYhkE2SJALcalXCQ2PUA4oChvwAue+ScsN5cIKWIeTxhNqdvFj0vA7jfT3DHGcfjhD54rFcDrq+26ILHerXCMHRK+xJRw+wKTjI+UeipMSaxgkATa0scohGShbbs8JzJxMX3imNzoQWUlOHWyVWbmNhnmjuROmnJukhT+WqNaYW6RFFTjNSOrkaOWzCGGC+pGFbBFu0tdC2ZRWIQo5jK+ogj3mTSQ37frog5Js/tAg9+JqEb59V4k6lgXsaS/5iOYhjKsgLAWfSvGAXvaA2+HCPmOCHHGT7n0jiFy55m3V+tUaT8rcUKOvFSN3HUNkwr7zB2UkrAF/7eKBQqPwCU6OqWv8l31o6TQPKEvu8KvWVYwxUSHTXbuFkjnGopCRumjbE1loNZ6l9mS7IlZBK3ReQMp/jNKx7xKtctU6eNcCpbRgRvGIoZ9Ash1C82Ni0FrAl+BURueYAAAd1ejU19cOicgw9WXNGEqRlrtLirGpssbcgAmFWKt64EnjNczgvgkjNLFywGACmAGuOIw/4oQClNoiSQk5xi1JS4x+apK7kQbm2dKTGS0FkWhRibrN5GP3ToO4ehM2NTgOVeh+B008xoRYU5Bq2h8PRJh6+/3mKz6eB8BFHC/ugwDHtMk3adiCjKY2WKJqQXE4MpZg8uVw9DNTRVRmmfbf1kdmvXdKizZ5biuyrYW2TFYCBlZGRYm/LyHBPwNo8FMGqQzSN7VYxMVhwym7Epl2LZViycFdiWCCLOIHLoO6n5E9OM4+49TgeP+XRCF1b4/Jtf4T/987+g63tcbLdIyPjpx5fYHQ44HQ/g6YjMsxRs1/nHGGuh0twCtuUczg8yQIu0PBHcsgYlXJKgLWyt8DQwzQlzkhbrcRZFwqLgnJOOBFavwjmPeY4Yx6RGl5aBASCJUnIKtMzYtFqt0HfKaNKEcT/j6uY5Li4k+uvm+QspAjnucdi9lUKUIBlrdjjNhJiBw8w4xQzAWfgS2pTCVhDbOvS9KOJdFzB0HXKO2B9vMc8nrDYD1pcrSIfBW+x3BxwOB0zjUdZze42+W8P5XoxNmZHM8fLgSCizThJimzjXqB6W6KgQevRDBbUEIOWIOUnxzcPhFvN0whQjTvsRnBOm6YgUJ6zXPa4vNxj6Dl++eIqb60uE4DAMoRjCzXApvL8534KAVBgvz0Hr1ZM1rCkW5+fkHDCds4VF9J0pOKYkNUvWfs8P6LhZ2kcMWaKEuXJPKAisKRt1LFRC4dWbyYzILe+Rp3nfoesCJOKsyX1XGjdD8GPqSjU41XO4NB4VdVKAkYJwi7zJreDVZxo9V0OTU0Vd6g44F5CZMU9CI30YAOeQ44w4T0jzJIYA3YdQ7s0lRdFAJCt7l2nUYtSkgGnSosr9nNA7Qu+1S0ljXALQdODjpjsJlXuLoibReyFn9ETYrMSzzlNCmpWHk/Fk8dKLsc8X+HsmaiUqSve+nP/MIORiPPEkSnRkSRiKtiYO8J3yquAVjCr1toDegBIR+Dya829+nXsqSerVGaZo1gIwjKUOu85pZ1uH3huGEgWi0B6k05N3hr0UGDoxNoGl5bIjwlyUey5yMieSyDeWBSXymKcTdrtjSdGWepMSYQE8PEd2PmT89hde8Ki6HHUdXHNwWNPeO8VQUjJBjJXBhyaSW9YuBHFCpCROFueA64sO263Di8/W+OLzC6xWHqejxzQFHA4OXXeAD1lSqVK7DgQzDlX9kgt/Wc7BFLR2StT8vd7LVALXfrahiweUUjAYFR1mSSPqJHNLI4Apyoap20cUpUS3pTpPm82DYahqbMpozqMzKbRcC1FEHVZ9D+8d5nnC3fuf4JzHeNpjGNb44utf4x//+V8k+nh7gdN4wuufXuF2t8ecj2XBCdKFUkdTcVxjbHroHD7fgyWOzRaFTs3rDX+Iem8ps5GLzAAgZ8pL/bLVsC7dL6VeEQE8llQnKlhX8W9T1Nwp5l9t1gBfgoiQ5hP2dxlPVxs8/+wzpJzx8eNrjHlGnkbMxz1Yy2oQPDL1AA0AdcjZI0co3UdtrDIhake8nMTgU9fD4WKzBTkH5iiNANKMu3vGNB2x3m5xcXONlBLevH6N3f0OrM55MicP1Lg1RzjH6PoOIYRCP6zUIel8CdM8Ku1INW9x9nYAOgz9gGGlyr0KqjRNmEfpOry/u5UOhpNE0+cUMR4OiNOEi+0Knz27xqrv8fnnn+Hm+hrOA6EXvpc5g3LF0Q+Ml6qnmk2hMl2dSunuJUYyIwZqDQrl/S1IgDpXAEvfI7KOhZVnLaPmGmczKu2Y/YNJ9MM2ikw+Z/Reh78858aDNDpY32OBHjlnQIv8m77mlLeH4ME5IzlXmx/pDaxcC53Nu71Mb6xDpsKzFhAQVb+3dVhGNlZdTuYjcslXRQ4mM3KcxTjpotSOTTOmeQbHGcip4mfdwqxNSYQ+7JxkSNEjY/6Ns5wZYxbddRU8NklS3laWVbXcBsEYTeMT06XsdYLoVR0Y2RNWQyf1bpM4GAGg01XO2i2RyEnpFkufp6qzGeZPOZefzbDqUi4pm0SiY8wpiwMPALQ7eghWG80XPmt7UsbuUMvVpKwS4i9ff72xSf8xo4QrE5DXpbipRU8IKAjeF0+UI9IcZBWSLFZomcRD4V2eZUCteVblDPKT0xB8Vw5vLkAXzWGmhkG0P9e5tge5AgdHUim+GFK0y4AzjxIpg2mYWBk7ll5MG3jDOgRYO8JqFTD0onxy1pbu4Goo0TWpnvqlwa/9t1XaCrPSObeeH7vnebREHWMLmhbbo8xQ2RupslK4DC0ZUaPQsY6PUA0u59b+1qNgXolimX4wxsdJ/txQWobClfGYkCzPIwY4I8UZxITxeMD+7hbdMMAPAa7z6EKPy8tr9F2P4w6YjlrElOWzD8ZeLAFYgJ7Hxmo/F8+8rb0yYttzRi3amk1p4OqxaBmqMXrz3NU894KUmn09EyQ2XrKaYKbsKjMjSVvdbC5weXWDeeqlhlqaMR6PiNMk9dQSEBOQshazhNMcckKty1BBmqydnRn3kAa5GqdyEoYcNaQ2aScN6xdTxKPV4mlA/GMX6/2XZNUadpfKoxgzPQBGCNKuPZPTsFgPl6ICeI85MWjO2B8nBH9E10utkeDV6Flyr22ANg5W/sSF/s8NmO1m/kXjZn3rguc9fs/Fjc5wVhPv+ICH1HF8+t6PjBPGs1FonprXqVmb6gE3YNTICuXXrfLXDv08kqvKhEcQ1PmfCs8l9RpVOWX8uU0LN69vyly6kppSYK/llMApIsdZ6oLx44ZqW2obbwvSTLa2DE5tNyVUO+Vlvb2fOwvLdRK1Q0+tAFQdSITRJml7+IdLWJ+o8I/bvz3yfq504CBFLsWnyUgsRf4tfezMbLPYo1Z4EkmKy2M8+G91tbCl4Ao0KW8mi7X4hjQCcSVNyTsrGyCftygxhkWHt3hFH6QPPMdPDzAUAHKQqHKWn2HFuNvOs81EKo01c7T5LX6nxXNbQwEDJe27GDs0KnmBoc7uYc9o5b68VwqAr1YB24sOfS9OFSkcW8JF6zRo2ZRmybuwqINSP0ePrCOX95S/lT1uFUnjbSrNzvaBz/axzO7saCwMqM3f2i+Q4b9z5VaeJ0rEwzPHC67w8CroTVPRqmGmeXZzjzhLavnpuMfu7hZd1yNzlk6uwxqXl1fo+x7z6Yg0jQCWTsfHHCQ2r0+d3nZ/WMdqMqryy4o97at2AzajGyE7iQzI2RwKYvjKis2zRkjymXyRMbZjr/tf6gPmjKzNZkLXwTGwvbjE1dVT5HnEPPTIKeK4O2A6jQA7MYiCCi/PiXU8NkaIzsyCUcqTqeG6hpksVU9pJGp0vH0v0RFU8TrKz/b1uOSw9xcndDl7NpAznEAkNX98B8Ch71cgkGSKxAGJHEKnhjfXIUbGSAmHw4jgD+g6jzUFrUPnS7p9HV9e0GmhpyrWyu8EqhD0Z7CQnVCG7b2m87HWWLPXF2fvZy7Wu53LTRJ8rL80wNDAecNjuDz1gb7WDqB9xrnOlXM1lJX6jg2marXB9vzXVaEHJFH4RgukGvzcyuaW5zvnxIlH1uWONRI3a63UVJ35mcFISDkixwjOsdTsNRnG1KbOtXgPy7GpzCzOT9M/UTGUdfttzwfVm55dzTnReTuu3WC9eg05WeAJL8odlNND9W4tNnpw2VTKQQXIK95g4YaSugckruWNzjER2eRaPKEDsU61vwRF/WJjk7PoMn2QI7WQklrsvBk9pPB1cKEUnlx5j0BiZCIFSkFDSgUEq+UPWnDZwFIzAwFXAjXNQ0yuBhb7QFithWGe5hmUIsiNSGkUodFEnFQw8HCZGpxQFlbqvYh3cNX38OSQNawtc8aUxPon3rWEFKNYUrMYomqxcxmtA1DaJqhizSkjzxG+8/jiiyt8/sUliDLu74/Y7RmrVUDXO5xO2sabJNKr7ywdr5mXKRZmjX4AlGwfbZ357LXGeFWEia6VMYAzIhPQmBfKJoNqcbsmsqd4r5mlgC+bF6YqizYuz26xRdaaEUAzhsoMW2BC+h6vbXttDgZwRTiTCm9GSgSwpZxJ9AHzCTFOePf6e9zf36EbBnzxza9w9fQpNqst/ut//V8xxxl/+uN/x08/vUSaRhx3O3CS/GBf8hz0qwyP0CodZj2u+7BUGgwgWpcP+3tMqURQxRgllz6LwQXKXHMWz3DxGlj76JQxalte54TGl2AJGpHQ7DSRcKzMSHMSRh4zOhC6rsevfvNbfPHV10BO4DRjnkb827/9G169fIVxnvBxd8AcGX7o4LutCI5ktOFQizK7R0L+5UqzFPbOOYonL87gU8KcJ+ScsNvd43Q6Ic4zoJ69AnRK2kQLhx9eSy9S/W4+3aztd4EaIcmqQnjf4+LyidBUnBFPJ+ScMMdZC4tHjHHCKWbsX34A8TtcbFf44sUNVkOHmycXuO46oXdtvwpuDKqukSNn57A1ID+GbM49R+dzbgVNKe5dDAJLwNyunp37c6HT0ve5AlE8WToB4491AO00ZMYm9KHygGFG01TqPYhzwSL4xPOSOZdIWwGD7c25GGKY+UGtobNRPbpeRYGDNB0QuRHQdR0yS3pf0mYFp+MJMSbs93tM44xuIKS8AmVCHE/AnDAd7jEePyLHGcwjgKyGFhsfac2KNgXcABzr31jSaaOkdmcFwHMmnIQ9SHRfddy2cEjn2CoUOmctvu0NYBGwCh6JCQdKmLIAOk8Spu2AIgNLJEbm4r174MCgapBglvQPJnH0OCJEIkTyyMjCBzhhCB79YG2y63ktZ9NSYUnSEwREo0Rf/T0vwU5QnGQOGqfjgjq0hI4sErzTiCUHVxxewTtJZ+a6lh4NYCQUWSGy0JX0fWcNWoqSIm2lN1sv5yhmxJwAqlEezlnlUneuqaDcBLKf7cukZyGEAO+cKNXkirNDam5EVWakHfccAyw6x0Hqe1qNKvmbgW9FyjmDOCG4hF4x1FdfXSHOM978eAdwxuaiw7AKooxr2lvwDi50D6CgYvOmY09tKFDmVejUHKYWdSMjcxb6zwxtdbqU7U4LvRZZwyUqwu5fcJIZdaD8Ux09ZkQXOZrqOYU8OpNKrUbpb7erNuvkxVkvd6E6T2YuCniGedCB5FAMIJFmLapOGHqRYWk+Is4n/Pj9jNsPH9EPK3z969/iydNnuLl5ju3lJaZ5xJ/++Hu8/vEVcoqYxwnIufANceaq1FvoBZXK2n2pa0xivHVVeS44y0kjiZiq0UgMLVnXU7gh54zkfan5Ss4hzrHgrjnOQqveg7xFVKqYcgxAioZTozla+miKEVnrDa5WW4TQ4Xe/+8/48vNvAJ6BNGKaRvzf//e/4ds/fw+w1XxksEtgkoimOKdqLEuGFCxkXB+bAZ4ziDKm+Yhx3INZioeDpGD36UNESgmH/R7jOBYMDSZx5lk9ZXUop5Qxz0nX1RUjgU3U5L4seU2BN8eKlAuodEUM+DDAe0Z/MwCccTrtMexXQm+KFdM8YjzuBUN9/w7AW1xervHVFzcYVj2ur1boe4nSsGybZbR8Vf8adChfem7FqICza8nb7OWqpJMGXKhxWw8ta2RJjVBqP91eiqe4/tw6BorBaVHSuZ758zsWfFUtgyhNhs7OgwU1jNMkNdiyRU4CgAcT1fRloLGjctHhz9fn4VUNFcJzXEkxLPY/BoKme3chaPR1gp+iOOnijONBo98OB8RpxHo7KFbOmMYTKE+YDgfMpyOQZiQnkXglMo3ESUba3dBSA8u5JcCZrsDSEEhylhiZgJkZx5TQw2GtkdJlfRd7tnip7JDxU2/bQoQUPBIDx0iYxaYqHYQLD/YoNZ6hOmwjI0FLnOZAGggC5DnK/lEAeS0Wrp8dWWRwFxz6zku0NFedU1LvC0UVeUBEQMp4rK3UY9cvNzYtGDyVCVqkUglpVhATnEcXgkYDeXR2Az3REpbqlVBlN0gnfwY99UA0grqMob7bOcnrzwy4lJE5AZTAbClUBGnbeaYsPXIwyIRauTdpUUmPXkO2s3qmiQkBlvtpkTlZ56M5llSZW+UzjbIj1g8tikrYbjvcPNtgOo24v99VZk1BBSCrQlFzqb3WdjB6Lt6EhlHZw6tRw/5Ei3WoXgaCNBWoDHpBA2fKZQaKccvGQbBuJmdeNzYlNuthNu++fFDwmQNTRmveNYMUQFoAXAFRy2VbJZuqYab8ycYAG4M9j8XqTVWB45SQc8TxkHC/O6DrV7h88gTr7QU2Fxd4+uw5Uk548/YH+A9vJIUtaf5wp93VPnG1DKn1qi6ZtdB43Sf7ncr+GiAtX9m6NwCUdP3A5YzmlIsnzDqpQDt4tWKQCsBt1k5PPkO7aSUByA6iJHWX1wXEeQDTOOK7l2+Q6T0SA+N8wBSBde8RXKdGyLl4EYVj6rPbZVCmC4ZGcEVk1no2LAavyAL+pklCyVOK9XNn18LWUEnlZ676Yv2M/JBL44HKo7quh/OENE/C9HOGU3A6jSdMc0KKjP1xRJxOiDHjYrtBzsDlRWqeUwdqe2LnwRSPxzwRlb4rBHkwPZOqi/k3PMJAfvO2xk/6YH1MaTGWVhiAKTftuJqFLzv9wHPXCE/7t1WEHC3ola02BEnHEWe57c7BCYk38gPLzQfXpT6b4wPPbSOkSrSCPsNlTdels9Q5VUJZFQyLvpuVTtnSRVJCSpDOPPMITjOYEqz+UTsGM4q1ERB1v8qKqfKoXj2I1yxlIJHx7Ee2czHZuhdLgzhgzSwssqkdhymn5l8ta49at+/8UUVaqQxhswISg9h4lNKmFj1Hyoo7NOqSVW41u7ZcOypyoaXJv/Vl9YtsXMZvSwScq8WWvZO0uU4bEgSnBipQMTYahiopIc09z43lLX8qjqRGKQckqil0DtAud+abXxoarf/q46qSvE+f35wbT1pzygf0oZPzksQ5l12uMplq2iW4VsEpEfRoWZbeXzGBYERG8MB20+P6yQa72z0+vhmRUkLonNQU4jpO55ymuNTxs7LYYlwhWfdHPb5lfblZ5/rdUSnrjXMM1jaHkQcTMuUzvqynhZfn3zAVEZfuUqZMVzb+KSO/LB0TrOlpy3If7queFSukYDymGq/0vtrFjaDr6j0YjBjFAbCfI3a7I4ZhjWfPPwfdEFbDGpdPrjHHCT/99AOg9Cx1NjOC8u9WhvysFLL1XJJ/5YnlQ43RiZbRTWa0sZIMiSoGikmcyPM8i7GJc+niWx3yBjsaWUiVN+vTwaRGQx1fCB36foWrqxtcbC5ASHCYcTqd0P/HK0QOyKz8TdPOmMwwZo1hZB9aA6btKcFS3aWhyTSJE8PAc0zmEEuyZynCjKzF2Gkp/Fy/RD9xyjMqhm0V7BqdTg0tQtbAaJvMESBlUIJ3JUV8TpPifjkzx/0O40Fw03g8YZ5GpJzx5MkFQA45VVm1jNbhsldK1IVGqPmBiApPOpe7Zf94SWJlekQa2SRF/auzDlJ7h84jl/T3BleeY8z6/OagtuCq0FUz3oKhVI42B7zl6Yuox1yN1rWmrvIpV+XFggU/4BjN6aRKA+3zqoxC4XVWUD/rsxxT4SPF0Esa9ThHxBQR51lqMacmeilGqWUWpeYlcgKT6OgOouOZld06flYebEvc0A8aDKUkU6LDz+nj7FpOkVuRCDMIeYgByzsqGDgr7GGnLoUGr9DiDDVoteUtdSJ6SLnQuDgthT6JpS58ZEbgiuuMFgwj6OjL4CufrWP5S9dfUSBc29+RGl8cYeg8gqVMEUCOMHRdiQIK2jYykHWKU68oaGE9LuqD5h/KJFyZlC2gc1VAV6YhdQq64NB16uVjwCVG14m3LiXRNFifS1qR3taqCH5oET8t0pzZWv6pF5CBWcN8U85FySStkWCecweZcyCtl0DW4ld5kVqHVRNATmJVvNyuMKwC1psO3hPmmPHh/YiUMkIfsL30CMEKhaoSpXMxMGYgwowyQoyVs5V6SmSRQcYMlwzwTE4DOMNAC+HcKBeyafrBZQ2ZamiqgKcU4VVOXeaBM1BZ5DTXwaAxqBXlpPmM/mtyVz5iHu3KMGLmkrtqJTlzqoxa/wIiRs4nvH/9Csf9Ha6ub5DnGT4EXF48wX/6T/+M/d0tXvsO03hCPJ0wTdU7ZAaiKrDbNW+AQcPw6jooyCIRKJKPa0xF1iA4qX+UQGIEAgPkweSQmRATAGKkKHWsZP7q5chJBLSNFYC3FuKARKi1wlkpJyMhxRnj6SAesdOEaY5wnOE4YZ4mvHn7Hre7A46nBFAHp57QeY4F2J1z7NwIKDZ6S9b18Yh5PgBIyBQBSDpSnFJJpyNQ6UDBDvpZA0dGO1z2oq472bFEKfqqdANl9MWo2yKVRogwS6SeeANTqUHinHjahlWAD9J5Jm2vkOKMvnOYUgeMwOEUsT6e4L0T77CTuUALJhdko49tT3hLTvUsVMFf+Kud1UZIyJytAw5XunNWfJfQPGFBtwusBKPdc8OyUY2tXv25pMQ9JrNaQWaH3GX1ilK5S2ZIzTIWhdMrimdNf7A263Ybe5zNjXTjzZgBoHZ21Lz0AtzKKp2tBlXQZGlQ1vjCJTm/WZGBRGPNiDliThkgKe7vtOC4Q0KGGuGBqgCRCO7zmoOFjzd7w1DDjo5LGlw5JHhElkLbM2m0TUO/58t+vq/2JXyC0XMW/32WrkzGnRwBPXkEbcxQHCfcUFL7IDr7oQFUlqrC6phh5d0pS+H0bApNI3OSrgcr/gAgAJRIowx/qV/u///LZEtwDl2QSKauC03dHautJ7jKOYegEeOBzODiSsRMqa1FgPlla8FoKiYOVk5NkJbNVsfLiuNKUVAnnW47Bhwj9IyOGWEEQpBIbnLVK03OHHdyD1LHF2jZ/MXOv9coLDBjPI0QfCXKNhGKoVB8PAmEjOCATnGVFTAthjHFQGBo8dSM9Sbg+maNYfAIATgdTzgcJux3ETllXF1LPa+SkkgSMRXOIgMFGyhfsQK9VBa6gH1zsgqPqZjUZIQjV9M+uSFMEzB6rq34a2UwAAznFr5pvKfBWtzcD41oIOMNBawt5FVRSBu+bIrkQoFRXCx0RerxrlK5OLmyOF+L5QqCPVOaC+2bsZPzjDgTXv/wPY77PbZXl3j64gXIOTx7+gKr1Rr7+zu8/uGVGBCmkzbdMM9+LQeAZm2KgmRgkqHOCBlUYZVk66BSUzfAnH3Oa0pwYnFYQ/USLQ8yxwQQRNHVSJCyJzkhRxlQcdx5NZZBjKgCoVisHUwAR3DOiPOI4+4eYzjh9t0bHPf3ICQ4SpimCe/f3eFwTLq5ih8RC9YXDFX3FUV+s54rMcCkKEXBx1EimwCWWneOEFMUY5NGEJHiwjlFZK/17dSQz1kgSdQQDOcy4K02rdCLOE4kjcmpTpchzQjgmjS1B3qHrGnKUbqOcoY1BvGh11IFHo4CUk6YxhPmecbQEfanjDmO0sV7I5EgnkJjeMqFrs+Nx7wYg2IAM/6iVjSl5s3telcwYLi9wfflu9FnlXkPMZueFW6NxCj6i/zNntOMqUEjC6eeHtoKF3LJOGkObTnPKUkUtHPqRGoNKuQABJTq+jaGKorqr9VqUceDs6uwxYownRqBWLN3vPfw2rzBaRScpYomzeyIKSLlCHAGJQIiwaWIwBHMYhSOWvMoKS6pjqvFUp7BEcUMiqG8Nudg0uZckBq0bRO/1lj1qBFG+YVgIFbHPKPTgt3IGXOWsz6zyI+OSSOtMnix53ZLXj4AKAEYrLTEIClQqEbupLQxy1LCw3BSs1FsBeqrjAADaZbU36TBGI/i9rPrrzA2aTtN59B58bpteo8ueG1NKyF326FDF5qODYCKWxPOClK8E8I1roWlp6cygiQCQz1WFs1iKWLBEVgNTf0g6VKZGC4x+h7oegefIFEy7EDew3kpbuU8FZDjtXBm33XofFBFXKOi9DDEOeJwOEjkij7fe4/VRlp5ehLRJgBGuvB1GuVVjTRimLKienOckVPGsOnx2YsNVqsOm20H3zlMM+P1T0fEmHB9s0bfB3RdQPAewWew9+Asc1lEeLMVW7XaPZUWDNha7QcAy7o9epkFtW13Xm5fjEU179uUGug+mzeK2T00OJXY1Cqo9eSpIXNZNNyAjd6kTrIwY4jSWRi1fkyxxBJp1NdFkDGQxffYK0NhPfDtWkDBeooTfvr+P5Bixs3zz5HnjPX2Ai+++Qb/6R/+Ge/evgYD0qnu9Y/Y7/fwzmHdd3AkHeCy1fVCDe0+v1om1RYBbT0tJkhkPyVVxzuHmRLmJMo4O6mLlIASFTfPEWmOsupmKE5RnFwQ2lVID0ceDEJOrgSYmfImZYsT5jjieNgDdMKPP73D3d0exBEujYgx4tWrN3j7YY/MHsAA75wUt+epsM2yQwXQLovOMWewejuPpz0Oh3cgxxg2PULwmOcJx9OoyrYaDJiR5hnZZTEeKskkFo8wWxQiTC42aL0cGhMK5lEoIqrKJ/uheX/mJGukBdsBwPse5DpJWey0a4+eiTifcNp/xBgTtocJQ5cw9B26ziOQLwpGGawqp/WRdR5m2K76jSmJdq4r/Sw8XgCsU4+z5SCJ2BHKobOw8qWEaVWb4k1sgMa5MvNAPp0ZvlqFqqiDyj+KMYtI00xII+cSHGV0AeiDLIAVvK2KUktxzeaR7nNjlGrrJSULFS/rr2vPZZlVKSPAScpSCFJM1nuH4AjJGcVzKSg/p4g5RyABPWd4MDglOAVKrJGzGVnHQIDzaNM3y3rpjMp6kRi3mAAXZNxMHpE9HAhjlvn2rgImbvnq2V7LumsEhRpyAhiBszh5skR2EskJJtJuQGa0TtLh0Tt16jBKFGYrx7ixPpq8yVrwXZxAMoYpMXIGgma1umbMVlgYzHDBnEhAilGVmVmA0t/psk72nQcGdRoNQ9A0bzEmOkfYDOJUMo5DUIcdoBqAVz5V4lIKzZKzdK/qRBKng1CGcS+CRaUCne/gHdB1rMamjG7IyJTRj0BnxiYbjWKoFqs5Xw1nUnbAq5dci1ZzLcB8OohjwniRDx6bzaBGIABIIMroHGEoEWuo505pKvggYDlF5JixWQf86lfX6NXYtN8dsbs74f6jpBo9/xwInReDkxM5F5wrxiYzHWflJca/qMEVtsaAyFynDRwyIKl8jUPCgeD0JCYrm1DYBmvTA9ZI45pqJVvrNYpMFavyxUVmLBWZ2pnQFSOYPQlotAegqCtc+DlljVpjBttYUXFHrQ/JpWBu4UusBoSS2kNglrRmWSfhVTllIGfENOPlt39Azg7PP/8SBI/1dosvP/8aF9eXeP36J8wpY7e7x+7DW4yng2RH9H0pVZG17uQiakzlXFmXTMjq022L81b8Wh0rTtNDA4m3n2Kt/SchS7IXU5zBAKJGU5QtJUKKSWlXO1QRABeKUzcVJ1cWYy0LLuGUMJ1O2N19BIPw5z/+Ae/fvIajDEdSEuH16zvc75NEegTWvZvAmBc7XCIWK1UiaA2knDPGkxjvpmmH43gn7eFpBd8FzHHC6TRqHSlJ7cspYTpNcC4gb83YJM5MytIKnlOE8wR0Fn0idJNSlOiSnMBOzpwYm7QotaNS37UiYOVXLO3sGZLOSJAaTF2/Quh6DOsLXFw/AzMwzRNiipiOe9x+eA3iEduLDhcXDt4FDMHS6SptLCMK23MCmC6K5V+a958hl0b2Aq0DuWa1tEe4nWMZi62A4V9ucUvFL/JDxX02xFaDIG54vzUogcn3Wu8IJYWtOuw4Z8wpATkjSGRJfZAQNCRDCFAPqM7B0oR1DI3emBllLu211GlqtJPVuIRG94bgtcYbISUrd0Cafp20lMaEmCaAPNxMcDNAcUaXpdxGzBmRMsAJgSxAwxckb8b+OkxCM3OJ8SXABW0yBYcpySmbmLRcgDrzjJYe8GjU+Sp+JRauGVQ5icqX5pTB5mhRueDUuJVNH3E1iGWhv5M8u7hCTf4C4AQwuxJkYbToIcagjGUWWxsZGyhothNLEwKtj1VTKH/++sXGpk5b4oWgIFoJwavX3ext4tGph8cIiAox6SSae5uVduHFKS8ux7E0G5h3yoqNU32lAf6swMyYoPMWNaUbX6y0KMIcdlDR/F4KV+biRXIa7umDh4eHJ19S24rOumBwFbTJ4VRDQeewWncYBjF0nU4zpjEiJYZ18C4fA58tYPOMBdt5/Hpg0T8DLdzcr41eKhZb1GDNYqha8G1TovUQnCmOdt/CmECN1t7sM5Vzsxz/4icufzFDRfsmYfRUmJ+ldJRjxqR1iVz5W8vEF+tDgtkza42YecLpuAeRRLylOYJAWK+3AIDDbofT8VhCacuRpDJiGPB77FyUt1P1Oi4OAC+FpiMHdoyactrAzPoPllNUcAhbaIbUn6D67Ob1Bek04C2lpN0zdK4xYhqPmOdZ0tpigpmBQE2KjAFELNfksXWoBQEjYpwFKGVfvNDnlx1lKnOnho6rULeIs8Wan+0G1eIWzQPsjXT2x/rjkqL1y/hjCwyjhsezhLPHOWvBwErldWANOPm5y+ZfeM7DqzUAFe/zGV2VM8Mo7ykE9OC2i9E+StAlIu/haB7/wHJKZ+BryQuZWYPAeCGAqT1ki6FVRkGPzufxq/CQAgDr0Nt0DVtHr11IU86IeS5pntYi2ubBqsTZWXPKc2xYNr/FuUV9lvFnovqa8Q2LTqgpu5pSxxb3UmP2fm4bFvywAdbNOwDUSFG2BUMFlQte9skVfvij/Vol6NKxYgan6rGsu3weFfH3vjptF9yFIF3hNDrHETX4qeIW8HKuJWxdabmQXCuvsy6ASTMzNgHKa5YCskY5o+wLMxYPriH8rtCWOUAWBuvGCFL/boVbzWiby9ishpfVAREnmhZFLw4PA+4mKxuiUwXBO4IL0rGv7z26zmGOCXHMmKaoxpoCnsrF9e7ldzmGf4kR0IIPtooj2IZa1z6zOdWgnSuXUm5RS0b/leg9o+/mzJXnLYYj/xQe3rxQ3NsVb9pEF/GoDwR7mzJbZYB8cXn/0nnAzb1Zo4YFY0nqvd1amySkhHk6iaMKwOX1JTiJIXqzuQBAiOMRcToJZyIqXvYyriZi7Fw86wDLC62cL+9tZJ0DQborA/mRUNsyzwdggRbvkeVuHWh1rcoimL7S4BBz2krpj4SYInKaSsq1dZeisq5oou5QeAJxpeqy3UofVlM2au1IMCGoXtNGxRb6bM52kbVUZW91IFs5AcA6e7UdmFs+UX8G8GD/yoBLyh8KvdUv4QMatealwyk5J5/JWSLPYgQ8gQNbiamWHJr9a8ilUHoj25t9bna6vsfWg63u2RmNlvPUfPJcXJYb02J8iwglLD/TiGHdMNXMypKe46l6L3PKNsxIZXLZ3EJfRZ+wCS3uS82vlV/85evMMPyJI0XQUgRUSxHEOZdarTmL86qQqQ7c6NPkZrv2hqEYD4nBpkLl6cuBORWWZLWWoRkymZqlac57cz38vS6faaXWObjsFQhWna9+0J7zGDEvxEGtTVpm0/JxWzPp7Jyy4aj6ngf3Jk3hrcLyF1+/2Nh0c30NkHi5uiBFpAJJDuQ4RcyzGBxKCBwqyDGAS0RFgZI86NrW1LxItv9OgY14THTyel8r8OkdofcBHhmOCXGSxcxJIn4IjBCyBlAFgB18CAh9D2bGaTohpggHLeFHQI4dog9InDGrB5TK4RNLrvdAFySCKwSPzcVavHnUwVOP7WaN4Gvx2nmeJCIsNN4qZcxdJ5bSJzcrfPXNFbx3ePt2j1fff8BhnxBnsySbZ8aiiZJGTYhnlrWFsx3MrMCuFpysBrjWmmtC7jyyyXLvi4X9jK7tx6yFFckRnIbRWtHPnFnAXmL44MUTiYbZUU3TMrjSYIBFod6FwLardKxpmXv5QPnOZBFaEuUjnndbywSrGZbVmmypWLYOzIwQvLZYJgxDB+4DUjrhx1d/ROh6jNOIj2/foV+v8atvfgcQ4cn1M7x/LyHRb358iXE8wQOlvpZ7jCubID67isGp+T07BV/qkcze6jUR/JwA1qLAJRzcOBsBzqFV+TmzpjRoFyn1eEiaJoBsO2R7X/cqayizCx3W6xV86HH3/jXevvoJp9MR97cTTscZ5Ab4bqUCWBUPIpQA5SphGgws/CSxtIef44Tj8YDDcS8e3E4jrBjo+wBmK7pp4kTn2BhPrGCk0U8VOg39sURtWaqD7Y0yhKpbtOeCzCMGoNCzgaLKvnPOmOa5nEcQirePGTgdR9zmCRfbDa6vL0EUtKCgnd9z4mgWzWjkTA48RmrtejygOVfD/z3rTFRIo0SX2AKc3bgRmAVANs+jZv3sVVIwYQrp0gDYeopSoWczwrMWLGYmJOs0ogquc1Ko1nuLjtDP5NoafLFnSg/maGgNvaVrVjNPe19VuhikhZytXpP3HsPQg5zD8eMe7z68wxwTjocDphiR4lY7kgBISYIqOWtRZA8QI+n6RU07KpEupNCbAGrSXm0tZdkYYEuzdeIQoQAHYNLOeASH3rdAvqqihMfDwaVgtKugNAsv9g4a8yj0kmz8dfkridjZK8pdi8hlgtLmF+IF17oGnCXJcGLCnCGFYscZnXPYdAFDkMYPtQyY7AVnBjuJkPo0pPrbXE9vrgEAvXfSLQmAmQ7jbO2OCY47OHVRZHVsCY27anCyPWGLjIlnPGlZZL0tbs1o6z0Clu4ukQ+MlB1yElnpwPCOtZZUB6mnIrWiMjPGccQ8z6IERIkODyFI4fKcSxv2+nBGF8Tw1vcduq6D9x7rVa8NTwb0YYXtegUGY55nSc/zEgXhg9A4Z4lo8o6wvZDz9eTpgIurHiDgx2/v8fbNHpQ9HAeETrEXV8xp3Vsl6kiNI2AwOfnCQwXBxKcZmyy6pXY8rk4ew66skT+CXVtezIoFZUyOHCh0AKTxR0qydtGi+EPQlEf5rIxHI0nsb1zVCeUEVTzYoVILsKgwlc9B52XdoatBsdygRh2kVNbHnEBkXZkhUUwxzXK8ndK181Js1hG0aSvm8R7f//H/Qdf1OB3ucPP8BULf4X/6x/8MBuPlyz/j9esfMR4P+Pj2NeZpQrCUTVR+bPtSeEpzFuo7rIB1u4KK77Pst8tisKZMmEjrwOQsUUmEhp8suyoCFdfqQso8rdQFrDSD8DunekCERtxkibogIqzXAy6vt9jvbvHhwzuM04zDkRAjVCZL5KjRqBlgH1U7GQVrpsw4Hg8YT3vMaYc5HqVRQO/BWntvGHpwzhizRY9x1X0LWGRNCTSDhVOH3xKfpCw1dTIneI0AJKWHnFmiMFUPKsZl28hWzzEd0ARSlijjlKUMQ2KNsMtJoqGyZKDc3k5YrdZY9WuQRtIS+aojtHun/xrOKCmuhUha/AKYQ510cQxnctFHaMEnFvRmN+HyxIeGLSxLkLSjhGLn1mEPiHwkaPpyiTgyXmC0yQXrM7hEbRZDDcygq3LWidNzGDotDE6lKHX5IgLbgW5Qp9XgJapNmh5GZNZz0xonCRqh6cUJkUNG33VgAPf3B7x580b2HbnU/cpZjMQqHQECXPDSSZIgWRwsRe0zWVYTFrpB2xgL2faHir7ahQAXHDgTkOSeY5Lo7JWXkj7FimNrUyf6wHhY8SVAiYHMWrtanpxMRhCQtZSP1QEutAosaLr8yPJZqwPJZDWq5O6ZpMzAGCWyPoBxDJKNNXiPzjm1yVChL0uPJ8XbFsn4S65fbGzarFcA1NjUednMPAOc4KIcqAfemXKUTGm0EC211jGKkYlLRSw9GiWkn8sdQQ2B639e86mJRflgCBDl7CrABADtdWeFvjMYmCSk3nxtIo6E8UuXiVgYrQyb4bwaiYLDoGlt6z4gdAGOenjqMfRdU+smIyWZh3WCESUF2mrYopo8Lq8HEBFevvyId293iDMhpwAfTFnlss4WvmwHelET3tX6RedsrmWzLTM7NzbZG2yPZGUfXtb21cL65Gl6UJK2oE8ZPfpS1X5p+aeyrw2fqvt9bnkuSIGB6jd/7IP2gfoFC38vxKW5v9Ujcc74StFNIoRg3yUtMsaI+/v3IBfQdWukmfH0xQt889vfoV8NAja9w23o8Pr1T4ise06tp1iHYuvyCUOTzcXOFhGpA1vCLMseEcP53DCxZQcOI3RyVOwEDzxPykjQ7qnlrjfH0cYm9RkioDVIQuexvyUcj/c47A8YR0acARcCXCfjN1AoAIVbBG4zhHmZDMCknBBniQoRBQeIsYcLctZNoIkBdin42kFXD2Oz+Aq4KwNXwGEKRPt2fuy+9XsFYWWRYBDE3E4lfc+ZhyeXx87zjBOP6PtQhQlQ9mIx7HYkjaHpscvOWDE/NwaJdl5LwWXCU+7g0K6fMRA073kwqMXaLcBPGVR7XBtFujkcxXeukREGgq1gY6mIo2PJKSNmLme11Mhr6aJFkuVg8IM1MgN6AbxlWGdeW709GQ1QVUpCCMKnU8Jxv8Os3uqUM1hrecjwcmnKYLWfLBVHjA/Ch7Maku18GE8w4FQAbbOv0jXWiSGMxNgck6S7ReayjYvtQ8Eaj2ytrQ3DKo0TGJVkqoG6rmezfrbHRcs4ezIvP6NYUQqHKo9i1gKXmTHFDPaMVecXbJ+VvVi0U6G+BmT+Pa7NegAgYK73opjPaS61XDTvGYZuCqUuzmUT1cgoaRLZFAhj0cVIYGvnCm83BcEwGassADvEOYviaA8vYJLgXJC6OUpHUJwUY1Rl0YzEGT55pJyQ5ukBsA5B0qr6XgxOwXsMfVBjUyelDLoAwDpZqWMKS4MZaxHgfuiw2QasNgH9KiDnjMNhxrt3BwzdgKv1IGl/OEvjZe0uZGmjZr12DXbl8sCGRO1cNbKzwQmlYxRXkZmNb1FL6UsjNazAMonCF5Ok/1nXt3MDh53xShHNzbl5rTkErU1XVNJc6WnBgx9+Z1Dzt7NaL1m71raYUh12yCbfxRBJzZhjHHH7fg/nA4b1FkQBN8+e4fnTzxD6DqdxxGmesfMB79+9RcwZjjyC5JSew4Yid8951oNzTpWXO5b0F+NHxEByubxe9qetqA7AOkqV9zRywJSwtjaQbEM9fzAdCAY5pKZM6DxW6wGHA3AaDzidRszzgJwDCLk4d4XpViNPs4VniKXijzlOGKcRKUvqmWOndSWlvlHw0nVssvVA+4VGNuaytcgMB6nH1BKgpVeK80jOsXNKK45Eb1C6BrOmalapUUp0cJWlZa0zI8ZYzymhdOfiJAXcT6dZO9bmcjRaDPXA6FG+N1kILagpx6vFR60Disu/ZnCyvSjy7+x51KzXQxmIB/d++AYYy6iYP5uBgCv+4srPWj2j7X5pt7NMfenuBjjyxWkGZrSpebYwNWLScBFwzvctjbE9i58yQBFRwUAS/Sqp2UEdGLvdLRhAGHr4YIYslBpmNj9HBHbSsEX7wJdUYLZU/2aM9mWbdc7+vfPFpmApd5EZyISOAGsAeT4Xkzk252blylwFIArtk2LVrHuYqcr1Mjgs17O+1jD5gnMahz45eM5q/BHsEBNjdhmT1rbtnKu1NNo9sXOotz+XHT93/WJjk9cHSLi1LIgrDJUKIkw5IWYDx3YIXHMY9JXcEEXlY4WIORnjqoCzFvETwpOudwLiyWUQJS0S64EchHk7B2JG1GgVSWPQXOAYyyKWTjBBjFEMj9DL8ngL43NAF4Q4+k66qnjvMKyk3gAhgODRBZ1/1qJ5DRyQKQsDDp3D9ZM1Li47rDcd7u+OSDnj7n7Cbp8AdgW8G1FYrajSeaJVJBpFrYBUE2ZggBPyJIQo9QZkfa3t6+LiSrhLG8NDpomGDiwyplqp7T1Lgf9AgIALDYGrwmL786loH2Gm7WtGY/IaQ5QR47Rs+2JEpXSRIUWds6dHDzBRZaJWEyEEB1AHIoc4H7DfvQP5jO+/XaNfrQACri6fwJPD6Ve/wel4wGl3h/FwLxy9MJYKCDMqMzr/XrQm2Fiq0aaM8WyZrLtEtUTXM9YyLnKGCWshTgO9y71GWd9W2ZynEcwE3/fSujb0IN+BQicG1QCQ71CpiMvYOZs3wtJhrR4Uqz2RSqSeME+lD0dlL4jE8w0rlKk0KGBHUu/EC+1gIA3lfvLsheRmqS0gADCANL/b9OO6zEvhWcFDowDo1ycVW9kMEHkwyZjnecI8D6XLxnK/jJLLLwCJ4dQVQoCug45X8Yc+SsmpggH7/kDgNkMsUMqW6GwlHp9YI1ibc3z+qXP+cv55av7U1qciAC3nKnRlBW+BUsiVwLAucRIrqs9jk2n2iAYcFuBBdfz2Jxu0AquclGbpIYCxEPCh73C53WCaZ8SDdFG0FCY5CwksBWPEC+WU7lkqcCRkTeVdrGxdOdv3BvBZZJO5LIJzAiaYwezBnLVOjcw6NOtdnqE01ZJFlecGi5Q2zK6nL2ZI/UPf1EbUom8Pt3qBfEWuaDCT1vdwgHYodeTQh4DsRNU5zQkxAStP6J3O2erxUF0jGen5w/72l42AYPUUNNLFESIB0l2KFaPkSst2aI2ebHdYatiZoUPubvsOSO0dBYiqKdl3770YdFj4jhysBEBqh4GD1CDiJA0dWIoiIyY5W6W+D6siIoqqyEXBZx17KVAFFLzmnHS8c0ToNLJJ9tFr9HdAFwRDmawqRg5C4e2yMBneOVw/WeHm6RreA2/f3GGeM3a7GXOUOmmyJm1Kj8r8lCVs0/iiFXK2DTs/3xp5Rmp4hna/Q2Nsavk8q7ZSjNJAqXOGguugGOahh/gRyFOxDc7luA62iLBW5tS1a6mRgMZ4ZY4fLOZg4yiGB8OTNg/liUlrsaWc4HQBa7fpxVKWMUsUnBS+JXIYD/f4+I6Q0oh+1aEbehAzXjx/ge16jRwnnI5HjIc9puNR1lAVxyqz1EDJrYx8BD8qH2dqOP+ZODPJnRRv42xtqkNviQEKHjE6YNs7B7istbyEDznnkDRjI8UZ5Dy8D1qbaAWiXgdVO2kvAFnDF+qfdHzmMLSZ8IKVKH5qa3xVbGaGnmQ1J5nKz/JZL7QP8Zob1m9lfM6xSXVyUvcpZ4netW5xzhozOY02kchYNjyezaEuZy4Eo6cmIYhMVkvkDRMhxohxSui6Tgy9JfXHtv+xw3W+840eRVWvarS5QjC02JpKH/WB5R887rZfvmeJ6ensTUXoFkzX/LXKiJaeyXhRWYBKTsbjztbB9GKQNNopxeMKHTXrcI7rFlO09VhOd3lGuNnrdh6VZi3dejV0uNyupRscMTSkWucljkHK0uG0ddAY7zUDU2ZWNZcf8FrTsWtQR8WhZoeQDBUApKUbyNIONazBzkLzWT6bt82tPBOsWUJqSKcq0zPZngiGqrVLz2ituZe95om0Pq9ENnnn0LEYeHsfYHH+xzFhdhmBtJYhtzJC94lbYjnf609ff0XNJrmjU6El4fICVLxLJUUhqtAhZ91FCATLt5R6YyK3xAJtMswEuk2G1WVNhOazktLjgwAlIkIfpPByTDNiEmv9OHVa0DLDuwjmjBgnzHOFmSADr6Kkhi4oEKr1FDqNUBrU2+YdYd35UsTaaVSV89qtIhNydujVs2qb4qgVBlwq6PvQ4fnnz/Hl11c4Hke8fXuL05jw7t0BH29ndCFgs+oAvVfOEoqbtB5J8aY5QvBSvCunXAxS9jwxmMrn53lEThldHyRyAowYNRXOqBtAVU3qNwmpUwK2ejJEpcNd0TJyo+Q0BG9Ea4atcyWdUQEMtacQSyFmv7c1bewutTCmMBgLrzWAZLU9CpDQ/G6GE09PROneYVdtHZzBuuc+SDHJgSSNZBpvcdh/wG73Hh9vb9EPG/zun/4nfPPrX2O6eoKL6ycY5xEv//QHvPruT0CKwDxKVJWrYaYAHv3OOSutWnqFqi1GzGfKsk3QWvMuGFxrVGiUEGup3RouLd3Tlc81gNR5kBrrTscjusS4WF1jWG3QDWu4bgUKGaEn9JnACMjkhDE3SoMZnZzBMBUAoFJ+sBRWzyzh295r5xj9EjpEycW2mhBxjnBOivvP06znVZoOMCewJNBK1F2ZnEZrxYicsyg+oVsI7KU/qFl3E2z6LvNwytXUwgKwKMYDESLMch45nbAaeumykVLxqChFNk+tXnpZL4JTvmMRSLkxUlp6ZHu1CvlDL0l7VZ5CjmCacKvolncRFV5RJ/z4ffkTP1cwaXNuhAXqSjqqK7Iwvuq8pjmConYgIXGSDMFSE5UGUQur23lYrEdBQHUOLdAzYF6GTBXEWxt7Zo+L9Qr5yRWO04Qxjcgca71nFoCNGOFykg5ujoHsQQxEZEzKU4WPVeNinXZVqE0JNE8yMcHDoSOHlTbBmCBpt5kYc87wCuocluHfhU+ovGy2FEQ1DZ4cw3kF1DqulKXgJYWArhsQvEecUym4vgBbS6wtkX+6QHaOHBy8gq/opF5HnEfsDic4ZKw8o3cZ3nn0oYek3z80OgiLWfLOv+XllKc5mEffFCtt1kHiU485gaPKTAKsE1MxXOpc2vS5cjIaHGVz9D4oDiMV0YQuBKyGAUROI7E9xmnCNE6SsnfqJcIOEd4TkDJO46TduFTWA2poCgjBoVcMZU1MvCd0nfAtaXYgGKULroTke03d9LoXzgV4FxRDNWnjTlmKOYpYTK9d6PHi8y2++dUTvH59i//4j59wPEZ8+EAYpwDvnOAlcEmbE0OTpAllyUtYyL2YNXUNVZZKBFcCsxofmOG90zpcrNEhVnTXzNhUiRuyOYahDNeafJC91hQHqlFtra7YGpoWshz6d2pSmYqstihuau6on3AkRYNNoWnkVfHGs+GmVGqzFuMTmbMpI8cIzh4x1qhCiebkgklNrjNMdnt0LBHPYOBw/x63H97g9sMFdve3GNYb/Pof/gG/+fVvcTwdsLm4wOl0xKvv/oyfXn4PcIbL2mVRHdCV5+mJL4YPlPkXfkOoDXDODH2tlMo5IUbFUIo1vK/pWOfy81GHnckDeC3moO/1AZREsZ3HES4E+NBh2FyiG/Ygty57KRRVsZ0stNHGGV2AivEFcCaUy72c8vgWQ1k5CagcinFGikkjF6FR5RNIIxxBrbPPwbE55MzZFzFNEzInOAoIXozpOUW0BmQiKlkfzntkL2OwmoZQvk3kkFIudbVwPmeSTuOUCPM84XA4anFpuUfL6h84cvU8LPFJYyzIWftYESx50fSb5dmkB+Kk1YMW+ESprNHUml8s22J57hsoV+9vFEvlbTCnrbzZxrv8BOoSVj7T/NEpjyZItH2EyaSqJ1ga/UJwU3tvKnDe6K8+W342I5OlTdqnWj7mCBIEkhkXmxWe3VxiTgl3pwPmHEFU58g5ASnBaykCwNLBLL1fC17DwaOa/qxeEume5aR1ILO4vp0arxxInWYeYGn+EDkjQgrmWwK63ZfLflZ6bbNrFo4iiAE6dDoGNQNJSQLBsKEL8OTK2WzXsvLsuiWmX5p8YEAKjkOaqswgwGdwnHF3PMCRRDZ1Xuw2oeiDkBTEbA2usMDDf+n6xcamUpgvV9DUUhUVy7hZg7EIOV2ehPbvzWaDgIZoCkNtPmSqHFQoSgcTJyTEDo6dhP0haZc5YQ0hqPUd4sEFqbeNpNp9p93CumBASVKCvJMopq4L0mFO/1aBAoG8ejgggCHoJrWeX0AIIany7oOD1y56Xe9xPDKOx4jTKWKeGaUEgKm2jEU0UwssqY3NLszlsat6LNo6Lefhvyh3MM6M5Xf7ufA324+HT5SD9ZAgz3h6A/zra6Sfb8dWhEPLVLGgLrRGs+WAH47NgJatsd2MlNO3zLWBdeWN5k2T+mNROn2cjgoejpinCZkzuq4HHGFYbbBeb5HjpHUcoozhfP2Z63yboXMzSPOkLiKfHp2p/ZXKmlK7yCaHmzVd1NJqBHuzevbmAvCc1q9w2r0li1oFy5CtUkcEYR12O26uvEM548I7QJXWlttcx1fPSD0vJtAkxCdpnrcU4qwCs6AGNVaJscn7UMZViuOdzaUOgeocztdKxy9ytzC4Mz5nfCKj7YTW3qXeWtfFAAMDbfh2e1V6au9Qz+wSBNTv5x7AT0UYnhucPkmF7Vqdv6X9W8FI1Hxo+d6FMkqtwcVusHyuCdrWUWhG7sfmtPi54TPQYRUw1T6q2Q+7v33OEVRBDYg5aTFkNXdkBrtKN0IZvJjfgg8YbZMa6dtIVFuHhn1zo2QZeKv8S40XQHUAL9adCpku+W5DiY2hiFDPpxlzMkrsU7tY5YZ1Lx/hYVTXsV1XAovCpGOzyKxodVfY0EUDxGyPdJ/OOfrf8rJGGtlqIQCVrho8sbiI6rqfv4Tz3xscAHXYUfNaeQWw+k9Ogah3Dsk7ROfgsjrS1OkSgmKtYDFZlfnaZ0OwbnRmbBJc1hqguq6Dc4LFyDCUlkCwLoJmmPXuDDuVNZSaFsEL6O4HwWpwYtQ8niKOp4iYQoMsW+NbIxuaQ1Jo/lHGhMJqqyxhjQZW0x9bZAcXXiuf+xQWO9u7x7CT/lNp4hxDPfzQQq43eKrwhHO81PAx+ZcWzzN0I/83co1RsFHhq2f8ygxhbPL6E6fNIpKZE3KaMc8TTqcDGIxpHJGidD4a+hUAwmq9wWq9EaPFNEI9y0vDgcq6xdxtrxux/UBaFrz1+L61x/BTePfRs6xr/8iOFd6XcgKylQSQ+kLSfVMNeloY/JFMncdmUv5q9G9Aryq9zaR0d3JD5+V7wceKoXIGk0Q7MWR8RFkLk5MaDsTYlFIsDXVqjUwAWpPOPDbZcUnRXwYdtE5r/b3USTzbmDphST81x7v+RzbpAjx/8TLWl9judI7xGhndYPjlDSr9/ZyC/oCO7ek27PPbNkNuDVimwwhGr7yNsNj4KgdZo19YzmxhDoxmD5o7/MwcFq/zEiPavNqvZfTWYzesRlLvRa6AxDEW1ZBcIoNYa2mxIRtDARXtGV8rvyl/a8Sn0meVDzUzQMbsLSJRhIcah9BA+8p8bP6PyniQoCNb5/aMGqNCE81ehrwkhPM1rm+t8tr+ar+Z4duDEIHShTXpl91DfqgEWGXn43r/Y9cvNjbd748AoC1jBSS7VS+h016KbgO1sLdUj7fWfObRJ50al0LiBGGgTJoKBi/T4HrIzOPCLijYiQCLx6zvJezaR8DNBJ885ilCvJmuhntfrwBkxAxMEQAIXRjgfIfgHfrQCQFZag5JlzkiAUCeakFyVwiBF9Kn6zuE0KPregzDgND1cEFyRhnAcZSCdldXAz57tsV602G1CQBl7PYTvv3zDuMpIkYDZiTdtyKQYyypQClJjiVLKyEws3gGz3gIq+Qg0jRIliKBc0pAdHChYeDQwygu1srQmFHiBqgeRvXlQONhQO1CqGHGe4/VyuufNHda72MU3PCjMvQqzJdCuzXAtNFi/oFHAu0JUSEngo1UOTHPFGdGDhKO77wr+cHWDtk5ArMrEQomUDgxmKrBTsCB7GWa78H5iB+++3fsbt9gtbnA08+/wtAP+PrLX+P5s89x2N/j1Xf/geN+hzgeMJ0Oyjy1TTgvDWuV14uQtQ4FRcljqICHFEbWJfYEsK6PU+t2ZfBcvD5WrJ+c0yg/qcuWs7TAFQOSggsdinWwmmPEYX9AFxkXNwnkHTJ5jCngFAP24wn3+wk+DOiHXtJizO7TEGytQGB8jSTaQ4GW1b4J0ek5rVvNLGfBIkxK+LfVMYkT8nyC87W1I6vnjOSQyxgs3TZFjOMJOWdstlfwTmiY3P9L3H92SZIj2YLgFQCqZuYkePJiXaTZm905c+b//4L9NGfOvune7iJdlVmZGZER4dTMVBWAzAchgJp7ZEbvdtdqVaS7mymBAhCRK3xQEC0GtV44gY1+OpoBwSIrKCQQJeUbrT6ICHuNntM557JgLlk609WKGKryRt3P/SbvcQ81+mkMoXFSO9cMAkZndnr7rBPJBkB9XbgTanYf6u7fiUEDER3oM2GnmkgbKtkT27sYeGM1BFKIUqPM5QJAIYIp6jhbjYfQ0bDc29ZFGkWIJ7yCNRrXkvBd4epYSoNwBhigUXIS0RpCQA0dYFCaJF3iqDS9HRNwvkEaCHf7DQIqBgLm4wGVIkbeYgiSyCbpC61PXAAhcqPBBYzI4nELp2Ml2YeVSNKIdcyRrGaQFHjOHMGVkJlwKIxEwKj1rRpAaruIDER1hxibraWynCfRY4POe0GuGcSMaZlRioYgan8AScmQITeFtvE1qrQ28jJrEU0gMCOCsVRG1nfe14C4SAYXByBSl7rG7HKbQBLFcwLa/ruOu/sjQMAYY0sbG4XXhsAYkqxzpKhGtODRNpZ4B8gcECvwhhrKC6utvEHq4g1XRIEFJBpMtmcFOCFQwNaiuVnqh8XAyJuNhNqHjM2otfAwSppfISlVAIn6Thp1OcSkGEqL4xOQ1BEXoxXMb7jK+IitPQHYDAM240YasGhaHoi8NkzJGVwZn3x6gZ//8ik2G2nm8uaHW7x+c483b46Ypiq1zpQXl1xQglxbSpBaUppinYsouZZO1Buc5L82h4wYgVKh96lgRE8/clHNpN70tXnPOLDRaYs8gjrjAAoihwnkRjm4omD0aLG+yg/RqxD9vfW7YJ/5VTCG3huAQq+MdJhCNo3xtCatAzGGKHu1EFANO2snwRACUjSnMYFUfhtfrVxlz3bvJ0bIARQKDvv3mKZb/PkPwPu3b7A9O8eLTz7H7uIZhl8M+PTV54KhvhYMVZcFyzLBogaC1iErtYmRXg/r4WFVmcostf4sGl4QThVoEEW2GwaU/apYrEv9sfk3RzbQIsuDCjghVzUeKS8qJeN42CMNI8azS2zGDShusJ8r7o4L9lPB8ViRBiAkqR0LbbBiCqnwM1Id14Wn0G6QCP4YCcMYgRxQq12rmNbqvpXS8Bn332dwmcBYUPMCArlC2kdr5JwlW4IrlrKAIfrJqJEwgoMCJKRQ9rg0c1BDtnYXlmLfkgIvkU2MGArAUqupWqdFbZ5gjYy4EmphLEtFzrVLN+qMJN7dsokV6tawGaVM9wA419V5ZDyjozk/WQllrUc1oCZ8z6Ix2j3cCfHIYTh3hY+6L5seBnh3be+0Tj7XCKbHkesDUEzLALIFOrDoNERoYF33FhMhxCTpj7WgZn0OtTk+VcmM31k2DhE0uk72gbEcc6ShTb/IkhCAyDjbjiAGpnnBlI9ALdJRcZ5h9YhE65QSGtDGXs7vOIBJmoItgEY3rXmpTI10965kZT20AUYgDCQR4oWloUZGRa6EiYNEh0cLUtC1sLnzOVwtqmQdlSzp8xp1hECIQSsrVcasJRYmBCSyZhcWEKG2FhKjddvdUB7VHgfYlIhRLrFFpkuUEwE4FsawFKRAGlFFWvW6lwVOOR/cs/3x0cam47zIBYFQg0QD1ZFUkQ2IKTq4NrBuE9AiTWxQsvGtWBxpByHqzrVXkUXWa9xoFYQQIHUCpEZSdOUjpYRaGZtRppeIMYzCoJcCHGcACBiGM8Q4IoUoVeab3PNi5m00BtQjzN8Dm3gtQJdSxHYzIqUBaUhSDDHAi5YtWUK3Q9ziydMtdmcDhjGAqeI4Z7x9d8R0LNjt1EtI0K5u4hngKqHalgpmRdXJpanOrls4TbEjp3QJC5Qw8aS1chpKQccAG0DqQYb97CN9+u9Ovw/JjFfN+9dOaoM+3a6PWYD7MMTT88wAaAx5hcDcO2JjMyHRgBGFzpurgBk2RH2O72WntWYIpSCGIilcOKGWCVdvC26v3+PZ80/w7PknSOMOu6cvkLZb3Fy/x/v3bzGXirzM3iHPDVrdsnTbzYWNv6fJMAMLHaoSUNhqGlm6mW1yZoALK43JP8C8B7pm1bpydAYqBdcizCTFbZ5nMEVP2WIE5Boxl4BpKTjOMwYOGIYqxlcbc/9y/W/GlD1EwWrYNKXFtoEwUrmyVkuX0HomLOCdq3hNCQBrRxIui9AUAdaRIOfs4anH4wG1MsZxROUd+iB4md9TCjDu17+M8DoyYU/B932vuPd72tIFSy3aaaU6PVNPl48dLqCpO7fjV905DjhODlq/gNPtCjednGs86MGoOr7k5qaeCVj3ODxyI30PS9kAsxjzSI2QJhssdYVZtOnuvYQ2G0+T+5J21ApaOk2Vhc6g8WjUQD+LpsxpqtvKKF6bsmZvZnWHRFYNACp2Y5IGEMQos6QnIG7VYwYvrmrArQeTDAmttjXucNmDxanUuXsIDpgKy/gJonDN2r2tdncycPihOQEA80L36dsESY0AEUqW7i+FxdEhxvDQ3BRkfFxll+0RsvsbVRnT0WeYoU3HUUn40szAocjfo9YqE6DUdSDUxSHQwz3733RMiqFY645IcxCVQxQ1glJ5ts1OVxNTty5sY5Eam6p22yEA1o2299g2FNNHoZhPM2AIEWMKKCViyOLwG9IgYwyEYQBAjDDIM5ccMM2iIGyHUYxCJE4ak/vm1DFM5bhKI5cI0PR2lTm69kOK2A6DGINDcLkueAfIs9R7GYeITz65RBoDpmXCze0Bt3czbm4zlrlisxtl3GjOClYcVa17FdjxENAMRjLPXQqNG6+pdbCrBaFSMxjoPH+QpzonNlp65J8+3QxwUXPcmgOwb+SyNmadPtVFC3WfP2pX7RQtm2tzoTvDt9/bxUTa6CRAZCdr2o3yYnPYyhZsxmuPdjIMq+9HBFAUA1XlimW6B4PwtlRcX13jxctP8cknX2K3OcN2ewa8/ARX12/x9t13OM5HcF5QSlaco47a6mJj/cbdRDWZZtE0tXXm7ZRUw07u2OyAsxdZNlmOZih2nM6s3eOMj2mkkF5XtU4jQNiEgDRsQCFhLhVTrpiXIimsIXU4WvcnBa8pJXOLbnxW71J1rSCKcKldAEBjCl3NS3hJy7YHCmpdQAhAlfq4vUPbDC/TvGBZstAWSwmLPG5QyxbEioUslNF2PVfZJ7XC6mdK2RArjMAgslR15fjBZATBm7noe0hkU4tCXC02elneSQBu8KOd1ckdyyzxUZPXhnQMY3vLjXCG2du1be+x6xP9hnwsk4N9Ftr3/Sj78fr+VBnK3XcAhN7QQyyCNYFwOjd+RtHv7Y5ggmCuGBG0K2TVd+/5iHMoh3ZaYsfPa/iMwLI32Paf9WFrzq4QxNk2DhHgESFIZ9cctHREyWCKiCwVzpyeuaphy15rjaEAcoPTalap/ZRudi39ORIhWbCMzlsFYWGZH47+0o5delKibo+Y7CnaGRgwwxFJCQEAlbOUKWAgo6AP/LA5dwdDf2tY9GH3aoah9F/U5Z5hAQTAXBlTrqhRUq1jaCzCOjB2U/lRx0cbm3ycTshS8Z9rRbZucvbqJ8y8VPHYBPXKAmtGZhs/UBOsVgSqsIKDCkx5kcrpWl+oL0xZuSJUyQMfR6nTEKMoFISKYSyIsaIwsNnoAhRr81glJLcbd1DmSfY7oF7iVtuGFPBJa1NyAFVKwJIzgIAQSRVUqc8QiXB2lvDsxRbDEHB3d8Tt3QFX744oRaJo2DsJWPe8gBTFEx+sPo0DUJvPqkaAFn7qhxlkQsAwDOKhsRa6zqyVkZwwN7283UrftHnOyO+/OovQ3c+iI3h9Tr+vlMGdGpn63/u0P2OSInibWu3pnv0zSePpiGRNmLWNJ6PEgFDUeBHWxhh9mAgFjZKjfn+7YJE/DNyJoUY9TFwxTXv88Ppb3N1c4/zpM5w9eYqyLHjx4hOcn1/i+t0GV0ELIs6T5OES6U5r+sIKbNLpIGQOq49X3zsEJGfqzZhLZHW82hY4XRYDYMYqV+lujmg6oBSiR0JJtEPWmiLWUahf8JP76W+rKdXxUMeMayleb4OgVnwrhKv7X0ohmXdVvO2lLJjnAwJNWGgSAVLEgAuSVt5Cv22ezaDFKMh5QqAoIJQCUhoQE0ToWrcTHbx0RFnEE4gmnAOaZ9tkuu33Sp0ZwSQGtTWwPWCCotHmQ24vW559nfkxfqDXOizwcbFLQ9vr/l2TMf3TYE977Fgr8z28a7/3BmPZZ2rY9IpdqqwwAI1o4S4kn40XdoOQ/VdgXVSkPlOrFec7Tflik70nnsV2mqf8OCjrwGlvCLffQ5C0bii/MQBt6XTjMCIXAdd5moFQUYcZHAlV2zpDDW3mGbfQbYakjZF2VAGfVAQzLcuRHXyO3WABMW5XpeGsMnwpBVp9o7EDanVJ/EPLufD37nJf29SJUY+1Eyk1IxnQGZbwcJ/2RsbV/qosEYvoDFxVjNGVxHgwleI1cKC8Pphc7YiJbZ//DQ57B6sDAUg9sVir10IgkOnuOgfysxTpUhj0fdC9u1I6gFZvkAni/QQDVWgj14p5zlrzEd6ZNwSL6BUsBQDjOIiyXCNKlWLAaayIiZELYTsKTrHORxZ63xsuKjRglDpHDbQD0Am99I6crDVdcsnyroL0EUDY7KJgqPOIcUsgYty8PeDm7oCb6wnmQLJ9KmUSpKZU6IqUW52ZvluY1XLsU3kMZ8jcEpLNTYkrxxBg+ER3Nq/lqqNjohUt2u9EjQfbZSYdW9pQZ8xdh2F0e8XkrKaRse5xF0R2Yq/odC4ftve3U9s6WVYC9FbBIl5UJ/AmMf1+7+7XK0Q+cpN1bZpVdmshO64oZcHhcIfvv/0G26sr7C7OsTs7AzHh1Sef4+LiCW7ev8X127dqUMxSQ8oZHzqFv8OhWt7BDCusc12thoWuTdRz2jp1PBC62KbAwXa44d7G891RqEasyibrDUMtAII2TBEjcl6k7iQAjQ5sTsCmNFuIeDPY604AFAcFMKxz5LIsUo+SK1CFt4Ri0f9oEER5uhmRc54xTQePenIswkLPUdesZIkOl0hL+a7WBfNyAFGUmpkhIKYRKSke7aeyCmYsy+QGxBBbJ2tWfXK9jmFVr7btX3jZEMu6cRHwgILg79LLMHYZtJZrdvT8t98HTgD2PaGTZQ0nrPAVNWPshw4Z08kWJHPc2PsZ9mvfy0SJ7H3M7iy4SMes+9ai8mJYR6O297M9ZlH3xlseytSGEbqXRuN97kwjqE7NXqMLMOM7UAojhAprKDEOA8CM6XhAooiRExK3yJ8eBxHI7ZyMjiap4dRHRu50dcqnAXHIMEWgFJRSgSDRYYHoxDBjWSs+y04/ANzohtoPWZ8XAmpseFpMsx0vXWGk05W1Z3TBHrV61kfVAJa29wVbzqVI1Llm2wSIcw+EVdnYDzkhT4//tLGpshQSrVxxOMgGYIKEmcI2CWCAlyEgBzr5ocrkBS8E3ASQgR43hhAh14DMFdO84P54wJILiCOsDe8QJY2OISAzUMDZjlBG8T4Js6oYhgkhSoveEAmlAFc3wH4vhbYLm/deJl3S6KISmhiJqmjoIP3OivYOgxULlJSiykCYJuRcEYeIhIRIwHYQj/Kz5yO++sUlSmH8X//vb/Hdtze4PzCWmVA5mphCIMI4jNiMEeMwYkwDUpzXBh4l3mIdOLgZXHqAE5RZnO12+q61E6pN4jdjhq1hB2T1fsHAIdAMNHow1uHZD7rSoaW3ADhhXO2gbkz9caqMCFhohrZecYGKB2khDlhkCTNQqQqO5YqaiqRKhgCr9N8/o3L1ulzGDJ20la96BBTEwCHKL4PrgrvbK9zd3oJCwmdf/ByvPv0Sm90Ov/zFbzFsRnz99R+BYcB0uMfVd99gOk4Y0oBxMPVRbl5ZmK9OotZJa4zd1lSiIeTTYYgAPSRzAlAqoQRIMwed7jZrnTeMCEFryqyMeRAmnWvBctxLSKkWrONasOQFS57ByJBukfVkSVn3axtT8DEAYHYvTGUp8l3yLGCpZBCLQsKZpE4btVbEBGlTOmp6b16O2JfsXksDwQLOA4IWEg5hQAgSOiwpIAHgjHm+ByEgagg40RbDoKm/ZpTiqt6+imXeo+Qsrea1GHWwgsAMVDYFRj2gGmGi2NOFI6t3j1O/75VuLfquTaevn+377qvV2gNwvtuvSe+56/CA/O0g7TEg1IRdMyad0u/axyPPCGoPEG8OM0PtM7arHaTI/AhQssL36saQFExhiypAJYohxSQpzWnwz6y+YIXwsZDkgdn5x8PxG+gGd8Z8GyM1MAIAVnicmZGQxElRiqSDVTE0DDXgfLdDCgnHecH93R4lBCxnCePA4LzoPlWjp8rTFMSAMEOi3rgyBgoKiElTDHUs/b8uxYUAl2NS74YwLRlzZRSqOGQpjpmCpNyJYoxmrHZAq7wduj5BvM++j20GY5SIRGY1PltcTdtzpz/dwNppDf1nXMQnWUtV5aw5EKaSMWfhWzUQKEWEKimHlqJh6/z/j6PUCl5YI2XYjQ5AB8hVppDyqaIKaiSJLF/hO27yMoSIlETp40iu/JUi6TH3hwOWJWMcd9iMOwwpdHWXIoYqTi0K0Qu2lipNFrbbBSlZuhErhqrYH8TYb9GhpnAEoi4iRI1glQCVsVGLRMs+jJ76NM8LYmTEcfRUbSbxaD9/vsH5bsCzlyPOLwnznPHd91f4y5+vwJzAGBAHKRQMiKFzHDfYbLQGZ1InZIgIoWqkpKZVeCOQplgazrHoycoMxORKrTcP6V3HThMPDSsUmtJimOz0PD75vdaywk+P8ezVldxjIzOg6SXrYYqMJTW0aXdbl/FdHTjvVqbkX4WUJF2ftS6nRXnY+zjNNgW073oGU24sZVuVV+HJpGuSUXLG1fsZtze3CGHAlz//BT7/4mcYNiN+/Zt/REgR//HH32NhYDkesb96izwdEdOANAw+H9YluaqhJnCQzANmTRljdWiJfkOwumItDfVU9lneRXOcqbJYJZWTqxSjZ5IOqAiGVy1XSei91Irjfo88FlxkSZmvFThOM47TDNCoDYui7r3a+HFlZBX+TWYTjMPGGEUBLgXTNGGeDqg8o1TpdLssYpgLFLoUUGuABIQktDRNR4lgrxU1a+q5TkeggKCOvUARRFEiLwfBR6UcsD8UkaNxRKAojWSiRFeKcZbBKG7wm4/3WJYZwzBi3GwlXb4WTW6sKKzFpMMAoqiF4UuLZGT4vUpRuR+cQHzvd26+E3oyejOZ0dGfzrGZ1zsU/oAenV6NT/M6qn1F2wRwRx++p9pguluTX9OcyWJGMgxC1GhP/q80Fxv/EqeORlFyW9NSCniW4vtpI3LBM2yMLwMgiohJ6agUrB12awzVVD8Dq+yf18Cg2iKfGNDoVEIpQXWR4sEuQwrYbjeqa1Xc39wgUcBuPJeGPmq0BLfMKUCMHsJXGZnk3TmeUnZHTGQ4tZXYMRxLgAdulFoxl4pYGROJM0YiqtVmkDTVtDPstFRaMagG726q9+4xVxRHes2+tbx+W2VLcVuX2HC81Mk2fXlt0MYe6Wv6FqApe5XlAWkn2LFK0XUwe3rmxxqabN4/7qCOAFQuVNMULTME1PZQB+jcK+MGBJFSAbSmNPQKUJtkkUXWWcy6Cq2xtG2mQGbMIN+0RBUpZsTIGIaAzTagVOBwyJiiMKaSdVFgRqeO6TC5d4j7RWyjlo2zEmos4NvGHKXl70YLgkuYb8U0F+z3GfMswoEeMCDqlBmbH2Nw7dwG1LtxrzRGvZWGIhbdzO71esy4Y6F6HRhaKVfGptePcGXnMU/1qTX/Y4/HPN4EA4b21P7c7tndnrK9a+zC59Qm+PS5/l7Nc8B4nMjI9vYKOUoa5JIXEBGOh3scD3sHmjEmjOMG290ZwIw0jFji5LXG2s2bx3hlpfYOIrZnTLjAz28WnLUKTSdDbdL2hCxd3zsFVvoUtlpHGnWkXdzsvKgG2WiM1v7HTYzqkq6ey4B6ZskZdGuPylgTYRNeq7HrtVIjQoQPmxfPrtG0JaKg8bdoEYukhossdeBELgSJhOSMWiOC1l8ScGPRjdL2NyBKIVlEFQT23LaHyXej3aQtUlvNRw6bND2dqb3/xwiBxh6ULk54cR8z0VFXB7a6ubc/XcH5iPQk34A9bQHEJlDau9lYiW0MHb2uHqSeIBXYHNp+6D3Tzt+pGZDXUZXt2e2d4HuxPdM5Xkeb62edRm8YXcYQERODctZIHWiqtP5jXteRgCi/J5k7HRBeMZ7VOW0OabVsxh6aTBevVoFGAq2A8/r+TUZyW0vDZ763u3m1dwROUllsoJ2zAIApYza2xiucIa3W3pUG1uhrPolk6JaLiPp+AH+bw8Hrepw2jh5iCX+j5jgyJ0KQSMq2j4C+uGqvbHoERndzS8GXU2i1540GLSXcvbgEhFAxJMYwVMVfUjfy/sCgY13Ps8mnjqc0nm8yu5+X/t11fJbqpvNj+2DcROzOBqQktZdyKZjngmnSaIlI6z1ur+94UDkurXlkGxO3/dgxurZ0ZoCwsa3PpRURoPE055E9T+jo8QQz2LOabF9jAYA73LY+GsW2SC1CH/kp8mcN6cnefH0TdGPpxtkUwhZJ5Xiwm1Pou7ehUnuvBwCkXd8iN8xokLHMB4Qw43jYYzoeZF9SxJA22Gy22GzPQSBMaUBZlhU/fiCLuK0z93zC97C9Mzc6sLfxiVzPPa9n8CH+XekWdgtzVIkTIni3xJYt4rKCEiwZyPgDUeOV/PAlXa7bP+vSa9FXbdeTY+ne2NofUt9SnfM1r8CaRIZI1DcHRgiMwK3xSqkFKItiKEKliqEsqCVL2iUICN04S0EpC0pe1Ag96ho1/Meqizq/8aim6nNkMsqdQ1YL2CDYw2WE7bkPyQa2dTv5vDnZ+s/a3nPjb6dr2R7r9T1pMvD4szu04bTXYxaPTuLTfcsnd1jvwf4BPQ4/3cOnfKCRsVIr0Vq46/3Jz6WGS8CreVzhL5dvzciz4plkdCHRuDmr7qGNf8AK5FfsuXFnsUfYT34wHmMFrDRk82J4pidiglBl0ftWKIbiNr2P1gM7wTz9vPZ/uuwiiCGbevrsyt507OvRowNRDV9xe0/dT8YLC2orSu7jlkkgJ5BOt/6J46ONTckAiYYig9CaUWtYO+msRwqgysgahZGLMAjJ69d2ejF5MeRmvWuJAMwGYISxBEBb5wagBpAWbQ5oqbsRhEpAoogaGEwBiSKIKnZDxBArPvt8g9/8+gylVvwf//IGX397i+ORcHsjReqivSfJuNARgLdKJYckqJB2h1SDg6NIFYG0sFitQM4YxwFf/ewZXrzYYbOLeP36GtNUcHW14H4PgALGTYJZqCtL+mHOYiSrveCJETEWZFiYYxP6zsh6LqpChiHMFixFU0O0l2kMyBSZvvRJiA1IyD+G11siGfsK3MFvpwy2+6A7BFjK76fRRPyAWXbfAQpG9b4dw+qBliv0NhfCKTSdiXVfsYB3CMBlLR5nBixJ7dE6QdGKta4BRA8gTbjZvMsUMaIWD755/wbH/R22u3Mc9vfY7s6Qdhv88he/xXQ8YDtusb+/xf31e9y8+wFgbt0Ng3iBJLpQmKt55Qw0kc5lSpLKV8lGya22AJRFOPJBI2YNq/a1pJZe5kG2rr3Lf1hrJJU84/bmChRH3N1eIwTCZjNgc74DhYBpYtxcFS0eaXPVmBv3tOZckTwEfJlm5HmSNqxLRhxE0IybUTztixi88lKQJ2lVPc+LzOFQVBEBwmDzpVb6CizLDGZ4ZBOIQCkpf9IivhSR0gCigJIn5OUo0ZXDRsOIxY9RSsHd3TXm6YhhSBi3I2JM0iWjahQAtFi7Rm6hMuoi4Kp6eKusRSmtEGBnngNsDdEDDgPNAIfeKEqr/5qBpfvQdJjVZ/a7C1ovGWJ8uheUSodB9xO1sfSHyQ/fhyABFZCiwiGZXKkOHFGboW4tVDvUw52XKWeNbC3u1QyBkFJU/iTeMdKoDgKpZzb49+1gcAjKGy233+Zd2GeMPaBXmdXVirJixdJ8gIFE2Gw3CCmhMGOatZ5YnpBrAXLRvQKwhXrB+BW3lDmGywaEFlWVS9Hila0uSAgRUdv11izeSQMxobJ+RzjkiokrzpJERpqtGq606JxoAf7KYpwqLh9lhiIL/6yBwJoOVbUwc9JmDWBoXY62jDZnvvc0GqvCjML9mlflXcrHTWFCQCkSGVBzAEUgWeZ4t9//M565/18PixAQHCTP9YAYCYl0+V1Y5ouL0HjVWlcxBAxJooGS18YJ3p7YuKfsb5HPXoInBKRxBIeEmJLL9H6vE0maQQpR6xpJDacUgadbwtkWePE84csvR8y54P/1f36PP359QMkDlnmApMC2NG5z4liaQiUxVDEsmka82QsREADzlkewpEIgIgYgJcLuLOFnP3+KTz+9wPE44U9/fIvjsWB/x4i0k+YBKcGMbBYJvCyLyt/W6MMjKWtFZimLWqnbE0TezZCItCdD56xhS2kUpcYBO8M7Q9rWEtmtjVLCCe8F2j19DWxfqrmoa6gCW69O0ebuunaKXqP5fI797IF6HRmuNCb/4OgxsPG93uUq79PXOwU3PGp7KpI22glmlD9FbE3GCO+3J7mgQEAGasH7H77F4f4G29059nf32O7OMaQN/v53/wPHwx7f7i5xf3eLw/017m7ei/xPyetzliJ7rJTsRfSVvfpoQggSJdp95nyPec037OIOH0k5gRb54KiG+yQ7iHKudV0ri1Py5voG0wxMxyOePr3EZjMCcQsKA6a54uZ2QSlFeYg2cmFejVHmTHFAlfqGpQgemucJCBkhaiH9YUDabFCWjONxQS0F87RgmWatdSnR6sMgGBiBkQbBTibrKjOWLM8VvCSyNFTFUhrtJMZBiWwqyxHz8YAQIsZhgxCj4/tSMu7ubjDNE7bbLQgzYowYxguktHGZBiaprUVBjGB5QS0LpMC7GJ6KGe/IaiQ9QFHdWtqPDimTkcwp1mqbvt2j0YnhBDE2qHHIMYFd2+hgZfMxmnU+1Paa6Yj9gAnw9GAhFks5M+Oc4QQ3QZ/sX5Px4gAPUUpU5JxXBiePQiVNna4VMZDjLlKe2rO4lT5U2pzL+4lhUng+0Iyp8n0IjBhlbqwsp3WkY0RszzYIQ8R0nFHKBEJFyTNmruCSPVrVIKd1PiWWdP4KdRoEqSvp2Bhq8FRea/V80el4VSO8jPdlMApJQe1jqVgKsI2EnUUam57D7FFFXJvhtLA0NJAxBAQERI5adxcSOFwquEoqfOSm97bagT2A7/cwKQ8NvtasmJVQPC2OWCRwVkw3lIJpmsExYBPI+ii5svCfQU8fbWxyr2yMDppKKR5+xVW7wygzQjUhx5paxgqKdKMOBI6S9y2M6aFXhNFZ/QgaHh7A0iiipQRwV6dFBitClACQpK9s44ATbb9yAAEAAElEQVQxMT57do5//s0z5Jrx+u17XN8WBATs76Kn+rn11GvcdONSWpZCqspQKgOkBK0bJ+qYwQwqBUQDXnxyjq++fIL7/RHXV3c4HDLu7zOOMzAMhO02unFGNrOE5pUC9F1IgqZ7CQOpDihk3KFZmjtsgU5JcBbnPFM+cZ6gkM+YXQgtxaddxg11mWbp36+hyKm3ZzWfxuiIWj0bVmZ7cq6/C4xwZc9VY8DdOb04aXUZ2huIPmyGpgqwRRIpo7PpoxaRYMqjeAk7kAZjUdSNbW2SsnDW/f0Vbq7eYbM5Q82M7e4cX/7dr/HJJ19gXibkWnF/f4tSCt7+8BpQZu71EKIAxFkZqXQPMRohSHSc1UkR2qzKhFqIZTfRq3/QNDPp9CFeXOUuXjeiXwllaMwOSvb7O1AccTzuQSTF+s+enGOz2+DmesL11S1y1iKPltLYRd26t8r/lu4MzJKit8ySQldLQYiSGpRSQuaChbNGKco/q3fAYGnLFyRcN0Qz8LQw0qwpdkQLiLRLSo3qdYuaphcxDKPQXs2oeUGIEXVcEFMCIwIUkUvG4XCL4/GAcRzAkDSuMW2QQgQQnVahgg9VlHepNSFza0KN60m3G6MDbjTqq+pL2dPOmodRf/KKv5nBlD9wHTfDA7B6Qj8uUgDdQN16LI0UG+1YxaFWkwZgKqjaPovJjEw9WGz7D8r/LUWuKI1aZ6FapQiz8TLm7PelJOOQWjedAt7xAx+30bIpGDpFVhuqduDBeIYYnkTBIquPAyCNAxADhrwgpgiqCpBKBhVutQU0paMX7pKGJotRrTis8iozMpVqdUHI+VgkSVno06WlnhFA2tFv1k6niRishlljyl4jSQmX2BQo4aeiPOnzoMCOCIjKaWllKvP3W+0ybluGbD/RysQH65BEtQF6KFCS7SDRu/OyACVgMwbvymlztZYJ//2HpZyHTpYUi2AwDEUEqtXttcYDypLd2GTyrmrNpRgYKXRKEJsxp6p01jTyQMKnAkvEZff2K3lmSwiSNCNIxNDZOODpNuDLVxv8j9+d47gs+OM3b/HNm4IcIkoJYA5qbGop0zbPFaZK2PJZ0WICuIKr8B7bSxlapywQYgLGTcLLT87x5VdP8Je/vMP3f7zF8VAwHQOIRjFmxNABe9nnJReUCKfJVYQjq9EUzXvuuPIEFwE9JxNkE8nS/JTnGlvo5GTvmW+TYncznEyOm/zRIK358fhhMkCZrhuO7WOiE6+5j88Zi86JSXOT6Q3X2MisXEOjv04KGD21QbVHmig4xVCrWzyC87hxu4Y3Be/cXr/D1fu32O0uEDHi7OwJPvvZV/j8i5/hcDzgOC+ImzPkkpHf/QBwRUpWt0/uVmvFYqnYPb8hK8xPntZZO+z8GCaVle8RZ3M8AGgYSmIFbNXlnp0crFV2/X6/xzQDy7zg7OxMatCmDRAG3N3PuLlbULkicrvW91I/gSrfrTZTrQU5L1iWBSEVIFaRiSkiDgNKrliWgpKzliwQTFfLLFguRsBSfTQdjdUIXktBLovIAi9FEIBqnefkX6CImhbEEFHzgjyLEamOO6SUfB4NQ03TEeAF4wCpkxkSOIgMke7P9u5Sg6bWrFHnpa1Dregj7dcAU9brMadDo6H11BqRub20I7yVTbZ/ljVC6Q1VHcW3qCd7rkXYsBMLARo51MO2Tir2vK17RynP093br2gv5hHKUIMiyDFEPzZ5TjgxwDW6ho2xm2ByWlhHuzuWsYg2Ud5F3nnheasvzCInxK7oGGocEyhK594JADFL6i3UwOhyrXseq23FbAzEKw2WlO9WLRfEaPaPXnWqmr5PsfF7hSOYizgGI0WcYb0eltrZIim5YVXle9YkRF2wptpJ1FRuMrRh/sflhLOXkz1BWsO09nvbcC03g/hSKpYlg2rQkiynjuKPPz7a2OQWQoJ43LgrzumMulsMB31qumBWA40c0qmAFSyb16mvr+NTpc+NauFkYTYV0tXEAFwIbdNq9flGhJDip5kxTRWHOyni9fTyDD//6gnevMl4/35GzhVECdaiNXTW2v5wQWh5riE6Qwis1mvdjGe7AU/PR1xebrDZRMRIyEvFzfWM47EATNiMyWsWEMxRawLI5tmf7v8EUHZKHrp1QMdUlGHRyZw+dpByMuoUxd6q3QAtunV/eJcGUtg3pfHNRw9uXrz+fbjfW+g+6N+33/a90bIDM22bmtLaQ5kmBNjnSv4OxuipY5QrQ9J6LH6Pdqqc7yG+pACg4Hi8R60FV29fI21GoRQGtpsdLp8+x6vPv0RZFuTDHnVZfG9Xtoxpe01WAWQ1CGi9S/RdQ1ecjgheq6kpxVUjuMxD0ibR33gl5Gq3DSQab55n0H6Pkgu24wbDMODy4gK7izPk5RaMa+SatWNMcOZmQl+Rtz+589U7X6BAiCkiDQln23OcnV/i7vYOd9MeeclY5gl5WZBLVg8X4JFEakAjgoS5qqJr70F6fwoBcUiStlJJx1eQyyy1dzhLd7sQUUoWcBUiKAzCz6qlm0hESQCBNfoLJAV3iVpx+loLcpFoHOlu1gyk3M1Bry/0pGh7uYGXbj+e0HBPuw9psnl2sN4Ca9BjzzQgArihpgd1Br5cEeuesn5e/51e44XCudF128Ld+8GL+67wn9bSqixeKmj7dQHJIvQ5oru3Fmg0AIA+ZeKE71C3JmhKbAhSf4NCcK+VDkbXvDrNxSCesnEYsdvugFIR5wUo2j3FamliDfZ8FMxAVyDca60Y+HXgabOsCinIPawBrPVEGAPEIDBTVLBhcVS63h0wkn1Azj6tl2WDdhDvHbGIySoRM23+pSMqGR9m+H6XbXa6yN0e0GfYuNQeCWstnrSIbgBJdDUzcgUqa22QFa/H3+wQAx+JM8xeqzfe9byu44Emu+QfWeUCjX4WZaCojKEoNVNatxpLoRLvaEoJVBhDiEgaYWV0Qhr1w4bNdPVjkH0yzwX3qDgeBixHgDng6ZMdvvziAjc3hO+PErWarDYY9R74tvfg76Tfa2cjItl/pPuE9MTdbsSLFxtcXoxgZuwPMw6HjOOBMU0i94YxeD2knkcYb+hTB+37ll4EkKft+m5Hx/hstdqeR7t/z8ka3jpdfXsOdB/rc5xkHzI1J2fjoyejeXj/Tgqs+ORKgvzIodevGI3Mg9X8qEr/D2fGXJTGtzu54jzI6JrafLTXXcn6XkixXtcbDIjEeLK/v0XJGcMPgxi0uWJIA55cPkVdjqj5KAaW+YhSMrxU0gmOtFEFxQeNJNnLZ/T42TG2voTxWCHvrkj9an30eoLfw6PN9T9cqhhYZkatGednO+EbcQRiQi4MQIqgMwZV+vWeXYZCt/QrA6S9cYwRmzEiDSO2my02mx3yYcE0TSjLgmWeUfIiRhu2gtJNrgStF+oRFTJ7clawWmwBIQ1C19WiLypqtftWrQcnjVdE35KZrBp17h0pWXhlKQtoUaU3qHGeZJ1KWVDrgsKLrJfVY0OPh6vjIfa1o05Or/FFt1tXvzcalollW0/fIh3/4PUe67FDqy2v68Yn66e6mOGslS62vqvPHWyd/DPje4bP0PZiN04xSGl317bUOidaZD204ANmCTbh0O5NPeGv9CTDK2vO2r9sy2QhELVmLo26pI5YUBwlGRyD1BccGHlTQbUicjOim/PRMIY/q/sHNOxkkdlstgzjZRDbR4B2miSJ0O31aonCikLTRWSoO4wIbd/5bmqDsWwaa1hiayvlFKrqdmJvqBSBWMFF6mHL9m/4+HT7uajpdfFuH8j45JdIEvRROUB7DGLWOlxjgNTA5Oag6Iw1P3l8tLFp1sK/kVuBVGPaFKyzRrP+MWs9go7JMpOHdIv/vqJWAi+yUCFGKdbabXKbjUDANiStEyVvmoJWqJf/YyBa1XTxfc/AvBRMXHFzXfDuu4ztlvCLL5/j57+6xL/8f67xH1//FdOSQSFJEeAQkIa4EpSVtXUz28ZQY1dooduyeQJqBThXPLnc4te/eIHz8wFPLjcYhoDjIeOvf7nHslSEtMXlxagbQImzwt2aJVeUoN4V3yRmCRUjWgjQjnfdup/yIRgxhzXj4g5ckHi4ZQyyiNIdQk2EHg6MlWDTD9ALUhtDzxBb95WHxRZtnxgzJu59ReQM2++re8qZN7Vr/RslCNuHVnUfsLQ9S4ET+7GTP4kB0RkSqSDpBMIaOLY3qdyxEj1fwvlbKmSIAbVm3Fy/AYhwd/ce3379Z+zOL/Cz3/w9nj15ibOzc7z87Asc9/f4y7/9K67fvQPXBawFdgnizS6sjFJpxDzfkttL4FK9eDI8bbJBQ1kTBsXWsjil6JZvrsWBEGxudI6LdnCpLN5zMOP27g73xwyuwJOLS8QY8eKzV7h8/gTM36PiG0x5wjZFpCSdV6rn4MPX3OBxMMHI+j5aS2kcBmy3O7x4/gpPn79Env6K+5vvMc8TlulegZIWDw4EZgU/QQp2Cz3LOEFqCA9ASBItFVOUNKcYPEKq1op5Pig9mPIeQWGjfGNASqMCTkYKAUOMGIIYsGteMFcTHBFWVBkE6fSyzCh5xjCyRHFqah4QxYCozJOVwbvocBB7AvJ5vXS6eRvY0V/7tIAW5t0k1QoyePhhf1/y//aPclpW5b8qU/PoEheqbWigxo9MoK09gj2QlkGYp4goiLeX0AFe8XplZgzDgBildXTOi6ZzGV9U8MisRiJ7mwZMFeZ5Wpco5dV5aEpJ626w0ySTGHOscUYoYogKxBhiQAJAFJHiBpwLyvUNapnE8RJ4xdM6tOrdrpiBBRL5NHYrFSiAA0C1eTujpqxHBERIsXMHzKpA5FolErnAu6+C0DpVV1GIAI0sJuETGUXa/lrjD2b1MAMJ2l6XCCEl4cnTgilnEIARaihC6wxI1LesZgfmtiksEkRQhJwXSaOpku4rZhwW6Y65CcCozqwUxNgrq9tHVf33HjlnAMLD2KL3lO8FM8x0ikgFvOGfcmtUEIrTtUQDSRK4GLcpSX2XXjUiBciJGLsxorIY5CJJWLw002XZEyRp0UBGLYIt7E53dzP2lfHsMmF/A6Qh4hdfPsOTlyP+9Kd7fP/dO+RcMYQtEo0g5aNEHahlKT5v64WgcmcYBUsxI1QghOj0+PLFDv/wj59gHAIqV/zw9hbv3h1xfVWRM2OzjTg7G7zLX4Py5pDTmn1oykfzJAv/kFqfLfXFuEwv541VmVJk+JfRygCwr43+hxu2sTp0nalR7tf9F+0yHwaRGVI7E/3KkAHfS/0hZ9R2v84AeXpWb+h9eF94MWnB/mo0NeOAyW5q0DVoV8D+vQgqw9D4aeO9LT7e9j64GbesKDCzGjNCQM0z3r3+BkQB79+/wddf/xlnFxf45W9/h08//RzPnj3By1cvcDjc4z/++G+4vnonBm+bV0bfXw8Eifx0DIX2Xr4Ormjr+ENz4klqZlBZIA1LrMh+P+WCGxRDoUoKvcuaiuN0jSUTNpsRn7x4KXgxRuEbzAAvKHkCDwMojDK2us4gkFeipovpOhpQHscRF+cjhnGDZ5dPsdle4HBzj7vrayzLjFolhS7A0kVt82sDp6SRmVKgRnGHGCtiFBwUY8Sw3SCEgHmepbg4Fyx50vfQaF8KSHEjhcURBFMRIQ0JYxoQKaJmBmrBgqM0XgkSkUUUgJBBNGLJByzlHqXMqJRAcQCFBDHQkxZCzjofZgYglwBOmbrerJvfET01rmp0Ic14nNIaLXX8wT6jjs4auurpzHTlfqfY/lvrFK7nuFNSPjOOYtF0FKrUwNRz2aiL7cbGt7QbaoAac6AYRIx91slwHAZpgMRS4oVLloYLphcwg0NrkIIOv9s8sAUUGK7XL6XIvNQp9HpKLM5e0mweMKMEIAQpyxPSAIAwYMSAEZwLcLgHtEYudSmsLYVCdQsiWAGYhSsCE8YgdKYgHi4/YQX0AxJJWr45CGxNh0jYIKCUirkUlApkFr3CeK/JHJdHPm9ANceh1jAjZtR51s6yo8wzEzglta8smEpGgJQ58vfxGr2+s1wwucHJeLbOf9WxjI4/NHoQFftpRiRgIFYMha5I+jpK/ceOjzY2VcvDZNLQ9Q4odX0YV8QDdMSzFnP2neQqCzesrJE6ncKhD9I7aEqTdb7rZJkBgBZKCP9nwosrsGTG8VBAFHH+bMDmcsD52QHDIKHaHd3CWhW6gK+dOHSl24S0JYUClspEAMYh4vx8wG4nXgipIVAxTwqUonS2axXhT2eeV8R6+nmnLigYsU2gzKjnjsDDfUH9r9Q0mP4rx63cJrQ7oxULa+ttjMfv+9izdIAdtPPRNzrpInhIrzt5frtpD5zs8jZxq/34SOtgO3/1jVmuaS0gDAyupsOMUd1zm/fUPCkqmJjBZQYAHJiwLAKSyyLGpJQGnGmXw2GzQxpGFLCEKmO9T0xArqIYfL3aHrDt6XPd0w6awtMbaf2NqP3wpe2EICAh56UUFJZUtKBRgptxwNlui804avSeSZmTfUbd/mmEDTM2hBBA0ZKXrQucADxUIGcxCllXkg+mYXY0YWtphZ9JgZWF0UuUY9HzGVU9ck1Ya50VqqixKY5Immdtxu8KFKihkFSpCtGN45UlGupUCAlQ4gf7Ek4H5BvAa3L0vPjBdT99ULepff1965Jtq4f2ZhiMarz+hJr9u54nrGj69H7UIqcAaDpGd56ugV1szyTYvtbUHPeKr/njY+++DgO3h3UEoHdhoBlAgGa064WIjYaaod+eY6lS0gksifzz2jtdaL+tczezPS3bGvU+Mx8l2bNXb+njs4/dY8dmxiFXHImN955yXPJ3ZB3VaWFf627jcqibm4rOY75ag7bXbF59n5/QtL9/ty7WLVWKhMvoClt0i0Wf4MFs/XcfFgXQd81sRvYmt7j7bztoNfk9fmJ/t87wb9foT1Z+ZVGdZngU+5bxHFGcuXYywH5WaTldS8UyV8xHGfd2THi22eL8bEaKQKDalhhNpnhdMSMaW1LHa6JQWPkD8R6LMWwcI87PR8RIWOYJ85QxzwUlQ9JsoTWw2KJVO1n/gPWQy+xe2WF0gwbQA6f27WNE0LzF/eW+r/R8Xp3XU6g+5wSnrEU8dWTzkG91o2/GsTbFbRzGuP3zUz53+jyl7X4iHcfAo3pWA1ex3kv2NubOYYeGkSwixPmZbxX254mzQn4G5bOVGWWZAQYqBSyWKlQLAgWM44iz8wuAgGHcIKZBFM5cTrikvjOw+tcfhud7FtbLRcNcAh/WTpQ2/21OTS41GGSGUekatyzsTVViiqBhAKWIcRzEGCAt77rJfoAOWmH9XtYG67gcncaIxXnBRQwKOWdYrRJWDHJKSv0MGe8X3EBNb9I6p33HXnBzLtZqe0C6VEoXu4BASZ1FotmypzsyiLSbaZTsFEnZLWAqsGgpRoGotuZYB1YYXDdZjw8b7+0IxAyO9vaPQ4Y2D3wafdxjn0YDtjd+SvZ0KtRPHj1ePJXRgqF6xND/bmNHB4Yd7LkM6B1uHm2OR7aeGSE+NHCllfaIU0Z1OromiCxYohkF1ahGpPXgEjgKL7BrjW774fTSsY9y1sz89l4+3rZqdDLQTuNS2hcnn0UgmzOMYNHpJ5REJw9aFVdXyaQ4ygMslMFXamnnTVa5mOsYqn6j92es975AA7myJUMaTiIPdGkRwo5+u7n6CeLAf8bY5IjIsvngRfwiMwjauUlzc5rVzBBLEzBSV6F59rIasuq0YC5SEHm7HUFEmJcF85J1YwgQ325GaXlYKzhPWiSbkGLQyAcGsypyGolEQwJHxu0+41//cIXzs4h/vniOVy/O8MmzGb/57SWub2e8fc24uVqQKCGF0VsBynwGK0WCEJMUlA0BYRhkk8kLIcSA3WbAkBJePh/x+RdbEBg/vLnC8bjg6n0BaERMWq/K/qe1aVhbdxICmNR71CkrrlSYYkQ2N43ptE0Av97m23660rwiIPle0iv0ow4jWZvpRnztu4cAeU0/RqjrK9fXWDqMDKUBNuNL/jseAq+OR3bPb/MhbbmNSZp13YBMy8GtpaKQhuim3pBI/hwTQTZGYzkMi2poEYC1VORSlF7YhZIZskqZJQrgOuNP//4v2OzO8fzlK7z87HNs0xl+8Xf/gM+//BXe/fAdvv3mj8jLjHy8R8kziDUdxxgFa2qKjiEYDVIDTKtIKK3tFHRVhU6rtl3X+aYTRmuGGQtJhxSzZwCcC5gWzPMBh/sJwzjgy68+w6snz3D35A6fXZxhkwuOS8W8v5d9Gwf1jLRQUdIUo0gCjoYUEMMzlHyGw+Et7u/ucDzM+Pbrb/H2zRXevXuH/f2d1LtB9WhLF8IsnphSCCWL8ahq8USweNIRordp50AarWVBhkIPLSyXFCgycp7BdUaJEaVE+U4LWsc04P5W6jwN41baMacB42aHGBJAIxgROS9gUs9SkvB2UNTC0QFjDBhj7EAvdXtyre6cwIgHYGB9dFFNNl8dlagkcuJrXmg+Jd2fPBr9t78afXbgdVVPSNdP+XBA9XUJmt9PNj6Gt5ymEDBYSlAp7plblkWV6oAQBlAMDvp7EOIQ0TyHBiTdymq0L/RcOqMehSjfVYUCRBrJRogxIcbqdcIqV9RcUZcCzkWMkM7DLbIpOBO1dJ+kc1fAmLUZRWbGpHRrEcQUApIafaWIP0CBBdCv5IV4xTQ2CJUJc66444wUpL5USKTA7iS9XOuvycRZfbEWbh4pIYUBTEC2CY4BNEjRfBQ82EstUtiAkSkncEVBprg5K+ySMRCGQFgoSO0uAAsTDgsjBetm2+To3+qwfV3A61bEgHiDu260pjhIKmcDdAy4AS0qv2QQlqy1G+eCwhkhtkLi07xIenMIXrtmSBHjGAGWmkZWOylKLQNV2iu8VXxg1BTAFPD+JuNf/+UddruIr353hk8/vcR0C/zsZ+9xc0s43hOWI7vsCEQtKiOoUZyETkKMUqQ/ShpyYImAHGPCs2c7nO1GPHu6wdkuIOeCb76/xc31AccDIQ0jEqRY7GNzXUtFjY2qLbLVFJZ2yL4O7qHv2eSpstgraNbAQO/fndMbS9tvxi/kA2+rwu0ZfQ1vw2aP2JdORnLyu17cD6HBF8J6aD+9/y3l11lfX2MRDdNUsJfbIABZ6UwKCgc7U8fYjP/NuCT/9S6E0Gj0rn29GVapaPqIrldeDshlQi1H/Onf/id2Zxd48vw5nr16hTRs8Yvf/BNefbXH9dsf8MNfv0ZZFpQ8oxSNkAhNiW1prfIvdPPvbEkPiSaXFGGQrZU4pazzmclM6L5jD0slWKMd42W1MmpeUHPG/j5jmo4YxhG//NUv8elnn4GPBZcpCV5dZhxVT2hdu6yLZJCoQcNVRCDa4OnTl8hn5yjlHne3NyDscX8zI4QBV1fvMU8H1FqQktBVgNGM4ON5yaqXSaZLKVlxMxCjpMyFGFU3aRFVvT5oPC4EbRDEFUueIMbwKFGNBCzLncx/iHLvELAZd0hxRBpHbHfnwj+CyLRaskS1svAVhIhSgf3hKDxst0EKY6MRW7OOClakpsYzAQcNFeH0XHZSdczcHnJyEtGa9Dp59sFDB2v73a9V7NbqJTVDujeU0vcIQaK7JBCiGT36d7J93zAxYRjERJCLOHFDINQh6XqLgSfELn24mxtFjDCHl/CJejJFXcQWNy7p80Rtz4SQQExIkcFJmwYVlVElA1UaCEiNuND4Q4doDXsyGKnjSRmyVzNXLFWbq3gtp6DpZUGKhgNe/7LpR9Kwg0mc3nsmLAWYlopDXJACsE1xnV7ObQtUMgwArZsrkcpDjIqhgjsnQ5AIZ4oVSEnezfcz1HCEk72tTq2upihrRGVle0+LUyIv65NrxVRklhbFhDEQKAY3TH3IcXt6fLyxyYbcFavtdAJUK3ipBQXcgAzZ4DasdTFQjWYyEFYzQmaMQ8I4iGU7LzOmY1ZjkhRajWcRu+0GtWQc81HSIWLU7gwC6BkshSEN/AaxNN4fFty9O+DiPOF3f/8CZ2GH55dHfPXzc1zcJezv93j3bgGxMuhgoYf2QppepSAphNi6GOkixhCx2yRsxoSnTwa8ejVinjL++MdbvP7+FqVsQXTuYbdroAIXrqIDRP+efPOwC2pDEdZtqVeYZMbXhzGFZuHHI4DbFKt2I9+2emr4uP3lXKePAnv0hO7ZD6zQnUUd/tofOYDu3KbYKlPtwR+UyFWolir1i/o8dfhInXz9WoIwIEl7UPBlBagN+HpaqQgJCUUmKTZdCpZlwv4wgSiBC+Ply88xbra4/OolYkoI44A3b79HAVAOd9KpMEQMMZ3MB8O8XgYyG9i0zHphcDEQKgdn6nDA2C+CesT7JxA5/au8FLBZCpiAw2GPt++uJJqJgecXF7g5P8fL3RbhOOGH+Yj9YUaICeNWwEEMQcCDAhYL2SaSotrjSGBklLrH7Q2wLAvefP8GYML+sMfxsAfAGAZqIcBdB8FSxFC+dPNEui+iNSnQMFoxNtlWaXvFuwmBtNAyo5ZFOpsVQtGQ+rpI4UxPsw0R290FhnGDcdwCCIixIqQFFESQg1gMATFIV6UQpDgfCPOQkIei4L0BtsY7HjM4/ZQi0Yv9/sr2V3+e/U8R+aN3+rBD6yG99oaOHqi5x9v+Y+cpHw8I2vGEViMD2rV9we6csysrORdNFVWAbkrwKU9h4xdwwqG65k2i+HS1BYxPuUJtfMPqCRJCqFLwUtOsa9GWvTmDc3Vw2CuYa+O8ACcr9C1urwomMWIsquRA4RWFgIiEEETOFqgBWouAmnISHRC2n0th7OuCIRAuBklxkJSKE4BBgCB+3wU6J2ZsioiIGqotNEiBQENs4cxt8dt62506cMQMl129ocnWj0jS68cg83gkUWYXMI6FMTJjTLbEfvXf5PC06sJaSJQffNcUseAja9QgLpKiBkkWJgeuUrsBDFAoqAhIlTBoqHZeZhwOC1KK0qBFU6U3m6Q0IemgCRpNAIl4YpbOmiVr8xPFeLf3GX+6PeDifMCvfvMUXzx7itsXEz77dMRmy3iTCfOetRB5o04lEbiBXI1NIUTlv0GN2BLt/eRyg8vLLS4vB2w3AYeS8f7dPb779hbDsMNmvNRIjYdzXbkVBTblxXDSKtJGhWOLrnqEU5HNvP3RYwdbHYZregRXnOzRvpLKa5Q4sea/8u7cFt1XHuuzfnTXrqJ2Tlj8qRFMPnvsbo3nmFFalBWSPceNNhuGlKL8wh2qZO2HgBS1DpKgjrYmOtZqc6KHpZk4dtJ/hcVhJ3XehNZjECd3KRPKlLFMe/x1npCGAb/87T/isy9+jpAShvNLFK74Ov4eb1+/ETym8puC8tPVDLZZduR6YvWzz635Q1sdqFLd4XaidSeoTjuyzwz3S1HuBfM0YVoKNpst/uG3v8UXr17h/t0tzmPEBOCQZ0xLRggBKUm6GkhTUIOUa4AbmgghjAj0DLUuuL1ecHd9RC0ZOd+iFsZxPmJZjgCAcRgQQ2w6Cum6nESFsZWGCAGjYhZJBxZ8Kc0MWqoz+nkkiHG5sDheiuhOUTs85jKhVkk9Jo162m0uMQ5bbLY7NUIl4SGR1NgkN6YYAIooLB1JuVaMKaBs1BnonZ64NQV57OjVEyJPX199t4YN/X/ap6Yn9OcbcP6Jx7YbN5yxOvfUGq1YfL1vG0ZyvbbWFZ+Sa0VHt9qGMUqpizyLUXFIqavdJM4pr726HpS/CLmOy1pjuJd7Fp3aT1tvJHEqQ6AIDkCM4gwvAGYvZF+05Ed1NOyOG5+39Zxpc1oUIpiFo3LFUvuADnkXTfCUsiQMcVJqWRJz0jmGCvJOpTCWwJhyRQmEMRKgQTktpVG3AQFMAex1p+U7MeiZcYo9YpBAoBiBVCUauJpL3Ke94VbTU5m9aHqLMO1rbUpHQAJjCNLpm6hiYjmrMDBXRmIgkYqvD1POg+OjjU2+SOgBkX5mSl0HVHuByCsKWw+OmTUfXIValXOP84IQArICnRBIGGAMGJIW1AZjHAYUTXeJgdRDUF2m+39U8a4kRa4yAzc3C968OWJeGK+eXmC3GfHmScHVuXgGoxUg116JzEBUoJ1ilALlRGoNtPz/ijQGPHu6wcX5iM0YsN/PmKaM47FimtDoh5rgWW+SjtBOXClGkGbo6C3CdgeL5ACwTnHrF5Ef/93AiFzWrl2xYyVA6gbUs5oVo/QB9xy2F+v9iwOP5ub0jEOVCgOIq7N8/KeXG9hdA83u7jDbNxuzc4v42hAIqJLZ1R6w29W++CDQASX22hsGpIhEGrvtSydfTBwFx8Md3r75DuN2i8vyEuNOImGev/wM03EPYsaBpLBiLhIaINbvjqnaextt+WtLLi6CgENCE7grLGxzQPZ7v6Tdmhv41pQmZmk9P09H1FJwe3OD92/f4/bqBvNhj3w8YjrcY78/IISEJU8gBQ4xSovimAYNpU4IUVJQKYj3npgQaACTeNjEkFcwDAmMCgoyHjHoiVc1DgkhSj51XhZY3YlVuhIgRtvYIgYqxIBoUVBW0Nf2vkUIVq4ahaWClRmopPDajOkLKJsQJsQ4gCmhVkKti9a4iJKKAmnZezhOyEvBbkhYtqN4UWNSKlpv+MfaSXNbzU4It53P3MAIbP0f0JDco48Sa0/ih+TaX0U2y9153PET31drPrf+Tsfqd8WK2JsRXv7bG4DXhihLBw8IISGlKE0KLS2798yp0LfHncbA9PJtPWR5nkQNRn0uoxYCuKLEIkYuknSqGCqKv2czqsu+7B7mE8E6f4DFZ7Q4DVK7jcghBlADe+Hkx2HBCVqG1NJJQVNTSwWx8AkzBLDy9KrgsdQWxWnzHnQOgi2rfedNCSwSlwESABdVrqzmtxMQqzoQMJHS9o2FmltdlgB5jwIAtaJwbUFUj4mZv/HRy6MYo9cY62WdJ5b3slj3mBnhrPsgmLDkAuYI5ozjIsZBKyIeQsAwDEhDRErCa4mkQH0J2dMPLaXgVDiL3VSUw6kCqTBu7zKu38+omfDpywvsdiOm+wXHvXQLjUkxFKz+jjopWAxeMVrkoHq8iREDYxwIl5cJz56PCIFxfb3H4bBgnhnM2lXsNCWBVZZhXZvo1BjdxdcoD7c90Tmj9H5+GyPGE8NIt5q2qCcGHuOd+rsJjk4R8uH7KeQFW0+PUx7Uj3PtgGhM0Lh7v69Ogd/KuP0o/0eTlXwiMx+Zjz5Kto22KVJmSCIi98Rzj2uNfxWLdAK4WlS2zI3VibW6SxQs7aqgFsL97Q3efP8t0jginZ0hpIRx2OD5q08xHQ+4efcWh/09AMZSJHsiar2U09f3N+nWjQEt1N/LCf8FOsjGe3sR58ov+ZyeHrlk7PcHLEvGzdU1rt69x+31NabDHvNxj2MFDlV4aUoTrHNXjFHrKo0gihqlEHX+s86fKMhAQCkLSpao/3GQ9qMu54kwDIMou1EMSaUULFlLAqjCLQ49WUQKUaJWSSJkSZscWe0qi5yx6LY+0gJah5fBiCwOIZHbmnVQpesdzQFhf4cQE4aRkAYCo2q0uIynsjiaDocjypKw3Qw4rxtfj54mTrZ6t4ZYr48uvJGxsGEDzUZH63M7kC97wPWzjs90srP9Rg/vtdo7J0M/eZeGJQQbNiMfKQvqZY3+Tmi0qfII+rhGn/IiMSZJxyZyHk9aw8po+3Q83bR149YXtCkiFpsCa8FtNQiiBlQCQim6xiLfQmjzzsprm1N4/dDGjbpZ5jZPlbVnJLNjHgpBSves3od8zP1jCFrTSGvLMgqWzOCoUXwnz/fsl8qtrpqz8Y6XmJCqDGhNLQK0vhRc16DucruZXaocuDWS8ceQyi0GNEqRWNKVA4QnmmQt1Wo8EgyTfSyQ+mhjU28VtZ/mFU1p0HA7A0D9pvQ3B9AV2INMdC4F0zyL8k4R4gXOOGYt+KrpMENIuDg/xzgk7HYjduMA5ohNgod7W7rEshS39Bmhu/OGCDlGHJnwx/+4xe3VjJdfbPHP//wlKlUcboFpXlDKgGmKYI6ICYiJBN2ypDRYIUD5TJTJXMXCuhkifvN3T/DZpxfIteD71zfY7wvevsu4viVsNoSzHWl2RN9+0LZKVUunAXOdQTdBmnCWAuuVACuq16+Tp6O4cEG7GckaeUg7yD8D4FbLlYFG13ZttGHgESW3PfcxFrMmAqhiYuPq+asBNWMGgU6YZrcn1+ysHcbMDEi0iCSWoqBBx2PKGjSct1PCffjcPFDMLGmasFDEFkkESKcgMzSVQvqzolRJ+4xV6ShKagpBIh8IjHevv8H7t2+w3Z3hy7/7LZ48e45hu8M//I//HfM84Q//9n/hhzff43B/jdv334NLwW4YMMaoQ23A0oq5eUG7QJBUGWkTuiqn0a2B0zjI72HnCW0XN6BZeLvMa8U87XF9/R4Ewn/84T8wcMLb129w8/o17u/u8P7dFV7f3IrACBJ+nczYFCM22x1ijBjHraScxYhxtxHgxBFjOsdcJ0yHH3A4HjCMCefnGzAY83RELgU0DNhut0gpYXdxjnG7xfFwxM3VtXSmURYKhijBrFFFo+T7F/XI5FKQZzVQWfMB3aFcKrJGNsU4inELhDCIMXzOGdM8oVbCsgClLDgc71FvrhAo4OLyiN3ZUwxDxNn5gBgjUpICvcuS8cPdFQiESMBmkzCkhDQk9WI2KefqFXf6UGg0fyq/DD+Zx7rhKfa/17RFaMUoufv38KDVL90YH3jQTVifCnJ/4vpcQRFwJVMBhimoDLSoPDa/MisokT265AUDDdiMW2y3G0joMCtvK5qGp4qvGhL7ujrGId3Q7/OqirqCIIYYEBjCK7K2rq8VKFGi/4aYxOwbGLPJR+FyCrg01apVd23P0z2YGNhQcKCSiR1kMzPiKMpGVFq2eiJsbUxXwRVCD5tBvMLTETjMGUsA5u2AXM1DKVWjF+2eODNh0WKYACGReAITARHk9UBA7XEUAiglSYVf5pUnFmg8RbaFxWKSG/Khn3gnnFpBUsYDqQBDhbREHgYUAmrOmLPsiWLF108COP+7j1XxfRYQO6TkUXhmnHTvYyf8jT6DyWSIUy1XRtY6kMzAUghRwfp+WiQ1jsRAncYRZxdnGMcB4xgwDARUxiYm6ZRZMkrOXj/OZ1rlYAxVaQw4FsYyVfzlmwPqErB9EvC//Y+fY8kZyN/jeLwCSJwCoChdH80BrvvI6kbVCk2RKkgRGEbC5QXhl788x6efXeLt23v8/g/fYTpW3N0VlJqQ0IyVbqAAg0i98rqfAllaKpTGLeJp7eGV1zTFX9ZovTUaflkpBN11q2g8wHGRp00AzrtMfvQP6Y3+bqBHi/w3Ptnk78n+smd1w/MRnSiW9u1jhqIfOwwTyOvJk3LVecdaT4iaOiwypbaIJUAji9bGhlYMv02idbw25a+PdiIiJOXvMQTEUVKkasngUvDdN3/Gm9eCoX7+67/Hk2cvcHH2FP/wv/xvmI5H/F4x1HzY43D3HmDGdhgxxmG19g3TdThVsyik9mZtacv6tUlHslMh5T0MU4tCLpEKqN06mVwjwuE44fvvXyMQ4U9PnoHmjG++/ivev/kONze3uF4y7nOByIsEiwiPGjE4DhtJ3x82GMYRMURstxuJHi8AYQCYkZc9lmVGGhIuLs4BsHT0LVnqXl2cI6aEuBkQU8LheMTN9bWkValhCyxRT2BGGEbEszNxhE4ZXAvynFFmrTfqEfHc8HQR59owDBjGAQSgJEatETkXLEtG5YIlH1FrxjQfcHt3DaKIi8tPsD3LGEbC2flWleEFS16QlwXT/oBI0rr98vIckdgDBX786FbUcQ9cFruO63i5XdIwUEeJqse073W9Vclf7Tg/xxx8KgPAK55hvGD1Lt1Q/V6BtFC4ulCVNwUN0AghgKPc29KrUhDnaXWGx6usj3Gzw2YcBKDUou9RFHu1efK63Mw+fovs67EmgtyKEJC0MUWMEcMwoJaCmVpJhKDNR2JKYCLkpUCLoYjDmFtqoQ2ih5/SHKCtV1LDaOGKRaMvTUcYxgFDEMOahZa4gg6C9UsgYkRIQMswJGQI7rmfCoYIXIwMDD167ko8MFC4Nf8QrAYfMxWWiSRC4Ky4B0BKUq6hSLdyx1uKT21/2jMrW7Sh7isiLW1Gkppc1eheqxYFD9ikQdL8SsZUi+NwCkE6DnvH7x8/Pt7YRF2EA5kwCR4JEMyLW3rPkhxuFHahvFYk3NtkFm/oi5PUgpJcegnrGlJCilFD96R2EoeCUlQA28OadtCPxLl/YeD+kJGYcPlig/PtBpQYF+cjzs8j5jkiZ0KpYmlPUTYXcWvPSbqKXIRoBNgwhgicnydcPhlxe3vE7X3G4ZCxLIycSUAedUR2OtSOP/XAGh2BPny3n2CcStUdP0Rjau1a96qtOVb79sFjGijqr3ns6geA7UNvQP19OujUW946o9n6Do9pD/TwLzKr7Mlanj7XtpTeus8x7ovmWfE0IngdJ4uCEY9cq2NWqxnQNOqAW/qKzdM8H7AoCNjf32LYjEibLXZnF0jDBpvdJcbdPZZlkpQ26oTfGgl3go18Cs0YSbSeHfapbZ7JHsCezq6DXt+T8pK1FixavPPu7h5X769we3OL+XjAMk2Y5yPm+QABcAmEgBwtukm8cFG7XhAINUVJO1QvgPaHUCNzxoDo1y0hAAVagySqwBoxbjYouWg3wAAv1sda40rfNUTpAsdsewKtjb3PMWQsxtDVEkwgrxcViBEq+eSIolMkukqN6fM8IaYJFAYQWQF1OdxwzpAOYdpN0Vhb2y29atE4BQGrEPGmeKyv11dRhVb3f0foPwrKTjZEq/3bPC2PUeRPHWvwZLRoSO6Enm0/P6qAmaFVRmI0G4g8XF+8cawGEbl/89SueZXU0Hn8jVxZ7K/Xz2vVrpBmHKGghlb2Ma7RkP2n4/n9Vzo2xQoAQ4wqEF5UVJGTqhtN5vYK8WoWzYhDWo9A63QU9XQ5f9N7GQ/07ipoNd8avzh1SqDbDMGNc9Ww22o4bMPy9W1v38sb/WHYgrkV1AzW8UwjFEGt/lqTgD8lOf/LjoeRuGoA1H/mxRUFzKI+WqoooDU6dJ5BTV45gGWJdCJUTTki6drUPUMiirR9OTGoRiN+VCquiLR9rtRsMhBAAWGpjP2h4PZ2xnA24sn5FgUV52cDNlsCsxT+ZZCErUXA237CIt/kppKqJ9F+w0AYR8JuF3F2FvH2bcX9/YRpYuQi0RirfdApLzJcxslmc4zjntgTuj49elMT2y1tDrDGtKdrK1Np+6vb/w+wCh7ysm7UH+JpHxy4G5R6Dtw96+R5Jud/mkM/BtYIPY8/PZ06Pujr0xn31hFOyuNq07mbiGXHTc0oJfwtqMNMokRtTE1WL8cD8v0R8zzjeL/HbnuOzcUZdmeXiGnAZneGYbOVzrX6UH+Oz6e/cPfqxuegA+5mYrX27ap2nw590yNzZ1cSodaCaZoAZtze3uL6/RXubm8xH49Y5gnLsmDORZ+vjvqoBcBDBJeCEJKmS1XUmDCkqPyFYQpzizIDUkoAGHmZBRcRiaEpJenmOg4SBaYGJtLSB1ysMDe8jq2k3GUvBM5W0oTX8qzfFwS4cZi1Sk0IbT7FsVtRCiPnihAiljxjyFlS48MAy+qqar0suSISIRdx9mjJwZ80Nj2m65zSHvfcWRX7RoEnS/oIdvmQ0fhxwur5yU8cdPKzG1iTy20dHEOBPTXSV+TESWj0EWztvdA7wwq5rqLgT6dNJuuRwXbTY7Tc4QdpIGERU83AbzXF2pgf3le+O6kuxP00mQPH6oy1phsAWq0l04lWILp7uHads+ZCpdAKQ53q7o0P9hJr7Xy1/UDM8KLRlb0mmw2lnwDqfmcl9X4+VvNEorNQ7TQJ1YnEkau8nhqOOrHw4GOOjzY2XV5e+EtIgbFW9yKqkgiIt629sG3o9YQSCKOmwpVasd1sPFS2soTOpWGjqXES3bQZEoZBjD4mUOBdCopYCIsoZC0ESP45vGap+TSOUlTr7pgxTRm7dwPefz9h3AZ88vwC/8s/f4537zN+//sJx6lowVFh5qzGJlLhxpZLzozLywHn5zs8ebrD+XlESsDhmPH6uwOmqaJyxHYXkQYLaVUxtZL3nUCuUmiwFKwUzd6T1hN1nzJjm8h+2ua1OhcfOlp9mjYeO9bbnx58f3rnh2zxAQdc71MDbv7ftbfbxtffjphaO8cPHK0Ya88U2zxaBJN7WlyxYqBI6KC/H8NrwIjHUoD6ZhgQYkTJC6bDAVzLg5ljdPdWLcpbBGur0qxEkpmxcEad9/j26z/i3Zvv8PTFp9jf3iOmhOfPn+P5ixe4vnqD84st5umIw9U7zPf3TVmEeLWt05r3LVAGzQBSih3tGVNSQ64XUzXmJXuzdLWomsGtAX+bbK4Fy1Lwhz/8Ht/99TtMhz2u3r7DsizYLwuUZagnWu5lRbxznUEUcDgkDwNPw4AQooR9lxm1FsQQsNvuMIxJUn8I2G2l8521uo9BIqZSTBjHDc7PznUNpWsdKqNKk3dcXD7F+bNnyKViv5+Rl4ISjoA1GO9AshXyr7V4jRBJCZbWqAYa0xDBDA1vjwjZ9iSD64y87BHjBjkPAAJqzQg1gxCw1doEw2YHihIlUHXuYd1kRPQ7DTWFY0UqJ4Qk+5nZnbQNeABaX0f++jFMZkDicZWlB5VdWlgnTD8E+HpvnfxXjIPVDYTVv/GULOP5ujatg03zxtdSUAJhyRkpZ7mPR0NZp0H2yI42/uYoMb2TuWpqGYNqX/jSKIa7v3rjrabRRa2xoR17mLkZjTVaQBgS+Rzro9tSKr4LxCi2jvpPjFuSDp60OHQkbe+NeGLEAUxAJ62XNsWICkk5P+aKYS4YImOTzGitEViANwsxAOeA7GQ2RCmB5OCrYa8SUA2kPQK+DdwStJYQlOeThawDgaJ4YpkRcgGXAiqEUBaACZUYnKSWiaUORzDi49vvv+W4OD8HYPtUC7BqZJP9AyxVCLAXZJaIWGueYfObBomKLbliGa10QAKR1GWKQwQFSSWMgTAOCSlBIyxEuefKWlxV6aVWpwGZfDxQsEIMGDbyjLc3RxyPC5Z4gc9+doE4JHz2ySWWWnF7x/j+e2BeClKQiFWwvhO6roGlgoPw/09e7vD55xc4Px8Bzri7vcfd7YS7mwqpSRwxDGqY8wH2QL0d5nwRA78o71J8tXOPkcheS5VpDsv+7sBjQP1DNh/2OSPTPxpxdLdqFLK+7ynP7et3ubH4RyxlazNQh8/03UyBk/QRXt13de6pxmsKke3PrmaHiAryNDeJ6i5gEIqPpEU2ZcXqEnG39TokACHnjOl40Iiujnt0xqaqeIZqFZOEFdfV5eNqURgFxyPj6z//Hj+8/haXL17g5edfIMSATz/5HK9efYrr92/x3bfn4gS7u8M8TevaiGQr1a2QKmgAEAOvcDUDPsceVeeyxN6BVliq15EMm9ZaMU9iVPq33/8bvv3rN7i/3+Pt7XvMy4ICQoqa1syGJzJKVbSSJbVuOkYv0n53I82Mcl2Q8yTp/yFiHEcMaUDSYvvbzRbDIBHAVpUmxoSUEsZhxGa7RSpFDFtE4vBXw8KTJ0/x5JNPMR2OeDf/gDlPypMimCtKfszoqJhScRSo6SoSRTPqPrNU46J1GwGuE0o5oOQECUYJ0CRvpBCx2e0wJGnQAoquVZgu9TgRdYK+13xICcegBnpakMPrEjl+MfzPTif9Pjr5yPeQ/7c2fG04rncE+zXc0h/7+9gelvmX+faIfqVzc3zDdSWNNtMIaanV2BquEAFLXqQ4uISmCuHV4rWLW+Row3qBwpqP9NP9CE9rGqPWfVOdBMq3rbar1CkLMEOmGbD9Pv2zOkxqfwc23EumCSrrkWCaFCMiBaSQtFh4zxuwfhYYKUaMIEwl4KApclNmTFkM4x6yovdgSFCYcbxAluR6gikZkk1jzw8BrNhP7Aj8wGfZ+BJ7nS2rVcgkEZcxSPbWCNIyBNKwBjK9uu8DOAIcNJpVme3HQqiPNjYZUJKhVwVKQS1+QXOCjUGwK7xgiAJmKQRqNd2MGwwx+cZgSGeDUgtiTBg2Gw/7D4BGNQUVAOygqKqxqWq787oCS17Fw/8OBMQUwZVxt5+Q54yL9yPev5lxfp7w8uk5Xn1xhr98fY+/fvMaeckYYsIYZOkl6YK8tmOtJB24UPHkcocvvrjA+fkGu7OImBjTMePN6yNyAULaYdwkLWTu2wrolqsnN+aKonTch35T9z+vidFfh7Xx5cc2A62ezY156oUmIB9YWnWwDZN+APw4025s49HDhCweUYAem59OM7ZUwIdwEy4QDAC297HhkSt67dwm+Kv5wrlFNBkoDzFK4e4YMW53GDdbTIcDpsMRtenCKxBkhgLzwlcvOixgycBHrhUZC5Z5xuHbW3CpeH59jWVacH7xBL/+p3/Cy88+x7t3zxDHiMP+Dn+dJtzf3rpCaeHbIGVItRmbLDKRIcaLQizhmAwtmoyWKtrNt7//ibGpoX0F2ZqKscwT/vSnP+F4mOQajRkP44iQBtl/en0pUn+JwaizKZhNaBjoSUkMTxSAFKU4ZlQFhIgwpAEAtO5aEkOVGpt4ZOx2Oy3Ivki6UanIdQER4fziCZ6//BTTtCDna4Bn5GDJl9UNltLtqOj6NeNbKVUK45LleQu/AciNZgRGWVSg1wU5HxEzI+cNgIgQFoSakeKIcbfDEAcM4wYUpXaCFTYFSQFyBzW63iaczLj4GNkZTdhZAQ2kGMWJR7F5qT4EzE4NTi7g+PS8NQ/wv39SWpG/W6AqXVUogKjrfCYVsH0fCtgo7vlxY3uVeh5SGFlS21Ctko92q2T53fbl6fibg4DauUTd+9ODn24k8LlsMjNEqV1jXUFYx2KFOnvFFUDrcmTrxEa3pujAiz5SIC0yqVEtCvhiV+nJwZ/+nmKQqKAQUSiAuWLKFYnEgD4mw3rkoflrw9waJLZlZjU2MZCiv0DVpasMjco5vYtPrIxZQaBFNBABKRA2IDc2CeIvCEXmq4aIGsQ4Vrjakv1NjU3nZzt5q07OpZRWXlM/AYB152xG+NaRgYgwbgJSCuLln7XuZRfhMIxJoywVACdxgIWuA5bxMTbjQJ9e1mOojhZCIAwbMaC/v53xbikYzwbMh4gdRbx6cY7NBeH71zPevrvDvFREGtRhZ2lgDbBXSG0xVODl8y1+/XcvkBIBKLi/2+P+bsbdXUWtQd5Z04hXUby+jk2xA8T5aTX9+vR3fxmjR5VZvedvhcXAWO3H1XGyTx+DIabgdbTwU1EKxvOcwfrn67/95BV/7tWMjt931zLg9RyNzz+m8DnGMz7h+yKin0dA95MaSrzwb4+tFEtZpO4YxNhkcjpQwHQ84Hg4agR44x/2bEvJI7QUQytXIPqGYq1aUMuCnGd8+/U9uDJeff4lAGB3foGf/92v8ezlK7x+/S0qGPv9Pd4uX+OwPyDFgEENSh6xansELdIBISBEw079LlEe3eFzayZRvIbnCYbylbO5lHS2w/6A9z/8gGWaFc5J4e8wjIiKdRyHqB7EDCwu/m1TNkmUkkQpSWaKRI0PgxXnBuJGDBNpSE6nUXHUMAzYbLbeBZxAqEFKlwQCLi+f4JNXn+Lu5g7XP9yAeRF5FwO4SE0cGI6CYWDbG1VrzDWak4YpHXZgAKgo2bD5glqOKGVAyZqvC224EgN2uzOMw4BhEHwl64gTesED/vuA7vy/XTaHCc1quJlhRiUCvOuprSsrIZ1S2QOjEfr9vmYqbrQ5ua4/fD+tDFsi/0SHrdBK1ipPpNFCBcBqYKq1dO1jDQ+Ksx2QaPsQ9R5qbCI3ZD1khC7j6KEx6BG2c3KtXR+cHoX8IkCs2Dq0veTyq8MiRO05J+salPVLLJ3SSZC1CyFIiQ/NroorhPIAWAseSdLRep4DFmbUAsyFMRdgIIE/NibTkStLOq61e/KSA76bdMqsyZqlgpI67CBapFVIaG/XqcskNajdGUkS4cxBxrUJEaEy6lzBJQsFJsFZNXjRCY/WioTTGfjg8dHGpnX3MTEARaIGWX1hG0Ax4RoJ4KAWQzWWRJJOWGD5DgwUChrmGDBoBfagADNqroAosRbq1gowNwEI3YTQ/E+4vAbWG16YLCMXws3tjFIZTy8G7IaE3Sbh/Ey6GVEhVe4s/QlNxrKk2RGAs7MBT59uMY4J03FBKYzDIYNZtQA0wcXKNEXgOwXoHKJ1PXBlw17ETqDu5fqrO6Z2osw1oGAnnhKK/f2AFeKxow/FXEObdn/SL1ffsRF+/2kTJh6ZcSIQjImv3rMzgqxfqQGqZhDrn9XqWXnYtHrdvC0v2Wfsw1l5ofyBBLE+Cnuo1YwB8pUbKDoBK8xFGHOpFZQlBNmK21dTnG24gZDzgsP+DiDG7dV7pGHAfDiK94mBy6cvULN2tprFuONAUpmmr5srNELLlRwerZfQZrN/7xNwtFpYrJ8hqSBiZGIyD414QIPVBVGQzxohtL4f4N1yuHkFa82rlveEgAwrhBu1e4MopGCpHTCHGSWr+0ALZAaK6DGZeL6lq4UX+nPAS4hRFKUK21jVGUIzVCojF3QvEWIhYDNsENOIOUjElIQrV9SaUWtyj5F7KYOCgBSxO7vA0+cvJeVrPgJcGihl1jl6hE51DL3N0MCM0ZKN/uGlpoD0a0Grn+28E95ifIl7I8RD3rOi1wdM5DG+I4BDQH9LhbTIzhWgwNqz5vKDTfkszosMSK7MOEQPaymcMrJunLV/T6+F56OGRzeRRnRQoz/7nqENBDpedzoLbc3Ws+SiAeStdYMCUzMc923fT50SDkggVByC1FEDVxSW7nQpKg3C5pmcyTKr3DLW91hnr+4tvAayCmy2WkWw2lXruW/KQOtu5POje1VEo/E3lT+1YQJAlVEwLNDmJ3Duf9kR3FgJxxFWUwgG0MnPEGMaFATLyTBFRQxlVpwVoNQwBlginlKEO6OIxDRAaqRGkShB1sjMlibcj8/2q32qR0ezrBO7ZMbN9YQlJ8Qx4Mn5FvdnwHZLKEXeky19XN8NALRPBbYbafF8tkvY7cSQdX9/xLwUTMeKQElq0JF1F1Ve1issij172Q89p+GD1h+PjD850HoUxTQY0k1B4zF0ctIaZdiXK/6i5/ZRSqx8GvAfYC043Ed52vmPjfThMp3gOVrPV5Pt/XudYjLDVyeUbIp4/zFzF0Vtxq2GfXyFdKuLwUXksPGR9r1ECwV/vhbR7XBU+1yjirMYw6tGATqeAwEauZHzjPu7G9RacHdzjZQS8jxjuzsTQ9eTZzq4As6zY7XGZHVW3UjZaFMwGzuMPuV+axwIV4h9fmzDkhmzlIdqpwVpGqyMw9bS8aJho4rKpfGC1VKyP4O5oFZqGKrd1g1IIEIhRolaD25awJD6OIafPIpCX4BBYvBaZnDNiJqGIyk4AVAnRqXeqN2iacyRJ8H1go8kqj25kYUoYJ5mraMJwOV5UH0NIoRQgQFIw4Bhs8HZ2QWePHkO5oIyHSSCPGg6sckxom69jVpO5CQYPR3ZSnck3OihO8ONTh3tnN63KVPGi1mv7MbAvMrm+Kl0wNOtoBe1L4y3GZugE9nuz6YVvfWGsCYjHkMsRjP9iBpD7WnCjMh+en8rxS+uV9hn9j7UnBfoMO7pUx/jnGs7o10r95So4+Yc6XF3t1W6X6D2EY26VidXZcZSpBsyLENLn3a6nwJsXT+8tivuHgjMpNHKtZth/W31frajbM/ZQEixWzNKB5DqaQEc7DnS/Zb1RX9i+/nx0camaPm4inkCSchVBGm6l1rBtFBrCIRomzTIRFaC5gECQyQMSujJioZX8nbhQU1mZGBK2By4AoUDShGFY1kWuQZVujiRhIRZmJnVwzH6tnfgSNhsN6jjBsdM+Pf/uMXZLuJ/ff4JXpxfYn4G/PxnN7i5jXj3hnH1viAExjhIrRhDqSEQNlupg/DF5xf43d+/wjQV/PGPV7i5mXF3F8A8qofEPHuEYgXMrHU2oN302IuXBQPxViG+zxu1ol5KZCcN6VbHx4Fp25D9Fu6Ma6dnU2Owdv2KNpySyGRZN//tJAdSa2o/GUc7rGypKTV2zmO8tMHPPsJAgAfrTVqb3ZYCWjigcNE9adETjR1ULqoQSowhhQghJSlanzMjLyxdrkhrqFQrkClRcCKUZSylVMxzRv8UosbA4yDd2OblgDff/xlp2GCZjri4eIrLZ8/x8osvEJ4EnG0vcfj5Hrfv3+LbP/8By3QElxko4oEYU1JmrKyGCBFRQYgKfGoh4dStmwO6KhFL9cHSGMgiADInIUWEIYIGNZtDgShDDEs6t54jbmCIIDwAus8NDGieH9eMZV6UJmStF0FmICKkcYMQE2KsSFnuVfMd4u1BojqiFGOPGBCQJIKszmBmlGVGng6ouSIRA5FQIiHHoPxNHigtwaU1+FLEgCWGgiIAuooXIA0Bm62kGT+5fIbt9gL7u3sgSxHnXCvyckQIwDRtUEpCigtSLIiBEdOAYbPD51/9Av/0j/+AaX+P7//jDzje3wFcJCrHUOKKXtgBYCMI9aRqnYnACix6gdGFg/uaqOLghWFdcZOLrEbC2pAN5b3dGLq9At1/rf03+3XGzNZh4crDu3RBF+6GicAARS2s3epQNKXOGkmQhIAv0lF0SEnOM4FLgDXGtbQbgD2c/TTtgVmKO1a3Nqn3mwSkVNY6OxDjQIrSVaVWKXYegqS5lSBpeQtXRHReIzeG9fy2TZeRXbQnB2jdMSDFhI0Wt0yaXtUXxnZYYksCiIIAwiYl7HZnUn+tLFiWAqaAs1FqYPj2YpHdYAZV8mgJ60hna84woyiUD2h9hxgVxEgdDoLsnV6xgt6PSAqRM7Sxhu7zQAEJ0kFFPFMSQUhFBEVUbx5X4LDooiVGTD8G5/5rDwNbFNBFZDGIRJ4UC4fVWgzEVpRU6oyw1SIpiqGIMJCk7JLWzOwVhpgaiBZyY6As4KIygIUmSl68fp9c2ym7oEaPDtU7h8lIqIlxfyj4t39/h7OzhN/981P84vOnSLjBX7+9wfWm4HBXMe0LKAhPJJAWBWZsxoDnL7fYbgM+/3SHT15scHe/4A+/3+Pt2wNy3SKlndCBdvsUwKt0SSLRVt30/LVb6jNBG3+E6Eqm3KKuirHbQRDM6pPywUMxpipopwhmpTJ02N/wWynFv7PoASZR0F339OuNb3aA9seOFaZrQ5Bb9TU6AKCuznPDHvdXaToLGv2yVJ318cmUtnIBJnPY+bBGMhZIlCoiwNKmHszIRSK7S6lukK+1Ss0dboXFwUCBOF1KYcxSkrelXxF523Ap+UE4Tnf49us/YBg2mA97PHnyDNvLS3zy6gsQgCeXz3HY3+P2+h2+/+ZPWOZJ+ZEUHk7WMVLHSiQRyxGMXLR7Jx4uDZvs1egF8yWu0vKZ1fiq3bVTRBwS4piQ6iDOOob/EywmjUtyyXBjBQMg2etmVPVoEBYMVeuCMi8yOM0hCmhOiSGNWmi8os6ik83HIk0dCGL41TgQUPUmTQRIp7zbK+TjhCEwtiMhc0QuEUCUNG2WjJdSKkooin+1HlPNMr/afXgYBuzOpUnMZiMNX/Y39yhHdR6WgjxPCMRY5hE1RRAWgDKw2eHs/ALn5xf48me/xN/94lc47O/w9Z/+Hfv7OwwDJFvGdATbv76A7DiDVE5Ww6xKWyv71CmdmVHUeCv3mkSH25Q/sVV3NqLX9HKvGdc+fvDAxxyBK75FqgtZkxWqir+4KVMEEGlHZAasKLVxtZ4OLcND5IU6mTXau+d564AABrN9a8Yr9v1sTvoA28Nw/d86PYeYpFMeszoxVF4F0u5shrm6IBn9edpl9ZQ9BrUfVJUVCFKzLA0JEYSoNTC9aYPpo/p+5rxKQZDqOESM2xHgirlW4LgAQ8BO+QhDKp0JT2j8XkIXrFGV3tuwTrdvLJgDiqHqUpALvJscMcBB1xya1gtoJ2E1GDoeJARERJayBBzVaZ4zKhF4TKgUUbliXyoCM3ZJMzjw08fHFwjXDeOdrQBtL6wR651S0vAht99VOJqnzTaCgG9b9CAOYS087ikQwVIIJAKimuef2VuSBw8FQjOEmDGGWYuRdi/EQIgSolkq4/ZuQS4VJQNDSNgMCednCZULbt6LF9ysqcJ7GFyFGIYkRS13uwEXlxuAZhyOGdfXR8zzCGBYGYYMLPlQuHpXANjcGng5xRM2Jz0Q99lmZy6PYaNHsUl/Ip9eR91v64tPAZX/4YjVmGLHWk/mXz6j7j4PN63tJ+4v447tcvu8x4Wr+V0hvPa0XpHuo3VOo49Oo3hWkU2wGAS7JzUrvfLyyhZR0S8oe30DmawG9MyYGMygqJb1mguWeUZcZtxevUeeFgzDiBSk09D5JWHcnaPkgjhukEsB1+zPtNBve+xpXjnZRPsJ5BPeh6b2QvQxrwrpPiCN6HHvHIRmCDonirhaZCLaWBQwWT0eW2FjuKwRZ00I6zqEAFBC1MI1RMIblgqUpYihaWw1fDzSw/ZA1Tz1ws6nZA2U7wUD4AyOpkC3zWf7xpQckOZ8p4hxM2Kz3SDPi9QcqRW5WnRmEeWLigjQoAbRIPO43Z7hyZPn2IeIGAdNHaW2juy7vKNUbkqm792eLhthcdsKToW+Bfxnt0ZuBLI98JA/cDcvP350jK9bzwdnOSPRsNVH1DkZSwCzpMY13YxWhUptzjl2a4vOw9W9CAVad+eC8Qj4P2dF3avY+zRoheYsoPWzjJWzggAikj28oq/1nLS3lyvbc4ze5HkW3dQ81t1arsBvuxugBpyUpMhllkKvhaW+WwgCGtlkmSoxds8eRwPtGYTuFFN2VZ4ZUAvdHjWAvFoP2F5wRqYAt3M6GG2oA0FMv0BBl2bDbR3/FofJ0D483sfMvJIBmtjqtl/pT0IOxu07wVEW+Q3nY8HkR3s4VKDBDKau6PZRTZ08cIjR455uTzNYZBMBS6m4uZnFWFgDzrYbnG0H7HYB80KY91CnWRf1rkKSQNhtI87OE7bbiHGQyPfDPuPmdkFMo9S5NGOFvaqJTpPXbXjro5PVjsF6pr3mmB1EOGUG7czHbU/tfg/xjKmz7cxeOXwYUUTrcTg4bL8/lva2orl+wU6OPjrqgxhN+Wf76/RtTjCNySAflynuWodMr/TP0KAGQN5QxZRPwxm2Vz2yydEft1px0G5UDO96SlomAARNaQ8oJWM+TljShLvrK6AwQhqwGUaElFBrxTCOKHlBiANA2oXWVsT3DjsdBKMPotWarCLS9KWtZIjNQZsA9ml0Y69ld0Sr6RYVN9n5nQGrmgPUZlk8SOJoD84zmrbNTaYZXoF1Hg4IHI3pIKOAAqMwQLlqx97BcRk7M9X75Iw8T6h5AUEim6piOYAhTvc2B8LTyOfMI0ZYawkRIaYo9aK0FucyzlIGQg3N7rysVZsS6LWA1JoaBmx3Z7i4fKp7I3Z7r5FJTym+j07Ip2VC4CFMYeouMEzWgSjHJC0AgnTR+yih7nSYwWlN6uuHn/KSxw1OHTjp+aAxUqLOyaNr1clYIgIcrwaXGxJQYqOhbs93PJkfRsk7BDE53GEoGZEJGuPD1I09gGBNNGSyXO/Heh1P14i7KaH+UxUJ7RE6JxbVpP8Dn/JebrxRX0DdshLdFIOWBq1YakWJgHbL8HfuZVrDcboMPQ+nB6/j+wewCEK91vhQe2udRnJa5RMe7/xD7ydpeWa4ajJDSh4AY79uP3F8tLHpoFbwPrWEIyOSeZrlXwhBQsSobbqgCpoYAzXUVcM9SQv5BZAX/QaLlZ1IPLRePFWZoxU0Zm558D14b5OqaRZEIO6UBSP2TvDNhYG54vXrA86318hU8MVnT/EyFxzur3B1fdvkPqTAYVkyLi4GfPHlE1xcDBhGwvevr3F3t+D91Yzr2wKPUOk2ATvTx2pMFmYPV34amES3mU34yu8EV76VUXib3QYhIEwAvskeC9FbwxL5S9KS7MXZ585xWCAvP+XGvI6QO53Gx2RAtj/45Pz+ol4RXtVU4Ae3Wd9s9dzHDuoYHTvDM4HO1AwhTpQO0iHtzHEAUUCeM0JIyIsUrhYvlAjhHihZ+LGBLn+RbkzGbV1R1s9DbKkw87IHc8EPbxi5ZgzjFpfPX2J3foHLy6f4u7//ZyzLhLevv8HN+zfgUjDlWfLqQxTBz8BpYUbmVpNJmLl6MesjTEWHGhQQEcO7J6VIGIaInOOKMUeLjulabJfSKztyY3HyEyJrbRuC1od5PFrGP6uMvEwoJSOEgGUR757xkRACJo3wsvQ2ZgYXiXWa7ibc8JWOQcJSqQaM6VyeQfKkZF5ABIQwwQqcl5y7zk8E86Y3cCPjDjGASgRzllp1JaOUBUSMuIkYR6kxVZaKhRbcXF3j9XffYTnuscxL2+Iu13n10+bSqeWUEEgI1maSsCKb/y8PvYuCGAK62irdWp0otg/uYrzp1BDaXW/r19+LmUFFvWUOJKVmkdCNRDUREeZZvKLb7QZJIx2SyjUD8fKw9sxVQXznCRobFNRBAFUS2Yy7QZV/kWexRsQUQYVQStSoAIDngroU1NIrfg+N7+6AWRGj8mUGon4WSSPxSEOmlQdBsfCDmff5aveNAHYxohDhmCOWWlERMFfWcvqyRFYvoDKLs5RFjBcUwd7UjM1mPK4AuFQ3hhERKoVWv8kjJeCA2CIjKrqCvFYrlKFpeHA5BTaFCkCpoFA9spqJkJkxfVzX3v+S4zBNANAMQURINawcYdZBk6KlO/Z8USmsVhWDUnfDlG5HF8rXJc3U9r7OnbPJ6sqmY/jQ05nSltl10eqJkd0Hhg3k79vDgqVW/PDDhMvLI+YZ+OqLp3jxYsGf6gH7u6OGaG31/gsqLxg3G3zx1TmePtuAueIPf3qHu/uC233FXBLGGBBPuJNLAFazG+n7BpFDgUxRPZmDThFqaUxyM65Vyj10dGcql/EgV2ZMyfJVWVMUowWJmvOocdkTZRCnvLDhNnmWRVc/fjCMHzSg5J8BwImzYfUUXcd2FVbndrYtOG8/GSb3dKao2usKwiIWrESBXGPp8jkvONzdgCiYvQIlL1pHjP3djYfBn3H6PuTz5UdvVOQAT8MaRI85HG5RikQ1z3lGGje4fPIMu7Nz4Pkr4Lf/hGWe8P7ta9xdvwdzxZIzwOwprIzmkKyltpqTGi3gNMXd+Ln7172RpcKHEMFah2YYEnJO6nBXB5imzJSc3chSy+KyyO7IpNgrdPUBTQ3mNoB2jegQku4zS4RRJoQszSRCSu48DEcx/mr5KH8/ImB/ewCX9+DKkupWK4gJMSR9B32uljrgoJG/LAbHrLWgkmdyRFg2icgG3ZtBIuhrZVRk1CK/B2YMg2SbhBhxPEqB8qt37/DDxbc4HvaoOWt0qewRo7OTrY01mbLrHLbX7WQvG4uHWRY/hqx6+pLfTU7q57pn6+qzNb84jWh67LvVM9HeO4SWlkYUwKGrp8Wqj5Ok0xMFUDHeB8zzDOaKcRiw3WxcB3dewryiR3fwcZtr2TOqG0QzdrXZspKkzJJFFYiRtDNirQXLJDYElApestRP1ueas3Ot1yo/foyhMntUtmNONcxYs4LC6+D/HqEJRbFCKPkrUcD5MMq7zwsKChYQJhabR4ZiJ73W7sEMVFRNQe/WkJrxmBmA8lXBEAEItUXjhua4W4/UdkGDV/ZHrVk+VFuMpSODSDoBKga2Z2QAy0cqDv8JY9MMQPMQFSDWxIgadREpgKJUhw9JWZoKZNLCfyJwtfgYF5RKQGBEL58jXCR0BBWDeFdrrcim6FdpHQ5Yue6mpMKMKmCQFdBV5WRtoSZfgMrAVBllrnj9/R60VDz7ZItf/tMzhAS8fr3HX7/LqJVQs4T+5pwxTwc8eRLw1VeXePnqHHf7I7777gp3dwXv3k+4vinYbBm7nTDkdX2Ih8p7Y3CyaQiqGHStHQFT/JtF0sAPP1j0h2BVLmjk/IHT/QNZ6/Z3M1T5YFfGLT5xA6wtp8aJZKBtzdoAHQB1wvDRo9dFHux0/jH+/vBWBhbU69QMQ1h1C/EWvfpCpWRpTQ+Aee+PtMeuDDgmx1R4ygmN4cK/7ufB1rQz3iqnW+YDlumA/f4Wr7//HuNmh9/94/8T57sLPLl8hs9+/jMpzP+vAfd5wnI84Hi1B+eMTRoxxiAMrfaGJkszymjFOdepU6eGAxmzGFaEyXfGphSRU3QFXkLOJaGoZDhQynlxoNLen3WKorbj1VpMtAaUUtdi7UktXhmzCd9gwrKby5QGCYEPEUMaASIc746Y9kdN99i4QWkczsGwbnMVIRRUygCLcphJQGipBVSrhIoHC11NEpKLluJBFqLOLIamLAYn4XkDNpsNQhhQloq5Lrh+f4XXf/0ruGQs89wBlGZM6BUoQAx7Vuz9MW2FVag6UjKS+0i6ebgP1rRs+7atVdtDj+0j0WXMXNMUw1V8wCNAKnYOCdsLpVoEuBRhFmdHdePPNM2uDG03GwABZIW6qxRaPRnaSZ0CfY+uw2NUAwF1a2PePLmv/EwpSQTbEsAUQBWoc5F6a7W60uWMt5ur8GA+ZeEYknVg826p5EHPq6ioRQEmEcQz2N7ODKHcCaUIwi4llFqRY5LweRCmyogs4DAEkrlWA58VK2cWTzgTtNGH0oJZJ9g82qJUMUHDvcVTWTq5QWyp1qb8N2BGJp8qUHOLYiKCyMmiZ2qtBAZUO5J0vKn8iIz5Lz4O01HmNVAzNhU1gkdJmwkgST+OUYBiNeVAab0aTsLKOcdqcWt7M/h10bsdohVoZy0AC8067GUMSMohKPhGsPty25v6X4uWLbniZs44LhVv3hyxG0eMF4SfffUMBRVX777Dt98eQRgB3opSWzMqHzCMCV/87AyffnqJP/7hCn/4/TscJ+BmnzDXhFADBn+m7NouExRmTGAKLlspVISgRt7QKQ56rPc7w3rKsCuOjfeQ/2zPBvV8qZP6vYLlSsup0op2Ph4qhD1GbIpfO7fncw+e2f3ymFNmxdx5fclDHPWo2FhdbvPYai0KIm94yTopVne66YsAAPIy436e9VXFiMKARKyoAccMWa48Upvvlrrcv5phy74anlwTguawgnE43OJwuMXt7RXevnmNzeYMv/vn/xUvnn2C7fYczz79HDkv+MO//k8cDkeUZcYyHVFrkdTrKA6kokZbN6oZlmQgMLkO0k+moZwecrtzPoqikFLCkAYsKcO6eNl5RBBlsGhX3fzQ2FQpgyBpfhy17HBX82y1kNQNj8VhZ/cxh4E47DrdgUjSi1T+WoOW/c0eh9sJfbdNmXtVN9XBGYkA44VWpY+BnItEg8Mwm8WCBknPLCy4L0SEyMiLpOOWlJQ3BqQ0YLtNiCHieJhQMuP9u7c4HyNqySh59lRhn4YelzxiuPkQjlrNIYyOHsHJj1/pahEzHhifAIhxrystADKHdRtf71D40cN0YbAb5oWfBI1WFp1dDJhF7QyClb1bqmYkzMcJyzwDux2248axhbyDtlbq9r1g3eJz3PR0e1/bBU1NtDIZDI0FMmPTOApmNhyXixibtF5bpZaqDsDrQ/rutZsCGtnJfh5p84oAS2WWUicMifSRaEFaG4F0vMav7Z0HijhLhFIr9rliKRUzE45VsrwKyI1NJtP6unSV9HmWWg9yXMiAp3Oa0bAQoWiWJCzqk6ibVZsQe33bPwAqS907BiSRUN9F9V4qFRTFYVdVbcgAFtO3f+L4aGPTOI4KYsUAFEPAZhi0Q0HEMEhng7SJoETI04LleIR4ddtrmVLQF8u0iVsdKyBQ2996sl9Nj1iS+eTnyXdym26qFbQzgGmuuLtfsLlIqIuMczMmXD4ZMU8BtzcFJVfEBJyfD9jtkrbiBZal4OZmxv5QkQtBiik8TN/70LFWHdpnHrbZX+6KBvmffTh5Ox4yofWfbbOd8tEPsS4bk959dYFFi52M9uQN23eNeXbfOmB+ON7VGE+MNLz6rEHiFRAzTGg/H5lra61rAqCPZmiP0Cu5WyOGMyFbx0fhniqgp8CxReeJl6s3vqzWotu/wqIKuC44Hu5wd32FbTlD2o1gArabHZ4+e4l5fwfMk+S2V2oRWx1NwZ9kq9gBYohRw0LGoeKOVakzr5wNTZQcUkWnU2RsL3f0betrhfjk4+qzJymsAX2ut4/VpVL7AZgPsKEo5tpAgEd1FTFIMFAghh7VmIV5c9DaUYB5X2S6dI4oao53QkoV1m6Z1JNoxSyZCbUIiJpn7YDndScsSkZBNTfjRT//JWfM0wSwdZvp6t/YfOI/eXQAyYCOv+QHlKNHjUS+Ftzo/8Qo9CC0+7E7ODJ4+Hiji9Pnn97bATtRS6NGA2PWscSqv1k9NTktPj5GnaAHfMCUQfTvtqabR95yZfDsjbnsqQgdjzWgcHrbjqmx31miqyoUXNna2k+Yg4M+eK/+NwI6hUCUCZDUyqma6ilNxHScGkoftCC3S4ITQN8+bPQJ431aTNO6gFiUoO0nfw9/c4s4MaygtHrCeAV8dc+BzMOq/vt/8zFuNwCk25/xxWEQED8MCeNmlHeJYiApU8ZyFKUvdlFHVtdnvVW5Z4P6ke1XiVjojSvr69dSWy7t5WgnZ+0TowFflyZvD8eMm9sJ5yHhkkekELDZSJpcyYRlki6Q4xhxPuxwfr4BV8Y8LzgeM+73GdNCqJykHqJF6emetuE0kdXJg14o2zgbQa3ny9+op4e2p9rc/MTxQRD741eu53h91SlueWBgAh783a5pa+wgZnXn/rEdvnAM2N1zNWcEIot2Xt/K8KPxRMNQctqJM6S/CNyyR/mRKcT6dF2dNlbqL1rThckMGyr10+Aavo6wSOe64/4OtzdXiOOI8fwMYGC3O8PTZy8wTwfccUbOC4hZOms7fuojMtYbwh9D1GqsdGMNgbzGVb9EZuAxI05/tMikRssyL23vtqlWfqrK84p+Oh4g/+X1vPjzADESSXqvRMar45uq1+cyoze08QFBahdyX2TV94XIP6mjKTU2rWREIGq8n6HR7wWBpCZm0YY6Ta5pt241+Nn8mV7ADKmvucxgxU/NWQOnsSZn23eNNbQN9BAmGP5vn/wk3/jQsVJ4VtvFv/PIm4++Z/eTjePb3ulkMVrUuES2EHonreEA03dY6yxZh23bf6cNBdwZvOIBZlRZD7K96qMgxcfBwSphwo0rniZOhhE659/JdMgWX8u2HkM9drizWAay/u70fqrbWDYHqTOEIRgqEKOYcd7fCwi1d22cPoNBvXO4cUT512PeLtAmmHPxhNfac6F4zXAoUdNv+xckpy0Zm3W1+5jjo41Nrz77DAAwjgPGcUSMEWe7HVJMODvb4fLiQgQAFVSq+OHb7/HNH/8kxQ95FLMkCMM4AhAQu67H0iZKPHhiYCosgoDRPMsESduRrdQmomq4N1exEz5IgQKaIrvGUJryAry9OuLm+oipVHz+2Q5n5wkvnu3wj//8KX744Yj/8/+4wv1dxlefX+KLT1/g8nLE2TkhpIK37/f4l399h1wiKi4lrzkl9ch03in0+1S2CaPLa1elkyoQClDjiiJ7EaNAW95Jamk0i3dviW4Fzejk2SaoPnCYEQWdXNUoM7B5ralR6vrSFVNro5dn95652s/NjyCOtYGkCfO2F9YCg/2/+u4KMqyLFbiBGCuAHULQ9p4tEsUMCbZxjOXUthhg7X7mLcg7JtoMTEE7RbG/T380xs6gwG19bS10oiyqQFLYCEQZ33/ze7z57i948vwlPj/8BpvtDq9efI6fffUr3F6/w1/+9K847G9x+8M73L2/kucF9nUz74ZEGpgi3ICTvWrQv4pazqlWD6/NpaCAESKw2QxgrhjHhGGIrfMRq1dd6dTSNOW8EZUrlmXWKI+KXDOIAhIN0P4IgHYic0bZ4YYuZd73goA8KSYaDaxa+hoISz3IiRYWjgCKRxBEMYxROtxJi2bx0sVIoJiw2xHGMSPnIoWnKWAzbqStORGWhaRofL5HCAeUnCUNl4t0jkEF16JpdCpQNBokkqQ8zscDbq9/kC4XkEYIOtwOcDUhuBKGjAdF2E1EGb6quq4+j/qzB1A/ZjAikhB97s6Vz+UDj2hB+172QV2dt/LQ9WD5tHJ5d033iXYL1LHruGwfx5iQEjmdQ1M453lGjRGbQQqY2ty5Ys5rOvVxE8BabbuyzShpCcnV28L4UwgSaQJILQlo6jPnglqK4CUKKJCOHwSpX2Nr05T6Xgo0oAHntzJ2BlB0PT0ykyQCCURdG9+1fAG0FlAMCEzYDCMQEkpecDcfATDGGpESITMBSSJxEgIGDiCuCEWi/Xp1vWrEmCglEudtiipCQNgkNTJVoLJEHWqx87xklFpRmFFYUskSacQjMmqu2m3NCMGM4yQgdBGPeRjFeFWZMGsh+L/F8emXnwMgbDYDNhvBUNvtDilFXFxc4MnTJ6i14u7uFvM84f2bt/ju9htwqdhsBiSK4ugbxSiVlM4NQxkAtF1Qa9GaVUG6P0FaFtsOktQahmv7bvjuovgsZ0W/X52n/0xZiYPM6+s397i5OuKzL87w8tNX2OwSXr04w/zrBddXC/7073eYjozf/f0n+PWvX2AYCPv7Iw6HA7756z3+8u0RQMJ4doZhM0qtGptEdhXJaxLZ/jIMJZGNBaUUVO0SVitpQdTW8RA2d9RjIrmjR+Ip7+ijcsznoT7nk1VWhe108V3Brngo8xvtPoxyag7ExyKg3eBEypd07df4oheI/Ry2+evEJ1yidMNs8xUQYLyvG78qNqXI/IcCZDd68Gpt2IwSOpmk1nDDOEa7bTZVLvShCj43LdqeLJJYC8MGj2hr78yApOqQRPxYLbsAoOYF3/zHH/D9X7/B5fOX+PwXf4dxu8UXX/4Mv/jlL3F99Q5/+uO/YX9/h/3NNY53N8KfU2x7Jhqu1bIWpIqjYjrWd7axsM5X0fydygxkqd8YiLDdiCF2P+yl9gtb1JRGNUIi+EyhHYbBM0HmOSuGYtS6iGSSVAlfewXD/sMWmjz/hjXSr+0dwSW692pB0a6uiznKQgI0hW+2iAyN3vQIYDL8GkGRsNudYRwljdZqFo5pQEzSMvSwn0BEmMIi+HyeJZJM+VxR/LQss9LYqJFYmoIHwjIdcX97pdurOkjnNVjvKAONMjqaeXCm6y+stbbgvBgnlNUu6e/SEdLJzZshwPZyi9Kz+/SR1j/p0DvVx1T4Gg8nyB4GGJVIyu9T62g7DAkpSZf243REyRnLsGDJGZUZcRwkDbSj8bW+ZrShxcBhdZzI+aClLa+mjZvWFWLAgAEB0hioVoAqI+TicquwrF3RovVmbDF9ysdj+13/k9T4UxjInb5lGLvJgPBgvntWK1hNU/9CQCHGkBgFEQUZt/MEiS4TOqkUEJPE76ZKSFUM06HWbk+YgY+7ABZq9X2ViHmQAvxRG4vJ2ikwnrNEi5KFTAMepcUVNUvR9xb1Z3IJ0pVuqWLkG7SpC1gimz7i+Ghj0+7sDESEjRa5jTHi/OwcKSVcXl7i6ZMnIAKWOqNyxt3VtTI5E/BCgVa/yQGyrZIt2skGrR3YaTxBazzBJqP69ysg1Nao+2nW1KZEkBlMAExTxqFUPLlfMB8Kxhiw3SQ8P9vhcKyonLHkGeMY8OzZFmdnCXGQMRyPGe+vJjAG7M4JaRjg+ZU2BHvXDu14DnN7y26ca4ayep9O9j7G0taEwN30ts+p++uDakev5Jge0ymv8uyTp3djPGkBcHICw/KU+bGvT657fC745BJef97XLIClBthfth7dvjHD0umK+LON9dj6uIatCvzjxOfGVAXKDxhqfw7Bf7qwM3AvZ7rATgpw9vc30jEKwJPnn4Ir48XLV3j16lMMMeL9u+9AgbC/uvP361MkSdcqkOT52zPsdWwV5R9JdySwgCciTy+wDhVmpLE0jorq4AoKyICWLWQ1CqyNLREk7UMLIDBHnTv3BTiz7PfqQ9mu37MALVPOLIoNDHBW6GodDCgAWby4MUakJEZIQvQ5EvBGSLGqUtLSD2OQEG4QSdM4YtSiHQdXrca5jcUim7jtAwMXtRQs01GEQBQPCLMlETes5K9/qrQYPZyQTq9oPAamTqeyeQNP93jby1bcvX3TFKP2IXka6eNP+3HQZPdbC3wjbAHE3Bnezfju8qeTM6UU7WIFn/PT4yEPgK9f78TrVBr/xHisKacm3ANJ4VRA+anJLCF3Vxwjd9E4Jwp/R74GC+Sny0xV9EhBio7E6wfSKefm1Q2D8h/puGTdF5UDRCnGWg1dkxjaAmtL7GpGz+7uK3nB3r1G1gkayWK1E1Q2qycVZE4ZjaZ6IFIYsBpaPi/kxixiboVMSXkYHt7mv+vYnZ+DiLDdbrDbbcVhd3aGlBKePn2K5y+ey16MAYfDHnfXN6hFjCYDqyGUoArUj1DIIxhqHZkJOL8HHAf1x48Zmoxf+XkqQi3ian/IONwvuLgcUDJATNhuE548HbHM0m1qWQp224RPPrlErQX3+xssy4K7+xl399I9NZ1J50aJDtWB2n8NV+g6GsZaRR+usCB377nmcKfk3qDoQ//yoyjmwQZ6hH/oidz/rnPYItX66/jkR9vvDxTKE/paP7QZq/rPV1EdD4bbrW8/CKhCYsDT7f+NxiS6RBTVPsWtN5gxGj4n1ojlTj51qLW9L8F5TP96jo8649u69ph8z3qBYy9WJayLjgAX3N9eixONCM8/+RwhRjx7/hTPnj0FxYDd629RasXx/h5FU2FiN5VBcdDDNWrRCh6YwIA2JFW+1nix8buozUVMbsnRwhNMd7CagEOKGMdBuuWWIu9ebL61xttJNkgzyOlUrnQFXQfDWDoug0lF8bLgl6yTwMLDiVBN3sWIwNGVWJHBUTtrBaSYECiI4armlYHD0q8AwVFEQR0zStM6Lkv9ql1EBzpZX0pBXsRoJU48I5FGa48bkLt9zB0tfPD7/xyO8dO4/drf2YwIFgm9ct6sxtR+f0zPEzpY84IeyVkUWAiGq3iFl4QfRq2TqOuhaY0e2YQOu65mxpHumkefYKUVTfs7rdiD7qcALsGxDil+IqstS21f2r2pd3i6OGsMx+Y1MFrdIxuAjs2cuoJAHjpA2/kNZ/QO1xCTYPkiOk2EOvWDps9CUiaNvpQg/fmGDW2ehG/RunRDCFrMW97I6AjMsBYCvRQk/2lGbHvWiRtC57etr+KxfkJ/5PhoY9Ovf/UrgCTs20K/x2FAjAFnZ2e4vLxArhlvrw84TAdMy4JiSvvKyERO1LIp4KGdPnkni8a9Mtm+lEmxTEcG+k5gBjzk+na58xbu7tj9zkEUuP1U8fXX9zg7S3j6xRZPPznD8gz41c8vcf98wS9+fokvv3yCUgq++/4e85Lxw7sZFSNAUmNGLLjQorS2aPrPQf4pjGlbIJAUumwOHREuDoZghN3kcPOiNMI/LaTbTe3qcxF467EwJAvfzjXm7ERcoRoJIdTQ9qXPbYvMaYCp3a8Bko4IToAvAR4rYB3cViCoAyjNMMInm8nm75F8dWYfSy0VNdQV8wTQMa7Grs2Y2rk6tbh7cIbpd7A9bgDKxneyrVdA141N7b0aAtD1qoCVlwkxIoFQ8oz3P/wV97dboGbsb29Qa8GTi5c43z0FlYSYdpjnA25v3iIvsyu/0ELHslTUvYPtG25pOhCPDtkAFXhYAnIAkAJht90iXzLmecZ9uUPOBaxRPSlGbLZnYrw+P8fu7AylFOz398g5Y3/Yo+yzr5VO8YkAJGfCK3JygdcLY2nZegrQK6y7XTfhlhrIAVUL+VYDQjG4N7F50wXMAUApDOnJqh7Xbswyb1KAXClWsZwUUJznGYf9ESkBux1rRxpCHKSde+EiHmSKoBq73aDP0L+b0O5FS9tHnsrse67/A6ufj4GA08O42wN+i2ZkWa2HzonsbTq5y8mdT9kk9Xyiu59eHwIDdBK1wr5NPRw8RE3TcUVG18TmQcP47U7MFTkXr3fTYss6j5z9TiSblaFtesUoK14kSQdga49Ws9QVghmAWyrvTwFW46vWgYjAnmefsxTpTiFgiIPTS6s3YHucH+W79ksgQiKghAAOCZUrplox56qg1NbSomVaVOaKd+hzQlS5BGjdAZbGIjpfrNGhlSuyNichljof1dtuK46oBWAZR88zxXhlckNTPWpF1FVbSGoO/K2OX/3yVwAIw5AwjB2GChHnF2c4OzvDPE9Y8oz7/R3meYJFTIipL652ghtgjClyk+9mmMPp+Sey040yfiu5n9Uv9GtdM2v4yQ9yqgGgLWAYuNtnfPv1nTjkdgGfv3iCTdhg/2vG8Vjw6Wc7nJ1F3N9nfP/6Hre3R1zfEGIcQXEQZby0KBrqH6a/yjub6bTxFmsOYzVEjLRbBJFOWYAYRckmwFJAyPGpzaelia7rRXVrcDKfzbzQ+HNTVoDmpGpcI3Tp6JXb+6zXsTFBNwqCUEm7M3W0vOpE+uAXHVFjn/rRqcHWd8uKO1s6R61ar8gwVK2gIJGD/QPNdmnbh0kLhVfjX41bWJ2fxtPRoqHs+Z1862OwDWq7x96GQPB1YSJvBCOwR/dFlHp383zAm+//gvH9FsvxHvvr51hKxvNnn+Ly4jmGOCKmhLwsmPZ3qKUInWraPYfHFPuGU9jH2BRsIhm7dKbNIC4YAqFGwm67QannyMuC/X4Pdn7HGFLC7kwiJDfbLTabLZZlAd3cYVkWTNOE6TjDmpt4p19zKNqqmkw1vn1iuDTFvFaJWiOQ71GGRfcyUIvBXbBiYWkGJb+XrKlyXZqc+XYLV01rJ8xLRtS9DTOymDLEJI6Orgo0EcSJVwqWOeN4kKCA3ZaQUkRMASFJhMeidUJHSqA4gNAZpG2tlB/0TJeUDzp9GGbSqQpd9F2j5J867G4PI2UcSumGOSGB//TR8yQZXe/w4+5VSEtIJH3Ph5gshATJco6aVQM8ilXMmA65HzNLhHOXbdN+ns4fnAeYYbhWHTcFoAZwDRINXUS+O88jrYrx6PjxQIb5CEgMTiGLI7GEipmyNAWIzQkvt9DgBVgk/MksGY2DkQIwMrBUwsJRdBEAIEbgikhFG6WRY9WefQFoxnowIlqWDJUCsbMAKYlzri5Fs6RY6IgVmZrDPajzQ6O/UNmzlExOupETaO9HjFFJo8Bavv308dHGpn/8h39QIRARYtKFEQ6x3W2wO9vhOB3x5uo17o97HOcJuVStoaBpKHYzlnxnbw3uZrwemnaTzD3bdkmtDLC2P9EBWj3biNU/4Y7ZtyX0X2uQVJC7Q8Uf/nSL3Sbg//Fsi5fnFxhqxP7XR0zTgp9/9RxffvEMP7zb43/+22u8frvH3X1C5REhJDeQVZYUIyHebhHVxWpWa0uzM5UFgAOioApEz7jMgxOsc10HqPpz7KelbthcPfzJXiTTxId9yWTfP1RIpNbMOgqjfflgJVdrWWtdeb88JLx/hgpg1jDIvg7Awxd6lH+4Ec5PovW7M0Pe3fOPtfaOvrcRWu+Rs/EXq/zN5nHoDKu6pw2ntwgr9vv2s7M2EjZPluxxY6AyzwwBxRUkjBYafZAScj7ih+/+DKKI++sbvLl4jqfPn+OXv/17bLZbxOEc48Uz3F6/x+39LebjhDFaXRAoCGFRhmt7B+g8kAKPVmOm81ZUBXDMiJA0l7PdGUIcsb+/x/7+Xum2gHlBiBGXF+cYxxFPnj7D5ZOnWJYFNzdX0u2iVhz3e1kvy/XSopvm/Wqr3XOJfieYkVQ9cdbSVue7ckWVksSwtCagoBmOdNsQEBcpMCpKjBW+HPx3kKxLXioKQQv/qhKcJMFKDJtWL6ZFejJLQcb5OOGeCJsNYbsVaRlSQBojWDtwWMdDUsGQggGJZiJsBlduZELtXajjHfbhYxF3DTR9GOl8CATxY3iiG4S1Q3YK5Q8/o7+PC78H37fCyG6g7viW8bgQImKSMH4xSll6Zm/A7Dw41kJMFTHOlsDRaQ6sPMyMzR7xo2/HokxGquI6K4SaGZyrVMyvBURVFc6ubhytva0i5+C0t14HkjQR9fTlJWOuBWNKOBsGaeLBaKmmdU2/dg+bZDstyYRiCQEcImolzEXCrlOo2AxVujOxwCCCFjNfgWf2tZCgP90HGrkoDUYI1nWIAeSlgmdNf41BjU2yVjLu6kWzXWEzHqryEVCjRZXU5IHF/Fm69/tbHH//23+QX8wADWhCMGPcjtidbXFPwDwfcXt3jUkLigdIR8tI1i7ZsA+73AimFHXGNqBhop5eXMazeWvlMEMgur0AQDlJe97a2NQRtj646L+b+wV//sMNznYJv/nHp/jqk0s8PZ+RUsS8VHz66hyXlwn7wwFf//UW37++A9MlQnoi0WxVohGYDIO0zoUOoagpJT42HbN5dNu+0O+UNzjfDarDmrIDA/rrKBUzXPS01xQMm9tu7tTgavy2zX0/b2JrXhvE4Bi2Q2J+/za+lu4IlV1QGqxOy4ar8MjRyUvuP+tq3mCtLpt8ARjEkq5RDc9XRq5FsFOBFKrtFHHzQ/l7sfIELdLfO0oJLaLCJo/wGL+zK3VsDJgh2rqD2ns15U3OLpVBZqBz7CN7bJ7u8e1f/oAQBENdPnmFyydP8MUvfolhHJCGDWgz4nB3g8Nhj3k5YhxGJIuYIXLZYNG3/R6obPtDmLGk1IiM4Cr1o1ALhghgCDg/3yKkiMNhj+PxHqUUiHESGMeEZ8+eYhw32J2dYbvbYZomMAjH44RaGcfjBDD5HDh2OsHsXaCpr7ftO1uzSmqi8HWxPWdYOEMiXwh9MyLA6gHJmgbVYQik6URBO43afqmquySkqBkiFDQaThyAYhQPLTxejU3zcRaMfC5RYSklpJQQU9TIkkXqPgVGSDYH3GEQGTuDWtah7zly2nZeS+07q8PYy+efjqHtnYPtM3mnxuP6chH+melNqzF217dP9b998YVH8JaJEq2XdzoqOQJCHMTgQVIo33Q5p1v2U2WfaddfyYoJUFPL+m1d3+ygojLGENUDpboPkWRM1UJAAULWFMzIvmYSNPmI4wXGW9lxm/HeACkzQKV6PdfKjBQDxkE6xXZsUmjK5KbPP/k6EDEiGIOUvEStAYWDOJxLRaWKgRlbsDp1msPDNliTvaylN7SUir2HduINm4SQBlSumEtBqYxYKjhXBG1mZM5vDvr+apSCGnlJjA7+Hib3gjLwQEBSsXdk/r95+9MlSZJcPRT8oGpmvsSSmZWVtXX32Q85pIxcyn3/VxiRGZkhOWTzHPZWXVtm5RKLu9uiivsDgCrU3CMrm/ewrTsrItzN1HSBAh+gWDCdU9DF65ONTZbszZQ8WfI6scVVcVkwz7Nmna8AoLrNOsW0CFQUIuOCcM83ps8HwrkyP9s0l5WP2pQXVJc2aB2UKILznBAIGE8LxsOMnBjX1xtsth1iRxinGadxxnFMOJ0SliUA1MEUPOlVZfAo/RUCZEYN24HpJcb0lOvbxn9C0TM959K3PsSkBRwX5rZZizpfnmkVcOXm0G+wc1f8KrjYK0Yr0KutNc9746AIxCcYo3+fW+vyqLbdtOvDUuyBwtTqszCQ7kCDjbN4eZW5qIy/6mryoc1eCzoJPqn2Ok+VMUHXm7rOXHldgO0FlPLinFnBSMY4HkFBTtIPDw+SxyJn9P0Gw2aL3f5aG1vAeUGBt2vF8+KlY1DwQuxWqKwtlwpcVrWEXBWQEKSiSd/3JRFmCJZfJ0uFphAcHZnwvtAbx5ibkwdbRa6AlRp6q4ZEKmCLYIFMhcZZDFOUJfwpaG6nkgOODFxZH9TV1vJwgcEhlDUooYxBKqbt9ztNlBklrpoNnLk5M0JrKIN1LS5NCnvyUVntbrzwjBk3qE6G0qvNcUv7Z69EmTY3n67Dq3dWYFJ5VbldgcCZAayyDbeO9jKPAM9BnIyteh9mTXid1/vaeA/VdsxjqXqLmjeB7zc1P+x3GUNlAszchpUyw+T8GTRdWxDWv6/nFAKaxMGOxZDujAvBg8HVnLvBr/7mwuNAKEltLZWd4+QwoEQ2zgv8xAMo4zmFXEkngpJ6T0pJa5lxLglASem+KqqXCZMUiBCzeoIIjq4l6f/3X+VAxqwKqEYO83hkZszLgmmasKjLqmGBKne0/15eGt3rzwLYz2TySobB7aUnNrXJVXbPN+M6mz9Zh5wZp1G8HOYpI89ikLy52kgYATEeHk44HCZMU8ayABSB0LkVKfTQjsHv6WKksd+NZxShrA21XVxhQz/g+sPo9+NysPar7aOXMbbnfcso/fc4yfirx7f6aSvbLq2Xw2Puo6YP7WjPx8Xrr113rSfEVOTEWfPu90qXxuIqzizjK2tm/9y6Ud0bRY6RnzsP+qqMMPneyqsqJ8+xavu3HCTKoc54OqKLD+i6iNPhESlJov/NsEXezNju9gWjZ79WZQhP0w65//ioBZslM+5ZVW7DSOWwmakYU/q+c/mQ9LMu6TP+sJnb92sfba0q5nfhh0V/qIhD8HHlW9Z2Q/drDAvWcEEdGZtVQA8O4HLXQhVfJBTjIwKg+NbyUUmepIh+6LHbbjW/plaVtaIQgVxVyoL4ZKadngXfXZuHCwdgLQ0+sbhlhm1ujC+dr8PTz65/Kw2d9afKWN8/o31qPvuozOMCfWDc/exutzcBMTRZNbtzL+kV3yHHn63DOi6Gw3v+O2tFmYSdv9vhttcLJEqjeoWzeyccDV8c+AonBuPFOYu34iXe+NTfvklHX4UnOJnKBfA5eqO6BrbfYM9ixU/NQlunuGIo5xSQmWVM5OSEroUd5FQv3Aty0bBq1pN/wi/Qf70+2dh0Op10kqKeBtcKKZ1Zi+cZ9/f3eP/2HQ6PB1GmMrAsi1i/ZNXKAO1fpnqq7R2iCepJ5RJds/00N2+/gsr4UIiVG/Bpgq2cULlTdZtWcyNjZhzGhHnJ+P7PHxDyhP2LLX7zT6/Qbzv88O07/Nff/gnv38948/qIu7sEaAJaU/qzVTkiqqCOGIHDKsZV4io747te0SQURbPKX5sv5TtOsMEIkP2JyiUw6P+uClYRGo4RkwGg7I1lldCLMCrNVzDUeBU4pmLfewZ5ebe2bWrncC4dmi9Xzzkndh1LKVjkNmcMEegszKWlryZuXIUclZh/UV4t2WSMGtrkaCm5/DTlRFWVAs5c489tblJ1ZfdeY6zCih0QkTAC1ASaRXkF7u/e4v7uHT68f433739G32/x2Rdf4vlnrzA8H7D55w3mecRPP/wJr3/8Vjxm8gJwRqSILnRl3jzDA1QpJkLkgKyeCrTYaUUu4S19X0+UNputfJtmpDRi6DvcXF9hu9tpYksxeG02A7ouYjztMV6dsKSEcZQyvyHEhq7XP9fAx34vYImNvlEEVfP9JTrST7J6elUAx0hpKYw/rVyDSb0YCNDk4uKRYYmxYwC6vsPzF7f4x3/4RwzDgNc/vcbbd++RcxZD3NCjs/dZOW+lDhEewNrdm8E1Hw+hhhYYLCbPA+qer0K+ECvKUSP8Pr18FfwAi+e+YCKuklUTy6IoE3YyePYexytlz2QFueKqZMkmDWDAgQ0bq2c/GbJ/mVmS0aeAaeokN6ahAJOkIajdUXOMKeAX/lH3tVcYW+URZUxZQXVmxjzPmKYRyzyLKzMzuiAneEvOmM2LSvc9uMqAumryG7OCdPUS6jQZLOcs1eNAUlIaQB9iCS8zQ4J5YzJXIG8HTHJlAAlECSEyIgFTkpLAAUHWgzQBCVDAi8yBhdNLXjZb/bRI3o2kRQPEa1r3dYxgEHJiJJJE43nJGv6WsURJnh66iCFEBE6ICcXIUT1kq0whVr56miRJ+tCj7/96CcJPpxNgChRZvjfN37XIv3EacX9/j3fvPyAdZ0CVekvAakYnIgPVKz7oBZr+sJyUwt6EXlu5fHZ0X3mDCkkfwiRbQsMYHZu0k+0QJUdLYsa7uxMeD4SXPw242kXsrnv83d88R+gDfvvbN/gv//U7PDwkPDwAmXeI6GWvui61ylPtlkn1QJpsGCW3LfzBcJWTLml0Mzw9VApUqKWprnU2h65vqDIeaDHN2vjUXitcCuNPghk1S2GBzN7YUo1tKHJeO1N+XEZRdoPjIg5/VfvAugXHVxssoFnlDKvC6KIaJwpOZPFUSZqrxAzGBDltB0j1CT3MttBznV9iQl7VPSKSZ4t3mQNsNt9S6MXyYhkuF68bjyGk4IN62RDBElUDwIf3b3D/4QPevt0JhhoG3L78DC9fvMJ0fYvtdo95OuHtzz/h7ZufhJeZ/kKh4YPF+FaWQcI9OTM46pGqFa+BVGADEvq+A7oeKS3o+076R4wcgGEz4Opqj812A2ZgmScwZ+z3e2w2Gywp4XQ6qQFNxmo5nirdoZkPW2Qum6keyBnuAM7p8nycKresWQCkYasUozhQcMVQFvHCjkwlt9aktNKBKBRjIBFwdT1gu93i9voWv/ryV+hihx/fvsPbDx8wDKkY3mKpdqyHRZGLPklEUnmVKu2zo6f1Tijb4RJOdOOtn6kkv6CP/aLRqRhJPv6MlwPn+I5K1Jp9l7PHLueFC4RhAjLqWvRE1pDLITADIp9ywDQskm5CD2AZqAfpJWpA2i0OLGf7A5WmoPMJKsm0zWEl54x5WjCNM/KSS9L6PhIoEjhlJM4lzA3249J0F9rVnHQspWIIhCUzliWDwMi5k5BB1APQ6nxDMJOCeZyKXIoKedV7CJbQP2NJUlQpxAAOhs3NRkE11NW1BxLPcc4sla1RPWFDDiAWs07s1AsLC/Kcyz4DA0uUfHEA0MeIIXYAJSDPKLpvMzWqI+UMLAw+sqzh0KH7RAz1ycampExb3E4FiELL9+aU9aQ+YRonHI9HzPNchFdWS7Q3NpmHFLt8QhY24PUccgSYHZEVY5OBBweyygmyY+rMjm24v8ukOsWUSBcySYW3h7sT3vUJcRvx7Pkeu2cbfPfnd3jz8z3u7hccDgvGMaPbAH1nHg8ML5h1O0GgDzcEb5u/uPxnE7COOa2Yl0eDZzDGjD+OebQMThUzN23r5024mJi59J56r2N+2mgBbTnV8TOVfl9msA4of4T/mkHRDc7Qz0efbZRB/aV2o3osgMjNoQdMSn8F8Nf1MVDhy4Q2Y1pftqRVlq/mpZ48W1x7I7Hd+sgUEMzg4GXMPB2Q0oLj6YDHwwl9v8Hu6gafv+rRdT36zQY5Lbi7fy+RPYAmhs1NBTFe/azz7lyjDcCV+ZY+xhAQQ6+uzBFp6QroDyFgGAZshk1DO516QVmOOIAwUYKFFJoB7uLUuvWzftge4wKgHO2CG9qQ9i8vm31fs6MaTxK+JIrzWYcEzESpqlcNJwKwQyBst1u8fPkZtpsN7u/unbAK5aROcJAZs0NRctbmnMZo1Hakfq7E19zFOAvZWj9fh/SEZ2g77FqmFagC3ZR//Y9yo9LuZQM5NK+SPhcI5HKAwNbU1o4ruyHYlNexhxzApJVLtKxiShlLyiU5I9UHG/5LzjAjyladQLH3VN7v58s3xCz54ZJW/1A0gqh8JDc8n+r2/9iUsxrfoNVeWcSggARNoJpDDee1V1Ddi2Zssj7auMSXX7xRAoknWJFvxkd9jWGduzV9URTQWnK8cFbDOgM5qCeOgizd41kGASjvzSSKqmBWURLEGJAvKABKayaTtJITkyg7sYu/MKn/dteySL43ZALISnzbKbwURUgpYRwnHI8n0FxDYjMzeLEMU7pv9dBP8uFyiyu80Y9dZg4nx/zeuXQghUZLbOeo8tiyNPp5xTOcGKdxwTIDh8cZx/sJm03Es9sdhl3Esiz44Yf3OJ0I0zQA3AEagupxYMFxDTW12MaMTV4eFlmkjXn81whJMNidJstwi+Av+NIb3H6J9/2y18JTz1WeVlDYkxitvWwveyy7+rYyXbgFa9qy72SSquLssYfDUra/SKhSPG5KL2F5VK3PRqf2P8/vLYcP2+sajAdc2qZrw6Efamv4qw1wQ9btOjv0AvWhxGk8IC9Adzxgmib0wwa762tst3v0wwAKhHmZcf94r1Wac0EI5PZQy09N3ll/WsXb8J3JhRAJPXWaLNwO4CWEKXax4KR5XlTXqpXpzGscoDPebmt7Ri9ksQS0IhcqRVX8elwysFrfvYwkGM1U/CB6gqawYAnJLDcTIOq/GIQSySGD4XDxgg/YbHrs9zu8eP4MXRzw7v4RKYmeGKj1Dl9jDH8Y7mefdAwMXJgffPQ6357nh26XMdRqL7Lb18DH931pt/Lg9n1P9dXkeH2/qVTFoLLivkX3CeLZX4zIKSHlWHSXFh9Zb1uj29oYa55mxYjs5st79ViOXcNQpP2MmlxvCSQ5MVthYqN+YjIqfYZC+1lz+eohjVWDo3ZWvJ5ex2KyC7qWVS5TIClMZGOubOFsvLamQLUTcF6qAw7qe0nlsuTcYuRAJTxWChNJiHOGFaqRbJAcWKvs1bQtjPO9bfohEwFdQPjEir6fbGxyU1CFt3NLzAqe53nGPImlMZDlftG4dFTAUDY1WxlpBQvGdKFM2CEZrlIIZnBgu4/8ZrKFY1heDTuzKpPHDF+GlrRePYVY+piJgADETY9hv0E/9NKfRcq1d0OQcr8dgCigLwYqHi52SlIU6+g+1++6KKXVA+mpnA6x5gr4yKZgx3y4Mm27gnrYGMA8a2L1URVu9a3c3nD2rPWhGGZsiRrQoj8bhvhxZXX9/Zkwu4jAKviRHlSFsH7vx0KrD+u716cDMcZCb94QULxs9H9BY/5NWFvzRnceuF1YEQfmHFCCMd/q91ecmKDTasqGNlOYW4x6YhhBlJHzhLt3r/F9IAzbLW4/e4mu7/D5q6/Q9RHj6YA3P32H8XQEUsK8JDWKCO1mOBo7W4MVGGf1kAoE0iopm+0OCAHzcsQ0n0BEWBYpWbvd7bDd7JBywvF0Apal5DmzvVBKV6vyeEmCXgQ+bm3tp59jn0S/WY8nrmJAByShn3alGAbdnLROR1WwMEn8dtDqET0BfQzYqDv4ZuiFjlZ7vRgjWDypmAg5AMFc0svY9E+fqNXApQHB1Z4soy5bV56pDqIejK/n1rdjc9IK0UszeonLeWNh7ZMNiMr+reDDQh5NHjhjekVORQ6gCG8zIOeSUwSop5ysPKXKngoYfLvNfJfx15x0lS+rATFEdDGgjxGzhgaAWRJchoDAVb5ZvwiaqLxFfRdxL0E9PligAGXJI4a0IG4IFDuAGYse3BRDOyqdGdi2SSVI7qZt32HJjHlOSJQRScZjxnbzuCmx/tauW2fJ1xEl15CuATGARSoLUBSwlEMAYoRYFnMR9oUvWB9VUWkOaMAl3L4Ytvwc5YyQ8kd2+b/95emaQKUiFjMEO80z0pKRE4Myax4sFC8L8SBp90VWBbcYdm2/FoDJuEQkRdG+1E8nS86fMxlY/zb8JezCOkFiXIxAt+kw7Ad0mw7IDF4YMUqVugyADqIYUJCQIe/NHUg+AwGhuO5TydnUBy2mgnoEkEn4qw/ZrmywMNSqZFE1vlmumPWesPBLX436olH8ItYynHl5vuu8r6f9CQzom+HVxxewVeMxUDxn3MMu/NvjKDKsfamT7n2kd5bPlRcILZJiESsKoP8zzyaKuhecEcAroPaTffsovH59Gb2bbkFE5adfh0aZK+8yAyUXoRe7AEvZl/OEZcl4/+41EIF+GLC/vsFuu8GrL75BNwyYxxM+/Pwa03gCs3huGj8u0kMG5ebW/6w81wqXdF0HdAM20wbb7UbySk0nzFqoIisuGoYe2+1WiqwcRyyz5HayKSU0jsq6d9eyy+aCVVRWWgBxUcLZk5Fb9+bAdE0w2pKtjWEoW9MAKpu42n9NxjGIc2E04t1M8lOTHPedGN02w4Ch36DrekiqA98NKvRphyuBvGcTsJaqRcepFPKRywGes+HX7z7JIP3E9v+Uy9bWfj9r2u2Bur+48EKrFChk4GOOauese5JewhmKQW2/y+8B1XPvaT5p/Su6etF/NB9bqAe1kXyYmXgyBSb1TNUDwDUXIxWSRXapnCg0pxiFReYQWHMILpiRMXS9eslpXsHMgttCbaBQraU5ITHOdSBsKCDljDktWHKq3rmWD9bnrIM5o1S5BRZ8FHudI8vdxwwsCRwIoQvqbZ6xqB7CljPL3mFzrkCz5Y+GH6rOVUJcbZhZkql/yvUXGJuo+QEyoCQfpJywpIR5nDEeR6Q5IVIUoJdlQGZQKaCEWJmxNMlaycFeQ6RKUXYsiwALK7g0xmY7eEVJHybOgLrtZ14giUWlvK6xNQq6+XRx+m2P3e0ew26QxKtzQiRGvw3oxyDF56KcPlipXku+Z0REIWhMdbT9DCJC3wV05noMZc+6EaoYdLugGZ7MrVVVMaFqgtXCd7LNxdlM1TaL8F4JiIsMkesv5o7v+LQKpRVDdoL9Uy87UfT9eJpB09kY2dNBJdz2KT6bXWU0esLqwGpEJywyVwWleP/oB4HUqAh1CbY+l/63wt0eJhgfqeO03w38MuoQOQRYaE4IaEKLZFzS6dh34qLJLJZwXvDmpz/h3evv8ezFS1xdX2O32+FXv/47/P0//3t8eP8W//n/+//Cu7evMT0+Yjw+iCDeDAL4U2qSl5Y5WzFr8YRQY1NH6Dc9Utrg6voK3dRjHg8YTwcQEaZpBlHAzc0Nnj271ZxvC8YsBmsJRbNJNoOTCD9yFcfOaaTt30WNCy1Aeuo0dN2eKFvaB5dPoAutld+Asv9d9q3smRwhDiNg9JGwiQH77YDrqz367RYIQbzNCrLmMifLPGNeZkmaHOmsWo8JFQNIxdBvxGa04hJZ135zGa4pFE8ppm4my896arWC00/sXz/Ta0NTO6gykxXUwJ0OFXMRVeObguOSQHc1HOOXiRlJv4whqvwVg0UJxbG5QG0SjBVfMkFd+5bVe4kooIsRiBl97MBdh9EqiWVGyBlIyg+0r0nnzdKY+wkjqieD/ivz1+koIKmyN40LZiL0MYI2QvPLsiAtqXgVNIZ2Wy814oAlzG8feyRmTNOCZcno1HgWSU4Vy/OW/FWV9sziMi5YICDEIEaUBShG5DmJLN0A0JBC6iKQCJy4rGUpZsCs1fxyObULQUtm54yU5jL/vnAImCQB6PLXrEdn70YROiFExBCQ84J5XDCNE+Z5wTJnRK6GpcQZjCxV6Sg6cadjUgVbjzzkFUofmaunZjG81M12xhYNA7huyn+LPPbebybTCNFCIMuDYmwKPWHYD9jdbDBseyADec7oY8T+ekAmRugALNCCCoqhnPer5aKJxatD+iHGpgCrfxIUtyWthlYMF2XcZmDi5l8ZC1SpUTDvjU1mMLYqa5+KZ9aHZk89JzjhEp9dyzFbJfsQZZ+5G5/ETkWphHuVYqR2Prgy5lXTDXbUfnnMbji69osKMbFWZyo8rJz+U8GOFua7pNQoO3U+CM0EuCvr+vn1LfzMDbpWQ+PyWVl7UsdBMmNTFK8bPmGZCK9//BY/v32NZ89f4t/9h/8D11fPcHVzi2/+9u9w/+Ed/vt/+X9jeZeQ5wlpngVDdQNCCBoqZklnDBtUTFV/y2AkMDL6oUO/2YFTxtX+SmQHL1iWSZpRPLLd7nC1v8I4TpjGCQtL2I4kZm6mqQzbDb8YmS4f1BnOq/PNudK04dzyOwFUDPxs/4fFuNbk9oaj7ZBCMFQR3yZfGZDCLbofUwY4IKcFOfUgAJtNj82wwXazw25zhaHfVp7kyEXKw8t6z/MiObFK4au6v9fz0BqcntJFKj8xIj/f8Wcm3PP5Lp31sGmFM87eqr8zn63txXeYbG4KDYgHMyMUqMWlL9Q8a+8onk2EikNt3l3HqBQfcEWPwKv9XflcMXUzFDOLUTEGKRQSSf5lQA8DMkKS9VlY05OQeMflWnOy9o9sDs5mBh0EU8+23gzM04IcBeeEfkBOGcu8YFmSVjzsCh80fJo1DJpICqD0neC4JWec0gRKKiejjIUsSI9C2Rem2wvdS1qB0EXJ78oZmGaRTzmDlxkIAaHfgmLEHJJEkGWzaWSxtah9AEmxU7bIkcobc8pyIMlc+LAsmfJQ1sThT+hW/vpf8Gxq1qNsPgujSymX5LbAejs4Ivo0Oa0AoCoWBRCUG2zb2vbX93pBaT3xQrJoCm4wtr0ZxUDURcKw6TBse8QYMB4tv4aUIx1HwjAEdH2WfBOwcz0FSmQnNhLa4PNgEFlcaO29n1dzhysDXU/Mam796RU1G57PH10BmMLL6w0NQCt/llfweZf02fLuAt6eXu9POvHjc8bcMKaPMn6DJpc2hH3WgsF1y2bosbXNBlD8Re3PiuW5/s0AnKHpgk3ko2M4v8+Nqcz1E3l37G9lVpkTpmnE6XRANwwIfQRhhy722O2uMF2NCBlI0wxSRnmpm5VunFA1fK9MPGooWNd16IcBDPEUs5O+orHYRZXRCvmujXMyYC/ym51MPrfGJ0wuzumv7hFPH61oL3paKV/MWPfG5sNRGC79auGEwzCg63qdn1hoznCptOe4qipXBZDRmuNeuM4UzAoiWDvb8FKyJKCXYVPT0qV9vObDtWVHNWse9Ql8AXaarhx0ZcStfEc/X7XlZRGzeaupN2w85xbkb0blbWe9WrHcBrR6Qww5E6CBrSx01IB6Flr3bNmGc8bRHP81iRZs/bKe9FmeMt9hoO2jvaMA0DrjUT2WyymcVz6azuBSB+U9ejhiVcEcrCzP+hLmrLGNAh6pDp5dm7Yg5b3OsOD7Zu0+tYD/uy8qFFv4pNjMtMpkduMBOXryfN0GINelqZbPDSiv97znF6t9A5srz9kd/eMSjaMoH/ZoJEK36dAPAV0f5aQVwOm0wEqfX19tkDmj7xaMgaHOMIX+LWE+kcvN1Cg8q31AXA+QKqRb8RE/ugtzorzfkqs3hxFutj/mmfAUXrmkwNaxuBN6P5Fo9/VTb2lowPa3N6StAccaGl7oVzVItLhuDTHWz9RB+fFB+V8N+1jLhkvXuZfWqhMFC38cB15s255y2PlsL5lSWiZMcp8kJszTiPEk6QniRkLauq7HdnuFeT9hPh0xWWlxW9/a8EUc7aE7Kc13MaLvulJMRXJX+jQH58q694xYLXShcVnfFkWRMSibIMcH/H/XM13G6GiFTd6z8CuFoPLdak+IbcLJdMfHDWcZNqlcysK5JI9m3w/oh0GUfnUiIP+EPlY9eqrIaEb0BOzwhrX1dqxeYTq3bt4rnvLICs26OHF/1oFzGORktOMb9jZvaGqN3V4P9qlj1sIBYCdiGjr1+hA1jwiGyrKKNQzN3VEGWb/4qAgm30DrgVcM3HVwtZ+5TckjHzEqNbjmV5foUPq9/VO68SkSPNsyu9olZbestvIQAjTs29kHtJNM3D5pzXkd3PctECibEGwISOwHbPtZFpPJ9dvaYzP2nc9FufuCDl7epYflv3T9Bcam+lL7MwS1rOWM03TEaTqKa+c4ySmVIgdzD5NJto4Zo/HAQpRMYyJm20c5SbKofK6D18mTajsoC1nBB8p72E66zFgQALCdnkWVKXJ+vN0EXN902G4Dvv7VLX71m2eYxhm/+2+vkZaE6+dX+A//8Df4+d0B7+/+hM32gPkUMJ9kYeOgCnYM6DW3VR8siTSXSp0xcClEmZUTapErGQtLln9TmvROYWXEdayOgdtmIZii4bZrw3i4+WmhBudLfsaKWw5R5DxLSA8LUGPXn+Jt5Zibt2ZfUljOk9ZdtuSvVIk1O2l+PXveVesyRhlIPE5q0U9PmxDrseYRKSWGi0CrSaLNy0yYkCl8AMwVeNVHPz+Npd+DlJXSUNr0M6J7zt5RQnhMyKjbw/H0gP/5L/8NfT/gs1df4eWrLxFiwD/83b8HBcJPP36PH374FvN4wuHDz5jHo7whRpCuaTYBoK8OROgC0HcB202HnCN2ux2G3R59NwBxg2macHq8w+PdO3TFoyIgLQmn0wRmRt9tEKhDCB+wLElO0klPwEhd0y0xOgVxKS2J2V0+I0UT4tmQyzSdez+1a9AyX1J8tj7x01PAkmMgFBpZl30nRyPq/F15Yxewvdrh1ddf4fr6Bm/vRrx+c0IXe3SB0AXZ8ylnDRepwkX2mvw0J+NLRogyUubaE+Onha9WwVj5CKkAJHAwMFj5dp251R5mP69uHsivjwp2LlFk8Pu4tOPBfuHnsieZNKeV3pvUc6aMh1H3KFlRBme40X1NBIzThJQSNpsBfdcpmFFeSvXENSdLYsolTKsMzoagtEoWnqnAVpJgR4QEMSayJB9PaUFOEm5BC4AY0HcdzKcq2czbVr4g2yvfrDPe6YeJgTElZGQsqcfCCcRq9A1RaNgZbJgqKGbmAjztJJSYsYkdUi8nlMsi6Xv7wMhB8kKZ4aCuRetpEGJEzgQKCZwNhkkfaMkgTnJy1kVwFg/IjAyiWLxH8yx5tmgRrzBiIHEqnodW4YiBM88/MEvY3l/potUfROrJEwPGKeFwOuJ4OknC+CUBFCsQjZ3cD9LkopUGGlZzcfPXAwgv64tczxYiwWXvmKG/7l6uOdM4aOLSKj4jkXgkARLDloH99YCvvr7Cbhfx4tUecR9xnDL+5X98QEoZ25sd/s//9A948/aI++MP4LdHBeCCk/ogp72CoYQvd1ENdG6QgRQzFdwoez3oWXYkNVh5/s3V0Gu5WtqDphU2lRgqRV8tn/QTfsmQxO5z769eNSGHXVjzTbiwtqzVhCxs0NqsbUt/iiOIMzQ1725FnRpzVw2i5eMfu8pdzGAWvlu8kM6UD5U7OnDyfSz9srlkTYoOV5SmHYOw1Dr35P5Tw7wuKEjNHFDzUTs4cnLKJ1fWBOYEgBccHj7gf/72P6PvN3j+8iWev3wJIsI//N2/A8B48/pHvP7xeyzLhNPjA+Z5LvJEWF0oCjLBlHSJAOljwHbowMy4vtphe3WNLkbM04RxHDFNR5wO9+LHyDJX87TgSCNSSmL02gTEcIe0CH4gYsQAkBZwIZCCBknlEUItbkNEWnE0FVkNDQkyrlrXpsX2skYtVvIz7b9q9BBW87jhC+NtpW3lSRlCc2D0Q8Tuaovr5zf47MuvsN3u8eef7gF6B0JUfYvBLLJC5E9AjFS8NrIrfvRLl8c2FtlDDT0pj9W2haJ1X+dfesmlvUerX40/U/G8lvda31jy/tojtGqjfF7zNFpovziOWGuO+yuPaRmkpnRgy3MLnMYJS8oY+h77jXmVZbTMR8PaXToO42MXOllkDbOisYLZFuGTmZCXLMmyOclnAYDm8wJE3s0gRGb0oAY/Ca6n+hebDNFqsCxe5aypA0CMoR+QFGhZwZhGxrrhVmeFis+DGkiHGDF3UphmSRk5iddWVJoPqy3E4CJzzZgaHBa3+yhzwVAEBnVBwgCRkJMmxNce55yxzFLMiYr3LosHVAXmMg5q+4OUgfnTvMP/Ys8mz/htwjKz5F1ZZqRlQV4SiAlksdghWHEJNbIoqEQdRHF3hvvegBGxSzTbKnx1E7CGO2hcv9WPLpe26d5DJr0J1eVXQUjXRdxc99jtOzx7tsWz5zu8/znh7Q8POB4n/PPNDb58+QIhdHh222OcAx4zYTpWRSjGIO6ZmsepIyGieqKJApLKbFTdqt6jQKmAKfZz5zFLVa4b6+xF5o/mswrTPrb2vP6g/dNm2Qn5tUHL+uMVD/t+rayW+NDyqExOS+9tHxz+aHu2eq6QoJED2ym4A5J6Y/mf9q+4nRLQ+ibbSclqzG4czWeFSVj/vICgAtpakEj1d+U6Hnjad81+KtqnO4kgxjSPOL7+AWZs6OOAq5sbfPXVr7C7ugIj4DCecDo84PjwXio7FLBFJWylmWYIX4ghoO8icmYMfYdNPyCEDonEu2kzDMJUnXdE1uoKQK32JpVHqhJUqmhp/LbQTctHrIKD0JfFMlfX+rLRPnJ5F+FK2AXyunEbnxKhyuqVwiQG7UrTtQH/iZVf74ce17e3uLm5xWZ7hRA2YpggqjyCtbabub/q0jJruKZvl9pT01WxOlhgHZp/1mY1IJpwIwPdEMN3dO+y+XpiIuvL2d1bZXuzh02+eA8AsnZWG9gAu3jBmVH13HhQt5wP963A2PpuVdhilOohTTU/N0Y2bszekFX7ZfdXpY4KiVAIkhcwZJi7tCgKWr1xQQkfiFotZwE0caMbDGrYtbS9RgGAKNQq5FURzCxKR7JqcxZOAA1LQCX39drAFG89EOqC5JyyEPqks58hB00CsD0I8q2ZEl/5XjmBg4AlqMt8CEGrVwFJ5aG4m0MUjpSL/AfQ0j2cPPI0pTzfQhb/GtfZHnGgkzljVgyVU9KwOJbcVYonKFChw0t99kYYal8DNHusAmpPT1V2cbMu1kbhh4qXivzUPsWSuFTuG/qIF5/tsL/qsbseEPqA+bjg9esj5inhH59d4de/eoluuMfV1WvcP6g4zaHQhsiIGjYZhf2VXpV8Mu7QyHao7HVesQ4HnlnbeIIAjGYaJZpreIqfzyeePpfN7CbtTA5VoiUDggXToZH11pTXa1ovarfGaPtbBQX9khhEw7jRyq52uOxyfkjHKovnlufD6HStZKpwZPdd0/+2L42ssD75dyimauZntTGeMjCYUusxXcUWdXXn6YQ3P30POyTfDFvs9nu8/PIrbLZbMBMeHh8xnk44HY/IPBWPBnjc6fZt0R8CoY/iDbgZBmw3G+Scsd3vS1oOMmmkhJC0Kjhzra5s1dtYK2GRMnfOGSALLZI1MSxm4TtMEtbNYKugXkBRi73LCjTzXzEaYJhMvqt8yH9eZpYt1638brytilmjDkbsAvqhw2a7xdXNLbbbK/SbLcw6S4qVmetBsK2XeTe1OPpyXqa1DnPpd39v5bP18F8MW1Usts8+LYma+8gwlBnL0RCy0Gutds5cMc8a+9gVKICDOBuUPaO4rZWQOlFKJ+zaYQbmOSFnCZPHVvdL9jtZ31/YhK237c21tILKx/VeJaFdJrP+I6ek44ayEglbM7xWjlS8DkA2Z2tO7RwhIHp6ZsacxcC55FzaC4FQTf02RTXuwlhXoQE12jBIwzcjoJFh8nhGVlmf3Tr67jmttK6PySmb7qyjZpT8RZzkLKjkx1bclLQacuAaZ8DJbQqPZf3qZAaWmnftY9cnG5vMZVMSDctpcowduthhWWZM84hpEot6Zs0tUGK2m/42V51Iz6xaK7M3IHjPg0qbVDYUATVEoWDX6trJmoDViI0gG6NTBS7o/66uBrz68gb7vZQZffP6Hu/fHvDuw4zxuODd2xHPXh8xTgmvXt5it9/gx+8z5qOcHnRBFDI7VfPu4AQzuqEQoWELoKTtEtdQQMtB22xUhakwDmWmhRmrULRS2E8pgudA6CngVG/66Pcl4ZoxjOJE2yh1T162WWDA7ownuPc9bRprvaUcM0Nl0MJ4qSagVwZxBuBUyIo7YrZX1y6v4Jd5v4h9I6kCTOX74tZch9s8vx7DU5coVMrMyq3i8RZyQNISyggSd1xf68IQCMXIejo84N3PP+B4uEPsAra7PY7jEddXz9B3A+bxiM3uCuPpiOPhseStKvRGwsECySxFAroYkIOcpIXA6ELEVb/FZkm4ub3F7e0tCIRpPGGZJK+BrZPleRuPR1HCOaMLhGyu0bZpeAFnKbW6KGMOIdaTd9sVIYpAVaVbQO6Fcq+rS+aNCnuickjDsPjm4tlUACrAHMr+tDU3445VXKFA6Chg1/XoM2G5P2HOHdIpgTmAawkJMRRYIQVrjwJi7Mp6ZuYzjyo9o5GtuT4JLqDC7n2KFwid5cxF0TNPF+8V8NT+rrvQ9cn2GfPFNfCAr/CR1TvKvJKdhtaTuobfmPHM8QKvQJa8Haj9MVBq5XQrnlOgze2YKiNvBtHMa8FcWaq3pCUhzUkr5qi3SKjKMWvyd1BseHVJ/ux7YKDdd0NBBZsSoR8uKeE0z4gUsImSiy0zg4Lng3UOC/+G8juVvVGNTUTVvbxW4/SyunaoAlM7icwluW3NU2h7ioFAoEgiFbsI4owQQxkPGYq0pM2sdFPYcuXQAqRR1q/S0F/nKmEv6skZg4TdxE7yLpzGEeM4lhPfYjw3HqTjaQSHgvRfFK3NH3XPuokyblCU3brm8owpIhQ0N1J52pKbytp3nQDwm2cDXny2x27XYZom/PDDCceHBW/fjUgz4+5uxuOHGXkGvvziFpvtgLv3hPfvEsRru3PYievPOozm8in2xOuRNXWBy0+B+j2FIMUd1uynzDuhGG087zHFyDNPo6y1kefsvyjYxWiR/L1c59v+ODOYrLHC6hMvk+spfe26/WT29P8kmio/WRuqW8saNS9Cp2A7+aEoBSWyoOloKx/WB2wpmRJWFWWvMK+aeqL/T+DfgrltvVq5mQ34OZkZuF1vwIyfjNPhAW/f/KhGpozNZodpnHB7+xmm7YicF4ybDeZxxHQ66jzVzUtAkxhfeKyMQLyOgL7vcHNzjc1mwMOHa5we9gixw/FwwDSO2Gy32Gy2yJkxTTNSypimkx72O75YaFdya+YkL2BOBUMFTZ1gB61kKXzWObEKfbf4H/AywIQfFdwka2CfexxbeZK1V/pCgqMsCiMw0HHADh3ilHD6+Q55mJFOs2AjrZbGWu0za/hLUPxU0zXIXs85K6+gVR/bcXlvQW/MWe8j9r+xFBcgC6wJl+myUMOK3rltzb3/si605hVPyQhy/C5AjE5gLsa+8r7mJQaIpW9WRZKhuWq9YQ9c2JnxPr/HG33KyW2T54a19HGHERQnqKEkRm/YlPcE5lIswrfhh3Guh9l669hgh6tUcMaSEqZpkkgOknyF4mUG4RlZtDErFmYva2QmSdXtIXZSGRlcvE2Nzr3HVO2woLqUM/JsGKqlDVKcafMvtBYUS7lE5C0hVXlfMCaqLs418snGIXUUPg1DfbKxScqPA+qfJjHEg4QbHOcHHI4HHE8HLMusFnNzdSeYkr7ePMB6oZUZYQWk7c0eQFKbhcf0QakqYJVxUMqwWtiDX7yaSymgpyiLry5sn73Y4R//8XPs9h1++vEtfv+7d7h7P+P7708Yx4zd1SO6+B7DvsPf/+ZLhA3hv8V3uH//M3LK6NS5qiOU32NoDU5w/TfFwGidNDloDEDXhZK0HIAzplFzygcwqOTCEeJIqU3+2px+Ac1cm5Lx1PWUYlha4hI3UTfIOf9tLq/0eZBkbTSinVES7X4MGpWtveprNX7VU9i2/7WNzGbNVoWNcymjKYJXgXhR9PU5tRIzaxnQlBTsdkWxDeT92dq+Xla813PmRsTVI8FmK1NN9OatnMUjKYRyshYVhD/cvcXd+9fohw3evn2DYbvDyy++watvfo2cEzbbLcbxiDc/fY/7w+/EsFFOnCTcIXCQxKwExBgw9JJUs4uEQBn9sMHN1WfIzDjcvUI6PeB4POLt67eY5wXTOOJ4PAIMLEks7g+Pd5LwDkDfxULDOTMYltgOyCBJhAySeP0QEUOHrutVsZP555yx5AUMcVlNuSa6Pb8cbVrRAAe0jBazIY6yVrYvDaQJHwwkeQRSzpizJAAeQoebfoshAdPrOxzvE6aHGTlFcCItfcTgHJCSVJcIxXVWchRYSF7lcWvCaT1K/PgI/uCJi4Ap3k2FzgAJW5R3K/F7pPXE/LXfMbgcMTXei+WRim5qr+U9lw1NQPFuo4hYJKTlgIAmAq1hrf414pERdO9m5ZmS9JFjROwDYnA0x/WE15SvioComQqbUqFUAYspM5IaWiQhtFRu7UIAQzyeQCxJwVNCJgLFUNaleFIxn027QZkCBFDBORe+ypiWhHw8oY8d+t2ALkYE5KIUJi2gwVSftyqLBsoBYOgCiHrMKSCVRLE2r76aij3CzVyLsakqK5Wfkia7ZKCPIN271BsP1VPvzAgZEiOoe9B2YZU/yvOyhoKAJVQJpnx9GlD6t7hKmK96t3VdRNf36LuIlDMeHx/xeDwgWTglWUqAViaudecK0HH23dnHXrEldyqq39nnNdckFREeMpAUQNtjMYTSvwBJF3C9lzQEr764wq9+/RzDJuK3v/0ef/jjG4xHxoefhWc//+yEF7cnIAL//PefYwHjX/7lDo8P78Ec0cVB8E8AohqbOkpNGDGguAVVHSMoViT1jIqWYFzlK0HDRgIyE/xZgSlOHi81KQCMYZ5pX3Xv5UYW+FVwfJVrKoWCWVw/5FUrsFjwmSgcHloZC7f1Khhw3UuufA6gj7Pvj1z+XWA0Sbw5s3hJaBEM9rl6lI9Xhb6OrxQesTZYPHVSyuLlpobtmjj3HJOe4Sc3D+vPC+pluHmVdc7Zz5zyJ7L5qsb0IgvBuP/wMz68+xn9sMH7t+8wbLb47PMv8cUXv5ZCHkOHw/ERH96+wf3hAZyyGlSrJ5OEfMnMxAB0UfoZIyMGxm47YNjtsSwJ0+MH5NMDxnHC+/fvkFLC/uoKu/0eKWUcj6OmJjhJAn3jm4RSNp5hHiHeQUGTmZOEWHdRquJa0aOcMyhL4QXLMwfYgYPJAZn36qRQDU7FCMpcvTm40qRdlhaFKIBDhO1NWZ+EnBcwRWxAuEaP7rDg/o+v0cUB8/0JXddLiDgn5AykRFiSVkuNPcyoFtWo3dCT+/vSVXkDypjO9pHboFaRzB/Ii+PGpcahenMo+kbpG+oeUepVVrTSdRx2832+NA4Aos8wlQii1gscirdXfM1EbJB5lH5lLQSSMS8JOWapFmqGSouGKLRSG/PvO5t1E/GA5S8HJwYvGbwIdum6qA86g4gaUDgAmeQQOzujiofKZ8tnMg6ii8/Ku1OW4iiHcEIXI663G8QuglJGQi44w/hK8C9xbRMIm65DQEBKCyZmgLOmCqkytTxuzFo7tqSEZZp1DfRjGwgzOCUJc4tB+hcyIkdwYERIpJXJRL40JwXWSl8kT13FTkyMwKHkNvyl65ONTZVQDeRXMMIQpS3l6ilgMrJMwMXlrFcRel6ClpfXR4nQnqivWjVAQPpyUziEWp1BA7bh/T+g7wP6jrAZIvohousDUmIcDwvGMWHJQM6EaZLPKBL6LmLYdNhuIjbbgLQQSEpICWA04bSeF6CCYhs615NZamkLDXTwQEX/s56LJxnlhSn29zfuoh9Zs+ZZ13/fP6Cd51+6bF18m+1bjOnK3yv5VHMBXGqbLif2K29efb6Gkk+d3LTz5k/3PHMW+vODogKP23bqOz8Conyf3N9+u5VusrWm3zKX/WP7M+eEtMwACKfjAUvKuBlPSMsCgNH1G4AIw2aHYdiKUXmei/W8mUmq6yhdyIC6t3ZdBIMwDD02mx5pmREjQYobZeQkCmhaVLnPuZwAxShGV3HTzWCWXDYG4LNyRzEIESSPRDRsDlh+BF1HW4WPXWuaJaDELfuTW/tPe1LcAgHL83W2WszgJWE+juhyB05ZQq2onvIWmnIluhsgAt92vYqAKvxP31vGgPq8aQ5/4XXZq+nj81pdmd0Tro1C14WOyQmJCxeRCj0jPi970MyVf1/pe9nDtX+Vl11AC/AfEWqooOcjF7ksoEpezrmEgFVJT3UI7mMApYpTYSEX5qNZiyIznYzT/F5LygiUkV0f7QTr0kUKBuGaFkMdkLIof1x4gQHrlUD364gKni/Pqe0dx0tCkPBD30/WeVgZms6lYRkIqgvM0+P933E1BysOcxgdppQkhI51vuF4tO9/2yjg9orHBeV2alYBMHov/Pl8X3g5XPaWtcPtWEQ5VvWICMPQYb+P2Gy6kj5hWTJOx4RplIME5IBpzDgdFsRtwOaqx6YDtpuIvidwtvQBhqHaLVI2h++7C78yej1XAh3z1Ge9cknE7a064Bb/rufT/bHCUE5CnF3utdLnwn/PZc7FJgrfovJn+cVjlPat9d0rGXC+GdYvrfzwYyTZNuX5aisPy4m5J2GVC1Xm1T4+xf49djrDUR4MXXj4Y3rSWq55nHcJywqGEh44no7IOWOeRsmRAqDvB2w4od9s0PUDUkjiKY36r/I7HZvrKLN6Q2vy677v0Q89Us5SnSsL9snKR3JatGoko9PcNVZhL6daKTmx5XCrhlJYrju2vJAAhxq6Lf/3c14mu1mXs2u1Fxtdo4TuGkFwc58pxu4FwsITg5cFaVown0bkWHGjHbDIeAxD+b1RjciMVftl6vkijTWfmczx7MjGa5t73Tb53V5lkZffH9O/mv1RpuRcj7g0luY9qDKJDSdS3TLGHwl+nS/wHHbG4vJPZ8e+N3l93jPUyXuC75yNXQ5/WSs7Cjuh5nn5i5uWPE5Yc1ozeHp2b+tj+In0/ZaKoHlZ+eXyGvj3MSR8MQaAWXQb5ICSpsHuX9FOad1hVPJzx/Um03eIoKmN6gFSs8fO1sRwVNv5iwbLiyM9vz7Z2NR1nfaJAARJihXkxD+njPE0YxpngKtxBUV4ch3MKqlOy6QcAetH/oTNwkeihpcBXMGyk/w2kTKxltuhMkcjEEvgGrJYAakLePXFFq9ebrG7HjAvM5bHGW/fjfjxxwkpEYbtNfpNwPFI+O5PBzz7bIPPv7pBPwR89myDf/iHK5yOGT//kHE6TIgY0BcruoyfCMVeaYq5HaQwrdddt0SzeW3IXC3muuGYs+SLsfERlZO5tlXjgS3DsZN/bzT6ZIOTBxEXrvXnlvvIfg+GTI0ZsqMMA1VsY+aaWd8BveZEiltQ7Pvny3xLTpCaJNU2rFAblWebOSH71tw0ct389p4QEM0YwEKtkr+ltvPUHBXQZQ+vQSi7nzZGYw9lrzha0vcDkNKdpY/KdGMnMf4EjKdHjNMBP/w54f7uAzbbHb741a/x7NkrxNhjf7XH6XTED9/9CQ9370GJwVqOkyCegrXCQkaaR3AmxK7H0PegGHFzfYXx+S322wGbyJjnGVNKmJYkIWacAGYx4A57gGoiPjPAgMULhVkSFE+zGKqWnJE4YUmEeRl1XjUdHhGKu6MTTE6vKp+tT0xFObb0sAmZFxAR+r6TRLZdj77vwQyMpxHLIh4ikiSeYAmqiRgxyqnoeDriIc14RwO+//232G32mGnA1dUeFBaAHzWXEIG5L3zMCySZZumX3OdO8Y1HKJ3YaRqz7imqBs81YCSq9F8M4M4Y0l6VNxUPgLa584uUFyvfq/TePmt9tb3QGIlQgZJKVKVDOxW0vaftFGVS9y8Fc10sOUfMOxFEyNQBGlMv7vjyLK1oxMn3ykKce3GjxOrHKSXMyyKHNLVLsk6MEi5UvY6AWfLjo+cqvL1xvvCKNb8nQh86BIhX3TQuQGYs2wVL1FCjqHzP8ShW/iYh3bb3hI/0FNF34rWYWGVHWjDlBR0zOrR0UrGYB4OVVgzEFdAKgGJG1GpOfYignkBJTjM5MyhJUsvimVCmX2asOHgGwSxgVgMf/upX7HwBg+hc7OWEf14mzGmR0EH1zrS9V7rrZBqafSuXh1c2I0F5HgHFyyTGiFiwhsdjPj1BJUlWoG24qrzPQlEgpvyhC/jmm1t8/c0NiBjv3j4gpYwPbyeMB0kIP2xFWb67X/C7f32P2+cb/NPzz3G12+DLFyfcf73FNAGPd4xlSiXvJYFQIQI5ph0L7eeCDWpy3jIG48WqeAKsIZzqtaen7xkZnKqHSVBcZKEideytd33lV+1Bk5cpv3SdYSe2QyI0YN/G7wvjGla2t1VY1PS68PnqScJ1/zioDsf3oWH5xncLHi/9kI4EklyWctJ+LgTq4UeZGDd/uvedEBCDQUl9rt5SLZZ76qqY/yNzrxPVHIZSNXmsr+wO1yyvUUmm3wXEIOM7He5xOj6COeF4fMSwGSSB+LMX2G2usNndYBpPePvmRxwfH4SnLkafPgxc5mSZR0zHR3SbPba7W/Q94frmGtPzW8zzjN12QEoL5iVhWRJAWUqsE2HoB4AGHROrvsGa/FsqsFq+zEnzPaW8SDqWZcY8TzBhajRfGUSdqZos24wLXj4afmLV2mTvZV4QQsB2u0HXSQXeYEWnjifMy1z0G2aNSFB66/sekQiH+3u8nhZMNwt28Tn6fospT4hDQDcAMSQEYpQImyd4vx1iWz+9PPIe2OsoEUB4RskrXPSSVt+Am39Z25r/qyZ99hxL6dfzFf3Dklh4zPVLRqZLxtIzDAVCCFywUjE45cozDeQY96PCl9jt4QzmBM4BiNWL0e8xwXI1BF+TPer3vvfax0AohZZYDIo5zUjLhJwXFIlHFQPELH1LxJL7uczg+jWXdrvxJ5HXkYCeOgQOQALGcQJ3HdJ2g55Fv5B8n+L9XnmVNefekYWfDlEqTU4LJA9UzsVRu4MU3vD2kKZ3ZEErLu8tW7EdWx+Zt46F+pcYwYFACwOTpHCgWfKyAZLPqa5npR1AMUPXFTlasMhHeLC//sKcTQawqViNhVgy5nnRjOZ1M1LdJfLjbMbaWbwgh87cuU0BsudJGZcxPXKbs5k0R9z2fInV1c1EYNzeDvjy6z0okiQ+nTMeHxZ8+LAgxh7DZosQIqZxxvg4IsQAnhgxB9zsO3zx5QaPDwn3P58wckKgDl1Q6VvzkQvToTqSgLKHC3GtBV57Etwy86wKCVgyznvhWd3kWqIoSudqC66V7E/ESb6nzTvan+s+uLWwmEDHbyr4raCoCAXgvN/cKhJPnUL591NAsfqeAQ33aJ0XozX5fX0a2jxa1sC+5pL07ZOMeM2aXwZO5OarMnQH5HhNO/WUzJ63pNqZM6b5hMwZ8zjj/v0drm+f48tv/gb7/Q36vsNuv8Xx8IC3735Gvv8g489iHLKZqaCXxVspn8BpQRcDQt9ju93gar/Dpg/oQ8KyzPjw8Ijl8aDKbAIxo+sIXT/IfEWXhE/HJTkdGPO8gChLmNI8g5PkgllmA4cBBFWMYl+UJMv/VHlFO79rIV2oToUpUUDsArquwzAM2O0kX0JaMlKy+0xIM4qxWfnAssw4LjMewz3ev/4Z4+aE9PwltjdXmoomIacZnDdVkAPVyE5KI/4dsB/VQG3GuaKt4ZL8MqMUN7Tkw2YKTfm/q7agK95Q30Vs572JfH/I+u4fYgM/VMa/NpJbribf4HoPk1YC9X020CfzZC79XCpqVqGjiSbV3ZQoKABuulnabQGNmj4a0hKBnZZUK1bCuIrMv6QCIZQUlwQsSjfR3ucAXDXI+TErf4XkByMizDljyQmBRMZlqFGDaqhcGUcBnXVgNs9SGSyCmdBHRqIgHs5oyKPM9xoLlyX0SmnBq7rOWdZBwuMJTFFzNSRJXKvfV4ngFhy1r4GC8A8GMpNWWalr8de4zD2+yI9QMY1UShJPBCap1Ef4JRlR8RO7v9xs1vu8DCRb48rvmrVxQPXpN1PTjtAko4vA8+c7fP3NMzw+nvD6p3c4HWccHhfMo4YPbgYECjgeF8yHSYA1d7gaNnh2PeDlix7HY8b0CCTOCOACuhtsa5MHM8ipsQOaBNXRceGTZphkJw3ZDpoUCxk9sVa8NKXQlEc3t2u6NszSTufHMUjzMOqe9cYgT9Me4Pt213mpCACvN93ZVTGV8X8z0Kq9QKe4xVme3xIpbWfJ+yZIwoMSKm2XcZX+t31pf1a53PJZkasNznFzVhTvslCXcZOfKM9H8ZG7PRYwbxs50Jb9DC1UMU0nDdteMJ6OuLq+wRdffo1nN88RYg/0A07HA+7vP+Dx8V7a1STe6z4wGHlZMI8nxG4Qz6YQsd1usd/vkFKP7dAhpYT7+wc8PBwkX5ka/GKM8gwgIcTFqAIt7iQYapoDrOptnqXwQs7AnGY44gSatBBWyKVdL51U8ToqRibv8eK9UgjDEDEMUkSm6/qS6HxelnbeYdtexhUAnI4n3B0nhNzj4fYRw5aReiB25skleXTJYbBWQDsDxupdtj/q347GWsJAuSnUe62vJV9foyA4mVpm+AkMutKT2x5d0gkuREpc4EPnxibpCem+JVUgGsP6CrdVvEB1v7HnK268q/f5QyIA54W6nQT0B1NGPzkbPrZQIkMCcq+mU0NgFJl2zhGf5g0EAtv+RkBHciCfUhIMBWpytpp9gUny1F6cd5tTlmiNSOo9qKGinDOS6uur2jr1KrhG8R0F13ShXPnMxk9SUVkOUWR/U9J0BWaHdSpWi+she17zYmFJ54DuF66/IIyu9QYwwmRI3O48z1pJyoTeeoosPIyaz4BfFojV0LQSuKgxwVVYkmOmLbFX4C1vNq+gLgKbqw7bIWJ/NWB/tcFpXPDhnSQAH8eMGHstC6ptahKmJQHv354kBnoAbm6uEGjB7mrBNGbEYBZO513kjEwm6BgongamNJhBogA6JXodKc42ohEXtYKzzvaa+fjPW/XIvlkbrS6tjX/OhK+dcpjSS668+lMMD8WwtQLAjoG5D1b9B0wpbWG2eSXVz0k9qoImxi1lbQNJDKrrnweOntayepL4rFIiVJzA8u3ofzw499eluV1/VhTC8p0xsQrcLrHNsrpuvmxvWNJpoUkJM7P8LIKdEnIacffuNRgZfR/RDx22wxZfffkNrq6uMD4+4vH9O6R5xvHhHvM8ISkgFRVE3koBJSFu12k+Jc7A0CNpboJ+6JETYzwtmsxRS00YXVClKTDEKyQDUzcjBJKqCpHQa66HOZjHGQlvAMnJtZ1oF5qt/MTzulYoQh3YuADsrovY7/fYbAZsNlvsdpIvYVlkfy6zVJdiuBh4sr0tJyAzGMe84P18wokI6TggE6PrMjY7ljmL5PaitF0oU7UCAyEWk37pMtqsNMgNeKkhDVw5CrX8xdbiSf2J6y+83sv+WllmyK1tAXNuH5nuteIe5V1FKSFnWGej97OXl/fZuoTgaCQzQsjFyMWkxoEckJFce47vOkBee6X/JSrVr6DQBbkqv2U1i3Kl66LJJonMsBXQLMxqjtZXBcbVyyNAwAd0/y9JwsERosrZ0kOYTF0X6bDx2v2BCFkV0sysIX/N8vgfZ1cB2lR/L6/U5B3mKZqRsWj/zwFtM/j68Wofl778hYDp/85lvJq0BCVBPGYkWfyCNC/IKUlC0iDZGty0t21hNZeGGSDyt+AJuLEXDOYxQv3ZzOUTst5AbamEmhkLJ+w2Ec+ut9juOgwbqUQ4zwvu7iYcDzPmGZJLj8wgokYhANOc8f7dSQ0dAZ99doPHQ8LduwPmaVbaZ5SS1rBQeLKtVXmEG2/FIqEcZpVqqvVux+/LRxewav36bIocNLH3e2MWnfGD8+tcdpOx9UZ5b5XA6qXkkHHb22Icqbx1vWe8oQnc9tFQfsVW0oecM3II6hRaFfVAJCfnwTCt/afFfdlXsi0KaCgKWs3/U+UtN/S8OngCcIahbJwr/aE5hFW5ES6090vtG48WfK+0BI8j5K+cZszTCXfv32oVY8K236CjgC+++Fow1PGAw90HpHnGeDqIwUcxFBXwJn3tuk6MMrETYw+AODAkZcAV+l5C68Z5LnmzivzWZMqCE2R+7cCunyJCkL9jnDEvSVK+LFWG2s/MScfuDLVlz8WCIW0vCS2LIp11bWIghNCj7ztcXV1hu90ghA4x9khpwThOhT8uS2rK1QOV0hcwRjAe84z34yN6ThgTYepJ8jGFreQlDI7XOUL3+keGVOSyw3m/rwv/9O93zzaOAB8npPqc/WD/NXswtJJZrfz62GHEUwanup8u6xi1i6vvYLCjyn/Qyss8EDgpDs0sHmWKlc0bqRlnAxJ0fRyPKzhIb1PUrLlaGZyStGm8AagzxNBUNELolCW9Ri7tnI/7bL7d3rP2AwQDGi/NOWPRkDoZ57ojKPTk8Y1fuoK7FPe2BxbW2Pl6lJ/G5wiKGwgWCmtymgmSIJxCxZMq0C5Rkd8jth5UCcfN0y/Qu15/cTU6EXAknhAEMDKWZcbpeMR4GgGQKJGZgZSbbhRlyw8o10S7wbLtOcIx2hOB4KdXBFqMcoMlfyWIu5zJ2eL2WpR8Aqmb4LxIfPNm6PH8sy32+w6ffX6Fz15e44cf7/DtH9/j4WHCPHUYhq0DNEk08aHHaWH86fd32G4CfvXPz/Gb37zE49WEtz+dwFiwnIDpmAAKcrIs9qoqAFGND5pkvvxtyc4lwaX8LEyc0T4De/bj62j0kdkLDwMbBr6qEePMwOeYr61FBUBV0FZ68e/lch9RdU1vOubvN6KGxoxXxFQZsf5uP0u2T5MBRdGsgCqwnMKXOdDHQoiSzB1U4rrN64AsDAO1RHpxUyRCjJ1WFWIgpUbsFKXR5suP83yJdHhuMzdgzAyeVRH2yl8ZtQOAZ22XBJ6a4JoMJGXdUxGRoigrecYy3uP7P/4PvP7hj/jiy1/h13/z99hf7fDyP7wEdRE//vBn/M9//S0Ohwc8no44PkwSM991IA6SwDsnxAhsNh26YcBms5E9FQO2MQE54fnzWyAG5MSYp0VPCCeM06ju3jX5XllR/WyaZ5zGCUtOOJ5GTMuCZKF1WRIz5wwsS8JpmsXImMw9mopnVxc7TUSqc03GnKnkZOCcQCQJyzfbDT777AWur6+x3e6w319jmReACV18wOFwwDRNDigLUdjumJExIyOkEX863mGYTwjzEeF+g6vrAV/f3GK77dD3EVE9I6St1fGzXtn4KVxBhYbeDBQxKiFy+a7ZhytA1F5U7il4y+fs4Qv3ftLleU6l3wZAEArtSxcEAsiQzEuoBQ9eUWl/yr0hsCYTlUdTzpJ3T+8VvhsF6BCDoUmcUTC19b4CNnk5QFrlRZINghEE9KSEvMySyBEo7RGgIcK6xzUhpnjHmrJf3yEFUNxeNyJz4wdzCc2Tf2JAmpcZCBJ2OHQ9CKp4qVJfTh5NaSEXPmJyChISGgmYiZHAiBBw4/Ox2HTUDwqTLvMcNdEosclwAi+SwKeLHThGzCQVb5G5mLIbCnPEVzGEjEuwQS73/bLnx7/dVU4fg/EUYEmzJhydMI2TVOUMGpqbJZyrXgS/snVqRR7IZ7Fgpmz3l61aAW41yFTvBFHsktyTpHWHNeVeBzqZGeNpxjIlPLve45vf3GC/73F13YEx43ic8MN3Bzw+LiAaMAw7sJgKodQNBvB4SvjTH+7w808nfP7rK/z933+Fu/sRb9/8GafpBOIkeW/I5QllVHXBGXNMqREalQpFYqyv/4qhgrlWpSt8sd2HZ3xk9bPgIcu942i58gaHocpnblWpflsPJG1cVHExqnGkpIdAqbdw3rD20eOcuqdXGMPux/llSmmRG4yiuLMpkfpgiJ3wQMNbJlN0D1qYicjyVMdChNB1RVkzY5Q/KKw8fG0wvDwWP4BiDKLqZWKhIL5aofXannuqyXJYmUUfMN3CEmRY2hGAsSwnnA4Lvv/29+iHLV6++hpf/fpvEWLE5y9fgsH48cfv8ft//S2Oh0c83H/APM/IOSNGkRVEADghELDZbCXKotcUHV2HLvQgYtze3IBJDt3GaULKGcs8Y55nGU9KDi/LHjYcNE0zjqcBS8o4nCbBUIkxL1o4Q/PyLsuC0zgr1jDjBUFC9EmSnitPiSFIWDBFTbmSsCwTck4Yhk5yd243+Pzzz3F1dSUJu2PENM2YJnFeGMcZy3ys9AfHAwkYwZiRMS0jprvX6LoB3SYi9hERO3Rhh2Ho0BVvUcHAnhfKmgqt5vA0LTUmgDNacnqIdc5Radmjq6vRBxSA+Ip9tLrZN3Fhy1/4pO4RwY8ZOZsOVnl54XiNni6HTX7M7g8AbVhhqSwLPUghAiggdp0cuiq/SJqb0Pgjk3sxtWNYG/HMaMUpIS8L8jwDSF4gAqozUuayK0MWvS7rmkVjTc2Q6hzYd6zFiMCMSAEUGEm9o3POmFNCWBZ0XSf0nn3eSFRdlaosaPiNkqIY6iWnofibh0vk0lzrlbY9V4x09m41cocY0IWIDPGeAjPiqp1iE+CKZ42/yaGi8wRs8NzHr784QbiVL62iD6q4aZl3MiBTzrRbAkUrfAEfJlVucMlR/WDtPge5Cmjyro2O6nQP2bPlrJ0UoDMQI2G77bDddoidtCHeFQmn4wKgApRivFAlKzNwOgkYWmZGIGGWwxCx3UYcF01KXFy1PVSs/13ZWYsSBJwTVBmYES9xKZlYn3368mDD2vKAwfeq/t0mDCtzSL6/RifncFjeh2Zcq9EAjuFZ/8Qi7Pu6Im1+mtQbjxR3bzFY8MpLbIUE2xVZMVoVLEXXN3DoPmyi2415rcfsxvnU1dJ9edk5k3wKaz3VcBE+3NxcFGbLA5YTpvGoFbSOSPOMGAP6/grDdoPd7grb/R6JM7phEHdQltN7mV31TkKrsMYYwYigJIloQt8hdB1yZnTqfUYww1rGEnKpWFPmTZk7FAyFRFg6MfYF9UBhZoQlq6Ip7uXIUOVf9qUZL0TBlxu4ZFbzdFlPhoIagTfFeDag70Vh73vJ39TFTlesnnpS05pcC2eMaUIC0AdCBEP0PtYqNf6J9jTprIfs3J5Nav7ideEepQ+68Jk84UfE5WugZecXDU8tybXf+i4bXft9uQII8ggVg66VYjVvDv+CM+P5qmtFzmU5tKieHrU/hCo77N1PcWmcfWP7VGjPkluuOukmwIQ+amJ6+2dyrUq1FY+q1NuMEYD5mdrJXO2HexyruXbMvxXXloeifTajGlXpjAYK7G8+9d/W9RZebfNQZIhNk2OsvppObZTO3vGJ+Ojf9Go8whSzWDgAWwgNy64KVh0IdRyXRKefQRMRtveDW7DGiKF9+diBkhkJq1dUK/NNVtp6xC5gt+ux2/UAMeY5YZoTpiljnjK6HoiddpAbikXKjONxATKQlj36rsPQJwybgGEg5EXuqYL26asls0pn5x4AToWh2ic/D5dktf1uYNyzB29oanDSqhFy9Npy7rbf7oOzcTbf2rwQimwqfYLbC66Pn3pZUYvymI3X/XyqyTNZ4GgPrl+tfU0wg3nwsk/m7zvQvKMervn22+ucS3sec5mqWv50cYyGi/0EOX1FipVkpJwwjifxtp5GyREbArp+g9BFbLd7DNsdUkqIXV+88GRduYwR0NQiQYykougzYtTQ/BABy4VKUrhJDp1YwvQCyU+THAzkUI1GS+oRQsKsFY6XwABJ7klKWv0TAXG2+VdDNytTYFK5FiAHP7aP3G+6WYgk/UDf9RiGAZvNoAYrMTj2fY+u6yUHFdY8vV6WRXPmhHGesDBjEztQ7MA8NHLdr9tFyFP+4/jBp2AoavnHJYpqv+XVvjCmu2rH7z1HjmwfXCb15oXr97IDWORkZd1z5w3ZXlnjTmt/Lduk60YbF0Ch7+zZMC7PXRk+Q/OQKm9i89pmh4nWeo3qkYU3K46+sP/XuNr/VrFTvSezGfRX9LniCX58LQ6p+Gmdc7EVDxdkRdOqu4ugthob/gpnrZpxIqREmbIK+DPZuYKrn4qlPtnYZLBRLHJBkymKJTOlRapT5QVdiNj0A3hZkNMEwJJc2UZCHYAyzaiBgua9A6ibP9SdXE8Bgya3lVwm0pDwLT0t1s0iuQrVsmmkpwipTCIz+k7K6r54vsHf/9MLbLcR4zjhX//1J7x7e8TDQ8J4kvywPjyKAUmmGgiJGfeHBRHAzz8ecXNzDwTg1ctbvPjsBj98d8Dx8CiWZEQtZSgn3dAxGGgxht9eeubGWV1XE4AEcEakgD7UOVivujcArS3PfAaUbItar87BTts3tyPMuOJBkjFOBXEmYEQmmYLvlTkWb6JiCFvPh6xcLStc+1v6SiwxpwXMcelb6RLLs5nlNN7moVhqIbnSkm7UoCGB5BR+oUmjK01EHCKAIIlJlaXbyU/pilsXZjFn2BzUkuyhzGMIaqjQk01JumnGyzouL+ia+fKVy1CZqHfxLnfbSUom8UjMVGeZGct0AmjCmx//jPF4xLDZ4vOvf4399S2YIv7uH/4jpmnEEHe4vvkB9+/f4PV3/1Ni7rPQb0oL0jyBKCLEDsPuGjwfkZZHcFoQMiMmRoB4OTIF0NAhQsup5nq2ZTTFmoS76yK6LiDljK6LmJZFDMBLkhxK6iq+pITdOCDljGmSnAAlqZ7OA/MIZkLKc1mHEGI5+c9ZvCF3uwH7/R4vXrzAs2fP1d1b3nNzfYvdZo+fw1s83D8UwOTxS91GhCXNuHt8jxgirq932MUtGAsCPUOgDsQLcpoViDnhpcQUdL9lBpYMEDG6qDRacnloKdWiSKkBnLJz1bduGThnlED6IunbO1E+Nop6CjooryuTgCcuapGF+9UbPjg7YFA6FND0TmUMr/jNJU+nLnbIQZT+tCzgTFjmBcs8l+5SZRhudA6SMJdzBXa8zHhLThk5EZYxIU0zeJ6E9kn5kyZAlX8i+KOOb8mMWRlJgvInAOZLYMDUeKI/HGCI9xYx0MWIXlHTvGQsnOW0K0uoQjIXdY9WTbyWd9npKwGcETRsLnYRkXqAgSktmAEMCOhM7hUcUP1ICPVwxdiXla5nZs3NlJGDJgFlRuii8l0qtGHHQSXhKMlJHgB5fnEGwrWR/a9w+YTCkSTUTIoZiBdnYEJgoI8B3AUtFmLeF0ITxo8NnMpYAhDVryLGmoxW7w9WqILEE8Wu9U4tBihSymG5g2w76i85C58jAFe7Dt11jy9e7fH1N9foh4CffvqAP/3pgPu7hNMELBxFBqSlYC+ZEAJFMbT//O4BMRC2tx2ePd9iyRlffnmL2xc7vH094/X3EzITpNC5eZwCcHRvJ82CSysmLvuv7H/5R4oVJSE+kLIZ1SpNrlmUvKc6UHPBOS0uqXevG9D3n7PJpj1/e80ppe8gyVNmBj9rk83QmmvhHEs47fHepcuf6NdkyBW0tAePtu9sL+tJt/FYVAhGSu+WMNwObbtOPAMK3qEaysasfJItYsEp5hDZRgqqLJ2BYSjzNvFYzfQMoeVqPNWy1u2KseN7T8wRsMr3qrNg8yb2uVD6KJuGMZ8OWOiENz98i9PjI/rNFs9ffY3t9S1i2AmGGk/oQodhs8fj/Vu8+1EKhHSQ8FrOEpYfQocYOvT9BsQJAVOV1ZkRGBgCgSmi6zN69BVnmvjSfbEk4fcxEmIwDNVjWcRINivGWrIUs5iXBZuhQ04Z0yzhdgDA2TBIBudJ9LTF9MYoGCpJxeGcM4ahx+2zW+y2W9zc3OLq6grLkjDPC0LocHv7DJthi/fv3+P4eEBKde9WSqz4YFkmPD6+kxxV/TW6bo8YFs2FJT6VCYvs7eBSKFgLOi9ZZSBI8gQSCAhUC3Y4z7rCTwpfuQxqCt7wWGHFLYwen7wuNe+x4KXL6T9QzGxs0/fr8susCXcw4SS3PKp8WN8TOlY6YEzzjJgClu2ClGNJMm7jJpUz2dOjkzvWv9JF01kyI80JaZKwc2RJiO8PoWzoxCKngnr2yNG3TEIGpJjWE1NQMIniMEBsGQwgIqAjQV5TSsizyMdOYwgTp+I9R0SKGyuubY31DMpAR1LwIYeA3Ak/n3MqedOj2jWqRc3zZP3HjGId8ZhqyXL+nwPMopX7DggJtESELFy8muKqhxqTtCEYCmpwDLZgT/LL9fUXGJuMUavxJwBMCQwxguQkCx+DWKsz5zIXdjJvG1kmwgQM1YzqwapYycYubtP67hii64+Cd9iYbRIZ0MoDxusF5FrYnyZ/heSQoQDc3PT45lc3GIaA3//ra/z0/Qc8PCw4HhLmGeh7Rtep8FalnKPMQU6Mw1EU6g9vR7z7/ojNVYeXv7nGcNXjcMjAtx9grrChjg5FUqliUitdFAnvQFIu/4yxBYixjJmQ6Byo2JrVP537GxxOWT/ljUZlus8/K2KaoZTtFBG9x4B/xS+s4RXtaZSxl7oJxb2XjQvpv+b00c9VGa9RRgVM2fagMiJe0aK9rxgwIIArAEBJIE2FqYcojNNyb8DNF+vmFvDKpextAMrzJtTEgMglBFQUESoKsgExS+RtJFPnmJvhezDtl93EXGHw1NJFOSHQjtWTd6o0s4jh+MO7ER/evcWw2YHR4fZFwrPPP8fXv/oNUkoYj6MkwGTGj9/9AcsCgDMIYqhJaUZIHUKMcpJHCXzQk3hmBD2RiyXnQ0BAJ2F0jDMlIocFnDO6GNBFAUpEhH6JxchkgMri/4e+Q0oZxy5gHCU535zUoJWSGJQYkOgmQgwZHHqUhIQ5I4aA7WaD/W6H25tbPLt9hsfHI8bxEczA1f4KBMJ4GhFjp0bHOuf+N4a4FR/me6kes1mw2S5gjgi0IJCcjnJO6r3DqBX1ClmDINUokMVYlyEVxGA8tPAej0/Ue6ySV+mVgYuKTteXAQL93YGE9Sj9J8UoxZduO3/Gv5rdM+scDo0B1j3tT8sveREWI2wMIJYDhCUlcIbk0lk6EAFdCfmtHXP28frV6h3FPsWMnIA0M9KSwMuMvEyAhmVqZ8o/+8gOXopxGpIfKRdg5ajJ9u8Tcw+SapE9ETKJCzhnxtInBYOqoOb2QTtxM95jAzN5YoFIIQYEkup98yQhG5EInQLS4CjL+ujzpZTT+0Cq+EJC8olFaUjyXgtpPgPaDFhSfuGbpsBmcDL6oGbd/1pGJ+PnUV3djfenLHMvYY5ScamL8n0ynh/M0IRCfwViBl+wJRTcFByvF14e5OQMJu/QoF5CDUMr8fml71RYTmZCWqTc+m7bY7+NeP5sg5ef7xAi8PvfjfjjH95iniOmZUBGRLJwIx0AAUCEFGJJGR8eJnBmfPZuj8f3I+IQ8OKzPV50hGW+w08/HJCZAGxglfXqLEhX5YQ5r6S/oQaPowxHCE8WBcKrUWZoP99DZe4c+yr8r2FovPrMLx7XP1f0W7juSiFp2mGAgyodjo/6A6d6qMiujZZXPeXlSbTaEwY/qttAmSFuHkKdF6WvdbUkGy9p5dtigGoAC+ve4GJssj5W7wuZx1JdcMVzLZVDOVgLNhCPGk0aOcPzJ/CCNYbKMAxV1wBc8yIaJp3nEWDGNI748PYdhs0OmTa4TR2ubm/w+ZffYJ4nCaNLCYkT0o8Bc2IQJUn/obyCMyNQQNcNQJ5BeUZZAOkAesWNERGd9jExHE0IHQctUhGC6FjiWd6JsYkzljQrhkpqfFrQRQnVO42EcZIqwKaILkvCggRktiJXYO6QcyeHGOrFabmadrst9vsr7HZXOJ1GzEsGBcFQ280O0zSVdW/2z+pKacY8jwgh4OZZhxgHhKBhgxoKlTXksayP/auriwzWBM21yIDXRdvLZLLnOHWflLt4ZYYmdy/gWMUaQ5297swe9ZT8qjNF7pP2V8a5p9Kl+ZXiIQw7iGj1Nip6kqQLADglpGVGDoQlLbL2XDgxTPfPAvILv2i6+ATm5CT4KS/mDVzzuhaDEyp3IkCM8wCgHusAIVOoBfDOsKtvp34lXj8iw4PaI5aUJXVAjEI37KpKGsWs+XzZF1yUmY6ABMWhAJBl/zEDvca6EVEZbtPHFf8EUPXG4jVNQM6w6kQcQ/nJi+lbhYEXfdC8ZQ0fGoby7gqfYnD6ZGOTxSAHnWTx4EilIz4JYwihJFQtAlWFETlCsxP3qINvS7dWEAEVfikngKSEX7J5LQqPO7VyGklQSjFSEgU0IQTCzU2P7bbD1VWHZVnATDgeZjw+zDidJAggBOfSi9IsPOMLnYTyzEvG/f2IBMaLRTbedtPh9vkGy8zIJzU+BPHSAsSqawsK176N321PnAvL9n5TfCr4qaCS3WZ2EBJE3BRwI1Tikom/TA+XXJUbVz1yIWxuY5mhvRHwF553n7YDLfP+NBBc9VT7c7nv4omQyxzZWmS2+0hPZWrOJtZTDw82C3ytLjLwSmf12jK7fut66U8WAdtT9TMC1aS7Z4B1PQsqEHQNLbTPC1SvaK3Djc6XwRv95GfKCx7u75AyIXEGdb30mSKePXuBeTri5ZffYDw+4vDwAePpEaQlbXPOiF2HYbfHgoQ5dlq6tArlwuCJ1Aggrw86f6W8J4diBxUdiTDkriSBXxZTPCXUNQTxPLNcXCFIMuhOjVLzsog3FDOWpdIBkXmpVdDADSDOiDFiv99JzqlxQtITvGqsdLyJ2rUVeS2VIrouou8jOlcy1tatGqUVLGkC0RCMdyr4ybqQRY/XveN4i/+83c5ecBmNtYRW6YHqs4QVPV4gTr2nIbHVH3a+YttofbVuzq0Rr1aaOeen6722bs+MrGxGXhI6medF8uUV8WqAid0QW7i5HnMgAjggq+EQTTcrdzdeAnb9UgAje1lAA8dQcrXUWa7CXwdW2nQZBETmKnBeYEq6VP6yOWjXsA7EywbpeuVFAjY1LwsIWZNeMcRQRro/dVujvqEFvGeA3r7Ldc5JmI3kgIihJDwnCA+qba7HonOiE/PX9G7qYgcQirFJJt2GqF4FpiSTeMmaHCUYPXAFvmSeipbKqxqc/IjrJlJjnRld9dOWn+mpqMqvhhYcrROJwf32dsCL51vsdh0eH09glpC4eWIsWsOZkOGN46vdJ/2OEg40Tgkf3p+w2fd4fnOFYeiw3w24uumRZoCXKn8D2eGZyW5uulpgcLPOjlmdkVmZ2DOMUJDHmndpi9mAl2PXTWoEx/dLDy5gqPI+qiNZk6j/zmPHEg5Y7vezUV6vOuNlz74166wtUZkyH6Ug9QtsjqnOETPA4k3Qazl7b6Ap8snNj3/WQ/l2PjzG87yHyk//ey05X6ejhdoFkJ6P2WEk/5lv32jMY6hWOtWuGu2IDpSR8oLH+w9IDEzLEQhiOOv7DV68fAVwwuPdz5hOR6TpIAcTZGZ9SVmw2V8jLyOW04Ssnj9s3hxUsVQgUgxa19gMsJm5mZsQGDlr3sosRq7MLN49OUjuJVRPshhnOZjR6qDTsiDOixjLNdG50U/VF5XfpAUp5TKfXRex2WzEw2mSolNSrMMMh4DLUuZ3s6Y0lOgYO3yM5RlPajJHADSHm9v3KxpbbwXDG09sXdeb5oXw/KawVIer6k5tpd8lLPGL14pH+ZGUx2n9lqo/PnV5nlExk7WlAXoUxDsnl4yByClrtehzU10RaSaTmg5Qw8uEhpTHZDGow3hFmdPW7FExFMR7J1ANEyPjIGco8vL4daZA0p5Ux0XxAjcvZAlfC4DK70pfNtvnbxPvJ8t9SYhqcGLikjrEcaGqU7gxPt1xUpkGObjLGYFNvwyKo6hOCgFEmjGKVnis8GaTAZ+OoT7Z2LTZbMrEBQpSIj0nZC3/3XW9KG1xAocMDlEScYlkq4NVzbAzBd6USe26EX75xBkDMuzUSlU+qpZpD5QMeMRAgFofjahSyphOE4Yh4quvn+Orr68xbAJOxwPSkvHm9SN++P4ACV4YJAE5qDAnOyExl1UiIG5E4Xs8zfju+zvcHnb44jfPETni+bMt/vYfbnE6JvzwxwkPH0Z0XY9BDRdZPS5ss7DOlS1sTfhb892UU0qn5QUtySjz0K6dWVmlyYqGTHXKjvkWSOa6sSbqBjSUduvPUnnAG1uc4akYBS+hmnJ9yvftJnuK6I1JePdq6wxraBQDJZyqhL+FgLAJUvXDyseSrJl4uSigRl2nSq+shifHKKiGBrLrLylzKZ2FCs5I1RgBFAPLem4bw6w1oYxdALl8H1braL+bu2SZKwN6Lu+a5V0iTZC3LBN++O6PYI7YXd3g+o9/xna3w6///m/xt3/3z3j+4gX2N3scDg/4w7/+N7z+/ltQP2BZFlCYMOz22D4bcLzvcXh4rSdoSwkpMkNLiAF95/OlsZysa1W4pIItZEbshJZj12tC8KweKoxpXsSbhIHtRtrZ72bMKZXwOrlvwjzPSCnjNEny3pTESJyQ1dNA1jWlXEr0TtOEYbPF7bPnWOYZP/7wE06PJyzLLF4MUQwXmZOITXWzNw+PGAP6ToDS1W6D/W6D7aYvValMdREjmBjDYuzQdaRJ3SU5YU4LljQbM3F7RERc8OvfGL7spM/CjsykQgUstjKtBQXl55m7UXu1EG59r/Jxu8sEm6NVbxiqQtv2kfknoPBOU0rX6PCS8mKesxwZsesAltwzzCO6LoI2g+wnzrofUJiLjYu5hqFUfhkkcS4RUlpgLsoCmAz5aGcK8Na9SZJUVcrXZqmoQgBTRIpBja2hwhcyUFYVLNnjEHnFjI4IHQUsAEYNCVpSxpgsNFuS0XPOxZPXT18JU9PhC2QR+TREeXZZFoxL0jK+EipFROhhMlvarJTAKs9tr+v6m5wHtDClnMCHLoADkIcOGRlIjKgVi0IMetDlTp0bUlOVj+va/zWuzWYDoB6qUSaERSYhhIC+78CcMYWIHBKYghRvsEk2fqGHEJ0ap1HggE1oNYoSK6UWDKUHb+TmVRe3JAhHtVEbRvNKMyEhYMEwdPjNb27wt3/7AsfThB++e49xXPDmzRGPj6JQhyD4UN4Qvc4lWDAL2uv6HgBwfz/jD797h2cvdnj1zQu8uLnG8WXG42HEeEp49xPjdFDjb5Ry7inl4tFqxszifaS4MKdLa03NbyEER4/6s8EvXs46CE4MlJyldX3Yj9V+rowVZtAul1NyvQJmBiLzyrDG/YhqigGnlujebxXJ9vvmsv3SzFLl/QVva1cLXmJNH2A8Kyc91A3YhY1UUKNaOCZbaBNnpCWXz8yjiV2CcJv/ilVaBcfGULyYVsamYggq01v5Addf2jF7JdG9v3kH2bY0g3DFUP5d7NZF1pURAmNKI77//nfIHHB1fYPnLz/HsNng86++xlff/BrvPv8S2/0VjocH/PTt/8T7N9+DQwSzpNHYXt+g3+4wHu7x/s1Rw+Ek1UYA0JF45wciCTs2vUllek3mDKQcwIERo8x71ym+zQnzEovhKOnB2ma7QTmcUwyVNGXBOE2Yphk5WUW8rBiKkSDOlTkTOCeM04jYdWV+N5sttrs9pmnGw90DjkfFUDGg5NDkapwy/mUYWvI8Bey2PTZDxNDVtBSGH8VLS8Y+DIPQJFFJ0yIpH1S3c0VZrGjQaseUz9h/+wSroUIzDipV5lDx95NXRTyX9nPboOd5Fxq9MJDLRp96c90SxhPqwSCRevwgIGWZL2JIoncWz5+h71Y8x4xcXOQ1UPdO2VOWykRHnzTCoPTTPwurdGkFCYC8JCALTgkk2UIyMRZiRMXFFm/kp6Y92ASYajGzngR7jGlGWjKWXmwgAcYngsPY7Wyu55eI0KmuxkEOzzIlSctBsm8Co+h0BAJC2w6t6LOsi31HEGPTkhCI0HdRQhK7gJwCQq4U3EUCIlVPxIJT6/uUExe8/kvXX1yNTty0zRneBgl4w09lxnWHFSC03nTkJkPBekuKFXiWExQr7Yu1QHbAYKWoWNtgcxcHttsO1zcDGBnLlDBNC6ZRklpKWXPS8VaCMSAvf7JpBQJ6MmNcMqYpIc0MXoAYA/ZXvQiqbi5hMAIEV0LQXOXhCeVc9K9nyJQKI5Wyed18tozw0gzXuz52XTJUXDwh80S5Zngr7F+NLr5PT18e+F0CC5f6c8n6W+im/K44zvpgtF7+KW0LJ9D+VmZXO6INKb162macz7Ipln4SbPtUBWLd9yfG6/YYbBxPjH/VC7M5NG156hN8W8c1jSdISiYCo8cyz+DE6Psem+0e17fPEfoO2/0Vus0WsRtKP2LXodtssUwbxH6DuMzIJF6LylFVsUKZ59K9bGCXwBxqZ025irJGSWqcihFcPc4YcsKhskgqyjAjLkHBurxnCVJ5JWiS8kU9SiyXTFVoKv3HEDD0fcOXbAkaWnELZfcGktCZqP/kVM7xULfvzwyOWrTBquPAlPTySm4Un9ID9nvujBxWfEI//hgd/QILuQR7znh0+bwqix9951pgYMUzHa94igesP/cKlVVBDJory7h3w6it7xf5Tt3HZCBhreg8tcFNNjohX3TN0pPKw8xw6Zf+KU5PQDnQsXstvLw00azn5ZNP93WZOzGmqJKnym5JFu46VKOA6l5o2l29y7wbff4ohKDH5NnxTipe1ewrw2Q/I5c48f/ea21k8NCwHuR5DFWeLHTkPml+q2zCyYsCDCrGyFbh0PK4uUWtFX2hFUq9rG3xVBeBviNsdx2urgfMy4zjUf7NU0ZK6m0VAMuxQ4WuvAeBdlXxZUqM03HBdpeARAiI6LuI3U7yY8Q4y1rDGSU/so6tTD+fPf9Z9Ypct+HxkW0uY546t34vM+o6rPZixbrtTzNUlX2O2hVvdPHPXcI87GjmbNRu/34KZjvnl9T8Vg+/JDoDVA/WWF9YMZPhJ/M04lKd097H7uFLhqZLV4VNzotptc9kaVskXQzQbmk/li6nvu/j8o9Wc+TH0Ep/+d80zho2Rug3A1LagyAV53a7K1zdPCspB2I3lEMLENB1PWLXI6cZoRsQ0oKcSKthuRwsLscQadkACR0SmUZBirlL/+ygWPQeJkaGViZWr0iJYKGyLhYSvISgh6mikKcgVUNTJhAyFl1g89gHfAoJFIORpB2oBsgKo3SPulkEVd4oz1sbEh5bw4ubp86wm7zfcFuVSbiwJy7JptKw0SP8TdT8bPn4OS771OuSPK4dafd6wxZW9/pE0rXtqtutjUP+Hv93xSBwFa7lUC1pNVHfXXpiAOuPGiOKE9/nfN2+aJ6ueIZF5/bwTcoAyX0VNbsxufEbhrdc+CGQ6CDmQJCrjldqzV1abKWvwiuIdK9KR81AbBXkLNfUJbz+JD9qlqwgIOEHGcV4Bz2k4mBeZE42BS2UxLKuZle5JFs+5fpkY9M4jtoJdfFGRqYE8+Awy1cIEV0H5LQ0HTdwQ064pJygkXEQLwYvMNxEkZwm50WrURGEgerEAe2pXJ2ypCAUJuWx3Ud89tk1drsOn73c4fZ2g/dvH/Htn97jdFpweEzohy2IhGGBNHTQkNKqX3KZm7uEES4L8Pr7B5weZ+yf9fj85S1O24R3z8RSyYmQZ1k4U6hBVJJ3FpdsHYkQ4bkxr7jG4jLgKsym+c8547Bx+CTj6xMi/3P92SXvJvu8ObVDxWBF4brMLZ3QXn+/fheU8XyE+1/Yj2YVN2HHrB4sDAzbHbb7GzUeREkymxOWpSaoFYBVrb5EwmAyUz21cwnO2eV+CsZw9DtxEbYTbOlsjKEI5SapuxlKLq63E56WuxcadtOyeRRxaILcc/Kzplu1mDSpZj9ExA6gkDDO90iHE/78p3/F/d1bxD6i221xfdXjN3/77/Hisy+0/7JPtjfPsbm6xe31LZ7vd0jzhGk8YJpOyMuC8fiItMyYpyPm6QDmBE6zABkLQ4F4WmX1cpITVoApI2neoqCgKISAPlkJX5mnvpfccqWaJjOWWUJql5RxmiakJIJySXICezhOWJYMBGBZZqSUMGw22O/36PoBgCjau90enIHD4VBOeU1AlRN4omJUijFgM4hn09BHdFqmO5AUZIhBPOtylnwCAijVq8v4gZ2mKK9yMMpUUgXZfjWh82jK5MeFyMcNP/Ai9BfbeOp9a+N0c6rtlTzDFaRCFBWQeCDS8tMVH7vYA+XlEI+3ZZa8D5uhA0q4OCnPyK6rwm/kNHQFmrju26C8oniNXJhTa86fxoIkiWRW0Gah+9WTSvlmGbsHBu34A+lpHkUEkoSox2lCRwFdp4ZON1cGLJuucn2LJc6Uf8oP+87cpsApl76S/jRXe2+MX8so4e9eFgIRBApRQjn6TkY2L+A5wcozWLsW/p+WhIzUtE8hIPyCJ96/5XU6nQBowu4QkPJScgwBBlEIfYxA1wMpY6HqNVFO8nWNzVMSAEgVwaglx6E05g08YMas3gdRx89cExunZHzK58pUiMqMWfnd82cDvvjyBXa7DpttwHEc8eHuiO+/v8fpuGCaCJvtVtuxBM0BROI5SI5ejaaMzjIFTBxwGBk/fneP8bCABuCbL1/geFxwuHuPWfejeb5J6IaFFSsnSOfVFQHDTaiVvCSBZMMI6lMu2TyqAboVhrIWgcQzZA2v1rymGBnJIZyqFdZ3k/dyaMfB9oxTCD2vr01Qo6xfuhpjyMpg5T1yAmreO+1qwTfm7cKAFGgBYbvfY399LePlpHQGSRLPzgu8/HMYhMRgkc0A5adU+ZClz7PplTyydkAlH3pP9mw5T21OnXwAo4TVns92OzcWOlYPi5VHA4X+TJk1xZXL4BzY0v01DISuAwIlHA8fMM9H/PDtgIcPdwAB++0Ntv0O+E3Cs+cvEWOPbtiKnjXs0HUbLPNLPHvxDGkZMU8HLNMRKc2YDEPNE+ZpkvEt1RvECuTEqPMazdsToCUhJSkcYXsq5VjzzCXx2shdV9JBpCSesNtNr9goY5xm8YhaMpZFvLLvH09YFkllImFyGcMgxVZs1nJmbLYb7HY7nI4H8bLNCTFSwcrG2wwr913AdhPRdRFDJ/Na75cCIGbIMrwIQMJygxWCCUJ7KZdIgDUtyJZ/AudcBBNObYRJsU+TO+tDS9fkky2YscwwUD2MkofK+exKx1rreWu9Tr47G9rFSyomRoDFiywliSoYBiP/UMMzc2qfDVRkhelJihAkFF/lSS0eRmVPlQkoc+HGoMamjs2Ag4KjzOh0aV0b/KkTL5hbk99TEA/PlDGeJsRA4h3u86q62Spyr3xm+hkX+ggE8XDqIphF/xSeWLGu50tlzWz8LN5b5T5bY3YH3FH3c9+p7EmyL5kB6kqqo6hgNiMhLwwx+Io9JxCB4qfR8icbm6Zp0kEFBRAMdLkkejbhH0MEIpXkWQyUU41QgCWQ5qWU+jXi6IdeAY6siFnwAYAyFVdOBFtzgrlUppSwmAu4GahSLlZIRPls2A149WqH/a7D8+cb3Fz3ePuG8f2393g8zKCwRdcPQrvBgHloGI+cbFMDiwnQeNCIJTHe/vSIx/cn/PqfPsNvnt3gtF1wffuA4zRhOhDGMYNZGSEI0HxXAMAa1qUTXgTT2tgkm85b4p+4WovCha/owteXlA2U34sQ96GLTbtPMSrv1v1xIl0zVGOg/h3MxkieaoWfGHc1NBX3ba2A0vcDbp49E8OngZR5QtIEj9a7GuKISq9ArYpj9O0moAnlU2EnRpFQaE5urbHmlgCzbJenBlv2oQiUBubyxyjESzF7aZ2/5jlXVr7rpCrQwhnT/IB5Cfjhu4S3r3/C85ef41f/8I/ohwHbX++R8m9wOh7w4d1bpJxw9ewFdtcvEDihe/UKxAmHwz1Op0dMpxPe/fwTptMJjw9vMeVJiqzkGWBGIC652IgIOYQCfi2+GUnUzqCVhqIr72tJw03YyKmEVlxZOqmalzOGsS8u4ItWmqMQMc8J4zxjnCcBSn2P7W5XhA9RwHa7BSFgGIZiCO970tDI+q+L+q8LGAYxMvVdLDkHbN+HICd+RBkx13qcnOX00bf5sVU+V16qNwtwfpJFDWmc8wLgl/exf9fT8KQ0Vtpc73VT9mj9PnaeW6r8Ncpjrkrg2fwQgVZ7g9QQJFXpEtKyIISafJ60ak8uBmWn2JLGwhdFsPbfQIDJOO/FYrRIzU/dz/o/gp7WEmExFgLNXQDxAllPbwVKMv8mUk3pDYFALG7v4zQjhYBdGEr4uZ22XVp7AzbWlq1BAYSxAwUGqVFe+ir0VgzoYDWo6ogLfdbKVG5qFbjb4RUjdZ2kPTIjvAFsoISXAiqnCqZlx69/gR7/Da9xkgO7aGGKWmXTLkLNeYUMpLjU78zQRGY4luT11StA/9PJ6b6d5nueYIl5TWH2MtzLQwBAkJASXwZ5niWHyma7xa9/8wzbbYdhEzBOE+4fTvjpp0ecjgs2uysMw6btO1kpdzSYz0ZulfoYhIUDThPjzY+PON1P+OI3t/jqV89wPM344fsHPDwCeQGW2bevir7NUz5/h612Mba6ufR0Y5d0c5WToNzTysmSWB1OYq54TjE0rX5v260v5/rrxcvLsPPrMl03RqXG2LPCb2d9a/mIl7eFD9r+JQkZ/ezl5wCAx4c7zONJ8NCynBmZ6nxWmrV2mxGd4d86UgrVmzKosd8fBrM7sJOxU5UP+h/v2XRxTvxnOs4y/4S2XwIsbGOiTIwMRMaqSimBkDhhPD1gHAN4YXz4+T1unz3HF1//ClHzGM3zl5iXGafjEcyM3fVzbHa3AC8g/hzghNPxA8bTPabxhPfvXmMaTzgcHjE93IsBNs2FoGyuI8yoLOHYzFAcJTInsHhDRTMA5oyUXPoFxeBmdFrSgpRqxV/JnclYloxpXrAkxjipTE2Cu/q+x3a7bXJgDsOAzWaDrouKpxOo66qxScdg3kx9HzD0cljSd4QYpIJXKPgpou86WKEYKyKVs4SPE9W8UKxhoSuoVJbSwwzA79GqH6wv8v8tRPLLV2NwOvvuEn+oelGhz8YAY/1Y93WN/fx72T3byqFLfKxgKGakZQbn5HikVZdX/T1XDFn1WtnLOefiUKIjk2djaHSpy7C39tlwBDGjg3gkLWwHdtXU0yBU98eZHltwG4F0PCkzpmlCDAFxcKlRzq7W0GSfNBgKwtOoE4MdFganKl/WfNucdKzbXlf2UqLm7yU5OAWwdLFUIE6K0czbS3CctpLdwWqZgzqaX7r+l8LozNiUPWFyTWLprWymzAFUFYIilPXZ0o6CdKJ2G5BMmD8NtRI9tm/MUk2QWEwCYbOJ2O168RbYdYh9wO1Vh2fPBwxDwDwlvH9/xOPDJOFASUoSi3Gsuh4aU/YdavQZPdUx+2TOwDQLsxpPCcfHhCUzdtsBz57t8YAFp4cZmQnEkszYM7bMQriSp4OllCQDltGsGlmK/nJ+eS6kYK8lvpap2HXO1HRkKyV0fW95HblnymbX0wD1nPJsrjKZygQJNi5WEMiAq15XPr/g91yoohJXAUih/M3l1KzakgFb0S522G33iF2HzaZH7CIO9x/w4edRhGPKZc3Pp70CZ6CehPn9WBQr7auEg+mcKQ0zCZ3b/mk8uWys1Nrhbb9Vy7eO6Vwi+h6Xp+qudSCtDsz9tBPeXPvODCBjmScgMQ6P93j/5g26YUDsxMiCzNjtrgBAS/YS8pJxODyC04wlTeCFEShiv7vF0O/QdxHbzQY5z5jHgwiulJAXy7U0ixKVcjkhIViuKl1fkh4HQq0m2YB5DdEFAyyeHiHL2CTvEyOmjBgS5qUviuKSCOCEx8cHfHj/Dn2/xWbYIaWEx4cDjocjTqeTAiI5geukLFcxMnedT2Ypn1sC4WA/1ZNGjJFazl15nhlShEZc4nDdT5lZi0/Ymj2xZxVBVWrwS34BOLVWqIa+PJVVSrp8tfzm3EXdgxDv2dSMhTx00vU2nvNUn9fjca8VxbUNG2cQkiaoDkwotbrIwhetyoIZxIw/W6uW7FkN2ywedla9pECEknixBRXWx8DmtOg4Fl2SA1WCsrPYMLPer2OB0JsZPqRfCUsWHmZgwp/u2c9G8VLjtlTDY6ksCQVz2r8AaBi5A6mFdlaLYTyJbO3dbczglMq6F08zPZUOCowYlqS8ysLmEEQaf5Im/q0vw1Cm+GRhmQ4NywgJtV8eVJIRtG0SB5sM/LZDajl6USKLHIXK0fqdlZlnk9MshzAASw6UAdjvO+x3Pfoh4Hha8PCQ8PgwgzmAQoe24qU7SXW40DanceHiQUSmfAPHUdbu9pgwT4ycCNtdj5vnA46Pkkyc2by5BJSbvMxZ+m1hnGtly2g9nG2cKjtrP3XuHa0a3/TUYx4vvr0VYrLVrfTXvPX8MuyyFt1sxiq/D31fUZ/jZuznxqazdzbv1zBUIyB9T5WXlT/bCJmBrh9wdXWLEAjDMGBJM04Pj3h4967xJq+0XsNIAN3TqAas9QFI/VPRrPPeNhnfVM10W8zmdD3WT7nKoyowGMrTmnmmeiBS3ktrYqhrC4gc15uXZQIzcDhEfHj/M2LsSuVvgLDZ7nS/R8zLAl4mpFEwVM4LkCNiGLDbPUPf79F1OwzDFTglLMcjeEnIeUFS7IRlAuWknvqGmrjmaiMqc0zIpZJaPeRVuWBedFy9HtDL2CJlxCAVnLfbueRHyzlhmSc8PtxL/iQtQDVNM46HIw6PB8zTJEU0SXFSF0Goobkl/YBGCNjhbYzRYafKG4lqcuQWmztshNYQbTroZYJpP6QLf1Bzn8q/lnm0X69fteqjIYJGdHjc7/e4fmgYR8LmuNIljGeoI0DTW4+MalflewtRd3dQxY6FHzqxJZ7gaiMIAU0KiDKYFdcsPI1LH4uhW7E7sYaGlmfqnPBaVJYPHC6C8W6/YOd9Kf1xEx+ISoGSpEZ3iaywRP2Gd6i0Z3uf3LtIJ8ruCoqZzNaW9e/KfqpBuOIDRxAOv1PhptqQ5v9k7RdpnksmAoLqDRbKSg7P1ll1QvCct126PtnY1GsCxxgkvCMjY8pSmk8CPRgRjHrGK4ABjFJ2EmSAkMvAy2kUkZqh9USz3edgaKhLlhLBhllZB7qotRosJ6kA8OL5Dr/6m8+w2fZ4+dUV9tcDth3jasNIy4Lvvn2L3//+EXcfEo6niJSiJNqlCBCDSELwAgVNUKcrSCglRMWSL4peHwIoAHNi3D8uCCFh92bE1Z9HdEPA55/f4tXXt/j2D+/x85ufsCQAdA3mzjgEGFIFa0kC1iOkOgQnAklWM+QE5CSeLkmxtCx4i4CKS6+zAKfibePj280KnZHN984xLgONHqRc8hAIVqPbnvfAlgFmq15RIlrLVU+xKqiWEAOuSjXqibiey5/RKa9+gp1xKgQViKyVM6TfpO6elhRkt9vj88++wG5/hS9+/TWub2/wx9//K/5/j3eYT0ekaUbWk5lewzQ8Cum6Hsw1LKF0lWzj63yadwrLSZEfhQkIU7jWEqjuj8psmjkwDuVcZosRChWMWcJ+Y1uFfMivTz01tHcyo4SeATXGeBzvccyMx4cPeP3jj4hdh89efobrm2tc3TzDl9/8Gl0/4DguGMcFjw9H/PD7P2I6HXB9tcfVfoduGPDVq8/R9R2kokPGsky4v3+HaRrx+PAedx9+xrLMOBwegHkCphkpjQCyhMaUShA1t4fR1KKnaSaThR50DrsAzp2s34ZLzh5Zy4zN0GNZEj48ADmPQJ7w5z/+Hq9/+BEvXnyOL159jXle8N23f8a79+8xjo/oYkanYXJdF4viRQR0XUTsopSHj1EThXfo44ChG9D3A/q+F2+HIMKpDxHMUfq1SHheTgsSi6utnERYmBek0kTQvcV2+uxO2fki+4BR3aWr0LHy3wJ+dN9buFQt9WDEWYWhKH2+UW5A1lpJAqqyLLcr7ZViVyY/CBRYjA6OBz15KV0XZVg9xXII6kUmSbhPCyPkJKgm6OiiVBWlRMXL1xJ/m1FbZAiDicSQkzLmlDGmhFPKiJzRkeQGk/xnYpRiZ9A2AEIGONigCiGJWEC8ODgHD6xPWT2SidDHgEjAmBmjJno9hRmZGV2MGNQzqEgFbgtxMGulID3di2qIl/mTkL8ZwAyVZZlhktSfxrVdriAwhogQOwCMaUlILMnAMUr8fegIfS+ye+nUsyslxLyIoSHa6XVd/5TFc1gA7yegpH+jyzBUF8WDMWXCaVHlWMEfmcBVZWxReS2A1sA7F4ZWDNDmGVuAa5XtgCZyViNMStqG5rGzsGIJF06laAtIEj1PKaHrCC9e9NjtNvjqqyu8+uIKzMB//c8/4rs/f8A0AYwBXQc11AozMUN3MN0CBKNU8/6Vd1vRA/GImxbGm/cTIi3or3Z48TKBIuPll1e4fbXB939+xM/v3iMthF1/hT70yJyQspZpX8TTPUAOEXNCqRTLnLHYuKgz1li2iuUiAiCMpWpP+nw11Nl3BQ+xAHmoAiRiW9bUGxeAuqfKwf1FwyeXf8zmFW6Kc01oXt5N1nffuu37it+8Ef+pq/HUYjM/mieCVK9k6P7Xw8yssvV6/wy//ubvMGw2iNsIigF/+sPv8F/u/j8Y5xlIC5ClomGneYhsZigQ+q4XzJ9zMYD66rw2N0UuIJf1K79ynW3znmxQUqNQfgofsCgCXVZbckvloQcK3udD7i9+AsWmIM9IpEY5DCD54ni4Q84Z93dv8ebH7xFCxO3zF9hfX2N3fY3Pv/wKsevx7sM97h4eMT0+4P6Hb5HmE25ub3F9e4M+bvHq5Zfi2UkZoIy0zLi/f49pGnF8vMfh/j3SsuB0uEeaR8zzhDwewJlLsmQJN9VQZC3RxDkjBaMLmQjmLPoMS87MYuDT/JoSSpUxLwl912FeEu4fHvHh/gGHx4w//uH3eP3TT9jvr3Fz/QzzNOPH737Au3fvkPOEzUZ6NPR9MTYZVum0KEXsAro+ys+hR99v0PcDutihc2kpKBCGoVOjhXlzctm7ZPSieyn7Kq1Qfu2ysxiur1i9kIvSa80FRO2OXZNXxakwnQe1hD08jrXDxXO6NRr18p7g8/CZntce5lQ9w/5Z+wzjI358/sD2jHcRgSKBOABZPZxYDghiYGDoNKcfFd5BlvtIgblgqVz5Ast/cs5YZqGlKS3Cx2MqIfEVP9bIG5B4wDEg+clY7BO5fgKGZTSjusmbefWHNGJcJTB6Em/khRmneVFDp1TJjkGKsQh2q7i3esxWHG1hwCHnwlSirlGCwB5L8x9AtQo3VulqinFL/lP6w8A0Syi8YUkoX+2jJDdPXQTrXqWkGEvfk8GalNx0c/eST7g+2dhkG81KUBZzIdeB0eperzQYuGtOYYqWU//ZAKRpb421U47KZBqCMAFa/oknwXbXY7cf8OzZFjfPtuhCwiYumE6SJf/u7ojDgZCTef6YYEAdV2EahMo2VGU38CGpccpGn1MGJQmXOx4SNgzsX2ywuQ7YbDuJc1yqbdLPk9mDShrMqi8UHO6HWjrK9Vb70IyO56CiesWUUA6mZo2MAVVG5J52ypu3OrdAwDpfT+aMmZRnHCDwp+ZlwA3YqgMsGx7kFqn2G74FPxA0JGKz1MxhCBF9N2AYNri5ucXtixfYv/kJYRhA8wzGJEY78h5f9aTAQuByznqCw/D7sY6x9nk9pxUQsiplHia59UEFab6NSxhytV30SZuXuoY+UartW7/DveJfQjK00ZSk6lueJqTDETF22A49+hix211h6Af0my3m+YiJF+Ql4fh4wOnwgD5E7PoBiIyh32DYbBF78f6ZlxkMwjidkHLGaTyC5glxnsXwm4EQFwE3wcCSAgRdezmdDQgqpI0GshkUmIsZn9mUI0YKGSmQ/MxSDUvyKsm6nI4HTOOM7WaHaRwxzwuOhwMOj49IeUTQcNwSGleMTRKKGKNV5bRTOSoeTU2IpTeKMIMzabWqCu4EEFT+a6cwZYVVkJfVNsCsf1zASoVmsf5uxedlKzr+Ue7zN7V02jzv9y2f32fhZk3/3f2li/rS+l2dk3Yc9XfP4wEICFJDSg7SeNZQrayKVxFbIDGaKUDIbvz2iz/9FrCXkVhOwMiBJA+UCu9yo7Gt6c5dYVuYm5fqze7yfNW2fHCKkMmfpMp4+IghpvGQcDQn3rj6mVe6yrxV6FA0ryeuCpaoZVGi6YIDgRCLYbBNpmkeA7nMi3LpKgfIU8n//muNobLP2s8CRv2SlfVvhVWVq4X+UPiDGZvgDE1c6M7RlTbWyg69r+wFzy/EU/zqqsNu12EYIpY5YzwtuPswQbJA9eXwkLV1U7DJtwn3h17VOCu9zgyMk4D5cUyYxoQ4EDa7DkMX0G+OYjB1ctf6Xyqasc1fGRxMepb3AS0F2L3twrnf26/4/KP20XJDJfH1SQAAyV9JREFUxXl1vt173Due9iA3uV8NV2i+Of/Fr721tcYZbTQCl8/bPgD1MIDP3t+EBbEoX5thh812i83NDt2mw5s3ryUsJEZJFVFk0/l8S0oKJe5wHsro4Fwzjtq3dqy0Mmybd04zaWWPPbGi7uN1iJXwFS/oCrcpeLcaJOv8FmNAkcOMlEQhzGlCTkeEEDFsxHCy3WV03YBuGAA8YFkSpmkSrDGesBm24D2AEDB0O3S9eJbHjiTnGjPidAIzY54mhDiLNzoLDlooIAQ1RhBKsYfKd7ImE24rbeVMiMqnSfcjmIrRPFDGogeAm0G8w4+d4KecFhyPj3Iwy4Sh22KeZpxOR5yOJ8SYEHvDS6EcVkP1Q/NqiiGUvL8lp4/mRTSMamRaKmbbOpbqE3X1iofPmh8o7dfhO/3BPmmwyPrXyjXO9TIXEYLLV5Fv636t2rG+m/5jBxkVJ656VTCUSe2V8ewCp6vsprZX+L3hSdPtuU27wir/TW5J1VTdN2s+Vf5bwzwtf2lCXrkd2Nhr2JfNKhUQrPLJ1lLpwiGaOimXxuvGLCmXCQtLf8x7PXEWY1uRxyj6WqWdahup847iIW5mkoKhYPKbbWCFJ5Prc/HYM4xAwT8FCV+kwmtDCOIIpM/Z4QQRI1uxlUIgfm3oEllcvD7Z2DTPs4C6VBVosXSbp4lMpBmiLO6ac0bW2EA7BQWAqKXkgUpsDTPWSVtSQsqLljKXwcUQEbtalaEyepkUydNIABIOj3cAOuQ5I+QR05jweFowHhe8fzvh7n1GThFdH2W5QlWWTKAVwlcwxJDTwMxZvYu4bFQjaGNwdw8TvvvuDvurHtsbCcvabXt88fUOp1PC+zczHh9mBD3tdOTnQKQryqgbzTL8JxdO0C46Nb+bTb3Ezbqy6B4IruPkbX3+V64nZXYjtPWnVypL301409lzlzmx3E+rGwvoLO9qMZkx9y524Mg4Hh7x52//iP3VNfbXVwATtsMO/+E//iecTkd894c/4P3PPyMtM8bTCcwZnSZzrqBXmg+B9FRZlJ7oq9oZwFP68n9fupqTxgtTUHPHtGtffluDWPsPy7O8fsQxyJL2xr7TvV33ho03gHqL8Zd3jqcHfHg3Y1kmqayy2YC6HSgOkocJC5gXPN79hOnhe8S+x4d336PrewzDFsOwlUR1sUegiOvNc2xe7ZBywmk8Ykkz5umE8XjAsix4vL+TSnmadJzLyVUufSxDIQFOls/J8mwx1xN/g+FEwIb7wrcsYfc0y+nr8fAB336rJX/He8Q4YxgCun4PIkLfdehCLf9NJHwwRAF0fSdu39vNBkPfyd8kvFNOgIPTmxgUxW9IypgGDe/j4mFTkrA62inLB1McSkQyyOd+8pRT6ADt5xWdtJcaU895UqU765OXWT4o9CxUS++PXnO1sWl/q8D1oL+l+zZkGM3v3iBFCqBrNVI5hZZwDXH1lwqC+u6cAc1dMs+SS4dyTb4colJRnjGNE6ZpwrQsmPIChIyeqswBi/zIkLXIdrpXtraE/3RMUsIXBhAyEqostvj8s7GTyQPNowigA6FTL7ScGQsyetbcCHp/6Yspds0EQoGNhkuRnOhlAAvVdc2aS6fmq6p9rAqsoz8WA7ZxvBpOCZBPlRUI1HdAJNnnbEaF6rZPEOMaR2mXonhcfDJa+r95zbMkGeLM4C4jZZe3kiwcUDyq21N0bpJPy0ljqBXlgIKFvIIkwJ4wL0vxHAKJN17XdTV5eqpFLgAprNBp3rh+6LDZDtjuIn7zt7d4/mKLwAl//vY9pnHB/f2MnCMoRMnXSc57g6txuOTgZpZxQxKqmnesGSJJsY1nNnf3I/74x/fY7jt8+TdXuNpvcXs94bOXgxii7ic8HhYJ5Qx1Pogs32YoPN/mJevpLSiBkZQ2nrqUzxFgYR9Pkow3cFQGWtambhku/fHXJay13mv/i3Dso+/4pavhP3z+nckZCV0i3H24w7/89rfY7ff49d/9DW5fPMfzmxf4j//P/4TT8Yjvv/0DPrx7C84J0zwD4FIQo8VQ3pvC5rVdT//TdkBrwKKK88g11cDEqmAW78KL1/nnVcZmd5dTBvQTPZ/0r3T91+dZDjvtkCMHaWs8PiKnBfM8grqIrh8wLVnD7xmMESkf8PhhwXJ8ixg7vN9dIXYd+mFAP2w0B0yPGCRNwabfg3PC8mJETgvG8YDj8Q5pmXF4fMA0nZCWBfM4qQKdlZ9y4fE21hDkEM+MvUXH0H/MkhKkQ8BuMyD1GaAb9EMvei8HMC84PN5hPJ5Er8kzrnY9uqHHZiM8PmpYnLxXVqwYl2LAoGkvtsMGXdejj537XqJygJq/0/TOQFRot4vRGf1N6a7Fq4RGKhkJoVbdg6yquInbS1RTHrlAa6Z4XrjOdYNKP83zWO1zo1GIiLQetYZs63CbnqOOouVrZzY4NxSbL2/MZpisEaxXwspN/puTRc5Is1gX7M3VPkBIy4LxNGIaJ8ycsECiqgp80KdEbxYXtBqmWnl3YNFRmMRrxwxepgJb7slmFjwWVjkQKWiCcSrKZcoJlMSzKUSNZjC09UQKFv8OO+izvqVZ5CRx9YQtOiTBGXit8/WfGLClmFuhY6Uxw4qARJ2FPgKBQHMCtPiIz3lq742mQ2n43acIpU82NkklLtuYQUpihqQntvUUM4ilBYBzk0b9rHTW4mmb/VCNOqaMzMuMaZp0o5CCpVBc0oWnO4DGhM7ANGccH+9A6JAXgHjEdMx49/OC0yHhw7sJ9x8YXQ8MmwhzJ4QJAW73vYXUZNsQenqWk9D4Qho/GqA5Vwj3jzOOh3vc3Gzw1Te3wG3Abtvj1dc7HA4L3r99wONxRN8N2G52WiGmzpMwL5dUGlwYek4JVvQvgHTRbUMY83DzDpS1QxHml1hhK6hbBa1V/j5uXa/z53+ur6YJz/PsT2WOzrDa7Kt2jDVO2D5ZAxJb4/U7oya8Ph4OOD5+i/3VFV6+fCVrc32Ff/8f/w9M04h5TjgtC04P93h8uEdOCZu+x9D36pYrzdYkpMpIUZUKf0mC8uoG7hXt8xNGx1SpgqpyAu4HRO3ar9BVmYt6GlxdTk0hLbSUTWjYWnJJGGfGTwCIXVcYkXlmjcdHHB/vcTo+Yp4mDMMGt59/jevnn2vVygRgxsP9G8yPb0Ehouu3CKHDdnuD7fYWm80eLz//FXa7a1ztnmNztQUTsPCMjIxxPOFwfMA8jXjz5kc8PNzh9HiPaRZjIHIGWSJlar2LjNcwAE6WTwIl5FJVJ+QgAoxZQmKurq8wzws+3N1hHEccDx/w+qcfZB56yRW33fa4urrSXEydgmnAvFksn4BUPuzU2DRgGHr0XSfCSr/vYhQlTYFSgAi6EAhDZ5XNKvif5rnyUy4EUzBOoT9GqZBoQv0MalBLT81mZM933D6rlFg2M6++LxSsbXgd4FyRkN/PEoQ7M1PVvssLyn5aG3jXlwdKgIQFi4wScGAhRoCE+sRAGDpJpIxV8vmUCJmE7oDqncbMmMYR0zRiSjMmTpJ4lVqf2iJnL4xV/Hkq57aUfplz8dSIFgjhFsAbm+yH0IIkie2UNkvC6J4bY5MoQlYauzX82IIanYRA6IIYm2yfgasBFCEUw2HxOnB8pPQNIuf0U0cbOhdeVvZRJiMlQBP+G8i0BLAgIGrC29B1Ggb517kaYxNLdSUzJJKC40C1uqQYRnQcXMMZjY5jiBWUMleDgF6m9M3zjHGaxGDf9aXYQN9LuHcI3tgkcy/GKML+ZotnL66wv+rx679/hVefX+HH797gd//9NU7HGQ/3CZw1ua56bXL5Hwrf4czgKAeGS8rlsCxrURdWmWOnqYIRAQTC3cMJ4zjh5maDV9/cYj/scXN1wouXPY4Hwo/3Ex6PC7quw7AZCvEYsC7e+DBMKoZjCadMiEhCWaHmlaqX9h+Vj1l6Apl3+2meNZ63VMWm7uuKu9bJx58yNF26mo8/opx+Snu/hOHO7lkZv3SXAgiqzBPu7+7wLw//A1fX17i9fY7r3Q2e3bzA81cvcTwdMU4nPBwfsYwjpsMBYEkS3Xc9rOoS4HgH6kEorTBUg5UKdvQYCigGgbI0fAFHrtb6Ey5r3/YfFxynahw5DIVWxjQyuBSaEE8dyUEH5CBjGI+PODzc43Q6YMkJ/bDB9voWw/4a4mA9IecjHj68w8M0Cg/ueiAEbLdX2OyuMWx2eP7qG2z219hu9xi2O5spAIzT6RGPh/eY5hFvf/5RCrYcHjHOb/VAvYb3+OIWlSfLYVfW/QVQEU5Z83sGxSvMwDD0uL6+xrwseP/hEeM443A64vB4gnhSbrDf9dhsI3ZXHUJYGV11TquXeIdhO4hX3WaQwz1NTRDV2NTFqG1IdTRClJB71Sv9wQpYDzr0nY0Xv426sFwua1rucXqM4S77vSo3ZfLaqrREWHsmtzTndJmzG3BGwAWLMUMiWOo3JksLjYI0t+I5a/klm0KBX1RzWZaclpCw8MCGfWOzl5mhhYDkMICS8E8tcFmkf0oJ03gSXSxnLCSGDOYWtwp9mgdbOzkEMTSBoQdiNZLIEm9YVFFzWKkLVx0GoLqSFC4SPFWrFPeKMQJJ5VPzdM2UnJ7vFwglRI6INH8SMJHz6DLeGFyBsUJPsmDtiAVH2PqElX6mnEoq5Had5AsWI4e0o/lIDdsZBhFbjFZr/4Trfy2MTg0WkrSuVSBsAUzAM9rFWl/VAOGIGw7wmrAgN1ivNBjxmFGGocwC9YSu02CBDCxTwuPDhNNRqkw11cFQAW7toPzHFLyaYNPNjeVGKgoZgSDWQ1YjSUoZh8cZ9x9GLGDsthuAAza7iGELLUNqmfcJzbbhtYLmUCFV8GmcQLwK6vx4y7Iph9WVz8I46vu88H1q7dYKoNA7F2Zrz9f+OgC2mu0qeLn53GbijJm7O5uWHNC41M/yd9mUbUtGi3KavGBZZjze3+Hu3RaZE7ZXG3BOuL66xueff4GHfsB8Eg+agOq9VPeKnq4aTXqF74n5fKrvZ4CQzv8sU9h8pwCqmd8qqDxQYz//xahVA0dBdV/JR6Tfk6sG5vpEdU6JZE9P4xE5J+ymUQV5Ruwi+qFHOgXMdrKvpaNympCWE2YCTsc7cJ7Rpw2WLEkycxBPnpQSAsT7abe7AYUOfdeDILkK8jxpAk1JgCx7hJXYTWOQvRwspE6y/oAgZUAlD5ECYTWyMwObzaBKSihzGrsOFAibTY/tZpDcB+z3tQncamyKlntAE16GUD08yE2tGTwyyRqJd5MkGDdjU+ZLe9cBlDUYaYB3a5j52MWMs0T11lnPg9YvbEEjCq15NOONRNXDzI2kAC6qPMwBOa8IrtuU3+H2BZXv24uaZ0zWSR6EenLHOpACPiwMBNVAaxNmVcFEhkLXbK3knBuaC48nAS1kyeGDUKnU19F4ft8Wr2San0Tbn6Dy3DlPoDOG284jnX1nq2/gzfpuZoiSbYb5bN0vXdT+p84NA5TtsKW4tbTFS+pQ2/acceuvcfkE4YFCdSkEyrxI57yRJAKcn9iLyttVk6HqPqQYymGW0ra9Yr1mKAqC/Q5Icufrmxvsdj2AHtNMGEfG8ZQwnhI4A5ZE3/mjucmuf7OFtuWKn2zvlBNacvtFH80MLIt4kB4PEx7vR+TMuL7eIYYZ77YLQs+llLZOgc6Nvv7iMlPp8xm/U6BhYebVYHqOPeojK6xRh+B4of2Xz54xXnKpzeZzcj+f6EzrDfWRG8/urZ+t+1Cb8PxU2mcnE4kk1xd4wjyPeLj/gPdvt9hcbbHvrhFBuL25xatXX+L48ID3S0JOCwKoeIKu6cFkc2G0rm/loMi6thIUvyzFzi93fNG0xat1axR/VLr2c7WWN+SJW74p81huLNgYqIc5DM4Js2KofreDhdrErkPseuRlRC6ekZLfNucZaT5hIeB0fEDmhHneYFmmqjeBsKRZDvrigN3+BiF26LoBgFS+TIt4QHFWIzEzSgIvj6GMjwAABZ23WOarVAMmgAMARGw3vR7O1jUbBsm31G8CNkMHClUvBFAOnYrxPQY1LsVS8TOEUNaxbBsiPZijwi8Mg4nOqqFeOZ/tDS6yqjKCsrfZ6TK0prt6qLZmM6VznyiKbE/YAcE5b3N4Bk/TfzmANDo7e571O169w2HYX7BEVaNMZeZMNQyupMRbP7fCXfY+1lw1Xl9h9289D+V5p4zYoSwg2AFB+YeO0xdg8ctT2vR/OzlGcF5avIosADdUeCbPyf1itGO4jLjgSplCNf4UGceKNX2Pn7i0n+tDwnJpgib2PMhowa1jKWrzF2CovyhBuDARTRDOCacllZLhxQBDVIw8280GOWV0zGJFLHuUW6ah4MIsdSlpwkhN+p2NgcWop/yxLGpSxiSMQhdJY922mw7PbjvsthFd6IEc8fDhiD/97gPGkcF5wHa3gVkQpXPUEBIDyIlBISFlKd8pFZ4MMIp3gQyiA0jSpQeKsOS4TIRxzvj2Tx/w85tHfP7NDr/6p5di0X8/gmnEeAAO7xeJfe46AZlwpyYm1JQ5mteMGcuiq1BlhZHWRiQjnXOgw4V5laErMa0/a/ri22AU8Nx81oDOFu7L/tFx6ljLhnSbp1WduG5cs767N+RyV3u1JwFmDXZu/gDAWQqasZRZHU8J3/7ut/j5+z/h1ZdfAdM/Ythu8Xe//jv80z/9P/DTD9/hv2+3OD4+4MO7Nzg83JVwqOI5A3X2ZVU0HBO7FIa2BjNN3904vTQrApD9XfYSBuspTgH7qHNh3qVQxbcgddL+5XovQ/MOdVHWThPiW9XEsnSwddGYZjWecJpx9/aN5MTaXqHfXSHlGfvbawy7HsR3SLOcLg1BqjkwDhjHE6YpYBx/BlFECD0obqSd3U6qBu6usLt+jiFu8c03n6HrB5zGIx4PHySR+P0HTMcjxvGA+7u3WNKMZTwgLSeZhyTutpGClGwvYKLSXkoZx3GRZJeZETNj6BnbzQYMRlqS5JZilmTdYHRdh00/ACDkOUmFJObqIqzAwXs27Ta9eDb1nSTMJanvRMxFqSYQEmckJEQQNrFD14knSSIg54Q0LyhJHo2+vIAhNIdn7OnOCZanT74dbTAX91zzuqj8S+6thuOPXM7wIHwtFr4HW4k1b+KnQ6E8/6wVVT04rP271EYItRQ9aTjmPM84nYC+i+jDBsyhjIzJTqbleQGzFU5xyuB5BicJ+0EvIQQZMs6o/I4bJYWwBm2cJVE2x4AUULzuiCKY9dTuqSvXvWq/RyIMISIzY8yL5G3SEHYOAZFjye90KbF36/kgSxiVr0b1pMlISDSDOSOojsLkvEn8GutvDmMBJDkFssvDFJJWnyOgG7Ss9RyQFwKyVmIs66un8rof8lKTj/41rmHYAJCEtn2MotzN4vUjHrEJmSVpMhEw9L1W4swa4ljptpG/hJJXJWgy0iVnTGmSPCw5lVPbSyFItgcsfxwREEkMLM+fvcA//OM/IcaAeTnip9czfnqd8NNPI+ZpQaQthqFzCjJQLKioskDCSrWk/VKN4UFD70rC/RDFaCiAEAhSojotGXyY8e0f3uPu5wOevdzi7//mK4zTjMeHP+G0HJBmwnJaBMMpLmIWLwuJVqxrXapWUUCE83TVvrJTJgs/Aq3Ppy5eXkmqEYF+7dDMf+W5pYX2z6ZxN9VOv3jKK4ocL/UeGk/2HVTabw5VzxSTVj4UDGNecmBkLDg+Tvj9b/8rfvrj7/Dq66/wN//0T+iHAf/8j/8e/+7f/Qf8+MN3+G////+M/4u3P2+SJEfuBNGfAjAzPyIirzqb3STn4izfW9kVefK+/2d4sys7szPLIdlHdXVVHpFx+GFmAPT9oaoAzNwzK5vCppVkRYS7GQyHQvWnCj1OpwOOj0+YTkeJXAiK8Zt4Jc+uvNvem1Jq+Lfearf90tY2hbPIgAa7MF0cokjajAaTY42hq/FSBVVDdy3teXjfrg+pQt+sO5u3o+SgDF4P+OOIx/c/w3mPbuixu7mB94Tdbo/OESbMmPNJlFSvB8l8xjyOiLPDeXwEXIBzAc73IOfRDVu4EDBsb7Dbv0Dfb/Hdr76C7wLG8YjD4SNinHE6PGAaT5jOZzw/PEiI3XxCjCPAUq3I9DivVSWLl3sOGo2RMZ6lqrMHITDAnRibmIEUGfOsnqw6NyEQQic5Z6Zp1txOlZ/bvIfgMfQ9nHfY9B2GrkenYYPmUW7Nei8YNrHl4ZRnvQ9SDCamwpOrVqErrbkbieq+bjdra+S9si31nkpzVb5xiQBaYJ+mzXqQDaxzt13DaSVkCtVAU7FF1ZwEC2mnLEcsNZ1c8MPrY7p2mTHTey8V5JBAWYp9uHlCcA6OxJDY7lerFgjNy6R2DRlDZoCT6GkOYC+HS6V+t05uOxtlHszYAjmMyTmDg5N/jiSMLovu4laeUoo6ARhfN8OLfB/g0DuJPoicEVNGZ0XNyMkzOp/Ordb2Gv8GwZP0yTkP8h6cpV3iDGYHJC26JZPdPlw7TU1Ynn4h9herbJChZ/ugvgNyRppkD0r0RMVhZmc1/ShHS3Hwy0Txxcam1qjhvZcXpvq9LYQtpIEaggBCY552YmDMuu1i65pmSVS5IRoj3JZgrE2xWCrF6iL6IFUHul4EFydgmjIOzzOmicVyHlzT/1WHtIMM4aUGCplFoBVmU7yjKhLQbCqlqZwZz88TxvOMu68GDEOP0HlsdwHbvUOOkAxYmeCLMqVMYsVMWkxSTwJJAYJ1fKG3XV4rvnSNUfGVz68aQS6UtvZSwLAAROtOGcNeUUThc7bevPi8rP2qpfLJJ5VkvZek7VrKtR2XJGo8PD1iOh6xGTY4Pz/DMbD/9ju8+OoN5nnE7d0LEBEOh4dirCFXgauVj7WVk/QvxjwvjXfr6wKQWsdbvrI+ASjTaIBI/pW8RE17mkIFtNDXadW3urbZ3kXNeZGRvdFdYWkotEkAYmJM4xlEDvM0IkVRPEPfwTmG74LkLwLgvDC6xLEAvHk6aScDgF7C7OYbhK4HwWOzzXCesN3ssdndoN9s4fseMc5wFHAOB8AHnMYTMDtJwJmdhNgpFyVyYjyWWZBxKJhxLmOOOrnExdXY9cK3DJwwM+Y0IXGG9x596AEGZszIZLkPaDE/5tlkxg3vJOGmawGL7qFixKSad6d4S5gSwivvpJXwJWNs1Pz9CXROurmvsRJe/V7KypLSBptxuPEygPXRaPfqa68qUDqUy160vOeCt11v//OXgTvLu0bl46xKjnd2MroYmcS8Z9sXK54nG1ERjYLLLO0vJFHDi1qFsfxulctsPwMa31/XtpWbDXNbDxGWaLVUOGHziMmaJ6CCVGvvmhdGuYpyrv9UbpN6fjI00SVXt/PKLz7TpoGe9mNmIGtuKUcAOURXE+cbrdl7F+K94W//FpfhoZK4Vo2kZf1MDhR+I55NVOTGUp5XDKW0prvYOam6ms3QgmZPNjTZyowljUHD+cS74ObmBuQI9/cTTscRp1PG+ZwQ54zNAHS+odwq7LSTpuiIXKj5XJSXFW+0aqg2nms8xA7Q5sg4PI9ATLi5G3Cz26LvAzZbj24AkBkzsxSLKPxHerbols0VVQxX3vsLV2Gvv3QfVa6wbveTGArmIVzx2597XfVIavvE5nl06S1X9vQvTkSdqxU6LG2IIiOHxc+P9xgPT9jsNphPZwTn8eLVS+zubjHNE3Y3N8hgjKcT+Gy0XxWkwsyscm6hKeVTufHMoHp77VblR5+et2a+GWJo4hW+bDEU13x8djmbu4ZAKra7XPPaYZ3TonE3B69Kn47kQCHHhHk8g5xDjpLrypFWQO46pOCRFAaU1CxqxM4JiJMUWgF5EAWQ9+i3N/ChB1HAbvcSRB6b7Q367RbdsIELYhh3nhDOHcgFjKcJoAkpz6A8q+Ax44+r+qJTYOlEfmQiREeoh8kySN8HEDl1NECZX9ZxeF8xqcizXNeVzLPJF/104dlU9EpbmHrAYXvfDu69U0+sNvdbs25F5+DKdwuGKhi4Spp2n9R21nRXtAOsr2teh5VujO7X9yyUA9FBtHJkSYjdMMMKEU3ArPBMi0cuxrGWqvWxou8X+Z9ghyPmSCJ8UnTdVi8RWWDzsp43bv6hCEVLIVAjFrD4vpUvBGjqgzq8gk1IDE2r+h0XV6VFa55K/iawpNQp+lNLM6i0U/jllfZt7EW+a/ipITHbHwA0bynXh6zTtGyN1h+b0M5coiwspF3mg1BzeNl+a54r0PuXhdWfnbOpehslDUfRk4zCHHV6lMCkP5rJ05gP1YGDyiPlOZhbth5LshohmM39LmtMMKqhRyfMEdD1Dt4BL19u8N33d3DEeHw84f27Ez68n8HYgByD4ZDMc8PosWGCtpfqJ3oSx5rLwgxf5UTfAZCTuhpnKj8TGMdxBk3Ax/sz3v9wggvAi5sbDEOHtz+d8fzwhBkJTB5Zs9jnsqZNnKidyjmH7KpHk3S3BZD134JbrK5qLKrW71ZoRz2xMEGrD5Vn6+wAS+LWv1nW0QDmtatlbwsmXhiBbOBqnW/7X39pdMJVv5qNYo03Lq0EwiJtm57skmfAJRwOH/HD7/4Rw2aHmROeHx8R04y/+eu/xTxPuNlv8f79C8zjiPOT5HGyfDrMUrKSGeItpPHvKaeS96g9DfncZRu7zBGWawCdbju5KLwk2ymggDMDSlkbUX88wQWuCmG4yleAyvAM7LWgz+bXmCfJNBa9gZlNpwDniDifQETo+y04DAjdBuQ6iEeUeId5uBITnK10tXaKXAbnsyS0fEqYxiOc93i4/wld34PhNJxGAOoQdnA7D+c78SJIZw2ti0jzWVzUpwlxmsA5IU1TyTuXcwJnhg+y311mUOIyJwTJscAKUJ2e4psHIhjInrR0fY0Mhyl3jbHJeSmAYPHQlv+tUIAKbOcAClbStxp1BDDxIv/INShiClkVPJdIfbG2QOG1lpS7vWqp7+anCfPCNwxgVQyw7FV7GlhBd764r6FJxiKEqAK4SpNFtly5Pmng0O+Mpo3Wc8qIRJrrRve1Gp1KUYxc+V29R3mo1GGXsrhe6DMm9TzJLNXceM3llhcrCBUnErkzNYAgUU3Qb/zvGmildrF0DEQEYsmfcx5neOew7ZYJUk0JWh8AtERRjSEMbwDBE5gc1DFLPkL1IPiksswMcS9bKoDMKNijcwEMRu568UZOSfMNqBfNuoOoNPRvcc3TrHJUDM4xxeLBrbG5sGMqLgoSinu/wVTXFBmQCa7KFJlRrkljkHW/MiAHZk0pb4JUwSRUDyvvCTc3HkPv0PkTDk9/REqMP/3hHg8PRxyfj/B+AJGsh1RmBaDyo5XlRsVLDKUyx7mFFxNDT3DJlzEVkK0g+Okw4XSesb3b4Ol+Ahzj9asb+A64fzfhh9NJMJ3mh8mKG01mCh1QqbLl4IrXwxLLGDBo6UU4bAM3Lq9GASgcWzEro8FYCwOEYakVDy19WqsIn8cIn7rWB1vteHNRHFhOuanFVcqz0WCztkftHFVABTPogTIYCU+P9/jn//nfMWy2+O7013jx+jUoMv7Tf/zPmKYJf/zh93j//i3SPGE+HcBZMZTy78wix3My/spNvkuqSpAr3ASrnn5mbppb9Wc55LU5KofNXAoEtWviHMMX2m6Mpo3sA5pcd0VAVtlSJxzNnq+i2faDhGlnUIpwAPp+B0cO8fyE7AIIEA9tIpCTDH4MUtmCokSCMjiekPKI42NEPB/gfMDD+z181zdMRoayCXuEXY+ONuqJOSNzRIozoob3xWlCioqh5qnoiOYx6Duv/Wdh6crTTFZ5Z300o0iVhV7Dj0kLp1RyrHktSzLwEAqmotU+NpzhIPzSFx1SKmB6NYi1T9WDu/qjpiJe01gTNqX8p/CFxuiFxRPXqZQbSFZZQ8Orik6DostZX3OZw8UjzZ9Kd1nzMYKBTGu2V+jvukm+peH1NFhOIOmj8cDiUZYNxzQH3M2huMkB052yuh55llB88g4UJJ1BVDuENz6q07KOjAGoUpQss6QWIzE0VSxZZ6mYctp2dW9Y64Jz9E4N94s5Y5wmiVzwnR6IobRp2Lg9jG3nteTCJSA4QoYcppl3Xeaa06ppuMFmlXgKP7P5tHv1NgdC1wUwM6Y+SqhszuAkdOQL419R4xdiqD/b2JRSApHEtSZKpRpdfTmKQUR9/UoeEQ8uiqNZ+owSqRhrNNDIeZDsABkwiTsZMaQqUEowTytyJMg1iUfEpif0HeH1qw1+9euXmKeI/+u/POJPPz5imjyAjXYtl0ReZpUhulz4Fuj5FVBaeFuRh7mIUCN0ARHmp/OMlDN27zr8vDtiswt4/etb/OrVKzh8wA+/e0DMEZwCOGvVBKpRD0bhzmkyTu/h1NWSkarsKrfWbV5hv45psbrmvZIbti6PZjAs47URuDGQMjmQveWsJOn6HWUjcFnvxdvXipXRNLVCp/nXMtDmRYWm2vFz4xkAoFg2rVJO0yGn79Ewc7nVZcABz88f8fz4EV3XY55mPL35iDfffYv/+L/8HSh47PY73P78Ck8f7/Hjb/8J8/mslUIU8OsixnmWxPLIyCkWo2kLxtt99KnLDAtLV8z6fTYhrcAi5YxZkx1KFcPKeEAED48ANWQyqVHIzsqXsEjeZwkTDcS2YWHWfwWc2rVycuIsj8AJPgzotncgIoRuCyI1NmmomPcdyHVKnwlLwJzB+YSUgdPhAeOoRQxcADmHfthje/MKIfS4ffENNrs7DP0N9i++kn3kGc4xcpwwj09IacbTwwc8Pz0gThPO/AyOETmL2zcAdOoJGRODXD1L0RcXKdehkznLWco8ZwY7QvLVEF/XmCovIy2eYGDJ+QLEKtGrsuiohotAeEw9nTO3flu7dsPYOYXyPAOxttBlTe3kuK7tIjFrQ7FVOldAVtaJrevNjluQtiq7WBqayr4mgHm5FyyXitCiGXQI/gqH+5QB43P7q97j4BzDZXXdZ6kAKqBYqhg6Ax1sFUobmah7ICUDTAzWBNbeCT0xMuZk2J8RLLa1Ja3WuNe0LaxMZGziCnHVsQre9iAkZGA5OJRFl9nPJVTT6Snz6SxAqfMBYZ1LuyLf5e8wfM3FCOcIclrsXamwEpMY1pwqXnbCXJ5v2mivvNDCFCgzwbsAJmDuZH0wz0CM4CQJoC1Svvz4QpD0r3XN0wRAClFkDkhmbLIy8KgGoPYskXSczCghCSDS4ivNIRRVfmB7lYGCwwDlR6SAMyme8KGkL+A5wTmHu5seNzceXTji+ePvMI4Jf/jtPd69PaELHYZhAw8gp4iYU33/SriXHEow0VtDa1pjEzsHBlVjU0XzpfAJZ8bD84gcM3b7DR4+TOgHh69e3+Kb7/b4Z3+PP/7whDRnAB0AqwTbbhmbG1EwXfFAb25qPWHInmp4x4pueEX37e8ENZRbMY0SwnaN+FjP5GjZaO1NffQ6kPvktfRUrifuduXCS5dvLCzS+Eir1MAUJRT8bF1SO2ExNgGMh4/vcP/+Lfphg3mecToc8fqrN/j7//y/AgRsdjv0+x2OTw94/+MfECdG5xw6J0bDpHx+5oicIxgSri758xrcUWiHUbnftUkB2qlerGNjHLDfLd9j1iTGlgRbUwnDag1Idg1azRmKTLQ2y/ypvC2VoB1KnwlQz9K6IBZ5SsiA5rrqhx2C73Hq7pEtzYgamyTlh+oTrVznDCAhxwmZGYfDR9xPCWAC+Q5EAcNmi93+JULX4ebla2z3N0BPuL3VVBGdgwuEeR5xfH5EjBOOjx9xOjwiziNOzw/IcdYqX2JwdcHDBQ+KLGFAIE0WTWhzDdt6pJwRNVwnOD2qcxKqL8ssWIGcFU3Qg7sQ5F3OLQ1ODE35IR5jTg/zSA3CIjepGi2LjKNlx5qPq7pnsnSt5NjN6w/pyk3tHPCCFj91re29pT/ctsqLt5guB6B440D1LVrQbhlcbetCgMpYLg60irGp8lDTQYoTA3dahTRXQxO3TFs2acpy0IeU4XJWewKBghevvSQ5ypAhh8FlHpbY1BwXoId0xdiEEk0Gw1/UGByllWu8pBqcfDNWQFNvTBOCVZtvcohduy4P2OSnA9B5QgJh9pqfMy/1PJOvVq0RnJsmiukJAKq3s72H1UNSC6+lYUbKCUgJPLLYYMoMyooWPfwLZdAXG5vqpZbGK5updMTAjlqhi55QlNB6Knt12lefM5bCntv7qCoNDLFI77YB261D6AjTOGMaI85jwjhmxFirvQmmZ+0vKiAz2rwQ+KjKdFGqG2BiP8sftT2uaAtzyjidZiH2NMDBowsSUgcA05kwT6kokevVNOOLAdD65lbBaaac7NtLQNEqgRct6SZv553Bta0qjZs1WHR0+fcvKHcmeI2QgYL76qYBXx0Hmu+lheUJuAEic3us5dIrQ6Y14a0al3lPGMcTjocn7A47HA8HhC4guICb/S3yHLG7ucUUgsSzplgY7sIeRHY6td5HdY/UW6nMz2Wv6j3FmLNYrzonZT1R5EpV3JKcUlucstOTwsKPbF24nu1WZl5ppHXVv2CqNmYSt96UIpzvVKgJIPJadtaVEDJXVrPkl7p6sTBXAMgzOBOSC5jHo5T1PT/LPHoPTnKyFoITT4ucQeThnZwQbncZqZvh4CQvwXRGnM4LIZgpgTiuFgGwildmZGkFtRnyYEp1MTRVvtJWT7KS3SXRfJO8l9DwItuRDc9qXcPN22ZBVyaYbF0Kf2pm9Ar/a91+aTV2W4bLZy4/K7zNSLahlsoD9P+aAHyt67U/pT9Lw0RLk196VU+Cix5X4MINCGx5R/mpnIU0NM1kpvHs1tvGifedGH3NA6XKpJY2bDIrN1rKQpMHFqKWATmNWvEEW/PVwEtrxQuIUYzhcirdHMy0jdm6tG22xja2aMFqEGEN7zJQa0O4fL7y6bKViC7WmZpnRBFxYFVSi8Hc+O9C/n0hUvpXvCqGsM5wZcgMVXJk/4uMkIqIJkdMjvF6v37mncxVlrZ3Fs89qAHGE7rOYbsL2O8DnAemccJ4Toiac84qZIFQw+JsoZs9WnaC8QxuyK5Cp/pBgw+bDq5nDwxgnjOOhwkpedxsCV0IGIaAYasVO1Pjib3GIajTbV2p5+/NbrYlMgxlfH3RcWo+vzLv+rIFVCn3rnDXFWV2ie/Wb742rus8e/2z/n7lvqY/VrmqLsPSeHIhM4hWS6sIRDvLyMg5YjyfcHx6xGazwfkoHsld6HF79wKOGcfdHpMPcCnWapRyar0Y/8LIeQW+fZrzV55QPrmyjqtjUBidF27J1UucKCMp78yU1eO5TsMCM6NREBVXFezKNfzIhm3vLgql9tXC9sl5kGc4F+C9eja5NnG/0ngh/IpJrT8Sli0JXzkRGBlx9pinE3KOmM5HwSLOg9SQ5RHg4cWTlDy869EPOyAzYjeIDEkzUpykUAszctLUCEigbFXOK/1XumYVoy2/UmxIhBKBa2tfIj7agzhX0loYfZh3o+EOeymrbJZn6r1oftrvReasqKWlOAJWxh69q9GXLpuoTLJwiVbGNm+4Km6vtHvtVbz6PymGX7Ag0peX08hLM8libCZgGcv7eIWP9MvKnxfSooyjfEpUq3Ur9jI6LnmLNUzUumwDb+UNNZNo+7fqk6LZMqBFVqShcpiDK4a0xbq00gSKOsTWkDMjUa4G/QXaNXqSb66tqQ5FihS1GKrBn2jGea0/1oYO/1J2GA9TnEAkziyt7GKbu1Z44ssx1J9tbJKYWEn2GRNpsq66iJY3wTsprZsSIcWI7IT5Ok3MZhbMxSDaF5Eomub+DbakXDopqoSV0zGXAJex3Xb4m7+9w+s3cnry+9/+jNMp4e1PJ3y8zyCX4YKeSCQJkYGD5E9oF2xl0ZR/jdWwdrOMfaF9WegfKfh3cgqAQDiNEX/88QG7XY8XX21xu/fYbzb4m799idNpxh9+d8LpPMo8+q7ZFCpg2MIYvXh5kcVny8tIGVax5jdM/EsvauT62rJuBif7fbGIa5jBvPzUGl6gpuoWaB4r7WXjr/+vgIkXOw2wON/C8BaKPUyqyWZnKmCZAD1lhRhC9JQpMyOx0P0wSFz54+NbHA8f8Xy4x/F4wLDd4evvv8ff/uY/4OnVA4bdDqfTEe9++B3u3/4k3gK5gjBLftd1AT404zBZ/ylh1KKDdjwXDO/KRVLaNSuNZCTkzJgs4b0X4e2cQx9CCf8iy19kJTYboaT5W5tppUXfzShSy+QCzGIwSSliGk8A6Yk2eXTdBkN/AwdGcFJKNCWxgzEDOXHxpirD1zULwYN7KzsvnkRxfMI8HQFyODy9h/e9gKRuA+cchu0WfT8ghA7b7Q7OD3j18hbffBOQcsI4nZBywvn4jPH0jBgjTsdnxHkGDs+Ynp9r/h1mdeOW+ZpTRlLazzpzwTtN5EwKAnVRaWlo6rpO+9Wj6yRpZan4RDLnRkekbngpiUcNOcn5RpDy5QBhipKQmqEng87O89eJnqlFtg3pyLq3wqoYNttrva8/SYs67FY74AXOAmA5g0kTK8oclnCPsvf10EDztFRvM+CXOrNWwj5n4CUCfEnqaN6BwidclkMO7x24GMZc2ctCIrp7sniDcEronAOHgDFnZD3xyk6Mqo5QvGhbyWhyPnOT90inUYyKopjNgJ4AixGVs82HLNLlyauMiyDjJEeIOWGKEc45bNIMlyQngSRXJQlvv4Jcyq/CgEuIAhFhCgGioEmifVMSLE/aQiGGyXnZ4yVHQeb1K8V4FSNAYmgahgEJhJFGZIjbPuVc+BFMwfs3NDaZV6D3Hl0Xiqyqp7kCqD15qQoVArquR3YJjAhGLqf2ZY6Mx/Bl/quWUcqerfMqeV58yf8GAvrOwW863NwE/Po3d3j9ZsDbt0/48Y8fcT4nzFOElZKem7QKzJLfqeRl1r1JUA8Bolo5CtAS0Uv6qzTT4hUqgN/alNCggMMh4rf/9B67XYf/ePMaL19v8eLFhF/95gbHU8S7nzKeHyckFzT5foNnYB6ICY5sP+i7YQqKDMBSzhjuoEYnqkpClX3ri1D36ZrfLO7TdzIv+dDlZfKj9vWaEanM6+q7eo8aposx7vKdZbw6vmW3qgG8GBzJQiTlMClrpRr2ErEghkzBFh/e/gkP9+/x8f07nA5HDNstXn77Nf7+7/5XPDx8wLAZcDoecP/Tj3j68Fb5fyicy6sRoet4sQ+WjKgRWJ+9VgqZ8rQyl81nReEmlH03z2Lwkb2Z6t4qmEkOy0zciRe48G3zZq7daA41Fl2Uh4mV/xIhJTHaySHdAOc79MMWm80eBEYg8dyRPEiyT7OBqUYZdRaREcSvg7PdnxCniKf5CCLC8fABvutRirSQx7Dbodts4H2HbtjD+wEvX75A902HlCOm6YSUI8bxgOn8LMVanh8wzxNOz0fM6RnV2CByz2kcnaRrEVBMotiUsHMxjlv/qeB3p2F0IQR0IcCHgOBDDdPTe72rhximPGfFSD4EKSgFrXAXvO4VnTFd14UUNZoBmk+b7z/BHxYXX/KGwjVbcvhEOypm108266xhcqYvrA0J+tO17ROwrqD32SE0GHD9iKyZF36egRibvJeKeSyUz6JMKqWS5HzKLHp7jEBOCMGjdx3iyIiz9LNzWpyLuBgNq57K6mFXDTVFtybLs2R4St9LbQ5AXg+q7Gfm+r0nV/JfjtMM7x22XYfknc6Du2hnzadKZA7EQ52V3r0PEKtQQsxZvfDEO8+wjjUp4lTTuaBiKIkSa/iAgkqOSYq2BI/gNsjjiHQehS41p4+1a+v9pRDqzzI2tafv9oaWbdmsmSIkIXO+UbDqZjeBJEAEVyiT0Bpv2EZWlDMs2hPZywgBuLsb8Pr1Fu/fz3j79ojTMeF4jBhHhu8YvecCXjOzJnNdo2Ves5PFhlt0twXcn9mUpN4aMWU8H8R1dR4ZHAmdD7h7sUHXO3T9GcypJK62rWJWWIuBvgYuWkG1CB9r+v05o4RYlK8xvEbxKp81CA6MGthLl8+u2lv3afnC6z1cf1YBZLMA5fUFMSxCjeoLq3dGEbtKSGyGxsKMdO2CGAim6YQxH9VI02O7u8E3332Pu9sXIO9wmM/oTxs8vP9ZTu+VmVpsLEDias0aZqpAuszvFYVflAgqAm0xc8rUBNKsAJL9ocmTmqIcyMyIKVdm78Rg0ua0IFIPDG6TV3IBZeyoiVs3gFrpbrHvF0anLEboEsYqyXCD70HI8C7BcuDASng3JbPRvMd+996VnFgJAqzmdAYATNMZRB7kOrhuA+eDuHcPWwzDFpt+B3Iem2GP3e0emTPGOCJzQjdsEIYe8zTJqcc4YZxnkDspDQnHdaroMgDKdk5CJq9B5DTMSzlLURhIgbpb/POas8kpuCyCDyZESHOCseYBW/IDR06q3jQVe8zjtIVDC3zSIumiaJTV/CTo+Kx6tKJZKnGV9uPy6UJBVIVmlY0t36l/1lxl7bvrSIHPC8ZqKOUr96kXUl7y3nIeXWjbgdlBrF/rvaz3axuCEajk/rPEjGZNbOl7cZq0UKzW7cv/UwG/xg+W89A03KgdSptFmRXPJoYkmk45gTzg4VF7YDK5aWvBaA0sWVUVp96UVBwVqhm7jpWbFkrIaQnZX8o1VuLgJBZHF8RYxjavEKNAe2J5Dbn8W1y2Z+WQzE7X24MTLrRkCcLBkli30Jg0JGNv5IL9zVjug6v7i9pDAFXAvEPfMzabgJubHncvNvh4f8D5NOF8TpBIYgWtbWg9A9lxMSiVg0SipQfx1Rm5Dp7q0cy63w7kCfOc8fhw0jBEIDjxbLq560GB8PGD8O7M7hKEyAQtabXwuPpBBdVLHNryrFbBW+7X9pVL3ryUYcv7v1Spq3sOxdD1S8bT1tCkvVopp1dervNi8ubiS8VbrTwpOhlzPSwmVG9iBsbTQUL5MzAMe2xvbvDVd9/j9as3IALuH+/hug5P9++RFJ9YiDQ18+3J1dCwa3z7k9NR1295b9P/BTi0KbqUJ7lUO8xqdJL5ytn2FjVzZPNvnsZK042sraZYvlyVZs9yFgwFL9XaCJJ2IHhJRSAh1Ob9hIoxm0kyzAto3kjHEpadoyYVbzDUPGmlXjE2OeeRUkQ/R3TDFiHcgFzAMNxgdyMYakojMkecT084n3rM0yhht+MZ0xTFeyLnkmqB1EAGIqkMLVnXYDvOeJatgIlLk6GlyqQ6IViC8JIovH3HYukrzoTJZqqeM7lxqqjYzSjhkshazbGSzhdv7kVLVdB9Tl61zM0MW3WeaqXp9f1tC00ERoOlhCbdEiuuAVj5/8WGKp+atz2rniI5ArnwCgDqySthbYX3ACV3kfHukovRaSi0E68fp50Xg6BicLLw5GJWqhCSedHTyq+vrCqtprAdaStMdM87AIl54R2esxwYXXrILmVJO292p+hlWrBGHyjOnooPTNYItm4wg2J+RsWeVebpmLNgU5k/SdXDGr5qvOPyMOPKZHzi+mJjU5u3w9zajLnaWEFAZsltwXqKaAzCjohMuYwxISVJkuq8mR8XEloHY94MFnssAiY46bqU92a8uAl4eXeL3b5D6AhzSng+RLx/O+M8JsyzgVYx9tSZIjQz37y8UQah+F8XoSwe1XtsbmoTRplVQbNElERC9DEC798ewInRbYHbF3tshgEv7k44PJ+RIyGfE8SImxtaNgX1kvAXsnEhVJpcWRdX3UILbzPCBXHZtF1jm+vtc+2eRrZd9Pnqi9bPm6BxqrQu2qjssAiERtBUJYbKkkvqIvV0MyBWBI6cynvnEJwTizkRPCRBJSFhPD4ixxF//P0/YTwf4boO2+0Gw02P8ftfI3QdzocDPvzpJ0zjKEkVlVEmzg0NWr9MAbHZYmW0hOWn9Rd5VP9QQGTznCw3fysgmwWQPAQMyoxMjOwA5FhO5QwoOcsDQMbXzGihc+xp9Q4UQxvgSohTqZjGLAnokBE68YL03QDXDQAnUJ5AUgISWOSaqYCyBQbZPONUwWEC4B28ToTT8rdMDNAMcEKcGJzOmKdnxPkE5wMOTzv0m63QVyfJEXLOIJZSutuv70AAjucjjqdnpBgxHg9IccI8jZjGI3KS5OMR6oXVJFynss41t5vkwNNpa3LBMSxfUoL3QU5BZdXKXrO191oa2UAoA5oc0yGmWGmmVXSu7NDizs9O0ho05NIavJY87zqIKlDH2GLD3ulya5d7jP5Lqy2dgxuZQ4UZVaWwFc+1vU9dLfa+HEsDKE0Ak5ZhZzGEppi0PGwAOb9UJNFMd85yIpeSgn/1UgkeLiU4HwASLznrMzkZn4GUAmB13IUHaNiAdx6eg1QiK320kPfGCEGXK18OMqDGTBBmVo85Fi+nmGU/eKdVZBqCukZL7QwyS7te6cEScjKAhAyy8j/aJjfjM4Ndq1Si4TP2WIqpzIckNnFA10nlpnEE5lRC9+s+vNrtv8gVYxS+6QXzpJRqRavGKFMq3rJ6PsCDKRWgGDV/XIxR7jWjFFBk3mJghqFMASPjMRLkmZNUtbp5tcW33+4xDA7THPHh/QH39yMeHhKmKSPOQhmcjQNZ+1T/yQcXY18oek1eKcNka0Wm8ohGaSMCeVE7mRlTYrgx4t3PRxAImTK+eXWHcRfx9OEDnp/PCM4h5aQ505b5raxwQ5Wb17COKSx1Pi/VrH+ti5p/NmbDYJfeYAovv7gT65Ag8yZYKonVINWGH5nH0uLttpkaJQVsh7Qoc1yqL3onCX0BdEQIiQFEPD/dY5pO+PF3/4zpfAI74MXNS9zsbpHHGc4HjKcTHt6/xzyNslwKhyVnLBoZ0PLxureWUHLJO9Yfy68VzxTvd2plXyqHBomz5AWzqqLq0WoelDKFhLo1Na+Ptu31vYaNWp5Z9gIaGSfKCCwk0YeA0PciT7oe5HrFTOpxAQZb1ncsD5OLok8GRU34urLuofzuNbKDAcwAR8SJgDwhTgfM4wnOexyfdhi2W+FpIej8Sx61vuvwzTc3ABjn4wHH52eklDCPR/V2P+N8OuieTTKvjeer6YB1XqGHojInhp1kQIpnckamLPmcvNPPc4EJxdPVvBypeiH54MFEiHPEHGclp8YbbU07jKKvmtFhTWcX+/ATvKVBUNWg8EXa/SUOoqIDmBy9fIr0vlq7pj0QXQ7zGqCkxQ2t7ki6P5Xfs1Ua1GJfmrupFNppZkJ4nK5PyX8qIf3E4r1H3oG9w+QsOimXebIZtMq6ZU4IzT0kuTPVq0o7jzmKsagnllxijUGfnMm7NfdEyXvJREiZEWMCOz3YNzuKbyfq80yciNSzU3JceiX86DShOYndJcNpuKG0Vb2XagdFTxJ5J05DdR6YM9I8C50F2SvsHCh0ABx4jshzBJHkpqo898tA1J+dINyujFwMTkBlxCkmMAugdqohOInPEYtlUsA0J1mEICUqqSR5bayPQDE2FQu1hugF34FzxniWE6yb7zb423//Cl3vEHrCPEc8Pk748ccRsyaMdF7ORuYoYM0SwwkDpgZrFLRfhCaRMjq/LKVZBduKYRSkjKYN0u9ZQ5gYP/7whPufj/j+b+7w/W++Bojx7s0TTucDTs+Mh2MCJi7zBhjDtVhs2TxrQ6kpFrbZqN0Nzc8G1ugzeXEbtO/XXMAvsZkya/uLcDVmuTVKyFxd2WiNFXUd5kIgy8O+eHc9uakCoXjiaTtrZSsXdyM16lCNxyZI2FHwHl0I6IPEqWevmzknHJ/fg8hhGo/44+9/i6+//RX+/n/7/2Cz26Pve7z69lu8++kn/Pz+HQ7HCRwToPSnkl5PYSTZYXGrLkqwGXbr3JYTCCwwcAvLLeUpJKRHPVpgBgkUcJGSJOo1YOIoI/vczLWAx2DJJr3TPopbvIP8XvMJlVVtko6mok4UYJCzKDmc0fUB/aZH2AxwwxZIM2hKEi5T6FXXqFlroZFiTbOhg516pzlxZydImJ13Un0yZnELnc7HYsh7tCqSroejDl0/YPfiBULXY9jeYtjeYrPZ4utvvsdmu8OcZ0w8YZ4nfPzwM87nIx4+vMP7n/+IaZ4QpxkTzwhgdJ40LMoqHzXGJlX6zMuy0LnOf1KvJDMcCZpZ0r2caDqVAGrwByGEAOcc5hiv7MNLAVENTQ1F0aVhfQm621O+Kzud6je5gbkVUJBtv0U/rIt1xwO8HgHV79r5WI+Nue3v8h22x6S9yseXBig99YUThYKsqqOcLBNYy7/7ZnDWpnLWJPs+R00KzVmAvPPwKUhodwnJRCPIGxnY8LLC75wCFydy0VOHNGfMcQJnILWOHVwnei0v6pqU3KmSdyNlEMvhjU+CATofJC/JCtAtGrFP9JV2ch2U90bSEHOWKjJAhlNALGA0VxGqE1HzA2ERzk76nRmbfPAg9W6ioQenjBwT8hQlITlxqULUVmz8S1/zPJcOkyPEFGvRDVQ5KzlqZKxe0w5kPc3MzJILkCVcOKWkISO+2YfLq8g9Fh4kZcHV+M4JKY4AEl6+uMN/+k+vkTnj48dHPD5OePf2iA/vI1LkYqxiRklmTFpelCwjve0zNXybUDDDg3lstjyuKmW6y9nk29LQZO2AgBQZU0yIZ8aPPzzj8HHC19/t8O/+7jVSzvj57RM+PET4RMhzQpxpwV9bT4fCb3gpTyV0IBfSXmO9L1H7Ltfi89+XsPV2KbnlfA1wM50Jl1zwetstZtVGDIeVKRCvFoaFadtzrjzTjqEYKyTWWZCJiikrNOCcb8rSC04IQXqc84zHjz+DyGEez/j5D3/EV999h7/73/539NsNQuixefEC9+9+xtv3b3EYj4I5eBl2K9WhqcEiwkfKQZ3inWvSop2f+od4njOkcEzWSpiunSu2yr5Z6hPlSh0uVoObtW1pLbyTZOJEBM/q62yKeNu3gm9qGE+5lwQXphQRwOg3PXzoEPotyG0ATgDP+nyt4ileoGpwajFVEQ2ar8gBYAlVW1TYc3L4ltMketx4xnwWmogqunzQvnQDtvtX8F0vxVm2txi2W3zz3bfYbLeY5xHTfMY8j3h4eIfxfMSHD29x/tMfwVEq2qUs5wYWQOlcKLpPO7dVn6g4hdm8NViME8rzABavOmblh67Qh3mKmidNCB28F/3LisSUimKFcS8pyngjq2FMVMm2IMyyz582Nq1ocsE86OLupWPA+l4UvcLyM8k3ZuD8NAcxHlBlfMODVh0mfaD1giHl71I/R6M51PCSsiYKB8N3AQ2b0Q1beb7IccmDKzlIMzo1hibv4YJTlyiItxwEy5gsrU4rOh9aMdgR0HsPDpJmJDkAKWOKEcSsHpVVFy0hZaj5a23KbQ4NnkxZwmyTk+qzMXlJIu5cxUfNPF+dfEgOXfO2CiRzmRyQHUAkhRLEyAbUBHlmSalomxVXCT/yOlWia0mF7ggmgncDfPCA93D9gOwln0mNgjFe5z7R8cvrX5AgXOdg9XcFTMbUL681vjVhjysbqpwEoGHgJizLCxneC0H1vcOwCfAemKaIcUoYR3H9zklOxHSv1W1F6ubdAFrraPmrCGgU4LsU2MsZaI253ICX5d1V+YlzxjkzpjEhzhnOA13nsdv14Jjw5OamQxVh1L2/7Hd5mYGAy5df40Of/xwVCC9uMIZw5aHidfCZS7pY1c+FJfwTV+s5U5egrqptfzuJu8bQF+1d+aMCuMt3kwEOmEGKAc6IcQKPDuP5iNPhoN1i9N2AYdhgu79BTAnz6YSZR1G89JSPNM9Z7YKBATMAfKKj1yeozIORjSwFl4G1YqWugfzLEFBuCYIZZjlXw2W28B8xjuTMxaDVdKE2joYsGxpmRkmUbMZTp5XXzDPn2txLZRZCZaH1MvfcZSdWv6OOtQpEJSamErdPRJjHUTw0XQdyAY6AaTzDk0PSKoUEQuh69MzYbPfY3dyhmyVENnQdHGcEnqVn2QRAA9gN6TEvhOsixKXpP4FK2NCF4lDWcvFRATuuGJ8r6yCs9nUh/OXp1/Jk19qtn9XxLPnBghSonlvZh1fwivbB1hlFUV7eYH2oJ8YXr0e79Jd7Zn1vy6+vM0PCMtzacr9URXb98sojuJyEV6M31LtA3cv15eVM2pSB1T6yvrQnsVDQbKWhJ30+23MXE1N/oWugsShU8j/L+5GdwRe6vnZXL1l3AkkuhhVdWz8JpJ4WKtw+IT/WuIEIoIxFe0jqIeacKItuITCuGtv+0tflifY1LlYE++Ky/XOtzasYtW2twTjrwxcA6Drx2Ot6Bx8InIBxTDgcZkxT1txjpo60O/oCJOi6GE9d9ZMambzCW+uQJWt9gdcuB48MYJoSTi5impJU2AOh7wK2uw6YAhBF2VzODBq6b8d0SXMXuBVQHrxssrTCvOSJzRy0+5muzs8aqxgeRp3XtldVnDXvvjJfq83a4qjF6JiLu9NayRQMaHjCPluC/SW/XQVwWlNUKUlEjcj7eRrh6IjzSf7Z2m82O2w2O2x3ezHUxwSO6nleDJfNUFb8kktLn9/w7dyVNS7zT9dIA7aeaxnVisOid+iHapcTg73iJ0AwVTN1C7m84OE2cSpTAFbPMV+Sgi8PjVDwTcUPdV7sxjWusnktz7f8s5kzcIMVGOA8I0X5YJ7OclDiVxjKkVS7YoDg0IUePAiG2t/cIcYZwTvEeQRx1mqwEIctfdninSaRjL5ID/Iag2l7rY0+RR6vaMTkTN2fld7r9LT/byfd5mXVaovnmn6UNVsCkdI2t3+sX/XZq/KQa49Uzn7tDqpNkP1ypZUvkqdUELo1VTzP3Kdz3hWdhnPFUNqPsrcIkIMP4SW5YEulT+uk3dx2m8SIWpLQ8jInZt3aawS2/qvF1zqrzCUvXsq5VG5dNPCFYKSyz8aQreM3LyZLfA/Qin+0wmo1DiJN+YCamKzgVIA8iZHQ0ZWibl8OpL7Y2GSnBcFLyEvmhHHWOMSmY5KQVLPHa6dzypIMrLhv26k7w3tVMhuG4EhO6h0zQvAISU7i+q5TzyLxtAqecXcXEILHqzcDXr7eYBxn/M9/+ICP9yc8PSYwi7XUZKaE9PnSN5lsS0K6UoZsUV2tCLVmWgLGs5AZ2c96UleF85JvmzvnaZSkZ9v3J/zpt4/oB4+Xt3u8fLXFTz8+4/HhZ6Q5qbFM3ZLJSvdWy/nnOY8yiIXwaR4x2ndyGgWgKD5mEZZ+N0yyAKbKLM27pZ2/tUuF0DOXJOb2jmts5ipmsjVowUX7kyFC9cpaWZeK8qbgwvLslBeWJN0oAt2UQhMKtgmdl1KRmWfM04z7d4z/+v9L6PsNvvnNX+P1t9/hzctv8P/+3/+/OI9n/PC7f8KPf/g9uhDw6uUduq5DjBFxjogx4vn5GfM8g6OE3QB8xYOsgo9c/0ARakU4yqfODN4NyCUbrp58mfeU7kAxNjWgkKGnAsqI7XQnaR4GZvPMouY0Z6mgcAEDYk2Pyj+cdwihQ99tMPR7JJwxn5/Fmw+SEI/NDdZpJStj2mSmP50DFqFRyEENPAkiqDKjJH+3+XDeoet7EDnkpOWN+YzD0yRz8PGtJuzt8eHH36Hregz7G2xvb+FCwLDdYbPb4MX+BX7zm3+HlCKeD08YpzPieMJ0ekacJ9x/eI/D4Rk5zmLI4gzKCWCdWz2Z9UToug5OiywQVW8AQpNo2MlJsRkDeMVsbM7IEfq+W4JpkncJHVy6VZtBROLL82Iv1RVt6K7ZV1h9d3kZaFMAXBbLoEjjuaYKVm727PX2ajtrrFY/b42iK+anny09npbPS74BS9QuHh7TNCP5hC54pK5r2rUcGA5zjlrVcJaKPDmCNTkxQ06q+hCQU8IEIHFGny2hNVfhQRXqmUEKmlCevMcmbND7AWeacDyMiJw1/I0X/Ksdd1WuHGqOsQowmcX4cB5nxJTAW8Ju2JSiC9RM55JCgBJ+RFwOdbzScPAeIXQAZ0xzAnHCxnXogi8DFEWstlpCcBvAKgqWyFkpnsIYY0Kcz4B6NjIcUtchhaj8PGn+vC9G6/8ql5UV7roOXdeD1Fk85wRAPYfAeuIo4a8p5YVXs+ERAEVJKp4czUUk/EEwW0LmgOAkMbl3HpwZ4zRhMzh8/c0NdluP2xc9IkcczxN++OERH94dMY5QRREA1dxxzlXZDYZWgrJwdYKVRShpByx8r92kMHpmpGxeG+pZh4q5uN4Ic5EjIoROcNzjYcTheYTvHd68nhB6hzcvX2CzH/B0P+Ln3x6AHFGN483hoSM9NbaXtNenlB9clcnt3Lc/WROmVHLjxfeLnbPYoyzPNkYP/VTD+HUXMGCn97Ym1dOjpRtavMMUYftMmqreNa19oRqXKn+1KZP1lbYEX5PmvzGeK6G4Hibj6vw5T+g3HmBCnJ8RpyNSPmOaZ/SbLb761Xf45uuvse82IACn0wHv3/6M+/fv0PcD3rz5CkM/4Hw+43Q6I8YZh8cHzPMoIabFGyVcGBKWCuR1haloBAVj8xJMAeCcNKePPaHKXytrhVuVeWOo9wMlJC0wITlssaDR4oWx6KUajXJGijM4SyqCvu8RwgDyA5Bn5DyVxXLeA46ktHumEq69ZNy2ZrrQGjJneD3pWLL+LmMQIvEqw0AkBsEcwSnj9PwOgMPh4Z1gqK7Hx7e/Q+h6bLZ7bHY3cCFgs9thuLnFzc0b/PrX/xE5J5xOj4izpCY4HZ4Q5xkf7z/geDggxYg4jYLvFON57zH0nfKGgH4Y4H1ACF0TxSJzbIVcrFodsR0YmfHPDnkVEWuicLDmNbV1We3pBX01Sl/BZlcorex5Bgjrg1YuNLjkAn/+dSnuGl5TQF37lkp1rDTANhY0Xj0NBqg4vL6spV07rM+mE2TGPEs4uCeH4AEzilaDoUMCIc0R8zhJnjI0BifIgXUIHXJKmMeIeU7oKKPk/MrN4K3bJPvUO0LXd3BBvJs4O8zjjKfTiMQZA2fk7AoOM15KOl+mi5XNXdUcMIDIDEqMwzgiccJus8GwGQRbp2u6b+Udi0N85a/BSRL3mJOG80HLhwCdcxh8JzpBTI0sUNpzxqFQILjXqBVL2cGQZ+Vvgus7UMeCXWPFUHX5lwW9PnV9sbGpPRXzzusGrwDeDAaS5d9VMIIm1wJVIei8Azn1aijW5/o+S6Jlbo6mWHkLx8sJ8MAwOGw2wG7nsd0FxJTw8DDipz8dkKITYxNhAVIMrBVDCkFBkS0pFgRUTuIKs6C6wQrJ6/1Kba0FsOqAXASPUxAVU0acM46HGU/3I7a7gDd/tcHN6w7nU0Lo1DhTTrWoGJ1aYbRmQwuGViRI3QC0uqmwl0ZAAlVoLk7Mmg21oI9WnNt4sYwRt/6Yd8ZFBy5GsVQ4WmOT/F3HYScbxqjsixJn2zDT8moFnO1aKVdcMfd1wnjtl9J5jlKi93h4xPkwoQsb3L16g+67ALfZ49vdgClFPD094ue3P6Mbety8fInNMGAcR4zjiGmacDifJDYWQHGhhiq66zkiA3UNeF0rHfqF4PSGcRUAK2Cw3cO0zr9AEI8mBZE2f44y2Es7YqvV+dEkjdRsAia01CHJATXvgYWnStneHuwTmNXAQNZXNVTnrGXiW0puaUk/c05CINDyIAPlDRNXfmAhZ5EiOIrL9DzFki+HM8ORx+nxAd53uH31RpJjbjbYbm8w9Ftstlvsb/dgzng+PmGcRoynAw6PHzCNZxzOI47TDGYgwYBSEqMCCd8knUfvbE5cqaRS6NWq0jlLEE4gTQJKwMJQbJ5pwTssYvUbfksa77rYjiZIFkRnC2K8xFaUF3csaG911dc3IKdRZBaARX8UJeriDVfaL7y23Qq0uoeb72RMlR19uv2L01BATmchVenasDLj8VZ6OqesubxyU8HVgJKst/BFyWEUOSPktEgGTzq+kiJH+ZzkopDqO4MPSF4q0iXWEI9sIS0LDr2cF8KVwgQyksyMOcoYh66JFWEUkFynUueIUW/S+SVU93LZ8x6cgAQJC8tUDamZuZz0V6+6VmDJd5YM1kIlMzN4EsO9Cx6h70T3tdgVDVUsMunf0OBUk9XK4Vl2TVU5oOITi2NRxW65b+s8GEYyrFUvnZvmPsNPTg/OooWFEOHmtsftbY9h65E5SQqChxEf3p/FG8H1VZ4SLtbCwKatnSnW0t3m4GcF8grZFNkj9NJ6eyyWx2jO5kqB9niakeeMw/OM43PCsCFs9xvsXvZw6Rnv/bNUI2xCyFuFQGS9ydFWRi5nlBbdsMMolG8q+V9yvipvl9+377g8IKsD5mZvUuGJS4TyKdbFxIvDwUsPqiW+smPuFZQoa1GwLOq81DY/3RWGYXD9QI3JljtkniakOUn1spnR9Vu8fP0aN9sbBO8x5YjzeMI0RzwfnrHZbvHqzRtstzs8Px1A4QnT+Yzj4Rk8y/vk0JukSItbd+yKbGuuMj5dUzsAWcg7o92izFavz1bEEAn+aiCUtJ0k/yf7WoyFnOlatNjvtVNVvucsOXK9hio670EuAJZHyoxNJNVRiRr8tFjgKl0Zis8V95VvDT9BDzpMzgIg79D1orROk+YLzBFxmiTUMMm+ds7jdHiCDx1u7l7j7mVGv9lgt3+BYdhj2AzY7ndgzjidHjHPZ5yOT3j8+B7jOOJwOoPGSaoNZ2genyw4GEDPnXAfzYco82LpC2Q+HJnxu6F/5WstT2rnpxxKNzpcebQ1PGJ5WTsX1LXeXFjLUm7WuuFJ+HNEFmFN73UPL8e2wAVr9xVd/MUoTVe4eCdXPLf+llbv1T2V9DAld1yGbfpXSeEAScFjRpDaG8VRKleZJQ+vGeM7ykUDLXuyQssiRyTE14sjCjs96NYE31yxXZ2vZvCNDDC5YutrugfAmFMC5oyu6+q+tg4163Tp0MKL93qdx3p4aDmwgM5yYJttQzcqs/H+5VKBNZ2QOtu4JHxDcvlKnkffy55KwQHeqaGaLnjhL11/Vhgds4UN5JLg6/ImY5BeLGYgzE5iIdvNXMeaS6wzU41NNobbBQ9AT/fNKCD1o9GFgK++3uDmNgBI+MMf3ovR5jFiHA1RNAnH7OWWTPhSey+wgWBhmawJO+00rG6kYpDJFSxa9RXH5pem/SjYwJi19scRKDhMMeP9hwM2p4Ddq4D9nZzyvvl6i3lOGLaEnGdkjrDNLhZGTcTeGEzKRmiNEA1rqIrVevTXSeeah1BrvLraStnQqxZVYBXPpovOXBGA15FLgwaWjM0E4xrILT0b6uYticb1mczWb6o0rz8dmvxVzTgdOa1PSWCOyDjj44ef4P/ZIwwDhlcvQN7j5cs3+Nv/8HfoQsDLF3fouoA4z5jniGma0G9uMJ7PJXkipwTJEJ8X7zPXzOy4VARa8D6714AQsyQoZpmrqoCQVOzJuXr8KPMqp3qs1a1SVsMviregzAfBcnQwu5L0v7O94mp52tpJo1+NE47iqeRDj5xmZdK5OQ1vAIIy6WIcYAZKKJ+BShXylNsZUYMTCt0ZFXPtUjE4Oq/vVNAm85ZBmBHHA05PDvO5B+cZoR/E2HRzAxBhVuNDThHBb0BDh6+/+Q1u777GNJ5wODyIt8t40hO6hDTPygc9YhZykrpfwn/YMiqbqy8AqKEwRfGQJK/5v5wmIiYxfKcsoDalJtl0EYh1L7cKRftTgIoqgbycv7qkl3R4jXWU7yqxLhQX+XlppFYqKH/8UpLxanCuvbzm2bQ0PH2aFy2EvgEg3TMxJcwxwZEY9kz/X+SNyKyuzmZAkESXYGgie5mwrJ6WrHveu8Z4booG5AzUo4bhycmg5ZjrinE1coYHIZC/Mi7jl1V6LL+V+YtJZM2UkuRvDB6efOURDQ3VtePC7w10E2v+MnIIJHkHZmjOJfXEkn2mvNTWjOs77HVEkHkl4WtmwyOweFFA8q0AogxR34FSUoMTA5yXbf6FLzvYMuO1VeJp+ZLNpcn0EAISEfIci5cGsJTVNR+F4A+r+OOdL34qwQo4sFTrDD4jeMZuR7h70eH2rsN5nPDP//yE4yHidMpgBNQaYNIvBuA4w8K+C+8obFne3W5m88Rh0vNsS3Cs+0nArdwn+Qu15ZUMtzbLHq65UAECTuOEn35+xGajB3b7Dvttj1evBqSY0fck+bDMY5Bsf5pHSX1Vmd/KbtDuGypj+7JraYT61FNGAYSW36zxT3PHxW41pnv9Gb7g7wuOSw3Pbeb104MqLKtgY/vd8ouZYardw5IfdckfADXGdtJATmfEOePDuz9p7hAH7gI6v8Xr198idB2GfsDr128kVcHmBrubF5imEcOmx/l8xHg64XQ4ikdzVGJhKs72ZiQt/KkZMzf9YjP45nowRwTNHws4l6RojGEHm8JiEJTfIzIo6yGx15BiLwZzW0siUXwtp4ux5SLK0GgpOYNzTVRuuIa8GN8r37VFcoDzMFNYPU5VPsjVW4WyOQg4rCtYWUhtzWyqvDobOcnfBKiBW3EqM4gcHGUQIuJ8xOn5A+axB3NE128wbDfY7fZCA5w0LxWj727g3QbffEO4u/sK0yhGxZQipvMZ8zRBDm5YcnYSqUdWmxhauichR00OSZPFSQp3iDeUB9BUis0ZMfgLnXG9PdY6VMVY9n+bdcXXjR5VRBxzPZVpEdZKf1m8t8Fy60Ojtehse9sahxdP6Qdr/lJD2D7FGujK781LFGAbPjMMxQBizoiamzKUvnHZfyYXa2NZ83HJ5+KIwpidQyKHYBW4G5RiZfmMIjIBGiEmUXTsQCwHdt57lVuEyCK7fAHGWAiBy/mzd6O8L2qkxpySVPal1UPNGl3oq4yyl8mwjepwrLmvkBnROc3fhGJDkan71EKjqSybS59dwfKVRsh7oAuSnC7zZcjML1xfbGwqwEAtXkmrzpUBmOxQAeScR9cPSCnCj2ekqACjbDtl96oEA+rBoZMYnFjJN0OHYQiS7DQpuEQEeMIwEH7z13u8+WqD3//+I/77f/sJp1PGu/cOx6ND1zn0vXbRovrAxeOhSoWlAlHGq+Oz0oVEVI1JqvgyM2Ip9ctyKEQsCl/zigq8AGNzzAAFD+8JpzHiD388YTN4vPpmi1evt9gMHf7qN3dIOWG/c4h5RMoTShLvnMERgJNEg7X/LaIokBSyWV3tT7Ouds+C6bXMxjYGr/81z3Nzb21yeRUFv5kWlYdFubh48BPEbH28DCT95FXBljxg4WKl+41QFWrJyOyQs5y42fqX9dT25LRa7otpQsoTfvrhH/H2xz/i9uVr/Obv/l/Y3tzi+29+jV//zb8XRcK7BVOZ5wkf3r/H+XzCh/dv8e6nHxHnCfFwQJ6mZr6romIGhPKZxvAXTx5N/saZwZGFR4AQvJdKKEGShnOUSioGUNo1kPdoomrn4T0X2vdZwERMcsKekkfwYiQOqjgQsNhb0maWvCoxIs8z0jyB4BC6DXKaJVEfK5yRzIJw5NXjQTPj6bzJXs3qkQVNEsgWj6GKqDHupYAVehSGnMHmsAkQwYeSZh1WPpXyDDBhOt0jjo8AEe7fBYCc5JXY38D5DsP+BUK/QTdssd3dwm8CXr/5Nbq+x/F0wMenD5jnEY8PH3A6PGE6n3B4uEdOEdkFTBkIxPCFcRGQZB6dJuXjWEOYU4zIzOioR+i8eGv1GmanYDYnxjTOYvSgoi+i5MgvQLH1JqT2S8Aq4Vl4h86p0SLbWlMLqtC01RLB8m/bV0uDbquirQyWZb9eg3wKqKkNZW55od65sFg1mgKq4qTkoDjJaEgTjerByxwTxmlCFzz6IJUDrdJKykncpSODsgWqSPJtZjGydiQHLPAOOXuREFryQ+Sh7M+UjZ7VBVyNTN45dN6h8xIq1Q+DnNLNI8Y4oyOHXosQtJNoSr7Bx/aMs8A0JjEyccIwzZjiDAbDBV9Cv4xM2+fNEFdFEJfvA3nxNgKQIK7mU87osoTbD76ThP4pSfheI49lPUj4b04lpMPSeThItSsiEsMICCkE0MaBoiS6lH8McDXg/KWvqAnWg++QkvFw47eKiArNCT/tuh7ORaRpQo4QMLgiY1ZDHSCGxww55Q1dADmHvnNgBHBizKN4a242wLAh3N0RvvpmwIuXA/7bf/uI//P//EGSac87MHptHwBVKsmgmkQe+tM1+z7X0OZyKMLibeeIwJ6K3LP2c1ZQ7FXhJZLk9+ut3bIipQmpPAo8Hc74x38esd10uHv9K9x+ewd3y4jfS66f7dZJKICug0xzRuakmK55H4uK0HIEuwqsqmCxuefSI6hOEhd+ZOt2idO5fAdUY+TlVb3GTWkt5bq5aashFhvNyu9G/qYW4l3K/0+qE0Ql/ULLLzUBCLjxzLAlK15kjcGJIIn9HTnJbRIPmNMRf/zdP+DnP/2Imxdv8Ff//u+x2d/gV3/1An89/Hs459B7qcJmHsjzNOH+/mucxyMePnzA+5/fIs4zzs8HpHkqU6KzC8FNqqyp0dZ2o62PpRgwfGUHcd57sP60U0pRTlF0mqoisdaFkXBZl+RAImTZ594JKyISA7N3DASNIrlCT8SkRrQoh3W6SOQdXB8gpi1G5qQHdh7kzBDBAGUQKedk46DiTVoMbapQZk2AsxDX5MVbrCgSEm5t+ItUqVebTUNNABABJEynj4jnJ4Ac7t/9CCKHYbPDdncD7wP63R1CN2DYbLG9fQnvPd68/iv44HA6n/Dw+BHzPOPx4R7H4zPm6Yzz8UEOMJWOwCQe+EbfZuQwj+OcNXeUVuVklhw1XkPvXFcrqGkl6RhTlW1lD13bGktFqObEouYTKvzDDN+2h0n3VyNAF7N4gXtsaVU2tnK3nf/qJb/kAy3vIAiN1XCu5QquB35h9DaGsrjMWCv3m2dZ1EO4OWX4lBBIIw3UYJhyKh58wr9U2puRUA+l+xAQiQDvEZ1HkEEAYEk5AyFpS2SfHUmBKEfwTkJBO+fhqQOnjK7v5G05YUxJ09cohipJ4qnhl6sh254k6fGYEigxhiEWY5MrYZw6vc2cSxO2dpVX2rwFEj0uAZhmKRbgPWFmsU0EL8n0s2LPhebd/Gq8EzCSIPjUrKiSCXUexAMoRsVPhGKo/oLrX5wgvPR3hSeBymAV7i+FX/N03X6fthWYINTYOVFwneSG6XqCD3KCn1LG8TjjfAZSVvTTtlq0BW1rtckqhlluzNayWHeitnUdVZT729AtM6hYfpT18kiVmQznCdMYMZ4TcmIMfQDDoQuuMMraneZEph3E1c6gjBC2JitDU/15IR3KRap4r+MEG4x22eS1HnFj2Lr8cgHe2p8XIX365sUJuwHQVeNc1mSl5Fqbq0e4eaYNM5MpaFHpWmlWS32cwDmjH7eYxzNC36PbbbHZ7ESpLujO2nXYbHcg57E5HBC6AczAmA9SQdEAmoFU7Vtufl+Ko5ZRLS9zw/TOlZAVq0BS+mOkX18r9zI3yfNE0WTiRnGlzy39gkzl+SRGMaBUZ2teX5j6wsquyNY8+7hkuAPMOm9zKlPcxBVf7JHlSTAv9hHVnG+s666Tw4quhJGLB6f3Ds53cL5XBZwQfI8cEkLXi6EH4nXAvkPfb5BT0vjthJyS5KnT6j2dAnDxjJEeZc5FOBkozC19NmNkqIuxJk+s5oRrWhwWe2DhdmtswwAmNTzzKhCpk3iF+haLS21/VzcvUr4tF2bx3LU9vejNomFT/PT9tH4vYQ0UL0ZQlGWVGlwT5l/cveAhuNgdNg4Dl4W2jZNQA+ZszWHijKqSr3220BTnnKTngBpbm2UvRm60Y9d1VVlV+AxsXytIY6453oryXMe0BkvFIGz7Utt3RCqlbfDV8PJJQLCatyIHm0+o7UMRvMJb4DRE2ObiC97zF7muYXEAFWM0N9ncAItch0CVowsBTE072pgYoRjCrDNC8NhuPYa+Gk3nOeN8zkiRpGJOyYd3Sf9FUaL2s8qCGSj0bn1npUHxbLFOX2m7YSxrT+Q6OZU2iVDKTE8pwTnCNCXESRSbYQjImeB9874FrOOm3XY0i5FdfldkwfLz1gPy2tUa2tpb6u+y0wqeabuIyguKoantRLNf6wNFWJgoBRpsWv/fDuXaqrfztUR8l88vmrrEUIWbGHIzxmTzIIAjzhNiIvSbHWKckVOCdwOGYQARFe9KZ54zIGy2OzjvcDqc4IMYdpNWhVqAb6rrZVWa2OiKlzKD67dNP9Wg7ZRXs5xzkdF5wQmrNdF5EAxFZZ8Uw1yjc8jMrFeikQULTKjzSa7xjAGMYuSgtAiahj4li86CzMs6mGHYAFAzdUY/DIAbDGVjWfHY6u1rr5B5N+9s8cYUHJV8B3KdhEM5Qph6ZC/5gJ0TQ5H34r3bD1vkzAghgJzk5twMveT4hUOgDmZYMhyYWA4PLWpB8u62+67BNcyNjJW5YvV0WbKFZi+s8Qcq72Zw4X8i6yoA4cUDyzav7Ud5VctP1jxJd1i7OHafffI5PXY1hk9eLUZpn1kDulUfFtxAMRQ3B4AFWqx4iEqARQcIKFVmTbliUOMDUeVGPdxZ7gfDvBKNISHnrAVgjOuWXKcA6patemUrU7j5Z2pzMVxL+d0Gq1SyWR7G8IIOoO81HS4TNe8xQzmh9Su5IqYu16gYH/VQsPAhlTREtZhVe7LwhRjqzzY2GZDlLAlS5WTXPHV0UkiYSM4JKUXEFDHPs8YU66k8KrEUZzOq7pmWT8AMLOYuyZzx+tsB3357g802YJ5nfLzPuP8w4/4DECOBKKDfeGVuKwawOH6pgjDG2DAP3el1rgHI2lULeVUKnI3dygATwcIjLPyuxmcu26xEScjOY86EP/14wHiKuLnr8e13t1olJsL7hNNJ+pazeFTFLKFdjhmOayl6adpI0AZWFYbFqdoKMBZpa2TK69uoJJtk8xJrx8fLTdZe9m7jo+WR8kw1oC3Zr9xs5SuBSzDX8GZcA0uLzbv67KIhfWfKmsCRgDl6sZB7Xw1FxsJyLmEvVk6UkcCIOJ8f8NOffof+YY/v/X/A/uVrECQG2cYOAB4dXt19LcAnAsfnE56fHvH7hz/gw7t3yElCrQCg9wHBOfggXgxO444lb4YkxluYngiA1xNpXddAHrttj5QzzlOEG2dkzpjnqhgb9mEFKQwg5gRHhDlqSXZLDuoIhCD5hpoyvlndz0n5n5CK5bxIiOMR0RMYCW7oQDGAVYmV90o+A6fp68UzxxWAwprjw1Ice9IwTYYwdJZ1ZD2hK2A9m4u15DCxfVXDQETZIlRDr+W98d4jhLDaSxnz+Rkgwnw+AM6LGzp5EHn0ww1CGOCCh+vk5Gy33eHFzUuErsNmu1XakvHEecb58IQUZzw/PeL56QkpJRzHE3JOpYofgcSLjBwyhCeT1feKwoO88zqO2NA+IGFxjdH6ymawfCFseroB7cVmaQyBzdMNF1m2T+unm2eWuAjGDAi2X5u7PyPo6qkcLz5rjfZtdwTzrQ1Ncm/xQrF3kjgzeweRd9lkCFcXaRCIPICEOUqYbExR8ohwVh4q6ye06tCFgATZJzElZDB6uydruXtmRMpIAAK45AAq3poEDL2Hc8AxOUwTizIO1txNJaMOmFMF1WQKkHgkRD31zcxwXryvQMCUMhgOvbcxVuO+ze1VvmrfA/C6vEySxDtrsvSJk5TyZkkYul7L9e+ck8haOyFEo3yzePNBZbMLkuw+K4sMwcEj4Bdg9L/a5b0c83tvOZucAs+2SmEZJdjkT0qaLHwG1INWaKYa0A07GTZhQDBUSoDyk5wSUppAnPH69Qv89d+8ADng4f4Z9x8yPr6fwPMOyATfdWIQh3jfaZeUfy6xACBdiXOqe9QgVLMHxTAuCiWcFTeh8p3wIwPeGspt+ew+AWztGVIQP2cGpogf//iEOGbsbzq8+foFQkfIfEbOcy2vzSKDOUWYQb4k/qWKR/TWJR8rys9iGlZ9u8Qb7XX1BHuldDIaflg+q5i2/Ma2b5u5BkTDoXo/AJAk4pQxkR0sUR3z1b1b18X4RbtWLV82Y5G1E1OEhQw7ZznqSBXDOibOqZywO6/5V/KMFCNOx4CP9z/iPD7hq+477O/2AAMprpLnk8eLu68AZoyHjJ/xEXOM+OndBzw83Iv3cxKaCuqBGoIk15bcLb7kQktGl80UmJeL0C4DzmGAGEXmmAANZ09c5cW11Tccm6HeN0wlr6UVLJLcslwMPRd7DnbIIWXVfYripdFLWJrlphWFVtqyfC7Mlu+RVQaYviP8MgBgh7IHAfPwykpT6oGTquEsap6cxGhqP1aeZLqR7Xuv+SgBwFx2CRPSOSKRw3R+Eu9ccmAtMND1O0n47Tu4foBzHrf7F3jz6juEzmNz02v6AMmPlaYZp6cj4hzx/PSE52fBUNN5LKHHzhk8phqtEhOIsub+ccgaXueceDYtLrrcowt20OgzXPJzAmiMFnU/1oPv9bX4bKUDFU/fz8iyq9+tDU1U2MUnLltRC4Wrn/7S1co2c7po+XrmjBhnkPfIPpS8xgzRIeIkCcI5JUjIJHTeGvM7MUJw6LIHZah+LOkGAKHnOUUkMJKGW7KzSo6hYignSeYZwJwzzpzRwWEglLZsULkxlrLJ3ixJ9JPyPWb1mJP0dJiSePpuOodGHP3yVfaRhA32EnAI74JGZTjEzPCQf+ZF2q79BdY2A55z0kdogTdmyauXLLxOPLvgGaxpDhwF+M8TTLn+BcYmWYisO6yGsRhZqIg2EFVCCWSTsecmwWEV4hXJyF9Z25QcLQxOGWmewJyw3W7wzbcbCduJCYeYcDhEHA/iJtdtHEJwZZPbW4rBp8hII3oJRVqEVKgyURbkykS04D5T039FAY2YKnPXXsXAwgLWMzlEBh4eRkynCcR32P56g+2mA/wZcDO6IMYGywGSLQFYVkKn6uNTyFfnQDYCXx8PrhF7VUCp+Z7Qgr9LJsMXv1x+W/6v2tsC5DT0cb1XNp/XVNV2vT7DeD81CdaiCpCsYWkpS1UgsZbIyZF52gjp58XDMl8JjIQ5nvD48B7hfMTrb38ldKVbxTL+A4Ajj+12gHcez7tnbLc3OJ8nPB1HvL1/RJqlipkjwq4f0IeAfuixh+RI6vtOT6TNt0j/2VK56mFn9dr6LhSPDNmnwJxSiS6pNghq/lbmRPXznGW/GLCgspdrmKDlD6rNicKU04Q0BwCiEJJo8KqM1ns1YEcZnQEtSAJUsOYyskwCXBQjFEGgrqLWZ5DGJqtXFufFWFGEYRXojry4qHZSKU7GLgb3HCUhprR3ELf+lDHOouZ33R7eDxi2O9y+eIVuGHB7+wI3N6+wu7nF6+++04pVknR6PB1w//YnTOMZU0zg4xEpJ5yTVDXz5OFdNe5ZVUVmSQyY2GSTg6MAy6vVhtuacvJZSce2IZTWXeGoq02zUkLrNJaG7DChWdb6DNvcX2hXqsQubixreYGXrvCk9rsWJJUWVVm6TLaM9Y3Ld1I1cCT1qsg5IxdlWmjZKrJaZTEG1NhEZTiOUYphsOYdYDZlQ2g7q/Enk+YbQE2SbUqeuFC7Al4jy37IqDpjO7dWBckuCb/golzYXpeDIlUqTNkoqwBdyyUILvjAXlaeENCWSfPHwfLG5bLWax59bV3LSSflqlwBTRsZnEn4tZOf4vgsROUuswb/xS5LdmpeZxdzdGUfysl7Lq7uDm6FdrVttPsaKlsaIxEgOftyBJCx3wd88+0e4xTxxx8POBxHHJ8ZOfUCKkmq/GWuaIKa9V1pPoKhcl6OgQA0xVgAoz8Frjofshfy5bZfGYk/M7PKnkhSGsSMjx/PyDPj2+9u8Ju/eYnN1uN0Thinuexdo7GseUI419C9tU27gUIocPcz1y/ji9r44lSc+Sqm+sybyv/txFz+bvH44s3lCVUZG+MQLu9v8d+nmqwDwWWhCalGDR1W9HYo5YvRz15b3k81XCXOUYwD0wnHwwMyR8T5FZxmY0s5luTcBKmstNts4X3AMHwAUYeUCI/PR7z/cC9xw0lCl4dhkKIKQ489JBVC31ev6nVeWjn4qpKPPAGZ0QXz9mT4zMjIEmGymMTL9Rb8QqBc58D0isVethXTZmQLGb0Ij5Y0D3JA73yA86EoplXDqgZF81YqXhbWpBnuXFlOlHyYOZn6ajfrAZ5mv9J1yNwc2NmbG28IOVAjNfTpsUNk8dBOEWlOyAzMWTyQYsqYphkMQtftEcKAYbvHzYuv0A8DNq++xosXb7C92eHVd6/FSJBngCPOxxM+vn2P6TximhNwOCGDMc6xhB1JjkXNlUWkRk7VVzOKXtgWoqircnld3b22r43X6/yZkWnxfMugVrzA+NzivsW7m9DaL5RrS90OCzm+bhsQ3lJw1Be94drbjBYZZjwRPVzC1crOU0wo5JeENnL1KpMpcGpT52Kf8Jpw36qcFq7IEnKemJFLPkI18JIr/SMSw3NmyCEh13iNi3lfGZaNd1iBFkveLX0TvhXV4N0aFls5e/U97RQCWpnOV0MRi3nJCmy0hzirRxd/lxQjzEUvJOtQln0pOqX2nwRHMZN6gH1qrZfXvzyMrgyknsgVEA2dWHLIuoDlHvMuMIssqFpSGyunvqQITyLGzW0P7xh3dz32+x4xMu4/ThjHhPOJ4TQhuVW3g00YCM0habmEwFvlQyA5AzXbaNMhcoS2NOyirWXHr0yXLfra7VlnzIiOgXFKyAl4eh5x//6I8dRh9xLY3HhVxG1YMi6rSlVKzpdurE6YuYKS8mqbCL1hAfCaUXHz93rclsfIhODilJavsTxGVeSbjrXtthy9ysuS9GwZNmLC055tG1v2eeFuuvrM7ib7ngDkKgyyWJ8A6Gk/NcppC9RMkOgG7kKHFy9fod/eYLvbVYu90kMp8ZwZz08H5JTw89u3+MMPP+Dp+RHneQSCbO4UxWdl0hwaKSfk8xkheHS7DYb9TpMUSxfm8xlxmqXviZu+Qhmqg2OW55OHy64okylqLK95tqyEiwGVAlx0AsnosgiR5boaf7Bk0ynOSGmGCxsMYQOeR/gQ4JzXEz6q819wm629g5WqtX/FY4lLR/X+agyziTAjg61FK3irIit8IjNg5epzyoiUirKSOavnABfe2M6xCLQE8Iw4n3B4BvwpgJFxODxhf3MnJe+HAcPQo+8lx8p+f4ftZgcij83uBvM84fn5QUMKsiZ9z5pEnsHImJJ42Bgv8C6gC67ZYkvwe+2qgFd2xGJH6VSX9b7GFxoebj/KCS0xcIWPmtJj72+Vn9YQfeUli6tV3r70+tz9lWcAS2i2aKHMFzOK27W1m7NWoytGaS78Egb4WaSLdw7JOSTlE4mrMlMAu9OElt6XfHFglFABMzw6L5XqJF+BeMISeU10qfuFTV43tG//WOR13wX4XpKPp8ygpgLfshoP61pLC9TsVQOYcnLGReZ5R8hQo48qXilnLUlfPRdAl5RmOYpKQl00ZNEsFQlS0n8kntmo+Vf+LS4j7wvM1IBVu9PAvLnJQ5X2TLmsic1H6zVddzaj5EBUmggBePV6i64DtrtOvPHmhMNzwtNTwjxbQRYqHpO0mMN2Ypv/L/aOYigTfzlVHkGSeBRAMVzUUIoK8ousX80fN2tV5WfFnQyWtSXCcYxgBoangI8fT9iOAeSzeJX5pcec5d80Obx8+RKrtTt/aXQihXHt4Ws7LY0X1wqDXDWilkmSv9bNNQ3Xvuh7GiBU55LqAVPBUO3atWvbetJQ85mOz5bL1tRC3O1eO6CxqqlteAnnjAyCpC+y55aHukS1Ei2IJH/PZsDtyzts9rfoN0OT3FmeceoNlFPCu3fvEOeIH3/8EX96+5Pk8+EEGjpRSNWQ4Poe5D2465CcAwWP7e0t9rsdUk6IcULOGdM8Yo5i1MppacAlR/CQxMTBe6k9QHK4QMiQegRG7C1ZGe6QA7OsGKOljfXBUEHh1BgIlZdmTUXgvcew2cAh4ex9KcxEupGv0lGx+tk7zBu96i1cBk0LzG8eqVCKkb5KyL40afReq2bafs2Zi2caR3FMKNV/jcxIWLbkzyQJk+MZcT7i+PwB49jBB8J4PmB3s0fiEf3Qo+sCQheQE7Db3WIz7ADy2Gz3iPOM56NgKGZJsI6szgw5SVyAei/55oBAPFOXo63zulyf5fzik1jlk1ezbwoGsiUSxrnQte0S0dDwMFa+eBWz2LtoSZf6zDKUazWeX4aQC71qfXDQeiNePlfxTpuuQyoaile45VBd9EcPO5wjyScZWZ1icMEvoEWMXPBq/HSl2rbkp83w3oEh3oCkh0Nie8mwnF9ldhVE2eFJa6Z2Tg7Zuz6IN7X3UmSFM5JGR8BaUtFBVBN325zZWhkjERwuqTG88yj5+VFTOrhGFhtXb41DDMNQ+o5GnpkstpBZK86UnfAVpprn9kuuP8vYtD6JY0tIbJVdmlHJBDhkVwWJeOIoo9eylCjCuQ6+vXJKyDFjsyF889UW243Hd9/c4M3rHR4fJvyPH5/w4cOIMXp0/UaYoK4HgHqSpnK1EAZQmTbVN3PW08QsxM2MqvTWicBym1zZMgsGYAwcF4aQFmyax9fzcVaCZ2yDx37X4Tf/6RY3r3bwftT7VWlwDs5bCFX7YhNIy7CCKjzaSbqWe4MKwykCpgVbKwWAyrygysU1iFYgVOafNbS2BWztCGzRGsZL/pKZV3BzfT1aha+6Sbry2foyV1+AFRSJATLqiRipy4hzkqDNxl9EQ5lWGdiw2eD7X/8au9uXuHn5Cs479UiTd3sX0HUB43nEu7fvcHh+xv/zD/8P/st//T8wjiNO4zPQExIIs+V0dMBMDMQJmEb0fYcX33+N/Vev0DmPbd8BnPH44R6HxycgSYLzuj9RqkJBmTsgXguJoGFlEXEWzy5ZRdeoBeIqmiEhba3SaYYmA+/mzSFzawYfI4eMOJ3hHGG32WN3eweHhK4fMHddYfQiy5NB4ALCuCmPbsnqJEl7brd1USjqxbCwg2bhy9ozV9Cj0lf6q149MSZEBUopJa1Wk0tYqSsVLgi90xMUlpCf6XTC8+M7MAjv3v4Ich1u7l7i2/t7DNsdvvr6a7x4+QrDZoM3r75F6AK+/la8PqY44fH5I+Z5xPFwwPFwwDyNePr4DvN4ln/nEwAuFQD7jiUsYQE6zGNmyXFNaagAVf81txnoWW+3gkFWwgwwHMuL+5uXLrmp8iJqTsmvg55LvlvvWxrO/6XXsg2TI1SUBbTzpaOQ0AMWfkzSRowZ8yw5uawKku2BrDTLEDrtSErvRudAWSq0TVqKF1YWO0h+sNB3CF1ACAFIEsqXISFixISu7xDmQdqJEcwJ3pMoWagwVg5pJAzTkpRmdQEnImx3PTa7HjlmzJPkE5xjQvJJDGRF6eXV3FORS63i6VLN/xZ0s+TISE6qOkWpBrJA0+t8RdKeK0p0XREqcjbr/iUNf84pIXqv+xZSne7f9OJGDufi/b0wQsD4s5TvFu8sKQLgiMAhA6jliouS2CiLKC0Zr4oYhg6/+esXuLntcLPvkHPCeE748HbG/f0MUI9h6BZdlX4YjaMYn1rDAMr8qxLJKAb/pOECIQT44EueGjS8Rf7PhbcvJsG6ogzHct7Zu0wxYVVM4B0SAx+fz7jPjBkZNzcd9vsOb772ePFS9oopC+INF4RXaxXJ1vhX31WV7spBm9lujQeWbFUm6JM6mRnFrxq6DTfxFQPBwgCwJAH7oOgmrspLk3+OPo2V7F5e9J3K7zYXYGjxDyoGjUoghq+WeA5KD5QhYb0kNM7uskqmtedCDxc67G5u8fX332N/9wJdv0WpDqf3O+fQhQ6H84R/+p//iPsP9/j9j3/A//zdPyKmGQkRYb+Vddb+eh9AzoOdQ/Qeru/w8ttv8M3XXyPOE8bTATFGPHy8x/Pzcy32YIaGwtMUn3QEOOHdUolWQlAt7KrdK3ZlrabliFQ/aL0f65qVwytd0/KpeTVFCTfsug6h6zF6wjGIEc2tkhk3K10USkkmk0uVhZQSUpTwGS4KLgHkAcqFFgDFgDCdAmVvc5FrEtID9UB3xSDHSBA9Z55iSUMhMqfSqfOE3mvKghzBmHEej3h+/gCA8HD/J4Rug/3tHb65/w2GzRYv33yF27tXGDYDXr36BqHr8NXXkmh6nic8H+4xzxNOpwNOpwPmacLHD+8xamW7aTwDAIJ6bnShUyN1s9HKci5xZaH7hYHgUre9hl+qt8s1ntA0cpWpKHOmer+t978ECX3SWAQ1dDGu5sZtjUkXzxqvuvY+/ZnBWhnbXP6o4Ow0azVRQtFPhR8Z9paiR713iMyY1RDccyxeRhKmCvjQgfqA0HVyCEEeMatnHSDpa9hhmgPG0Ze+xcwItqca+QAo31NZlMBio/cSNrzbbTAMHfKccB4neCJsux7codhAxISScYFdr/BYAmtNMkIIHcAByOKxZ44Itl7E5ukun7TrQZo8vWTCYvvceAMDGWLA80H4g/e6TgnIX4ah/ixj0yV4N0JesbDWENGAcCP9CgipNnOxeVqlIcO5gM0mYLfzCJ3GVCfGNGlSS9RyoW3llIsXqEGsymVqNKSl9bN6I7U7vBUYS5C1Zj6fOzFtWUAFCsq8s4xtjhnn0wzvJDa9MvymN9T2hhbtL2aA6yuu7XVeT5dd6yEwL26pJ5G1U59kKM28lxXhujYV/1QmbU0vPOHsw/Jo9UgxMIx1W+3YWkxbmPvlgO3WdQQ1K1fg7ErFMwBtWgO51F08dB36YYvNdgcfQm11MU+ycU+nI56fn3A8HTFOE+Y0g7xD53tkIslJAQm5AzlVwMSY0A8bbHd7dN5h03VAZowbEZ5xTnLq1ig3KHNpeRTktN+rcSeSxfXLvNjurYYGA+GNUaCdRjNE6kCp+ZvIDJlW5UNKnsvJc9Awk6Y8EMk6tBxkgW10neSk0DwumhXl5kaYYqP5iJr9VGmiWXNGoZHWXdaUxmSGJp0HQqMMNLRbiUNAaGYgzwAoYRpPOJ8OYGacj3tsNhs4QBVMp/kkAjoAQ7+Bc1KWNWeGDx7zuFPjEgsgy1LeW8Cp5pIrc1Yp+9pV+Ui7Ua7dfsm4r3K8xvCw+OwCqH3q2SoLyqMG4JSprRW2a8YmumAOX/D+1fPVIEBYJDfgujfWBhdm1JxupU9NO6gfEaoyZEDf6n1UdQOynhoatji5Rt3Xkp9JjBLOYDyv6oewPlP4a52/doq8E6+mmAFwKrmdslZ78yYH8iW4vH5Vt3RHkkuuKjXQMuPWI+WVqHzEZrCVGWV1G6AkOWlWByI2t8Byn/+Fr+JFaX8vfl7Zi6TyDnW8Cl8aEUmFF5lAWct94bmM4AmbbcBu12kS7YhpiphnRpwZLgA+2L76hEbQAFJ5f/uy9f7ia6NqvoXiEaptkbXZfFZfu3puBVqo3pjUa2KeE8YxIgRCTq4o8xd0uTIKrThHnfzy/RoToMiD5Re8nCTbyAUrLHlXe6B72Y70ZQnPGmMUUQl7ujDK6g6o9o7P0z394h3tOOqJ/mUr9WajXf1L/tbE3hW41YNNACDv4bsOXd+h73vNrWQl6Bu+AME2c5zxfDjg8ekRp/GExEnyuHSScLocgkEwFGklzxA6dP2AzXaL3X6PeergCIhxxvl8xjTNiDFKOoWsYYGrAZMjuCwE7JR3F6XNdnnJEqwraaQFWpNYmUPbDwWzoWIqadQOuhLIBzgX4LwvsqFuqkt5KFiWlHXUkKPiSVvWsfHEbfpa+mz0THYvLV7HZU1rBEIxmjJbtA5sVxvPMqlU9ohjnTvNJcdAnCdkZnTnDueTpC/YbPfo+y0IhLhPJczcew/mgL4f4LyFqTO8Cxg2J4gF1ekaSzEqAktEyZLZNXOzWK3lx+0ztLzz4vtmXS6vJe/51N5cG3ounl3I9cKELu+/wrhNktZjAbp+3ycMTZ/Cm83NsPDL6iFacd7Sa5RL91v7AlDT2kgya8FpBY8XDKy4SSMnWo/a0o56i5f7jF4VR/n11FH7dHN4RFD87hB8QEyMqB0q+6yR09VLrunnNZowHgIuxVaWCVTag4rGK5j5kk6xELGofAdo+yLjIZvkT/Cs69cXG5uSngDayZJ1WjY8l7AzU3DsXIOAJSjmCjAt3pCtjKENrXgVMBxlhJ6xv3H49V/vcXvb4XAY8T/+xzs8HxI+PkecI4k3ha99LBvGynaiEm2Ja6c6eQvDFyQ/DAXxfnGanM47YURMTt3+NcGnlQMnKjkKWoWtuksXqFYUUwPUpKViAXEZJS+E+PB8xpRmHM9ajSNHOMfwHiBnYkoBaVtuCHWDNby9Ibl675JYaPF7LRlfTxJL7KoOqnhD2EbW04DMQKlL3bSeG/Bs1VJbI1KZr9at3d653nNs/2vPO5ffl0csNJJhwZK1VwSQ0QXXubKSzNxm4S/MWIS8conSHXGzJGz3dxh2e9y++RY3L7/G7vYFyIl3AAhauUzCyKbxjI8f7/F//8N/w89vf8Y5nfHi21cgkvxA3jsBzpPkfRlPZ6Q5Yug67IcNtpsN/v7v/x5/9Ve/0r0lyXAf7j/g+PiE0+mED+/fYZ4mHE8HnM+nAlCYxVU0gECZMTAj+AwPoHMSAzzNEjYjJ9ZQjyaZvcSMyElckdOMGAFPmnDRSRUgw7/mUeaIFTAwpvEERsaekySmDT1ct4XvzyCOyDkWBm/11EwIWd4bTlKONuVaht4ADxGh76TCW60+wkgZkjOB0eTqMVDuxKCnNJUTF2OiQwVIgMSAmxA0AeP0lMU5J/sZkquAyKEfgJvbLUTh7QCSHAvj6RHzeECcnvDh3R8QQofd5gbed+iHHfphC+cD+u0A5z12ww4vv34BgJF/9RswZxyfn/D0dK8FFY5IScLtcopIMeI8z8jzrDRsKogkui5bqYxyDZwqDzP+srh+ASQZbxUFq2m4xTZsTckhg51utSd0dpLqmFcCcbmn1+Eqi141g22//5w3VFWwqyC2diSkLBfvSe8TugAwHGISr6I5zuVkvPBL5Yg6NeiIEEDg4DB3oRioLK27sRryDqT5zSzUtAJ9lFK/fQjY9L3kE5tnMGf4lNHpifKqjIDwZFYDKgFeDRD7vsPNMOCUZ8wK8seYABrR+wDf9Za+H+aFUo1CupZc5bCZvGryTgIoIAeSxJ5JPPmcEz5CgOZkoFqSuZFNIPNSUWWy5BVTiMwsybLBcH2HHDz4NGGO0y9i4H+tq+ajSmBKEOmnHlwsBT4qlRttSugfOw92QX6Sg7jDu2LAZwtDVINPzpKYGQxsNsBdH/D6VYev3mxwc9PjT396xJ/+9ITzOeM8MuA75UdJwb6FshhvQ8n5VzEUQ9IQ1Bx7xiTIOzgmdBqyZsVhPLli/GaQwgOucpVMzi71tbpFqQD+WmFUc3VAaIQBsJOUA5KO4IyUZ7z+yoPQr4C2chSW/FSEZahbq0BUQ0nlFwtjHxaPlN+ZuWRMNq+gFqdcMzgt/uYGrRjfbCBu+zIzUreYs8zhlf41vUA119pA67pcY4sZ6o3fjKbMUW7nS97qSCpHC9erJm8uwxIlJivOIPLY3d7i9uVXuH35GpvNDfpuK7xWvcxD14GIcHh6xvPjMz4+fMRv//RbvH33FmHb4df/6Td6ENfDBymSIfm5GONpQpojtpsNXtzcYtMP+Jvf/DW+fvNG5Od0RooJrz7e4+npCefzCR8+CIYaTyeM57PQilYK9kSAJ2Ry4OyRPRBcQPAypjllJFZPcS7HAiBIovCURQ8Qj9IEIo8QGoMRSxEIM5axESUz5vEIQsZmf4dhMyDHDZzvAdcVeqirZAfXti7G91MJY5tiwjzPYpx19l6VM7nm1M25ri/bvlW+BNaiLcr7Y1R57QX/gUv3ZU+RU4iuXEGhtfMsCeWtD0TAhnCjhRKYAkAezhMOz/c4nR4xnp7w/u0f0YUOm+0ewUshnW7YwHuHYdjABYdh2OH29hUYwDe/+hvknHE6PuPw/IicIub5jJwj4jxhHk+IcwRPZ6RZOK4p0NXYSou9urQ1Vb5zDSnVi6/+VXmQYrdVI43GueQv7X5u22TWfYglxuLKO9y6DZjBaYmHro7iCtNYe4rLh0IfGSyHTA4IlJC9FAVy8ODESDFJkQw2z7raiumPDkAgB08AvGAoJAYnIJUwdEikpxOPI0+2C+t/kizegQnoO4++D0AWr+6YGZ0m9jeDWOVqrP+UrxGhg4N3HvvQYz8MOCbgnEdkAGPMCDHCk0RAyDjWjL2ZbMVWIJELxBmegQ7iXR5JqjmCWQu8MAI5oVOyNEBttNNyNQzbkq86Fjde4pl1f/c9KATk8xl5vowOunZ9sbHJXIOXsZYm8eq/WhKzzEm17isDMpdecxG10n02ocwQ5Q5ZGI1nbLaEN19v8PJlj3/4hyN++OMjTmfgeHKYk0MgMUzVBpotqkieQXpiahPdcgMqn5k8txNm++fU2GQGp8SVwORNulAGBsplnzddKiE8VD4013/vAWIJTTqeJyR2OE+zVCdqKygQUPLVMJacjQ1GtR+t4cYKdhjYWgAhC6do77xsSf6oTIqIUAPvVwyGav/0zXBFOalgyVmZiMWdy7eKEqLfLe5d3VkEs96ReTFf1Haq+cclwVwFwWC0N0AErTH5XGJ6w7DB9u4ltrcvsbl5gc3uDjFmdU8GXKcJd6eE8XzC0/MjfvjxD/j9D7/Hzes7vPjmJUIXsNvt0YUOKQHznJFiwuP9R5yPJ9xsd3hz9wL77Q5//Zu/xa9//ZuyRpwT9vs7HKwKBxjn0wkJjClKqGaepRIJOUIggDKjzx4pi6XckzJprSiXG69BVpoz63zKUkUyJwcOUrHPO1OIGgAMQChTjLVxniAVvbKeygW40IP8IIIiz9Ujo01YC6ou5UzIUfPSRHVdL8LQwXuNnWaHZDkBcuvZpCKroWFH6g/Sei2RCkWGAkYN3+AGkOt8yMklw8PoWcJxu85js+1A5MDowPCIKeN8PiBxxvEApTgHTz2c89jvXmG/e4Fhu8Xrb77BsNnidneDly+ERvrdFj54PD5+xMeP7zS30z2m6YzpfMb5KK7i5F11QGDZyaHk8KjhlBdbbQWcyrZSxax4sFrbV/bi5cPX2kM53aHGyF1ompvt17I7zosPWkNTVebkodbQVKDyJwDTtf4BRkv1wKAY5JlBMSJlB6IA76T4hIQlWLUlYzDtkYz8P2g/kpPEpZkA9q4YKqQAXHMi13g2tdPp9L7gPfquQwQwQZT7yLmEN1nyyvZfZjE4icck4D1hCB7bEJB8hlPZNKcEuMaVve2DDa9MGq9kvB1MsYbgsSZVF+/KpAdQntvg3abxhRtppVmTPS2vKSutobWuC2JomyKuhZL+pa7qFamSmYwWcls0TO9QyU1qzGn/VWSle44Azc0gGEv2g3hDA31wuN073N4E3N32uLnp8NvfRvzwx0fEREhpA3Je1k8NOFaNZiH3s+xvXnivtT+pAj6ghO/YIQMpgDeDEuucFLhkIMkw1GKk0P4tZnQxv/ZqhuQBQ4OhGF7DmWze2jZUhsOVPX3xihVbbN6oNNZ8ozi3bePSU6k20fKqKn8UYV8jTSP91ceu4cEXBqvSteWAWjbf4rraT+OZS29N+aoewJS2Cj9c9Z0MojpNnbC+AQYCwST8x4ExbHe4e/Ua+9sXGPotgu/BeUbKUm3NB6kgNU4T7u/v8eHjB/z84Wf8fP8zvtt/j+//6lfo+h6bzR4hdJBjZAl1e/r4hPF0xt3NDb559RqbYYNvv/sVXr98hZwzYpqQUsJmf4ubpyc8H56QmOWgDsAco+ZwEuMIEZRnZ7AancyTKuWMNGakJJjB6KVULlYakcNdPWQhOahzTSb1pfHCqacUI01nRGLQ/hZd12MOHcgFwPnmfmgDbSMEakwKmaUwXEwJc0ogYqmlQARPToo6sNjtzQht+4BNVzLMZ3spa9EMTTScCQ0GMb5YcXZG/dzEdtC2g1YLDF1AtxlAqoelLHk0x/MzmBnH50dZa3JwroNzHrv9Lbb7GwybLd589Q2GYYP9/gVevHwDHwKCVgM+PD/g6eEDYpxxOj1oyoInPH7MyI7AjvTAq9HzqPKUNfsos91urhXeWBucF9+t2mybMpj1KfTSoidc/GZruPyu+JYp5qYGy7XYu3g6fabvV/tUcHn9nZm1KBEDvjq3WKY5OctOWvSieu1bp1quHjRHUvTOlGnRt9UwyiQPkDPj6FLOONPznNBk8A6h88gRiNDqvUnsDdYH26P18K6Gl3pyCOQwhIBt6DA7wR2sBqEpJ3TOoW/zJK5EyBJY2brVeQiQtTKPrtYg7NCCC+Xn1wSayl3TBVrCtb1J5mwUJJyOxxn5CzHUFxubJDka1DXNemKEatF+q46zCT09fTVwBAFD5qpoALww3JyQNMnt/lYA0u1th2ma8fyc8fw04flpxjQTcu6LIDOPpTKPvFqjIjDtI7nBEmwTqADkYsnXsVaFeZnYtoyeG9dCa730o41BpvLeMlU2nyRZ9aMm9HTeYbsL2Gw8+iFI0mRLEK4gjSyxmYETm981uF/0rR1A9RlY4CNeT2JlWy0hrhU3oqrMLdlT+xAWfVsyKvOgYi1p30ilMl9c11PXxiqVta9pmZE+WP6oa9BuXlZ6hBgSjV6aPpP11zamecQUg6mFmRH6zQ43ty+x3d2olwyVoZQTKgKOxwPe/vwWHx4+IDtGvx+wudlif3ujBgqvXcvFWOogYW/bYYNXL19ht92i74eGkQs99f0G2IvL+PRmxDSeEboO3dBjniccnx8R5xkpZqQ5w1HW0toAedkO0THmKA3HxGBIyJskJ5Yys96zejH54glo82oAmJmLZ1MxTECFSHIL0O18gA8dMs9I5tZhzxhIQT39KnsfBB88Qg4iLNUGkVIGc9R8TrEYisCaL0Gr5Dh2oqiU95EKK2re04bCqIHWeVCu1eyc0qnTU0FLlirjc/AugJxDyqR5DXU/M2m+TuWbetKQecI0HZAx4/HBozv1iOmE8/iM0AVs9zfwXUDOEYECXEdwt68k0ek8YR5HzNOEPmxxPBwwns54fngS13t9x6e9ehpQafzwk/fVddUnGt6z5JB1L5osqZ+tHr76LuMhrWLVApk/5/rU2BehcItblnyNwZJcEhqqCqjSoNCjMUaZvCMrYY/KA8vBRpbTMAF1EZE0YjcbcPAV1DdgqdCl0jcR4B2QLX8UUPIJrMQQrk54mVdJokqsBmSthjrHiGBV80qi/k/P44XHRSs7mYshQ7NG6fhJeeZy5gnLdasHglUpXvdG2aLIC+fAi6Svf9mrhhHXz6rLPF9MfwuAWyWuyqyEnJv1AUoOTclfIRV29zc93nw9YLsNeH4+4nx2eHoaMU0snrv2skYuV4xk/zPeq/7DzffEUgnQDEokTt/S73IoJiMpBpHm4ua95VBS58bkB+XFbJT5YWjeRy2fZefuVjcreI+b/YDtTk6nSWVuoY4L3iytfpIVWp/t/wUmNXipGVjdj6sGfoE/VcOO7lNunrnYt5ftlueL0ZV1uMsnTWJVbFqbaV8JoBjum+HBOtfyHWWFsHSYpepm7b5EDpCGNSofFK8W5RNa2GDYbLG/EQMB7P0Fmzsgi0p3eD7g7buf8Xw8YLPb4bX7CncvX2K7u4X3HkSSvJtTQk6xFGwglpxxm80Gm2EDglTAaw+D+67Hbn8D5xzmacQ0jlIJOHSI84zj0xNSjIh6oACS5MNERQkCZYKPSfcOI2saAa8HUB7iwWmVZdvDeMOqotijYk5wOWjNOSFHwTUlVNB5kAuyP5WmCVQjC1SomecCw/QJiPFFPihrJ4cmorelNBeeQ7rGrPlUPZsHu4Fmp6MgxWTVs1l+NLIvK4YAgZx6LJIVWKHyUzCUGMhT5BJ2XfmML/RlfCnlGdN0AiPh8TGg63rENGE8H+BDh+HmFiF0YE4ILsB3DsG9RM4J22GH3WaHeZoxhC2Oz8+Yxwnj87HkEGr3XpnP1T6y3biWA+1zuPJd/aKirzZdjW3FtUxsHsPnGceyf5+67dIQcf26Fkq3DA8rXS/rVgza2QoPZfGAawR/oVml4uJF1xrXqeIocnIYHlGkbJE3Ennha+5DNMi2udF0LTg9JtI9Yzq2RHaqnGrkByspS8oQ/cAODZ3TA/qMaZ5BPoB9+Oy8mo5Q5pAKOiq5EQRfyrusoJXTCrykfTXDU5VZy3es6adwG1bHIOLKm7xDDYv4/PXFxqa+7+UBPUko4KQh+Nb7ywCSuT465xfnuDlJxvcKbOoC5RgRxzMcMb56/Rr/4d+/ACjj8HzE42PCT396wk9/OoIpwPcdnJfNEdVjZAlnmjwaqDQkDFo+D8GhC74qy16YlAgpc5UDzPgge7YqN/a1mdPqxucmyTCKIt4uaFUYrAwwI44TcsrouoBXb7bY7TvcvNig3/bwfac0K8RtZUQX+W2YwUQl0evF1Wx+Lj/bldMByKo0c8flllYQmlHIEsG2zOWavmiheUYjBiDsvtwkHCvnhsxocGjpIsEs0WqlNmPhtXE3X7AmZpS1yPZi3aRyUsL2ABkQEvWnuPQWpmZzY7HnBILH7e1rfPv932LY7OFDj6J7QsbReSnv++79W/wf/9d/wXkakTrG/usXePnVG3z17XcAA4enZ8zTJII+ZXBKcEToXMDLuxf427/5d9htttjvbqHVb2GlPG/2L+FuCDFGvH79FWKa8f7+Le4/vsfx8Iw//vH3OB+PGI9njPlcBb5j5CCjiknCDOYYEWPCHGX8w0ZKBzMnMCc4Ej4ROg8X6onaNUWzBfgW3pNjVIXDIfQbhGHGrF5NwvWpAK5FiWc2mpJ9MPQDQuiQUkaMWcMAI2KUk8pJY/y9eoV49TZyRAhBwu2IUIoCGB1kSDgdNGkyKc2ZUZqhCjmJMHH6nQFPG794Nw1w5HCedE0bYG7JQQVQCa+d4wHTdAAdCY9PP+sc9eh0rDd3r9ANA7766mt89/13CF2Hzc0NQt/rfpfk0ffv3+N4fMbPP/6If/zv/zfmaYSknpeT1EVFsk+An7J+q3suwuMaXlLAmO6XeilX5vb+ZrMauLmm/TXKlN3/5SdsdWWX4/zU85dCeNGOGpGICTNFEBGGLoBIlH4BUaLgxBjV6OHK4UYJL1VaCezRZ0aijDNNiAAcZ7gCbDsEL0U2Cm1RnW8rMOGI0XXqwecE/EQwJgU9Dqt9ycuhlWaT7E/HjCEEpMw4pzPiPEtusU0Pxx6LS8HRNeBpY2ZmKbig3yUtIpIsOTm7uvTN2rReZWCUUt3QPZrVW6XUjJGjPsA7ODU6cAjg4QtQ0r/SFfTAzjW8DwqujcesXehtbb2XhPBWuILZTn+X/edk7WUQTfCe8PW3G/zdf36N02nEjz+8x+k44cefZjwfZF92vXhK5wqOFkqmdTWX/BlUCpuSWvMDOfjQadiwhkuRVeIEStJThkQOtgC3/Ge+fhamkVf7nhST1QMLAmo11zqlSHFCzhGbYcA339xif9Nhf9NLSWxXMYUnwVAANC2B7gelK0vn0KqJbOuGpSJVV7HtMa7wDW2/UU6Ld+gFjTeGL1VebP3XdGLPADUSQR8ryuZCjWx5vRkL7d4VG2yN4XXMVumoYqiCh1lSEJixwA4hWT3KJfxXvHY8afLdnJBSBnkH3/Xo+h63L1/hq2++hwsdyDskTVEQQpB3KCb6+ec/4b/+t/8KBIcX33+Fb/Z/hdu7F3j56hVyZjwfjpimiDjOmM5nMcbOM5ASeh/w6u4lhn4AmHA8npR2hfntd7e4vX2BFGe8fv0KMc748P4dPt5/wOlwwE9//AHn0wnn8xmnfAYxNGEvI7DQd1QjzRyrsVawSi8H+TkDSRTDLngEH2Svl7mWdsqhN6CYV2hkniaVMQneyWGWDx2c70E5AjkW+WvhP6lEUKWyjuSkMlc/bOA76bNhqHGcEeeIlKRSHzNrYSKnmEaxm/fQopYwr6lq0GLEJMTrnB6oNKJL/Ast9LbSiGv1JIg+GTT0d5pnLSgBEEl7IXQIXvKjOuVlMZ0xHg6go8PD43sQETrfyb9uwO3LN+iHLb76+mt89/336LoOw3aH0HUiGCkhzjN+/tOPeH58xLuffsJv/+EfMKcJniTk2+wBVY8vnL1sOoLxri/FKs1zLX8ov5SXXehahYSuKWLNPfaOBeZavb9tYP390qBk7X6Gl7XjagxNWXGJeTY5x4CHGnksvY7Qs/ABzUeqhiVC1am9ZyCIJ/806/5hlmqUjtA5h6CFykx3bwfGWpTFOYe+6zAz4Uyjeoczgumwhm91zDZTci6teisYnCJyjCDO6ENAylmiMNIM9D1u+k5CUZczq29o55cbbCaCuzXSJZVZOak+ovLZDsAJdLEWJqdMbrQ6urdiWppnlg1DEYAQwJIv4hevLzY2XQfhvPhRhOdK6JrFj4BijWXmEuq2Pj1maC4HBwy9w24XEFPE8yFhmmecx4R5ZoAYrq/bQNd22ZlVn8oPvtw8pZ+NRbyMdLFhdVcb8NP2DEuZEaTwgNUOWyyyGiwKx230J+cJ/Sag33jJ+3LBBFRxW1lhuBFS5TPg4u9qgefP3PkL18XYFihSe9m8s3nGfl8y0DVNfKZvDUPXcxN93yWtVgzdCvDWc4kLgJSykaWx8nxmhms/XCi3tnn1BNo5hG7AMOzQ9cNFn0yBZjDGccTT0xPmHEGdQ9/1UmUqdBLOQC2zFiLzzoN8Rt912G222G63kvwQbfpASSrt1TvKOSDliPN0wpwmgIDNZiunfHNC9BGMJNXfNPcMK4j33iGzK0yNHKHzHiGI11VOuZyoXVZ+W67j2kaQOYOyeTbpaZaTk02yapa2rmSMtzld59Weck5LuxNSkvbkNC4h6j+ZS+0ny15jEo+S7PSUgrmMnxsaAMv47YCxgPlmHxbvNxOEZELceKGOhevaGoOh8hzKKWZGQjKijOLqNccZ0zTChx7kArppwu3Njbj2+wBHHr5Jihp8wm43CsjdfIRzkmTe8iLBxrDew5/DRKv7Lw1Oy1vLSi6Sa3/iBYQiGNvrUxyKlv/7hHHo85cpfZ/7/voX9kP2B1zLX9i+qWq1EZT1vbyz0o/T0y9Qk2OO9ZChoavFk4RKU7aXqCnrTpWOi0zGerWawxD9UsYl9OdITsrA0IS5zThL/oKGr67mjUBNDscysYt+i7nEQlargXKh7K7nnw3kaRhrsz+Lt4/lO9G26AtP5f5SVzWzrOTcFQNFOeSzJ5uqNWWsbDTMcJ7QdUDfO2y2AfM84Xye8fw8YhxFxlluq0qh+i6TZcBFqNRaIivXKrTSHp4t6Jrrey7moWyJhl6u0I7BLuuf9ZIWi81adYwRAqEfAoYhiPFg0VIzu4VvrHkNN/ev+ILu4fWYfollLnhM+zpa3nP5sjqHF+2s2l/8XLSxfikK8djJuc3qlTv1diq4qfVWaOVwVWbU0525YGSRqG7RXn1evLad9/BBKqt1/SBJwWEhO7XseJwTUko4n0ccTkd0gxiptvu9GExch5KTK0tIc5ylgEZgFINHCFrRkwUrkCM4lgBf7+V78ToCUk4YT1J4BSzVhlmrfZoBHcoLZZ4IntW44nOdB6cVRb2XnOHMxaNp6a1b5xcN2SzWiZMUrDG+XjybPMRdtMppIirh8nUddRXJDLgaVttoVzZ/9q+lLwbgsoOjjOysOrF1r+pGXF7Gpu4A3OLBKo3MO794NKGVeYa1dPzZcIW0sZSPdk/WCl2pYKhIE2Z4hE5wVJwjpttbcEpg7yVjEAUtnjAg+hm77R4cM576B1H2S65cRmGYjfdIMdTqOD/HG+zS0WCxA00GNnusvd9uWrd/RR28wOAmX+qS/QKGavDOn3/xYs9fa9o8dJiq3tPqP4vHGrmjI7nA3wkoFbPbwNKSA6xtrsEYFW+ZPaA91GBjyS3sXIzBSIJssOodTorJkhrQcimIggumW8as77PPql4BlAPNCxyFxb9PrQfzCltpNdnW4K3AsWCoauRz1xdydX2xsWmapvK7cw4p12RypuizcQ7YgDXxpSMtzWwxlwxOl8O3CR96wlevdtgMhFevOgxbYHyK+OHHZzw/jXh8ZPiwAZrFl3nQkxlt1jyrZGbUTGAbFnVxyUm53JwlCRklsQZOc8PIjOgs90DJL4Hi/ptiAjRxYe9CVbhXzFEEkiqTdtJm+ZKIxDPEA/vbHq+/2WC/79D3JN4tManQ8ohUcxiY8lBmdCWsWgFon2Vzg7VYeVu+5iehUYS4MpdPA6r66XUA1xCu/aVKvfytylrTb1O8m8fK5jWg154gLA1eAnIWDzdtyymTfm4W3JQxp9QwZM1loe6DfRcQFCh4dRFOmtDW9z32+1v0wxa3L17j5vZVqZ6SFIx43yGliI8fHjDNE96//4D7h3u4zuPV628w3GxB5PH4cADnjPE8I8ZU9owPDnevXqH3Hb7+6ivs91sM/SCKk8B+8doxpY8z4IDQd/Ac8PLVG2z3O5xORwzDBufTCffv3uHju/eYpxHPDw9yUqazSg7Ybjt0yYnXQJI16YIw4Jwl3woRqXt5kNO6kpcjL4ExSaPejC0pS5aWPIPTBAJj2N0APiDNRzWycMn/VPmLhIEU4aPgVtyrAeYIkHgkzSnjPIv7fMzygNG/d7m4hlomGaAGpBqfA3Ox+HvnNeG3lJk3jwMLI5OMVEJTpN6H5jJPJJWgQIRpSpijFRgokKrsjcSaEt07KREPgFh/OikkQJQwnZ+Q5iPe/5yQ5wN8COj7vSQX1yo7YgCVk9RAHYLfIHuW0IKSbNf8Ty9BzpdcIhgr4CknJMb+FleLnpaS2gBmkdYXKt1KstOVz7EEe1U+XfalVdCMv18ZXXlZ5UMK0pwKa91vnBjznDG6iGmMmKeoSo7RsXgxOSeJiXM2r1w1FzuHTr1DTkSIMEkn+eD2wWPoe3QhCHixohhlfCKzHDl0RGDvxTuZHGhOmFOEZ8lHcE25WRh+tV9gTYoaIEIv1hO0eYqAZ3ROvFsksXRu2qpTaAZxASoseQBIPBumeS40Y15Yc04lxKT00ahDebsoQrHIAtnPruQsKbOjgMkBgHoa/1tdKckqpuyQsm+8ZlAZmIEZ1rWGGE6ChyQLZgZzVN5nORxrXhcLs97vAr7/7habjcduR3h+fsbDxzPevp3w+BgxRvEKhyZBNU8wO4QrSQEaEG8dlff5wm8N8M4xgUgSHVsS4/IUV0Ar4aGNRxJL6oDMDMoAJVnbrtBm3Z8VzilmItRCIoppCMBuJ7n/XrwacPeyw27XgbwUjkgpwnvxZudMNQSn5Xlcc5KAmiUxAK+GhJyrNtEeZMnM6M9m/toDvrVaWE72Lxhl5Ts644Vfr/nWYg83ctI8sdfNLg73iqKM5Z4t76bFJ8u9TQueyiyn9iDAZa95RAjETotxeAQvoSlmSM9R8lH2wxav3nyNzXaP/e1LhGELBiEqbXfeowsdTscT/vTjTzgcjnh4fAB5wPce+/0Otze3yBl4/PgoHkXThJwS5mnE+XiAdw6vXr7EzXaLl3e36s1MVeQoZndwFncMRx59vwUz4/Vrwm6/x/l4xHboMJ5PeP/+Pd6/f484R5wOR6Q5CsfWNd1teqSs+eJY1lGiHQRtcONpbTLCDEwFC+eKDyz1h2DLuSCXzgd0ocew2SGljPn4jGk8Q/auBzk5vOKsUqXgaKVzQCMmPDJHZE6ax0nSKTADUj6GETNAzHAuA4iCobjud1OUDUPV7C+AywyvURHmcSjsWWgpw0nGHvI6TwQfOq2aTDifRwAS0WK8hchCz8nSqUpIL0G8xczjns0rRVfZMabpGTmNePc2Ic7P4j3VSeXf7VbCOYkIKWZQ7kAcAASAYlU6W7XW9oMtYqOjLL7/7NVisTVoQTF21Nv1cGbdTNuvFtqtcFnRU1vDAyue0D+YmnvLEBu+Z0afqwar5QQZRwNphIriKPPOmbLwhXEcpRpkSvCeEHy4kE1FRui/4ByG4JGIcCBg4qz5izR1TvDoug7eed2nvNgEpHs0OKFBMCH0A5g8kBJSzHAMBO2zs7Bg1iJKrIceXnOv6fw5ArogKTTiLAnHY87inQfJYelUH6/pQdr5N1nYVguXK2dWfYLLWmZIDjwGSv5YaZEXtJA0JzQzNyH7jRxjqGcYF4TAnYdHjy+5vtjYFNUS7L1Dzh6cUwWFBjqsYwzAgCa4uFlKqIyA8RJGh6rQSylvYL8NePNmg/3O4/ZFQD8w8kPC27dHfPhwBngD74eSJVtoRBmMEgsBumBigMJiQ6F5L6qlX7gobAj2C2vJBUtM55wrbmmQ19VqRJwF4Pe+bNryPtRNWP55FdIs4AkQ5ZXB2O4CXrwesN93CB2QZklIaIprSzTL9Lh1XGaQWRpaoIqAzb+3/V6AVZkEqmu6cAZb6YfXLwOKl9/U+ZX+OVMKy56qLn1lLO3zxhB0/EUNXYMltnfUjWPO5OvNZgSRwer9Ut/NLZMiAgXxzmAv65qyPBPIY7u/w2a3x+7mJXb7W3FBniVfkPcSspXSjKfHA47HIz5+fMDj0yM2+y32+xu8eP0KT89HPDw8q5CWCgzI5tbo8fLFHW63N3j98iW22w26ENRgigJ8S8iFMh4XOoCA26HDLd1imkZsNluM44ihGwAGxuMR03hGZvP+EUWwHwJCllMctbtBXDLF4JMSFQOUJXG0Ncuag6wVQsIkCSD1QtDKeMgziDKG7QbkA46Pfal85KscrGAmN8ZEtMoHkJwHa9WtOUmFlQUIUkZueUucxL0VOuAs8R7FqN6Aa+cEKBWlyjcntbAEzUJTVsXFe68uqRKSyAwpO55Y8sgEiz9X5QG6Vwk1tA6SV0o6TLo/E+bpgAggpxNOh49yEoMexB67/Q1u7l6gHwa8/vo77G5uERAQXIfkImKiT3CQ5iO6/nXZN63i0fKaEiKkceuLBhsQVdqm0obtVTN0XOMj9UWf6V972wpotdci9KQxUi1fYrylHQe0NK58F62CXMyYKGGaJXQuadUiU7JNkS6vYRuGKIYhOAk5IqvdJIqZA4O8AKXgveBcK3xhRGP8SmkwOIfQdcjkkNOoCcCl/67JDWaPZxYDbOlfY3zyHjD3cFOmUkxwGQhDKHvbwtSXBpU6a0QWei5f5iwVkBiA1pyWyngaelNmvTU4FeUmY44RklgXxWbKmg+mVaZIN5UYxL8I8f+rXMVFXQ1Na4OBCmoYzxalV+dJK+cIihU+lvKsCpwDXChtMTOGgfD993vc7APgE47HE56eR3z8OOPhY4QfOrihq9utStAiKwGlRZghoezGooy3m85CHyjXBPoFTym8cs6h76nm8NT5F/ykByOQPdL59alzVbTbk+tSSbS8BNhsA4aNw81tj/1Nh83WIzcVIUVxdVJUYuVhX3gTG32tsFMzz4ZDLJem0RM1z9jHa52LccljrnkS1GctBOL6va3hyQ7Rarg5Lmi9YiaV83WDfaIv+gTVZ6oRUGihfUWpYO1EeUEmEEuomG/xiT4jeZQyvA+4ffEKu/0tNrtb+G4jymeaVIFz6EKHQz7i/bsPuL//iKfnZ8ADvvPYbLbY7/Z4fjri+em5zgcYaZ4xjmf0IWC33eD1q5fY7/di7Ch7wShNaTRrnhL1gCIi9H2PW77DNJ6wGTzG8wkueMScMJ5HpDliyvWw1HGGow4WemiFGerUtsam9pBcsbCOQQ4W1OvcPD6ZJQ8VAALDqzGuH7aSR2o8F97jO/U4LLkni9oIZvMalzBYEIGc9jdLUvCYjACa4ilgOMVozgwVUDmiXuRWYRAoeeDhJHIQVnjJke0vESxsuZvISdEYEk995zwyJ8zTLHyQC+KCeVWCSWVl1UwFfxkHWYboEhhxPiLNhBiPODzfy6fZAexwd3eH12++QggD9vuX6PutGpt8eff6aj1RCOYtD5GdZSN94mpZ0QIrrb5v72sgSR2aPVvDNy9VnuZhKh8uXsYqi4qIoktjeXu1fM14qOH25SBMLxN6d1pVtea9lJD4aZ6KMUQOXqrpYs0P7c2eCIP30NrLmJnh9VCZSL0nvejzxo9rG7WfksNWKiX6rkNS+kyspyLkCqajxlCnDu7wbnlgRwCC8yDdsbK3RH8kiFehd3a0uMS+df4NG1BJHWP7LJXwPzPa2uFEQ6dUXBEKQQhmlYMsH0Lx5FIoKYYmxbjUyj3Xranz6vXFxqaS2NeUSKO8dhLIWBcXQqnCqMZWwkAGU5k0nQGxQHcBt7cb3OwDuiDhIjFHNSqJR5ELXkJctD9ZXVOFZpW9lPdpD21eG6GsyEnjPZvN0/xq4prLrFcQWECzMn8DiND3owH1y7HWPgGkBjjRdbe7gK7vsNkEpJgxTVGsvsxISV5AvoIQsrHoy5fjoArQF1iKSp+4LSVtPStrRxcMyvrO3Pph1HluT58XNh+ji1VL1Yth8WlRJMobP0HRhZ1Sy75aJmT9lbuLkbQ1LBrd2AZWj6XViFXwZmUMjKRAt1imncd2f4PtXvLlMFH1sm2uGCMenx7w+PSE0/lU5iDOM6aznMIZACLymgibgZThibDpB+x3O/R936yA5M2qrtho1r/OlfwU9+Bh2MA7j9u7F5jHM07bLWKccDoOGMcR5/EMZCmvSdBTYCOdxYKs6cDWsAGil5tK96AkzEwxYp4nCIk7+NAm72v+kas5RnKl2QWxkXiLpJw01CdX8LuU5IUmDVSVsCCLfTbPpsXI9ESWaz/K3BJK4l7HpiJY/yUHTamIV7rRjtGGQSCua1vzJLV32Ql8nQLmrBVdIogZ83zG+RyQ0ozHhw+Y5hGH5wfkNEuCcLC+h2oXmj1PtUMmexRIXYKNxX5t9rvxoFbxb9u+yhab1y53YmXCpf0ChOxtFSDB+mtPU9vOuv+tJ9T6rYRlckUqU9a2JwcrAGdGnGbEacY0T5jmEY6kzG1d7sYt2/6nWp8DKcAWL8oElqTWzniKCZQ6i6wDXI+RSEBTcIzJkVQtgYAZC3lwXPm+zF1NWGvKDcprJeeZ1/0ZdR/3QPFiWKzhWjFufoqXiBmNpMvOyUGMS2KAkHBW7VszMoaBvHq4hObkr5VQ5d2yYTU/2jXZ85e5SnERXTMLCzLFHUCZg0XxGOWHpKA4m0GDXOGvVg3VDJV91+FmN+B2H3CcTzjPM2JOYHIgH0DODN8NP+RSCLvBMO1+qTyvwo06FltVp4bGejU8uiV96BqxGJeKPOaqyJDhkxX2KqjM5svoAxLOvdl2uL3rMPQe59OEnDy8T3DFIase8lXS5PLOWiWsxTOMllraMZWTZMMaixuapVzw1c/TXR1T86KKdpYtX+HFZbJ5xYcX7XH57Ro3vrZv64FNnfvaQoMwXOVHi/GzGBcpZrEpSxkqyQlGDj702G4VQ4Wu4HQiLQSTJRRuGic8H57x9PyIcRpt4RCT8Fs73JNcSVHz2GUE59B58QzdDBt0oat8gkhDMJuiQQ39W4i0jdW7gGHYwjuPu7uXGMcZ4/kMJMb5dMY0TTiPZ+WHGcgqr7lR9oBaIavl64XWCQ5ZCyhfkVlQz04So380g6qXPGpUDKH6Q/UiC3+hzCW/TMXMcnMbOrfAQSUHU2vIl99TBsjJXCUtJJG1uI2Np+XKC6Mo1xBoz1zarPRY6S8XDwsxVtVDfJsVNMiorlnRBdjmo5G9+pO1EAcr0c7zhNPxAO9H5AR03QnH0zMYqeiB7fYhBSXt7i37j7Guo1LGXjtKi33bDGDFD3DZUPs1L3HL4n2rhyt+srlbI+XVwyZ71jzCJrMYNOy++nM5hCVHNaxMLFEmaY6I4yR2gBThQ4P5LFLHGqM6zyYLJRG44RgGE0tVQaOXBd9rBN+V6XSKTcQbuB6+VLqsBr1yyN+E4Bkfk+j9aqQCSaifY0YgAJrKpI6NK7TVPpox1t5rBmlAPdJtzKrrWp/KOnPFUCAuPIF4HaKHGkpvBFy9GtQmdDFdF9cXG5uCJgj3QYAKZXFlFHcxSDnLyoeRwUg6ATCglKUqhCn17HQTNB3NGdjvBvz6r17jxYsOp/kex/MjTuOMxIRMAcF36Lwo8hJFI5Z6U8JqMjkLWWPxxFJhwSkXBldyV3g9xXD1lLcmwVbmUNzlqDAYR+KulzW2NOlghMihp9IKwujKSZa6YacUkeKM0Dm8efMSb77Zw3vG6TRjGmfM24BhcBjPEc7LqTcRVPmXRLCS+d6j+Eu7YvKs61IRgtwLHVxGAb8mvEribNR50OYq4yyGhNJsOzppazniRZsmWK8bnHx5RtZ2RStoAKvDMr9O01dL7l2YAcRoVzYvQauA6cmS9+g6XU8LdSCDslKBKaWI5L0wBAKmOGPOCTddh9ff/Qo3///2rv1JjuM2f+iemd29O96RlCzZciWV5P//n5ykYlui+BCPd/uYmW7kBwDdmNk98iTTSlWqP9eZq9159AONBtB43N5hd/tCFEOwhCqWmq4Zx8Me//nff8Gbd2/x4eN7ce8lYP+wFyYSI4ZBkkymJF6BPM3gPEtCy7s7fPfNtxiGTck7JK7XNaliNTbpGLPscrY2+jjg5YvXYDCud9f47g/f4XB4xO2rO+wfH/D27c948+YnpHkG4YQ8JWHUZAmP6wa5NOyizKmsQXbcyubFPNcywBJCcTwd8fj4CRQ6dN1OKqJ0PUCdzqicIgUC0BMCMzImIGdz/AJYGDayJDYfxxnTPOM0ThinWWmFyrgQdONgLbCeatLTnOYiKFmYU1B3+5xZkkKS8J5o+RnUgyuzus4GyOkYBYA7AAEpJZymSfhlkJO6EppSNm+/ZQJWfcU2FZWFdKmT0xtUOdc2EwPpcMLx9ACigPcffgaFiPF0wnTai7EpM6IWmC/zo8KOCYZ+7cppkyyuQF5olEZkXXSLDUpdjMuidCD3V9auU2aE39RT1zpvyndsaRUh0sK06qs8aV6yk63dsS+d6gvPJ3OIW7EroylNBM1AOk04HI/YPzzg08Mv2D9+wnYbcLXTtWJ82gmQ5g1SDCGkySlzxpRmzGDZN4Mdl+kJGJvCXwslBO2rnfAOnaydedQQbEiYGpDAHEFZ9uzEkqBb3L0lZFiqaYqwFpWf9V2HDUs47JEzYgY2BHV90nnz3k1uootYxEBilKqM0P14M0TELoLnhDzJvM+cJcyK1OVeh0EGL6CLXRG2GFyTfur8shlX0gxOEpYWu98vjC7EXuemE6MhzJtb17ReVwJ42Qx8AUQRIXTIUgMajAwKHSLlMo4gCaHpYsDtzQ5//v4lbm87/NePJ7y93+MwMhB7hKFH129EhoKF07N6u6mscuZVVGUCVgVUFqmmBAhUq4qhemYErxARIBU6TaEXjk5E6EJEIFFOU67hmxotB41TlTWtwoaF25OWv2POYMygGPDtH3b4459ukeYZH94+AGDcve5xc9upgFz3KxHEq6DuvcbLGGgJeAZAmgKHMolSjSXPMBXL6NlrowvO/gwBfQHWgWRtL9nbaMnfFjd5vua+Kky7MmmCyEGFr9qffvD9lP2RdQ9DqaBqDQkhIPZd4d/23gyRWcdJkoFLpSer4BYRugHbqxt8890PuHlxi2F3jTzLyujUUpjmhOm0x/3Hj/j7j3/Fm5/fYKYZEvHG2B/3oIcOgQnbQfK9HvcnnE4nIGfs1Mh09+IWr1++QggdouaBChQ1H6NLSl2U2IycZp130S36boOXd9+COWN39QLfffdH7Pd7/P3ub3h83OP9+7d4+/YN0jyDR+2zJrwrBhNWk405WhbRuHrtMYu8c5EsMmPWqJDT6YjD4RFzSoj9gA0Ix8eh8D6Ts0OM6EgPXudZFK+yCQlPBmvo3JS0MIzku5Rp9uvD0onoWtACDZxZ0j+opmuG2y6KDohsxnJgTuIZm1UutOIqIDM6iY6ZtIR9ylkqIzPQ9eKhYvqe6EUyX4LlgSWzGDGsPWQyjPEDhraZwDwDDBwO91KgBQRQDyBiHI9gHkEhqyetyWpcjUnFqGiHO6UVZa9bzKX9aeoIL0cXzmHygv1nSSrNLvrkEq3Q6nty7aqGRivQRG6el8+AvRhY8R6LRCOVw3l1fZXLauGs8mQS+UKukYOV08MjjvePOB0POBz3OE0HhK7HBv15u9z85Sz92sSACEl9MqVe9jvKopxHq4RphiB9ho2nrj1SJhaI0UUZs3ECJqr6LcOcjrmEhGeIR6elXTHje6AgIeKB0adODupiwIkzZohxrI8S2pc4lcgq6yc5WpYQOWDS1C+Wk0y8L3uVoTKShppm3e99bmvzfgcIPdmWZbRcK9mxuR4SI8+TzOfQI/TPMyP9hgThdHGntG22/MN14dj9rMRWTiOxOtVVgT7EgM3QYTN0GDOBJ1VKSYjQEjATmUs31OrPWDSjCApmfeTlZmkeDCoEEUEVWBOSuNBw7Ud9vu/1ckhsUan7IM7vqQpPVS7NuDNsIq6ue3CSsuWJpGJe11HJEUCWWkU5TjlZAxcm+pnZXAoccAIB239bXDlwllOlvtaN80rE8YPmXmv3me5xsW2+Ifadu8ErkecqIQrhrU/gRAf23/HiFWft931zY525xoinLHSZbLxixLDdYrO9Quy6pVeT/mvJJB/3j/j0cI9xOhVhNKWEeZrVC6HmPMpZXdHJqqd12Gw2Grtc21oNrVWwKLRQ5F45NSDN/SXkILmgYhfx4vYWIQY87B/RDYMwnHFWg6RLDEn+mas5cP31J8P1Gnf6q5qSVeqKHaEjKUtqfZb5NO/FpRJ5RsuQZ5rgYsqcGVKD0pPxD78hegHQ/5vN8GL8Qtct6xpfuLuynMhlOzHULspPy3cQafieSV2eIMsaI9e9J07LTAjxdM1SABwpI82SIwrTJEpuSsjsCsKyn6flvC1g67fwm9XPlvPFhI4l87sM9/OqGNfq1UrPxr+AQnxcGlaNyMThi69+CudeTfb/DLecsGCEqGsOpErANGOe9S/NyBzB6BZK57qRxS6j3QyaHy6xGJjYaOXJ6VEBUBeYbYs++azRSlaRvHgNOd5oFS2Dr3TqWhsolOjRcjLu2oEF72U3PvYQo1Mq77bJk1BxQg6ERFVJF8OZ20jKuMPJFFYWebmeZN9gt3nwsh3/bDgZyr+x8NPVNW6xwTZ9qW4o/00mGJuSB90D1DA99BFDr2GNtkJCkEpxTpGWuSeATGzmBTuqS8HLT9nNF1SL4tJsUarU40qJ0eak/ls3dBN4zauhkrjyE1wi9ypLCQOT94cgScF3VwOOjxkPR6l2ejNLkmnPO9g/6uz0/4Jcs5oaL4yYR1bxVmF3SOb6sXzg+TuWr1/tCfYvexmy/nYWCuiauthPyM+r3uEGuazjImdxWcdlrWIpW/nlVuWPalR2yxvMeuCne7uEtXQlMfiw2WLY7BD0gMXomgHkNGGaZozTiMPhgMPhAAwEGmRuc8pIaQZRRAwdQiZwTkizeJV2MaLvNNSsH+BlJHtP9ZLRcdXBKXxMoxgCSXoC2zmjhubc33wCKGB/eNRqZsA8B1AmPQWQ6xfTT/WvkNdqb7HDUg+2ec9yOJqS5KaUSrgmQ9VrSSdIPKXziucY6VQjqqUHsUMmKoIbYIp5XeF1nn2aFb+fmuy8oK/M6rCgMhfI0Vttt3zW52YzZlR9q3alChJ+eH0b7N2FT6nAstjFtD0pZaR5AkDIPAIQWV2qftY3cOGBNpaec9UWXOZnbi6t3Z/T5bxsZeva7rT1bdfonK09vep7bFw8ddU1ceHFsHVja/9JDyd/J9kaojpuiwmy+dT8uZmRpln+kkYp8LrK+np8qfAMQA811MsnQ6Io2GSassm5e+lcsrWmURDPXVNv645pH+pxl91ocpff9y0nU/FYBpCU3uyZNogLNZUZNflA9TZnqCOJ7d+gEnqfg3hNKcuqdG97XuF92h5PUtaM0gBlWOVdqGP4BTzb2HQ4HAAAm+1Gsqi7agQgLR8buCZwSwnEszQ4BJhfdTm5VWbnT5RIucl4HPHmbx9xvO9x/brDd3/4BiGe8O23QNdPmMcO8yhGK/Est/wm0h5Ldpkzl5CGlHMJi7EJlFMDPTEr3g4onKB4ZkQR0AIFdJ3GDptCD5Tk1lLVQn8LVPrjQ4VkEpVQiIq3UxfFErnZRLy43eD2doOPv+zx80+fkFLGD39+hevrazlJY1VWsyccKivCFpnlujHvjIoqrCz5Q1XIFwQug7FQGGzxFMIkKgbhMm4Ereph7tQ6ttnCmVDo1Qu0pYm6Ycks5cWzHTsuiwiMctqZy3yLW28VduSDeXixTrgXNpZM0y0q7UDWZzBDwtsCod9ssB063Ly4xe3tS9zc3iF2fYnD7bootH0a8TiO+PDxF7z7IAkls56MUBTPwW7o0PUSSplzxjRJcrxNiNhdXWO33eJqt8NuI1VaIqlnjFadWwtKHgs2ygBrFsUYI7ZhixgCvv/+TxinE7a7Ha6ur3E6HvHux59wfHzEdBpxOpxE2UAtWZw1p1s5EVdhoIa0nAtOBjFqZkzjhMN+j832Clc3Uolm6AcEihAjl8uvgdXGqGuufs/Va8COW2BCboK5roaga6GMVzXUEQl7TLN4QsDTGVByJlVjkwlSEibAkGp406xlcXNCDNAKg1VAMsrS3edszmwsLZFteY8JWHqNzIWcRAIoJ/RidNMbi3elGBfBjHmicuIW3PNWrOGydFRb7y5Vns5AqSZTrePl/Z4OiJd0efZ4sqMJFUR0/mTTr8KhLGsSyrxoa/Lz64fYOmib+7J9tfuO70MFA+aLtJ3mhOl4wnwaIWFb0JCOSUPBCeJdSlptyfEn58YfLbl3IIzKB4N64nqhsvLzelBge08gOS2LIeLUzVLpkVmSvzIjMCMqX0wsxQ46SP41yxWU5lQE/QwpGz/EDpkzxpyRMzDO4rWHvBQIrY2kc2n/wTBvFgBcK1l2IPQAUgjgXpKgm/ciW944QPKX6P+sjHZmr/DXOXFHXZKPKgN5zJ+h66+LkxVZiUDgWIVKAhACaOgBFg+oQAGcZlAe/cCB9U86H8paJd0nrQDC/uGIN3/9iON9h23X49//5Y94fzPhw4d7cFTvjKTVS1nFZq4yVEqp7Ps2QBJijMKnZEyDW49w7VQ5QYsoRPXUi2TJj+uBYwBrDicVpMnyTaipSfepui5t9cmnrEUUhk2Hu6sNhm3EZisK/mmc8fbdA3LKuHm5was4gGjS8KAE5uBkD6+06LrPJg/lIqlqmtmiGMN9LnwPlfYKd3BKTDXGeL5R01VYMyTSSb3zLWzCJGYnj/m1Zu+yRpjsc6F7S8VDn2meDfWQRnrB7hqjh3ooQ0rGwnT94U75c3zKKkNlEBIyQoy4ubrC9Ytb3N69xHa7w7DZSD7FlOVgTE/Q7w/3+PDhF7x7+w4Pn+6xf3zANu6w7XcY+h5932PoeilcMI+YxhnjOGIaT9hdX+P17UvstlvsNltNrK+JfcmH21woElHoGzaxUHUGABBCj+0mIIQO3/+JMY4jdtc7bK+2OJ2OePfmJxwPkjh81nxD0H1cvKfVoySEUjyO2aarCNpFZS2mBZYiDUzApDmpiCRHX+xEluRCC1xCp7N6lJe9jywdyOpQnn2IjtG60qcp9VS25ELbIQRQJ/SatYCO8YbM4ikIUKXtIqNLj3MSBTwFxpwyAhNC5mLg8JXqzmAyhskHLFUAzUulTqn3FNH+JsYM9eAqvK+GEIqMrV6+UdttByalLUsh5kzWuwQiWCyx7bMLenPGkcUzfvP+5ficvXPFWy/dY7K86bGFSROVsV2LcL6ZNam1O2Ra3WF8NKeEeZzksBSs+7vJUBLGKs91OdcKXzSZFnI4D/GMG1kiHKChbUaPJncZv3ScuRishr5HiFnWr+obCRbRJfcmTWMhBy1y8BNIPLdny0WlsmMkKarEYIzTjBAIm9BhCLHkrVoOoh93k6FQ1ihQ99qO5G8OhNxZTlGJtCJjyGyysNKVnR7Wzau2IZjBX3ZB4ylZ05N8Cc82Nh2PR3lfCOj7XhPm2gZCxToXeym1nohASTS0sphVSASjJFpmqCGEdRslYDrOePfjJxx3Pf7j5R2+/eYlQAe8/uYIioRPHyM+jWRjD+/RI/23RUolVrFUfnGKJxVFiGpIg/0GY5hafayzUBfpZ1Wd9HaIFZH1npK0EoB5LHmhRrLWkyYFlLC47S5is+twczPg5sUG9x/3ePvmAeOY8PrVHWLYINBUNmsLD4Nvkd8LlVgtQbPNn3VzbWwyYakaAF0HdTxMsbL8Me6iheEJgBqatAxq2SKrsFjfW3lVfZq1B7JR6PX2Vm+ssCdVhV8WgNFoSiLwLeijjJGyWH2cVVe7eJqgJ/dWnTDrJhpCxPZmwNX1Na5vXuDm5hY3Ny8ws5x+RCIJPwXw+DDh/tMDPt7f48OHD/jwy3sMVwM21xtJIt3FIiD0fa8CsQjGoetxvbvC1XaL3XaLzWYDYdhV2TJj00qTXoyrHzjzvJPqah36YcB2t0HmjN2V9Ofx4QE8TbiPAcfHPbIm2iY1tuSUkGJYjiuqEhDWdOGax27dTtOE4+GIEHr0XY/tdou+HxBClDks9MpVoHUL1nIQlFM4E4TzgpqL0EBRc+s45ReurdGFA0kIhbWVSxuM7YYi0StDVwk0JcY8S7UWDhmJhI6EZ/ppUiWyaAWV2RcBveQ1cCTphBsTDlPSse4jIomb7Zxs/Ru7k/4xA5jNE4GxXtW+Dc+GCl6gqlAVNX+1xpd9WL3T/S4htHbiZZ1Y3lBDKbl40dZH+048IaD6pxXZackLyp0kPKWUkEaVucyAmVPCeBoxT5PwmCA0OU6snoud5JAh3eQZEuJtgpby7xgjBt1bOnbGJm2I0U2hTKXXog1p2/rY6fOkUhe0UAfU2JTdmrF+dVpxsyg0rCESACL1CDFgzFR+m1KSRN36TBlLr4TXPdfyfWSWdQKotxSJO3cvXyDBEu0wWEMnWAq3IDCrsSLKHg0Cca2uWCquun3D5AzOQJ4vicX/HIzjBECSGA8rZRwxgLpO+GXoESjqHM4QjyNTCixcshqGyQjP5iglHB6PePfjPcaHDt/92x1++PNrbDd7/OV/DhhzQjoGpENQ/p+rsqfDkVJWOq/hr4vyzGYUolh+Z2AVLW2yUBDP7CimqYigOWvKrCCSKu2hGoMrL2I19gCa0E8fT05BI/R9j7tX19hsOwya/Pw0zXj//hFpTvjhX18hxAFEp5KLphzIaTvK4lbYoZTsNaooOIMagAtGp9r/2oPVoxdKMpUrzuQOMg8AKn+WpLW8357gh8bewef07a+p3KF0poZ1LoxNS1ySocrzA5XE0XXPNvqVTzmzVlYUGa0DYbO9wt2rV7i5vcWw3aEfNlrFU8LsolaWPOyPePf2HT68f4+Hh084HB7RX/fouw69VsPtuw5jGjFOk+R6mUbM04i+u8Prly+xVfmJrIKU8qXooiYWc8FuBkh1GftJD6Ji7BDjgH7YYnO1Q+aM7dUG26sN9o+PSNMJ94EwHk8wl+eg4Xs5J8x5LvJ1QeaFwGQ8XxI017ZJLteMaZowjifxDttdyWFkjOJxwxa14QxIRkdlq5R+Z+ccYHPo6c1C4xaKKi3/O4RQ9ugZc90ri5xU91fWfhZ6VM9wIjmwk3QWeihGJHwpuAqC1i5PpDphdmBNzG6tVh5SwtDcQbU9yQyPSaMRiIDeRMXApaJySmpAWdC6WxO0lHKe8lYybmSPWhcaWPRt+eE3Yfl0gm/1udjn+NXK8OXTLthT1zod4HWAyvNquKNrlwoyeU5SGGsWxxXJ7Sce41ZRzkKiiUwHqbzYggb6vsMmREw5YVb5uHj8mWzt14Prv3UhakhcZMaxk3Q1mWHFKsu9ibnk1DSbgRweMRIDjFTkn0gBfQiY84xjmoEETF2PKffVS2INWtOPtUOujZpKJQZN5RMCUhRDK6e67kxJkVBC3XOdsclSxJifinhhmSe0fJdVZn0OGT7b2PRr8eV3+214+W3pTBGUjZiq8vK5Z3gsfnli4T7Z1id+WG9C5cNKUPkszlfyJVlnMQ5faO3l1zzFrJ553bqZi75f0BwvG2kcU/psc7hczrz87kvgS+MJr4CdP2ft2rv+7hlvLYJ/pUh/UlIZ6vq9/q9Ab3nqtIbcp2LdXn1/8fonNrZLF5uQWtec5d946i3+3ufS5tMb7VPXnXVhZdg6e5bbdBYP+VXz+wx8gQWt+U+hmC8OVd20/5Em/H6q9IVW6MeLHnYXeeiFpz4xDNVY+bxWPZ9vnl+3MDj5n1cvv8yC+LM05xWxp3pTFBxaf3v+/s9/8dSdn4MT5nmpVJa22SfVSMyA/Y/DjzkvvvNjvfxFP9PaQ/XCRcBlifj/CoXWn8sfL2Ox5xVB0XlBnm/bvwJ1j15gvTx4+cPZOrz4YlpP4q9qWVF2/fNZ/u+ccp+Pi8aWi9ddkDGAi1kIDP6wYX1YZ88sUsRX2b4+M6bOcP5srBrEF7578tb152fTpbVTVfNnvc/LWVV+ejJEaY1Ll53Nq5dXTIZyhitvMFpP5kIJh6PXJ2Q696lQ9tkwXF5rz6WhOq7PueEf56GX+lt+cWMt+/E53bmlpP/89jb5PZ/PCHXxweELMttv2GfK3kZL2jq77vcT9J6Bz/dzccBaGv65e9ade849522qalXV1n79c/SO1a2f10bo/FdHsGWr8qLIsyZ0pVeef3X5+vWz1Ui2pqsnZagzfGaD88/jX6ddNzQ0NDQ0NDQ0NDQ0NDQ0NDQ0PInfrxRLQ0NDQ0NDQ0NDQ0NDQ0NDQ8P/ezRjU0NDQ0NDQ0NDQ0NDQ0NDQ0PDV0MzNjU0NDQ0NDQ0NDQ0NDQ0NDQ0fDU0Y1NDQ0NDQ0NDQ0NDQ0NDQ0NDw1dDMzY1NDQ0NDQ0NDQ0NDQ0NDQ0NHw1NGNTQ0NDQ0NDQ0NDQ0NDQ0NDQ8NXQzM2NTQ0NDQ0NDQ0NDQ0NDQ0NDR8NTRjU0NDQ0NDQ0NDQ0NDQ0NDQ0PDV0MzNjU0NDQ0NDQ0NDQ0NDQ0NDQ0fDX8Lzc1+ljq1PN2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAJhCAYAAADmLrFYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aax1a1YWDF/jbuZca+29n+Y01VMFFFggL3ylEk34IVBKAEPI+2lQ8Q2dkeAPFUlEDQaJQIgIGkhQ80UMmFAEo0YUjZoQUBP1U4yA9YYPKami2lOnebq991prznk34/sxxrjnXPt5quoUOdW8xRxV++z97L3WmnPezRjXuEZzEzMzVllllVVWWWWVVVZZZZVVVllllVVWWeUVEPfJvoFVVllllVVWWWWVVVZZZZVVVllllVU+fWQlm1ZZZZVVVllllVVWWWWVVVZZZZVVVnnFZCWbVllllVVWWWWVVVZZZZVVVllllVVWecVkJZtWWWWVVVZZZZVVVllllVVWWWWVVVZ5xWQlm1ZZZZVVVllllVVWWWWVVVZZZZVVVnnFZCWbVllllVVWWWWVVVZZZZVVVllllVVWecVkJZtWWWWVVVZZZZVVVllllVVWWWWVVVZ5xWQlm1ZZZZVVVllllVVWWWWVVVZZZZVVVnnFZCWbVllllVVWWWWVVVZZZZVVVllllVVWecVkJZtWWWWVVVZZZZVVVllllVVWWWWVVVZ5xWQlm1ZZZZUT+cmf/EkQEf77f//vn+xb+bjK3//7fx9f93Vfhze+8Y0gInzzN3/zJ/uWVllllVVWWWWV/4fK7wT89L73vQ9/42/8Dfz+3//7cffuXTzzzDP4si/7Mvz8z//8J/vWVllllU9BWcmmVVZZ5Xek/OAP/iB+4Rd+AV/wBV+AEMIn+3ZWWWWVVVZZZZVVPqXlX/yLf4Ef/MEfxOd8zufg+7//+/Hd3/3duLq6wld8xVfgJ37iJz7Zt7fKKqt8isnqYa2yyiq/I+U//If/0LKazs/PP9m3s8oqq6yyyiqrrPIpLV/+5V+O9773vXjmmWfa7/7sn/2zeOtb34q//tf/Or7lW77lk3h3q6yyyqearJlNq6yyykeVb/7mb8b5+Tne+9734mu+5mtwfn6O17/+9fi7f/fvAgDe8Y534G1vexvOzs7wpje9CT/90z998v779+/jL/2lv4Qv/MIvxPn5OW7duoWv/uqvxq/+6q8+dq33vOc9+Nqv/VqcnZ3hVa96Fb7jO74D/+7f/TsQEf79v//3J6/9r//1v+KrvuqrcPv2bex2O3zpl34p/tN/+k8v65ne9KY3gYh+ewOyyiqrrLLKKqus8lHk0w0/fcEXfMEJ0QQAfd/jj/yRP4L3v//9uLq6+hhHaJVVVvl0lpVsWmWVVV6WlFLw1V/91fiMz/gM/K2/9bfwmZ/5mfhzf+7P4Sd/8ifxVV/1VfjiL/5i/OAP/iAuLi7wjd/4jXj3u9/d3vuud70LP/uzP4uv+Zqvwd/5O38H3/md34l3vOMd+NIv/VJ88IMfbK/b7/d429vehp//+Z/HX/gLfwF/7a/9Nfzn//yf8Vf+yl957H5+4Rd+AX/wD/5BXF5e4nu+53vwAz/wA3j48CHe9ra34b/9t//2CRmTVVZZZZVVVllllY8kvxPw04c+9CHsdjvsdrvf1vtXWWWVT1PhVVZZZZWF/MRP/AQD4F/6pV9qv/umb/omBsA/8AM/0H734MED3m63TET8Mz/zM+33v/7rv84A+Hu+53va74Zh4FLKyXXe/e53c9/3/L3f+73td3/7b/9tBsA/+7M/2353PB758z7v8xgA/+Iv/iIzM9da+XM/93P5K7/yK7nW2l57OBz4sz7rs/grvuIrPqZnPjs742/6pm/6mN6zyiqrrLLKKqusYvI7ET8xM7/zne/kzWbD3/AN3/Axv3eVVVb59JY1s2mVVVZ52fJn/syfaT/fuXMHb3nLW3B2doY//sf/ePv9W97yFty5cwfvete72u/6vodzom5KKbh37x7Oz8/xlre8Bf/jf/yP9rp/+2//LV7/+tfja7/2a9vvNpsNvvVbv/XkPn7lV34F73znO/Gn/tSfwr179/DSSy/hpZdewn6/xx/6Q38I//E//kfUWl/x519llVVWWWWVVVb5WOXTFT8dDgd83dd9HbbbLf7m3/ybL39AVlllld8RsjYIX2WVVV6WbDYbPPvssye/u337Nt7whjc81vvo9u3bePDgQft3rRU/+qM/ir/39/4e3v3ud6OU0v729NNPt5/f85734M1vfvNjn/c5n/M5J/9+5zvfCQD4pm/6pg97v48ePcLdu3df5tOtssoqq6yyyiqrvPLy6YqfSin4k3/yT+LXfu3X8G/+zb/B6173uo/6nlVWWeV3lqxk0yqrrPKyxHv/Mf2emdvPP/ADP4Dv/u7vxp/+038a3/d934ennnoKzjn8xb/4F39bGUj2nh/6oR/CW9/61ie+Zj1hbpVVVllllVVW+WTLpyt++tZv/Vb8q3/1r/D2t78db3vb2z7me1lllVU+/WUlm1ZZZZWPu/zTf/pP8eVf/uX4h//wH578/uHDhyenmrzpTW/Cr/3ar4GZT6Jz//t//++T9735zW8GANy6dQt/+A//4Y/jna+yyiqrrLLKKqt8cuRTFT9953d+J37iJ34CP/IjP4Kv//qv/21/ziqrrPLpLWvPplVWWeXjLt77k0gdAPyTf/JP8IEPfODkd1/5lV+JD3zgA/iX//Jftt8Nw4B/8A/+wcnrft/v+31485vfjB/+4R/G9fX1Y9d78cUXX8G7X2WVVVZZZZVVVvnEy6cifvqhH/oh/PAP/zC+67u+C9/+7d/+sTzOKqus8jtM1symVVZZ5eMuX/M1X4Pv/d7vxbd8y7fgS77kS/COd7wDb3/72/HZn/3ZJ6/7tm/7NvzYj/0Yvv7rvx7f/u3fjte+9rV4+9vfjs1mAwAtWuecw4//+I/jq7/6q/EFX/AF+JZv+Ra8/vWvxwc+8AH84i/+Im7duoWf+7mf+4j39HM/93P41V/9VQBASgn/83/+T3z/938/AOBrv/Zr8UVf9EWv9DCsssoqq6yyyiqrvGz5VMNP//yf/3P85b/8l/G5n/u5+PzP/3z81E/91Mnfv+IrvgKvfvWrX+FRWGWVVf6fKivZtMoqq3zc5bu+67uw3+/x0z/90/jH//gf4/f+3t+Lf/2v/zX+6l/9qyevOz8/xy/8wi/gz//5P48f/dEfxfn5Ob7xG78RX/IlX4I/9sf+WANNAPBlX/Zl+C//5b/g+77v+/BjP/ZjuL6+xmte8xr8gT/wB/Bt3/ZtH/We/tk/+2f4R//oH7V///Iv/zJ++Zd/GQDwhje8YSWbVllllVVWWWWVT6p8quEnC9K9853vxDd8wzc89vdf/MVfXMmmVVZZpQnxzdzMVVZZZZVPMfmRH/kRfMd3fAfe//734/Wvf/0n+3ZWWWWVVVZZZZVVPuVlxU+rrLLKJ1NWsmmVVVb5lJLj8Yjtdtv+PQwDfs/v+T0opeA3fuM3Pol3tsoqq6yyyiqrrPKpKSt+WmWVVT7VZC2jW2WVVT6l5I/+0T+KN77xjXjrW9+KR48e4ad+6qfw67/+63j729/+yb61VVZZZZVVVllllU9JWfHTKqus8qkmK9m0yiqrfErJV37lV+LHf/zH8fa3vx2lFPzu3/278TM/8zP4E3/iT3yyb22VVVZZZZVVVlnlU1JW/LTKKqt8qslaRrfKKqusssoqq6yyyiqrrLLKKqusssorJu6TfQOrrLLKKqusssoqq6yyyiqrrLLKKqt8+shKNq2yyiqrrLLKKqusssoqq6yyyiqrrPKKyUo2rbLKKqusssoqq6yyyiqrrLLKKqus8orJy24Q/n/9v78CYMZUElJOSKXg8nDAlDNQAS4AgdCFiECEWgtqySAibGJE9B7b7Qa3b12AnMOQEqacEUJA33cAEY6j/K4LAednG3jnADCIGaUwpqGiVsYmdvKZMeD2+RZdDNjsNtid7QAwypTAtQIEgAAiB+8DyDk8vL7Gh+7fx5QyLi8TjseCza7Hxe0zAMAL917Ew6tHcM4h+AAiQgwOMTiUWjGkjMqM8VgwDgXeB2z6M3gf4D3BBwdHQAgOzhEqZxSekHPBg0d7DMOEWipyKgADnghEhH7TY3e+g3MO5DJABeOYsL8+opSKnGUMHHlEv0HwHm96wxle/5od9mPG+1+6xnHM2F8XHPYFAMM5yPiRA+l1nJOft7sdLi4uEGLErTu30G83OOwPuHx0iZQSrq/3GIZR3g/IPHZbxNDh/OIWXvXa16HvN7i4fRdn57fgQ0S/2cE5D4CB1gnMgWjxTxX7NzOffOGx3wNov2f9uYIh3wFGzgWlFFw+eoD3vPudOOyv8MKHPoCXXvyQXOjkM0TIyXh47+C9BwDUWufrVm7vofYm+aiUM2qtiDFiu5U58z7AOYdcMoZhALPcGwjgyuBcQCDcvfsU7ty5Ax88uk0H5x1SmpDShFIKhuGAUjKmacI0TqilYByPKDkjxg02/Rm6rsOrn30Nzs8vEByh84Tdbosv/v1fjDd/zmfh+lHCSx/cI40VOWXUXFBRUHgCc0XligoGyIFdAJzHxflTuLi4C4ID4MEM7IdLXB0fodSElB+h1AnDcY/D/hrjcMRzz70Xl5cPkKYRw3EPANj0ETF4cAVqkXnMOSOXAuccYpCx5loBZmx3Ozzzmteg63ukzEiZMR4PeOmF5zANR4QYEWPUtQsQAaWKHqjMOhcM7x1C9CAiBO/hHGG73eHi4g6IHK4PGeNUcP/BS3jve38T4zSAAoECod963H5mg9h5xN4hRgJXlrGrjJodaiGUwhiHhJIL0lQwjkWus+sRgoP3BBcIzEBKCaVW5JGRjrKeuBQwM/rzgPNnNnCeME6yt2uqyMcCroBjgoNr+6HtDV2SXG1Vzns6hA6OHEIHhI7gPBA2Hi4Qas3IdQIzo1TZO8F7dF0H50RPEQG1MHIq4MqoFajMgAPIA84Rdtsttn2PLnS42Fwg+IiSM4rq+Rg9yBFqqaKzUsbVoytMY0KIAbGLsgb6CB88Sqkouega0TlV3ch1uQdZNyFjmiaknBD7gLM7O4QY0G97sSEAKlcdNwZI9AcXB2ZCKQU5F7EJXtaSPL/EXHKu7frTMKkekHvxMaDbbgAHHIcRU0rwROhCAAEYhxHTlFBrRUnyTCF4hODhXECMWzjyqEX0eKlV9nXJWGpHIvuZmspq3yuDq66HKv+2de8c6TwSQAw4ec7NNqDrI5wHYvRwntB1HTZ9j1IYh+uEnCqGYcJwHHUOiuhCqqjIAAEODo5I71HGbbvtELuAnCuOQ5Jnjh7eO8TocXbWwXlCSjLuJVcc9wmlVAzHEeMwwjuHTdcheIczijhHhz54PHuxwS4GRO/RhQAwIw8Tai7wDvBilEDkAXKyFyC2zcazlIJxHMHM8N43PW+2cGlv/u6/fwc+3vJ//Z9fCWbGkCcc04hcMg7DASlncCXBUOSw2XTw3iOnhGkc4IhwZ3eGbSfjvdn1ICLUXFFrhfcBIcjvRgYSAzF4nG86eEcouaIWRq0V05TBzNj2HTZdRBcjbt++EF0QHXx0stVqRVuKIBAIcA5MhHsPH+J9zz+HlAtqCqjFIXQe/TaiouLBwwe4ur6G9x59093yVSuQs6xfOA+4gBA6nF88hRA71JJRSxElVyeAC4ZxxGE8IqWMR4+uMY6j6KfCIILqe4d+0+H8YgvnZK8zF0xTxmE/oVYG4AF4dDHgfLdFjAGve90FXv2qM1ztR/zm++9hf5yQp4qc6sn+80HWDzkHH8TWP/PsM3jd616Lru9wcfcC/XaDFz/0At7zrt/CNE447gekMQFgMCqcc7h79ylcnF/g7lOvwmd/zufj7OwCT7/61bjz9FMg5+F9BNEiBrzAbEshohmXgNQc6DwR2uu51vlNTAARvCeQzof3sg+OxwHTOOH5Dz2HX/mlX8LDB/fwW+/+X3j/+34T0zRif3WJnFL7KOccYtfBOY8YA2LsVI+r7qiseAoC03C678ZxRM4Z57du4VWveQ1CDHLvIAzDgEcPHiArzhJ9V1FKAhHw1FN3cffubV1XsqdTToqhMoZxj1IS0jRhHAfUykij7IHddofbF7cRQ8StO7ex2Wyw6ze4c3aG3XaHL/x/fSE+441vxMMHR7z/PQ8xTRnkRMUUTpj4gMoFtYpNJgqIbgPnAm7duovz23eA6pAmoFRgGK9wHC5RyojjeB+5HHE87LG/foRpHPHcc8/h6uoSpUzI0wAiYNN3iCGg1IqUUrNDtRZ47xFCAEDgWsFccXZ+gde+4U3o+g0ePrzGo0d7pDTicPUQOU9ih6L4Mh6CkUqpKJVRuSKXhMoVIQZ0XZS1ob7T2fkF7j71LBjAhz70Eh4+usJ+f4n7L30IOScgOFBw8IHQ78S+bLYBfR/a3mEGSuFm+6Yxy/VLRc4V3hN2FxGxc8hZbAVXII0Q3JUK8lRAALreIUSH0Dl0ZxFEwHhISGMRnZBlnRPJGofaM9RTDFV0TXrvERS7xyB4qNtG9LtO5j0UwFWkacIwDADEljhygo2cXCduAnx0QCVwdmAGpjEhJ7XvsvWw20ZsNwEOAYF3IHiEAPgAhOCx2Wzgvcc4TDgeJ5SccTzskVNC10Vstn3zZ52T8Uqq0wUbQPyHJHbvxHkB4Mjh/PYW23PBn65zIAfkkpFzVh3iwCBMY8U4FoBlnQAs99D3ABgVBUDFNBUMg+zVPFbUXOWzg+BKU2e1VKRJ1rPptJwKjocBtVQ452f/UaXvenRdh1oqhsOIUgoM9wKMUsUfp8VTmm9XDEuy2Apm+VsI4pN2PSFEQug8tufii8m4epAT8wRiTGPBNBWUVHC8HlGSrN1aKogA3zs4T/AhiK/iCD4QyOHETvWbiBC8jIka15whmKtWpFLEryXx/4Pz6GMHAuH60YD91YTKjMKA+ffkIBjKRQTy2HHAGQf0XjDUtvPwBASS9Z8n8ZW98whOdIEj080ORLJv7Z5KLRizYOGoGErmlPR1VdcG8P/5hV/DR5KXTTZFBeRcCyoRCjNKzsgpgdgJ0AOBmMVAkoPzQYgXdWicGUgWR26aJgFLzskC0c1AJM4eQyYJEOPWdeIEByIABWBqhIQ4UkXucbG5SDc5aF6gYiwKcp2QOWGYMvg6yWtcxdlZr06KgIRhSNjrIrdl7Z3HdtshhIDtdgPvQyNAmBljkmdLacKURpRSMU4JpTCICF0vyr+LXkg1IjE4GZhSQikZpTByYjBISTkHRx7eRVGSURQOQRy8nAtqKWCeSRMZOxk/GSfZIDnr+HPF8XhEVmCeU9aN79DFqJ9T2ljCSB61IrUWlJx0zip4AYoE+rD+9DjhtJypm3+bwZWsJ1TWsa/t96za1Ywu1IkOIbSvWkUp3LyAOaSVCcTzZ964CbRHpvlGqa0lUhBbAYiDWWuFI0KFg6F1IkYluYdhOOLhQ5b1rsq4FFEAXCuyOnq1VHH6uCppI07i7du3EEOEjw6MgmlKGKYRaTzg4f0X8eDeOcARt57Zgpmw3+9xPGaknDENe5SS237p+h1u330asdtit72N3faOGl1xEI7jDreGC6Q84Xp/jikNqPVFPHx4jTExpqkiJUZKjFJU+RSA3UxWMNt3WS+qHp4g82ts/o1IEQW3BN0FzBkOQr4yVTATcmYQCUkh5Icob4KAihhlTccYUbkAXu6VyCk5ZgQHLe5B9FApoljb2tT7s3VfK+C8g3NeQKhzIGbde7KECss6JufgnRAEwTsAFZUJ1cm1PBwcCdlUS13sJG6rlBmyvljIN+gepOARKJwMcmVGyUrQqkPCDORUQFQRlSAQIks+0/uAQB5MjEpZjKqTvRVjwGbTIYSINBFyUneKWawrz4REiFF0tu5HWV8BPngQTF9B9UhtIJ4bS2zPWxX0zGuqlorilLR3Xsi9lFFqFRI56PoJHYickmBKNjlqBJbpyRg7EBxKzpi6Thwm3YON4q7cnk0cJyMD5TuBGqkxr1exlZXU+SLTYzOx1J6V2xODeblRZgUk81cVOM9Aa/laAQ4yjzEagCgoFSBk0cisjieFBsyEkEtiS10Fed0/Ttc9t7tDqQxXGFkdB1n3SlxWEoKZCSklTFNWUkvIpmrElPOIIQjwQUBlh8yE/ZSRSsUmBpzZM6qeZt2iFgQh5+bxafNhzuByL+vPimUIaHP/iRDDULkIpU8MlFwUQ3kQFMipj+CJEH2AdwTvhOxzRigooZ1SRgwMIiFyQfo6UHNABFcRyHnEiGbDBFDa2kVbkgwomlsYPqL2zfYM14pUEkoGMhMyRgBCTJ+dbVErNzK55IJSKoiMUFFd0vUIoUPsIkIISFwUx2SMgwRZhnHA4XhUO5kBaDAvCm6MQfQXEQm5CEaasjqtYosAIHYBIUTEEND1nbxPcVFlVue3CBlc6mJf2wwqvgWhuoppnHA4HASvUUU8HrDf7wEmOPLoYodAAZULcklC7jgL/Cl2Khk5J0zTpI5OUEdE12r76aPL0uFa2lGwWUEoZmMQK5nNYleEYC5wJIGrnM6x2WwQuw61lkYeEWbCqGjwRIjEGVc88cZu/HpJ8qckZAfrWsw5yXwiaGCpopISFpVxOFyjcmraUGxgafdTS0blqsEMr9hQNkLfd7h1+1wDyYwpjUBJwHDAuN3i6tE9HPYXYDDuPBuRi8cwHDGlETmNmI6XKLXAh4gQIrq+x63bz6DrNtid3cJud0t8H+dBIByGcxyO50hpwuWjDuN4QMkv4MH4CONQNcDBSgbL/mpDaItvgeVtTS4xlNnH9pyo4qm4GT9Z4NyRfGcUVM4aRJCgPldGSqmRw+TQ9oGQlB5R8VOI0ZQU4AnOkxkGtZu1rUiGYCd71pzFtwEDjqD7Qu/VseIgwHv1HKrgZ7FnTm277HlAcBe5KmU6Ti9o2EwdabMXzeJaIKoyCoriiklsdmT4ov5olbGsVXA5WPEcAaiiJ2STMmp1ADsQuwbSZJ5kLIkIm80GF+dbOAro3E4CUDUJkeoIpcq9FE2WICfjLoEcGXenJCuRU/+DYYFEIwmWC8SwlHlhpYqec0zwTibByD8igg9CpsXoQOTVrxG/MgQhYowYFr8kIoReCMKYUbMEqmDYWd9LjhBigAXz2WyN2m/nLKC1WNwkAUTBYGxTC4UiTxBqXw0bMEB6TUDwsgyPBA9EF3k4Igkkc4YPDr2PcM7DeyAEAjHBuwI4IUOFnyAlycQu11pBLPsHZPyEXLcW0WOgef2VzC1wztWesYBRAMcI5NvnLhMhZNwgpB4J4SQBakJmAlXG9ShJQV0gbIJr68Tw27wXdNxPfIZ5zGcMZa9b2BrDIy9DXjbZ1GkEoTqHrE54yRlpmuBdQKAIuHn6nSN4EifRe6fKRG+qAjlljKMyZuqEAOqEkROFhdoyfyRqH1X5ZKBmNaA6kbrxxdDq47d1Rxb8lEGuBaVm5Doi1QlpIgz5AOcIfd/h/GyDnAvGYUIpjOMwYH+QKGwfe4mi9R267RYhBOzOtvA+IJeEnMWxH6ZJiIBhwPFwFAOijGuMHl0vmVCbTYcYvbz2OKLkiuvrEcOYhcFWom7TR2y34jRJBMwhdl4UrRIWOZVmnHkRUpK1TmrIjFHNYuRrBbkjwiT3btEk7zxc5xQQ6bySuVyzUWMFgKL4ygmonydh/udjpFL73eNOkxkJmP/P8waZSSZRrkYE+CAG0ZzbUgq41BvXnR07ViCzjBy222ZVqkv9R2iOHNTpq9Xpd25Eg2tRBd3W5ACuOA5HDMNBwBCLI2sOksyRhyheUsJhQTbFHndu3xan3TtUZEzjEceHDzF2EQ/uvYD7t3c4u3UXz77uaSFAH0xIVwfkIWHK10ic1LEgxL7DnVfdwe7sNvruAn13C8F7bDcdgvcYpxHDJBkbL927j8NxwPV+wpQ/gHGqGFPFNFXkDOTi1CirA3OShaHzxEYgLA2hjlH7m3w5I5oa2TR/B5JcBxWOGKwArWR5byGNJPSl7bsQJJUlxk4ANFdx/qmqvlGirDSfdl6DjBatbQ4uuRadqLWCCoODOIOsAIrZCZnllKRiIatnEOgQWMiuUguKF+UujqVTg8wzv9rGbeF0g9teAADfdQCFhe/NTTcyM3wIjczPmpEkxhbz9ZgQvQCIygWpMkByX8ELObDZdhoJNHKhzPoEFmwQcAFItplk4DjEGBVA2b4TYjWn3HTVcpnYHl8abq4KGqq8yDkn5L7qsK6L8CE2Xe19ONETRjYVjegREbpugxCiZq4lGSPVh1NOOA5D03HiDOlasf2rSkYiz7PtZgZKzVgCIKIKOlF4dLIPlo6b6Zumc5Z/ZyMBZpAlrzKyyaOLEbVWjCnr/MieI3IIvkcIHiVXpJDbeJdS4IjhdC8JqJG9UDRKaOuq5CqgiRnOVVQHlALkLHpsmhLGQTKojkNCyUJwxhiUbIpib6pHqQIOr8aMQECussc9CKHW5ksIEUcNLDaiCXNUbkkOL78+DNv9cZdOnaNR9wwgQbc0JQQHIdwY7cuTgwtRSGkF4s1OKdk0HEfUHghxI7rFL0h5rupiuBaJdM7J1lLQWlVPN5JOiXodXR2rmWyaiVBuDmRKFSgM0ghu1/c42+wwjRP2k2R1Hw8jxmFCCB22uwuE4NBRkD0XozosEaVMYBTkmrA/HDGNklFwOBzA0GguSXS600zJrvPwwWGaEo7Ho2TQHRKmSTJB+l70TdcFbLY9gg/YRIkyO+/ac8s6lmcyfWlkHADBkUrSkHMYxxH7/QE+eIx5hI8O43Fsf++7HohALgk0cXOWLeO84dCURN8EIHYVN7tbLLHJqfVcvGapMw2uzR7BCUlsThdVgPVeSslCNjnCbrdDLRnb7RZd16HkNOsEdWpQBXPWWk/2lulvvcJ8Mzeex5FgfTAjpQm5+PnzIMED7zxcEUxbCjABqFxwvb/G/vBooYtM94rjY464XEwcMOYCIka3ibh95wLOORwOR0xpQM4FwzRht9ng8tE97K9vI3Q97j57ASbg/v09ytUB4AFjfoScM3bhHD469LuAp1/7DDa7W9h0Z+j7MwTvsNt18EGusd/vMY4jQgw47Pe4vhwwje/HOEoGnTj6jFp0quZY7iKYMROfjYuyMVYcIK+RwCeoir+lmfsNQznJnGMW0h+acQfFbKlIJqusU5KsINUiQW1JUsJJlRTYEcjp6tKgnZEgJhbomYMatWEgISs16O51zwGAJ0E6hVEsGcE7+GDvcwApcenVV9Cxs01CDhCAb/vAjISMoDn5qBWF1H+JjFCEbvdU4RgtkwVQm+9IiLOSdV9V+OJkjBXD21qXL80G7re4uLilOkjIpuPxgOOR2x4DJHPOsrN88ABBssNjEKdfbV4ppe3rXLLOKRrZ1rILoQQHCV4tpaAygTU7Jpd5ToLiWBc9YhD9mLMQwoYVAWhAgxBChxC2YAaSZv6XWlCqvGecKnJhwAHBBbFdU5ZnZYC8h6c52+mmWCUGLyFO02mKm0wHKja3ySenc67kHStxKL5lmIkmJYxSEn8ndhGbjVYLePkMYofgs+S5OEYlmSPvJKNP1oYY71oVL2l2vuAS86XFN5QgjBDNrF61+ElCBMN7FMotMKT8pRLL8nzOoQWhHAhMhATBQFdjwjAB296DKCgnWo0bbebCfADGMnlHK2A0YNcIaGEaYdaESNbBy5GXTTY1gIrThzuZf51wB/m7N9bNO4SW2URgDd0ZK2bREvufLDAGKqtCkd95pyl+LAPTnL7FazTuC26fNN+9iSjmKtk94wTnHUIMqLp5kSDAwxSM8gZOHV5ZXEY4aIQHrAROlk2fl0y4U1s4A7ZSCxiElBOYq7wvF025k3Q+r06yM+dGF2gtGbW6piBqIypmkocWz70kgFj/Y2BRFJYs6LJIgbYFLSSKPEeligKLfmc4n5BzksgskUbGJJXD0XL0FywqbmIiM5myLpb3ffJKmj8Ny0gdRNEbodGUu6Mbzz0bPpu3+RoGKGf6sjl6Oq68uFpbr2T3qtdY4Cpqc00AyQZnsntfAIdTmzxfhYXWwwJwlFLnbEAFyubcgwnTmHHYD4Dbo3v0EC54XF1dYn99jeNwwOXlNVJK8lRM8GELBtQhjzjb9fCONKIBIBfkOiCVCWM6YJyOKHXS6gcnUeLYAQwUSvJsLKUSS6VoQGg55m3+WfYNOYecWctFyzxRZE4SIcZes0ZI3sNOxpb00/TjLdvMiFcjhYgcnGa+lRJQqQphZTnj5kBnM99AYzs/gjRlbKQ2L9YeLdadEohW1ip7Vog1dtQAkyMhm+oyi+9kvaNFKLD8Lcles2yq0/teOgNoOkDArRKmi9K1Rjwt3Juq5Et2HlNKMu85a+Rq3qPz/lAiy/OJEyw6BS1ayHXWsSC0TIR5r8xkU9Uvv9yRtbZSTYmaFtTq2/6SNWBRmjYcurzmKJRb6AybO9vHpHPrzJEijV6egIDZwWtrcjHWDInkmj481Rfzv2+uNrvPlvG1eN187YXFa/qNTl9bT51n215WJtL+3bC5pVgvVhkvM4b4xtdsV6plHVcjf5RsZsAyB+1WHRx8y4yedWkBIxdGyhoRrIBnBpyDb/p1XitVHYglKXkTvLZMMKIn/v3jKTbHpitcG+vZ6i0xlOEar9FtC8RRW0EL3KRYiJcYSoGvYDXX1jEIQg4t7SUtIpRLb215/zOwUJ1RkXNCShXOAx5OouRZHN6WtWHkBjkt3XINP80lUpI5blm+9r6qm8qHAGDW5cAcbU+ZUaqUaxbLEHFS1iylrKE5teBZX4hNjc3/tDF0Tv1TsjW9yMRZYArRh1r6kCBZeUn1YWGQZolWC8ip3bKKgHEa4LzHNI2YJskKq0XI1TZXdgPNXuhcLADVQqXN35eqYPE5M4HIutdVH7CNJ7dxkLfwrHduysK2i3PMSgLP5AjauM77rV3DWdDGiA00x8wIT6eli3OE/ebnP2YF5+9sOG7WCSVLBr+1PKhKNHgmcIUSiHu4KSGUAiYouXXA4Tjg6nIvAYjiUArBxzM4J1lsm02H3baHc4APDHIFhUdM+YAxjRgnxVCc4IJm54QAH6KMP2V5Ol5mHT6ZaFrOOENIa6KpkYatjQPMxolTLQEir3tygpltwRulqXIjKcSWytwuP8d7D0aAJvPoXplTI+syAxin2sTIRufs86jZuBtKHbbmLaPCOYLzs79nw+B0jcDzPE6Gr58gzf4S2otosS+cVWcbdr35QWbTFatwBbiIvq1OMTk0w22BCSTjroCYUFyRzPFlqau5O46kGh6CWQHL4NLgnt5TXWAkWwtmUQwntuwnAFTnSgoHB8ce0LXPlZtptn0qN8NC8ME1jLTEx5alz4yW1GHZT5Ll40CsRDCcjjvNeheYK2JsWu0Phr1O/LelPlH12PzfOR+3DWYDe4tJp9PPuZnFemr9aPH2G7ptcT+GfYgAx07vi+dnrBVlgUENk81Y3nSV7vUqWWiEObNJFp6tUyVpFUHZT0sOJQPIhTHlKlwMA44Z7vQB9YZYCxOWOn/heZyAVp5tz8vEUC+bbHIQBzAQoTqP6jyifhHJIzoQPMni64JH3wU4B8QggElSOeU+gw+IsWoWikSoZK/K6smpyLIJAeSlLr8LEc57lEQoYAQfEWKHEDs478FP6Hc+Ex2zYq5ckGvG/uoKDx9cot9scev2LZDzOIyD9DVhNPBKlbCNcq3dxVnLDgARChdcXV9J7XOSKJ+BMIkUOezOxKkvWt5WSsLheAAz4/rK5k42PJFD321wto3wgdB1vjloAqwSrveSKn5rV3BrB4xTAUjYVecnzaQgkKbg0YIxllQ9YeqnMYGcpUIL6WXEGbd7zZjGEQwg+tJSva+vLhHHDlWjIZt+i67bSFQgRJAPABjuhvIz4cXczJzCTdikr23Gwzwy6Z8l6YSaXZUzuBZxtIMYJIlafpgSuba96+zcLhw5LED7fP+20fV3li5tTrw+jAE1I7wqipbRWa8pIxnUdV3cmm3tOSPIMqaA/X6PD33oeYTgsTs/R9d38BmIfodIAZf3DvggvwCKLwHvey/YAcOQkKaM/f6IF168j2lKAnKcw2tfl/GZn5Vx+5bHU3fP8PrXPY1aC/bHPVJOeHS4j3uXH8TxeMRz957D/nqPYTygPwNciLg93EaMHQ7Xe5QETbcvKInBXFBrVoJAs+AYYA3fEUlpTuWM/eEabvQtG6IWeZ8YMTFwMUTcvfM0Nv0WDx89wDgmEBV4J0q36lgxM1KWMtR+HLXnAQAXNMujx9mZ9ChJNSHXLGQIS6nAdCxIQ5KsHN17MmUC+Bu+ZQEYluYco2+p3QzAa75smZEGfAwgB4Rujnx5IjjPYiS2UbOnxGDkBKSkpKNd9ibAsBsiBoFBPiJ2AuQLKRFNgPdxJgLqXPLZnNQqOqFMQkY6ypB+ONwAxjSNKGnEGAbUXBF8bI6zADQtEzHjTCR9tJxD8A4hSEp2TqIbc84tg4ggvRCkp9ScsWjfU8qL+2e4qhEpL8RXvhYH8nA8CJgjIHYRADBNI4gmybCNWsZiUVEikJYYSIq+AGWmikoMdgKgyUtPhcoOQeei5opUs2TDMaSsjAiawNJIINnLqiOCh7MosAJBIztlqTX0JNN6A4DzwgExjcFc5fM9NU1VWcgEI+fEJgl4CRGN/AsRGhBSkE2SVVB9hfdAjHIvJ6RRNYK3KlGlwMOAbRHnI2dZN9myRTKDqxOHslLLsIgI6BBli1UBlpnlGkeu4DzCE7DxDoEIfdByigXIqVoacLOEzkp1AOi6EGOzBImfOOGm96J34Cr4qXgDigQPQiSHAI8QpMedc4RNiIjmbMChgqWcPgAh9Aihh/MeGYQCAlfBOA4skWpvpRGy1muuqKkiuIDoI6KL4onUJYrGwjapvdJIcZoSpmHE/uqA43GSbKbzM5ADDsOIUo+yV3VOPAVse4/YRWzPOu17RChFcAfvr0HOYxpHjJoNlUpFYW5RZnBFyqPqDsNQ6uixOHekPWk2mw3iedAM8KBZeU4yl2rBsYxwBJydEcptIZxi6NB3hEwVjjTgoRmCpE42FkNSSsHxeBQHeJLsijxlpKP0S+Ei45lSwnE4yLASSQ9FJvTb57HZbiUTEBXb7Rm6bovWe8wZKSkWQf6/9MbmabLPXpI6y9eBRD8A1NpWiE0uzW7nNKGUpM4iqd6VjHdgqYXM7Mhn2747wW/tspIla2Mnb2OwF50hfYKkV07VHn7z3gT6TtbKOA6YxqPaeAcLlPj2sQsPDtRwh2R6yFwwV1w+ugb4g4IFevnsvnoE9HA14t7zD6V9BSoGZFQwpqkgp4r9/ojnn7uHlDJu3TrH+cU5Xvd6xud9vsfts3M89fQtPPXUbaQ84sHVixinIx5dv4Dnnn8Ow3HACy+8iOP+iON0xOZ2B78ljPkOnO8wHo+oWQMxBUhKOGXFQm3sNAPbAh/kHEphXF1dwnmP4zBgTKM8r5ZLeiXDQuxwfn4XMXR48PAe9vtrMFclfoBc0XBUGhNKzej7LdKUWiuDGKVnz9n5uRDNKMiQdHCuGZKlDJRUtNxN8FvOVdoKQLAcO8AH0lJ3JaDV/jgCqqVeaBmb9MARTBZ7yVK3lo6SLa3YyBtJNvdlMmg+txfB7OBXySiR9SalXj4S+o1gHylzEl/UWz+EqiX1mgkPADwxihNSrmgAtO+3iF2HOeNM+jhdPZJ+dlOXYG0XWPeoZa86lrHhWoX8rlXKfhVDTePU+ltZ36KKOXvHnlOyAs0nlf5R1Un2f4xBMmchRG9OFYEFvzlyGqxN6sNaoBfzemxOjwcrgUmepGKVxecndggIQFXiSfdmSppZtSC/hUEXnG2ZuOShpZFaqgkre3OakOJnIsnIJp4D9VAfi0m9TZLPkNdLVJYhARJWqODVp2uahaClptJjyjCr6RrS4HAumnjhAK8Z/dCxZLBgWNSm2wgAWNna5fNXAJVQqvTIBsvcVKswUmIt+IhN18Gzw6b08NW3jwAYqVRkVC3jlhLpbZDEHzhGR4bt1NevjNRK+SA+BWERABSyvkFSUvLX0Ylt+HDysskmewBH6iC1r5lJMyNhJTAheO07gFaTuzSMvqWvee1zs2APlRRpfYA8tKzGg6mALSLixeGQqJ7ho5kJPc1wkt+Y4klpkialPghgISClgpS15EFHlCAp7sFr6n8IqKy9aCpj0ubOWfvXiBMh6achSANXBgDt/5HLXJ5Rc1XfQiMGToC0pJU7UXqApBpnGZcpJf2uWVRVCBiyDafEjW0QA9hos6SlNVUMQE4OzpkDqwoZtZFPVgtPykrnnDClCUxAnEaJznjfIioWVbk58qeEk4IlWigvAKfgX6NgzRHTGVajJR8zj7dkV9zMTqB5Ey8Ix9Nrz5EF8/PaDes6WPDTzVmZod4C2DXCCYv70IyOx8bDPu/GKDHAKJgNo3yllHE8HmS8YwSI0CPAU4QjjzRmHK4GZJcxXE+oYJQs5WWHw4gH9y4xpSz7MjhcXBw1k47QdwEXFz1yThizZN7lesRxvMR+3GN/uI+rwxU4M7xncJQeUqVnpDHDaXosdO1UdU6NODCW3HJ0bG+J4ZlAxWtfJGrpykTzCnLOYdNvsN2eYX84KKFnJR82zlCSeF63Vk7jdG9YGRcULEgIWxodzo58hasEFzwMX0ja7ZL0mafOkRlAas7YMvJi02pROdJMxznIwhoNFdJHCHctxWvXWkTsjGhqa3mxhskaG8pfrd9Qi/osyj0tYllLRSFt7K0IzsbNeg0A+jrt3zH4EcEXBC8ASDKYfJszmw9x9rkBBOaKpM6iZDBoqSO0gbASyrZmrHbc7ocX42BzX0rVLM85s0nKYNRAKslATsqxRIyQX3wZL0GA1TLZ/4RMc9qzxUghezG3eZo1GRZ7d+4bYw7aPHeqc8g+a/6+VIVEVj63mHuWTAJmtDJjuAat9VIz8Kx2H0ZimXp0luWA9juZL27p4eVGlN2uQbp+ab6q7P1GpM1gpmFT08OKrywuB15mlsraz6ViqkVagwCAk9JTNAs/j+Uc/bOh5kY2nRB0CzvxiZXZ7lgPS6cls42gxSJoR9LfzJGUsHjntMJKLFILdljfCXKtBE8eUw+CqKz4epFJIIlELYtSdI1Gs5s5Wy7A2Z6BoZlNRUvAJsFlVV7YMBRzuxfTjV6b5nstz2h2Gw6gomWwcxkbA9po3Cu2yEoBaGlHFRtXK+BcQPCa0eS9ltIawQakibVcSRr+EqA9DFnv0UoqgGUmB3AasKv6+lo1o8SJc0hOnGzLmkKRrM2UJ0zTBAIJSRcmxHHEcdijouJsOGAcByn1LaJf4SBZk80AnSKNkyXVfC3TG0vktQy3Unsmy0SoGkQWkiNrOTa19xm5bzrDkLVpPVKbIsnI1K5jYtlgovtPcZ71aBHyy528z+59mYlsQQ8robW9dDIqZEFb0zHWYFyeYZqSlD56cVI7IjCkFyrB4XgcQZdXGEvCdd5LgLgGgD2ur454+OBanEbFN3fuDHBw6GLAdtPh/KzDMBU8uJ6Q6xHjdInrw30cjwOu9w9w2B/BFfCdA5NHiB26TpoPOwrau6rOevRGOVqbdJ4VNlc5OEOyw1ML8pmtsYqM4AP6rkfUcnH5HC1fcoCrikjZSn5Ky5QyDCtVFlJKb3jLCN9SFxijsJZho2Uu2XzNa+K078xjsgBZpj+cNrdnxe4N22gmkGFKTeqU1y1soNlj+XhTlPN6k2tJw26AtExz4c+Y29FaDsz/nvcaK1lCjUyy7M6q1QneSxaK4aJ2iFMLPIklABGYveBRDTZY/zTBOrUFH5uC4Bltmx1ekk0pF/icYX1858ym+TlsYFg2E0IQ33f5LDagDCddwtq25OaLOtbSR3XDSNerdi1c7GM210fdrjlTydZNw2gKVhrOvIGbGmaG4aalzHOIxec3jGZ6zhasYg3jw5ZZuNauZ+nL1FrEN2WrUZ49Ra6Cn5eZfMu7P71R0n5iUiZStccZt0+bS5EDe4Ti4cmjEUVGPoKEda0sQS5LgDhxdA1Hqj0GxBzTPCG08EFg5lrv5eWiqJdPNkG2WyNZ9I5IG8yZwxWsgZu38jZgeTekaNYv63WBeTKhDoI6PdE5SWnk9keJBGsd8nwtVViMNuAnBlfH1ho3llzR9z02m15AiW76vovw0TdgBmgTT23udTiOAKV5QplbDwvpF6Qgiq0xodyInG6VkIs0dU6TMJZeo4UxBnR9L31RggMg/UfGS2ugO5/Atel6EKGdhESNcOHWb4RI6nGd1hD74M0baIbXIlbNGTux2QaoFo3JWCJhpSRMwxG1ZITWvNnPJRriwciaIQMmL3ON3XAW5syAqvcvUZSUJwyjZDFMmsEyjccZrC3A0eNCsEybpcMxX3uxcrTWgZqDRa3e9fQTjQ3GyTjqJy/+V9u64PbfWVk6khO9AgIQdJPLQVuIQfpPWI17KQXoAuImSt+TswC3cxiPE1548UXkWrDtz9HFLbpuh9e/9g6YvbozDq9++jW4dXaBbdfhwYMXcRxewOF4wG+97324ur7Ci/dewvMvPI9hGPDC88/jcDhodELe7xHh4BE6h9tP3dXad0H+KQ04Hq/ANYNZGtGTkRwLxwoMiQAz5n5JXHUJmdGVn2PXod/0iF3UhtYVXGSOHTmQByoRggtgx2LodYSlFFRLW6tkfQTn4ZXgkNp7AZ4ilmdAkIbkovSX5WWk5WGhcwi9h/cLMNJwEsFHKemyDBaujDTIKTfeK8lSGCUpcCgAa5Paak6X9r8yHUjtGvL+2Ad4D/Qbj9DJfeRJgGstaM3Pa6knQImBGWiwARwDkFXXPi1+p9eEgycp46xTgVNnWOZqkT4eXQNHk/Z0Gkcpv5VsomhbpM1VLiQlKHW+puAaamCRq5Q6E5FE4HgmxL0XxzmXIiBNs99aSfBii3svpQwEQs3iwKfF4RWnvQwkWlW0jwhBgDeBtMeI2gvr7WDrhKidlLjMOLDyydmp5ZYltVAQOC2TnyOzUJ1c1cm3tcTQBBVmpKlgcKmNGVgAb54EbEKzsUopsh4DwXfUIs/OmfNhEVIrkTBQrI6KZyVCBOUbwLcyKOccmNSGVAYVLY31Drc2W2y7DcpYUCYBO1U/w3EB1QQmIKuj69hhBMHzXI4m2E/fo5nWZqMNU1QI+WG9I81Z/kRJux8dFwukOGjmN0lvS28lNn4+RdacB4Baqa7zDr5KRk17BVedezlwgsBgzwrtZ6JfiFNtBusJ5DXj7MONiPUqYrE9XdejMtD1E3IpmsEomYJd10kDYdWoFhEttSDliuvrQQh3bYfgvcdmK83svSfsdr30OKOEnOV+K0t/nnHK0ucqS+kvWAJ6IIfgI/pOemp6L1mzdRKCQcQDLEG5Td/Be8moKNoc24jtaZpwPA4amJCyo6B9IAG0U0VLyRgnhf/ar5Q1gAieCxqXhx7kIq0WhnHA9dUV0jRhd3aBrtsJ2WDtAHjWFdZXRsiZ02mxgJqtLXFOW370fDiH7lVA+scR7NQqwUzX11c4HPYYhqP0C6FZT5pPZnjFgm9LHLQ8RXNxdzCH23sdO3DbA3ZYA6POMIgA5zyiD4KDFOc7c3zMbqkfteil3q5ofYm8Y8Qg11NuXQ636LuGLXLJQN9hc7aVg1H6gELAYRzw/IsvodSC23eewfnFGc5pg9fRbXAlnJ+d42y3wzN3X4voHWoZ8b73/SZ+87eusT9c47fe9y5cXV/i/v2HuHfvHsZhwksv3MdwOML5oFUeDo4jnHfotz2cuyPYtYpBnqYj8rFoZo0Er8UH0L4rpH0DNSjsagWXOsdWLWFCf+GWGEozCyvQ9i17gmfZx76I/2IBa1nbc2mfEU8BEtmqJPuNNVulEquvOJNAtp6dNgCXSgzXCCRS2yV2ZqZIHUGzdoE8FQlGOoILrvlWzU/IGljJrJm0DBReYLdlDyOc/Byi9oOKavfm1b3wRQBAD4tqWBDgRVMZFgOGkhl5qsayyJ7LBYkrqqtwbOXESuQ5aqeZ0aJcmghgp1lKo2DYaUpISfy2qIewEOVFFpNlrxvhJPhpdsglcy7pYVRyInYSHaUn6Nnz1SK9ZqeklTKGYarZeUJhyYSchgkpZakMCObLKOlTWU9QZTjNOK2lYCpK3iqekUNdjHib9cWMEHnxe1lvpgdmMnFWDOIjLzkmavrESKaSLbBq5daEcZCm7d4FJQ2lNUepc9oALfYjiFuWt/g7ag80q73Y4V16Wi81nUzzeKt+dY4E/1YLmioONk+T5NquMKIjXGx26F2Uk/NGyTCUI5cloYSq6NrMpO0ICBOz9MQ2Eh8EFLmXdlAblHtYjh+olbUyz8nQH01eNtlket72rqQeSkRACA0lkBaRK+ct/0RBt96kAAytMtT0ScK8WCqkYRmYwcHPC2UB3u069jWPROP2MJv7uT7UkTT5rhXYbjfY7UbEThrIOu/go0enGz9oPcRhSKh6ktxhPzRml9q9iHHbbLyke0MMOjO3oykry7GP45SQ04Q0yjGusesRvcem73B+ayvpy1kiC9OYcH19kMbnWq4YQsDZbosQPLro9ZBKASNca2vaTiBwAKy+OvjQHMwKUUhJQZgZe+fmk5Ts1JTmnILBVWrYS54wHPfwSQymHD0ftARmmRo5r50n/fzEdWbKmzUrQ4FWtXRoZSSmacRhfy2AaRqRtHeUnepmjv4Tg9e8vI/H7+hETbUa5abJYOV8RIv363WoreXT57fkRMv8ksdcADQlxrwLcGREqvXrCloCIWQTwBjzASUnYNujuyWEabyI8FuPcT/ig899EOOU8OpnX4+n7m6w257j1a/7bMS4Q5kcSiY8++xt3D2/g/PNBs+/9C48/9K7cf/hA/zKO/5v3HvwAFdXe1w+usY0Tnh4/z7G4yAnsMQOfd/jta95A25d3ELstjg/vwOClBHUXHA4XGNMBTVPEiXjLGtPfVLWyByr80tVla3urTkTScbJOUK36dDvtrpfNf24SlNp6xVWXUUIUckdPSKYgcoCEKrqFWIgeg/nA1IhJD1OG94aHjlAgZQV5jfCtTKkAaceWdt7dBs9stWYVQa4khINBmpUeWfGqMc4d31AiB4lS8SJi5QQFz3+txRZa3UxNrZmbI16ctj2cnTwZhsQNxq5mCq4Sv+ToseN13Jj7akRU3wLizhZyRqR0IqA09In+fIkZFPSLMcQgpQ5k2VahHkeAQzDIEeWl4phkFMvY9dhs4mwenfT3C6LXrIj0uXeaGFwBSDkJPs8ldyanfs4g4WcioIFJVTAgDqH1oeu6zpstrIWa00SPMhFT+pkTVOv2vR40xoDl8oAuXZiTgge2XtYU3G2PhcOWq7mNPtzscadROktws8Kzme2SZbTsjeiRentNBeJWtqrJSujMvQkVSkBUc4Q1oOqloo0ygmDxVtGoIB+OELoSMvsCM7bNazPDWkWiewR0vJtH8TJKUzNXlRUdZrFnrCrjfCEI/gKdORw52yHi+05xsOEI0kfkepEzZaSULOQCgkVSfWvZ0IgQiQgunldCNlEesoYI2c9SdDIJrKUeLQ9/YkSc1jmHlYzcPPOITjNQAheT+qb+1Eyccv8Ju2B4b1DZSGoiBikpLj1oeEqJUlWpmpajaC9VCK0NEPmvrJm7jWnSkVtE1fRX94FbDZbgDw22xGllnbSpHOEPkbFKwBIbPjhcEQaitiG4Qg7aZFBiF0AOYcYK7a7Dba7XsnPhJQIaaqYBgn4jWPGOEyQoI1TJ1GafXddxG67BUDIWUrCcpLju5ml51+IcgrddtchaqPhm1mw4zjg+voK3ntst2fS8yn4ho2E3BYHP+UJMGzEhgtV72sZ+NysXk9hdhNAwOWjB+i6HpvtBULcwrs49ytsi0bWrkCNKhvDsIbaE6dzZLjFnC1xFMuiyatkSdWaNSttxPEoGOr6+kocymlErRlSC2s969oF55vSa7dMzzpnM5yK4BchH9Huq9SsZU7S1sJpSh5p9m/U5u/zurqRoWg2FkuiS64fQoR31urCKZbX0191nTAYw3QtWdVnhO3dM3H0vUMm4PpwxAfe/xxyzug3t/HUszvsdju86pln4KnDrjvDptvhqafP0YWAWo74zXf9Gn7j3f83Hj16hP/1G/8Ljx5dYhrlcIRpmvDgpYcYhxH9Zovdboe+3+B1r30DLi5uo+83OL91ATCQx4KaKvaHS+yHAcxJLWMGuML6YlUWH6xyRc1ZSoWqlGjIVEhZlfXjswOQpPF7bHbSMi2MPKpMKFmuZWXxgNqBIjZZesCJj+CZkRhIPMFiwiACVWoZRgA061tJHpyW0TWyyXR2ZVhdEznr9SNZ9KJvPOImAI5QrdFAYXCWtViSVY2wBq3Uj2jBJteWqhA1cnBT6CRhwHkLBug6a71IZ8LqJFPPMBLEpjMTSgISC4kRouyfnAtKktNyoXbUsoytVFFOg7O9xJq1RaI7xqSkTkLOBV3Xoes7cyFAVCBJpWUmmlpwwx5Y5r1WOY2RSE6MzUn7B0+dEopyD6UWHA6yBoP6kmjjogkXihGGY0JOGV3foetCC5Z456Tsr2b1F+XgljQlTKOsG2si770EikFq0x/DvjN5L8+i/boa+WV8g6FkUp8DbZ1bBQLrGGVIECfGIBmmXDAc5QAzSUghJcj11D4j3Uj1F4sfLWQTg6sQrjnrifJsaweIENBCmtEmD0rtvm3uGUAuQDshe6HzAAZlhs+MPnrc3Z1hF7fY+xF7Psp4OPmqWfwJQNoTyME6QGAgEOtpt5oxSpCAkiYPFSWaWHGXLUvryWy80MuRjyGz6XHHXS5s6eCL0jr3JAO1ZFXRFuFJbaT+R8f0xpXmF8xRVfuaX3nzuVucjjUuSBZpkVNwQgza7V8WwoclKNoYyClUoh8slX1eNLaoajFAcrNJJilzGwT8ed8MqR2bKE2SrfH4/B6npXytTpIWjD4vygiYW8O1JfBYXr+27JoFO79QoOZoth4vAAoZ0+7U8dAGwa1sZf4sgE6y8OcJ4hv/5Md+Pi0TOf2CkjWlHRucJdW35EYkmEFbZjYxjI229WC/W9zkYpkt62rNGV6+7EklGPORxbTgHGYNMa/r02du6e/OjnGOsCNrZX+5dj9SFiVKOWtEYpgGVBTEMQAOGKeprbtSqkaBK5yX5t/n2zN0YYtbd88gfTMyri4PeOFDD/Dw8hGuHh5wuBwwHQvqRODsQDXKSQbswexQix4TmrL2t5BBj10ExQ6lZnT9RshTHpCttp3np+d5EFRpLXZ+axa/nEcl5RZjAsxRDSJqEeF5zAQUydLRUiz9Llkp5vCZcdO+Wmz74bFZBmANTlmjAjz/CbPBs4iyOGsW4dZ1J/VDp59va6QRCmoQF6VlTUGqmyGZoouPaEbtdN8/phgXz2HrcPEQJ/vCjLQ885z6bUDJvpany7TtQbbGZX1TxZNFN0y7js6tZJTNd8TtP5gjrZptJUOhNfLMyKXIaXWOUcmedzHQWIwVa/aOOpJidDGTxzZGvEhJP1kfGh2iuRQMpkMWeshWSHsXmQG/MYk2E8IEYTmgZCCMl/prqY8W+qXqKa2k5ZUgzYCtmny6tHcepwvF9NnSIs9r8EQvO0ikjQA+set8+nFLxKTgxZGUjdkR2Axo/3UBkvAejQBhyYzMak9zqUhNL6JBDBu25XhisVZP5vQTKTTrA/Pj5zLO0+84GcPZOBlOshJXMqdkXnnyrnkAFquD2nq0e2iwrE3zDCRna4a23iUjUUkxK6O1U93UQZvvCThdU1ZSZQ9h7RXkGicl0OXDkOxE4j6Yk2wOG1NzBIplhgqAEr3Qsu7n3iiiI+cy3Vrryf5c6oc2yjpnAsLngJg9O+s9FkAz3yWrCyyZTT5LxFyaOosTVrPZptmRcsYStPvQUm6dA8M01udtxikLTMgWNLDTU1n7XYoOG8extUVIKWmPpqTNs0v7vBM1s/DSDZ+ernGdJ6t6WJBFwLJXoOixZYNky/Bo7zEdc6NEdilL9eiclJ56Hxf+wqJUi6CH81RkxY9TShimQbLptCH5pL0emSVDNqUE31X0fZBTgc8vcOvsNnbnHVJK2F8XPHp4jZdeeISrqyscrhLGQ0FOQM0eyAHEUXwG9uAqJfPSdyeBAgFBTtvu+ghEQq4jYuxAJDhb8AMtntcyIU7tPJkjfnNOFrrR/DZ+wtwRz37C8jATZsx7hOf5kICU04CfdCYwanzOBpp1Apv+NRU3q5cFdgLIAAHPNrNhI7t22wvyfstcv0lKPsGpfOy5l8GAOVtK1sD85lkn234ze9JeQYuBbq/W9anYVPrfLfaFzYlV6ljfNgBgKx1d2lz7XFsDqqnp9Ku95+Te0X4vbTROfUDLYia1MQBQNLNOsrHld1VbKkgGm2QsWQIGYbY/rffmgtBnKzGbzdpHlKZ+iJvuAM/4Ctac/mS024O2zzD4h6WehOAkCeDonFetBuC5wqA+dqo5TvTzbMvnG7b3t/liyzpf6K0F9gUw9/rVjCm7v1rNLi98Rv0yDGVJPwyWbuDEIA+Nl9smcEIoNwwlhZDNv7jxlLNdN/5Dr6z6+wlO0hPl5TcI1wcgR5Lqrxe2euBOSZOoR85bOr/dl42M/d45B8+8MPoL514H1zbVvEGVyDLG27snrtIl9Jo3nAADIun9Qs7h4uJCMrWqnHoDzhBtKYbZaqfnU+I8dn0Hi5Y4jWrbjVuJiDWOLLnAWG5ZjB5dJFAX4Ggj46oApVbg0UNhJOUkPG5HhzvnsN1u0PW9PBNLPTRQ5ejcUjUN0vrTWK2vLK5l6muIUjKCBEkhnvV5U7gAkLKAo1IyUhaG18Y66vHg3gcQScZV322RckKsRXpqPMnZuPGbD0c0NaWvWVWlagNwMFoZXZpwHA7SMyJNyDm1ch1ZX15PSps35s17MFv02J9p3vBCBnpVGotT0tr9SqTJNqBrDoAaAjNcNy9BWo+vC5WIEEPAnbsX6PuNGlrZByknlFqRy4TjQUDgMByQ04TD4QqX1w/gg8f5+Rn6zQbH44hSPIg8hqHg8tEeznWodIWwIXzB//G5+Pzf9fkYU8L9B/fx4P5D/Nqvvgf/3//8P5GmCcMwoZQIH85w13eoxDi7PSCdFVQkFIwgxzgOFSlfYrfLAEn5xNNPvwrn5xfYX58jbiOmccCLL2SM4wGKA2RN2nLiuXcQDGAsVsnSGWNdH9YPDlwboDdH0vq6IQAhRASNspfRTotMmMZRT2Ds4F2AJ4dN7KWEokxIJWm/qwJ2VmM+A2HAAUo0+eAAYul9YRkdSxIElsFi/TwKtApY+nxAyRF1msDS7LlkXaBa1tewEjOMbHH62Q7iZCFV+ARMaTZybZHr5pXothlG05/a56KBFWBJJtkJdcEHhCilxttNj87LARAgRowRuzM5KltKeeQ9Vclh7xl9H1G8k0xP7fFRap19F2V3QoyoRY7MFUMtqIdI9KWVb2dNyQZBM2zFCXZeInWH4wEALUp9rdRMjiUP1uuvCDiepgmpZKmD90ET2wikp0lKmjmw3x9wPB6l8arvYQEKKyNk70CO56CA08wUngl5BjRiO/fuafpwbpsi46Lp/2C07ChxxEvLJvF+DlhYmTtDehCylsz1vYfzQBqlcSSRZOZJk/sAF2bCwMrwsDhpUPpFoIH/nAumkcBUQS5LE3XtITQ7iWhOtJQ6atQaVswrkXHPRTKUouwF9g7sCLU41Bo1E1d7I9aK/ZjhINlv0cvBJZ3Ts1iajz4HYCh4BM0Ualm7Wtr1iZJ2wpDpKrK+C64dK24/y95bvhnNTkiTcN2jnrUMRXVlWztqc3QepTmvlO07kqwjKSlcXufUTtHivwDU4Ze1ut1t4WPAMI1gB2kwq1mAoUX4KwprhneRrGcfPPrYg+zwBxICW3rAOExDwjCMKKVgGAbJWFz01IkhAFxb82FgdmZSKhgHaxou6y/EgO12q5H0HrHrZBy07UKtBVOS/pfTNGGapNluiHK9Wov0hCpzT0ivhERKpeGOWc/aoAOTtj7IOWEYDgDLfowhou83UobYbTAeR6SpIE+lEW3OzxkPNitVbUObleZUyt+d6XM2XCKEey1l9mpYDqjhmnG9v8KLLz4vx30rhpqmCfvrS0zjiGE8tiyoeV2cBvCaYbrhMEmbjAjvpQF41/VgPTW4ckXKHk51yzgOaleDZnQHyWwiJ+TXMGCakjYsBlpzmLbAbS84dLHDnduCoXJJyCWpLZQeqVMakI7yTMfhIHhgGHA8XEvWRtfBx4BxSIhxgxCA4/WA5z/4ITz9TMEbP+MNuH17g9/9ls/E53z2m/Hw4SV+7f/3G3jw8BF+9ZffjV/9lfdqdv0OwBbbIM9SQsEGglfhKtjLYTaH/YBpGrE7O8PtO3r/d2/jbHuGy4cbAAXjOODRoxdw2B913N0JfyLZQ9zaaYCt2MaCPNbzCAAJhiPHCNp3qerhKNzIBMFXREBQf45IMgCnaZJet+MErgUhRtkPPgD9BpUZiRMyJ/FrFo62NLeesb7z1NZ45QIUeb0QRgDg2yEX1kagatYTe5wEFp2TksictMxO2nDKXqiLddq26LxnSNsfpCTrxQdGtxEy5LQps/iFddETrPkWzfl3cF58LCsBBVXUKpnEfd9h04uej6rnjVyOIeBst0Ps4okfJIH9Kk2sGeJPkuBQZqkCsu0tAT9ugWqeMopVerQsKjcTGCnNe0gzH6chiT1vFZRsyVCgjUMfxbdMkx0eYIkF1KpoyDnBzwAmPfBBWp5I5rLzEY6CYut5bF07OMlGXVVLY4mgmFlaEPjg4CpaGfRSFzEYpFlorilNs2NAyZjLn42wqw5cSAOKlhk3oUxFmpoXbmvB6Sl8RrwIFxLRKAECuErbnLqoGiBilE7z4FxpLYCMeDTMWFJBmbLqbEae1GnSthBUWVoJAHBcQVwQHWMTZX4RCXBSzhm84PCslSapVFwPgmsnL9grkMPGuZb53XxX9V99cOLzt+Vuf/9wEeRTefmZTcZGn/6qgSavyn4+ypLaFNpiNMVi4Hx+3YKPsgWBUzJC/mbRCdloc4TyhitvpNUJWpsJF+89IkcpodhsMKWMVJRQqYLC5PaXZI2mmYaomVHUmqeyPuk0JT15p2AcbCMKUAIgpQle3huDvLfmDC4VJRWMoza81ONGYxcQu05Sf/sO220vpXIpafoyo/VRqkVP0VuQK0v2Vn9vjURdWR6hPI//ko2u2svAlF2jASprlpU0CM3Jjhs31vrDL6OPRjSdvNac1VpbZBB68kXRaFPOSZsN59OIh67J0iJqeOyzdVUow2zG49SQ2JiVVouC9n0eVxtBU0SnDzuTBDyTSCfgVMR5h16Pz5XPlqyyiiSRz5wx5UGP7x2QpglTBoYk752ynApUCykB5pC1z0VKCUwjyE949tUX+F2f9xl48PASDx7dxzCMuPfCI7znnS+AmbHtpUyt222xjReSXICM0jGmesBYr8HIKPmIXKTZYdqOcnriJuLs1jngCMM4KliRHOJG8BkRp2w5eOEYLQduOdwLvQB17Kv1hGufLj+ZAXfq0EhDbl2fxSLnGcxBCS51tpnldDEFRFy1/JHnaMqpw2gniSkZYGtCnY/5ffqaKqftwCnBtHxU01kKovkj6m+zqLMulbVC7fSRZYTwprRnoVn/Gj9M7TMX2Sm6VI3kiyEgamaDr3PJZ4wBMQbZq7ofBfFJyWEI0knnNBP0dK4NMLUn1bkgzU6jxessW9TsyJxlKuTbOEo5cdF14D2hBgmO9J0+PywbVXpF5JRBUXsnELWTSQE0/ZqSOGXBB0TtDzKPKzVy8dQWopFM9mCnDiM9Doix0CptnRjhOYtbzJX1urC9Zv0vvGfU6hUAsZRYydZrp7yQRfVs/S++7GYW1ANqkZIH8hWIRl4pgK48n1KldqgRUA0VGC+iZAhJDzMmAEHYk+pcK+MrWhJUNetXoqgVuVb03suJas4tFslCR4NaJJmUFHwM0HycxbJRjDQCFutWSSdbv8u+UrOS0/daII+ovd5e3UBuu6oZIZ4zFmh+/o+cgbYcINXfmpUSYwBDTnzscoeUimaDqLNIloG8yIIwYqkTB7UR2oKgARBSyXrgigXuKoIHKEhD53bwjPb8YJaDMyy7ehrTQndKQDBqGVzXRSnZY4C0rE3WFbdM4aLZ0dYYHHyaMW5jZluwFmt4Z9kNM5ZJSQiO1g9Fbb60BCB0YwLBazCzzkEK23M2SWy3MtuU5lMtbIxlPdnsWVZTbXvQdIJkgk/TiMPhGtM0tmcXImGQgExO87PLAj7F1PPSOumdJNjbtZ6qzsv416p7u4rjCyf7QYggKXEz4t1Oop2UYBYCRy9mIOB0d2iwQTDUdtMjZcKULGNNsGMtSU5VLQXjICRbLRmlyGmlXb+Rkj928C4A2sNvf73HrVsX6DfA2UXAa153G5/zua/D+97v8N//xxEvvfQAzz/3EM+99xGc87h1cYEYI6LvsQ1CwrjNDjkWZB6RcQQjI6UDUk4IMaBwATtGv+txfusMpSRsdzs4IlxfBSym8WQKSCfBcKa5Lkufilq2sdhjwy7MchLZkmY2HQEnOMu17HDN0tOyHGYpn7WAWQjaQFoJI4IERBpSMd20sGVmU5bBKXsWW84t26iRaafrwLJAScmhmnnuW9VMz5Oze9p9QHrqQO1Wzpbxc3q/JxikPQOh9bRzZo/nrDBuOEd7FUUtEdXMettfPgRZM3F5crBmBTWCi072owzFonTSEWq1w1hsfwrovon3oPMDzNmhoh+E+IMGEhu70DCXjZfgJWglE5EQaN6FhoMrVw3yZul9rIcnBDhJFsGiggFmmyxPazHOOP2HYTdHhEoSEDzBTgqcluvaES162M3rCpgrj7yrcGq7LLMpwzJBDQva8y71oZYAO6/PxM23NNLKcPW8luWVTsfYnrwdhOBqM+aWaWUD4dy8mqVyr4JYDkIKTvWs99ITVK6imftZbZoQWAQGVTmdsPcefVS9rOvD8Jr5yMsM1Xlv4WXJx9QgHFgYkcraFFXYsaoRara6csvwWLy3DQ9pKRuJ4yYLnsAtPIe2oJjnyJUjZaJ1f1tfhqpEwNIQ8vJ6J/dPrVaS2rXMYVveLIMXo8nt3wIUSmFY4oCdCJCLZC5wlYiapGxbc0TWIyplIY+jHuWtQEOcE9/qqp2ytrGThnE5y/H1qCxNAAm42GmUjYTgEnBjZBPNzwhukTmnDvr8PMtHnlND7e+1DcqsAuTUl07693RbbDY7xLjRiOkTwOvLXls3y9UMvSwyW5apjepY51KQ9Wh0OyVHonHmaNg6oHaN9h2mwBeOnRkLIzSX6/iGxT+53xv3LwSDbEpHHnWRGYCTtSWfm1PC5eVDHIdDA+hyaqJmNuWsLHlVY8/a34tBjsH1CB8SutjjbHsLIUTcvvUUzs5uoesCHjx4hHGc8ODBA1ztr1BqxtPPPoXt2Rne+vu+CEBArQWWMOh8gHMRhSsOozSCvd4/xMPLl5DzhP3hIaY0oBaSCN2Y8Xz4EK6v9kjThOPhgKQnNTqnUTR13r2b97nNNjCvSQMbNv/MjJRHpOmIkicABaR9k0g/azlmArrmRncGwBoAXwB7U/RMQHQB7KtED+QNzaAbsWh9bGSutUcZzynj+jbZPxpVsutCDb995VQBylratCgbaX7DbBhPhdv4neCqok0pIdkG1vOotnVIaMfK0mxIwIxqxlL1q3OG56SsrOs8dtsNova3mx0vyWLY7w8YhqHNgUXlrGQxhCCnC8Wg/Sao9fUzMJy5IJXU9reNqZR0zPumajZh1awep6iVraeJNTsHtJ9AgXNRou2OmlOZcwbRpOtL9pllmAEz6BEQrTqUSE8J85parSni2lfO29joumaWPhxN39D8+1M7tUiPbkSCvUB+77SvhfW4QAOzMs+qdRYby/pvWYNKgvTxEhtSmUCZEZnhXNWeVXMPBufsVEwDuGgNy0UPyc8hnmbINBQiClU5IKf3yQC0lNxJo/9aC4jlpNsGbp0e/606wKLtxWm7XK5Scg6AA8NThZf0HenfBm6Nr+0gErDYTwZulGd9YsQAtWWoOe/hSm1Aflka3xyZJ3wGoGRmld8Unfz5kajZltmeWwaIZAyQ/tvmZGHqder4hMgEbF2SYsDaejfI37QuWLOupRekHq6AGWwbeM6lgFlP/iXpj5dLaScfGqkUQkDXBSGEMmmPkIJ8tL6YVsJBmoVBCF6yZEK00zIJ05QwTRneO2zV4ZO+NgxGaU6RlXk1RUh2TXXqHHTfzc6vmCBq+9v0RMUST4hN9T7ChwjvO3jfIYQeXdcjhHhK5izlZG4ez9Y2HHyC3/hUnxjINayaUsI4jRjHQdoh1IJpGnE8HjBNA8ZplDYFShjMpeuL+3lsbdpasIoE0jaI2o9HM4weC84Y5nDigIpeFtybtZ2EBa1qkeCiGXUGtGWFZFE8fPQQ+8Ne2ixoZlNOctJeyhljmhp2ZJZ1OIwyVlMq8M5js93h9u2nEUJE320QYo/gI1568SVM44QHb36I/TiAQsBnfNYbcX7nLkLY4JmnnwGz9BEzMtV7h1wK9vsrTFmy0a/2D1BKwnECch5RC2F/ecB0TPDF4frhFYbjgGEY5fQ7BkjdtVosm96jNfBWPWsY2CbDbJcFblMe4ZJDYclcISYpNW92wjCpWT7tG6czW6u1B9Fsm1rhFYuEdhpWFEygvWCtQsSWjd2f16oIAUhqt1oGCJoVs7VthI390Qgt6UdAjTBoQB7Urvq4L2i/Md9CcRnkIIJpzE1Xye9qO/hj9gmakZ9JDPNPHbTNgtyz0/d1ncdm28nbLPPK5qdWIT/59BTw+aRt6TNcagUOAxJEl3m3qGTRz2sn1dXSMChY9EOaAOkvNMdmSH1yZsY06WmGi+BG7KSRPRf5ey0F4zDJSaQhIPRRYc2s//Kij50jJwdVlPl0vlpTw0/k9LAs6+UKm19CpQrjAUzPM/k2NrUCIO2DBZ57DFU0/5W84G0HKZeTe5LM6lohhzoAyFRgxGFV2wpm1CLrgi22AMhpb9UqlxxQtXiUbI1AyUW/yGxyTRcy5OR5OVQMDfdXFrJUOAEHBMC5ips92E7JQ+nR6KhCzrGRzC84QmEGKx8TWDBXKYSS5CKpZBR1XKSHU0X00tLAxsmWOmnSyRxExIe3WTfkYzuNjsVoeHiEygjeoehx0FyLHrNrszEzlE1FqMGz7CLAoZaCosq0hgCQOTvUjre0PitiuGg++chRM5zOTqxA0w9PFgPx3mkz4Bk8nPJSs8Mk/SDUiSXtX1QsS6JinMoJW+mcNJ6V7wGbPqJyxXEYkHPGcMw4HgdJ1UsSWYsxou97eO9wftZjswnmVoGZsd9PGIYE2EHRzqHcjlqyKBlG45iEIHF+AXxI+3YUkDpS7E7r5E/nmNuzzqBF556kIax3HWLcIMYOm80Zdrtb2Gx20pTRDMUTANHLkZP30M3fixNkirgUy3CSpuhyrwJmshF7YFlzmDcmETWFs7yI6nNRSnoq3LIvzYzG57FqTZSdW2x8NXFquAVEeRB7rW+2jVrbheX42hEv3R8E/CooNONhnzenBIvGmzNZgD2PYGbcvXsXr3r6DNvtDq959avx1N1nsD9c47nnPwgQ8KEXnsfDR/cRuw1e9xmvBbmAu089jf/jrV8kZZOaPn8cE47DhJQLrvYHjFPCi88/hw+8t8fxeMTzzwPXV1coOeHy4R4gxtXldTshMgavhq/A+w7MBblOIMwnCCnTIM+HpbNkekMADzOQpiMGTyh5AKGAqCgpOzsgogRFBxGk+R25eU22EyW0vMDmT05+AuCtBFhKQGQNFTmCFE09AXJgh8AZ45AWX1VLyaTWu8BOimQtJyEmoBLyZNEeCMCri4bPPMOkx/aEEi+nxALkBJShtrFkRmsQTiSnonnvml4hqLNWGB5OS8CgZYLyfAZMNpuIW7fO9Jw+3zK8nPOopeDy0SNUrs0pYWYpSWTGbrfFRa86caPAhWc94TUrtlZxcCTaP5+oYtEh00vOomKOwOzheXaane5hgm8Nv5kZMXaIQYBeTlkbmnIDkTaM3hF4UxtJaYDXwJ93Dpu+1xMEJbiQk5W/ELoousN6ztRSMR0lsicHWxhaWJQxsq31OZvSB8mItQanMqYyrt471DpnUbE2Y2WrT3WzA2HjkrKk8lc9/p0A+CwOIbjCOdGXKVXkIllD5KRXAyvwMhIS0FP5spRNRdIj4/WGzYkUnUqtt1lV8pOckAjeewkQZCmXiqQ2WUvDMkhAIwiIETUEpJzleWvBNBZZ80H2aXBVTu80nsa7BvRJda1kyd7cUJ84scbHAjY9ildQXWtba8DsbJ3YQfuyNeLFLtnJskx+Afih2MyCRnKQRwihNQKX/o0NWTfh5fclNOI5w7FybSUoIG3i215YIKd4Jl27GuCDAPNaSU9UmmBkE9FcHiTNWmPbT13vkYvDlAi5AmlIOBwGtYmy97uuw263hfceu90GXdcB4KY3DocRwzhh0/fob0Upt6YCUEFlyfQZx6xlOfPJS02X6XHhEn03XaTK383NcO312WX5eLJsW4IPnRAXcaMYaouu36Lf7NB1/RywagNhw86LCTnFSctI/TLgZd8twGrNykstmNKEcZpwOB4xDsfW+3KaBlzvH0kZ3bBHSiNKLq1xd+ORl025Z4Tfrtf6uDqpAPBeeoTkmsRB5AIL5loJt/DEEoBOSdZzSrllQ8TYw/uIacJs6+VBUVSnpZSlAb0RUdr3RE4cUFJKiYvCRfBYkvIwfQHAjGdfFXDnqTvYbnfowhZd6FBrxQfe+0G82L+It3ze5+HycIDrAj7vCz8fuTB+11s+F5cvPUQuBYdpRC5yatg4yjp/+Og+xvGIl158Ac99MGAcR9y/DxyPB5RU8Oj+FQjA5b1HLaMouAAh4x0cRRAkK5sYWtKyyAOxUjMl8sj+q3iRa8aYBlRXkcrUyCbnCLXSqS1kAK3nlm+fY3ZQgkillXw5kob4RARPHqVGVC6YatXD4Io08jZShjW4DmnPIuSVZVA43bey7ivXprNJbRBj0ZNR3qTZrqL+2EjttjJtNJYAyjaYjCHrG3JiDIOelmsl15pIQESIIc4lq20PSgBHejFJQJK0QTNpybpzQL+JODvfgAtjHJIGqOZxHYcByTvtn5bbPRJJye35xVnzPZkrQtCWEkQtOxJgrfiwjEDLjlIyAxk+Oy0tFlJUsu09Si0YjlopIuyCHsIlmK3kiuE4ouaC4/UR0zSh3/YIXRS7TSSdaBRvWEC2lfUF0mzPLKfpQa7hCJrNKKe+5dajbPZBLSlDMtjld9K7lxECIUQrq7bx5IaHlv6Z+XENr7AEzZgZKBnFz5nQAFAUA8sJ0YLTJYO8gosDs9e9YYkMgAtouLbr5MAiK/91ntRuyNz1fWx+LCuxxdpCRg6JcvA+y4m/upTbiYVKbnItqFXWbBcV+ylHnBQHVhDISfP3NDnJ3CoVU86ouWpfXTlwZAuHXgMkQQMA3k4NVZzJpus/TPXQTXn5ZNPC0W5GVQ0Yqh3FOe++094rM1t5gvEMyaC9RBZsXdJUj5NHlmp74tzzzVc9WagpFwNyM8A3tlDunhqDyXYNyIIivSnW+2/poKRVmQ7qPGlEBzNzbcdmG0u7vO25MeIMWCwV0SIxjrSJnJtLFkHWoK2I0aYFTmn2mBWAzhvY5mf57zamyzHTMXGqDCxby+tpXk6PhryZBTQ/20eem5upnTf/tuSfbEXMRmupkJR4qbOCPZmjDyN2nydkFEGB8WL8wCfj9/LJtHl9cVUN0EDk6SNLlt8iIr18Ec9jRNa0UH/HRmywHVGuTrlzcsJCCLPyLAVjmsDOI4KFc+0cum3UyPEIFAfKkBOkXAErKHfeSakeM/p+izRlpOzAmA0LC+EPrVQA6alVMhLWhHgBBmihDuZHVcfL5rtqQ/jUxsiAhZCHcwablWY4PcHxZrbd8l/VMlnAsD50HqxBJzVeLcpnd0iwtKuWHbn8+4mnhnkd3sTnipOsh82sDxfX49nRWOpEe4mMHTdDV6sc49owZhvDxfNTe6OSAQudTvPPTxbTgxJdNYPTyIdifYSU6CnWt8Saas+lRG2uDQhhmc10IyvDykGWexCWmYj2XGYb7B5Qa4uMwcbC+idZCY12r7dsofn0qDnluWptuoAdNbDMqG3dLxbWcrRsjS/WgI35rKDnBdPG31Yz6VqzObOV0GygOxmDG9PU9CMAS9aS5ytzKRsTbgA7ew839rfpZpoJrjbubR71smUmmpj1UGgiJe/psXla3r0tO+LlnpBrWITNSvbnN4i9rtqqQ5za2vphLfXtDb8YL1uFvxJysnVJbTW1MWj6bHYTZ5xie9w+ZmGz5N+2t6GkAp+qrCV+w3K/E2xPkWKwBTR44pqe9S7aCwwPgjXLxzEMm86Xpw/7ddP2NqKCRP8VLetvQb6qfcCMUV/siZN+RzxnRdQ6O1ytEa+bSUgrsYYndYHNBj1hbxC19c3MUpZH8z3wYj5aZhORVAP40Byrk8MWWjnKcr2e4iGG4g7DBjYnSyx8c75O/sZtUmxs7MCDnJOU5o+TlNYpSW96dsaGfLKHbl7r5vqaryMBBDuEQYIdqt9OTpMxIk9+ts+VXlkEl0+bVrNiAVaDVizIqONHAEhLjZa4aj54w7ItxfmCEnIWrJTsuohSsva7kv5k4zgBLoApgLw4u3HjgcxwFVIekyuYDD9VsKtwQTAUAPSbrQaiUnMKwUbIozmp0rcs2IpUZUu29Geb8gSxNSo+RIbLkt0KGUGY77W0++QXGMpm4QkXqOqfkPXRheppJ4c6EDs4XUNLh+oxO6O/m9cVLXTRDGZmH21hkyoL+dliRsu/t49bLq8n/HJ+SMPS0kuHTt/Cp2Nh97jET+1jrZaPTu8bgBwkYr+jeZ5yzkAhXWtFP1v+7n2ZswIbTrAPvKmj5s+cMZThAEYlOwBK+6XeGBrbV2Yb7GEF05cTP7b1V67ih6LOGIrNHpz42ctBmu0RaDnnN9fIPN6LUTQ0ClsvwDzOdpCXKfJm6+YV0taVZOfrfZk6svWg41FtCZvOqXrISnsdt5tf4n2i5WKZ5/NJutouZn9rPa69EmxgoJVqyvpsq2Bpr2k2/6S23bHcA2PGXuJ6ODnJEoTCACpQmFs/Vb98Bp5HfDmBT8SgN+RjyGzik58dAV3wup9kwbUG3u1luhgWxq5os8KqiIUI7UhZhAgEaUCVfUI10LEwWmABU13fyWfW0jbXEk/OP3G7tv3cHBFblM4h+Aj2aEa/5Cw9A+p8qhfAKNmhOg+wRnKJ0XsdE0s9IwaRHB2bc8L1/oicC66v91IGlStK0lRS7xCDQ9d7bHfCHldIv5GcC4ZRUn6zRsm7LuLOrTN0XcD5GaPrGf4gze3GcYJ3Qh6Q1lyTgnCqgGMH9lWcC3XezQDNJ4Sc0nHez0RSF3tNae9xdnaumU1bdH0nx9EH3xyg377MANjIAhFr5HoTfEnzzrKIzNUqPY1ySqglz8oMjyuwJXHk3AwKrWeDpaFaNGdpIM3hvimNiNI/Oefgo5w0kh2QkoKvYtG9ee26ljozP2BTqRWtLwNLjqi+Vtem9iIaj0c8evgQKSW86lXPwkfGdtfhVa96tfQvcg4v3L+P2G+wKQnkA166dw/3XryHNI24vnyINE04HI64vpa1uz8MEtnlDttbT6HfFTi/xTSMGKcDjsdHrdSJWeYkp0kAvHOoPgr7zhKt4Zql34sDgjnZbBEmA4TcsvJSnnB9fYlxOiIPU8vwEodN1jqcvD9se3gX0G838D6IcWkGSOfDSVblNFkpiUYQgmYdUEWlAAZjzBAQCo1mQMvzgjnQrjl4ZtCNGGKWLEhJD5fswJbzqSC3Qsp8vLPeP6arGAwrH8P8uTT/C/qqXGQ9uAKkpOA8WvYn5lW2sPN2ryEEgKwfikXohZSw1xMT0pRwOByljAwSVWUSHVEqYxwL0jRp5qms2qJZFbUMGIcJjhy6rkPwQe2BRpmL6rkskarZkUOLhDHz3Px50YPA+kWFGLDdbfTo+AQfpPfLMAzqOBFytvI5jbAXybwjSNkyecI0JhzcAHLQSJY5JzIWXewQQpA+BJNkuzYHF5JtiMrgSg10OOcAT0po6ey5xf5dnmior7FT/ch71eMsZZeQaGMjbhaBFyJqGXUM/V4EjGtvS+RUkCbp2dQ+xxNCtiizHpVLUutvoJn0mNwQtRG6hs7ktBOZq1weD6KQs9PLgG7j4QNhs43Ybjr0IQh5hMXSZOnLJGkHBFcBJslohqPmqNdSpc8aOQAVU6mgymDOGBMQvcM2RLGHC5D3yRIrHRInTKjsqCdQEUyFabAJOPmaP0P7bDQAayScYCgXIth5FCJp/qqp98DsPACa4eTlFN6qWQ/z6VOYnarlfxdAc5mpBEiWQtdLhJd8kYh+ZqRkQSHSLw9CgINk+JGLC9srGTA+GFaUUp1xGHB1OSHnjKura0xTgp3WSRCdLZgwoN9IpD5rmV3VrEMj4r2TkryLix6bPgBOy2irNCQ/HEb0XQ/ETjCnlz1V6pxpaSUZlknDtWKsI8Csuii2WXMhIFgfEiJst1v0/RZdv5Ej6PuNNC0PSkKFAGeZCjbeN5wTZgacUyeCmhNzivdNN+ia4bmkWTJRNPCkh2bsr69wOO4xHg94+OBF6ee0vwZrubFF2G+Sd0siYy4b85rBKfhtHKUJ9qQn51rggFmJYwSwlWwDC0dVPtuCqptNlDElhmSSSNPeU1JBMmtu+j52CiqpTbPrVzayVsp5S66oJWM4Drh89BA5JWye3WCz6wDuseNzxBAxTgUffP5FgAgF8jwP7r2Eh/fvYUoTri6vMaWE43HE4TAqhjoi5QxPEed3n0ItjO3uNvKUME0Djse9jI3axJrEntZSEP0FEDowCipJFpbYRYZzDO9rIw1mx1C+pJeZtDMgfw0fAsZhAGnvJtnueniGl33dxQ28j9hst+KgWvbZghwVf6hgPI4IwcGhAzun2ZMehZ0cjFELpjK2/maW4dROdYVlqtVmY22/0OIERlZnGVqObVlYhsmg+FEc6sZY3NwYuEluNmLePi0xJq6ikzaSPWqkl2nA9qlKYgQXQNGy+CQr2OZIfid2turBB6bhLauMdSyv9wNyKRpQ8YpVRO9MY0YapXyUa9EemGiklPWuS0ntg/rMhrGsVEwGUzZcIqB4p+0NouJAsdHMRU9Ek/IvMEl/Y23lkcaCUoCUGXkqICf6kEh6ZiZtHt530rONAXjtJRu8YG7i09lpLS4Kt0NKjB7ywesaNNJIssZA3PCSTIlrXAHLELZ1zcoYyfphFJas266LyjHMRFFlCzZrsLPaYWHqUKMisMcGaiuqEjSYgzelVpCrij+s1YDpTdIAupZpagseaVAuGfaxE4K5pAQuWl6oqzDGIAey+XDiUyjDBGNfiZVoArTUkBoBWKuQqjlJEsCkfZyYKlJlBOewDQ4e1JICbF/xUte8DHnZZFOL1IDbJvPOoXrduAumdsncUdtW5lxJBIgbKaUOPqBNA4XMOY282U2gGR9rRpetD8oNEuLkTfp9jjbNkRH5tzX2ko7rUpoxl841w1QhpQuLYynbqXRECAEIQTZC5QTmgpQqxmlCSlI6N41JABlrVDM6hCB1m13nWxf6XKscyTqMsKZsBso2GznRoO8zQshwTp37nAEvRS42FwIQ5BQT0S+20OejfnOWHkeNKSUD9Low1aGOXYcYI7pug76XHgMxxjnLyYwQ4YT8a/KR1iWbgz6/1tK+W1bQzSlWzWDPIoRQUmcptzIpMwg3meTlvy0r5+a6E0BVTwDQ8vVPZKcXn21z0E6+UtDarNXCJlIjYE1p2u7WObMsdmZtHabK9sacppQwDAOksXkGOWk2f35xIWmq5HB1OCCUgiESyHs82D/A/f09TOOARw/vYxoHHK6PuL7eo+SKw1EA08XuGdy9dRdSahiRp4Rx3CNGPblH65qnccSxHICa4VyGd1bjrKnBPKKUBA8GO17M/BxptvGVZn0F0zRIZDHPdWu2jYkkIZtITx2KPULXgZyfx1rH1ynhxsxyyqH3QhI7IMBreYWX10BS/11xbe8sQYb1f2uL9vGF0AwfADuPQv9mJtPm39aepKAw+PE1b1dqelHfX8Xo1gqJrGq9tmsAqb3xsc8yQ2yOwjKIoblLYEhvi2ma4JXccyTNX41oKVmAjiuE6q2HDGspW8I41tkZ8VJiaSdIpilp2vVMMs3OB7dMBgdxoJbjQArMfJATvUIUYFNZItDTlNp7DMjLiZ9W3mhMoPQNkOdMQrix9dKhtnaa/akA0SgzSgD5ue/Fcs5tbo08mqfBsiO5rQNbV6A5y6xlPWQWkMOYda2NwUI/ChE09yZj3SsGzUuuyKk0G+icQyhaqgBzJu3kK70PN6+iuem5Dpo2UhVgLCWbAJQYpNa/0SlR5Qhi76KXE3lI1inMZhAkI01HpmEIR+Jkq8NRXUUJqfXpy6U1wUAmAat9kDUDnOr7003x4bDDKysnEVpInzjvnSBi+91juOfUWTLiQHTH/HtnpINzctSlRiXrCdFkn6ftEIL0WFk69kuZEdJNOzk7g/ZKIpLsWUCVnBxYYO/h5Sey6FdZ16HdtnOKoaKA4HEUe5JSxuFw1BYE0sOG4OApNJJeggR6ipZzcnqZlnmmSfSKBM5E/2w2AZs+oFSnvTdZM3uSnkZpWbEVcNZXrMLZGOg8WNAoJ3HAgjTMaBlWc9aakPgxRmmqrt9jnLETtQN2/IxXdGPzjfE3wGA4i9WBvqne2xwpPmLt30JKUEn2acE4jTgeDjge97i+vkaaBqRRyvLb8fKa9Wm47Elr28rtvDqwALREr7TMqYWrLuPpl0tTsPwSazltndF14tRNUwc/aoZ0mleo3Sfc4+NgY0bOifOlFAWRVGaYk2nZb4LXj80XiNFDTjwV3Jsr4/LyCuyAgozKBQ+uXsK9yxeQpgmPHj7CNE04HEbs9wNKYRzHjFIYF2d38dTtOyAQNmGLmgvG8YgudqLH9NSraRilrwocPFWw9xqsk9xr5glckuhIXxthb7jSUCTb3IMxjRNczig5nwBqw55WNtdvNoKhGnG6yKZZfM1ZwAE1SDkwBc1CYz2wBA6uZCGOFtmZ8l6dPw1KGamjWuVxH1B/J4HIhT9jdoJ801tLrXNTw1MbKF093D5e7iUx2AuBwG752sVnLWy5EfXt1L+Fvwl2Wv0hJcsp5VYiuXy2WiuOxwEpJT3BUUqepik3Ww4lmC1ItFyzOVt54+x7GJ6a5wlwlVCJAZIgpTPM0myDtiSAEA8GshnzwSusuIkZLSOUqnojbA2otYdcFPLXmnmbrm/BVR1Uu4eG/05IwLmiybCxvZnal03IrDcMGwlOlDdwtfUj4+k9Wr88G8s6QwkNGmpvJ8t+tUb7VqgBtHuW/9X2B4NKzvHJnLDyIYZDJUtsSWc4JfkJMVbkTrG0zq93cpCC1/7CMLKpLVJuw+H0RlpwAh4Veuqe9sRj7X0MMKhUFGb0AejhWrWU+So39xM/9pvH5WMmmyxVzEGbpDon5QXVetOQ+XTSL8UAuoFtL9CxAHP/mcoSuYQsqGKLQ2fQnJKTLBTt9WBG0xZsUxwsxvemzOSXWzS/XETSNdtiSgmDRgMqBxB5xBBxfnGO4Ls2aYwqTQ+5gjlrP4mKlAaUKifMTaOwod4HdD3BE4nD1rCaLPJpyk2By/OSghdGCHKCSx87OHXa5RQNjVYtoKEOKsBOF72p27aKnwy2m/ER8s2OsPR69GnUjAQ7ZvvEOULz5e2nBaSgeV6agqbmbKO95vGZcuT0tIE568he3eaPuZ2cJ714cmvY29bYR5CWiQS0NWZlNE3xWR08zSnXpwbl9PNOHolsnJRZjnJkfMr0WI8i4sX9nAwJzSQHSPqNVT0VMEjdfN+JQdlsNuiiZPcMxyPuP7iHGHtstrcQYoecEy4vL1HAGF/4IHItePjgAR48eICcEo77g5AwFUAlhNDhmWfvwoeIPp5j090CV8muKFNCGLykfFcxTARp7JnGUcFTkkzB4YjLRw/klJsSUHmA9RIosGaPpY2zfFeDB26ZT/NwU1snwsaLXthsd9hsdoD2GCuQDA0hUeVIWlijOx1dK/ey01UAzTIDI5CHR1B4WhdTvVgzdRGRrdaHyGtEsLa5tTVjzQ/hxfiG4LDZSZZDzdLk26mBf5IiZ3M1zZg6PWmMqxwjrCMjjTrF6RRDV3XNcWsUPqsOzZoAAbR0ZeW9NUvEiamCSxKdXitc9cjaz8Si2W3+oE0YzRCTlPkVLxHcXKo2btUoNWagYT2P5oilZqV5AVvbbQcfAvq+Q7/pNKJugM+yg2TP2Z7MOSmwqW0NLclCubZGTUn7G/E8n3VZ6geWNeaWBw0IiLMSHwMfMknSa8oHJYcaKp51COsKcwQJRxHMi4L12WL1MGe8fFruawcItPts0Xy1DNbokriduFIXfX3QQP9C9xhI9AQXLDXeiFZuzm7mAtaTbOb8HH04B3g54AkhyF70zc7PK9uGSz7ZMg8AFHNAtbxBbRMzNAtG1j9zRmYBTMcpITiHzguxJRh7vsZHNQ6voCyj7Wa/uhBQtORE9IYSR8wnxJM3/OTsdCiJzFbFYlg0V4UR4KREoF3dsBRLNNNb3yVe2KwFfpLxpJMnMDvm1DFtIBcWoJNmq4yMaSwYB2lUG+MGMWzQ9Vvcvv2UlCXpKbqVNQuWCxgFU8qopWIcJJtpGhNykmPvY5BeS+KsecXXuoYLkLLYjFqlN5Q0txXCx1vD8UjIacRECYwJzBnQCL6d1CdBBd27y/6Vqp+WUeQZhJuTpb3dfJDDYRwDGpC0pviC+TTIB21g72bPaZmN22ZmQQhafy9SJUeM1qcNWDheIFjTee+d2AFHgPWSUnKhloo0TchTQkkJJWXJLrSHI8P1pwG2mz8LGaoHt+QEwGyrBm1h6k5IL25ltPOzWra9BZabw+hJM2Mjdmc7OXpdm30vP8OcxKUBm7nbmSj33sExEFwEx42s+U4ybHbbHQjS12QYBlxfX6Lvt7i42KKLHsNwwIsvvYCUE672j5DyhKurS1xdPULOBcf9QXv8BFn3ncPZrS3gPfqwRR+3IAYKZ7CvkDYDfoEnSUrrbkumfjpm5KlgHA+4vLqHUhIqPCrLSbulJBRUzUHRwD9kLyy3L5jb6Z9iWnSdcxVCRDPs+u0WXb9rYyXQTtaoHfZRC83Et/bokUweOQQEYO15BJTiUSiAULXM0bJLNChlTvqCw7RMJ2szcDLHi3UumUQy5zUrLrddQzfWKKx0U/5lfoXpX67QfoFKatUZ79sppkRzAM+1gdZrocIglBlRAqNkAnslhJw0crYgqzXyFp0jyQJGbvDiqxbJ0rTyPuddy8yulWU/5DJjLeM7tAzTbtX7oCS3Q+wlWLjZ9Og3nWaVE1ypKCVJ70bF8wzVbU0lWG8t0p6ghiFsD2upnnEHLPiyZf+rTrEsS1DV8kUH8QM0+UGDVdY/q81m88MqsEgAIW1xwCyZe+an2poS0p21LUKFI6/kndcsMiGScjLizrLUTMfZ5xmIO1mSch0jUVtWuGW96em6ii+5ZpSsa6/o4xSSPoTqa7KTskd4bhwJgdBFh+gdglseJHMqtjRbfLYWMJEexiK2IGhv0AK07MNsJZHMCCS99GLwiNpE3qp7wFIx9XLkZZNNdkQigAZ++i7owCorhzki4ReLox3pq1ElBgBtlts2g4LLQEAxAGosYJ2ZWSOYJLIsjUWL1gJbxGlGykt3ktticPBwJKnENnFsR89SAVPFMEy4vj4gl4KuP0OMHfp+i2eefgb9ZgujK3NJ2B+ukHLC8bjHcJiQU8Zhv0fKetxjybo4OrieEIJD38mkHY8TUpII3mE/npAqcjJdhHOWft1D2qoXcNHPTpLFs3SaZmJQT/lbfC2gERYU6gJjMuAYwUu5nA8RXd/L3Blp6EM7vl4WhCoOK/sAFJA1nPJkIbRG3aeurU4XmdNvTQrn35E6no4sVVSiNSWndsTmadnbRxcjeWay6RSEm0GzBrjtITCPBfNMRyyjv7bpY/TookNKDsM0gKz0zN5f7RmXnz/vB1K070hKfmYHn+BISh69l1MvfHC4urpExojbt5/Cm+4+g+3uDMM04kMvPI/94Rrv+8B7sD8ecNzvcdgfdPuIE3FxcQe3bz+N3eYMb/qs34WLO3dRkpRp1VIwXO2RxwlpvMDZ7jYAbsdaA+rUtREiPLz/En7rXe/EcNxjHC4xjXuUkjAOR9EvNAGUJfMhqINL9vxq6FlKZhb2fQG6pSTs4uI2zi/uyp4cpZmhrRUrc3Bkp5SJUUqaydKFCEQFVQpyM3XIJE5RRUXBrAvBli1DrfE4ADgX4MmBCyCFsbbnxEmpSko4L0ao7wMubsk+K7liHDJqdaA69xtCWxXLqDI3feicgIKaWXWqgyMviacKOitXcJEU8dBOlIN+am0NK2HOVFvJQIoFMcjzJb0p57w0+64sac6LaBsAuOqaXimaKZNSBShp43LR68M4CdkONCJa+rOoLiEPIuufQej6iPOLHbpOyiX7Ta9+moyrL6TNkx1ClP1RSpLM0vZYpksMiMm/SwVqmktTudbWI8ixk6aUtQgJ5UjsiZIAlRklOel1ljJKVRJEr+eCQ5S6a1j6vwHJk/8RhMSSRa+kgTbBryzPZvqg6R7VP0WyG2utStAqhtHXlKz91AgCJmtFLlIqZM77YpB0nh28B3wgBN0fIXgN+miUszImaD8oFtJj9skZ5BihB8CE2AGdJ4TFHpeH0Ohrcwjm99dc9HMCXJRASNdv4ENFTglS2lSQlMTM6rR6Rzjre2ydg6sMVy1bg0+y5D7eYiQwIJ3rnHNwnZT5WoZMYzshJJJXsinqMfLSSVWwQ+IJciqXV1A+n3pUpXES0Pa96DlpOyD7NPRRggF1Uo5fbeUSGrQAn82EAX8plRXMoYS2kjIpSYPZcZhwfSWZ2bfveGw2Zzg/v4XXvfYN2Gy2mMqIqYxI04SHjx5og+4jhlFIpuP1EVkb5SYNxG26DVxwCErQc2Uch1ExVMU0WuBIsqe8A2IvRGmMYhM7D7E9meF8gvMJtUq2gRxyYg1Vq5RdOSPpKxpDrN/ncdI5LgWpStnZpt+i03I8OzQhxg5e++DUklGyh5HQhpGNcLJxnfe3EseYK+htzi1YiyXmoCXpJI5WJUI2m6olT957na8jpuGINIzI04Sai0Yp0AjOm4673RegwRYuICY9Be40YLfMhmLF8kI2WbjI7ERFyhOYK2Lomm2zMq/t2Q79psMwDBiOBy2NtvW7GJwF4cQ2Fk52H7GUPgGaHRBiwwfeEVwQh6wkxv76CoSCW7fu4Olnn8Z2E3F1/RCXh0vs91d47/t/C8fjHlnbYzSChIG7Tz2Lp569jX6zw93Xvg6bs3PkMWE6juDMKFRQp4quZ2x2snZjF7VkiOEgOqGMjJIYDx+8hPe8WzBUrtcoNSDlhMNRbFXwFcFpw+WA2SaqX0Rm32ud+1yavnHQcvQOu4vb2J7dRkoThuNBhtTJoRWhBnRd15pm2wEc4yT+iwsOsUrGYvQeYAf2HdgxCmfkqpkcav9l5ursNOjkWVlRLdQcWiO/5mVNiNEhRimRH0uSfUq6ASwoNG9RSNmVkviaYVOrlIKhsvo6WspaGZylTF7KjjEDJvXiG3lFomPLstqGGVwlEOiKQ9KggEMzj22RCmmqvbnYCQnBQC2SjVOYMdbUsEYkwXvDkDQTVEh58yHnYIEG7p2RFB02fYcQAzZnG9GJ2w79NgpB5Lzo0onAo8xPmkQPSwBfHs2yBMGENBVTMo0HKNr3isuCgNIgGGkjavFzpTwORf1V6wdaIWtJT7q1ALz4Z1BcpBlG5oOS/lr1Tm6lpTLMQsoJKQrlKqKP6LpOGu6TVCSJXyKtbHxwM0m0zFon6/O0MAI0m3AjpSzuEzuP2HmpABitfURG5SyN7quUKnL14CqBgVSKVn1WUKya5SStB7YxYBM8InzLDF9CNwsmC2dg41YVQ0kFh2MCxyhEm3PaNgiNOE4kZZreAdu+x6bT8u1qyQEvXz6m0+hs1szxteZpFXMUHgxU4kaYtDTI9n3+KJmLRVqm/QzMr1vs6xOv6+SWzKJ89Ien5Q8LY9x4KizSo3mOYtmRwTEGdDHKaQdEQIachKd0tkWIWYGakSIzs6l10Y5gJ/ww22iIeC8b0DnWlMPlfSoRQsv093luzLjTYjgei1p+uIHRPxtgPW1eqV+LOaXlGNKNzzthmXi+QLvcPLHztM0fItE4u8ZiHbXPu3Et+7HCJvKjys0oHYA2nstspw8n4gQv7mEBbh57rf6PFq+x9c5gtAS09tl0cn2GpZHKySCevCrsm2STNZiXN+WcMY5yJHAp4vxOE4FRcNjvcfnoEvv9NYbjgHEYABCc60DONeLBOYd+s8Fut8M0FTBl1CxKj5jhySOQHH0aYpRS1MXj2HOmadSGmAU5D3BpADMQfEWlok58UqMgaaeNQT+Z5MUcYl5LlsljJVVFs4eW49iyfbQ0QnqEzjrAjrBlNaJ2Pbrxv8fXAuNj0T8tM8nuykEdDi1b9Qq4bjxvA8+M1r/IiOm2V5+wTUynGpFp5PDSOTlRD6wQTZuoGvAqxaLI/PiUkJW+zk0npc57Xg3mdNRip7VVbTRpmQNmGNH2oVx+LhkBZn9sjrZqlK3dlH4ALZ61nH4ejPx7wgw1wn6RUbtcim2+TfeZLmyfvZgEfZllK8yg6QlzdFNON9LJ90YA8HzPVmZlJ1ee3MsNO7OY7Mf+bMT6zSXdggqO2vqTtbwYoxNFuOjBZqQFAdbtx0g+OjUEelvLHQKxp3qnliUo9nUu/z4lP6Ap53qKqRG3zNos82WZiVdcSDejzI1T3MTSWoAhoBNshrjhJ9CTFsP8mXT6wwmBunznzXG2eWh75gnGnBc/y+uXepDaq+bM4GVZzBwwCiGg6zvpuVlY9iTmDBaZt9M91zCU6kVva29xzVoZ7bAeW6MkWQ/ez89nmZ2llbJLrxHbo22/6IUtE2KO5L48PW/6cNkD8hQ7mcKYx/9kevHktclAC+KIPuSG9050+ROk6R0sH8Oed4F9bpQBf6SHPCWfFjpbyfHl3cy2eIFZl9c4mfel7T/FZfOnYd4fzC/jdsUvcdb8GnJ6shBuUkYTGukn2TfWL3CaRqQ8CUFYC9KYkLni+voKV5eXOBz2moEi4+ndfLqiJ80W2myw3W0xguQEblS4zgh5QmUlJPsIFzwcGJ7Ea82d9hKaBnRdLwHmMoFLhq+Adx3ABeAkPXocw0sF6OPL9bH9b9h8XptOS91LacV58+vJyEfpTWT71nS/ZU8yS2+Y5dyTan4JzFQ0MogXVsNuZ/GZNzSY3od8prQhEQycc5ETICE8qfUkXz6zYYbWb9M7KRsi7Q+12IjMis01y7j5OmTZzNDfL4LRs+M1275qJIz2UTQVs3gOgPXQrSWGmHtqtb0Ja+tBc9ZgWTTqZqj/hIZXlnMggSOngTvBypYRzovTCZ3hJsXFMGyhz2f33sbJnnnpQ/FMNi9X3Mnqoxs/0+krl77mcg2e9BDCAkssdKoClNO5u4F3GEJCOVdPySSIfW6N+E/ufcYrN/3307tfrjvBKnUx33YDN7HljH/RFgoRWra+rTdnfMkNLHnzDmi5/vWm5ydZ4ifoftagMQmGYkj/qVyrJupy27tmIz+avGyyiby81GnfhCWAlO7zEglwXmrWW1aCjIjUexOhWnM3MAoYwTtErVF3wbX5tQf3Thhlaz4N0oaxWVKfP3rWys1BkBjKkpVjQAtk1PHRCGQXI2pgbLYbbDY77HZbbDZb9JsN4DzgPNw0Yj8c5QQeOAW3hM1uA3AnURIPgBmpTOpoF1zv5djtaZA0uhADNp2HDwEXt86x2W5QSkKajhr5H3B1vYdjRqzSBLzrIna7IFkEBrQbCJwN8LIsrEWvjf3nWWE0cEpCiDnrJWBpm2QATk8489qcrPUPmTXCh8U8T8KypghONjTBMjjk6EdtXGzPY4oPmqLoPEibKbfAwofZAKbcbxJKp1lM8nsDicseAqdKhE/+fYqd5F+lVlAuIFSAi6ROlqLppTNQP50Lc5wAO+49dBG73Rm889j0G8QQVLlbH5qsDlVBLgWoQN5nuJFQssNm9z6pxe8CfAzYX13jud/6AA77g5YdFvgQcXbhEbrQeorELmB30ePizhaHw4DKI6qvCDWAO4fz3QXu3HpK2PFSW02xRWEtXXWz6XH56ArX11fgShiPGX0fcOfOBs4RXnjxg7h3/3kQCrpQ4Iix2biWMVdrEfBkzg9JdNaBF3rDzYbJQaMvptCVzPAODA8pPWFt/CrRuVKyNHB0hJBlnWQU/VyGZ69lYVLTDAZav16yo8ihhwqUBWm9TN9uMy4pz0qChMiS9bh12EweaQLShNN1ygDriW4+yNx4J6UF3ntME2AnzXCd064pyN6xZrpWigYDZMzNqFq5iPy/trTncQCqHv87ZzkyvKsgkqin805TxKF6XvYjAQ1wjcOk94lm3It1r+aFs1lnYDMfNSyGuOSKaRxRuSB0Hgw95lwjN6XMtfBSkkZSqGntvk7RrNgaH+CtobqNie14bXDMLJE6lvOcRb+T9pUqCYCWw8Ah07zmzJ45J+XlBjxZdYBzkjbtHFr2Lus1DYATEXyUKKcRLJZGbw63nchpvdOcHlvc7DUAriOIs/TdcqxlA1iMgwQ6SqlyPDEZ+UsgkmOGBZha2bJmqBXGUodKTETsvFTN6AlUug08SBqGLg4GOAFzuksM/DWrUBmkJwh65tbvNXiHQoCvvqW/pyIp4URZGl4C2KgtCySZQx/OTrzS4kOnT2ZBBlg1keiiRcKizPmModg7wU4AmJ3OpWRmyImjkplRFZtZ6aXZ6+C9ZtTImpIos5X/c7uvE7GhaTZy0YeiOaaCOQxjGHlcagVIMrMBwmbTa6lGL5mI2y2oergiNZkuBCB5cbqLTOhmswF6iVyDJMshpUlAbyoYtD/JNCXkXBFij+02IoaAzTYidgEpTRiHA0opuL6eME0JfXTIO48YCJsdY6P7F+ZcQdWC9mtpJ1IWwVDSNFca6EtQQMktnsvSrA+TOQk2lkaYyZHXHWInfXFaj8wbcJZ0bTR8YfqkNZuXLDldLg3XmMPiWr8ZwUiMWXemKTVdIetI2iUwO9TWr02ubVlJbb08CXezldmwNL73uv408y7XAmQJIqZawXMyxPxsXBueMSxXijjYwyCZMzkl6f+UJtEnmk3behKcOKWnznC/6XC2PWvtB/yiGoDBUjpTEioKapJmzHRdME0BuRTsznboNxsMacJYMvbXe3zoA89hOAxyMIWXrJ87d59Gt9lg228QfEQXO1yc73B++xzXxMjjAS4G3L59gY3v0XdbbLcXADlkxRZynLk0ya9ZCIX+3OPBw3vYX11hv+9wHHp0HXB27rRJ+Yfw6MGLgp36Cu+BfhtknRLdXF4Ck5wDsdPyVMX5WNRDqL5eZtZ572ZyBZaNIp+Zc8XhMCo+oLZubH131KOyHPU+1UlwxoKEbLpx6cQb/NG17byUEPngcPvOGc5ub5CT9HQrRZpX56QNzAfJopZPW/QOdITgA0IIkpkLabINSH9KgMFaltf1EVHLx+e1JaVIoLlMiWRAdc/IAFVm5FLgml23Hclt/L1WbvR9BHrrwyR9E0lxizSTLjqeI6bRGnHPB/OQZlfLASh2yMJcLugcoesCNtsOsY84u9giRD/rJxIiw7kK5+UAkar61k6Xs5Y5drr10gdaVpJIwoTeu2b8hVb2PvegMt/U/D2y/y5sGGj+3Fn9SM9Qcqz+oVU/yL0QzeNK3gMaCHXByUEiRcjFXAouLy9lbpTLYHbou9voIqHygMqia9rJ1XbiJVvptPmimAcSqrrd3JOQnCSTcHQnJBVDe0np2JSSEMghYNG/Wv0gbqVwBYRyErhbbpZWWcLzDFkWbGWANODileliANE5mQX2kO5NFVPN8llJs3aJ0GuSdbewPx9NXj7ZZP1yPIG0pKBIZ8UFxQA4zGSTvhFW1l/V6rL+zJpf5lqDXpqJB/2+PO3JommsRs2YtcfudfHT44ykbfK55wkgQy0Exlxb7r2Hh5w+ZA3bYhcRuw7SuMJreqmcasIg7W4vRJV3hBgJXScNFQ+HiilVpMwYxiQ9SxKDi/T09N4jBo/dbovzizOkNGK/L3qi3QHX10c4ZnQMBAdM0w61AWtq42PSVIBuCCv/OiVObJoW4+OozTdpk+GZ9USr226NLVvvjo+6inBiPNqPi7Vy4/XMotScea9YgillzI1sIifgvQJoDswpGfSkbKZldtvyu0UB7OclEXT6EerE6bVOqCjRzhLFAaGWDK7pCXNAN36ed5W9LASPzWaDGCPOdztJZa4FRfsWDCMDuaJkKTmpzOAhqyG/xv0HL6HvO4QuwoeA/dUeD198gOP+2ABF1/fYbS9AAa0u3AWHfhuxOetQ6oThWKUMtTpQ8HjqqVt44xveAO8DDkPCOOUGTFqqqDZrvXXnKRBFXD64BHCJEDa4fedpeO/x4OEVpuklmbWc4V1FCIyukSCaXrsYNlmjy3/Pc0JKRpH257FIqawncYZahkSWN8rJHZNGd1wzFrIPHDy55nJRMzhYEAoW5Zt75ii78USfVsh6uS8pUwJCR+h6ybwCLdfjcn3KHg2a4mukU60eyWkzcyVMCBqYo9Ooltda7boECXV5DXWy1LFJSUp3vXOIQU598lWIJe+BEJUQ9gIqrdFi6xvBcj+TNqLW6ViAB2oGfAlaANVJ+rMBsZQzQNZnypwhbmvPxl8iN/r5JyQSzxu16TdZE/OJakvyfr5fOe0Nc08sbSBsUWGLsJ1E4g3MufnSdn+mPx057eVA7RaXwKX1omr3xS26aWMm5YcK3NWJtI9iZjhKekc4iZS1+3QC2IpmnslzzPvOe4m+Wq8IaZppzS0tUjm/XnpEabYbmWYTuzI/x2wHFrNjN93uFyA5SltPtbWt70mJOigB7bw4qlXGaCSJykWNZAddp6cW8+MrZAefYKEnIHraOcVDwGxLF/bGAnwVdiQEgRsQnW0xO7N5Ol4EWPN/y2QExGGw3kLystNRaHr0xuAslvP8nYw8rS0r3PROiJI9EqP0CYldROjliytAVRryk5atsO49gjhFjgDnGc6zEkYZZZQM3XGUEr2UZsel7zxiF3F+3qPfRAxHRppqCyLs9wNS58ThjQ4hOtRuzgafsw7F0VEP7gRzCI4SdGHZAMuMpSVevbECTl4TgpwmNOOoG7PA5mzN77Xf2xwbGXsT+934CH2/ZMvYoTA5a5myZtgblpMSFoL1NxLzddpE/nHUjbYGQKIP7Vm9n/uMVS5qE2bcLffJT8SmjUSH9AEDIFlGmqndAjGtN9lyuJeeifw1hIDd2U4y7GJUm1mQi2CyARmJC1DlZF8GY+CMaZL5efToAbqhx2EacEwTDtcHPLz/EONxxKbvsOkiHEs/y03fywE6ToKym02H7a5HGo/Ss+7/z9ufNlmWJNeB4FFb7n2bu0dE7iigQIAA2UKhzIeR6VlkRigyIvPrZ9gz3WQ3u4kmCaDWrMiMxd3fdq8tOh9U1cyeR2QhW5rAA7w88vlb7rVFTfXo0aPk8OrVHvfbO+x3d3j18CWIHE7riiUpg0rLCWvJqLUg5QWH+3swHFKRWEJYU1sAwNPHZ1wvAjYRGMFLEostUTIeefq/BmiPGnF6qgEWJ9m608PakfhG1TM8gFqplc7LeZQkTqgv9gY5BA6o7FCIgToAS21N2Nc5W5ww3bHmC7HoQUXvsd3PuHvYIeeMOAsjf7lkpMWaAzBy7qUDzjtMUc+BEBBDFPD6uiBXav5FS9IzEEKXbrClNUis6aXL+WbC3SPwW2sVgEBLxUYPXysN9brEFogUCCt7R0qqrDRNxqYik/lCo49BQBXRZwP+zdmwuM4HjzgFTHPEZhu1CkATowDIStOcJWZ7EssmiAE4HnQ/R3tkcZACXOYvGSkA6DpYYjP0naO/R2jnpB1kI6DZ5lJJDs4NZ7kGYHbuARJDwpGSP0TYAjpHIsx+0U8VUUlPM0LYguCRCoNLulnHzR9svnOXn7A/kzlY1jzNZGYU07BEo/5q677yIFIO3z5Mxnr4LpZSNvMkxoctx/G/eXjeyuoMv3EQHyqQJKyK83DSZwTZAp5cUGpFcEIM8o7+N5XG/ezXLoqoopCo8zOGDdkzHzTWAzF6x1vz1ZUa7wABLoMHggND2x833R8LtAe9Jr0We45uggU7wHhYkP3RFrIFFfoec8BFtNg0VHrdvjkdptq+5gzKCeQZxBWFs1C7g0OcpMsJmOG1bppRsWpLyuuyYF0T0pqlNhiETQygyWGeIjabSZHkgmVZsCxXXM5XEVteJYMcgsdujohB2AzNidR5oLHHMxuzCWiB4yjINw6Uvs3qga0sZ8wyEGmXEXUMByvb5uElCPPpw+ZojL4/T8NrG7ty6x5m5Xy3LVhtw5K2uoeKhDug8qiw8w8++uHA7YAzgzQGdDwM84sPGOJX0sPHI4YJBIecgJwYRAXC7/vc+LwcBw1w66DFAhZnu2TknFRkOTU2Tckm5Cfg7rIueH56wjUKq8l5j3SV+u9pmpqGAhjIqxhW61hSU8Lj+/cAKi7nK87HkwTblwJOjM1mRsWK4Ahxkv2TVmn7W2sRDY9cUDlhf5hBVHE5vwZzxjRF3N0/wDnC69df4XJO4JqAcgG4YIoC8BBDhLPZSmi6o2pOU4+u2mTA1mCfKzvoqXdYcKIlV2vV9W3ZC2GwkH6mmC5lB1S0vcSuX4e39dpAD2777+ba7IDR9VK11t9VYJo8cDfDe4flUuBc6UAW91beQq4kzV6buHY/9Oxrne1rZ5l3ZTfpQWxdGwUX7WEMoIyiIYHFLLRaykWckuDUGZIAxrnGW29OXincNNTk0oZvMPBGf7NR68fgjm2cCK6VxJAGzOJQXi+rfuatbowAWjbjw7lih5NdyRDQWWnKaL/G99ZSkalblX433BwroOtW3TolypKEZfF1lxLk4CcD+tH+ZiCWAT/gbqeZ0RyqppfoA8Ju1uvtGbRaS9sz3vuWZXO+Mzhb0EqkTqddx2CXFPRtY+NEdF9iAwlaShW9AWZI4KPtiUMAjPXsLcDpg9hHnMaNYnPQgxFSR6lT6bWdu2PtdGh2M8BYC9LJBcikjn8FXNNc+Md/LMn0wvqZWQbm49hFCMO9tvfoOVBYxiKQrAE/iAA3gF0BIHOErXFBX6fWnejFOtfh+HRE+p5g7oESoHtTNadqZdXoJFQ3aByhB0ulCPO2WhKGBJSa5gk5ReQUAa5aYMgKBmhb71Wy+8aEJCJsNgJyb7cTYvQInoSZsDCuy4rrNem5qfp2PmC722CODiGIFp+A6rbXrD60B9fSLasCFY29Y2etMXdZFvtNIu5G68hKH9RnM9/zxmn65PhXOzU+T4M9o88DWw1EpDG5Jr9DCIjThHmesdlswLUi+KCXISVg1Xugafix2uZui9uSNICAe7mhlfXknAXIUHCpaAMXYy81yzkE5FRp8LOEbTpNs3ajmwEinI4iD0D1JQh4u24JPSaQ81D833Vd1ade1VYV8f9Z9FzsGotSrzLLvF2uF3x8/IgYI655xZJFS2yKopriIGsjp4xlucJ5h93+Dt4zgIzT0yMqZzw/PuH58aOwK1PBMX7AN998hy++eCNxBCuovBbk9SLXl5LqB2bc3e/VT2FMkwgbz9MMBnB89SWupxWEguAznGPEQAC71nQDALiMNryPX19F3VbQMM99/dk/O3hK0lt4CMihItFo5WoCncj+8so8EbuswtFmLlq45tSnVlDRYhoI071UIK0rlsXr3hW/aJqlo2ScpUTMJACE6UxNX5JAYKqAq/DRIbJHzhWcJBkZXWj2SSo9IK9H74ou+I6d1awkDNyMRdujjCZF0AgPw4hboxXzyaRbrgb9OSvg022f2Sz5PnFSi5bQ38Rk1DXTinYu91lIEI6lWYHYVWUr19JYbOMViq1HjwtvF03bi4KzKGuwWtdBGkqA+eY9QAfOmrbbZz5XbNDIfKNhragtKqXZk9H2mV9jwFRFFYY6oUkO7HZ7bDc7cA3I6wyuQC5oNqGtyebPm/2z+FnXvfrSZIwmMntt5rs7PD0ZgCFEYLVHBeSAwnJeehKtQqd+YmvSYXaZOtnhxVbqcZL93XxPlrXoIJqoVOU3695nbVwgcYrcW9YzsXBFZdfv5488fjbY9HxddBB7+VJ9EVQBpGicHTryugIWjFyNHRFhP0+YYwDPEbvJBC67mLiTM0oC7Nrpa7ZpSs4NkWvg1BhsfmZR65XBWDr2qKUga5Zss9tKTXSt2q0FYHZat51wXq7IEGPlghPxrAjM5ME1gmgD1lIp5op1Sbhersgp4+npiHVZAXagKof64bDFPE2YpojtbgMQsOaEp6cF1+uC56dnERTLFTkD2zng9ZsHbOeAw6HAexH7NaMjHU3s3qG/7WCpeki7F8CJOSYD60EdJkOmidC6UEgLYd+6CJgz3x3ZDtJ89tFilx7EvAhnbg4ssSfdUSolwocI76M4kJr1lY55M3wJYC7SJrYAsKDzH3zYuFWMgvh2j41K3owwf/redqUW4Atde7vdw5PD9eK0jjyDOTUHr92q/qMPXR/HnAsulzMIwPFZxrpkBZu4dy+6CQWEtoBcVlzXo7IjVBvAR+ziAXOchVZ/XYDKuJ7PWNcV969egbhiXa747d//Lf7w/aQMJen0tzwvyGvGtHH4a/wSFID9PMPRhOfnFc9Pz0gp4XK5Yl0TKmd8+fUdct5huw/44uvXIHIIftKtvcNh8y3SuuL89IScpFtQxQpwQl4ewbTC+4oQXsyBGeybkPTWyW4vs0PHAvtC4CD7wUDW2hzQ2gSgJdPrQfACNhmg52TWvYkxMzCWcTVQ7DPbgSGBmmQxE8h77A4zHh4mnE8r8lqxLNLqm0ho09erUMVDFKFl6biRURio6N1C+okjZTSmbWSlyUHLMBtFumpbVWbd3/1wBoCaqgp6MgpLeRVPATSFBsaiZX/ExizL0II8S6MEA/RYx4qZm1i7npoAKyCuYF0vc3Gt9MEcr/N5QSoKaKiYdsoZOYmosHcRxhbpjCEadqo8byUElQwIMudA6W06pjmJY0Y6nuID63qsFUlF/6uKxbPdE4ayEEYDdy34F70EYxdYaScA3IrEk5NySBG4JWQPBYYkixvjhMPuAc55nM8XXM5XCZ7K2hgHcYoC/kzyecH7JmJs15CTBQCDTk+zxR1A8k7bnLPoZ5RCWNaM69OKPGRDx9b0XgFe30jgtiFuXSNQ39PtPDBnGhZCqph28MJ6ItFRLFL7p+yrLAAHMQjCzIRm7/6pHk+Xi4xc7QGCMdCsLFwPMoFZBh/KuiIa2OvJ4WG/x24zwzdAQfwkF0LTJLLWypkIzovDKr5b1cYl/dHs04jzjYAL31pVMXZCJeZSkJcVzMC8nRGnqCUfSd9H0nEyZywpgYKWKpHYjO1uRvAE4gRikRuoyjZJ14Lz+YJSCi4XEQM34xaCw+GwwzxP2Gw22G0DyBGWdcH5XHC5XPH0dFYWHkAUMM0zXr++w3YTsKQj1nxSMfnag+MBREGtej0ScKRVMv45rXJGKLuv1ooYSMVmvfpJDsYOdVU6LYUQFCiurSzNgJwRxLMpAPdkXPcPxB6Zr9b8qMGfe/mw56dpBpFDyRkP968QQ8QPb2dAywBjFP3FdWVlRgCsLKLRb+w+d3+I8C46YxgEoiTBHVcF9gZ72cBQqFhuHYBQQpwm7Pd7TNOEw73YtLdEWJalNfWxCoubtXvz6P5VygnH41GDfvFjKguLSQI/Zeo7SFtzANKtsGBNCy7LGc4RMjMKKqKfcL99hbAPOJ9OOJ+PAAjPzx+R8hV393eIEQCv+PH73wA/EM6nM45PR3Bl/MCAZ8K/5n+Nf/kv/xybTUABAU5EmS/nRxFnXhbklFBzxTfffIGSK56f7nE6nQVA1S5RATO28UsBZpXxXoqIiXPNSOkClzMIXs6MNhdmT0lFnyvAGdTElyFJbUt6Ce7TE9LMYNWaa16XyjkwVwFlFNzx5OEAVFcRHbeGG421o3pIVqpfTReqZxDAzNIFHAWnywn1aZWOvpsI750wdsi6ukkyel3W1iCEdHLXNWFdE+BYgSnCsogchQOaPIGIkEu5mSUHvHeY5wlE8jkGPucke0W6X3plk2vHr1JRctJ29HKf1TOqxnFcSx9PFnbLsoj/VFSQXeIhBfQV2BUzRc1varF5I8Gw7j0BW69XAI5R61aArJSwKqCZ0qpz0QGSlrBRW+ckIGz7qxsZA1k6U64WRoI0sWp+OlmcDtXu0i7FtbZr7jZYPngEoY2NSRQGsEZsrdjxPMSlkMZCGpOGKN27a5LzRxhgDEceX3zxJb75+jss14z3P16wLBnXlZBSgpyvJiEgNt1KeG0viIyGSnPoCHr1M25ZYAaoCVDUyusITdS85oLzWRO0TvywGBw20feEho8gdlKCB3RNYO6zcgs4WXKPG5goMiSa8AwC/rJHxwmSzCmXjFRUPoSqssmFLXYTCv/E42eDTVkXdDGtEujBYpPfFgS1SeYRbLJNUCQoLrGLjVmYPqo23NDV0GCMNllieOzqPnPCfCayG5G/FnOY66zzT9BgEzLYkuXWa+deaueMroVBpNQWYqXW+adRlktpzoyELkEDoV4KY+x50cqQkpVWU882sU6ddgfnar/NGy9w+OcL0E2cp+7cyKIUl71nMH5i7HReblaxPde/6jPvHefl5pdcQOtI93mAagx0RjpuYzcNQZJzrn/OTQzDn9zVaNRf3uvnnrv9/ekSu8kg6jhaFr8xxcaywzbWt/dNN5Nqz8l/d8CrtGxyUgZS031AvzZWAKAqC89ODyJCjYxtYCkTs5FmLSWDdDksSbq0nY9HuKtvIEYtFeuyIq9FgKq0IseI4CfRdCFGrQKE5ZIaIBajdMvb7TbCGiIRNmcm3N9XIHukNWFyUajydUGuF9S6Ys0rahXn1UpCDaywA0fGRrsu1fpiDOlm/Y1B7OjEN/qv3mtfDzpfBDS6JvTgswO56uIYYuYbY6/ZLabb+bXDq1anB6KUeIRpKJPVDxNqs7Ga7J5efGffVjf7pv/0ErDGgMBgF8AdoDFQ2b3ILpr9Vm0TGDCh+laWparKCmiZyxePnn0efw2JjHZJIxCh46jrlVJWh1iuwQQzQZCDGgaYyPsZrK3irdySXkR646zdjq+xMeSsQLsWAlpSxa775Wf1s/KTj9U/0M1b7Fy9tTf9Nbe2t9ubFuzq2I4Jgcae0vI5M0O31zv+soHpZU6jRoUAdQLGOi3XaC2hwWClNXfHzz61r+mb6b29itt/jWvF7gdGBSfpykVS5icAvLCduPaekLXNI1Bffuk/4iMZ420Uc9U42YCkcQnYnmFoaYoGH1X3W6niV33meG3jOpYr3WSTBx/KbOAnj3YMmYc2XF/znwb7yJK5droenO4tHj7mJsHVvrszH6yD8fg+A8yMmdAz57KOJQnm4byV4aJ1Br19T/fRLKlG+dPr4mGtjue+nCeuMRNH4OXzD779XHTbOQzIT/jp8vo+BYP/ZdPTzjwCbLw+47fc7BmSMt/ALAynGBFj1NbfI2OcmsGx2W/3OXyF+VDGpGv2284FAI0hOYwH2pjYvZlf3UuYza/2XrRMo3ZNsmvtwZtdzE9Mg96+Ma8MiM05K9jUu8h6TxJ8cb9P8ycsyQ6S0vMCgCYH2iq7lKA6hBUlJSTvUNKqMgcOeZUypev1iuVyBdeKtTCoMi6XC0pJqDWCSJPGqC2ZmHNCydJxc5oiODBy3rQ5CE6Swvf3GWkh6Wi7CGi7rAFLIoC1QyA7AAm91/rtegG4+ZYWkFpcMO7LfhyN58V41t3qh0GJjs3nUjvBY9ectr4Gv82802Gt2StYfdGSM5wL7YxzTqpNRGdRS7mqR6kKeigbxHmNKxxUX6o32CFSvbugIuJer0Tw1GZLDIy7sRUv9qHZNJFp6L7AaCPMtrfmKs2/uq2qeOE69nNDP2OM7Wwe+pyMfpmse+ddA61q6f6aaCDJ2T3GfNTQR9JY4nbeb67J1pSVyqktct6Y2YzRxx4ZWTfnDA+/XxrMoUEKhs8Z3RkeLuizMab6gDFGZXuuILriZYlaT7ipBzP4Vy/3R3+ur+H+QTpizGiAE5HqznLzJa1LMUESez0OufXL0Ge43+PAXLz5dhqdPfWh9D8N4Os+lPy7qg8l5cxCbiEyptOnsfXnHj8bbPr4cem30gKzfvGdft9rz0k/Pbi+ubjIQIjmR5BafTgwaSkUVxGgijOiq3Bc4LholkGyICwWXW2GUdqG1X3zkOeKLujeLaiXroA9JjqAPRDcpMHvKln5WgGaIJl6/UoC5ugwb7zU1WZGqgU1FyxXoeEuV0WJ14L1WlEqgCJtLaPziEEQeBHuY1zXK07aYrRUh6po5TxtgagdVRxhMxGYVxFIzBU+S4nKKERswY+5TFJ2ZboKom+ix7sucjdk6LseCtEK5zx8kMM05wqiKsKu3pgECvIYiGeb2uZi2NjNUL5Ymc0s3BjQTkHtjpZDCBF2GG7mHbwLKIcM750wYpx1YFN6NHddivFxSy8fr4OHgMTG0QxK/3e/VUEabtr66udTkLI+cr1GGA7w0YNJwCEJOkSe3oarDxm3gE2uSzKspMEkhQjUiilOAEj0H5yTtqWacU05iRAsKkpNNw7fNK2gJJnMNl1M8CmBU8bxhx/xQ06AdyiTBzvCNG0wb/bwLmAT7xD9AccPK/7mf/o77A97/OVf/BJffvkFSl5xfHrCdVmQV2FDiSCjHNpfvb7HV68fWotoEanUNrnKXJRa6ivO5wvO5xN+9Xd/h6enJzw9vsWHD79DrQlMZwAFxMKGLLXg9PwReb2CfAAFEY6+AbLt0KahXlmZNsbSaFlPBbVKGuaDAGKHyUcVfxTjy6UgU2l19iGI5kANts/kCswxEAqG7NdSGdfLilIKQvBSjhgZ9282InSpjkCpjLCVFqUxCCjVbB8zKghW8WxttGN0CJM4RnEWUU0LwqHOiXSGM6FuowNLfXuMwgyqsaj+TkVJHcxbU2qUcum2IZ6lBA1y6DlyCF5tf4xCqdf9Yw5E4VswgNHZHLa9brasaous14TrRXS2QvQNaGDWA9pslSeE2auDKoF68F472UDOGOIW4HCV8upcRKcKUa5f2L3CfCXtAAkFOWQsq1LZAas5H4NF5zzAgKQdGFyojTuotj1vjkwptl67HkStBYWkRe2ySgbbmKfkCGtZQDUhZdE2Aap0ibQSaW9aUwW1AMgMKDOsVtFrsM/UnBm4AikxLucC5wmbrbTylZYlNj9y3+SAeRMQqgMXmT/nIBlWpa+TgrSVKqqWG710yoz6PgIipOtr3NeeOngKRyA41eniponkigdY7GBlxqWIns/P8pT+KzyeP1oZab83655nPpQ5rCDRQ2jsiknPnCoZbGOgwInGRAXDoYpwdGV4EDZxA/YVQdl+cpwNoHLVcsKmeTd497h9Tl3S9n6gANRlFBwHbGhqYKediUuqetYAIBMzd5gm1Vl0DgsVXIlRUFor71IKliWhloJ1LUgrq4PrVN9S9FpkP1SsaUXKBderiPQzybiAHPa7DTp7g7HZADmfsFwJa76qfpGVj/TW3gxSn4+EbaKuFSWZHym/0pEh0+GoUkKl7Fgps+ndfJd1BcihhArnApwXtoExMj/HGhrDbqif3ZNv7sbX+6lHt5vCvEKMKDnh7v6AEAivXr3C5fwFzsdnrNczyDGWdFWGQO1B4I1vhxYktWs2L4oHv5N6aUdz9RQArEXK7J1z8PAil4D+uSEEzPPc2GLOOWw2Gxzu7nC9BmESKSvpNgrtiZWXo2N+aAwBCDT8Vf0qLWNKedEqCv0KLric1x5MAshTReAn0f3JGaxaccvjEeV4xg8FqMcTmAhXrigMeD8hhBkEB84RYIfvf/eIv/mPv8LhsMf9qwdsd1ugJFyen7UaQr7Qe4fNRphx94dtA1vn7QznvJRcFQxnHOPp6RmPj484n074za/+DsfnZ5yefsTzxz+AkeHCBeSy+l0CSJ2Oj1jXK5yPcGHTfPw+umpTZDWq3TXfV85DIR6UxnZLqwquOzlvwaJD6ipJtQKpfpZWFTSr46SjnzxX1Q5ogsiJv7MsFbVK2WBrgkICPlk5fWZhQvV41cFNHpOTCgn4iprFE09ZAL95GxA0QRqigRrCCBeAW8ajQptrVtUJVEaVJaOcC82n8t4LKKJNRkAavMPAJvMRjQndS56DNtHywYAup1tSSsRtfVdLYtT+WfYwP29dMp6fzvDeNRvYQXRA6VewpI130oSDJlkLAvpqHMVFfD21/cwsYusEeBawzhKqAGHeRDgvyeuaCaa1W1v7ZduRt6STtv4MTNF7r7kgqV0yLcIRqxDwqQgDSMck54K8ZvGLo/hOm82E7XbGuiScLx9xPl1Q6oI4B1mLEkDAWcmoVhWVUuG1IQJY2Ho5S2MhrhLvWYdgAA3IgV6L86I1CAa4CpMyl4q0ynr3JHET2KFmmVfRvTazTC3uHJMEBkt1sFDHcrCX7U8QDU2QSCVRBYonEOs9kkd1AUBFZZEduhAj/0yhmp8NNh2PSj9U3Q8QtcE1wSvSrIllTg01diZAygQOclPSalRLBshykwxwFZVzHyVoqSugzqIMju4ioxMMTvmI+t0+NGDRWNGbU62OKOAQaAuG1BHLZiesSaj3QoeWr7TgNAbCdvJIVLE4SOlFlcWRktDfci4oqSCv5kS41gY1TrF1qmOIxsjxeBHnxm9ATjrZzWGCdBAQY+epAFiRKyNrPWmut11l+l3rbzZGDCmoMYwRGRXWxqlCMioFmbLS/3xzHmotoOKaU9QPdddthHkbL64DaLb1M1OkAc0QlLUMACzokGwcAaixNDp4LQmOGGvwSHmFIYJW5/rSDftpoEkzcErr7sjx7WX2TEFnL9yK1wHM2q2rsa00r+6kG4LjznIaP+cWbEL7nnF+zMFw2l3IANQpRATvhQ5b9QAoQustpSgzqLafNGUEFzSzKaLhDgRkQa8vHz/iw+mI6oCLAzIB+/0D7u6/wDRtML25h99tcH5O+PXffY/DYYdvv/oC7svXqDnhcj7jclnkUK1QBl9EcA67/Q7b7RYxRuwPB4QQcHd3h8Nhr3RUqZV/frrg6fGMD++f4d0Bb//wDlwD3v34EaVcAH+Bta5miLNyPZ+QlgvivMXm8NDWzgjikQE0OubGCHM6rgCheMlfWtZHXgz1+QlBM2mVoZnPiiL0SBHG1Qx69S8AT4YceEOb3cqMZRX69nabUFk6u+3uJjAT0pqRUhG676xdNcgCbwBVvsMXhotymJgtDmo7nJNuZj40Mi2YTKvEKNL6eXoyOOcQomjDcQ2a8axIkAYHNUtAyE60Wpi8gqfUHB79JGFiETV6OVjAKPteLga56i0xq3g5Gm26j6E6G+rErkm08+bNpMC5Huptz6rTGqXcQJcEQpRghoiRa1JqtHSMq2CkwgKs+V5+nat2C2IWsI8AR1JyTAqy1ZY0vgWsAQWlINbYwJlqQauX72+ABHUdlB5gdhtVVLNNnJ2eNMiCjqrwbdZSOdc0vpxXByKpsGsGQFpChCrMOGbV9eLm1JUMLMzwXhxxH5xkem2ObKwh2mOVHUqBdhgTm1SLHsbcZWgrWclNj7BbRhsW0tgW7Pa3P9fBKFZ7S+zASguXJJhmc7V8qdaKZIf6P8HjctIgylErZW7i0G5ogqKaXeRE10r+raaCnZaryD4GQf0nPeWYQVXKHOY4SUkDZwDaKILslUOWvI1gf8h3dae1dao0H8IAZRb759hjpi1kVReZZybtTgoNhEgTRgKAew94qacRHxGmqSOg0+ViJbgilisPKVWIwWOaoq6EonomCTnLOoibPUIUncTNxhIOkmibI6PkC9YqnYise17XZRQAS5gwtspys+EGho+eDbmeGEtp1aCjohZJqHptqJByBvkEBjDHosGXOqZ2Jn3GSbJEV2sk4EwQ1xhFDfn5IytQ1pJ0ECbkvMFutwUR4+7ugNP9PQiMx48RtQqjueq50ph4wwW178atT0X698YsfXk/w20au6Il61pEIq8PXuY5xKC2TTQmt7sdGCzlu/3l/T7t/8wmcI8RWK+nlQ4718T7nRctn7RKQhfMqAo2lSJsodFHLRMj+jNi1MS5E+2g9XRB4YrHdcX69BEVhFNlJGYcDq/w8PAliCK4bAGe8O6HE37z6z/g7m6PeZ5wd9iCasFyvmC5LpqclnNzM0kHtf1uj+12K12K7/YIMWC/32O726kNET/mx7dPePv2CR/fP6LmGT+8/RFldfiYn8C8gPwK0vVtSb7r+Yi0XjHNe2wPm87gGbxiCW5t2fWAtnfFBgoFgErTIILZMm104VWOI3rpqpVhMhW2D+RLzD9jMEjBJglOgFIAWuVs8aHCV4dpntW3Ub2byr1sFwTJdUkQ71SOg1FQPCNk0W9yjhA3Ao5LAsrWr/guPsh5avuiQo+11tBGwCLvb5sGtO7RKDcsaAGb+pjK+zvBQgBtWdPe9UqY1vFt0MKswx4z22H/y1VK+ZEKzserluMNmoFO97PrfrKTQFE69oZJzy40G1GLOAG2OqwTnnyglh9W0T0mIkyQmLolFtV/sBI6Y1z3eOgzdo3sRtGSoEAHdG7cRdXbk8YHXsYgS2wkYGJEjAHTFDDPE5wHluWI8+UICurntRXIAImPS7qO5NzQ+SVSNlpRH1ilUxTEa/tmABWddwiTyCKExAJ6svjFpbI0bNKaKM4CBrGHdtQjlUaU3/TCFrZfI1jsqHUDbX9GZzZVLXdxAOB9S/RUcqiswCRXLEVs2s/xoX422DTNUS5qyBY0wNECYXRElUj1mzQgIjCcCwhODt0pTggxYgoMZw623Tg5TJMAHCiyQIL3em4ZmtHHbqRWmkPfNhfJ5jdbaJsVREABamJspj3efPslnPPgaQWHDHc84vH0LI5by9o7cJXWqMu1ApyQUsb5fMG6Sj1w1cBahDsBCgxHUbIGpYCrGQcR1iqpKqKrHR48YdpEhDgheMImGuMog1UnxZFvgBmGgHUYwJu5H+dM4waZF/mfZsQ+BUxsnAcRyiHgGUE+awU5zs9PYn8/49Go2SMsr4GMIOQFpWYUzd6v64J1XZDzipxX7d7R27Z/7vEpnZJe/LYb6DfS15y9rn9GBxQIRP2QEMPv22vkcOprWAyQOf4vnP6fGBszWLKmLdMg3W0YgE8ZkklOIFJWUUCfK2ZMMSL6CUFbHtv4yvVWlCQdnCoBScGmMssajDHgiy9e44s332C3nXH3cMBuu8HdYY8YPQ77Hb7++kukNSkJQWvcp9Cyk/M8w4eAzWYDH7y2q1awWjNC0+yxP0xg3uLP/vwr3N3P8HHBdXnGspzw9FyxrrWjCpBsKbjCx6GMTu9tXOBWSy+xKA8+sQayZEwSMhiyARfO0c1qadlmOPRlJe64UzC9M/gGpxwdrBcdpVGPCGgFS7rnnNZ2k7NuKLKAGjFGAS5bW7ZPxzLfxjAZtGN6qYXt3b6vb0BY0xmxe7k1NG0ceCylY3TwR9dpCF6vocA5RsnSccqCFBvjokxYo98bk4Kotr8Z/VtKXORvcrYK08v+ZnNKJAwngnZmidrpK2fNrJH9f5+utmx+Yn+qiTDH0UrINVK/Gdc2t0Mmstk5A+iIW/nfTVBLYwB1a9sscDPGnqwHcZRE54l69zkltoWgbXCdrZV+neQIQQGNm79bVzmStWv3AQhbOKvopjloOTOKk7kl1cIgC0LbnFY48p+cXf3B3Qq3pXdb/m37zkHKSnLtHYRkv5oobFQbWAQYAX/uC/+rPz7xoZpjKEAIG7Ov6N8KUPSmnI65dxHBCRM0TkG0REIFuYJRpNM5h2kOYvcKAM28AuN6w0+ez8x2XcZYVzo9Q0A7mw92oBqw2z3gy6++hXMex/IBl3JEdQR3FFavdcEEGMtyhemrOWJclwXn8xnLdZGScAVVjCkE78WHYinNbmziYp0S7b4FyHLOY7uZMM0bEIqWeDLSekVKpo0WJFatDFave5yXT3yqzz7MZkKvWQZu9AOsK25LwKr/OUoAiE0orVTSzimx7S+/0QzTEFWovbAyvZd+zVje0zcQoZaCZZVGNNfliuv1gnW9Svl8axoxJHEJ2ka7+2ajLfpj//4pdjlA7bq6/9iv++VP9/07u8ucqOb5N+M3gHE/NYNk8yHzI4kQYVc7J6Lp0umYlQHR74lItO9CmOB9kOS1RvniRzFKysgkzLgERtI1Nc8TpmmL1w9/gu3mHt/9yVf45psvsdtvcTjssdnMuH+4wy9+8S1SSgg+qIRGwGYWwfTNZoN5muGix7QVH2raRITJNLzkuzb7gIc3G7hQ8Mu//A53DzvMc8G6HJHSWTrflaQMIjnza61AkY54Ni/m+9iBaDGdMHVNX07WV9sBpIzTPikw8NJRTyGIJqb6nc46dUnixppGgQR8NDpRW5Y0nA7UQV8Bj9GAFFlmcpCNQLv5Sc4R2KseYvCq4WhizLZvbvfVJ42W2pbt49WBnKrgbVX94rGkjrUT7WB1WrzldP1ZMokUIHEa9Euyz9YeIEBEZaCgKqjAek2m78tALkgqjVDVZyEiZUAbu1IG3vQQY9Ru7IB8r+0F5wBY4kbtYvv3GEuan6xzr5ds+0UASS0bG8ZOfBvzE1wH210AWPXvSmnjRs0ajBN2O4PdlprcTcbxeMK7d+/w/HQEa8xCnuFUI7a3KTOnCLBqXrPjY6OPxsoiyOvRS8AZkNI0EnAupQxo6anzhMAO00Z1ia2yy/aisaR0L0rSuyoI+em58fIxrtmW1LOzD0Jg8OTUh5U4yhOBlIkoMiYWG9Sf5UL9bLDp7mFvV6mTJuKBDBNHFOG/UlMLUqqld3Wjb+Yt7vYTPEXs9wfs9gc4LPA4gaioERAh6v12ByKPWlbUIp2GUHudfKfWyaKS54aFMDyIFEEHCcjqIV0vMiFfga+/+Rr/+r/5v2GaZzymP+CUP+KHt2/x44f3KLkixgnTNCMEj5IXrMhYrgVcC1LKeDqekZIwD/IigE2ggBAY5AOcE4dmuQIlZxE2zFKiU0tpm9ra4L56vcP+sBMxsFnKxj6+/4jj0wUUHCYX4T3Buwx2BVa62FuXYnBwWkiL8QAa20I6b4i7ZRV6plSozML2aB1W1ElqjlIdurIYwON6kD9E33/08QnbaHScbENXocvmnLCmK9Z1wfH0hNPxCTknXM4n5JIEeEq52bzRARsdIBMtNEN8s2taoEjD7zGwMeDt1vGCGoRaC0pJADxqEXp2B5oMLIR5cH/MJUI7vFoXAw3eHTVHZLOZME0T3BqQC0kHsCTC8t4zJgvGVJMh+IDtZgPvPFIVFh9Mv4AZvhb4UlEgzKZEwHZzgHMOu90W/+pf/TX+6i//GrvdBvf3B8TgcbjfYrOJmL+d8ObNK9nPBowosNKuQQ9TOTgAdtQMcmW5x8NDxOEh4Iuvd/juT+6RU8H//B++w8Orb/Dxwzv8j/++4oe3FQ4LmK4A1RawOB/VIBoTrx9sgIjNT5Mwh6p27UpZAEsBO7pj4mrXe9Cm9zqfsqekbMeLZpA9qjg3XnXExHZVdSBkFTgHwEmmfrPdNKr2sq4g8hokq7PhdanoQeVIxPmM9lyyZNvmrVfAQ21RkMDfsnPOAbkWpGQHIyvNGchc29q19qtcEyoccs1IpSh4OOzp0SlyDs4Haa5QGeCEQnYoyfeIox2VMaYi6lU+o7JoWNTKcKXCqYCyYhXqFMh1QUXTV7W9vjJCKLDSNalzVzCvCiPCB2GT7Hc7KR9F/9zCSdKk0MCarD5dMzyNXqIlXLr3WzaoVowsMTkDNajWbGFVPT45s8QpaMwuoJWWgRhMAiDcOmoG+t+aB4LQwksTLhfgxnvC5iBlC72TH4ONgad7r1QFiQTuAKCaLj4CoC5gbZ3lCLo+xUEGCSst54JlyQIS74RltiZp0c1FuvwYE5OrMJoK5D5FN8uPx1S7TdaJEvtZb2yuAU5ObXIEIRDBcUbWdRO9A6KybycBLtIqoqj/VI/7e/GhGD0gLaXo2PZW65/tUFelA+luc4/N3QExTNjvt9jsZhAvcPUZ3dkX27bd7uGIkK4n5IXhWpBmJdu3wF4/F2+DAyuLI/WhMluZKINqhKtbfP3VL/Hf/h//75imCf/5t/8ev//x7/Dx4xM+fBRh4hA8pkkadzx9/IBT8ChFSrzXlPD4KM0k0lpkXREQg9hUFz2cmyDitlLaJc55T80SJACTjr4Br1/f4XDYAShgXlBLwbsfV1xOK6qPCEH8q1VLZcUWOz2rRlZMUyfTuQMslGlrlLpPIAGEndHyfnJe2ERefltSKMaIGKS5wrIsmOa1MUDci7l5GRCMJU0d1EbztT4BnCBMUTk/5LmUEp6fnnA6PuPjh/d4/+FHXC9nXK9X0WNMpTNdhzHoftAt8GJr6I/6cfow37P5Npr5rzcgn+luFZBzKCULy56EmdkZI4TKA+BEg++r46h41HA9aHZGQHWRO5jnSTqPkUNaMjIF1EyoxcM7YI6kdlVKg4L32Gx3cM7hul6wpCs8V/ha4bliTQv4uKAS4RIckid88YbwcH+H16/f4P/yf/6/4pd/9s+wP+zw6vU9QvTSVXEKuL/f409/8S2AXiZswBjMl9LKkKoaW9zQl67v+eqrDe6/mpHTA777szdYrxn/43//HeJ0wPPTB/zq7694erzA+QKCJBNTWoFMcGHW2E6S0eBb7aBpipinDWpl5CR2S5i2WQNWap2kLQEjXVHFNzIQKjivCSpbqxW5CBOfAEAraubthDiLzMG6imgzmSZjA4fk+0ReBEipqi8CWAm7JbRI1w85QtXKW54YvJE1Itq45n9bdkjGv1YG59LsZVu5zXbLYU5U1GaR6m9lw37aDpB7ZDB7KTvVewEI3st5J/pRcubOmwkxBqSURZurVBAqiqvNd2IW4fLUNAjkf0QEXP69JLsQApjUP4tSlcQk8hSelO3jsNnM2G5lvk+nC1JK2tQLqNUhJWGIyX27/r16r77FqtpFDcYoVfmBUtSf0bOMhB1Va8W6isbaNEnXdgeP4GYQBazLgmWV7w0RGmcMX3xjj3TcNckLZqyrzMvvfvs7/PjDxyYrMcUJbipwk4j7aaPB5oexxWUQH2pZ1japVs4pjPc+z85J9btcnox7KYzlcgUYwtqdPcLsEDYicbKkBWuWKi8uTkroRmAbBazxqIfKQti5MDhRRlR4aZN78kue8046gKMUJK4gZql8CV792gBplpFUPP0ffvxssMl5WzgKHgHqiI/lKbBoDk1biRmsmhON8eM8pjhjs5ll0+dzX+/qiHrv4Z2XOkEK6Fmtnw7JP3eoAWiDKPRO1sWsGdkCxDDh/uEVNpst8uWEvF4Qp9iFpy0gJki5TIWI+RUFmLKUzBkyLAZCJtoHhg9SY1mSakYoGik+pzoPOsbeS9eDafJt0YFZFd9Zk5e91E/Zi8DNch7vmew/0TIB6FngEWU2c2lAyjiANwGOnmcNADIHY8RpuPk9tygq9b/fTFC7yE8mtT0vX9HXlv1IJ6+sGbk8tHJnBZvos589AllyvYw/srxurv92fG7v89bxEnrlGGDg5lL+CMR08xX9M2/XeAcZndKsg5dAUdZhhPdisBU7aRkS7zyCl3VeuAJjpxjWrg5ZKnKrI1SSQ5qcaAfs91s8PByw223x6uFO1u7UuxlKeZKUJL3U8nx5XwIwsZGgxMYQWhttArDbTuAKfPHla7z54kswGNO0BVGEELCHDNww/zfrtM2VBlKC9oDUFJaSbtYAYQwk7IPGH/uCAQB/se6JAFinuvGuiRqd3MT/vQqDWsDBxiRBd5Ady7UYU8n2LInviabrYw0MXL+H9lBn6EZI8ebPPKzfqqCIJhAqqaPQRghmI/qPtGY2Zljj7VEXy28TgdpAIW1OBcusWXZfDnhuwJA5e2S18GYfGJ0xBMBBA3aqLRsm7Cqxs1JvbyEkbufZ9jGG5/SWDfO1+zWH8/bH3n0z7A3ga1Gffmiz1GrnqtqMcd5uWKpjXEYDe6AC7LTszvlWbuVMO7F9LinLicCZhOWB/plEaCy5Wy1Zvh2P2zuEAeqmDeUqwVUZ41rIjuA2PpbV5GFJfGr7Bvt5s4kGO96Hou3bNkxkQDe1uSuqQfgPGv3/Sg/zocQXErHgdq3NJ9A9V3t5qy1q05rzClpMcZJykVLAK7WjEtDyV00S1exRkwVNLx+jU/55Boq9rIGd1dgiDFF58JinDV69foNpnrD5sIWPXrLhg4YnICsn56RUfBE9XlNWH0q0VUxPzjoQ+2bTCDk7OU+bRiKrLRqF8b36UEGHLqDo9ZuNkBJO15kPuvBv9pfd+nCe24R1a252zT5/PDx6Fr8ZbwM/mk81sjAGBo/50cMcjev55zxuEmzVmLLmQ3ETxs5lFKHOg+807jU7A7V87oWvM97753zwWx+QPvlbA+qavaObv98ym/pZ204fGi/15Ry+vB5G755xe26a7l0OpflQ2RfVKO1t05suUOvOLHTRZssGwKFkRiWguqCAimlRTXj9+gFff/MlNpsZh8NWAKzYS87DXrptOeqw53AXAsyQej/Mqieof9DzUvwxQp2B6GfkxHjz5Wvcv3oNRkEIE5hVJwTjWcpDZYCunMFOofmSXmOjCqoVhfJw/unaHc5yAz1GSzOuo7ZnRn9LP8p7SX4DUsrNDG0KYnPZmU12/Zb8sWuw9S+xwbiHpbENOQFdxjOk37teiP3b7vOzdrPbVCuDb+zjdtr3w/bGX7jxpV78uN7R137Acr5X9ZUdG8tb9+1wed2HYvGTzY5rfMzqezdHh2+bKoQgpaIjXixjy+3zX47G55hN4/zegNTM4vdy95ck6dn3lc2ldE32kJJRh9tvtjXWHQri7q/Z9TQfpAroVMtVZoa8yGpYp0Bw05Y2m2FMsbamjdFun/2JH4Nmc2z+ZV9Ip2dmAZvIA46tyySQKgF5+Dju46MWXf72yTLsvm2zni/W6ufsJaGD2/aw5DarPi6zQ3ECcn4+irh9/Gyw6fnd03BherhboEYeHlGMYvQNCTYBSUPDD7s7vH74CpvNjO/+7E/w6ovXOD7/gLfff5QsVRUGEgHaGlnboiMI5beO2hWfOgUvHzcTaoeBYzApGY4JqGL493cbzJsZ6XLB4/kdTutRp8kLHbFklMIoWRDZGBz8FFHngGmWLH7JmqEeIx4nyHvOCVwX4JqlDE6ZHdvtRoTBbME4QpikLnLNBeUoTLGUGc7NqCBcE4DMSNcVia84XwoceWxmWQSdMUI3pzCR1n22g7r/liCs165bZzMzkEDXCahkLYJr2/gAWva7L2Y91PsOaY7e7dR1g//Tk6mvNAccDt5FeMcAe5SC/pMBYgdPUYylOaZ6KazWt4VeajzqDbPJPPchCBx+y0dwu6a+5oZDE4SmLcOGcFtpFw//N67XW+f15f2//L7xe6c4YbvdYrMhHO7ksDken3E+n/WAFXS+shwyznvMcRKGzrkglQW1Fix5bQye6hggh+oDHHnp1jBNmKJHyVdcr8/YbBzm+UGzgxjmVg1iYZQXAWAz/sO9EXUIw6kjYYyo9nDAl98+4P/wf/pn+OEPe/z619/ieHpGWt9juTzDtDbs680L+cSBYlZK+gbOR8TpAMDh/Ye3uFxPg2MLDbq90HoZIqwL1tbe6iDr3TgnwoHSsQjN2RlZDM4R4iTB37QNCLMIfftIrZyYq7RWrrzI55J1WwJM68Yyu0SAD51aXpV5Erxpv0BLTpW4Q6QdXKxlbh+bvrZVSDIXLJcEItKOmiJ66M3BcHptrovgNtq7ziMgmWexI1V1htAc86bNhNtxgpMAncmCbplUswEpaZDC6nQ4B9OWscGoIORU4Aq1c6WSAW1SurKuuVO4deEUc1JZXGVhnZtOlmYZWxcsh5xE0NHEPA0UdiaGCrnWoswsEDS7R4h+xu6wAeBQskethFTOuJZHMFi1zvSz4GHguTCM7L65BfXee0yanXS+grzYnMo239oV1REmFRSH606g6TpJa10F+JKuFwlvVNOA4UIBVQKKJG8kCyprdU0rKGtCpEqWe7ed4IkwZQ/oWWnC8I4qPNW2BgFoKYOdL7gBR1sSgSxQaNMu72Vu4hUEtEzmFKI6eV5LZf5hR+m/xuPxR/WhtGRHrlmcZHIeE20AR9hEO6jUXeaKqmX0r+6+wLdffoN5nnH/zR129xucnt/h3e8/IOeMEELT0gimjVYiHM86OOOZcusM3545elarL2HACJyTLo56jjsEBAJiiIg7jzADSz7j4/N7nC5XDYwCck44n4+Y64TtNsh6jh6IDtMU4HxFKRNqAWoGmCtKjrBSjcqsyaQkZ1d0mGKAibt6FQu3hB1zxbKKnlxOSbv6Bni/QymE9x8TiBJOy4LzsmJZZf9Mk7dbBoAG5rcxMl+lBXBmM7sGl3cCUtjcMgM1V+kgmDIKOSQ4KTEHtZK1WksD3YZZuQmgQWKPepJBhcnbldhcDu+xydV/12bwgRAiYphFCJoCnAsIfpJmOT4ieNUlNJAHGpCyzNH4rZ+AbT/xeMkCl+dghxCsnM1poCXt3j1KERH8Wgpqkf0ge1/Lfj4TmN+OY3N9B7thcy32ebPdYLvbYbvd4bA7oJSK80l0k8brrZqQc84hzh5wEJYIa2OTkkHMCMyIkklGjDOmGLGJs9h0B4ASKq5aFicMdQPdxSfVRA+NwBrd+E0OPZALRLY1ARJ9QguQHQCagCkA3/3pa/zr//av8OPbe3z/9j/gw8cfAVxRyoLWP50AOUENBFBmUy2otcARYYoRh/0eXAkli8/5+PQey+Wi68XstNgOKcW3UroqjVduQwQ4SBmgo9D06EoRWYgQN9hsA2ohTBM03hDtsxg9Jm0+QkTKihMGpHX07gwkGcPAoTVhsDEVMXCva0LWfa1VO9lZWaXcK2spXM7WPKUnhzrQw439YXudWvyM7gvbWh4qRwiE4opeCwHtesxfUZbxqGncYQUYI54VVIed/9nAEzlvpVJGYm/pmEcgx3K2c/d5gIqcF5RakXJCLlnOaPXzSpHu6x3NkbXkGI3ZKQCZ+jEMTWprwxkNxrwLEsMq1mA+Xynyk3OV5i6bCTFMCH7GPB2EAZVOyFoNxVhlnU4zfIi6TgUsg1XisIrLk8Ph4R73d29kTpOI5Wd+RuJV9oFpE7uhkkrth3VAdSDVOpa11oBXJqBqneQL8M3GQZJMUn5A0PJ5BiI7gCJcBXxmSd5xlSopiO9TMYCZJElpsuWlgYUl4TsYjFtbqW8g8xOq2TxjjwuW4r2UUjrycD8TRvr5AuEfn+XDvSD5RB4xzPDqlPogDIk5ztrRwUprxRgAFXf7B7x5+ALb7Rbfffcn+Oq7L/GH7yt+ePufUGrWGn25Y0+iu2Ad23LKSOuqB5VrG/mnHi//RjpI7GrXTlcgIHiP3X7GtJmQecHT5QMu60nXvTjyUhIFKesjhzDP2G6lC9gO4sjVwq07iZUQMhiVKtIacDkfkZMwGDhI/fH9q4PQEgcaPRxEzC5VXFNRQTeA3AQGcM2yQZ4vCefrBbmK4zxN1Dcs9NrthNLnuvNENyAUqANRAjZ1Y9fFaEsDm6wd5+jhWLDIzdj91AR97m/9gPtjIKmBBhLYR3jPYHbCHFNHtRYCWJw+5qrdsW4PGZAF7hbkfv6rP1lHN3/7aS2Ctnn1WknF3cZPaFDT4OR356edWMP4fHoh48EWYsQ8b/T3DgCw2804n8+6voSWnFJqHWCmaQIIWLMDrhUVBYtSfasnFA08g/eiFxIj5hgRg0epC5b1COYt4iTZ5JYV1fVlgYI9mmaaHmA83oPd1vjE8LBj9M1Xd3j48g6vvpjxb//fX+IP3/+I49MFl6PWdCsbinXkx5GzjC6BVXx0Qpy22O/fgMjheHpUTZ1bp8E5AjGjqJZUrQWl3irsGWDLgGY7WA95FYTUtrIUvYDVwWF3CNjsdJ86XRWVtQxaSnUBIMYI7+IwLBJYOW9gk2RVXWUg1wZACSNA9M0gf+rzYjFHK4uzTUDtMCqZwSV1J6QKeO6igUqD+KX9DJum2ZvawSwpg+2ggWmEyRwL+CBsJLlHKWYT6r0Bwzae8h1BHcBu11qSrJgN1qAsaPapasvrnJHSqsCSBj46f60rCzr4xgTVhRlo7d6pQ1t0jOR9XadG74wlGWHBpPeiC7GZPPb7PcAe6xJRkhNtrPWjOPvRt9JlIn/jdJqWQwebetbcewd2K9gVDd6lzMEAL+cdJqLGKoOeqcKIUTDTC1AkLAjToKtwBVgXFh0olk5SYDQglaEaBGCw2r6gnZQm7xHPHkg6N0qZN4FmyzwSoKW1st4ba7GdFdyMxoibmB0nQBhDzO013jvM8zwwGh0+Y8L/UR7PH8SH8taMgYTB7J2Ha63dRQfGeac2RUYo1wWVMx7uH/Dl6y+x2W7w6us77N9s8eMfEn78vQTl3ol+HcFYGh6YAhxELLwkS678EecJACw4H/9bqbEWJAAEj4Cgay5uHfxEWMoFT8ePSIuVf3jkknC5KpOsHqQDaPBwUdpuh0lLdzVZJLYzACyisilL2czlfEFakzATtaRkt5sQJ034GesRUk6dk0geiNRDgPMblFLw+CRt4c/LivOaJLgi33QNO4j02aFpf7OXWoaatDzEWIVij6RMwjGj5IriChxlpJRaUNxYMEXY2Rq/tPGTRw8Q2Eol2ndCtfTs2qj97skQeafYVtlH3suZ7p349I4CvI9gz8qKDgpSF/TDmpsNHvfO/z7Q1nxHaMAf9L5JuiA79TeJ1E5k9bGhe9uhx+6fgk3dV6PhPej2A5LYmucJ+/1e5lMTJKfjCZfLReeoNPAgpyTlfFEAOKlmEOAj6+sCgESE4AmHOGOaBHAKTpsDUUKlBc5vsJkENM21tnVsvqkivyBISZ0BTrZHbwI58x/1d4a0JwcBIcpzX393D7cLePjdjP/v/+cBLmxFjzbLXFgJOtRXagtStVq4SifLKQTstlswe3CJKIVxPj2Lfg5pAwBoAtxpR2+StSSdSUv7u/iFHWAwAJEhAJ6rUtY2zx7SWMSAHCddfKPXZiay/y2pkpIQBVjZgwQpH7dSVUvOW/JC2GW6XrSaxoBgQM9/Lx2BJWHHzTeyfhM3bM4BbGrMHNJoYHgdNEY1oMkpOcJYnSZGLWtCKybs3B8Y8NC/A+KrNXUZLdHnKhqfY/zhWwIEHTRT1rOADGis+1xWBe+lgQO8h6cAaBIv59LXJnWdI+d8Y9vaHIPRyufM/yKg+XOdhUSdhaqAk3MClsueCsJgLRmPT9ZZr7abjjFinrcSJ2aHWirysiK7JLFtZbBj7HcHfPnF1ygl43o9odSM83JFWQWA82Y0xLmQsdEuxpSgOoKsHdzNv9amE9qlEAY8YYhHge47okKatbgmyxE1IUUF8KXCkXaeLWoTSQGn2juWt1hq0KxGA5q6rR7jHLMZPTazOLbLJ3gvcaP4ndJF/OeY/p8NNn373bcAVCjMm8j3DO88fAiyyYmk3tk7aQtbJQslznzGNEcRtdSfMEf4GNC6cg0HhAEXpAuUq7aKbxugB+EWgNCwENqx8sJZ4MqormrGgAAdqFQykAmn8xlPj8+4nBcx7Pr9IUZ4r11VCiNnIKlhtvbcpXTRt8om+CnBbUoZuajKOwNcCZkIa6ogJ8Y0KxuCXATIa4khd8cuaot1ljalFSsKLwMFXFaOZCNkLNpSJguavQJo3RmxulILXkDiPBqwaK3PrSNGUMfYq9CvBVw3jpn5o20mBqrfJ5Nib2khwk+sQjWsmqF23sPVgGmesdlskZxHSQlEGXVSsI8rSlVo3wAA9OxeAwbQyI/9gtqtjGHMTz8+R08cO/1BgQ4p8ytd4K05t/17iKCie/0zuf0PDU/rAeWcgg/imGYtB0s5IeUkh6W2MZY2z6YNIhmAlPIA9Dqw8wBLeWLwEbvdhCluAACn0wk+eLx//wG7/Q4hBLz54g3maWotiodBsPOvTS0Pe4aZUZN2Qqm9BDIpnd/7IKAhpAtYZeB6PeN8PeH9jx9xXc/wQWxC1XazFgQ055AEHJIy3A4C8+Bs8stlZ0FtWw62cl8UEHGfF5KzWJ83TR7uB4y+wTnARxGzDUEo+QBjCBUajdm+y3nf2EvE/eNM8whsDhsPB0sFV9I1p2tcM1Wszh7Lyxrw5PS7R1CwgTftgLTnuDFQzVGx0jtNusGEOTtIbGVkVtZhrWMVjFNArpfGDUGIjeBnDjZzbJrVI4Bb1wluzm0p4oCVGwdHHSoxvmqnOmNzvA4Dgq0ky0R9mx6XOuluuKYOfrUNIJ9rpaI+SKtr9kAlrAy4cguCWLLEqfBSF2dUsGiIBwzCkRjFNLjMiayNdDuEYgqm1X5/ZDZIShEtw8sM7Sxn3VxI2V4m2AkVxAduu/IwqoKpQNe7akF6+87PnhDop4mlMiTRMeT7b9/V03a2EKVzCypKyuoJjtox//iPb01/JcTW4XGeNvBONM5CDHJmeJlTAUKlQ+K6MnKWtvX2E2NonR0/y/RmswsOFILuq9LAhpcv7Z9hIIItwMEIkJZfWbKJtESHgctygStyPhyPZ3AmOIqqr6PAuJMOdS4VsAOCJw1QqgZvmrDjipozRrApazdOQGx90WBzWeV5YaDLfTB5FI4o2aNUYa85XxFjRXEZmS9gyqiUUTnd7E9r7qFhT/crobZFA6ExqRYUEB79LgGTvZZbid81Rel6JEK7ETHKPJoWi/ksQJ+PT+Z2XOo3e0bmbkzEcqup6ucW6fxaZ9AQI+bNFrvdAY4c1ssVBGCaZwG/ahEfojFbxH43+6T2+SXT+x8GNNvqQztodc2afZDGJk4Dt6pgfcK6rsI8aAnP/p2fjhujVpvbYWzaEFLznUj9tVorahaQMuUVKSdNFojUQM4FuTCoVuSawCSdDVtVAanoMnq5unU+rbXi6fkJ5Anv3r3D/rAD54q73UH8aivLs2ukcfYg4DyjJZYlaSIsjFJq01DNq3SpdiHChwnS8XZFLhUfn57x48dHvPvhPVJZMc0T0hqwLvI9Ts8wiWuynIgmbs1mhW396XgOvhTruqhqVwZ3FZaUs4Sc3Wc/54e9RsK48T7AR9cSIKzzyawseIhtYf1OZm6C7aYja74FQasYSDUDtXafnOtVDyYB036G1co9gfiyXG+8frMDbaxsK7a/yP8516VaYGc3d9/IPlPNbztPS5ZOmnZftfSEprHp640dH+/h0zPA/B1yHci0INr8MxAGAWrqPo69lPv+t0XhXH9t98srULQRDnWfic2XeGHzzD4ThEFdcoVrWljC6I2bCSU7HC8OlOS9Jsthfmn3SeReJKnD8GzsfACugktRUC1p3NCvW93EltAew4Q2W3qO16LsO7CKuWuCTpNorUSQtSx0OAN6eZ58rvMEx/pbv8Mm4BO7d7MO+/KTCzU7LeueB1/XAFfw8JzaYq4sJfuQuMO6/xmz9h96/Gyw6d/8P/8NANJafGlDKm2m5bCKMerkCrJ/Oh3x+PgRaU14enzC5bJgPx9E1HKzxe5+j+3DHvPjBi4EkGZ5bXhKlWzGxs/SrcoFpDXB+azMqh4I2GFF2q7PROdYP89aEYKBgoJcTaTNwWNCzoznyxGUCb/53ff4z//pV/AlYK4bbGLAZrfFvNug1IL1uoJXYYCYmG7KWQKZatlfRipyOAsjSoz/ZWHkEoyNCqqE/LTCuYTC0rWHycOFA+D3cEwq9uWw32ywmSeUWrDkK2rNKBePVGRhEiV4CDr7EvSwsj0ira92Um5noJ0PoRk6WVykB55XRHijGhByEErmXBhsu90Wm+0kf3MAuYqOsqOtd9uEjJdb4OZlGuDcnl6M2oSxfXBgkmzbpF05Hh5eI8YZ18sFDoSUEjabrRqKKt3puKIkaWdba8G6LjCWS8sINvtLw0X+lMPUUAhdh586WNbFkMg14FE0KlY5KLI4cv3eu6NobJF2CFugaxtfnRgEYTS1nylK2+jTM0opeD4ecTmfldFk5ULUGDdrXtCE3RlAlZbZ0VdcryecL2dstjv8yf09Hh5eYV0TfvOb32L77h02uxlv373Fn//yl3De4bDf47tvv8XDw8PtUHE3xFUFj9eckTSYOp+PyDnjdHnG5XrEsqz48OER65qw2x6w392jVsZlSUi54ve//1v86ld/g3XJOH+siDvpepRzkEBYg9pSK1JawEQo+YJSLqh1QVVqOFMFeykVrM7ADwap8Zc2uZ1JaeujuwT6DgVGxK8fspEggF2jojoFa2IgbPfSBW2zC5g2vgNsDEldsh9UkYTtsNltxPlTR2e9rkLv16DbewcuQLXSp2KihpopZcD0TcCdVm2C2wTXMkpONQG4VhXBNH0WaMZXdeaiiKoCBiwVlGJiot0pk9JNApNmqpv+kozfuuYWcOZijp6CCxVoCElbUsP+G9rkmvYVlK0jDoKCmQVYkwBM1yWpJpI5NzZHYruEFS46OZqOVUeFAApaLgksV8lYZtWKA6vOkTdXUofbgMeqGS69pUqM7WaLb775GswO79wV51PGWmOzK6ZF41xACMKmFRFWuXcfvGT+szkpUjYpjkRpjnZerP10vzYTKZcMcJLSupkA56Xl76RzfWXRhCgVOQn4tFxkzUfvgegHENVJ8J9JAb6KnESDrNYKNkac93BwCCS/velPyG31mFrtX1u6ygABAZ7VF+AODzZwE1aOS+BSNNuekVJFIQeKEbN2iPunePyb/9f/AyAgTGKnnfPYzBtpwe4dfCC1jSKC/fx8wod34kM9fwy4Xq64u9/j7v4O82bGZr/BtI2Ic2zNOzpYZMKrVZJEU5CSWF5RapWyh9Yqe3A1bcEaat4Gs4KpCLszZ1zTIuvAbRGniFQK/vDuD6hU8Jvf/Q6/+c3vsJv3+Orua8QwqbioAE6X64plLdjUCRNL2ez5mgRUWrMkPkpFXgVMqKX7UClVVDjUQsgFAFecLosGqgHMEUSEeb9FnPdis1hKNuZ5wnbvsaYF6fQRJa+oi0dhK/sYy8Ks1MtKepRZqM0cRKMHDZiPUXxhC25B0JIRr+LokgmeZu3CPE3Y7+4Qpwm7/Q6bzawaU7K2pfuxfK91xurBTPdPpFTWaq/ll9hCeXWFgUOm+dPBJ+cdtrsNyANffPkVmBmn5yNQGMv1ihDlzEk543w6aolfQkkKzum4jdIJn7KbhsD7ZXBL4+s7k9TpWhbdx4DNdhIAqCyozDifjnh6fFRBeSmV7Ik9ugFfnbPOZgWmj9qCJwIKgOgcpnlGjBHBC9iY84rj8YicC86nM67XpQHtdpZIoJiRygVVx8J5TeZWBlNBSRnrmuFcxP5wwP39A9Z1wX/5z/8Fu/0Wm82MP3z/B/z5L38JD4fdfocv3nyB/f7wWRuSa8FSBURalgUpJazrFU/HD0h5xel8xvlywXpd8Pj+I9Ka8fr1l3j95issa8Jvv/8Bx9MZHz6+xQ/vfov1mnC8LDi8ucPzhwXPH8VXnZ10xs6lYlFfOeWkLDzdLy0hoTZW8/eSBtHV2sDDblukvFT2WlGd0IaJmvQHAUTSTCLOAfNhRogOm11EiHJuVZYyQXiAinx+qcqa0p+SGHktPZFVNBHv5JpqBooXsMNrSbkxe1iZz5ZIss7ApTKIS6tkkfVgPlSPAez8IlYB+5u1b3pDDlP0iEE1Q1VHrUI6darpbfubjc3FGYVI/SVJICxrElF/TS4BXQrAwIObtJ3NIXegyZF2fic9H0j833VNKLVgmjxmksRF90sIzrEmz4Vtw0ADGntCxHWgbJWmDLUa6EOg4Np1WFzfEqEVcOwBJpQs+7OUimW5gFzF9rDBl18dkFPGeX2PNUMrkdAAU4n9ZM4rC2Dko5c4O2rCPjIqLUj1gtP1gxBlsIJBKLXgek0olRGj1wQDmg5bUeac84ALHmEipLWgrOJ/plWqC6ZNACPCOQGtq+o8TbP6Pq4iZbFXuch4THNo0huhAq4SIrl2RrSmXd469Ynmk61E86VtYVo3Xhnr0BDDce0yxE8nr0BhySgpozoHTtK0AcEjzNb98o8/fjbY9OXXXwEQ6rOPXpXplekStasTWDMgBT4CqVyxLg6Xa0Q2mmMICDHAR3mfD8Zsaq6l7itjNkkAJCJdJoj28sbG9xrMqot2/FSWELGyaUkRCELJzDUDGbherjgdz5hpxsZv4MmYTR5IQNEDJ+uPaIcoZbNal5aKVBR1roa+ygElVee6mRioSjksVRYWE8MjgDDDQ+o0PTm4sEOYNkAVzadaEuBmMCIYBdQ6Ptmtd6Mieia+gUitLMgZsOTRM7w8POeb4KaUjIRGb7YfY0BILC4W/iVL5JaXYFPBL2esH0r2LPVXNJZJcyJ6+U6IE+ZZDhIRO5TSWO+dUK0J8puta2JfFXbG9dSFBbF/DGQa/ot6Kd2n9ERF520+GAOw0wX0DUCicenavernYjAC4xgCUKZXd7ZsH5YiIqy5ZAn4SlEUXeiPpYgBLLXAEzV9JHOqwdD31OYwL+uKy/mCWis+fnxEmAIe7u/x/CwlIilpN0qgAQ6s917VuahgLEnApnVd8Hw6IaUVz6ePOJ2fcL0u+OGHd1iWFXeHV1iWgsrA+ZKQcsHvv/8ef/d3/wW1ArvwBtFvFKB0kOBAYaAqgQyTBN9cs4LOdbAPcqDyQEHGMJ9tYaIz836SA8dojr383Q536oEA9JBrndFIMyRk3ndbO+316CVzMrauXVstkoH3BiCQvZdbkG6Zt5vrUiewlSbp4d72c4MjqJdt2xolW396bQrqGIBk9fWAAVD9OwiG3ZgjYSW63FhCJgTZ5uAT8/HJyMNC5raPbjJjfa6NMl0VBGlA0+BwiTj5rV1qzo9uRWtda6V8naXY9VSs7Xm7h/YzrD1QK2dlJnif4Fy5Dcyoz2vP+FE7Q/rzHdKXc64Dn03vqNr1D/OokznqabTxVBr+mMG0+ZRsKhqAzLb+nH00qWNjpZLjIKCvs5v7aqavTfFLm9rGTofc3fgN9OlysWuuVYR6tfud14D+n+rx5TdfCggRA/wkvtM8TQo2CcOx1oLLEqUTExVcLhOcB67ngJw6q9iYxT54kHctQNObbXtbznOH4HU9uiRdedsAU9vb46ObomHjMut6Mn8HADk4F1AZWNYFBQmX6xWXyxWRJgleTA4hyKKzFta5VIQq+mg5M3KpSLlKl8xSkVMRTYpalFFiWWC5Vsv8ZmWgKAdPNCVKANUJjjwCTTIGccY8TWC6wK8JBUGlCYIEttD7bcNBah/kx3zP5i/JkCowEpTJVFWfsL/O2OCWfDItLQvCOvvZgoAuhQD6VKi1T9Lt72Zr7D7Y1kLFi80uZxmhdVSbpgmbzQ45ZYQYUUpBrBNYuvrAL0H0BmuRTkj86fV8royug5c0PPe5HTp+ULcB4tvI0wY4lpy0jE3P8/a5gw2hW7tiTSXGYRtjhVYK3sBa8Z1Syk2bRsAmtWcVov9SGGuSBGbQsWSSErPauo0K4Gfr4LKccTxJic6HDx8wTRMe7u9xOp+E+SeChv3sNlsHFrCpLNr5asG6rrguZ3x8/oh1veL5eMTz6YTlsuD923dIyypag37CZVnxh7c/4On5hPcffou3P/w9uACh3CHECc579S1kH5n4sQn3N9BlPJN1am2a+/mjPpO5ru0fekY0fVTddfqR1qnU/maAoQT3yvrU73RVAENj9rZv7kUMg/9TG8MJEF9Uzh8GUEHsQK7Ctc7FxggetBzt7NH44ebz21mFnigZzrBxb47+laxP7VjMUt4GGCupz/u4tcSHYljC2a7Ryohv7/2nfCj9rD4F7dPHuMVYaqVIslzkGtqGa69/+WhH/TCPbYZ4kCnQzd7AYQWkYH5je49daBdcr050tEqRNs1x8iCqresujevRvk/PD646UQ4gEZBRm86onFFZ9AFzWQEqYPVtjVDiPOAVRKTmq3bvhkglJAjqiwluUAvrOc/tXozJKpILcl229qQ5siRvpaxOE6qDr3/jQ708FNoRP/pQbSY+2cfDDNoENt8SWrnlmFGdAzE3tvLPefxssOnu1QYWxK75jLoWPJ2k7n2aJ2w2GzAzrssVuWQcjyd8eP+InDKOj0cslxXx1YTdmy22uz3mzUbK6Kag9FUvbZ/VMJgANUja+Ar9LLRFd3N4tPF9cdMt8BqcUWbkKsF3jDN224hpngFlODAzuABkbVW9ooe6cEQArYLWAqYErioOV61swcysbw6KiMlVcbK4SFBgLdIVACMXEdwEH2a8+upPsL//BvMUcbffSkv5ww7b7Yw1rXg+H7GmBb/+24xcj6AqbVbJDKi7HZe2iSUaViOVm+CdaI10wwmgUXlzjqg1wXkvGdIg2bp1XUCOcL6e4WPENG1w//AacZpxuHfYbLZixi0IGx6tnfPN4c/NQjmNbhqjxO5FD6imC6TsBQNafPCI8wRyQLYu5gQEBHB1qDXD6mCFNcSNPQJg0Lt6EcxS/8e4wkaDbgZNshxFxy4riEetbMO65XGtHfRrQRqJqHPTv9HMDd+OIUEpjaQBVC0oVUTlTftrXVfp0FesHWjEZrOXNUkRRAEprXh6Ckg5wSmKLayva78+Led8en4SxyNJGVrOGW/f/gHH8xNqqdjvdri/v4ePARmM4/mI9+9/wJoSLpczlmXBsix4fn5CrRWb7R7TvMPz8xN+9Xe/wuVyxvH0hPPlWTL5T5JV/Oab7/DNt3+CEGbMm1dwfsKv/stv8b/8+7+BI4fvvvtz3B0e4CLh2z/5E5RccD6fxAm7ZpyXd6hccbmepQ0xCz2+zX8Ts7byutrmEoB2xaC+PrkDEdRmA329NPst7yHt3ABihDCBqGKK2r0FCnhkozsDJnbKusCkBSyjlIR1pTYHtTJKKnpMKqtT3++drkvnYeUgRF4vTEpopQxX1rqRYFnXZ3c40M6c7vxLIbqsKyntScmcQgGfTduHq5QWWClHi59aYCVxUOVOcTc9pbanhqEdHzR+0AjqmoNlGU57vR3ETODqpNymAMHrIc8KrBZzSOlmt5ON8hDAyF43MXButl60tag5F+ZQjMBbM3eoOB2P+MMffg9mwsePV1wvCWs+YppE+lU0ohigglpXMIv4dlpV408HVjoYiV5io/nb/9X+vaMWQ+UMVAKoIkQVCK0FvFbAeQQO6jyJrQ3RYaP26nDw2OxMyFLGqdaKskqmd1llHn0gzJuIqO3KG3Cl42jNKBws0EMH74DeY8K1ibg5F9ra7F6UspsNbLO9C4DFQWWQBoQ/4YX/Izx29xPA0sb4eD7KutcutnEKmOaIWguOpyes64Lj8wUfPzwjrxnX5yvSNYEfGLvDAZvdBnFL8BMps83BSkCNsSvnkAhxT3ECUcayLr1sXEGk23N4cFZfsJPNzgkLs6BUEV6d6A7TNCNzQq4rwICnAE+hiehLdlRDOw3e1tWytwWXS1J2oIJYcPA+AiSJokpZAqlchhJstXPKQvDBIU47hDjjzTff4PDwZdPgCd5jO0VMMeB8PeOH9wdclwt+95sLUnmCAzB518TozW80eYfWeEWsNoAuCCuitBWUTN9StC1FkNyjFI/K4guUusKngBAicsmij+Q8ztcrDncPCPMW28qIYWo2uOmYkYw/LLrXoI10PHsSVXQ/Wmmtzht0vHJepTRuFdCiQnwp10A0Ay8NZBNgjMGoJd+AOIyXPtEYoNyelPL8uMZe7r0eTArLl3E+nwdbqxUC16u2tS/NhhhQZOCe/be918BTK2/pAbCtaisPLZqky1JyljIYqkvrA6ZpA+c8apGS/ZRWYVWXBO/Ed61FGE0N9IAwXz8+fsCaV2RlYuVc8Nvf/g6PHz+ilIJXr17h7u4O13XFw6tXOB6f8eO7H5DWFafzCctyxZoSjpcTKjOmaYMQJzw+fsTf/u3/itPpiGVd5LrXjPPjCTUX/MU//xf4q78+Yc0Vv//DB5wuV3z/+9/gN7/+T/DO49uv/xSH3R02uwlff/snKKXgcjkirSvWVPF8/ACuwnRf0wIHSZk7PQekXEilQ6CaM22l6rnTIn87W/v/juugAQ1tvZh/Js9VLdE37UFZK6WVMDYQeND30ep2YVZrCbG4RYzMFVQZRLd6gebLZxWudtq9eVzskpQyMKXvL0loA5SH+7XSNN+BFwMhq3Ngb00y9Fwqeg6zEBJaZUPbQ9DP6ONgJXQ9XLCSwnGIx72oQK4BM2wNRBSg5YLCVfwJOAWmHXia7CgFlJ0tdqrvfTSgSJjmUuEx7LfStYW8stmM4MBahWEsrjpg7zJ53HzQ0/GEZVnEKlepJjpfjhILwXwgSPURq/5kRgOO2sCoI3G+nLQsdUXK0jCpckaFkUdMLsE3M9nGTaVzuv9sQL5omV1TQc4iWL8uovcmSXzf7w0AUMBUUZOwzWtlxElKRR05zHNEYIdYgzL6hI1mjCao32dyB5IRQbNzdrvuBU5wcwncXy9jwHCsHXFLRUVutrVp5/0Dj58NNh1ez2BmPB1XpOczlrTgw/v3WK5XbLcb7HZbVGaczmcpjTld8fR4Rk4Fy2lBXhIedq+w3Wyx3+0xb2aEKcDHoO0FVU2rDgF0EYffhyDsCu8bIDBm7W4OtJuzrR8qLSTkipylM1MME7YbOUDYQbvUsRAjnGjXSDtyEx8UNlPKFXAFFVqeoSJxbdMCUMhUwQYPqhWUlGfpGMCn9xHCBnHa4atvvsOX3/0FDvsZX315h2kKOBy22GxnXJcF7z8+4XK94Lp8wNPj96DKiEwqummiwfSJcaq16AbKWFdGWVZxjgaByqzghGTpxEhUFjHpHIUOLwKY0nFF6TDYbHcAEebNFpvdTkp6ALDSZO0xZr80F67PSWaxKuJMRHDBgkiG9HG7zfYYQGMdsHyQjS1zJZawIfRckXOS1yoiywbO2aYZgKNPH7dOVb8ftDmUMa7tPs1psUlghjpJvVsVWgCLljUlOcG7wtwNCCbXIk6MlQEWVHbtsM9FggoRRjTANuJwuEfwAcFv4P2E6/WKnCvWZQFRBiDXm9Ii+gyQQJAZeH5+xrquKig6IZeMtz+8BX6U2vHNPOPh1SscHh7gpoi3P36P//S3/xHn8xnv3r/D0/MTTs/PePu736OUgq+//gXevPka7358h3/33/87PD094XI54nI5opaK9ZKACvz5P/8L/MVf/RV2uzt8++1fYbO9V7DpfxXtt7gBHONuc8CX332Hkit+/7sfsa4nXC+P+Hh8r4dQAkM7Z+i6BljXDwAaBQU1GGtoRQd/OvgysgPagv7sqnGQ7wjRwweGVkLJGqkFKDavluEm+xK5RoieFSctfVyEKemqZt2bWILsdWH0adlTFRZVF4mkdhsoBkVQAy1k/4+HkrRfBck+c16A85pNW4vgE4bsvW/MBclCl54ZbHuG294xMfKiTqHpDXzigMLGZRzc2yzcCDZZhzsAg4ZYL4UrlUHF2qprYeTas1/mDFtXjjF7ZGLoKHZ/LN0ENUExqcZdWjMSF5Bm0gxQawLs6gkej0f84e33AAPn04p1LXBBQUkn2l7Sp6I0un5aE5Y1N+FOSyiQinjWauLcOob6vYTuZArYpPbZifgqoJTzwnABYBYXgTQG9Qpmek843E3YH6Q8KynLIGVGrlKauS7y2XebGft9hCcrSho0m8jBBQ9PbtA3lbEyp4k1avZk5TF9KXQ21ACZUDeXzT5XNnoVTFujgkE/01H6r/HY3U1gZlw+HnE8f5TE0dMRaU3YbGfsdipe/fgB1+WK6znh9LzIurkyOMkZtTvssdvvgG0CxwIXfAMIzHKZ2LQlYqwRhLDIi64LbjajB376MKypORGwJ1oQVqvDJs6Ik/gouWakIuURnkR02ljR5Jw0PtG9yczgpaBkQi65gU02v8IMipL0KwWVvCqHJzCXdiS2cxtSwjRvt5g3e3z59Tf44ptfYH/Y4osvXyFOARsVFT+ejti+nXE+n3C5/oinj9/DO4fdNCNYGbGxE1vCSwDlWgtSukiiLom/xMwqIKuMCA2iatXyRu9RqvhQpcTWae26LHDeY8kFj89HvH5zxasvvoZzHrttZzdKQwtqONNNgMRVs9/QMxuoNaOWBAJpCZ7X90iglPKKlFZl5AibtHWA835oFkBND9J7LfPxHrn9jaRb1YvHyEJ4GdwOr/rJfSLrS9hCZ5UAkOfE375er628iYAboMnAppHl1Bew2T4rExr9qc5+MDHodV3VfxM9p2me8fDwSgBCLYe+XheUyljXBY4yiESiY7lcYU0nBGwq+Pj8EafljBglOZ9Lwe9+9zsFB4Evv/wSd/f3WErGq9Mz/vD2e/zN3/zPOJ1P+PHHt3h6fsRyXfD0+IRaGV98+Q0eXr3B2x/e4v/33/1bPD0+wphxXBjlImfPh3cnBTwJ7x8XXJeMX//9b/Gf/+Y/YbOZcNjusNt5bHZ7PNx9gbwW/P633+N8esJ1PeF0/oDKcm8gYXDNph+pfqtU5GcFPDWO0v+1JWvt7Efg4wVU2ebfgIr2nLYJEQ1K6+oqa1eSqlL5Ep01NVKdworG6LXAm5kUIDHtQ/mqUiwW6OvQSjuJABdDu06pzGgHlnyn/rsJPWvyjEgTApZYUS3JWmy/OtSqMZtXsf/SJVksPut7qCdDu16kgU23/lXznT7nm9JY4YJmv2qVMzSXLDbZScmi86RC3OqVWlhS5SzlCpCVbtk4koDYJvZv11KrVKI4R41hHIJUOhXV6GugpZ0XL9iUtRScTmcAksA5Lc8yfzqlddA9srhLGlDoOjTbrr4Ng3G+nATgRgUgNMZcc9NBq7a2ycA/bnaXq4Kt1nmcHLwHpkmkI65qq1OqWJaMEKjp990AiCw6qzlnKcMrFXnr5XMdYY4BkQLi4kFV/D4D2FnjRfM3ZRHoPhtMXj/jXtplWxy2tO1ME1yGtMyhMQRFt+PT93/m8bPBppIF4S9ZFmDJWl+/FnifEWLWQGjFmlYsy4plXVGz7HinCGeMEyatb2+01eY9jjtiAIiqLY5uDIRW9rnw3x49OGcdPDuwTSTVqbg5OSmjK8hYk4gPTohykKnHOrJ+gJu48wbcur2D4ZbU0LWgsHnLrv23HRSVV5R6RS4Va3JgeLhLQqkR12XF+fIsh1zWNqVk4JWi5S/GsmW4a21o7ZrWXvLE3QnvrCMGHPfsAEu3DaeEsh4UW1jWqbfGVsALIGY04jfzZIta54ypqjMDDW5Zu0sYylq78R3cZAmkNBtngrXtpOvfadduINM4Yx0sfAEiDEvtJliGGWpzSOnmdU0jhcVAjx/bxpBsw1sWrkVJ7R5ZAVMLFkcmRy0FxTmlfa+q52JrqTNKLPMTYsAUJwCM/W6HGALW9Swt4JVVaEL3NrLMECPujUWjDBsUpFXW0nK94t27d/Ax4g8//B6/+rtf4Xw+4+npUbQETqJBUmvFbvsKu+0V18uCtGTkNcvnFUbNrN9v1NPaGSe1gxIlV1yvC87nEyIC0iSsj81uB9AEPFc8nT5I6WuVTCk7wfFaQNacyUXusxZ1ollAAgV9eiBrUaytmC6IDMgWF2CHb15D0NI57+Bc7+xgY4ubdWMwiQbcxmDTDFfbR4CuK24YmbRO7cwg+V/1ltiW2xBA2vttr+p/j+7ezT4YHgZwOHebSe7xKb34gOGj2toaDOQL+9qfp5dPyp7S7xgpxAYsvCzl7XtG3mdldNkRfNZOfbloC15xPI2q3h1iueYmwNkYWGZ7XjjPFjjb946OIgOmMVjroP2kThGqipTz4GxVE5y0rKiUazRakY6H2BkaZpHNtxLHw9EAsvYzTMmXrd1xZ25ZOaS8Jqi+kIjbC2BE8KjVSRembDpROmq1rQZZ9xiCWRpsGuuKILOpfQ67szSOZbvpm0dVAKJqhGHOrzW2c03gFDdlOP/YDxMIzVpCnFNBVo0i7x3WIN10liVjuSasq3S84iJ6Fc55BC8ldCFGVF9FV87OAhuKMY5uyLL+ndD+yBZFYXzJGOD1z2snQTtzRGzVR2E8kwNSXrGkK3JKAxhgDBhW/4TVRhl4Y/+WddRNK42WoQHTYi87H1ne14Oxqp03S11Q6hUpM66LR6kexTkERzhdzrheTrguF9SqgJz6CYzadEIw3LvZJ+aCNS2oxTQHreRJX9ccQvsZkqF8+7zpQIGHwG3wNSUQdsNcQc6kwRw5c8jQg86qrekJBFcNqFYJgWrMiw4I2J33xGdn8o++VlsjzcZ/6rd33+rmSLOV9OJx+9wIEBmIaAm7Hvjf+uH29S/fOzKa+me7Bkjd2BGycmj5rpwyrEPgOCbyOdoQwwcQROtke93Ce4+UTkjrVRuwmO9la8ABHAD2IHgAHmBGyasy0ROWNcFfr3j79gc8HY94+/Z7/ObXv8XlcsLHjx9wOj9jXRPORwmwd9t7bDcJ6ZpRUkVJnanBmvAhJg2UJSGpcXILRksu4kOdLthOEfNW9Nx2+wOAADo6nM7PqJUVbOKmnwoIiLamhFIYOUlpLLPo892c4bCzyfwpauVHdiab/8vq2JiP5DQhZH5WKx2z11owbb4UG9hutkXY5Ux1WHVDebteonwU3/439x+zZ80o3vj7BozY7Q77wnx36tc5GIsGlNq4fNKsZniMS7/5a2zxh33nAKJ99jH4C4M/aCy01iiE0WIO+24R6FeQTAExqhBpUp2T4QrbdZo4t31Qsz1mS8heP4zJ0I3PGmNZfGoJREdSQURMTUvSBmlMclpZGjc/l+S1ow/efPYKS8EOJ5/sfaeJje7k9nXtSMAYkiRyyWiAIxitCsd7Qpw8gpfmB953Np3YcQNJAeuyecMUtXU0xoHDzDLQxrQtxZcrwPwrm/sXvmutVbpCD+tIrkXG46YhTR3n/KcfPxtsOj4fwZBOI+fTBct1xem44HpdJJuZhTnzfBQK+PksNHBUYO9mbPyE/bzF/f0D9ncHzJuNCo17WBhtAAMNgQsX6UrCtUgW1zvRfbFAXIO/m4Ot2QtGbc6sMJSQRJysFEIIEdv9ARQ8jssz1rLg4+NHfHj/EXQAaP8VgpzUqCW3w5ot/tEDq9GrFVWW9ToEhSzUxFogJXoCvakxDSAwChNyXsEEnK8/YDo7LNnjmj281mg6EoHb42lBWhMeH38ApLEpKicpsVkyUsldr4ZHgU3JSBar8ZXWLSpkabXKGlB5JwJ1yjLwXkuOlPFF2tXO+QjnA4LfwmECQUSa85IAot6c6yaQHBwG3eQ9kBYBQnLABhEBTsRrs95fru36G/yipwJBWprCe1T9kR6f5rh1JtNnwVwnm14y7L3dsP1qoRu/3Fy94wL6stAMmW5kZzl93LwGt7YCxoiythP2eqcovJXx2G+GZNVKyTidIphFkDKl5ZPOFKS6ILv9Bof9A0opONztkVPG7373Gzz+7hE5ieh0ScJuAII6SRHgCYQI7yKYK9LliDVdcH4+4XI6o+SKf/tv/zvAO/z+t7/Ff/h3/wMu13Mbx5wylvMi2UfeIfoDjo8XlBXg7BF4AruK4itqkLlwXgTWDUC09u/AhJwrfnj7DufzGedXF4AJm3mLr3/x5zjsX+M3v/41Pj6tqJcTlvUtlnVBjEDYyppOy4Lr8QRyVyznKwAgrRdhAjmnmQFqzrftDbLgwlgv7tZBZjKRcV04OtExihi4iwwXSssomZGw4DiX0oy8U+en5gxG0nFQEVJ0UFfYlRjApg4SD+hPC+6rZqAY5nhyK2froQVLdwwnnzFm2UzjTRoIzENG2bXSRCZIY4IXp10puY+N/a05fYxWU9j22W2xhsZdOg5dIJG4ivYeM8iLls3IRhoP55ykPW5OCeuVdO4zSpbgzer6myaTzi1qRU7KTmx72QAX00yz61OmIiq88yB2KJxRs4DpQbu6poXx4XIBCKrXJDfoCqEQwJJQFhAsS2BaloSSityjV3vQxqgH5HbdRIQwWc0/QJpoNGKCMxCWASoOJjJ6uUhCIq+iH7CNAYdDQIgOu4PHZksgBDie5Xz58YLLKo5WWZRBJE3FpJOslhF4L+vFk2truQFPILDG6FVLgjDcnyNqPbWp37LBSkhFzsAyBIrBi1MHBrQXAHKtyNqS+p/i8fx0BJhxOl5wPi5Y14TTUc7ynBgpSzLv8eMZ18sVeUlYLwscHO6mB8xxi8PmgLu7e2z2W1wDsKqWZTtLPCkTe4RIDbzQMTaiyyc+oiWNLDjQEGoABr2TfZEXYexOuxmH/R1Wf8Lj84+4LEccj4+4nM/YTRt5r/OoXJoYai6kYCDBOWFZOR8RXYA17BB7CBC02yMDhR1qFVYJyIi/VgpdUQFc0xGZEo6Xt4gnxnkhHM9StoxcgcK4rgkfj0eklHA5PyFO4nkXXmTdZtUDYu2QChaBeWVrppR6B6gqoxbD1IWtQ1SbJOwuOb+Cru8IBw/vImIUkCJ4OVeJfcsgd1Y0NVvbfGKZKvGvqty7MX+kpCaj1iS2jgOq98JWTCL0XLhqOFUacGVMOGZGjAG1RFwXYTeUMcHXbOgg+nYTeFMjZI+PnwpHenMG+7f8R6lSsrEsS2O8NUZINdCAtHz05fkgPlQDviBxQ1CWWYxB16Xaa664XtfGAiy5YlnXxsolGAgh3VeDD9huD9huDlizNKNZ04rf//7XePfuB0nIL6n7D5jgKMK7PYKXDt6EgMoF14s0q3k+XvHx6YTn84L/4d//T3h8fMSHd+/wm7//W6zroskyaybjEHzE7O+xi6+QzwWuRARsJFbwhEIZV39uwJsBM8F5VE/w7IAMJM744fsfcTld8cWbFfO3O0xxgz/95V8ghj1+/etf4cP7C1I5oyKBsTTpCWbG+XKB+/hRbEIyRsWK6H0DLmS9MvpsoINONM4jqaSHsHKdY8CxlBrN0tWSa0JaRQNH/FOJp5wTo1aygAFpzchJSkmdCwqeFMApk3eooLL1OQLM9qyt41oq0pphJUvU5C/kxWNZnwFg0BjPbIG9ByrvYfs5eC+MIVArQnQkrJ9aJR5uPhEEwLTvqQxh2TWjIJql3b+62W1t7BvAZLa9+WEi2cAKjvhGgRa7s64Fp9MCQEtdqyVzxI8sqUrfgL4ZpaJk/cw1kcTv5pOAhJHNLPtV/H1CJSAj45KuSCljs5mw3W7gKGByd/A0YS1nXM9HtWkJMGDRGKpFAZZms01yxuxFQ/vbDzktvwXEx/FAnKI+b4tIQSRyaG2iSZr35EUBGogOVQgE2nhs9xEPr2Z4Lwk754VttSbptpnWipQYtRJiCPpeOcNkDQkVi8iafY1iMGhSF/Bo4Nen9pdu/K72UNAr54y15IazOBIJhQDNsaIFogABAABJREFUSCqAJo23/iuX0SV1ynIS5D9bZi5VeFeRQukI/SJZuXUVMUrEGUGNtLXttQ5o4wFjcKo5nOI0o1ESP82WDG8bHwoMWDB+kxUFlCWhnZdCBIiQSsKaV6xp0baquav0s5VXjJNmaKd9JRlKoWu1QYc6OfacHNTWeU+MrQICRTIQKV+xpiOqdtiRygipLU6p4nxJyLkgrRdAzVPlLMFWSVrnKY50VcelaA28dZ6yMg4iAk021twMgiNWtFoDlrYXqelhiAMgjpMzp0oXozF6QHSz0G+Bpg7emDCwUBWTZmQAVz1K1U4CrF1AdEOMwWibkQZIdAcZ6Oytz62fm7U0LCgDF24dJ775Re1/cLMe2n3VqtfU77kxqmzJvBgfc97E235xKNiPcw3klICYkfKKNTnR01Bw0RBz2Q9Q3RXRB2EWwfecTRTUWE3KyGJASrvUsJGHowDvQtOeymsSYCoXgFY8fzzjsi74/W9+g7//27/H9XLBNEWE4DWTVhF8wPl0xbokpDVLbXEVI+oQACpSu81DRrFZBHEuhEnBWK4rQIztZodlvcKHiN1hj9dffIGPj8+IcY91qWD2KFnai9oE1ipgA7nS7rc2ZlO3F908iR1pQZv+0bIM5pi+tOzMUgbqVCiXGrOpU3EN4Bnp/H2B9bIwIul0IdkUCyTtEOUhsOz/ts+hJn7z6cP2R3cIPrPOB+fLxmYsW3jZRp7UwH265ySr9ElAMj7xU9EKY1gHo7Mkn9v2uZ0jN3agP2SsNKDWOS1WdgoSZIQ/vSam7kDbvL+44Xb+2MDZ2AiLpjuGRMJWkZIN0YGJscJ5BlUnmS0HmL5vrVAAUcuNK4PdSw2x8XLHTLE6RZ5k/TlokIYWvJqPwpUao7dk1fhjW/dAnJw4HuooOZKOcrUoy68CXCz5okBT7RdI5mi3UqWbpaGvGVie7cn+GksyyB7s61X8oCoMq+HeCARPXtcGbn7/Uz3SKj5UMv8pF+SsGpCpwAUBZNIiP8b29AS4ySP6iBgmxDghxojV+Rak2cMSKf0p29c6GrcH1mcf1N42Otvd/oEB1jNHgvcJiU5Y0xXLekVKq3RaLR0UsHKPyvTCTsnnm4ae6ICYX9CDN1vL1gSirSHSclndW6UWUE1I+YI1nZrsAYFRFtHBWHPG6bJo+/pV1n21M4/Fh8rqQxXpZCvsWgXLDGxmKeu5SQCQnk/tzNTfpq1HwnJxuvfFb7LX9XmxTDzRAK40oOf2dbZXTNOoWsIOQHHqIyjrmVnYkBJcl35ODGdFY/80n7BzoFiv4zP64HqNOuPmFw/nx+1OG8+FW9/G3shQ3ZosATt8v+e+UF8ESzdjApj+oZXgeu+0Y5wCHFC2RsmolZBTQXKyP1v5leN+DpJ1H4yYNzN89ii5IKQA77wE4DlLoyBmOHTfybsJ3s3q+ws7vBTx6VMqWFMGcsEfvn+L77//Ho8f3uP7X/8WKSV4r5p8zjcbkK4JJUkXUlQnICY5eCLAiV2uI+NGRron7ZjAhbFcVhCdcditWi4HHO7usd99gQ8fnuDcBlK+6hR0dG0x5JyxLNIRt6qcCNeq383qH5kFQSuJBsQfaT6WtMeG6L9osK9ABDlNWunXltJthyUDDYR9KewtqRB7DcuZZ2ua+3UB3Zd66a/Y87WoppMz6QK0dWbrroM+PZawvW1sGH5hhpt/YH+78Xtf7h2LZ/TfY7xw88pPzzUGDz5gs+q4dWO6jAGxvz1/mZTZJGiSJLNH9lD3T+xSGWjEh/ExsifNlkPnz+wBdK8RJPFblThBEPDFU8Tst/C0QeaMskD15ypA0i3NsSY+x5Czb2cbTfSmNAyRX8Ewzj2e9MH8pArR7uvnosRX8r5SqoKG3Jjnjki6hweHaQrwqsVJRuow319L/WQtdmZT86WH+HucHzafRi5K12rzVD+zJswG0838AwoiFS23b/enWsKtVJOhkrI/6/GzwaaqQYh18rFaZFZaZd9kQhP1FBB9gIfDPG2wCTM2my02uw3m7QYxRAEqfO9QV68JJRdZXFUEwkstiqBKAF0+c/C2haPgkmjYVIC9ZIuIMQVqdLxlTajVYQoOMcwAGKfjEy7rRTOKBWnOWHOC9wF8JaAQcoYadYdAE6LfgNkOdxEebeVHFiuSh3cewRHm6QBzOKyEwulcXtcFz+cTmBinxydc1yuid9hNUs9KVkrIhKodE8qyouYkjsTlBC6jiNlQEkceIYgxi9F0OYRCC0CDRdMukesLQQ5PHwKmaVbdhyhZIQt0WZkNmy3meYvtbiclkiEMx8vtY6Q6NytAUtMMveZSpP3q8XiC6EslXK6XxtKpVcrrolIpSxJ2F5Ho4pADSvFSCsOmA9Mzk0bD7eUpSuscwUF9fDYWefkco1trvfH+Ps0S2/qsAy19cABsTLtTY+yxnoEjAF3AdPx62ZeX80Uc/cLIadiT5Fqm1PQKpmlSgVOGq8LAiHGCdw5T6MLSADBPM7759lvsdofmPC/LBcfnRyyXR6SlgHMFHDfAipnhY0Ao0ubbBw/KFbUmwElNcsoFKVfkDMnsp6ri1wXZdCgygbNTcFiCrc1mj7vDG9RacLffYZojpnCHyjOc2+CLr7/EL//8F/DBYbkmPD1+xH/8X444n94DDNVh8+qgZwnshzPaq4YPtbkajLU6cgSSVqyQ/QUQHMn+YxiFvjYnvpd3MBxrcQSTtBLVw418Xw+O7PoU9NPsiTmLrelA1rKPMgKLcqmN2dSgD4LTLHAtSnmvVhIjwVNvoy3vawL3+nkGUHQHrztbFlyWwjf7Sz5uDGbknKhFsoFyzg4lEgOQ1/bUi41oXVJg48wyZ8FLFtMFD6+26iaIs/fomORU23fXNApsluENbSs0h9KqKb3qxYXgVfOoO4NCpZb5c8GBvEMuFT5JomOznRFChPfCWJP1clVmYwWKg2O0VsSkWWuxu+aIqO1g02yRTH1pIhW2nqyRAoFcBTlLw8icxegxT9KAY12qar2pI6QOsJWgShOCimUhFAa884iBtfxQdREKoSSx1acn0Y/bTB7hbgKCQ86i9caoWDUwjj5g8rEvv2HSGEBJBS3s1XXYNO4I7Voty2zzRlBQlFzzD2xvfhoE/+M9WuKmmLC0BFYNwzG6vQYm3nkgBASKonU5H7DdbjFtJ8TNBM9BAgKvP07WUC2MQk5ZQk5KXRTcKrq+1V1FP3e4HWPV1m4taqscmAAlhKgPVRpIEqeAulTR5Ts/Ybmu6jAXXK8rAIdUpVuvRI8B5DzmaYNpM4O5IpUFlYswSpIyH7X80ruAaZa9vNt6Xbd6LgLt7L7mFafrCXCEy/MVXN7BuYroZS/UxKJlw4xcheGTlyvSItICRUGkqskasduqrwhhwoOBKcwAzM5JqdsUozRV8U6z0CqGL0RrhOCaKD9gJWIy97vdHe4e3uD+/h7b7QHTvJXOYC9s3g2gr2U3LbAlxjxrR+hUcV0ySs54//5HrMuCdV1wUf2jtl9c73B6OR/lbKaKEAMYE+I1IsYJwCrro1ppfm8+IEtnTELoxfK4ryxwphtXye6JhqCnPcwVqzK/lXpQO5bTtcTd+D6yIeqJkBhjK/e2M64xgNnmkXG+nLEsV5QqbHowN0A3a8OVUgq899hsNljXFeQuAGkTlnkHTAyv9smRhyePebPBd7/4M+wPd7guCy7nK5bliqePj8hrRl0ykIZEFzt4Ep/M7JxzhgqIv1KKgFRprUgrY10YxVd458QGZALDgasH2MNRRAxSUrbfPuDVw9cAGIfdA6Z5xhzv4d0O0+aAX/zyF/jm2z+Fm4B3H37E09NHvP3+gsfHR02CSODJAzuU2AA+BRJqT+TYMjCwg0CAE5YOQML8JwK8li8Rw03SRj5ES9B1go/IKFhiDt01s2RiYUnGQIWgGcpkVtpNA7T7ujO/qT81+C8GfBFAqHBOT6IGhg/r2cra1R/rCe8epBtT78bFARpIedPgw66hr/JmB6wz6BjvyXW49o6GR9Wb7QGzQ6SuvlPALwSnAJDr3zOAHFZaX7L5Sya7IYCjgeQWs9gc9QSBJLyDv9VYs/ERv1bGy1HQ7m0OMUagAiFGxBAR44yHwwPmuAc+JjxfxL+XPS4xovehnXMilE2ArRGnSEnt2lwm7kX2sgbmKNikCTvBQPo4EtS3UifeSkTVugEETEF0eKeN1+uTeFx8KhEOT6nieqlYlooQHDbbCT44bGbCHAkRotPELP5TXkWHllUg37rEv3wYoGa6U7JH5QrNb6Vh3ZgfJXvB/qaljWQ+t93jz3v8bwCbLGjqgNOIUgMWn0jmyTtxHD05bKYNttMWm+0Wm538hGhgU0CIET5EVHSwqVRxiHPpYJO1YW+Oxs2ppeticJRAANWudi8Ha5WOLNVjM3nM8wYrX/D8/ITzcsL1dEVaMtKasaQEEbwFyhUAPFAmOHgEmjG5jQTNdVGhLMlqNIBUHZToZ3gfsN/d6+Ht2qJ0JDmO5/MzMn6QFvAfPuL69oLJB+ynWTIRWvYSQsRmtwU5QrleRTV/XfH8fEJOqVGBoQtHFpVvGzpEYSCJ+FgC0A2bteYlElq4AIER0zxJRmWKIhhe0RhGMU7YaXfB3W6HGCeEGJsj8rml+DL4IxC8njXigDnkXPD89Izz+YTrsuB4PA119FDR9I2UY5CsJUdCuXWOkLOHzw6lEERYt7ROI03vpL5EtH/G46dSeqMVb4BTPyhoBNeAm/EZbFYPBBxp1tPEBZ1BfPra2gIEO2hO5/MAEnkATrsKej1oM5wTRuE0zyLElzKouAYqgidMOoZSjuGx2+3wF3/5F7h/eEDKjHWtOD4/4Vd/+19wPa1ISxax6SKOes4FFXIoVK4NbCpO9N5AItAsbYULUmKsCUiLiF8zM4p6DyUTaiGguCZOvt3c4eH+K9RacNhvMc0R87RFrTPI7/D1d1/jL//6lzjcHTDFHT68e4+3f/jP+M2v/zPAEsR5tQU5K0XfWH6QFsWgCsrixI8zbkvXkQjeyuEpB1plB6IMZkJxXVPABG1Lzci1wlcHxwEM0zlIcIEQZ+twIT3mpCuG7M0QpImCI8lgEkjAwmTaVrdOHXPXR2klYOilZwI2SVlwqeYguEHIsTvz5jCMDn4L8tEBJ25gU3c+7JoM8LX3Stmu6vuog3HjLA32/aUjhbbVuG2FqrTzoGKTPgaEKTbAru1Fuw8Dm7I4y1ZKaKXQ1u00RK8tafvevBmHEOAHsMmCANYy5ZxLC3bIOeTs4VYNVrYbzHGD4FcQSanLdRGwiUkcN+cJHr6XfMAYV9qhToyLgijGQLVae24sBe96eZWIF1UL/cQRigG7nZTCgRNSsnI+1s8RMMQHQDrYAcsCrEmyjHWStZ6yCIzWwshJssHPKYMfK/bbiIOL8LPs/1IKKgOpFGERz5sONjU7pzaSrbFHaUGFBd9tf5KsRsnKVQ2o9ewnAZhrrcicerBMP99Z+t/7MAC21Np0VKBBTDP+rCxIEl0YFwjRR+w2exx2BzlrtzOmzQSfI6gEKTVWwKnmAtQizAINRFIpWFK6Ybs2J7jDNeiiWeJ3Sbc0gkcQyRmwisVWAZucZI/jFFEuBY8fPuD59ITLeUEtAuRerwuYgVwJuco5P80BjiLmzQ6Huz1qzbiuwigqecFSsvr8YovCFLGdd/A+YN7s4cMkdgyhJWNAhMfnR9R33yPlFZenM06PT/DEmHyRdWE6GN7BzdLpLi9XrMtVtLIuq5RftXWnYwLpiByDCP9HL7+L+qbiv3QgI3i5Hisn9l5KEJo9szVaxT/d7e/x1VffYnfYY7s/YJ7FXzRh8BsGiAZrpN/BFiGTEyDBE07nFXxJWNYrfvf73+DDuw+4XK54fnpGLbV1hJw3Ew53O2H62CKlijhHOCedBmOMTZuusfuZWzzwEhBrbs44hm2Tjay74X7sVfRiJzK0LFzmYWR6fe67bWylr6Wc8wYyTZuNNgXpNnxN0k3bdKxqrViWRVn5aDo6VoFhgsmhFvggYJPEFXJfMU7Ybg9wBGznIKV7TmKh/eGAf/Hf/DVev36DH378iN/9/gecj0eAf4d0LShrAa1Z7HwmUHXwCJhCFB63D3DkZd2wxBg5S2nXuhasa8WysDRh0EZHuSgbqHqgBpAPmOKM6h0Ohzd48+o7MBjb7R4hTpinBzi/w7y5wy//+S/xV//iXyBuPT58eI/3737E+fQbvH/HqLGz30oRzU4ih+BsfLWsyNXGImqOk9lkBpxpSFEHm+R4khImN0mTihABcnoWmf9cGXktLeFWcpUGQbPYhMYUqaIrBSbxtVIdt/UnSY2Xa2kEUe08ZLaEGTrYWdudNzDT9oq9poNHUvospeDmQ3W/o/Jtsq7Dum2jNBkN0ffJvVplAL1ug3OAm6hJv90GPtucELUYamQadgWjDvLlLPag5K6rZhfqnDSWIR2HWliTck79oYBpijff0WQ/iiSBa2VMk0eIDsxCSAED0yTM3s1mg9dvXmG/u8dSjsCPcn3eO/goe8biWS7mv1lzK6DUVTvT9sQssyYHVSessa8NbFKNpVwcuMjZKUPN8EQg3QMWqtmYEBGmTUSIHnEi+MDwHoiTR5wc0lqwpoJ1ybhcCq6Xiu12wsPDhDgHAZsmgisEKgQUSKy1JombFbicpukWbOIOZNZqYvpFtaPUH2TfwKTOENSE3ZD4tSRY1fOLa088/5zHzwabxmDDssrW+tUAoZG1odcni9d76YKlavOuterVibQFx7cbxr7PhKqMGinAAt1cm3wh2oIxZhTcEMDr4WzCcXJQyMSknFQwG1Jnr4BXrgVwSnmmCD/t4FzAZrfDvN1KffE1oxTZhF0HaYYjj2naYJ73CCFgtzsgTjNMg0aWvlxbccChLEg5gT3gVo9AhOj06FQH0bsOUddapCtUsSLZ0cDQzdiMNGUaHGxuBzoDsHFzL95zG/jZQe6cgFExRs3Q2zjZ6z+TsbLPaBkp+VtVa5DzKpmlLHXbXtdODBO8q6r7IE5YVdYHU4KDtoNXI1VMY4utHAzD7yHL8NJhubXqL5743P18BqT6ZO99BnCDFfrcHgyt27SNvesCzM3kt8NIvn/cL23+NPCyzIgZjzYmWrTuPaEGp10RgoKO5jAyKmdUzhposAA7mxlEwH5/h+3uIOzAKgZdMtoAFwJXp0zAAE8R5Dw4yP3McYspbrGZGPv9HTxF5HmDktaGlZEjvH79JQ77e+z2B8x6yNzf3+Gbr78Bc8V2NyFEj2neYN7tsD8cpN20MhtC8AiTly6Njm7shtmb0eFtY2+ToXbCVoId+85aejdgj1AKwOoINuONIcujmmcNFdelYdldGGjD3dExIerqpAuYlcuJ061zW401oZ9nn2FlTPpvADdtapv+3M0y7QeO2Anq9/+ZwMKYgjae7Q/oa3N83U12HgaWvtgbN0kEap/L4DZWtzuwf4/ZlA4YvTi7uH8nY7z5lw9q//vJ+hiu0w3zSuO8Dt/bDK462haE1ioaU5JpgoIO3SY4096xzzblbGjZEZsbYRwddMeU27/a3PDwbwMWSBcMvbjBPgcynlJWTe3Itr9A12i2bGcx9mlbyN0GVYjTp+anrfphfNol2Pmg8387A30tyj2qUzQEtP0dNHS5wzD//Vz8p3uMF6L21bR5iEA5N0208RQ3MCOESTK1zrU1MXbjtdO0Z9t1dFjmp4EFWp5t+/xzQZa1gScX4KGl8zpHsp+VnalrWoIPKT8SZ12CR/MP4SZlsE/YbLeil7ndYLudkTLhmiqYpQMZ5wKQJBccBfWhtvAhYLPbC9uDhD1vPhyRAztgrStSTljTGTmvACdQuUqAZzuCJAElNkL8p94QowcINhqEboNshxOGdQ1upQU82nv188bhtc55nhymaYNp2mCzkZ9pmtWv6mUbZo/bOTE6b9DtoZINy3oFUHE+HXE8PktL8FoRgkcMIuReG8gs+zClAtfA+IqSMtK6qsB7GfyRvlds57Vg6ubxUnaAbq97sF+SQHuxP3j4/Bd/6nhF+8f4a/yLXrMwDSzZah31ANZAiT65/hZwQqogCKpmgF6aZeWWojUjwXmMEt9IcMt6zivbtGbUKuVpLhA22xkPDw8I3mO73WGeN/AuSJkWQ5uiALUSuLGnRarCERDAshemPTbzHrtNwd3hFZybEb3X7rEVjAzywP3Da8zzBs5HEGYwezw83GP5+mswM+K8hfcBdw/32O33mDdbgKRpEoPho0OIvp3bn1hMc3jamOtvNXUtnWoxnn6I9x6Ti90qMiAxyPhZtierztttLNi6vFqJW2Wgk3rkvY0t9AKgtAYwjE+W27jubqEe+Y6qdkFyz6xH6u3IGKg22vKbr2cDbo2dNPgqg99uEiNofmLfDD/pvtzsipf38MfPvRsfzeKdl180HGUvn26OqH6AnTGj32QsGfNBmk82nl3q3xCZpqSwwxlaQZEzclmRywpGgQ8ab3jW8rQ20G3sCGKXx+/pARRkTSjLnxlSUTR0Ye3roS3uVuY2stpG0eyW1GoyO8rGI1L2cddUswZbXKzKh+HNHijhvZYKqgNQiw4EtaQE9OSy9cmfm3Pz/7n9dzteaFy1n0yw+Jc6bu6PrKXx8fO70Vl2Qy+kgHFdrzhfz1jTguUqArvNWWJGABCdw3be4rC7x253wLTbIG5nINhivg20amFU1xdaKhmLtkGVdqiM6F2jS9pAmQFj6jX35EQIj7TwVwTXGJeroJlwAXGzwSWdcDwecb6e4NhhP98h+AmXdUFhxv7uAZvNAbvtHl9++QtxEHYzpu2E6/WMtz/8FtfrCTkVXC/PiGGD12++xmZzh/3hDnf3rxFjxP7+DtM0K4AQ9CCTg+u6Lvjq+gvkknE8P2FZzyjrFen0CK7CHKEKFM5IVTJwZb1gOQk12lMABa8LZnCa0AMm53owxKxGulasq6Kd3iH4IjoMYdJMnddWvb0Ua4ob7HZ7xDDh7v4Bdw8PCGHCNG3kUNcW6EAPJD7BdJg7DZ4LluWCXFacjk94/PgjCIT7wyu8efUGOVc83AmYdDqdsS4ras1IyxVcpYywlqwOcgLDyhRyK9VwutENEG3tHH/aWuuhaQdsB9BszY6MqA6S9iDvNmZWI3BjxF/sAX0/sQCeQTPW0zyr0DBAJNe9LlfkmgaH7/YgHUExhrD91lWE/db1ipyvIOew2U2YOeLu1R6vTvfIKeF6OalI6oq0LMhlh/P1C8wL4atv/gy/+LN/jvPpjPc//ogYtnh9dwAvDnmtWE/KeDh7lGVCTYQ43WPndqDZwW3FIfv6i7/EN1/8Eush4X7zLXLOiD42h217t5Xf+4jdTnTe7l+/wTTPOGz/Ff7lX/6lHsTKdvMEBIc4TyAf8OP7DzieT6gugULBNDtstxFTVPC2VxmB0NvHixCi7CEtuhlgB7RD4bDb4n7/AIC0OQJwuTwjn1cA4kwHCJsbYFAghCkgbFWsVvWCHCkrYZA7qrUoa6lguYjQ6DwT3CxeVG36eRV55Rbk24FiwH3VwN5KSeUu1JHWEkoDj1vw6qive8EhutNIThh6LMAaSGwHuQWOSEujqYNkzO07xHakG2D1tuvhsGbbPrNxlwQHGNDL6oc7YfgeQnEZ0Naxxm4dW+begBQaTDinwXRz8tTJVaeLNKB2RGYUxCI4QpycAJlKCR8BLmvI4AODnYcLgIuEMEuG7rKccblexDZ7FRP1gKvi3M+7SQDSoHPqhBHLTHDQUjgNmMFV6M1AG38wN/ax2XtmdGcMkG5yOufCHB3tFbfx91HGwXsM2sDyj5QZS0qohXG+FlwX0RFpn8UaeFcCJymtECFrL5lsY9360B0oRy1RJLbVSVCsYysMJ4ZTD4ycdMaT+/PwvrY5lgChSmOR2psmdIDqn+phdlrWXy0Vl8sFy7I0FjGYUXOCQ21r0ZPHZrvH4e4em/0OfvagycPVAFcDCB7Wir1WcZAtQ15qFf9JA2xhPrFk330H0e3yDGha04p1XcGI8FGyw5WEQVi4IidJSoAILhIKCo6nC46nMwCHzbyHcxGXZUVm4OHVPQ6H19hsd3jz5VeYphm7w4zdfsLz8RFPx1/jujxiuSSs54QYN7h781r8rv0Oh7s7hBCxu7tDmOaWgDINQudJuvcW8WUen97jcjnhfPqI9z/8BiktYGUcppxwXk7IJWO5XrBcr+qzapkAF3CPeG8CUgl0EgqgWmvW0VeWWgjS6dU5j83GwcUA6yIJaPlerdhuZ3z33Z9hvzvg2+/+FF98/Q1CDIjTRoTGfWczWrlN66IG3d/avt05j5SuePv2Nzidn/D0+B7vfvw9CISH+y/w3ddfY10SLocFJVfRSswFKSdcj2eUWnC5HrGms+owyliZNhVYhLGr98h0GxD3Rw9OOuhL7fpI7abd0zzPCCGgJQUUrKymE2K+lPlVBmAAoqFku6n5YD0FYfGE81IG6EPAZrtHVKarABQFKa/SX0fneQTyGBbgo7HSUy64rivgpNEDuYo4OdzfH5DSjNPxGcfnR9SSUfIirNlVKg9KXbHkEyoO+OKrV/jFL/8Zjs8nLMcTAkUc9q9wvRRUzricC64Xxrp45LxHrRXztMM8z5jChP12j2ma8Iuv/xLfffMLvLm/Yr/9BmtK2O/22G638MFj3kb44LB/2GL/sBM2bdzCu4C/+LOvUP/1vwQzI1Uphw5zRNzMiPOEJS34/vvf4un5PVwoCLOcFWMX8Z4kUyU1fb7cGNUBkaAba4PDfo+H+zfKyr8gpYQ1ASVfAbCcDQ6AslqZRGbBGN15FVue1oycK0LpTF5ZB641+RC2TGdPm96pMIPUF/hkOXdfBYCWkkkMQQb4vGDW2toBoXebtLUEsTGkzTtMUDytGVdLQJmfOTLP9ffYOAtVWGAtYW/i1C8fN/ckPk5LXokjBYb6tVrlbM07XjKrLKnXb9c0kR0cCVO/VEn229lgYJLNh12/dyKfA1a+FZsfi6H7tJS5uQA4EOLGA17+fj6ekJaEGL/H6fwR1/WE/WEScNZnKZFjltgZADlN0sCJtI7OvYnam6wNlyK22gmgKOQ7uQ4PEaX3pHp3kK508xwQAilApYQWS+xoR2nBJgoqGKlUlGtVv3NC5oA1V8iqciiVG2vxclqFwZelyiOyA+UAZofIUdm20gDFqR9pK5K8zHdlhtO5dOSlUQv1eLHWgkqWIAoaD0j9t9lSWSTqfw1SNE1A/mc8fn4ZXR0MPOmhW0sT0rMOO+1AYJaGnyQ08CnOUi4XPVyUG+aWqrCuEN25NOSsMovYZ60oBhI0J9iu6MW1spRMeRqETXXtMzQw08jFhwDOIoCeVtEXiH6Co4BcKshJ64DgI2btpme6CfM24nwmPB0DSnUgEiHG4CZMcYPtvMd+d4/7u1eIk4JNmwkmDCnjKgZnzglx3aGUjM1ug2W9YL0840QJNScgV3CRTi5lWVCpiEaTsrEk02fgmwVwNjY9S2ZjZmNrLcCtDhcM+HY2WBmezY9mEwARKZxmxEl++xAUlLJOWbeHt031y4wykRx0uSakvOC6nHE8PsE5j4e7V5jnGTECUyQ9NAjE4lyl9Sp16+uKnFaZd05qFC0wMcHBYa3wrWG+2Sqf/If8GCIu193Ho4M8PYilga46YD79oBgHpP1SJ60JDzoFJV0PRCDMJqbyYj5vwTweP0+/Q5zkoqUo8uNdQAySHZ4mZSw5YFkYDBFPXdYzQiSkvCCXFXH+//P2p12SJLmVIHohi6qamS8RGZFLLSTP63n93vv//+OdmZ5pkj097CarilVZERmLL7aoqiyYDwBE1DwiWdlzmmVFZ3i6m5uqygIBLi4uPF6/fY1pN+H167d4fPWM3RBBVUVgE1ASoWYHlABUwGPC4A4CYg4T4jDgsLvHYX+HMVZEt0MtFdO0xzTuEIeIu1e3iEOE8xnkJGsx7fcIMeD+cIN9GMHMWNYFuWYUMDKxGFhHuMwL1pSk3a1jOE+IwUsJgQ6SscQAtKxAwxJ0JGWU++AaWyD4gN20A0BYVxP6nK/mXUShGVWBChecaJO1biFo89jBJg1cqtTvl6zitEEcJgJg0scdTLISEVZQRD+pUmPAmYSPuQ2297eA2zYreRWIG2CmQFDLOrGAVjln1aVjsNva8Q66CLil2UeumrXt2bvtWHTASS/fJ2xzs7i6PwsOmEWnTTyGerVft3NoI9Gva3Ro2vwMfTz0P7YOtoBEps3SnbertWLPZx3mNENXKyMtUr4Xgmi92LVEyNuyybR5VnkW6Nqq0InlzaDYDJtJsv9QYebmoOoRKg59B+2ujg10kW5hWKF1sTPDxvq5KYsmT84KYl6tLR0vy9qJcqaWi8n4Oerdpl6OP+s6E/vLAgbox1eW9t5sop4EZZo1tfO+RjY+xdaD+Guxm8x22MBUDaKsoYc1GHAazHS/RcpDh0ECdPLGbLJmGCI6bZTz7d4TP03r3mXAejXKJk4xo2gZ9apSBDJWhi4aAAZlHwgITF72dEoJKWUADiFI+VIuBZSl4cM4ia7j7e0txmnE7hAx7SJyuYCRkfOsJTEFwQFjEB9qv7vBfn+LECMON3eIClQMcQQ5QlSxVZAHfECtBdPnCcfjEx4fHE7HjyBPInFQKioqeC4CGpWsLGrS0jxsZgjqPF4Hzyaga52zOtgtbxd5CBujPieAamVWhnMBN4db3Nzc4XBzg91+ryCpCY2bDaYGdF/ZMDF6zWZXrjidnvHw+AmPnz/g04f38D7g1d03OOz3GHxGZGkCcnYr1iUD9YJjOgmIcplxmU/gWlDSIjdsXa70Og1s39hOoO9TbH5m2XZjeLVuoCrzEGPEMAxaBlUaCGT71ADybsT6XmjX1PW3PRg6u4R68KUJ0BAHlU+oKGR3uXmOFz6ZHnvNVlSWpF0uRYS3NTkQB+kqKpqmEZmAkkUHLOWEeb5gnAbp8oWCaT/i7du32E073N2/ws3hM4ZhkuqIUqUjYiHU4gGOmnzcIYYdxmHCzf4VxmHE7eEb3BxeY4gJQETOBbd3d7i5uUWIAYfbPUL0YJ/APsF7j/20QwwRA91h5xwqA+eUkWoFnAPr2VNqwel8wrIuUtLmBUB4uQ63m2Xr335hUbdnuG6GGCMO+xvRx0oCqOS86axJcj2xOQXGzpd4hds5U4omzonUR9oEfOgl+tvkMm/muMebm/vmqxvfhE4KIEC1vLhePzdZDEDtLJIF1D+fiaS8sDIq9QohSyjJ5e1+OyOLat1oKPXY9uWt9gW8jY1Jx78Pbo8PSN9uvsp1yW/zr65CbZvnTXJyE/eYhWhrZbMvzZY4kiQf1T4p7eyyZ4YxCMVvcpXBpSKtBVyBy3xE5YRSEmIUFmm1pFutsm5Azc9RxFD+rWhrgrabXt2GWm0euQ2n+K7b5wOCJ5VQkO6glRW8o+4zy3qUdSx6T1LKJucjqdarjEfzmws3jbEQ1M9kRq1OUsZEWkm06UD7cm8SbZZu1woDTIbFfKIKAQPNnSQY0cL8S1lrdVPBtjkFfoEP9YvBpsvlDAawLDPSuiIl0VcqtQImE8MCQDEzKBX5ig4xREHcpx2CikzTEOCix/3da/zwq9/iuL/Fn9ff4/J8EhZkMwBG/+701S+pu/3FzMhFkEGAmwiWNYJjJqB6EInztttPiCVKFpAZwzDgcCNZkEGdGjhCqRnzesHnpw84zgPwKEDUPJ/x7t2/Yr6cMZ8KojtgN97h7dvv8Or1W0z7CfubHZx3GHaACxXBSycfmUcvtigD1VcwIvb3E+AY8/kZD7cD0rLg6cNnnB+fkQqwZkIuBNGelcUs1FnJygmTYSuCrdl29M5lIk4qxnAcB0DFgUMI8N5jHAdR/FcRQFAHXAyVjq2joC18y/D3wH0bEZrfZtPnnDgDNSWcTk84nR7x8af3+PEPvxMnOidc7l/BhwHDuAeRx+FmwO3dK6zrgtMxoOSM+Txh1Ra583oRUfm0IOekNcWQzG+hVlpEjrQlpQX+mwymOjBy+1ruaEr8DXRyV2NbmsiyzMnWRzXH6ypobM79tUGWRIgKdocgAI2XORHKv82rOV2ikUZUYeVcUt44yFwpOyq4IGUJLmBdEp6fn+FcQBgGAMDpdML5fEFal/bvukjHuBASlnnFMq84n894evyMkgve/vANfCBMYcDNMAIgvE0FS2GcTyf8f/+X/x9qrbi7vcVut4MLvuk3ffPtG9y/eiU19VnGLQYtxwwOu/0E5x3m+YR5PsmaRUYuBdEDrK112Qni4rxDVF2jIQbE6HHijOfnRzw/PUppZilafmQZCL76anMlZhedbUZXC5dYy+h031QUUOZWRgoGmKR9vHNCeyc9LKydrYC23A5h3oh5mwgpb3SPSt3oS2mmuxqFnJURypJ9YbuHzcFpmMSVM2V0ITanqy395pOITa1bn18OdA24JE4TNqp3Hl4PMGegE5xmiRyo9Psmqm0MtoGLAV1ol2NtXywZwt5pUkEFCChXi9ionIrQmr2XoJyEydODImp+l24+nW1WFhDDRLftGs6Zw6vZIQXfpTtKRiEpFXXOt0xkVYFtrwBjUDC+hgofKihXFEipSq0kQvXEGKeAEQ4+uk0HHlZ76eBpAANYl1WZSF2/hGsFaxaUNaFiJZdMDMddU6pU1eOJ2hYafR2lVFGSzgxXAZmcdjlisf82hsxQhpeHrw7jWFFXaYG85traPDfHuy8+mPNLL77MMhJ6SY5k78SxKuooQh3yovV5xAsA0lL2Ps2yhrtj1YOjX+Yk/c96iaYeY55npJSk7Ex1YJoNqiwJpFLgqoevHnAV0zjh5vZG9BoDwUWHgztgLAMur7/F99//FsfdLR4/vsf56TPI27PKZ7JmvsmCeQvIsAkoGOqACzZVMoNrDzDFF5MJjX6E86OUDw1OmW/yvnEc4A/+CiCrXLCuF4AKPn6CNBr5WEG+4nh8wvs/f8TpeETgA3bja+wPN3jz/be4vZdEXZxUQ3IEfKyieRGF0Ua+aDRCcEFsxHe//hbf0bf4/OkOiAWX8wmPP33G8fEJosA8KmAXlJ2gOnSwRjA2IP1lpauy52r7GUAYh0HO001DFZEXsE5zkHGLEYGBcRgwRAEnvBOOgCNWHQ0Rs7czqIULZpPVWFe2IIxQa8aHD+/w449/wKef3uPP//o7KSefMx7e/ITgI4YwwrmAw+GA+1cHnOcINwogsjs5zPMBOa24nE7iV82L+FEFqMWhVg9A9LbIVVBACzxedk8l6rp+ojfkGtBErjegIRDgNbjasCm2Xa7k8zqz6ypZ8BVQwADYGGNjUA0xIoYggKjqljA6ECa2W3QyxRcWlhm5rnspwsQjHAWkNeN0OoGV5VtKxbJmLCkLO3xehB2+rqJpkzKWecHlfMEwnHC5PKHUjN/8zQ+4Oeyw3+1wf38Hrozdq+/wd8eLdqYUFvP+sJPEa4g47PYIIeDVN69xe3eHUiq+X79DrYxxmjAOo/hBk+gEni5POF4etW81JGnv0CtIfAWhgoIw8Uzk3jmHUjNOp2ecTs8imK52W+ILYYzCOXRk7jppR83mWkKjeb1ynTHCFUkm+uLgsnQa1shG596DXNBuvM2it3+tsx/gwKAu3MwqL2Cl20xWS7CBGbn9pANC/UywBEwrgbLnIg3eLW7YfGrrdrhxouqGSQ9uxxfEh5KO7sbONeZRCL6REbaalbY/5HzcCjVTBwsMsNXrEKExXqxRyPbpq54VpQBpXcGhN9746ktZleTMB5CYxITsvf8S/GAFdypqZy+x+m+sOoEmnxJkD3vVj6qaEHMAMmu32QLM80WkbIjBup4LZ5FlgbH2HcZhRIwjSiHklVC09F7WF4kGHkP1YdXnLgwqwuqWhJjEkQb0kDbsMXJDzmjd3rPqIxKpLIkTxjq1btji26RV2KMp9fcaSx6AVh3VK6ZrB4IMxAJe+k+bxWKrW6otvEd12khEx6hJdVTpyCn+fb2aerLPYkjCavOLX+pD/WKw6Xg8AgDmtGLJK9ZlFf2cLEivdXSQcqgMX4CYAb+TriN3N3c4HA4YxgFxHDDsRCT8zevv8Ld/9x9xfHrE8+dHvP/zn4XyBQOaCkp1V2BTi6JsEFpQJJs65YolFcBVRN0wdjwJECD6S9M04XCzx5iGVjc77kbcvrqH9w6jZixAQKoJdTkhf/4TyDnMyxHLesK6LHjUjh/78BaH+C1upm/wq1//Db774Qe4WEFDbVdnZMTgMIwKZDgHdg5h9aAoi+juzT12tzscj8/Y/3SHy/mMy/JPmD8dkQphzkDOIlJWuWeKnHMCQkntDlISUMmEEcGsjq2wJKBB4aA14z4ExCilG8MQmkq91bBCM6nSuUwdJd/1nVzoQuQ9cPzaaurBUwgeKTOenj7h06d3+PEPf8A//5f/E84RyvKMb968wv7mDq/ffIth3OH7N7/F/f0bLPOK4+MeKWWcnk64nGYs6wocn5FzQlpZjGYFaiYN6FQIDlqT7FiQ6GqigRpgbYyQd+Ys9nbAznul229benaRvqoW/ooBcVU+x5tx2Ti0hGbAGh3fe+l0EwLSCsmkNtaAgE1y8Fk2osL7iCFOMr5xUGdJSjedc5jnBZ8/PUjGLwrY9Pj4hNPphHVdcHw+CVtsXZDWFY4CLpcFl8uC49MTPn1+jxgifvU33+O3f/cbRBcxuZ04BWEUkTw95B0RpoMI2pKXUjATxCWw6KGFYWOwbG3Iev3w0we8f18kqC9CTR8GAisFVwSmC1x0COPQnKw4BNSS8PD4CU8PD3Io1QxfvQh5bzJGXSReD2MiVLL2ttcml9T58N4jTqMCNRnOV/g5wGnwwpD6NXGwtatKEJA5Z2Bdi2aRNJCrIq4uYJPRvlnBUWH1JZKuZcEHOJB2tarYZtaJ5fgD0DWZ2LLsDV9pTCfLJgFoHUc6UGzrueqSJXVwuDlBorFA8L4K9VoDBudVOFyDNscmnKmft+lYJzdlQC41UKJ1giKoVl1nFm3fZ5pzNpcEwEeFXsmhEwX63yvvUWywJUtcRYVR8a0MmNs4FO1QV7kKcFOr7Ec4ba+sP9NgBuQEhAliL33w4FxQQ9HqDTvjMkoRIeH9ftAMHaOq0GsFdEy9dMJiwjpnyXqhgkiZAUW6Qvb5AYoBaGQsBRL2SM3wwWHcex1HPWsLI80V69rPLEsKSOClADZ1gF1agUsH0rLI3Ka5IM8JVVv/NkeIFNHY2D3nXMt0tlcLSmzrUTvHSs2gorpCJaNw1bJfbT6AXutH5n3r510nqr7inP07vp6engAA58sZa1o74JQzKnUHfD6dkVPGRAN2bgRCxX7a4dWrVzjc7OEHDz943Pk7eO9Q54zPv/1/4/npEeu84OHzJ+mkWTvQxE3I7brhwdXLbGFl1AzkLLbHabkj14oKEcQewgQfJgxjRNw5+EHBBHKSWPCy372y9rgWXC5HLCtwXh5AxDjPJ5FhmFd8/vCAtGS8fXWLV6+/xd39PX74zW/w+tvXKJxROAMkWWTnKkIoCFGZi54AJ6xWFxkhRnz/6+9x//oV3v/0HrQPOD4/45/Lf8PzUxJGvZsVqVGwiaQRh5zrwqC+Wil6hjNruVc12yT74eZwh3GY5OwdBg36+jpnGGAa4XzAbhoxjgPGUXwogmiRikSER0uGQ0t+qAfBEgwoaEjQEsKEP/3pD/hv//SPeP+nP+EP//Tf4L3D+eEBb96+wf39K/zww6+w2+3x7Xev8M3bNzhddhj2hJQSLqdbrHPGfJ7xmT5hXVas6yesaRYWSfWolQCOcE5AbtMPzTkDud8PgNZlWoLmqH4UtSYXQ7BmM1XO21pRvW8Mv5dJIGDLsK+qo2TLts/U1j8bxhH7nWh9jaNUVuScN2ATQM4rc0jsrTQudBjHHW5uX8H7gDgMjVkupSiEZV7x+Pgk5xYNYAbmJWNepPHO+TyjpAW1ZHBO0lH5fMHpeEYIT5h2E4KP+A//8e8Q/ADvB4QwAeTwH6qUSnvnMWhC13wa56xhjJ6Pyt51JoRsC8TWCTPevWM8z08NaCIwCgHsNVnKUorsh4A4RQGBBtHWzTnj6ekBT4+fkdKisZSdFdBGK9tznNt+2ZpWst8rUAoALngM04BSCsIQkEtSsEJKstoe0JJqUjkMgiRmLNDv6qcybpZIBKwsS0AC9SC6uQO+/C/qjyF+kyWje8zpPBpYY39nfgq8a2vdXttGLdBrymeLf+aoglBEaF5tqCMCBQ/WBBHRNehkumKlbsAmqxCC7Z2OTatrBxC1DrqAHQnKZC0FXAmrA0pxTdKiv/jqe2esLX0quU8PwACnfg15YKBmBhwag1XYgqr7mDJyTnDOYdS1bmLl1kiLdE3nmlG44HQSgD4MEcMkjalSyig1yc819pmmHXa7A9al4FSsGqgTCZwCplk1VbkySpKH80E7tpHpJrF2utNEXhV7lHPFMlfFIKTzawiEEEh9KE1rqi/NYCxLBtaKkkUiQRq5UIurlyXpXgogRNGsGh1ap3Lba63EcjNDG8C+vVc7xdv+ZRaB91qLxiryNwao2bSTJa3s3Gmf+cv9p18MNp1OJ3n4nLDkFcsigFNKSetQZWOuKUuWlj2IPBypOLgGzK0eXQfGB49pL0Lb4yQlNmbArrpO8Fdu6mees2d6NdvLDtsMeuMtUNcxqkVb84IastjKpqgHPymL05PSquVbSWpd4bUbxR7TbpJ2hshCnV2ktMs6QuWgXXWcA3lph1ir3o8aHFK9pDBExDJi3O0w7fdwySOXDHIryPsXyHRv431V2tWycbYxtgbUxkEy6d5vxSntpaUbTftKuxU4W2x/ackZ6GJZgmthRmYBhpZZWHM5ZzgS1Pp8ihK0jRPGlHA+PWMYRqxLEkcoS/lEjCI0OE0TcpaDS4CZiuJzo0/XUrTMUiiWdndfW156022dmLPTBdD7s1xRabftXYGr97bDCXz1O7Rx3MxH63Dj4Z1HdrkdIi+SrujlQmjMM6cOnwSHMm+kmVjTfHCanbFOZCb8bq1tbQ8Y4FZqxbqs4MpwY4CDilXu9vJ3foCkPFkFiwjDJB0V4AAK6kFYtywv3YasbbcByZYRs0C9egmSuQq7p7eGrer8aOBZgXpKoJlwOh+xLgtSWq8zpS3w1L3R5gIv3gNDYBrIsjEife42DvYwiPOk6XEwCb17q6P2pSONtl91G8NYCU7TOU0smvqeg92/BdOMdo/cPpf6YlGv4+pv2u1bZ4k+DlvbuwXjtmPF22eq9qzbselO3NVgXS1etHUPMiYRWotXc5Lkqc0m64FNfe/pDujXZ/rici9p/u25+CtrYPNq7A+wtnjmroVF2s1PwYIeiHbA2fZss8o2Je0Xek7Z/iYF5bB5c7+T9rMGooFApJT+NlfGElCniLdOtEifVHMg9NNrFRZdLfLmZrLaeKF9nmhgFOmWBN8tWAP2ALOCbV1tbZf+zBymnz3Q7Wk299IYHwYmwT6Xv2wY2q7LLwKH6zX97/0yH+o8X3CZL0hrwqoscUcOhYpQ53MRWxfElps9DzE08MbsgVMGx+HmgFoLhnEUVp+mnLlKxvd/9HVloyorK7zbLEeqy+jsLOvvpwYM9G4+PXnI4CTCw6vq2ch57xE8IQ4jxt2IOEaARIMxlRVrXgCgMS5CDig5qQ8lehxhGDRA8yq8KmyBYRgxjAnTbqflaoQ5ncR2GEMWtj+5r09cAxkvQRDzZQho57VvviOavweg2Sjf5s79rK352lzQlQ1F21togWLGslwwX07iR6WEWgjn01ECNyLs9zuktOLp+QFxHHCZZyzLGTkXAE41oyLGaYJzHtOyw5JWZQQH8VlhPnUGWxVD83O+vHeCBoobSYCX/uW1L3PtM7Xn/zfGqgHKOkYvr2dfW2aU3bfdi3OSdPCaZBCGmoBMBjYxc2sARM63+Zd24KTJ2gi2bpDoerFb5kEpBfM8I8aKadjBB+noOI47EAmDTLTanLaHJ8QxKNuDmmaekXycd4iD+Hjb9Vl1YfvgMQwRALVGKYDo6zT/h7QqJS2gLLIJzgHn8xE5r61c1NYdb+zp1ofSGWvn5ZVV5+0/Zsi3h4DoxsQ4AlQBVyCM/e4jv/R15Np9H/bf2X/Yz/o6bcf9xjW6jtK/+ObFOtxULtCX69Xm+aqj3GbN9UO1M5Hk9xuAW5/n2kfc/vfVYShjbb4Ti/aTACHyHNTikWv/zJ7J/tY0Za+TMjoDRFfz+nKEXo7B9djZeLP6ELVpRJYrSYX+qaROi9ib2n2lzcLqCaTNnfwlX1O/nOpTmY0S29H9SxuDq5WtZ6HoZQIw32mz7lo3wcoN5LR4wcoNjRlrvxQ7svX1VetrExfUylIiyH08N0t6E2fqvev42XqUv7HgwP54e9j1v9uusv7di13+ctz/wusXg03/8A//CABYSxLByVIxn4Ui2hEvy7gArw83ONzf4vZwh5u7e9zc32N/e4NxvxNGADFyTRh2A77/za8xX854/+6PeDo+oCwrlqdn5DXBRY84DlIGQB0V7FmeFwYBLAJbpcLlAp8E6MnFy6IGhOHhowivBqHdXS4XzOcLmGtrn920H/TAqJWxXmYwWEsJC4gD7g7fwsHh229/i++/+1vEMeKCR7x/PuJ0fsbz8RHMcl3AaXe+qLTJCO8cbu+/wbff/kaYPuuC+lSQSsY4TAgu4Ld/+7d4ff8NLpcTPnx4j3m+YMkzHp4+S8CdZzhAhbE33RpY2DfruurGFmYTWMXSHLR1twjdCoIrmz9nhvNBsnHOaTecKN0zfOygBFk3gSqsEXR72uo+NwdGbycvoEFaEx4fHvDhw084PR/hmIBa8eHdRzx9ekQYBozTvyLEiD9+/3vc3t1CgEyhrr959QPu7r4BE/CavgEz43Q84nwW8fS8SrnK0+MjHp+fkNYLnh7fSffBTfTTalGbUVDHxUsp6DAM2B54poF0lVkz5wP9YLoy7lerla6+l9pbcYqGYcA0TdruWVsh14oLX1pGhNVoGGvKMirTNOH29l4ztaEBTAYexRhl7Ej0ycgRbm/u4MhjXWYQM5ZlxnqZsbgz9vsD9vsDdvsDSq74+OGTMIgGYU39+je/xd/+5j8gxoh1FU2DdV1wPj3LPa8AVjlgrFvREAdpfzrucBcHBD/oulWWhnYnjGPE629eg7mg5gTmgrQuOM0XCdBVqC8tM5ZTQUor3v/0I47HR+S1YLlkLPOMUrNkWh2JUwVC8QRXNUtl4AV3wOClHbXDv823HkrG6tztdpimASUXPD5JN6BcF6Qqmbii+iU5F2GFVDYcdwMayOGak9Twj5MIAA5DQBy8UHRXE7fXbiy1293KkLIiAFzNk3HqmLKW63XQoF9bxiFEWUPrqvoreqDKXjDqtJbtwsp1K4CKNSX4WhDV6a5gBT7s0DYNLLp6ZmDDIHS9+UMuWYV1qTlLpOUlclui1xN8L/WJWmold9Rr1O0Ab10dlQ1VCyvQ8+VBStRFPCVZUNrvRM+EMJOVAy9wJE0KchKb4IMEAmCo8K1pcKmNVsC1qop7ZcKyFORMykap4gApq6ggY+VZfegspAxlukm84JBYWRfIzdnNOQsDNgNONZa4EmoGlgs3wJ4g1PH1IpoIIQozy/ke6JZScLmsAEvCJeeCYfIgP3aHRidX5lOp4c7El1nFUntA6HTOTG/FAmvZb92Z23jibV49rrPIL+2qOaybmW3zaQmtv9brH//hHwVkSQlrWqX0Zp5Vs4Zg7bM9i+j34Tbi7uYed3f3uLm7wf7ugN3tHtN+Dz9EcEnINWN3u8Pf/ce/w+V8wufHP+LT5x/hWJlnNWFwWxFP/mKtX71I9k2uBakUpJSxphW+EsAZzhcAHjHu4MMIJiAjIZWEvCaUlBEQdc2qQ2tRIApKLkjLKiLkOaFWQgwTvn3zGo4Cvvvu1/j+h+/hgsPj+R0e13c4n084Hp8BSPmZV5V6gpyV07hHiAPuXr3G97/6NbhkfPjwHk+nJ6zrijEO8Dd3+Nu/+Rt8c3OPp+cH/OFHh/P5iPnygIdaJZOrwaA1udna+u05LwwA0xAT/ycE0Vjz3ol+FACoZp73UoJFzjVmUwhxE3Api1CbGrDZrU0ZylW7eLWXDEKpK9L5jOPzAz799A4//fgnnJ+PCE58uPfv3uHTx48Ypwm//93vEWPE23/6r7i9uwOcg/MCYH7/3d/g9etvMY57HG4PqJXx6uk1nk8n1FKxriKb8enjB3z69BE5LZhPH1Wugl6GLbrUCFAf186EcRxkjZXazg4bg14q1DP0YlO24FRPlJgd2BoKYf5Iid44jtjv91p+Kbqiy7LAViMcwbGcO8Zs4EHm/HBzi7dvv21Ak7GwxLYD024S8XEfMYw7kHN480a0rubLGVQr5ssZJS8oacY4TpjGHaZxh2VJ+NMf/4wYI8p3FTc3N/hmN+Dtr17DuYDzccY6S+Oby3qWsVkKKmlSPAkvdre/wTTtpBohiE5YYfUtdA8zGNNhwHe/+haWEAIz8nzG8XKUkfDSOfL8fMLzUYS6H58+YJ6PmM8XnM6PyHkGoyrjlzQxr2X8TrWE1D9gLS9vlShfrIsGT4v/o3gSEeFwc4NX99+gcsbz5TOWfJGznnM7r3OWMu+cSi+P0zjN4tCWVC8CEHIFqjKGwKLrY2VzzfS1hAdvgnS75RcAs0MH1RuAJGCZlc3mnJBzMjQJcub1hLIAHaKbaOdbT6LomGh3tKJlWVuBcwNZzY8KwXeihuqC1qri4iQC7u05iRSIUgmLGEEkvqZ3fSwkHkIjFljSQLqmNXq84RqqPbl5IAUwZF6qzgMw0yI2Fbgq3WLmrltUgZyyJr8qckooRebGriNMa03EiklQQNvWovi5KSe4VViazlUgMkYE+Djq0dSv6chpwme9ZqWxYAsM9bk9gyNhZAF6wVmlhRg5sV5LSnK9d4ghIASPXHRdAMJ8jyTdpsmhFmAcgZqcxkuqVVYY6yLl4zkKcFM10DbwuS0bMpyJcK2VtQWIGEZQMKmh9ofdQupf2pcCTurDfRXo+zdevxhsevfuPQAg1Yy1CJuHtabfNCLklgJAHnUiDHHEOE4YpxHjbkIcR3hlOBVOIuIdPG7ubjFMEbev7nBzf4f5eMLl4Qkl50YFk4VOV2jyV+C3tritE4tkZag592IsNiKMjsGoyGtCWhOk7vSa3WOIcFXH3TpF1czw5DEOB0QfcXf/Gm++fQP2jBVHLPOKh6fP+PjxJzAD3o0QqpxroIKUokkw8d13vxJGlJYGMBjBy8F59+oVDvsbHI/PWGtCOA+I0whWDRjo32w3hzlHtmjl+01r5Y0j43z/kveJ8ZBOQsJSE6pvhPcRTZx0AyJdI+/ofub2BzDl/47WWqbndDxiXVdx+CpwPp5xhpYiaVe8ZT3hcLtHjBOm6RYxjnh19wbjNMCFgDCOAKBgjQhPpzUrVdAhFWAm6+q02Si82TiM5vCBuhaV0cKtZGnbeUqGc8Ny2jz8F7FQW1Mvf0hXouC2NmTMfcu6bdlNHdDq9xmjlIj6IOBmOwzJBN/l546EZeicUM4BIHiP805KZlEZNWfEOLQv6wjoHGEZpItSrhm7e+mWQqcLsKzIYOTLgsJZym2VJrteVqBCgJlBaOOVTbvHyqGqOvxSmrXf7/RnCVwrjhoESQmPwAoprzhfZlwuF/zpT3/Ahw/vEMOIKR5EA6XW1vGrZdi5A7Jtvuxw/JmAbMv26R623HuMEdOwR84Zs5YZM2UUNn+jamt4Zdkxg+p2negBrzaVVNRcgD0rDZRuVcXWnp33GsDLQag3188VBdK2B/8miidq54x1l5AD7rp8rt0naFPqxk1MUfRcWO0ZCWhMZkh0/K42xCaocAo4qUApdLxsfzbG37ZO3joHOunY5UhKNkTXR4DIbUa5M1nFgSMDmduc2ozbz/UsqQJt2Ypg+yU5UJYyMiqiQwV0XTyvbasB01iAMi6sNLFfXzq4kOqXEZhq6yQXSKjvtVYpJ9IV51Sw1TpV1iylKDLEDqSMq8qiT1BVe0/MnNjYks2xlmmpqtVTspR+bsdOxhwKlrHqCWSQE1vYSg/1q6+rllNt+wvt95usXh/6fqrYntzsP7K9oo6/gVg2LS837pWt3fxua7f/Gq93794BED2HrOXQFkTIuEpZ1hQOCM4BLBIE07jDMI3KEB0aSzxV0aaIY8Drt6+wm0fc3N5gGAegVPCSRXposD30YgD0tWVoWhhoAHpVNjCBUF0FSLRCvBM/AISmkWFlgBY4NiDArsvCJk5pRakFhVkDxYDD7g5DmHB3f4+71zconPG0fMRymfH89ISHhwcQoAmYXi7jyEujiUHKxt+8fQvnCOcT47xeGhgbnMerV6+wHybE0ePz8SeACnwIqFUsZ+EiJr1+OUZFASgAm/KEDetS9VZMSN8emfRM91oOFXyE90G0MNUO2FnD+tnWOEdsgrzP2JTNv9Agt5SKlBas6wWXk3RDy1p6gVpxfD6i1gLvAx6Gz/Ah4PH5M3aHHYZxwuH2FuO4w6tXbxAiwfmIEHYApDRl3O1RNmBTShnn84yVCMvF6/nwlVfbxwoKe9WzGiMAaEdhs739PP7aujQfB9gGS/ambmvsbxob/MqHEu1K59wmbFCBYiJ4og0JlzCNE/aHQ2M3eS3xS6uAjiFKolPKJkWja78/YL1dEJzH07hDSUVUhDiLQLlqUs7nC56ejogx4vbuVlnfjP3NDt4HjXtkT+UimjQrr8gs2k/rvIr91rMPpKXdcO1sqazdN7kiDAE38aDCysJUywtjTTMYQKAB5D2WdcaDSg68e/cveHr6BE/id5YqWjqksiIGelj5+nY+WkDKG2O+NcHmD9lMdncAwzDgZn+HUjMu+YyliA6fNT8QnUpu/xr400JhBXYsDqqld53WE0w+jq+Bpm04bYuK+crJ++r7t1UO3e7Jf9ZqGkSA06oD8xt7tYBdofs5IGNp9Xu1cr5mgzbd5yzekNI13/zZxopRxvPLzmFVD1ZCZ1za/XTAgr/w//Sm1Kfd7Cay6pc20zAmVJt39TWylm5JXE3X66CFYQKyoHZg2nQ+t92TrcEJ2r1LvGgLzQgXuSSgQvSTWGQtnA8CSOr9heABNiBuU4HDPebbrvcG1MDKN6FnOaxHjcRZpOXozkkzpWqOeYB1pifWyhTvEAKaFpysJSnTK6Rr3/Ux75PW78t+vC2ab+HtC7/HbOa199tfL7avfpbNv83pX/ahfjHYlBfZNKbfIWig/EvVHD+HoCKEu3GH3XTANO0xTDuEcYTTesHCFcu6IpUFJWesqwgS55Ix7iaUde2bndEO2q0xeeE19v/ebmTXJ0FU4GVAnItwPgKOUJ0Ig5ciOgW0EbhrHw3p4lMroyQpgQOLEGWIAdNexMdSnfHh8c+oXDHnE3JNOB2PeHo6AyAMkeG9HDijduQL8CAOIp5bGa6yQN1kB4cg0wMR2AGXkjE/P+J8fEZaZpj6b6nSf10W+4tlo4iyPRCxbjgyVF0ZItWhlqosJmEuhThgGvcCgIRBaa6i1xT0K8bYSiNfviQDeDU97XAoNSGnFevljOV0xHI8oayLGg/trgOo8SWgEubTiloYPqw4DwkxDjjsfgQADOOE/e09nPdYFhGCBEhED2PAvf8G490N5ssTiI6YzwFcRQ+IWUtAmyNJup59E8etpYLa1pM5sgPDgshtVl7Pjf7fgBikFrR+6dTaH1buelCtUwVBMqQkgsImF2UHwxeZmMpC97TDS3/nvMxr8CIk7rxDzhXkMlwIGMap3woz4jCK6Po6Y39zi5v7WzGcCpKGMIiQJVND4gkeY9yh+gJEdUxKQRqlVXSMolngY9ROgpK5yDmJo5QTGssoK4OnSNemy/mMy7wIYEBihB4eP+P9+59wPp/wx9/9Hp8+/oTd7oD7+1fgysgladckYT0SpERPOq9oxyYLqK9cIW4DtwVKJPC2rliqneAAFxycZtztYFETIiyawgIKqCA4WVt7aEmTXr05zY2NY4BOd57aCd3AR3FOmh4ROiXa2vuaE2YO4fWe1MONqIHN27YthcVxcd5h1ODJFY9SK5wDYtSac9X0YWbp/rSZQ0CyitJlBu1ZfdN7A0jL6Bw7capguiV01Z5YOUptT4ruj05RO8z7Pmwin/pAdi3nVJgW3ZG4ApI3wWDfomTxs5QrUHdm7TmLEzC0Uf0diZZckowrkYl1igAlkelBAOQdXFRbQr45oMaukuprKwfXO1M2roODL5aJJJHkgDiVTp0768ZSVga72mxHLSx6NazdVfS8aI6KOlIyTg4EacObE0BUkRKQsqwVKdkwGyWdd1YF4uaUsbiE4lUI3Qv7zplzT66f95sX6ZJs9rUa23n73h5ItPeT+GJb/MPKbf5ar5p0HdWNz1SdtiWW93jymIYJMYzY7XbYHfaYlA3uB9FsKLWCSxbtp0Xa1ZckDR0KF4z7CXVJyEtpPpRl9O3kkTXNV+PGm4NKydziO0lYqwAug8kr4DUoQ6k340CFCJhfBTZ67QZwFtHd8gHR9B8nyfrO6YT3H/4owsTzM1JZcTlfMJ8uIHJw1SNEgMxJdx6OIzxHeIiWnWPxO7gABQW1ZrF9aQbygrKccX58xPHpEWVZEEid5qbPgi897o2Trk/UgVhoQGOJUWe6i5KU88EjDoOCTcIGjqO0mI/DAB9FH4famMmZ80UpGfcA0muQdT5f8PDwHo+fPuD8/IzldNZyMNdBq+I25fMVl/OMnAvisGJdC4bxjPe3P8KTRxxG7G9ewbmAy2XFZU5tQVB0uP3mHm4IWC5HDGHFfIkoaUXOS0scCpsrNB9ymgSwEfuXm00LIYAgOjGmWcYoog9mejAbx0XGFY0JejVRbWrU5gFNdJhJJKcNmI/qQ63GKmPA6DXWfEMAw9rOdqid9UHsxThG0Tr1AXGUZizDEDEMEbWMONzcwDmHtEakRToxllqwrAtiCHjz5g1CCNjt9ghhAOCw5ASvvghDNPqm6YDKFREJFaKrk3cyJ9NuBz9GwBPWtCCX1ATQK1dhBjffvijLX3yo+XzBZdEALomP/uGnD/jD736P+XLGh5/+hNPxUVnyN42BJmxlksoR1ZKsnjtTl82vFaO8LX022yM2mABU1JqEiU0VIAURghPahjI2jC1cuWx8wZ5wBdD8jVosCafnMMu6QQOOvn6mtH+3+w8kQvjaZawnXrqcRmMYmd2EyDnYBxqzeav/yRD/Jw6+AyVQrUhtylRqVbKEVJj0BHf3eMy3cQ3sFlalJQDN7jP3e7+Kqx3UYnbpGBhYCW6SBO38dCRVTDZMBrQILbTZKfu3AzVXw9/2JhqA3v1AQHQmc65wVfZc80tyFxUHiZ8UBqkUcsHDBeG8OxJ9NZPWIEWXGLXpFzIYTMqohCh+mCkgR3ChdwMWH8G8TafPKr50zsB8rsgrY1kK1mWzPg0q0WfMSQS4U8pIq/hxcQAs8ZezabWWxqgXSQkyd1OwExFTxEgBA3kE5+Cc2JBO/6C+L7Zrvu29zfqnDqp1rtoWKLzaIRr3yjt7aeBffv1isGk9rfKNibUxxInVm3FwcBSwH3aIYcTN/ha3t/e4ub3FdDhgPOzhx0Hyw7XgvJwxzydcLmc8fv6EtK5Y84r93QElrRrwKCKtzrE5leJMWi3vZkHr9+R6VzRZZFKfXLJEUCGMcGEEe0KmisKyWMpaEdnDq0Bd1UyXg4jNllpQFBQLQbqEjUPEzf0NhnHEvJ7x8O4jcso4PV/aolqXDOc89ruCGIRx4/aiTTVSAPEIlwNcZbhatewjSpvVrK0PIQKyp7Li+PEnPDw8YDkdQXqYlJzAihT35WYrTQ7x9juSMNQ7Cc7EA5RDuTrJko+7EcMoGlr7/Y06KyJWNw4jhmlECNKxbxgG+b2zBd4QD2zZCeZACXPMIa0Jl9MzzscnnB4ecPr8SZ000qUpW6eyMOe4Mp4fL+CHk8xxkIxhKQXPp8/YH27x9vvfYBgm1OzBRZDr8SAikTeHbzEe9rg8P2AKZ5yfdiLiuF6QS8HxMiNt2/CCQIgAecn4pyzmxg+AM6qmGKRiAIBlEACQ23bP0BFogszXwa1cTcEqJ52upHwhwPnQxnUcRxTvsaxLX+8NRdIDgaxVeG3OUzP0BPgYWqfFYZKMsJSdZgQGdvuDChoL5X+IAaUkXOYT7l/f47tv38CHiKIB6TBMuFxmpFRahtKRx368AQAMnpTeK8wMOWw8KiTIX9YLsDCWdZES0lqx5hW1FmFZJKlxLkmo2euyYL5cdG2JNtKf/vgn/Nf/8g84HY/419/9Cz5/+oTX37zCr377K3jnseYZFDxqluwkwE3Q3lFtYFPlfiCZOHTbRoBFGXI/ZdVZU0dJu3sxmUipArBqm2qWmutSKmpShzIIaNfLCewwV4abCexCtFwsq8fVHApdT+pYSbaqNFNt2gGdyWVMHXXJCTDQFFBdLD3cmfuDMxgojMzcWjyH6BFZLu2IMESnmgHGFBLR85KKtiuuDWBhA5vUs/eD6EowOsuIVbx7y3ypGvASejZFsnLSwcZSVMSmmaTgTTNJ5gjLv1InHwAwCno5R1Eg0abcRkw3ogA5bBkqWQ9fZuZZwVCohpc0bch6lHqQAr4Ow6CsRbUXYXAYdgEgdUJ0ziXDDO0UKrohxYBLB7hAQNFMpTqWTJK5d0ySTKnyBUCbSXTnWkBu69goTko1e8ik3eqgZ7GU6XIlrLOspWWpSKuUaQfVCaka6FQC5pyRCmGkFSNmDCEgehXHVEPVmKEvnSK1X07nQI420xeg5lEZcEg6Zy0BQHKiWBmm/yuDTWnWO2XoXdj9y/g7EgHpw26P3bjH3d0dbu7vcbi7w3TYIe5HuOgl4KwZT8+POD4/omjCJq8rcknY3x2QTgvycQWqsJI8nOjHtbtRHQwbO3TwV3uBgDxpsqKggoQpyAWgAeN4gAsBuRZc1jPWtACFJWaEalHCApue9S25Ii2iATPto3QJGkaMB2FsPV8+48+ff4+aC5aLyDRIO3hhzlHyGAZGiCIiSyEi1AEBIwIigoQD0g2IrTOjlL3V5QysM9LpCY/v3uPh8QHpdEaEQ+WClKsmMF440Gr/uJg9sfKXnlUXHcgEwANF7P847hG1M5iVcEc/ihTBbqdfE8IwwCsYQ93EfPGqXEGVVGtE/MH58ox3f/o9fnr3Ix4/fMDp4VHYcLuD7GcXWja+avLm+fEI5goXAuL4hBgjUIHj0yN2hxu8/f7XCHEU4DiJvzAeDvAh4M3td/jVMGE+PmKKK85Pn5HXC3I6o5SK+bIilyoNZ3wEOY84TtrgRLq0San/AcMwIvsMVI9SC2rOqCUBBHiVIpB9bsGydtutBdUYs7W2/SOb3Mn5RYTCjFQK2DkM+g7ptDzCe4e0LJLI07OQ9Zxxtu4hzUcMvIIjCezIYXcQwWHnrMkKYZpG7KYRngivX3+D/f6AZT5jvpwwjBG5FJzPJ7x6/QZvv/2Vio9r4whyuCwLnJPulACLXlSc9MYL4MQ/qNouq8KjwoEr47ycwMwq7C4alSmvLeCWsjZGSdLldl0TlkUY30WTeH/43R/w9//pf8PlfMLTw0fM5xNef/Mav/6bX8ORk8+DgrJV1n/0FcEzyNUGklVmLY/jdng2/wkb28cVuS7KVtGkdCDQ4EDFa4cPYUynvEhH3lV8whbMM6Q5gPo5LcLX5BoIrSutdaXbglQwnMgyERDfq7nU2tVV/BqrDFAQwpvGLdrTVa4qzyGvED3MTW1joOMz7gJCVDsJJS+o3l5ZVpRckXNFTtKtzP7UkmYmOm06XHEQGZRSoY1zNDYg1VNsSc0KbqQC7RRJrlUAreaHboAmA/6ISBsp6Yay5isWmbd56SV/lgzfAk6iUtEBNOj9kXYIT5ybbXUG7CTxf2FC6sEhjgHDEK70Za3rc8oJ66oz4SqYMhgVlYpCKbZeCbkKm4lIPtcDGMYArtrsho1FjxbX1mwMpgwiYWulVK/xmWq2m2W/QaqjkrJPxwng6lFzwbpm8a+0gQFBkrBQv6yCkWrFeV2QnINngmPGEAJCJJC0qYEBY41i2yCS7p92HacNKAjj73P7Vz0y+Z/GPuqU68+ukyL/1usXg01BA144YdiAId1yqt2Ma+3aYwiCNmq5mA8BTjPhttlYqZ4SUGaULDW5rW6WOwK7nbvrF3/1pwAaitvYHjqoFsgROd38Wl63ocdty+e+KMMgEe5zLUDTz9HM1pUeSxWsMai+UQyDZPGCBmtKLRbhPy1PKBmcMyocas0oWTz7WApCrXClwJUKqr0MBJsxJWwiK3QgA81IUVtAVyPZxroj161sxfWFaU6pzYgxMBqiQf3nAEOq8vRnuv7NiBC0tjsn/bdIJoC8fozeaV8GGnDJs1tgtiwzzpcTyHmsywKCgyMRufRBxemjZKDiNKKkAcM0Ii8jClVUrHAFCMmjGCPC2fx7EDyKo0aZJO8B8nDE4Bo6vbPWvnboZ9asGmYZ6o5YkzlMX/yR7hUr91LL3ddk+9Cr7EVHmOwQ3IbL1GmozVj04M60yrw6yQaGWKvuWrNk5J0XajppZzQNrLe7kpkxLwtY25NqpAUKE8hLCV3Wctms3ZnsWrUKI6YU63apQYPVdrMBdnLAz5cL5osI71ZtN5zWFcVbC9kePEMD6KrlbF+UzukYNmFvG+YN6GEU6VKKfAa0Fbd7MTf293YDW2fnagvzlc1rb7f7ZQOaXrKb+t/b3xFoQ7Xmze8UmGjPt1k32DphPRB3UD0LkrHvZbeuTWkXZdVyLR3Ll8+5BTFsoNs6tGy2BhlU7f5s7CEgieOGOpgT1fdBZ4Z9scY3TuH2YBFHaLsPOlOs7aDNvrTDdzteL3Cm6/nczo0yoQz0J/TyV50pdWq05I8UnNPPdMo0s/bFW/Fvu8fm3BEpZbzb5f743TbYn27t+stXH8Otl97HoaqDb1k8Qvd1iHUu7LLqPFn2VlihTkAktx1o6veLvkfbotODSr7dDMCL5/ryWaBL7Jc7Sv8zXs2HArfOp+TsXJUzNPggpfPa1ci+nJekQxMBhmZutYtQ0a52/YxAsxk/70P93Aih2YZ+pG/GH5oJ9x4MlmBW93xjj7Vx3bIBXNNPY+5C0QR0X7BkFNWz4pKBUkUrGAzpc6R8OmcdHkNrjw1IZx1yhMzSccsSaagVlDN8KfClwjHD9eMIfd9/pSSgb44Oa2zfczU+fWjNN+pNNl58Obf5+nItXr/f7CA3H8o5Qi0Z63IRVlvO4NLLwq/P980zVEuu1MaanucZp9MRIIdlWcAg1CrMsZa89Q4hRgzjgJIGxCEiDhGEBAeP7Ag5CQDugzQGkrL+AB+kfE4SDoRhGDAMohvJBfAlIycPl8VLKei2dzsqpGvTwcAoW9/dHm0b+5hvvu1m7WjzHpsuFh9sex72IFmSD0ROS5HkPSZ/4a40McXWhah+YYkoOSJ437RTZZ8qM8DZGpFktq6kNl2my7guZ+S6tHJNEAEuAi6I79T8pu5DiXREVSBPgSoFXk2gWPav7Lu0LliWWbQmU24dw/IqQvxWwgSYP7llWztlwb6w323S+gK0o7oWKamVxFkR/0nHhLjbH5uf5qNtbJrtkxfb9MU+QnPIN94cmJW9symF+sIeqn36+VKhvkLpxc+F/a86Uu3irL8TbUrrameA6s+cWD/734Su39R8T7YxschC/SkjA2x8p64htf1oOyBt3F7Ypc03hI1Yup7DzWe9Gh+yO+kj9HKy7Eg3P71KRRETX839do2RkY7UNvbYZ3MObXxI9F9f21Xu128g5SaWak9z5ZvLHxT9zC8kymjzR8oSt/1sYyLP2bHR1lRC58HWBMHIDGYXoD4Uqw8lIK8s5c2YU2fDyq18/YwjUjCN0S3v5lauPav+uf8uYNMPv/41AKBCaoHBmjFSgINUA2Yc9vA+Yrcb5DAHpAXpzQFxHJUCC1jLWK+aRNUJQp9S1qC2U8nsMLEB2b6ugqjKVwPgnJe2716YJ0nF/cIwwIUIRkEuC0pZUMsCLgsoBNXLcyAKgB6MMcZ2qLQAtTLADs+PJ5C7gMgjuAMG73D3Ogjby3fHbL8/IA4DhjFi3I86SdpNbWI8HT/DnT2qi2AKYC5ASXBgfFuBkYHD8YK3bkSIexx9xCevwZtFsP/WvLMciG7j+LUgE9eGQkNFVM5Y04zGkGCok7JrhtKpwGCrmdAQJHiH/RTgHcG6lxBR0wJZTwl5fkK6HFGWFTUJmktBGU2t3EfvkKDAlta1RskWnp6PmOcLbm8viGGP3f4Gb777LV69+Q4hRuzu9qLN4AnsHWgMCIcDhrICiYCUsa4Zx3kFk0MMHkMM8OQwDROCi1p6FgEmrJlRqiDZa0oopeJ4POEyzw0oYTUsZn0kuASIvCDzoBbw2fz1PdG7pwDa+VBFh6W8hxGCB/PQQNvmJCnAG/RzclGtI5l+EDlM3Mvytvuo1rLRT1Kh/P0OBOByWTHPCeTeoVTp7PPDr/4Wt3evQI6l4xubLpJDrhnLesYyz/jH//yf8Id/+e+IQ8DhIGy53/7t/4LvfvU3ov2yqHNUjUqvTtHGwYABJEoXjqOIZadV7ntdEk6nBfMlYxxv8OpVRIgOz88nceSMFVSy6NSAsa56jQrkobSxaBTppk+ANo9mA+bLBR9+eqc2STJ1MTh4fwcT3ZM5kbEES+kUSDUHinxeyVWv0UvrauEm5J2WpMy5DmKXBCmByhttgk2gD93LVNAOBRtLax4QgsOg+6d3qOn2dLA2yz5gN04gIiwXcURF2D3KGoQ6SlBnHXrwmt1uEasI+tpeMHDIb0oFiaBBlzDeKheTohKmBUlmmUi0Qppd2Do3egPeBwSKsKC5OUNfQYVYwQs71mt9CYjJmfJS8+BrLub2VbnPrwXsxixzRFIq5whh8Bh2IwiQwJ2rlGvo5Xxw6k+JRo04v3r2VhJmmQ1FFfFKKNDkKSjDUu61VnNurh3/Vk4IyBplhnMM0eix7kwGsKv2od4VQzQMbTq8t7Ug9ty8DE8O0UcEcijV47QUpAKMQTLrU4zaannrGaLZx1SydoOS8uCtQ0ZEsPBJStRkVRqtnNq+sAcGTBvvr/X67ocf9CYyoJ2gpNRFAxMnWeYpTAheknaOIrwbME477A8H+GHQctuqTCituwQDmjjLtaguVGli9OZMN8fwa4GN2sItUGIgAwFYc0WtwkwddtL1rtaEdUkoaRYAR/e0NBrQhAToxblm+mFyrZwSnj9/gk125IABQJgiqG30KrboIMLMu7sb3Lx5I+cNW/HlBZ8/vwM5h5WATAzPjJEZnoG7pWCfKua14of9K0wcweuK8+WIHk78zMviL4L6UATr3AQWdmFRlqBTXZAW4JGWvzBQqAIoV36qjYsBbw2IImEoTlOA99aBtcJ5YBwF8M95weOnT3j6/CCgAG9iDShYYb6ITrtTgXXvPaJe9+nhAefjEfev32B3c4/9oeJw9wa7wyv4EDDsJtV39GKXgsOwH1F4QlwyimoUijYoYRiFwe9DwP7mBnEY1V7Ic8U4wTthO13OF+SU8OFDAXNCrQXIVSvlFJRlAYhAaGeGnJVOxWrl5bwwZL0mdE3Pbl4W0LJoN2m6KqmryqoCxCbEGLTtexRW9Cqlad4HDHEUHUk2wCBouaTMpZSEAdNuxDAEjKPHNMk1nh6PeHh4xLKk5kP96te/xn5/D0dVmFZaSo5IWC4XPD8/YL5c8I9//7/jX3//z7i5vcH3v/kB07TDm+9+jVfffCsC7nNqwE8vmdeC+k1iytm6hIN3ATkx5vOMZZ6xrnPzXff7A/bTDiF4PD4+AcRYlrWxh0qVc8F7kvMCjKFEmJ/uvQfVCnauBcLtiNZ1fj6d8O7HH0Gb/zEXhCAAbIgOPsopgtxtlE22ldZ705o14IsBhpTR6oaFHQJtl7cye11X/WO/tu11L20DdhHIrkUBQ/Wnm00mwm6/wziNUKpds3U5J/jgMAxBGf9oa938XrB2RvSEqGdiAwoAYd8RrphNIpZNYHJw7DRGFZ9R7kubOTmAWWRKrOGAMR+Z5TMdfANCsX3+jZ/VNM5U9kVicMDoPDZeVorWwGEDsmzPOouFgA7AKCVI16ut7aKAimhDcYt7TV4AEFssroE0aSEi0aMLANgBVcacPYErIVFBUtZRKaI9uN0rRmow/5nbeta5gPl31P0J9feIVIrA/HMFGodhFF+zAMucGvO/VhmPGDRG188rVa4ZyMH7AY48cnE4l4IcgXFIUo3hgjbv2YC1hMY2y8aaMp9b96N3xjbUWKsBVBswcgMgdozll/tQvxhsuru/l4fmIqUwtQIl6S5RsMk5hCCHyBD7R4cYMahgcWVu1DIpYektvY0dVLZiYC+CAwuSvwY6XWXx2oFipR0ZuUglqvNeD1xGqUkcqJIgbdVFf8QOEqu5t7apO134SQ/WyhWXs5Q0TeMNpnFCDAF3uwOGGBEGjziKM7G/EbDJDx7DLoCJkdKMXLIE9MsJYEJmoceCK4gzAgtlNsBhXBJuKKD4EaP3oiWlC/tqnNr/7z9vS6dlfjbOJ7pT399t2UapEbdSsRwCClf4DcjxNQTcOYdx8IjBNRaJbEgFqSijrDNKmlE1Kwe/EWuGBk7tUVQMGF4prOIoLfOMfM5gJrx6PoKZ8JY89re3CMOA/d1exMVrwlIzKDj4YUSYdiC/SpkacdM1cNrCPniPw7TDGAVsnHYjAMJ5zlhXCf7XFLW8STulJWHpdTS5hUDyXO6Fw28AITOsdMrWmr1PHLhuTFkdHe+9iOuZKGsTzeufw0Uy33Yn5LS23lCBzeoQx7RnvZyX1ru1VCxGOX96AruE/eGAt9/+II6BdlpjiJix84TKBWtecZ5P+O///f/C//6//v8xTSNev77Fbr/DMO1x++ob7bKQ1VHv67BFrjb9avDbAcsOVBgJUCp4wTInpFQQw4joIgonzPO8Afwg+kH6+bmooLXWyLtq446eJdK6cTtYRD/HOnFJuW9Q1mYpqVFue2aJdWz1oDYqt65rLoxC9QosZy2VQ9FGBI6QiwDwXCVW5UpQDEvHa8ui2c6pAU12WHZ2gtk1c1yMLQEW4CxEjyEOuDnsVZ8AAKpkrYNXim+3FviavW4Qjh3LPRLarlXrqCEHmPxlzgYUcZsX62pmF5WA48V1SdauCOT3gGsLTOmsKLgivxKKtM5de3tfO7RxvL7+ura34vBv43qbD9HAgZYqiT5AkDWeuZXKkO5RJ9gavPMYwgAA2o5anReidgb0MkGzsfJZBsxt14M5feInbdhHIBBr1xbYPfgmPuqzNqXQeeRqZcQyt87G0T6f1CFzTrqvkgcvwJIrBLwXnZaoDRjMQ2JWH1TNpGXgDSeXtdG1AulqeZEy7vACaLJnlnOwraW/wuvu/k6+qQlck5a6JLXnWnYEgmMvulteyhQdBWFFj8IGtcDAgIqi8waGCgPrV90wtl8mPZq3vz3/O7tzy7yxDo61apdfAmIMci9IWt6QZc0A7exxznfdIie+nndeuu7UilxW5JqEVXERrb4xjBjDCO8IUwCCA4Rxwgq8RIQh4nA74f7NDeAc0iL3wLTidHoGE7CAkQFo+IsIwCXCLgOHzLgbD0B1+BRHtAX1l162rjZAU7PyalvJ9EBkENvmt30nmisbFr2z0hzXZ4Q6gOo9YRi8gk3CDHIeCEHP2ZJwPp5wOZ9Qc2721m5O7q0DTSKqLnbHmtQQkQA+JYNcwHy5IMQBt+qzOi+aU+ScVWuLHzYGhBLBFKUrpJPy3lpEv2+cRNPzcNhhnHYIKqYt/qesi7SuGIYgHWZPAy4Xj5wZuUACnqvjRBLbjqyEWAC82nwsWXvBB4QYmn8IIqSUOjtcx7iBZ8zNu7K161VLTiQGCpZlRfAVjqw8FM1+eEu2Us/2xxiB4OEdEDxhXVc8PT9ini9wDhgmwiEd8P0P3yJGUh9KdCq9lyRQqiuOp0c8Pz3iv/6X/4y//0//G755+wb/8fL/wc3tHZwfMO0O4odeUivpbvscGzuv/5jLJ88HgAu4ZKR1RlbpAoAxDCM8OZSacVbJgnZ2aGkqQXxTYzXXWhsxlZxrNl+qMNAAXd1GWJcZS1rgnMNunDTRIPscZIl6AnXXtz8HK9gEavplplEme5H6hVrMqH4km9yAbRP9u79oBF7GnGhAAnnTT9T95RzGccB+v4ORMcAQUG+R5xI9WGUGKcBSuTagxTv5G+/dJpmoAI76qO7Fl2g2UgP02ousooQAEskBrmgg2Pazt4xwS0LWcg00tbVkS47EVxYw3cbHfHa7H5IueVtzSxAAiLZ+KzaMbWr2dFuBcOVbY8OmYot0pPwtRKdMUDS/EqYH7OTfWghEUrpqchZk40995g1kMh/ZzBOZawtgW4Jpe+0KpATaOWggUF6Lfi5gVQdS7WTjTwDVXkHgPRwCahENTIJoqHlfEGgDdr1YzszGYiytKspwkpboAGlTg/rlB/SR6D7XJk79S69fLhBeRTtoSWIgwAzSm27MJucxjgQOFYQ9xkG60YkIYoQLYtg3UiDIOeN8PGFdZuSU2s23ZWSL6GqjU5vJl8HNFoSqVcprhCqY4R0jl45iL8sRlzOh5BnjEMF11O5PFtxWnSCADTlVyxCjdP0qlUEpoTJj2gUcDlGowX5FRkbJwKoBzCU9i1FyBAqyiVJaUErGEEfRcnIBftjDxQklLVjmE6hW+MI4F+C4LDiVBStlZBZKLGzxoxv07fdt1DSY60ZRvzenUrVPiLTLSU7wLB67gIHUHNGgrWyt1acZ85cLVIyEXtyMnbNMtGSrUxHR9W1JU7tHDSDsumUT0NpaCZoNcgwsy0VL8YrURBvFniRI9eTF6RmlO0fhC8oi2iU5l8Z+K4URnOg+rbHgcAB2N9KxrXBFKqbvIJn8cfRgDuDJ4eYQYFnropkKA+oYfRwtI8esEqwNQd/OmQCmtp5L6Ye+jfbLzW4I/NYggExIUMVCabMeNii1IPEiOD+EiDHGVlNfsrSFfnp8QlozPn/6AO8dbnPGsDsgcISJnJ6OJ7z78494fnrEp4+f8Pz0jLQu8E6E8pZ5aV2OYvQIAY2lI3vOWt1m0RTgirTOymJaMM8X5JxwPh6xrgs+ffqgmhkVwxARnMe8XrDM4igFdawdnKi5aNCfc0XyAhwTpBufZfL7+PQJkUy7nSYmsKuMo5LFqS3KAGDVItisVTiZH7fNBBXL0BgoY7oD0vmQjLmkOk21kpQsqbOw9cm7vTQbZnZS2ShtTbTVcrXejGEUgtcMrwQ6jgjDGAAe1bGRi/XrdiZf14Lpa9h5hwiJ/A1IEcA4NHq36fCxMv4sW7e9X0sgMKBilUoTNh/HsAPXPRoiUemppbZxMH2J7f7oPnnvjmQClQboSUDRFgPcxt6JM2H/rcxX4q57ALTgX/S5KypUHFfyt71mnhmc5Bok6rYgJhFWNuDNq9Pou4bVlTO2deDInCMrLZFBNWzH1rplClvWzkBGBTh6Bs72AekaV8Cyne2sgQuE1RI8ogvYDSOCk1YrnAR0W7JoKHgfMFZh7KjrvnEy1QmuDq3+CdfODkFviamtTRNr31pI2owL83Yv/Pu+Ukmy9tYFeZ1h5TnMDO8yvM/CDg8DyEnWe5xGjNMEryxE2ytgNMc4rQnnk5VSiRaH07ms/CUAvB0HGwNZudTm3tgIpWTRY2LRksilwLsVoLMEUOsKQkapSbrgQTQXSVlxlYs4rlxQDQ2kCvIVriYErHBcQbyCa8UIwuTE4XVZggYTaWZymMsqDUDKgqc8A+SalkccRtHR8R4cIzgErDkjLQtcreBMuFTgcZ5xqResWLSTnu63L8bnKz4mbfx4A8upJ/BMWgGgHrgQNf0+YaxJQ5lhGDHEoWf9YYHvRpNOg3s7Fkh11yTgJlhHw6K6bnULMOoztAYTVjq1sRHeznznJIHBqvszLwgh4ObuFpUZaxJ5B0nUBpUnGBDiiJwuLQhLSbRHyGU4tyJkxjgVOF/g/dDAppw7S8A56FoP2B8iavXYV/Whcu3iyGZcyPwUCdasFHVr9yxQs6x7CKGxzg14ApsWjwbq28nfhBwxRGAS5meIsUmEtIWw8Z+89ygAShLghkjamzPrOeqAdV3w8PkBy7Li4fMnBO+xu8lwgwiO1yJMx+PzET/+8Y94enzA48Mj5nnB5Tzj+PAsvsGaEJ0XPbaIxmiysTDwKueElFdwLaKJWbL8bF2R1hUffvoJ59MZx6dH0SBCxBgGBB+wrBfMqplp3bRAtSniSYfuAu+VMUGAeTFow6NJo63T2sZY77lK18uSE9Z1Rqki2ZDrtsJFn818aTnEIJ2yXdMVZC1LEtYRrox9q9rgF/sam/dtgBp+8euXZ0WzBc0tZAXodXxqbhq8IMAHQmQBGqrG1FZ+ZT4UoesktsSva1eSWGbjQ1myrnd1VCLHBlAz5pWd8/Y5FaRZ6O4AdZa5PgebjwstRxVAsmmes1mtblvMFoGolXdZiq8DVOqbUWdXyRT0+S1FfSXzm6CEA+8bkaQJlzNf+3Eax1EFQFWab6mItvluBNOrcmAn41R0Ys0mXyUnrx1b8Q/d1g+xea/KHjcyDQD0zqKmU2UdhxvEYeAaoELj6kMFaTgRacAu7BAogJcsZAIGlpTBXOAHh+pFuZDYfNcNSKmMUPGJqe1PZ0B5Cxk2fq7Nmd5k2wL/g47TLwab5nUFg3E8HvF8fAYxqxxVdwy997i9qSIYffMKN/sDbve3mPZ7DLsdECzIrm1A12XBw8ePWC4XsKvwdpDAHJ5NVloHoUWCNlkM7ZJwvRikFG8BEZBygXeMlJ2q0GecTx+R+Yh1fsZhvxM2llGydeMCEEPNEr+EIM7FOO0xTjvkUnE+O+RacXc/4dU3e9RacD4dsSTpCJNy1k4U0sY05SyHd+UWnN7e3uLt27cYxgmv3nyP/c09TqcjPn54h5IS3i8r4prBzoF9QAEj1dzELxt6CgOZvrYQqG1uR6bHJAekD1rSqNnllJMKoUcMbAY0qHPlG5AYtLxwcza3F7Oo/BNrHbZmgEgzTpkqLmnBvC7NkXWmd+U089yMHa6cYADt995FgCMcCMenB6zrDNCK2/sR5IIIUUMyeQMcKOywv/kGPkw45zPmx3dYU8W8JMzzisoJpQq18LzPGIeAtx54FW/kvrngklZ4IkQPOA/c3gTspwEheoyTjOFlTljXhJwZ8yzib2sqbe5ztmynzQ6uo0P9CkEYdiklJBXJtkPIxoGofQJMFJL1dBTwjUDWWc8Az01GxCtTrBRCrRm5JOymEYebHbgyvCfknPF8fMTnnz5hGAZM04TT6Qnf/fBb7G7vMIw7ud/K+PzxI/7Pv/8HPDx8wu//+V/w/s/vMU4DlvMF+8Mex6dn1JzgQ8Q0TSByTbut1ILKGSgZazrjMp+Q04pnndvj8Yinx0ekNeHh4TPmecZ8WrCmMzw5HA532I17PD4Dj8fPKLUgTAKOaqwDrhXzcsG6rmAAy7qiVg8aBnh1FFwDhwxwok03NG4ABCOjECGlBfN8Ri1Vs4Ti7JEebM6AvkrImn1h7d7zMltOqC3rIbGz0sMrUPMmK1X7oWibrtkCw1DYWIX9cCd1Gg3cYdassIKzwxAxjFpOECVbd/AjdlMEc5WON1ps3rroaQ1ObaAN5CB2QHQebrCsjwY6moEGqcBuSegaJ0LR916uV5SFZtkqbjZBHSADSozTrMkroQiLI5CsRTuLcGytFd47RNXAaN3y9HrSVUk/zgRreeOTmvf2xUs/R4SM9L39Z2LHJMuXSTpmFQgroULFK1VEHgT4gUAB2sKYFXALiM6hFoC4ojgGUWoOGW8A0gZum31Aa0WgTqUCOcpIggrQGpDvHDRQk6815eYgY7NuiByqdXupVdgmDIRdwBgCxjDibn+LwUXMRfRBChjHNcMlBpxXoNghOukAumXjETkRQEcBo6iQNencqHoiE6huEkPGIDTrSPbk3Qn7GSzmf/rrtFwABpbjCfPzSVaEgqPeOXhSjbybW/gBCDHg5vYWh9sbhGkEDboYdVmVUpBywuVywcOnB6zLjJQSQohIftWkQbmyD225bpat/XbLXKiqBbGmFXQR8eGUE0rNcP6CgM8SSJwW8JyR8wX7ww7DOMBRgAjjW2AiGkqAJJNjIDhiuDIDZZb3sbDkdyiYnAD1eZnlHGvl1cClMiqAs4t4DoNoW7IDs8P93R2+++47aWpy/wrD/oD5dMLjx4+oOeMDAxOLyOoxr1g5Y+WlJbo0ErsenBevtmeAZrOd6WpR70IKkvOSSf2OqOVjYcJuusF+usV+f8Buv0cIAQa0b8/xdidWJsZicxw7EMs5UjMjLRlpzchJQKeigbuBjhQEuJHEBDf/gQgtCYNaBRSsFZfTCUQOcRzw5vvvMC8L3v35HZZ1xX63xxgHScxOe7Hb6wm5ACkzljnjck7IKi4eY0YcFgAB03jAfn+Ac4TnpzOWdYWUTYmvd3M7gvwe3hGGKAnE+ZKxzMJ8XtaEon5T1jI7VmBZACkBJLfliUH92R4ESwJamNjCEAd7sPNthg3griw6YeM0YaIuDi3VDqGtF1JfVRKwA4AVlyKdlqcxYDcOcI4RB4c1AafzEZ8fP2LaTTgcJqzLBa/efCcJuzDAuQEEj5/evcff/x//Bx4/f8KPf/wTjs9nOPL46cefMD/PyP+vBZMPqI7gSapGRKdJEnQlX1BKwnw54XTqPlRaF5zOJxyfn7GuKz59+ITzeQZXQvQOLkbsxwOGMICPFeVZ2tTvdgNiHJVJLnu05hVzWgCSWEYATGEvmsH5QsetAbvdltUsxIV1ueB8fkbhgnmdsaYkjO5mm6oyqBVM0jmJwcl/s9iHzIyaK2CJMTvfG96xcVJe2P9t85EGMzS/apts6skaBquYtGsAUOWCXFaJr3SfDeQRI6EUeT5rRGJVxdZPzHweiTsJUDKAgadkZDqnJYSQUrKcWMtDTRI/AVnBKbVdEjP5BkxZiowUuHXBtdJA57RMtTIqSaI9Z6l0cVrq1bI8pOdGMa0wOXyDd2ADhG2QvREeNK6kXirX2N8sCavcStdkqsQ/VbDJi2RFBVTrqQNOXIGsvimy2HfvfLM3MRC8C3AOrTNmyWWThOm6ZlsgjTXZbGvaWFPGlrYumKUUDEytWZmmSKXp0apr2FW0RA85XYvyAKVWpEXqR29v9jhME0Y/4i7eI1LEhc84L2fkUnG6LFgc4NhhF6Ocr3Ki9L3D3BjGhhYY0GQglNv479u9QsA1WEyWBDZNqL/8+sVgE1u2/Wp3brIB7cfyjXOk4o1B6araJQL94GzGXxF2PzhtX0ht/f6iV4PjumGQjWSBnEycMJs8Uq6Ac5hnICNhXea2uFnRZkFF5SOrAk/eEcCq/F8HmG5GVYZRKRm5rKilYE2LlNqoHlCpGfNyloxCylhWob2WJCCEABs7lFIw7s9wYcA8X7AsM/KakOYFPiWQ8/DjCGYg19yYINdz9RV3yQ7G9uVefO/ks53vHmmzzdQCKwtUt+VeP79m0OiBpudiVEYLfCxv2TbzZn1sHeO20jaXa5udeu1p0ayNZA26CCNpJz2gomiNMeBQq7KaCrcAqhbuJYOlwBengppyfZPwMUCU7DCCIMkxKphWCmr1ACqCdyhg+MoI1WnZS3f+XGWIjkI39Jad61THn1n+L/+l6/OT9LD6mk7XFtRqvvbVDG4PXGE15FUC4/lyweV8wjxfkNIC5zxqHAAOyCnhfDrifDwhrQnWDjTngpwKUkpY1wXBQBDnkFepZy8l47Kc5d/LCefLCSmtOB4fsS4Ljs/POD49YU0rnp+fpIxyla6MbCKIRv/VDJHZJ4Ki+Mayg+31Cue0G117dGprjK4GVUfuaqPJPOZk2gmqy7FxXLYsMssFcfv36qPatRTP+uLflw6SvJl+5hdoz0kvtpEBKLYMvrQNehf6vfcOpdHaDWTq/8o6QTuQt8/tfB9vwIBO7RTTur/Zw6kTD9FQevkc7RnMiVUbsekw3F/2e+ofYEDV1aBsRm8LRMiB2m5L7vcrh9MVTvziF9cBvz67dmk0XRddoF/8fQO5IEE3iODc5swjzbC9+ENuX/pe3hzR7WYsCPi6cdn+xsD+7vjb8PEXf9PH0Jxo6YgXyCE47TwnAyn7hXoJPQB4stz5dlzsCR2MMSh7tDuy22zky9G4ton9Hv9ar212fvu6Nrm9zMc7p2BvlL3TN23fdyqsnVJCWrN0iVKQQd+K6wlH/5DtO7hNRzuTpMwvt3WTtWsV1RWFLwCRaF06acTAaqBEP8MaMlD7TGZJWlipiasZVLMwt/W8duzgTKahZv0y9rZ28mRgRcZ5SSggMHswRGvxfD5hKBlunADvsSyLlIBru+jMjMwVS8lIpSDX3gFUJmNjC352nrZ+1ObLmQC6ladZaY2WBak0w1artNk/2yhf2cNSeif/dWX6aSOAfeU7cfNh++P0885+SJvnsLJHUpAspaTz1dkDtNmDG1PapqdNUxUWkuYiuq0FtHuXGePNGb3xn5wn9aGAnCpykMSIL6rTogEfce8mRQSgsCbNXLtv85+aHMNX5rWPD746r5IkMg2yLvj+xbbanJ1tGtgS5rWJlJecsa4rnHOYLzMulzP2VtkBB3bCJk3rivPphPPp1LSwuIrujyQeJW5iAEmZbSIQnlr34FJWnE4nnE5HpHXF8fiEtCw4nU54Pj4hrQmn4xHzZYH3EcFP10cQo5f3W4l5C05Jkjw6f+JDFWko0qp59Ozlzry1VW4VDE3HR+1OzgmFywZ4MFBksz82c9gZGpuvzT5qW8t20L9l8l/4A1/+utvL7efwxoEjdL9J4korz9AnUH/EbHhjNkEjIxmc9tz42rpUZpOUiMmFS0W7KWNCdX+zn4vqLOle5q98vg2snq1XG34zBjrmzX/k7X1zO4O3zJqvv2jzAdc/F/vSgXir9AjapbnZJka/d70x3t6rjk2FMNzJ6c+utnEfF/MRm821Z9DP3FYIdFNmdvX60V76ZWh+lO4t8735y1GwaxKhNQsJ3iOQv5qrWuVsMx+K2/y6/oHNT95cp/l/Nt58tba534gMq+4Pss/DX5rb/vrl3ej0Du9v9rg9iEHyOoziJ0hpyG4SccvD4YDDzQ12N3uEMQLRDoqN04qKlFYReD6fcffqDuM0IYYRLqiWiLMH3DhHgghcO84aVJZSMS8LzvOM02XG4/MZYEYIomxfKiEXzewGAhwhpYzzZWk02ybEa4K9ekgQkWToncP+sMf+sEMujJMKfL3/KSJEaZeYlaprpU9gaVttbK1aNilXAI+p4Px0FiHxP/0kTDBb7MzgNaGqSDRrJu7p+QlFnTzHTgLXjWWwgMgZS0gzMtLdRujQ5Dx8FD2taZywPxzU4dDMfwgYRunsJoKLAbtpjxi1XS912t9LR6nWivNl1Q3JAFWE4HE4RKlJdR5hkPaflo2gUuFLgaMKV6XTmdfMOYCW3fehZxDGcUCMATkXLPOKWioeP3/G+3d/xnS4wTff/xpxnKTjYSmoecZ8fMbx6RFPn454+LhiTQW5BNnUQSo1nLK5hP4oDosAug6ggJQzTkehS8+XE9Z1xuEQ8Z2rCMFhWVesKaMUiFNMhGEaMO1l/wQrT6xW3kPILGVe3keEINkJKZ2TFr3bQ8SsnG0P14TBI7yPTVyO1TnwykIjSBcbLS4CN6NOYBYBuhCEOv/54QGlFAGNUsK6rEB1qJnx+PkBaVlAqo+13x/w/fe/wngPrMsTPn98j8eHB0Qf8Oab71TU3cO5AZ8+vsd//6f/DAZaaeD5dMLlckbOGafLCSknLPOCeZ5RcsHldEZJGWlNWBfZr6YlJZ0wB8BXnC/PyHnF6XxEWmUdr64CtSCGgGESTiajqoAo4zKvmFfdM07LMhXs6IeoBtgvbKMBeOu84PPHj2CGlAmyZEnGYRDbZxk2JxkwE3a2sr6a1XnOYntIThgzbzB2U39R+2qBNjmIVHIv17QAgBmNSVErN4CNWlaGWrbIAiDRJRMquCwSAd9T1jrzVlK1zUbpmWAOB1nNvDkMchM+eMRB1qjj2sTA7dEaA0uaUumhVmAkBO+6fRuGAGbRFOzgaAFafsdpWVCBdSOU6+h+QgeUTBtFSjw2ZXy0cbbN7mn2ywKm9t6tHWT7PGmnO+1ECPvu/gbDGNtZyAzVVNvcHxiVM2qpSLVizSsAwhilXAnNWZXBc6plUjZl36zr13QXCCxgj2XkzD6j6wU4ZTPafJSsc5tZ5OMYYG0XzETNcZPzx0rVZf05BiITIgMDA0NlJIhgaa1AUv/hNK8gFETvcRhHDCGIPkvwAlZ5E4avDYA0pgHXglU72pZNZNkcK/25rXG0YOClIMi/32vQm5nuDnB3hxaIWkQhor0eh+mAIUTsDwcc7m6xvznAx6CSZwyrVawsjLg1rzifzpKQ2hGmcY86JHgHVJLOrbRZp9CP6d93NgeoIteE8+WE4/mEdc2tZbOtD4ZHZRGTlzbSRRhvs7ZXz1YSb6U9qkeia2qKAd4BBw/svXSFG2qBY6DwiiWLTTBtDFuvFQJaMss15jVDT0UAhE/LiuPjE7wP2N/fY9ztZf6V/XLOGcgFqSSc5zNyKXg+HoU1uQmCZV1cz13vNOZAQejMzommlrSw3yGOI6Zxh5v9jWqcaTc333VCDzc3uNnfYnfYacmSlv0UKSdjbR6iaQrkyjgvSWMgsTshOgy6Vsg5kPrJrPNbTFuLGcyudRT2rRsi6b4SaQvnPMYYMAIg5/H89IB5nvH0+QOOj59QAdwcdtjtRtGWKQvSOuP4eML5eMTlOYkcRXJgGuCiRxwmTLu9dKKLIiYvrA/xRX2I8FGYS09Pkkx6fDzidHrGbhfhX+/gncO6rpiXVdY8edWw0s6MAKAaMSmvyDnJs0wTfIgYxoio5+daRBPUARhCVICWhWG8se3jMGHajdhNewxxFO2nIL6UjFnQ0mInemsAoqIZVU1jhQP5AS4A5/mCx6cHrMuCzw+fcTmfW9xS1oyPHz5KQrkQDjevhUU17hHDiOV8xOn5CefTCeOww5u332OIAQzCmlb86cffww8CDh5PZ+SSpSPvPCOXhMv5hFxEt3K+XFBLwXIRXyqnhFWrKpZ5RckF4zhhfyBUcjgmKde+XC5SoslASRWJCrwnjEMEEbBSRdLY7HS+wDmHw26H3SSSE72TqjGHrwEn+5f1/F/mC+qD+EE5z+rLNOujB78HQTtyb/eoAb5g2ROhJ9MbqKCgpvwft1i0v7Z7n9vnbl+stk1KOV3DGSwAb3IUhcX/9IBD0nOqg47SEIb6NZmbXE3JrDGiAp5BQRXlAvgWH5usAIOydDRsgC7QktbMjJyUqRNg2iYtnrByUr2N7reRoCDGVCq1iHQMkcT/LQap6l8J+9nQMybtPKsag61zuZhkFOamCdzKLQHVRlO2VhU/fdqPCMHj5u6Au/sb2XPqjNQi4yq2zQDmLrpt5bg1M5ZVfCiMHhykDDuvYjfBorMmHTsTuErTlqJ4A+u6MTtmq0RmsbaFEIKItQfv25pvjK/MSKsktZ2XOd3ORdeEoJY0D85jdB4jOQzMCCiIhCYwvxYZ0OO8yvWdw26YEFWXzvugTWQ6itSBV7luqQVLEsmSYiAkzMTaHNfW+MySsL/Uh/rFYJOHrJFhHDGMEYYmA8oEyYJSD9rBYZomjLsJ424UR8m6prHR4VgNSsZ8vmA+X3B7e4vgYmuZSn6TWdcREueBZWFdIXJowFBKCcu64On5Ce8+fALXiuDF8NXaAxcrpdDlDYaU0+S2KEoLuGoVXYpA0l3tcLPD5TKhVOA0F+Qii0kyEBa+ELZeizks+gYB7JQhtOQZ65rBIITpE3wMGMcJd3d3cM5jXTNylprmvJylvjklcC5tsRu1rS8gtGezjJtvTlCA8wI+uDDAh4A4TNjtBGxa14ScMnyMCHGCKejHEDAOcpibAGPdIL3bV2VGXjUy0TkMERgnaKbWibPjxXEtDDgbb0eyOKm3SyYSgJMhwplCIXWIQ8Q4DcC84nw8I+eC0/MRD58/4w7At8Fh3A0oiVASMHtgnS84H484Hmc8P4vYdy1+E3hbcCzNloFNVwFIpjIX4HSW7onPzzPm+YyUB9zdB4zsJctUsoA4CAI2DUHEx53DNEipiAXqlRmXBOQCOBfgXAQzY1nEgHfjT9fjzdAAuLfLNvFLWxtCNY4t611LEZ2Gbnv0e2rGKacVs3YoOT0L2GRTyQXys2XGOE14+PQT0nrBN6/vAN4jpwuOzw84PT/CO4+7m3tZE6gg5/D89Igf//Q7lFJwuZxRSsHT0yOen5+RcsLz6YiUMtYlYZmTsKL0XzvI5Mblm2k3wd8KfDYvouc0LzNykiA5uyrts51o3XjnwBC9jJwTluUCBiPEjFAKvHMYvGu1zI6dBvGba9vY6nzklITF1Za7UGx9FOHLotCeaGeRdM2CE6AFm04XBg5Z1oEsIHQt03G9vzc/ktoi+VnTAhBgwIbLgCRWYMVbxkMPr6bxoUF7KaIuZHMvjkcH4ZvoeOn3vxV8N1zUaW27fX4IDiHI94WdtoPvQTDZgU72uRIcGMuUtKRZHBjVwFLnAthmXHxbK0X1tbbMl6vMjmXmv2CMqkWnzkQiRivz3pZjXVtCcUOKir6PO4dxGjCOEXf3B0zTiGVNuMyi4SO+hrXn1nNqFcpASRVpKTLHxYOj2KUGnEAA8lqr6Lk0oAlKhdfgndCYCpYdtc+wNWvlBzY0XC0rqA7yBsBseAlk/cm5JwA9mOGY4BkIDMTKiMQIpPoBYNQsmnZzSiBOIk7vAVCV7nVOOkr5VmLgUMp2/cv5n7MIY2+3h/rKKBpUNL3NZncZL2fs3+sV9LrTNGKaRgVNtBxVExoOHrswIfiIcdxh2u0w7ibRu7Tb1E3N0hsYuQgon+YV+2mHIQ5YQ9Tst0J+L9CTvs+6j2IBT6kFyzLjfDnjeLzg4fEIQDpYOkfIhZHyZt2DG8jIDGnvXnIrxWPuoLR3DrsYEJwD9hFxCgjUjjABH7Oeb9qgBfo7E7614CItGdkmmwiXfEJapdvY/uER426HcZxwe6M+1LJIkL0uOJ6eJLFYhZ2O6+HB9Q/6YiILdp0HUYAnScCFICVG07jDzeFOfaNWgwv2Iuw67naY9lJuSMZqgmks+nYdKLiGykiC3Dc/iEkZsVaW7fQam3kVcFvOQ3aiE+K0VExyUCJEbe3ZgwIqORecz2e4ZcH59Iz5/AwfI6ZpB3Ie6zxjnReUtGI+zzgdL1jOCfMC1OzAiNKhLU4Yxp0Kdct1SLVlHEHBN0ZhwuksXU6fni44nqSj792tCGynIiwe0eUR8G6cRozjCEdoZc4pL0hpgZSzjV1XyrsG3tfadRkrCUjzcn5jjBiHCcMwIgSJRQxssoQWkSR2ayko5MWu2Nml/ik5D+cjltMznh6fZM0dT1jmi35ORCkVz0/PWJYF43TA6fkJJSdJdI6MtFwwn6Wjr2h87eEcg6kglYyPn34CU8K6rnh4eEBKCcfjUUrmcsb5LH7Vuq5Yl0VseKqtOUlb5q0LA2EaRzAR1ryAmbGuqZ3lpVS4XOGd6Dk6AmoVrdJaK+Z5lYR8iBiHQc56D7XZpC3r+cXuMn9GVm9OC3Jd5YhzWSLdBrCzHFZUtUTCStQ3O1WTKBYbAFtfeXtVbv8asNJ/aSw7uv7c9mu519boZXNO2nsN4DG9Me8KiCpYQZHGbNmYZmZN6pg2Z5GqHGPxGBJDDg24dcriE39HS7I27DoDqGvVzrhyuyhsbEbSMZKRZNbGOQzAXz+LdKuW+F0/HRvOlNoxTWqpLyHujJQ3bjt42vgL6CbP31iUChgBlixl1cUVAPnmdo+7V7dg8/VL7ppdgGr4kgJfUt3EVbrMVdU4BABPA4iDNiTovo1zXrC4SlqxVFtcb8C0HHeGHdgvdN1YfLqVgYH60VUSM6nIDwN5mF4cbUaV7TN1fjw5RHIIRAhgBGZ4knUgCR45Oy8pA1QQvVSUwQERDsFvrtHWm/o/gucKdqJauWg+oTmA/f3cGvYIAMVXBuXnX78YbOqpyzbeDYVkLZi0QMJrm/g4jAhxBHlnKfwW1dZatMNSwppWrGnVkjdtz6hPaP8zitmVZWmB8ka5XmtdTRspNYaRbjoL5qALXR0uMTpmSGRSrI7RjIEjh+h6ZoOqBDc5JRGMrv2e+kD1+97ENO0xTHCV4DEOexnDGLScEJgvFzUcDk2Ija3leNHIcWOvN7fglGsph1tA12oRxycoU2lSptK022OabpQpIEaPvIcfhMEUtPbYHJPmQKhh+NqrlaC0OSPkVEEouJwveHoUgKHU0jICMt+y0QywK6UABHVaC2p1m2Ugo0FErXV2XiXL6VzA+XgECJjPZ8ynMy6nM6gyRh9x2N2AX79FzhmXeW4dBqvVUDJrmR2QM8N5bSMaPPJW+0jF1aHil44s6BVDvyylrcNShJXBxcE7QgyEGM1YymA5J1Ry+75y1Za5BVQIlHsG9GphyaDDqLZgauthS2d1roN4rYNLkN493gfUNh/WVUiYI1xqQ+jXZUXJjIeHz/jxxz9imnYoecX79z/i9//yOxyPT5iXGdFPGPaTdIzLIjb79PiEXC5acroK6HQ+C7OpFMyz/CynCquIJAS4jTCwPQeBEMMI70YF3CK8C5hGwqt7MXHjMCCGCO9FC4jArYuccyK8bIf1mpKudXXiNwATddt7NdZWB22+GzcxU1JgXH9LfW6ZnXTnYCdln8RabtgNeNtVChh8/Sa2c2/U5c2W2zg0rTMXm6Nk4wm1SwpyVMkZdb0ccRbd5iA0bSWykqdmB/rhY8DSy5JbCSxZD3EJm1mREEekbBkNp0tVAdwKeJYgC33/m2Nz9dltDEyosrMsAHFGwR0obIepzeELR1DONt+1jWxeX7yIgK1zawCu7COGDx6DttY2ppdzaJ3eQARyrJp6tva0zTYquGQYmlKyridPurSoXYstI6xOBGuChlmzafjyHttpqyXEpNlOctDugwJe1FKa7190wTcx9OoUfHqxVgFN/VcAFa5K50ooQwMgOJJ1L4BDhXSIcfCuwLrGCRNEs9HcP96AjWqAnb67zfcXc/Typ//+L0LtQZP6LNI9SIE5kAbQQpWPMSAOg+oiChOzJbHArWR8+wWe+l5jC0C6GL74Craw1UFWBrT8XNnYVTQncsmtHXpVIeXGXGxrRz99w7yU/QJYEo/g4KgKS9kL2OScMIQ0TIG1FRAmFqFR6DSMryxncDbxWfQguLKUGRz2ov/nwwAwhAE1X2RPlNrWtiWMsO0Mt/Wf2NZJ1+pxXve/LiDvA4awQ4gR+/0tpt0e+90e+8MNnJPz1DmPSqJ3Qo4wDiNCkE5p266zV8Es0GxumyUN1JyiK6tmoI+nIx4fH/D8/CQ+lDfB3b7qLIgsGjCVxqQ27VSGAbCtxJeA5XLB0+fPiOOI3S3gfMBFy7rWecE4TMANMPoBQxhRc8EcFpRcEIfYWOEpZ9Sl4rBOSCnBe99sch9otEOIWVgh0qUVbRxyEfvhXAZp97sYzPevHRwn1v8mDDG2tV9KwEwL1rReH5DAF3MgAaNr8+QUkRcbXUEugEi6sgqb3CtQNSARiVg/GRVevois+x2pHk/F5XzBmhI+ffiIP/z+XzAMI6ZpQgwRf/rjH7AsC2plTFPENO41MSZsvK1O2+kspXbCbBIdsnURJr8Bj2CJr6wjsoMwfpzWqMQwwlHUGETGIoQR4yRjFeOg4yFnPki0bhyRNipAA5bXNSmQYR3XNowhIq1W2axQA0jUn2ZtzEGbubFGH2b/rJGLEQIsIWUJFjRr2YP47XxflV5vlkMHXq7XSNuf6jyxxoeoeubbmViKdDFWE2PXeglebW257QNqAleSGOmxxUZ0CbLepRP1lp3LnVXVEoVF7LdV2EBiD+8sLrOk1vbZ0PxNAYM25wfRlcyHPZOFLv1sgezDq/nrX9Z5rwMf5jNo/Gdzpv5y05UNJq6+vSf0o5y2vkcvJ3RO2D5wQCHxN4KLuuarVGvUqhq7qYNr9WWDjX5fV1DE5j3b9RQ0VgdMe0tBPtW2BNASy5XkfK/WhGXru4gj15ptgAiOxYcq1H0ogNXNEt0oA+0sTmpDtX0knett+aOsi7/gH/0P+lG/HGyq4gpQDQ300oQymBmuVqX4RkQ/YJr22N/cYXe4RYgRreu1PmQuGWteMC8zTqcj5vNF2miqEUdrIav0OLqeYH7xrwBVEpSs64plkfKb0/mMWrUbFW3KTQA0FXx06n1t4l/SOUSMhDhg3nlMYYInh4EILlUgZyyXC5aUW/kSodPfmtNFBGw+2zbFsmaUXHDY3eL+9o0EHb4CjrGsMx4fP6JWxmF/K/R4JlQEFDgwVUhfUFmIFjiwXs4AoSFGjOPYQSEixGHAOB0Q4oC7+zeYpj2maYebw20Dp7x3qIDoC7EEGbVUjOOIGAcRVVOHor9+5hBnCcC5EpY5Iy0Fnz484F9//wccn5+R1tSCf1smUvrnNcOyApBSxMIafLRFoLpHjrDfiUj15XjCn3//R1xOF9x/8xrL5RYff/qAzx8/AhWI2eF2usE+7PDm1XfIOePp+RnrmrCsQjsuJavm0Ip1AdYlS0mHJ0xTQCkZPjhU9tKZRUuflkXGSXxSj1IKnp9XpMSIMSEOAmTsorR2vr8X6jZVgFZ5+hAJu/2oRlbm8+n5jFxWpAy4pOMLywJcvyQoduhxhWTiwAyKUQRpbZ5DwDAIqLMmj3k+NyZE9QVEHtMExCid4MrlglIr5uMJtax4PD3hzx9+FPbbKCLpl9OMp09PABy+f/s3eH3/BvMyoz49IKUVf/zXP+J4fOgHBrAx7lutB4KI9jtxijYloeScgEwqBBrDIIykIB1j9ruA8btR7ktbIa/rjNPpAVwLhkGCgZxXkIOCaBmn80W6UkLYN3RlbMSgm4tgbBcBVdRZxga4UJFegAWMIcng7KYRINVzgLAo3UIKrCSkyrDKNaAf/LD5JvSvrx2GwCZ7xi2b2fAgFpvpmj00oUDZr6VklLW0IAREGHyUTmLqBAnrUJ3Dqio6Vbt/oDbw11iJiojAMIBaC7IKIEqHMRmbMMg1lrUgp6y6d6KFFbyDDw7wuiY2h4IxwVhtgpWmlpxR4JoDttUmaMEZAQzJgjXhzK3f1J6FmpZgsbHdgJGgzhji2p1MHzyYoe2QJ4QoWXciYbfGKGeN089sc8FAjVGaSawFHjIOaa1YkwDCAeZoeMk2ayNvA5pyln3P6pATaVcDWFAr6yvrFFlnK3KEMMqem3YjxsljmQu4SLbbMrBgRkkCqAqg1R355gOysEJpzfK5lbUUiAA/oLgKsGgbMoB5TdKldAAIWk6tYOf1OpdzNZeCXJTmbWUEG3/DnCfarPHWOu+v9WoZwKpf1ABtA3Ccc8IMCNKddn9zwO6wh/MkQQU7kDL1cl4xL2cs8wXz5YK8JlQ+SEBIDtZG2zqUgajZWwMx2zrX++JaUEwDKq1Y1hXzsqByhU/q17RSSVnowlxQoInFNnpl1TpzDaQqAt45jFGYvT4Kex1gFE4tiCNt52xjVEtGVgmCVAmFgVQdmIRJlVJCygX3t6/w3dtfwXuP83zBklfkdcXjfAYAYayEUZ9XE3ZcrgKe65PUSTm6lqD5GHR/q9j3sMPN/jWGccLbtz/gcHurPtSNlH2Me4QwoKAg1QQQMGqHzzhEZZl7i0ibXwiITbbucQKuAy54FaaWkiXmgnfvf8K//P53OD4+IuUsnZ+9PRt0ngTcKSnpESa+otfMPVo5sgDiQVkUT58/4V//+Z+x2x/w5oeEOI54+PQZD58+N7ZyuH/bytpzynh+OiItqzIJJIFzvswol4Rh9PhmuRXWdJVT1LoxCd3JgZyViXVfgJxDLYRlEZZ4TowligbrMDCcYwwDYRg18FUbFIOX1vNEmHbCynh+esJ8OYl9szgA1JKmrN3MiJz4uDHq+dAz+agkrNw4IGqjFB8CDvsD0pol9rjMyEXZaqr5JPFBRS0yXmDG+SyNAh4/f8Yf//A7jRsqmMTen88riDwOhwO+ef0Wx+MTjsdHLMuMDx9+wrqc0WRJmJu4P9ABALl3BfR9UCDNIzgBiqJWOIQQEZz4S3GMcN5hiNLAxXSBQMC6zjifH1BrkWd30rzmpEDLmgSgDsFjvx+FebP1oTbJGP3I5o/CE8gTmCoqC8gtRFuJCRubicQPIAh4WldLqLS4HNa6qsVdsKQgK7DdbaGdVYSXR4Kyfri7WltmdDEGsPMNKFhqknM9ulbSZvaW9N7lHryADmZ/iMEqP9DNKyHE0IgPkkwR9qn49ib2L01dpOtiZ51LLCwVCVy0TJ4cjP9hpYasZ8XWlRQNUvusDhzZM5lekvkAijbZqOoYkf6N1zUW9LP7XHWgq4M2DaBRkClEj6jMJudEP5CBbiMVoIP9TIFVuS4BkVFICBg1y2wPwwHTeANmxjiIvXl+fpTmPiySOsbmAjaxLOEKuLQXq89pYwcwQomwVmrO+1YG7ltXcSntY9eTyzkL+0kdbbluZVAqupcTiBihVoxOwCZGhKsMoqKC+uJD5ZIxqC6hI2gSB2gNwkCwLqcGAEr3wN6MhJlVHNxAGBtrUr2s/9lgUx9SGN3fEDzLkNiEmNigD1EBCfU4NjamqrBl0cxZUb2FvuU377/a/tR/1KJA+VmndHfD25T00e+53aszdkhnfMDwv82CsgVmJRui0cINcbQaXOcM6dl8Em0CvKuHEgtmOlMAYYhSzsaugB1jTYsseFW278yGJrShbIKrwQLAm3nYClZ2sMkpQymEiGGQlrTDMLbsxTAMCMG3eltmRqYEQtH6dcugvTTRL801ffGtnNcsQunLinVdWyB4tUjsO0anQmsZTN3OraHvTUiTUFLCfD5j3E24nM9wwWG+nDGfz/DwkpF0Hl61XgT8LHA+QYAZEVv0fkUm0X6xMjoDEJ2zjQcdUwlaRQ9H66o1qClFdBTICSuJHZAIYIcmPm7gRO20DDXU8hW0TttV6ue1jVrLeODF6/q9WwSeNsNtjERfhL2WN0KYZNkM3rBTWHQzck5INWPJi4yLlr6WXAWcc6KDFUKAz53uu8xCKyeIM/lye7AGVHIPHqJnokZbOyo459p6DSFI+a1zrYwwhCB7yovml/cepYqGWAVrvTuhVuvyISU9tVQUItF4KaQNzr4MTLcZsyt2H0My0WwZf8OpuM0H2dqBMAuqMeSshdx28W9+0HY70ZUts7fKnH7pMrX36BstGOFNwM2bm7U9RrpGCRtgZWujbWx+5rzp2a/t/fQLmmMs6+DFvdbu6Nh+r1SBolkic3DUhttz2WebQ2iJiKu1T/3eth91BRy1z6KNLdd9BqPeUxv4q8yR2UGSE6YDHaY1t7Fzm881ArDR30EQ5gukZMR5AyosC2WXkSs3EOXlI+DLx9r+oMcC2wyXzVvPLDpv7cLtQbvDjhdDJ9lbM5F9b1AVprINgXyeE9q63rsQpbiXYpE5Nfac7SpoKaTt/P/Mc/Z9ujnb/+qvvjbbmuS+akw4v3WJDb4FLGRRj4IRpichiSDrItjrOq5GhHkzZ9T28hUAZe9rIGpfZ3b+4YrfuBnerQ+lJqH5J7oAu0+yEYq2z4eaSO6rkezMVwfa9KXkok59Am6aodM4SVIhC1hZUZCSdBMOLoK97hkxwuJD6XVfWtkrRsWGhQT9XrSaxG8axx2mScr2hmEQ1tM4IoYRhbN0j0MX3L56/u353P4/6Vy+vBcZ8VLFf15TwjKvWNekwPH13NtI9tJmhlQhcLOrtPGlDDQkMNKyCiscwDrPAIC0LshpBYUBwQeMwwinjJ0cMtJa4Mij5ISSCJULUkILfkspupZd89eNX9LsF9T2K0Yhrc27rlipou0J7owWZgPcNR5pHVZl/oKTvzUguvk+26YaL3wos9fmM2/3SD8F1a6DGrupFPGR+1yYzeoguI21lK2IKPa6XAAARbumCkIbtXzVNdDBynrmy4zL+dzu9Tq2IFgSpQmbwzp/OVm7/hps8l60sMTWi1ZeiBHDEBtAwtx1DCXOsC7GIo9A+lylCABiWrfy9q2tNXunZyTRZq0DV5vC3s/GeDH7otGbgTAbsKmVc19vrA78bK7xknUk55iJl3/Np0bzFeycFFtpiUYtV/PUQPYvX8JiYu5nme6A7fCgMaDIGD9mSreJxKrPtbk97n5T09TU2KU1bTLXhdA/i9sFACudt7N9M4bNdsnF5I6a/7g9cF/aLvvvr43JV+YC3VYawwnAJl60sesP0tlV1hxKYgxh5FnjBq3sIN8YRnaNboX7Ob294et1pZaA0J67+8n93/5MwhrdzldbR5XbR9q8ND8VekYxJDHLUk1gBJrW9GjjB0vsDrSGRepDyfM4kFU1/JzzfjW+6Htm83Z68d//1uuXC4TH0C6alGYm7b1rO2zYCa0PDgghYn9zwHQ4wHnX9CI8SWY4pxWX+Yx5OeMyX7DOsxooyfS0IADS7c2BWjTy0qV86SQF7zGGAbtxxGG3l2Be31Or6jro6In9cxvRUD1c2sZTRoFuJOcqvCMEDwzeal9p44zYxjBByZZEFmPUbl1LoHRQhyHi/v4WcRhAEYAH3CfGh4/vhG1zSQAnOBcQxwMiEeZzQcniBDjvtS6f2gEwjoME3ZsWsD5EOHLY397h7v41Yhxw9+oVpmmPEAcMwwTnfUfJlYZZlaZcg2gkSZdByULVFgRsjTjr4VL7bOmYE0mmmhABDuAaVGyWW9vsSg6ZayunEWE9AXFqAThVUJGOHut5hY/dWScQ5rQiHJ9wPj8ijA77mxt4FzGFQWvOBwTndQ4IoUa4EFBKbZ3Scs543j9hnmfspgLORYR3tWYaVJBrRjKxemVl5SxzHYeAcQwoXDBMAFxFiE4Fb0XElyuwFhYWR2YcTyuWtWBNwLIKI+LmMGIYJLOzO3iEBMwzAYs4jeakca1NBL2VBmwCWTNqRq0FCMuyInjZd7udtGFO64zgA06lYCknfX/SbovS6a/UgpSLCt0xylnLGppRleghBqCWFYwZKZ1xfHoQLaW1IJBm0aKsSStFdE7KIMiAI2UlBhPn1J8LuGVd9vSgaAYaqDXjeH5APwBFjHBdZ0i5SEIOAVwrvBcQq1QPRkEpwOUi68uTUI+N3fKSDm3Bk8VJpEES654HW7dENIo4q5B1gTiWlbiJP7pAknFqThXDWrxv7YbgRJsDbrP+ITFRB1FcD+AY0FLiCqpG0xaAcJmT2l2xfy44EQN1TgMmCZqqMV1tfW0PINe1mOygI+q6CDZPVz6JluTVKgxCZiCvWVp55wJWzaOSlQEzeEQv5awmvlu5NnFi1kNWDvyebWKWYEeaHQgzohZWsXNWYfO+Z750itSBa0CZnEvtHNaJ1phCnXPCNIlDHwcV8K7SsdSaVTRxTgWaKyTj9RLI9KojVgLAlVpZEoGAoMyfDHDaMOGcAbfdk5QgoKlZNbo5IGUVzAJsSYDIWEsCFRX6DOagWOlCTzbF4OFjTy4REcYwIPqASAGRPAI5VKWRFwDsSISefUSlAAKrY8gohTDPGURAJO1ipkAMESGSZCuDdxiG2BtwsAEV1EAdWxNFyRzmyP+1XtKOWoC0RRt75CQlDt4pK9oTAC1djhHTQbQvHZHoM270eZZ1xulyxOUsZU1lFUDGqxgzk8nrbl8GOKAtbkJ/k2Wjo7Khx7VimlT3gpWh+TKeIADctdjQ7NQma6/Xdd7BD7IXmCTR6LgAaQVxgScpDRCAVtZZJNnnzIBTZtOloAEOdpFxGvHmzSuEEBEnj/PljKfnZzx8/oxcMqgGEAdUAvwwgcCo5wxOCwBqyYwtyBQ0+JYyVglOhmEH7wNevfoG3337PcZxwptv34iQuw8Ig5xTYfBwgQD2GDSQ8E7YfMI+2gYZ6idVBS82wdxVWWQ1TTIC4AEOqFW/ioMJ5xNJAJqTnC0lM1LaBEGAdHBNCc5n+JDgg+oSooAc4f37dzhfLjgcbpHWjN1+D+8D7g43kqQMDt4x3BQwTKIvudtPqFnYuTmtKCXj6fgJy3rBOI7KFqhImZErkPIFa1qwrqvGCMJ+TyYb4wNCdEhJyuioYqPzWbGWqll/9U+5Yl4qSnUgd0EcpOlOHJz6E9KkgRywrAkQKVxlAUnpSUoJpdZ+rnO35S0gp1W7FlfRNdXSyPv7e4zjhHVeEH3AfDmqto8Gnc3jlGVbUpGOj8SQMlsRRWYucD4iRkKFw7rOmOcTzucTjscT5nlGLR4x3shaCwYiqWank27g5Eh1Ye1nCiypDwXzL2ABuZ7NYDAylpRwmZ+xPfNrSShp6UG9ajaFMMA56S5eqvjLp8si13VWjkiqqWOAFcGkGrzzrVsYo0qgDELOQF6UXVOF4y5WEgrwdDCkf9Em3lC/kKkzYTavdta/AKfEf1P/ykrw7Ut/VnPVjnxAcTJqVZlGPgQ4F1TvS8a81CKBPzQ82lzz5Ulk95VSAmdubH55bAWfyGmXXxLGc9L9lUxvWDZSLaafK/ddctGSNEm4Fi23lPWnz6h+jGnA1SqNmYydZGtCkutdc/RlfG7lv61D6iY2AUTWQoBh+1n32UJ0iG7UxkLy7LkU8LLIOtXNtG2IW4t0hxe/R0FojhAZjoSgnXwdCMQVtWakJGu2cgL5Cg8Wf6IG1dgytrjF7NyaOjQQVZ2+TTSstlyJKjHI+6lgTSo9kXWtVSl9I4i9l3hPWWFEGIJH9B4RXphpLNpNYq8Bdl747ORAFMTXU7A+FQbXFQSS8nXdg07BaKdnndOy4S1WIrqkVgFhX//PfKZfLhDuzS0VVF2EfS8oOSPGAeM4ASbSxdJpaFRxS7LaVu4Zr5wl6FsW+VrXRRk+DtfBi2ZbWu1/+ymutqehiSwCYUMIGOOA3TiJin6RTViImiCZrc+rDMYGAOIqG2drhByxUo0FcPKVmm7PdcvwTjN0dH299v0GfIoh4Pb2IJ3fRgk2L/MJ1iFPDsaEOAbs4w7OO6zrCcXuH14PCxMB9xjGsdEIjZU1atbtsN/j7v4OcRhwf3eLcdqBfIALksUYRmGMVD0IucpzlKq0TqVFlq03+xW4ml8+OGybSzkAcwDYN7E9Vt0akAgqC7W0grNurFXAppoqUJJkvXwBOWENBaWFYrmAnMPl8gwXCNP+gO+++xW+ffuDCEcOKlrZwnOSNQxhtJQsguyDHzFfZhBOqPUziCv8QMpMsVaTRXWZFUg1LTkndPlYHcJQUanC2vKCxUCXylgzsOaKlCoulxXzkpESYU0OMXp9pgEAY5q8Mhz6wNp6qxJNNQqnZY1sXgw534JNomnGmIaIcdjBO49l3MGRw3I5NXZJKSZ2ruAIS8lqztxbJW+uIbpETumZGcwrcr7gdH7CfFlQcoWnAcEFjGHq7KQggqLDtFP2nXxZxzFzALs96ibQHOlShf46Lysu52c5SPOqOlx9mTIKAkvXFfk8D1odwCK6Nxcp8QqeEBqzw8GbkKt+lgUjzBt1FLa1Dhg1yCn4XKmgMItDBcm+M6BgE4kwdtPh4ZbZMLDdiG/9Ofrx3q0iqWYXt7awWyegyukm60bLxopqLVzZLjjVunKy76oE8FWNaGNobTBGY8IBXS8IFjyKV9syMjZK9j+ujFSyBuIq3N9EM/VnWZyJNEraUOJzUqfHBCGhDmh3krf3EZSanXNtbaMbtbt2x/MajOgZI2NaoWWK+nqgF/aeiDCOQUrnougp1QqkVNTB8lqO3JezlD7JGBvgShCwqZLsf2FXenhtg8tSMdOdPs26OWUOkrPPlnJRqKbOFYNDFqrch5N9hCpdclxV9oklUEjHlzsLTmywV60JefaBAoJ+eTj9KiISDoDJwROjUkCxkh4UEAswVIoI+1YvzRm91gA4vVdHUO27gMqMNaemT2V70YKQqoATnBaj/fWwJimBApTtkaTkRLXphjhhGh08NGlEAjaNuwnDNLRkAqPCzE9KK+b5jGWZkZaEmlRI2ktQwuqMN3tkqNKLZzbHGJtfhxAQY8QwVIyjNUzJbW1JQLzZwQr6oYWBeuZYq3oFU6QhiYAFKJK04CJgk6tSAgkt4zJ9Pk+yRzR2RGEgMINYO+3pDQxDxP3dLeIQAVcQIql/uWBdEqLbIbgBFAPcFOGIkNZzDwqcMbYtAKYGalrJgSOPMU6IccTtzR2+efsW4zji1et77PZ7DYDEOPuo2XQmuCpzbwG3dYoV1oBohkgZo2tBArAJhNVeNqaIsWTUh+LqUU0vjSDBGhMKinT6TYy0bDRtAJSVwSlLAORr86Eoiv3O+ROen55xuLlF8AH7/QFvvv0W97d3WoIv4A3FADeofMSNjJMwm6QUk3zB+ewxRC9riIBcKwozchGmVM5JS9tEv0yPaowxYBgEHJqTslp1jTALg50Z8K4iOLEXl0tBykAMM6bdrAkJSS46TwhRgL5WcQEoSKC+kWpS2rxbupTZqhCg+1dsX4gzShDt0/1+hxAiTscjABHL7qXW23BNNmbJVQBBtckCPmaAK+LA8C6CXUFOC5b1gnm54HIWXaYYBgQvwOc4jE24OwYtgRuNseQkuHSkWlqdXSj+UhIgmQBLICxpQcoVaZ1xOp6USacdWg0QJmNpyKP5EOAYUqliz6ZJjRi9JCL0LPN2aJKCEeRVMqM0Tb4Kkq8spZPmW1oxNZnBMh08jafYkBy2S1wbvGYKt0nDl0bRPsdWxxZo2jhbJRurSNZT5YqiCa1pL3ZLgDTVBt2AdtZp+IsXdY+IwS3Zb1rIoM29tdjV1ie35HAT6zawaeNHlVIRY9XyfacNkkofP7sPjSusm24g6/wrwJb5V610b5uF0M+w2PMli/iK7XM1FHJeAEDwQWRHgnadhezRov5L09GDyYnY/RT9XJvtAEBF613WU4oALuAq+0uaRSRljwNB5QtqzZKcZSE7NBY3c0vmWBRp6+saRJTni1qZUoqxw/tYbZushOilRJTsXBVwKDqPoAprVkxv167OCc5AtFG10a6OpaDUJOspeG24ok1YdA0REYgFFORGyNnoW79Yoi/Ql1/0+sVgk1HnazVHmJW61SnRJpzt4OGdOddBF6y0zGs04CLaOCklWeRFNJ8MmbfsHMH0HzaL2J6UvwScgK534RRRVZdFNmUpQsvfDOCXYJPRIjcaH/o/M2Jdx437hkNBpQJzl6uWOxmIb8w/Pbo0OEpNKD3lFS4QXJbnrjW3BReCULZjjLIQ1XjZmA9hUIaZHiTKEukte8WBkohW2GP2iEXLGYmthEO6htTqewmfZovlUNasvnZFuZqFK3RpE3FfGW75nBgH3NzcA1WECK1cirRdb/QjPAXEacBuUOFTeGFYEADHejCekfIC5qK1vDpvXJFTxkV1u07THrthQogD9gfAhwjzyIkIwYuGT4tUoUh+9ODiUHNnlbQuP+C2FqyrgFFrCSpq56R7loF+jUq9GZgmELsRpbQlnXPFumaI1IqCTaY7crVHN925ti/dJ2aU0e6xA7R9HxB62aV04pN7kHKEnLIE9A24ocY0YkBrY6zsT/QpSmYV/GaM4wRHoY278x5DHK7XLDkNWKVcVZwwwrpWrXzYlvOpyGkLrpUyylKvLlo/VZgxGkiRHqKlcMsAWzlXE32mHqXxJpg29l2nBRsosQkQbOnzZv3DoAoFh1glsQ2gqpJ9tk5oNrYNDNXr9frp9klX19/SlQ34YdJxY9NxsjUHgFgdEYYjbjYrBC+dH5uNtbp+oynbcxCIsSl504QBXAd6uANNMiwilM+bPVCZBcywMll1cIp2E7GBdCpw6shayurP1XGWbBZ30Nq0QTa23DkR9hd70tkFbQ0ZftaOA3GKe+LBEiAMc0S7m2HzdR0o0oYCbuNvhFvnWANre786EDr2piNSK1AyteeyszFpVyXTPKuQborb+2HGRsTjS+fZ7q+D79DsqdoqvT7XfhI30KlQF2Tf2Pk+jlIU6/nKv2/ZfmOuWwUpARr4QwVQq7rd0gWxCc6qBQa1p4J1RnXOSVenajNWtHSvMxFt534lR/Lv8rLLcK2t5E3WhJVVygCJjZfmHQZwg7SMDd1+SOnNgpRWtXmsLAft6Luxk3xli7aTvwF9LdLQ9eyIGgsHIMBrGUYt4EJXQc+Wza0qK/i/efuzJkmS5EwQ/FgOPczMj4iMPAvoxg00Gt1Lu7SvSzPz35f2YWhfdrpB29NoHIVCVd5x+GGmqnLwPDCziJpHViNBBJQlRXqEu7maqhwszB9//DH0nG+X1fsz1ro8uX0l1WaxpJ3dLltMqp9jrp+MYVGAuWQpe095BUhY9xJwSYbb+YoQA+I4AN6LuC+hM2W121n3A6FOeC8n75IEwlgAOWXSSYl8zqVl2uVGC7Q6u9sVEZa7GhNZ+M2pNUPezuoWCOtZQZDkIkCY5wM++eQzRB/x/O4dLvysDFQ5P4dwRHADwjFiCDNaSZUhzwoErpv4UJVFX4qZwY5QHSNvGeenJ9RSWifFECJ4EiaXq11ewHSAck5IaUXJCQxuzN/W6GUHwDSGjC08aPBlQaTzYiOdBD+NcVRZGJEMgIxdzCCneodAK+cqKmHALGebxS9tHbqe3W/reH8etDXeyzitXK4vTGrrRDoUSkITJN3rrC28BeV2tPb4w8tNO+m5HMKA4Ac4HyQpuSYwEw6HI2KUWMBK4AZjgvsd69spw5atmzGp3mm/V8DApu7zsgL2pRakLQtIwZ210tWuLBFZ0HX6GNelUOorWDkXLBHS/TBq5+XOLEEkBSoLo9CTE3a2xRc7VISaJeml2S0h9xMhMdnetpvodyq+jJ2PO7MIfnGR7jbL+q4v5Vj0fOMO7nCl7iMZQofui7dyp2pP9fE19zfGOhbVbKJ2DBaBaflcE5sGWJM0Vkpq16gNSOmD0+ehsZD0W80+6wB0fcvdmFH/2l1kvhozvBwrNt/1emwlfnbXP2NJ0woL1PV1ZHGV+SuQsWg2hAZwKdp1riKXBFcIuSSUmhRsYvRVo0l73Z9djmG/EHY2mqBJYoY1KQBJfI3iGjHl5dj0JW2aXmh7lyC+Ie2pW1fLQc8DYoBdx1jbuAFCyrKyfUKpaksVk9lXt9qlnfp+3omOaNsX6qEJy6459Pg5r38R2ARAy4yE+yV1vU67Mcif4AZEJ+VY8/GI8TCDvNXuygCAKi7rGY9P7/F8fkRaVpQtw5HDOEhb02EYkJMgkTUXrX3dGYeXCxtiyAjSJjEEYYXEIcIX3w43SknadnPV+mKWLKKP6ihR2zwV6sDVCq+aAPoxIMgtOUDKq5KUV9Vc+0JCdwwBdPSS0ITVpbVoxWV9xPPyHolHhOKUuXQGSIzDfJhxc3sLFwL8KCKRIQQE7XpyOt5IN7HuJ7UN2MEmD/IDyAcAAbUQCjHWRTsBOg9SfYh182pUdkOso+xKRi4ZjhkNuDINq6vJsQniKz9K6kcrDscb/N7v/SE+vH+Hb3/9NR4/PApFEB4eAYd4jyHO+PTNp/j3//4PMY0TTqdbzPMB67rg6fkBW9rwzXff4O27t7hcnvH27XdIeQX5AgoZfF7w47ffwoeAdL5geXrAOB3xyWe/wDgdha1RhLl3PJ0QY9SSvQJCxTBKVmxbApZEsJ3pzAHRR/Ok5UiQUpwCEmZT9IgZ2n3MDLVTAUTVKLFSKwKGYQC5CnCAZfjOl4QtVcyzw2mMcCTC3iFIuZGV8xi4Y6Veckj2jLKtcRAEXFSHjZ2AAc4THHuEGFCrtDAGedRKOJ8XXJYz0DIgMsct86thg/dRxTBFE8x7h2Wt+PHHRxABr169AYFEHyzE7miRtQatWtIkwnw5bxJMqT7Jnkkh5UjaRa45M3a2iV5E0a6CJlLdstR6AFYT72ZlrdTdYaObuFbRRQnVI0YtTfKSrWqHIHrwZCFcpwtrYKb2pNSCrJ23soIDJVdsiwpU5w5um/CkgYvMrPoltTsE/Vab8wydc0ACHPLq5Gl2y36PAaStoLYu0GJjpwkYBkJtJC4B5Fq7aDsoa0Vlh1IrUhYg0ilobA45MwvV24nYumWHAQXAARQWOvo+Q5Y2YcyZM0kgsXHBKfVaAX1YAAgQOc3oaRe7KgyuWlX7LKjgpJY9JCqtPW5Vr5KI4YPsH7oqK2DtHqjtERkNnDTHD07uRwJCOU8kM+VUe0MDrp1dDYEQFPRsLEXLSmrozuRQEmO9qPOgYtk5F5y3VXQbHLc6/DgEBAQN5qBdU7vun7TrvnYuYnQ6J/LMtTrkaqWGDppwB7ME1SEAxA45Vy0d7gAfFIx3ELr3ACDAgFIG9swtUhC+9nIOE1CuuaC4rA77qtkugq+syYZ2JCPbea5sL8eAL/qZlQGUxoCyYNUSSr+Tl5VzloycEghyLhBFiHyA2AphOR0xjTOGccQwRiQn2UZScfGKguV8xuOHDzg/naWdMzuEMGCejjiPE5wC9sAumGhO585pbqUBQusjMDwRgpNOWzEGFTYW0DZlap2ELGYyDUgJMh1aqW8LqESg3/SnxEFWH4qAqCzKoAGznK19/TsilQuXdcUlY1s3bIWxbQWpVCyXZzw9vUeMEc/PT9JdNm3C9CCPw/GI0+0NCgHJyX6PIYDDoN1LZ3gvbEfTFhKNGwM8BAQMYZIuyy4I0OscLssiS4yoaTrFUpuYrnWxI7V5Vu4J019kB2LpGtb8ip0tB6vOKVcQOQzKwvr0zRf4j//x/44ff/ge7777Ae/ePmjCJiL4AXe3X+Ew3+LTTz7FH/7+H2ActdvZEHG5LPjw4QO2dcM33/wab3/8AZf1jB8fvpOmGcraXHnBd998jRAC1vUZl/UR4zDj1f0XGIcZ7D3gpT37YR4Qg8e2XVSIW0rCpNtmwbok9X9J8MhalIVYQaRlKSQMeioER0HZQVXbd3Njxu0aBgvQEiOosvhFaqvXLQm7xst8gBnTOGpCW/SOWlmJk0YNw6hM3iqMAN+61gLCxmekzEgGNlEHwGSNiF5XqRUhDiAS9si6ZSyXte2zWkXnSJpHeLgq+yd66abrg0fU8uu8MR4fzyA4fPHFV2onxN9rZZeQEiIT+k0p61ftsFVZS4U0WaI2oJTS9nNLoMAC986Ud05Jr8So6kMJ+1jPxl3CTkrUewIwF+meGbzEiyAoI3enbbUzQwDg2CFYp0yvgIwlF2tt3RWdcTwMsWJlzjVIDFdfQcpqMR/Z7BT38+QK7bDf3/lbUECKDTeqWputfoKsbfFDMjNWSFJFJAG0m5heP2tCvypQdFWyp/drvl9lK23q9yTjtRvrLI1VqpbLlSKA+ziGK5DZOULOudkmdXobcCI+tQ0GaVWP+E7GHK6NFd7D8zadzvwn1jMLkvzjnoTsA9tBpQbA6PdaNYiOe84ZKUu3Q+8IIGE+ijiJ2NRaIImqLE1UjtOIMR5Rc8G6Zol/qKLwilIylm3VEkuJ8wtV8/b0c6RUVPR1+8S0qgNoc5soSZZcSG21siArwYVBczCsjCsA2Z5K/D07K6QTeQW4KABlY6Vz3v4i3w+s+xJo1U5xiCDvxOfPWcs+jbXJ8LXCk5JzdnsAevabT+aVQVwVy7AElPiptfmU/9zrXyQQfsWGAKsYcA8YdPhB0EyRivI2dtIOuShWJ2mU91av2LMDFiDyblDtAvwCld6/WubMWSZCUHIA3YmAE7FZmH8gC70y2iC2zDR6EECgBjDoncizVQEPGoXN2hqaUwFz1PW2nQXLSlGvGUm7YjF5+OpQSgY0S2CMFzEM3NFLklrgEKIAJVdAz/UmtjI7y7YAXXSxVqkhpaJGGACRsM2s7bSNN+/WAnZaLPI7uwjGXE7qWQ+yuYPoes3zEdu6YRhGhDAI2ETi5M7jAdN4xO3NPd68+QzzfMDd3SscDkcsywUfHg5Yt1U6FyXRDnt8fAQzgd0Co+Ru6waXEpbpjPPzAGYgbwkhZKGvGxxs64zF0IANINVH587isnPNNce5/0wuRW3dmLCd6aIQXoj5tX/Le8TR6S3ERdizKOvEqdGX9zZw5AW4aFfm3XTsf2aPa9/HHphsgqgqzk3CAiq5GLXxKivhyKnWCGm759Aov0SdGSVAWNROPRMG1TAxm5CLBP5kzqcyHyrrHrFS2FqbMKiUzHUaLwCt6besUAc2LGttd94ZM9ydLd6Pn9yaZX4M5KqOdzXidjK+qGTeza/dS/9BB7f217W6eFuTe+ZUAwGu7uz6dfXTZrvQ1kb7N5OUBtj5VQXsaS/XwTzLWPX7NDCdepCK/XvliHbNWbXzoq+7a2+uD1S7Rt3Z1MKq04O2Nh15KdEyK7xb15K518wp805Umtt927jaV3s+MGsJTBf/vtpTdD2Hezv3k3Ox+13Lotvbbe4BK6Xhq3mzsQNIs/yQzGhhLfPTp2qlg6IzYFTqJrpvc2BZ7t09cvs5dmOD3cXNXun7dtojAFSLgUDFRrifzU1wmVj7YZnGRl//djPiX8rpYOydxkquAh6JjpoJsKKdW3Y3vPt/YzZX7sexfc5+DSiT76fm79/ktXOuLTghIgVO1V6BlSmqperedDpqX6M6fkVBK2uu4tS58N7KLslmD8YuvL6dPVPv+j7NiW5aeMZUYstu23X7mBo7hM3+sjEcGLXuBVp3tqj90ZKcq7uuV+yD5nRztw9SFiLZ6lKyaP+w6MZkZc03f9Ib051B0CSE+jdWmi2gddYsdj8LzW8SlpQkVq2sgxnNfkPZkkRW8qZ+KHu8XGn7WIvs3y/9WttHsHXPV1cZxwl396+Qt4RxmCTpGwJCGBHjiOPhBqfTK7x+9QZffPElpnHCfJgxjiOen88YxxnLsmC5LNjWDHIej+cHgKHZcgmYt1VYSpfzGZfnCVyAfMwIvurMKJBaC0qVUirTdK1qsJhV8w1oZYn7F5kfAzlbmM22O9U9qcLiUHtad/YbUECPd3aMtflKIQ245fvmX7UEDtB1VXYBr/gdHq4BCTv7vDvD+yLuZ1FbT7YXyXXWMndbJfftlNgmny2MpginiXxjZJVcEYLIY0iHXSlN2y+o4oCcGTJQFpfUdkZk9aGsU6XYEWMP7xNkO4af3qnbHaXq7WvTAK0UafIN2NkHPVzMf3D7GPJ/8mLxUxwTHBh+X84IK8rd+Wm7819Pzev9dnWumf8CHSNun9kBEOzsTvff2qPvhOXboxh1fnctsVMKIhHUt7Hp6vGQNTlgtpL/fvNX3aa5rxv7dytda0AcK3un+3EAN4AACjI2V8Ps/Qt/U9hhPUbu/gyk8cPOP2x+hM0FoYNO5gy8YEF11tT1PO7XRvNdX/hFxqA3m9mnVv1OPderOS7Q5Ct1dlmpRco9uXxcFt6HHy1ZYMDnC3/BfDnBETTBaPXMxE1gvXWMBO9sFV9dx+z9fsrbTtz7m0wf3a/ds/2++VAiHRAAVDDVFleKr452T2wfzmg2jFR/TH60P5s60MZX9/bbXz8bbDqfn/QxlaZK2m3LOeRUsK4JQ6h4NUk5ko8RYRzhxwFFjZ4jFcdFxXK54PHhEct5kewOJPOVSlK2QoGkcN1uoK8dHDMWdl/mdhr1TPO0jTZsB4sFpjkn1FIly0G+LajKCj6pw+S9ZNq984g+IjqHQBUOFVRV5G/LcFRBcHsbaFOIFpvoPZtYq6HY5+cLvvn6G2lFr/T583lBXSToXp8e8VQrQA6s4p8ojDEOInYdhHbP0IAJnQ3hfUDwUto4TycEP2CeZ0zjQbSdwtAPRm3v7bXuu7t59kXbAPuoLLWdITB2UzO41zoxMnei/0FEmOYJn33+GY6HGR/+9M/w6u4OnqSV9zzP+Is//yt8/tkXePX6Hl/93peIQ8Q4TghhQM4J67og54zvf3yL9x8+4PHhEf/0j7/C+fkZv/zV3+DXX/+9sEiKZP6fn87IqeLuruIXXwKnccDr15/izadfoNSK9x/eY9mkhW/eNpSc8Xx5wrptKNsFKWU4x/AhYp4C1rngME+IQUsNtfV2zUXPV5Jghh2iD0CQ4IZVxNM5YTsB6hQBWj4GpExIlpXPGaUCYwa4OKBWRA+Mo0POZnj7ohOBwE2BHgFSDORx1uHIB8QwYBxH7UpoXUi01t8Dh9MRN9sd4iXi4eGDtJDPCaWu2J8ukg0UfbDDfEQcxjbXACno7LrTkwu2bWmHTt05K8WcsV1Q2g880yMjYLC1JHuz5CzZfXBzZJsBhYnNXrtPjJ4hut631L8HgFzPAqacUWpFjGiZrMoOrrHQGWaTG8iuwp/kGBREc8REjFvHkGJ/B6wzepX6NL1OaYGxBYEFuwNn7+ToX/bOQ9uidiSzMIMAYfZ1kIFBldq95FyxXjapNVetPhApYA3s6fUgggteS3PlvkMMmkXs7lrLpLVDT97ftBqMtaZ6Az6IPWidBrWEOAwSyPng4IKUl1HDFhmAZnB2rXqdPmgTqlXdAWao3ZQMrleBcxGmJDittwdBUkfNrqkjbswFIngTXmwuL1pwTArMchVGRi0VY4WKpkLvmRrQZuuHIMwSr91TUt5Q8gZGRQjSBp6cPC9DFrYsR/mMvo9kHXp9FnHcTIur9oAegPOM2FiHDF61OYY2C3GQLooAiZaeruVtywgBCIOKUYIwkEdgB1hZHFt2GbuXzLcDI5AmWFwElG26LYQiFCqsuSroIUBLYQBO+JVWTkysG8kcQV3iEoB1h+t39Vov0m2KiRG92HkhHgmDc1kK6kQgihhHKZVx0cMFBxTo/pDEVCkblssZzw8PSJcCVBEGFfHlTcrJG3thHyhdO/L9B2jvN4a4BOBoWnPOBZhxM8fZgH7vnQgSk9gVO9dsLUkGVDWBoI6rhY1c1b5VkCtw2rnNJApQAXbmR8m9gXc6IZrEe3o841e/+ifpRrclpJyF3ZFWMAPL0yOoFlQwkupZuEoY46hAkor4R48Q5BwZhlGbrATprhwjbm9fYxwnnG5vcXNzCx8ixkm0ehoQpdlpH6zUU8vMfERw/T2gbnubT1sZDGGg7Lvg9VIVRtHM/v39Df78z/8Ub9+8wre//nsc5oh5OuB0usHxcMRf/cf/G7788ivc397gy8/fIKq0hfceKWVcLuLXfPvNn+Pd2we8//Aef/f3f4un5yf8+je/xLff/lr9OinveX58RkoJr159gj/5g/+AT15/ing4YDgckUvCu/ffY1nP2FbRF+IiYsW1MIIDxiA2OwbRF0pDwjgMCjBhp3Eq/3bkFBySagUCK3NMyquwDwI1EPfetbN/SxlOy4i2zWMcHebJwXtoqb8lXKElLrIuU9rw8OGDgkUSYMc44HC8FYmQIcDF0DSQGqjoxL8apxHkCDe3d3j95lOcnyY8vX+LbV3BmiBrkSWAYRxxmMQfn4ZJGLxg8QGgZcVOYqRtu4CZcT4Lqxt6Zlrw34NbtOCcQYATvZa26dX+55yl2kO1fgApUzeg2GyGxDfcfQUL7PV6ttd34SisOYXpzdUqPlTloqZEzhdW3dMGHNhH65XYaWMNjSkq00ed3rq/w+JjcxWj7wlMQE0dUDBWUUs4MtCBmR71tOOJ+3RdPyW3tdf+SQIklCSafESErFqywXsEp5pHq9wPO4CstI16maata2tOAxuX9rFqE6rZYmGoSaMTSwwIyD4MEYfjJCLlqr1KTjocmo2x9ZU2AdvZSvBIO2Fr2VRjTZWqZe4GRnTg1HnABwFpfHTwQdhGuV7LXjRWHmnzBHJavNZ9llqL+I8s8VItIo/inEPNpZX7t9+pBK7CuE7bIslJlvhl3S4gX6Q0zZnd1YYNCrwWZZc5R6rFC2WqQcAaBQRtfTpBwFEVYRMbJedXY3dBEu5V/flxDLqtivp2kFiPoVqOwq6fxgDvCAMCIkkpXvOh8CKBbrGH+lbRi9/KzoMjwKViBaEgo4CxJi2pZSmXLoAkVgCtMNIdYLENUdvjTQrDfvYzXj8bbLosQjntgr0OXhXity3jfL6gRIDvIVTjOMCPA/wQUVhq56vrDsa6LHh+fMRyWcAFICvFKBtyTWJ8uBvk1kjHXBXeo3/th+Ik6Z+WxQRatwZmoEalhnJF1vI4q3O2qxH1zey9Zo69RwwCNnmX4NSRzakgb7JojOV1Nf6768qrNhqdPdJyWfD9d9+Lc06iHWTdDkDAdn5GTZdGkwMRjoc7zNMNQtx1h1Mwj9yuY08YtAV8wHG+RQxSqjiNooNkNGEBIALIO8RhaIKmLx1yO1AB2tWI9kC4PzfwEoGVAEhYJOM84fbmhJvTEevzH+OTV68QIGDT7c0t/pf/9X/Dn/zJn+JwM+L+kyN80G4ruwOuVsbD4xnny4oP7z7gH/7HP+LxwwP+3/8fwvsPb7GlBc/nDaUyzs8XPD9d4OARAByHAb/35Rf4s//wV1jWBf////O/4cd3b5U9sCKXhPPlCefLBSgZSEVKXrzDOAbM04DDPCJ5EXG3YHytSvVnQi0dbCJm5AwRVSc50K0jhdVxCyBEKMamAYOzZEhzItQsmdngCeMga3vbrplSJipvf68acAyjOEDeewzDIOtiMLBJRX0hYJMPDofDASllSGfDGdu6Cp0yrVfrOcSI080RMUbc3t7hcJiRc5Ess+495z3WdcXT0xNyER2tdblIaZaJOgN6QErXBDmcQ9OwCipe77xSzyGlM1JytcHklppWCXWwCUrX7y913HX8LbtC6oCRaqGJDaggkkMy5QKiAjiCq74Fr/qLzdg37MbWu5YIkAeoQrqFWXaxdqCJC6RM14A4c+64MxN6SeDV46jv150e0mCeAGXB7d8vTjrDgBa0G5d6bmjZXMW6bMoQVYFicoABVdqZEAS4KAF0UQdBuoRJN8xSC3ITbaQ2zgaEFBMD34FNVYF457zqhMjZ47V7no9yHeUhSjLXusnpREgmuzMMzcbnVIBWQncVgwslO5KCZcaIoCbMvO/qZlNgTt2+pMHsoq2BHoALUyVtRVuFO4yjrA8mAeNqrUqpJ+2mWkGQpAg7xloKtm2F8w5hUoFwIjBVDTS0e2etMD0f+88ycOLAKYhR91oEVs6mwBmAXDJKZtDoNdsuQETVkr4coN2ZsuwRmKCyQyCHgZw4Zft53SUpZBcqkMo7jTstye10bY9ShBUNUh0WiVIBF9v4O3X4teawAbSS2NWETAvefzevdRW7KeX9YQfwSnLgfF7hEEAuYBhnhGGSsjPvoUQctedSxr5cLqKlsziAA4jEZ8hl6zosBtrD2JhspuLaSWEGlM3bAj5A1wrATL3MQc8rC1SB0lhD4mNJQqXbKG5MFAMTbIfYf1VLUx13fTXUrovIxiRQSj+47phNsp6en8/4za+/bkmWbt5lD67nR5RtgUA5YusO8wnDeJTS76ZxKX+8lw6t0hFNmOMhDri7f4VxmnE4HnE83ki3MwWsfIiIcQA5sR3eU38+AoKzEqnQQKQrQ27AYIUeFCz72rldQMuoNQMM3N3d4NM3r/Hmk3t8/cs/xRgdbk63eHX/Ce7v7vC//K//L/zxn/wxptHhdAwwOYwOqwjr4t3bFY8PG77//gf89X/9Bd69e4///X9nvP3xB1RtmcRc8fz0jIeHB0Q34OZwwOdv3uB4f4/T69d4Pj/h8elHrI8L1u2CbZUO02mVMvEpegykpWIuYIwRY4zCcFaRZzvrUMReEkk3teoI0SsAqRpIrarCAAtLbnkJ+ioDW5IGILVYd7mA42GEhzT+MFYhGpNNhjilhMfHBw3+JRY5Hm+ka3OQ5C2c6DIZaGjMKGvOI2DTDV5/8gYxRnw3zTg/PaFA2QUQmw0QhnHA3f0dQgiYpwlDjMilYEsbmE2uwGFdV1wuz8g5Y9nO2LYVzNKsRWKiPi7BD/JVk4tWAmXi96Z9Z933sjZ5AazEzUquNA5j0Zxoq9V8//7Pq5csbTk0SzMvKnhdDUgUO1hrlU6bXKVUjy1Zo4EeKSORtDxJgY8rcIiaYdEzT54RQb4veq5NdaZBSo1ZzBZYvHgqO6Ys7nxpOnc+V3tfJSEh6PbOWc8zLW8uRQgKpVSEMWhnONXKYWGcUlv/5kMo80nnGXrL5kNZAk2LD3QviLZOHCIOhwnBO2xpQ87QLo2jMjfFtrcGK1nEwnNjBGrpOYCkDVqMZd18TZ0DaQ6izZosGegtRunsnrZONAnoXde0VVexgWjmL4rPKDG39wKIwct5br6PAI2EnCrOz9KFzbsH1LqKBJCT7shGe7ZYmVm6HZt8QUuM2Lpy/bwy4J8YEpOS2hGniXH1vwyDAMm4oQDDEHCYRC+4FnGipD+E+vwlY6sZIwLCYZBOdFWSdQ7U3keEXnWkS5cE54JjtJJ0RA+mICBdrtLRnQtK2mCPxsFrwrJLQJiIjm0NWXLqc2slWg+i/nlH6l/UjY4g6KMtCK5SMiHlH+LQ+iBof4hBs8EOyLZJSN5fK/KWsC0raq6IcQR50rpMyXKJ6GNB9WztSGRMeU/52+1xNTwG3uyRYMul7emtBKA4D+c0Q/rygVuGQDO/5pSzUk5VhNA7whgDpkHKuLo4M119EdDTnmNHadfZjl665wnwFXQRdVaHjwQfVJtCHZBBM1TBi26TD6EHFKpNQU66ScUwNKdJ3msUX7f76kD6d3O6uuFlHUMLltCcuN0s/OTruvwHTeA4eod5GuCp4ubmANQVVAGqFcPskPmCy/YBbpuxJCBwgPfyHDaozpG03SVGThPuXh3hfMXrN6/w5tNP8Xx+wpouKGttmRNmiIBoWgBkxEHaQxbekPKCZTnj6ekJKSUsl4uALLWAinRwM0qyaQ10FF7uqme6pCbduaq19Z2xYUKh1kFDSWvoou+9/KuV29SKrEIF5KTNeLbWd22xUTPScjCbBk7PcksALuCSsY2890IlRRfECzFgHEfUkjGMA+IwgGuCRUkdnOV2H8tyEeenCODFDHhdp9u2qX5A1vsQ4c9AYujR9mwHm6xZAKljIll2BxPqdI7VSdVyk7192Pvwdr8tutQfts/VZ7ESQYfe6YIsw6jZo2rZo4oCNJFYNc26zvbZKL0XZRzu76DZJv3P2DV2mw38goEXu1vebTmzgX1G9P8vo2kzS3ad9htXP25ABYiRi5yh5qDu12RjjjkR0nfeIVNR3MpKFWwMXtw09TJnspJmvHyR2uDSnSgdRw9hVgrAILFZNXqyE+03VlDf7SjcYCi9uutMvPxM0o9uFGp3feb0g4b1oO8smYo+XwyNnTJDq+ll32n2rFHt9XxkdibpId2OCqPmhFozvAu7bK6V6KhDo2WGTG7HZLqefyIBzJjl/bYWmykSZvqVyTensI+HfdbHf9p46VnntQuPOcp2L5Ydd+T6Sn1xXKLW1i1R+YXC3A269jRormAUBVSEySRjIHPE9hCaxeygcn+yf95J+td6WQfNfTZyX2oBBojlvB6GURhkzrW5Mh/HuvHklJHWBFdHYfz6CHISVJWSmy3bM5te7i/+Lc9vTvaeLdDKWLWsrCpTTwRMu77jVSBmn83tqn2N1N3fW5Dc6fmNvm/rE1bOAA3KHXxl+AHIFRhCxDSMyqDX5yBuv+990PbqyqQEYYhRWUaqOaWAkyNJwkkyJiCEQfxa+xpDS6JYMsQ336mXY/WSQVJb9XFXpvbz/Zi137ueDybh7JIx9lDhSHRKD8cRt7cHzNOAGBnOZZwvH/Dh4Xts8wByM7y37qKhbWp2hDB6TMcBx3XC3esbwFe8evMKr998gnVb8PT0HiWLLhjpnsppxZbOOPARMTC8F8blslywLQsulwVcq2oCMjwiciQQeUiHJ1K7XrBn4ImNtDjDWBeA89KBqTL15j625hTgZKjtJw061T0qyoDOmZpwPEgYnqXw1To1m9T9f4lJcsmtK1sIohFlsYQFxaXItQnCjIghYJpGpHXEECNiDEArCe7sY2G6itA/mJHT1nQQAWM2iQ9VVOOHID5R94NwNW7eRRho2n0oA1P74jIQoZ1x7TpC52D9XnNAduuy7+32r/7FuaYpRSSMCotphBkjPgaR+VC12UT7EAFd+nXNW3IkoGMX1u8f23zYdjB12/fxrrqCPT76v/1yjyEFriL9fvsXdaCylZqxCtQ7dMbO7kwyW2gdA+13AfG/uOzOV7tXO0PVZjZATcGl9ixtgvV6em5Y7BlCZzTJvaoGU+1lc9K50bXPlg7GaH7UFYmAbXnsbLizJlbKmqIeqzR/Vn+ZgRZXtzhex6Fqdr7kAvb7Sg6Lnbj56FVLeNOmml56j6Vk5Cw6bOY71Zql5BRdQ6oL5VvZ6LXMAhGkW7SSKMj1eWdIwk1c1t33bTmbD9Liky6vYtII/ZyFJvT6eSggBF2tY4uDWFnp+zWLUsFFqq1c0M92Hj4o861qwhhoPlSLNV7iK/pybV299Bs+PtNevn422HSc5v7RmhHNKYMB6fqUEoZQMB9m3N7f4XBzwDBF+EGyciULpZEqYSsJT49PePjhPeoCnE6vEZx0CmHaUMqK9XLB8nzGeAigOJmv1c3ELtC1r30DdKfIJkpEvpx0IokRVZFMmX/Xh8oCBuZGpxO9GiC7gs2tqI4wBELwhGn0eH13wDyPUmKnIsxtgRBgGVg/SjAGdF0DM/AxREzRSkXsgGWEwGpQNzCkpWiqQiddtwnbNiEMAw6Hg7RqVIPjnMM4DI0RYmV203gQOngITVMnxq4PYZkPr4ySxjDQMYSOF3aL0Qzv7svuJe/zCsCAWYAbZtzMIz55dYdSZgR8jvPzAet2xnJ+QogV7y6/RP3mHU7nW7ypn2IYRry+/xzH4y0AEiotAfMp4HATMB8JYcy4nG/xuP0l3BTw3Xff4On/e8aaVRCepOTi+fkBDw8euT5iOiYkrLhs7/Dh8Xu8+/Etvvv6O5ScsSXpXuhIOpUOwWFdPNLE2gVoa+VfRfWTQhykzCcM8G4ARcbxpCViT1kyEAAcywEkDBJhYIyDR/AOOREcaRtYQLN0BU/nRa8tNfuVEx6fMizb4b03z1wptdLKl5yI6tk8jqNQ13PakJHAVMBOtHZ8EHYZ0RFDHHCeBrx/dwtwwSNVLMszuIqwr5VSPD8/g0B4enxCK1cVu6tgkzAXDWjyFBHiBOdE7NzKi5pmG7ndPto57CDASi9ko4qj4ot0xGNWsM6yYnqIUGl6bG1lEgAI7ZfboSSdhWJ0GIYBIXjICTsi54wnLcUkqgBlRO+QhyDMl3aPUD0WaJcSc3pqs1dG/CUIe0Q6I8mJU8EwzRDGi+CksZGoHe4GoEJBqtpildJ/tzlm+oc6s+TKXdO/lJKBraA4oBYZz2keMYYBkkVTJgyJXQ/B4XiaEIeAbSnYFlmTDrXNmpWVGTDriMRmWUaJTADzGuCoXLGlFaUQchEHJkav60eCQh+8CIIXGWNZU6FfuwLbmrAu0mmp7pwmEwZvRJC2PgSc8Vr6YQ5hVmZSC4gJMPFVIhLBfaAFRLUylkvSDGPFkIOK4AuqZG3l2Slf20mr520RRsDlsiJvGcMw4HCaBKRxGX4Q1olzO7o2EbKeXbXsHCdHgLfAXgQqxRlGA6aLsuo8JDPGBrISwwc9Q4OMCRG6hJVjOdtZ5phItETGIWKIHn6TJh/yfkHVDYiqzMriNAdSmCp1TeBc4MdRQQIHHkaEQIBzWIuUkCR1oh2J4LmIXcoZyoba6fN5K/v+rRDLv+1rnsWHUtcalRlb0kYIiUFFOLen0wmvXt/jeDrADw4UFJyq0vQg1YTLcsbT4zMe351xO414/cknotkTCOfLA5bLM9KWUJIIg/4U0NRevP+qsLczplLrHAAiA1WAGDUwYUKG6Ki1ugS1RcaktD3FDGnb7AK8Azx7OHZwrC3R0YW4e6hkyQ+zXGKvT6eIz08DChyYJCs7hBHzMKvfZyBshYtShkG1AFXWW0pyf2uZkPIIFwLGaW4aO1Y6dzqelNU0YBgk0XU4nRDigHGeMIyDnGFxaPduIuim0QhwK6Ww5J4Jt6M9p4y8zVQLeC3wgJT2ik9WUfMKrlqKBMYQC7744g6D/wK1JtRyAVPCL3/1X/DDu7/H3d0dPvv8c4zjhPtXn+B4PCmbSxjqcfYY5gg/3SK5r/D8fI/n/AAaPX784Uf89f/xf+CyfEDwAWOIcCA8Pv6Ad2+B413ANL/Gsq14fnqLtz98i+Wy4Pz0hNYwoALlMCLQCSV6xKHCuYBtu2DbFqQkpVx2pl0DeBIgjaP4WCkDKal9tibglVCy2EDrZIvsBJhiKacTKQ/XSskIBeMgXW63tcjZpAxP2TOy4rImyELYkNIK7x3m4xHH4wkAtAStIm1r20uEiuAcjocZ9Po1Ru/w9e0NtuUZ5zOQ0iLMAS9MwJQ2vH//drceOgcHRE0GoSfxGCFETNMszxTVb3e9tIb2PpSd9WoPGZbgYDBkH9ba/QXrCi7NV7QJCywo7iCOnXI9aaL2m4EhekzzjBC8JBm3DaUWrOuqgIEmb4PHMDgQh47DYAdcqFwJYGcMAJLSeRsviQc0GavnAFSfjdX47NkaPbRvH7bzh66BJnNEjEXC7fdU5gLUqkOoSaQAlSV+cM6BWeIr0wtisBA34BBDwDCIbEmMkuBMaxYfCqyJO74CRb0jTWaLcWiJaGXZ71s7MUsJ1+VylrU7T5jnWfAI7qwo8ekYwlQFhlEaHNUq7LeazKAr2LBL1HUQjJrUhXfCaDJZGG6OKe/sYwe4KlXVDLajiFqzBueE5OG8U6CVAJYKEGcSFEX8nvPzgk39PPvMbT2j5kUBF2FCCrjLV7a66Y61hIGWvxUp1/dB9ool9ww8BeTzt01YWM6JH8eqi0EELcV22oxAuomGUMGD7KOkTFYyYN07BEciKVABSrX50Y5I5HQ05qlsPpRMDVVGXRI4FfgJwqT1QJwGUAjIm2tSHpkh5ZBUYV2OvQfgTORf7strjEZWznS1gf75188Gm4KySapSSlmdwmLIvxppHzyGcRBmk9c6T0UjzLEvLDWX27LBl4gY59bCU5hDRfVh9qJdL4PEq29dva55SjvuAHUkmSAACDuh4VJb4Ph4IPUHEkCrqr7WNHtHGAdpgzuEAUOI+llWyiM6GuQIYRa2l2gaBF2UBjYNmIZDq1F3jkQzI8rvl+pQWUqFtmqBfEQpUqZigFIjiTqnbCb7mQBKIcYGJDX6pO8sp452W0HrHlfqm5J/2+A30MmyNtiNO6nRF82OIXhMY0QpwOEwgSjBXZIwKVzBJT0AzxuqSxhmOViPx1tM9aCOrVJPg0PwhMoB82kAhYq7V7f45M0brNuKYZjgfUQl64BEyHnDtl1QygZQAmNDyivWdMFlOeP5+UmCVA2MvQZrmaQkyDqnMYzZJEGlcyZub4CJZH4DaXmI3x3+OyBFfrdTsZ3jq6UIiFOTs1xD5tzDuV22wHAF7EDYvQOgDCdADBkzFP0n7WKSJRCkKEBACCAQSk6Ig2Z0fc9U2dxKQF+aYTLA19DxUGR9GTAFEFzsQuJSgiAHk1OtHN80A3brihVUrj3bYNmHXuLRswFtNMiQ+pch1y6TBwMfoGUZqhmjY2C5VELPptRSUUj1jViAIwduAYLNiWSkeR+HtWeSAMNgGPlXexMDV5k77ue8XeTKXL0QrTQAXsSi+4fuh+KngCZbN9bWVrJG1ECJ/bXNPpCTEusYtctl0myLCUfYPO28SULPzDRwfves/VFFTwKgVl5h5Sky39gxpLqtaQ6OMqfI9eey0jm+Gq/dyiBjV0CZTditlR5E7l/WVMLAVsY1iEnKDivWGZD7HjWBVmflpJqgyVlZwFsCOUapXsoNBHNpLCO0dac2hXuWqu1VfW/LpqltuwYFZCDascvm3dtZhfYHClztzwhjntj4C7OJrp6XxGOSUlTWsuKdUy8DZqVUqtGDDqRbsG4BYbV1zVXUhvT+CbsxwP7GP5q638krKPPYRJQZYkeKsSlZzowYYvOhDEC0eRVwTsrocsrIawaPaGXxoIyUpAScd+y5/auHIf3V5kb/Z593nUc1v0bLjB2BXIGrxmyy/ddp/v2j7WfGjMJHwfBPMZvkmjAz3v4dXMAURumK5SLgvIBN40EFv3V/+AKKCQRGLQkoBaUAadN1v0YUDo31LWXs0rI+hIA4StfUOKgUQTB2uJRSNVa4MeavGE16x3t/1fbib1skL48o+1WdE2cBgFoYQgWzdFYaR4/DccC2FayXhMoZD48/4rI+ItcVwzxgmmaM84w4jnCugoP4KDFIWdlQAg63ExAYd6/v8PrNG6ScEcIAwHxemeuULliWJ+QsDHHmjLStWNcF63LBuqxSSqI2MyXRi3EO2tiDYN3qjFlhbIG25o3ZRJBELUlns156a/ZO7T92YvAauILRgvxcWNkMAKGqPwZIAsv1e4Cxd+28qMooLC2pEEPQ/StAljGbBLiQmCKGgHEcMI4DhkFKMU1DsN09SVC6bZssAes2q/4jiBCjJtPUZsj4eAQ/qCbP0Nahc33fXrPouDGnai0wLoStqVbhQd0PrZYx3HkQ1+uzOxMdVCYteVbgIQQFrXxjmjWdwCraL6VK1yvT5bgGtK4/zf72EXOwAqQ96JrdQD/j2/t2W62dCe0x6eOzwc5F6s8otq1v1i4uD9lXYO10rWuI0TTo+jnoQI4bs8l5ZYc7J53JXGmsrv48ynxpZzg1huh+DuzhzX/iqg1+FPiQSgbz8SqMmWcDQZDkNxTcSSr7IPQsG3PejS+18Wy2W2PbDtxcs29s5dg9mn8vgwj1QxjgCvaAM8Z2M5LUJChM2qAUYTSllMRu6IVqKShNXsZiLonjZOz8bk3YOLs25o3Z5CwZg+ZDmSyAXHPHNFfKeCfA9DLBtv/pWt7Bpm5fESCSAPr56r/bWiWyLq0WLnSbxz/hQzl9/uotOSQeVEUfb0e7uHG/GWi3r3g/kz/v9S8ooxOPs6TSshCLfs2pCkLrA06nW9zev8J8OIGCB0z4DBJ85JKQk2SYl3PCaZzx6s1rqVHOK7779td4fPdWWFNa4/vyoRWX1+DLLFwPv1pWzkT1WDa2DLZH0Jp+goA8RCSKZpAeJX3g7bq6iTnD5WcQCkYvbQOH4PHq5oBcoSVoJognNxQHj2GUBSCaGsC6VlzWtQc8DAyxIk2SlTmeRsQxoHLB87ahsrQ5TuuKEAMOpwnBe4zjCKZZsmzjqDpKEoF45zCOY3OavLb6HkYtpwtBtAXMeb863HdjDMA6G10F8G3D94DJHCDJnJjjIClJF7y0avUOpzFgCITDYcY8B5zPC7795p/w/fdf4/HpA969+wHMjDgO8DFgmoUtN00T/vSP/wJffP4l7u9f4/d+8QeIccDD8wXrtuLp6Rm/+eY7XC4r3j+dMZwOuP/0M/zFf/rPeHx4wPu3P+L9ux8RvcOHhw9YlzP+y3/9a1zKhnVd8Q9/+w949/4B5ycRlaPWCcih1oxSkmzE4gAWob95GhB8Rc1JsuzVqMCELRUsqzhXYaTGGjLNGfIRYBGgJxJNgRiFDbCsBG+Cv7pImBkpVXB1mEcR2QxBUej9/mDutAqdt6ZrVCq2bRXHhqXFMFg6MqxpgXce8zg12jWp4xajOtzjiGmaUYq0uWcFj5p7Y7XfVTqfMLhlMBw5acdNJE7vOHcnvR1O+6vtXhbMMnq0Sgz1PzHECJ6mFlwCIrSXS2mOYi29VItIxFodaWtrzVqNo2pFRY95HpUGXuGoImxZxY+DAuLiuK3bilJ9Ezgk6pmu5pywClASN9sj2kelnXDG5mKSrhFShqbdPHVv9TajrP5PM676tUd4bag08iNoxsWQlboDjiBdv0L0OkBV9IN2Do5RscmRttE19phkfERwO0n5M+fmsMihT/D6sZz3Y7APSOWz9llSAJpZK6BMiIMTQWzmFlTsD3Rp026ZqX5+gAjjIC3Qa6lYlqxgsragtnvRr1Yy2Dqq7kCktsfastxliXeAioF1bQEQ9Jp7p9UcH8swAkDGeklYFmFNeu8xTdpW11wtDVwZVbQAAFCR4KTYOm+ggb3fNlB3wJvNBtCaFYiCvWTXgjlWujaZkBJfzRsp+4kcI2iiJA7dUZNxsvCnnxEwYFovZGUPzRljSDOBywqQA/sBcCLYOwyDBmQmnt516jx7kGdQqaBaW1fCblVsrvXPy+Di3+gl0jKElCu2TXRSFi2XcSVg8CPGOOF0OuH29g7TNIPRB5oIqKVgyQuW9SKAbg2IYcTNqxPGccD7yzd4fnyLy4ez6NTAY6+b+FNQR1sL7XjvoNAexLfSenHWxbZ5H2EdA22fdG0yCYj3TBUBqsT5rc8ZNV90nbTI8KMJMYecAVAVNkEtBVtZUZiQ6obKhGlMoGpaS5IYSaXivCxir7VzX/AB8ySMi4EmVD/BB/EzJDk3NPb34XBCDKGxm3zwOByOCDFiGEcM06R6bb4ll0xm4CrZZkwmMg2nXRfJEFSolVuQKMkn3pMHAAgIQagYBznncr7g6WnB0+MDfvnLv8V3X/8Gy3LB8+MjABaWtfc4Ho949eo15sMBf/4Xf4Evv/oFbm/u8OWXv0AIET+8e8Tz+YzH8wW/+fYHXNYNl1zwyRefw48j/sPTGQ8PH/D84T3OH97BeY9vv/kejw8PeDwv+O7HtzifL/jmN1/j6eERXBkxiH+jaXcAwLYpC5snYUkNA46HGVsquFw2rDmpCD7ArmJLCdvmGgBiZe0GSHhtrOB8D2pjFM3JUhkuASBG8B5VQatSIExIT3Be9HTMl+1BVmmAtzEGSik4n59RcsbhcINySiiFsW0J1unNu03uQcEfBjeNyTgIiDzmCXOahKVUEkotAnAO1AN5lsS26Bx2FrIweb0yjScMprvqfQ8GPzI8baOrLyF7WRUIQFrOXIcBk/qvwQX1Tyo2FSSWNvfCKjEBcR+kNLUDQ8pocR4+isC+JB28xnhy7joSAFhYWhXrSqjVN7vjIO3mve4b6/IFY8G2A03t1Q58cpC48ApWsmQgue4p87U9bMmk3dnGu/PLQJj2+851P1tBMh885sN4Xc5sHwZj/cjYjYPGVVFF8Vm6aIKETcPKTA8KTlr+HxDg1ZE2INo/Z3vc63M+lwxKgKsO47YhaiLDe4lH1LvUPWU+vLB1rMwrxtr0iS1R1ZaY2nA7V50zBg+1Sp0ODO7G0HwmS1xCE1MahLOWsLoqPiZBE04659aVmlnwglq5+QFCuDD/XnwUA3EAmauXsjf7clorO7TKHiKCNt1W/9Di9z2gJFcrRQAw51k7yvaf1Spkm/Z5hAaWgVgbLjlEbdBlPr+ATrrDdZGyggisPj15Up+4+/6cMvJ5lYQ7eZ1jIE7C/Hd65hrDvgAIYDj2YgPNBu0Aph02toej/qevnw82aYtN3jZsW0YuFZc1iYAYC7Ur+IDT6Qb3r15jPh2b5omZOK7CpEhZwKbLOeE0ebz+7A3GGPH24Vf48evvsDw9I29ZgqEqJW1kyE+LrbgjeHsoitQpYnNuXAuCYYGgvjVqsA8S4wgiVAWFSIEpIm1FGiLydsHy9D1qXjHUDa4mDN7h1TQB5FEcUDTwyUrbPRwDTifJaK6blHmklLCuG0phpMQoBYhDwVYEnJpvPMIUsKwVz0koxg/vn3F+uOB0M2E+znJQjyNcPEo3lHGEU+0Bo7uP4yjlCkH1BZxDVCAhqjCjBLc7s8zcjK793Tbkbqmh19XuwaZOqe2GTyy09w7jOGAaAj57fcJhkgxPCIRlKfjmm1/h7/72v+P9+3f47vtvkXNByuJ0+MFjmAPmw4z/5//jN/ijP/gD/OG//2N8/uYNoj/iw/u3ePv+A96+e8B///tf4XJZMR1OmI5HvBpG/OV0wLat+Me//Rv849//DdK24MOHd3ibN3y4POHvfvWPYGYslw05F0j/JCmNMnr8ti44r6tufgLYwztgnhghVFwu1jUBYG3Mum0ZXgOvcQ5NNM8HoU4HUxzWrCA5mZdxDIgL4L3Q/h2b5hIhbQwODOuaE4MAV5KAYsMgYI6TWR1m0QRwLmNbV2zrCgkYZH+WLaNwQfBBHUXRqxiG0NfLMGKcRkzzJB0T1lVLWBycZj1jHOGDR8oJy3rp7C/uovXOCb36MB/RYfq2ANGW1c7w7xegOEHyvOZcWGANoGmVpLQhKbBhGQ8DmpycGMLicg7SiYgwjiOGIcJ7QhxVK8IxvGOkkJBSweaT6FIkcTIX7RwRvEdUIU4L0uwAZ9sjtZf1iCagHBqkrAYmySxUUnBOs8i1GsuOd2OkDpUCCt0K2if2bWhfnWbTWryPDq575zEM4igVlo4x1N+hWUjJsI6Tldnqfncqyqki+bVmEX2MURikZlsZKI5VWFqdQNohozpGOwsiYNNWGwjkm+6Q2iZS8IYgOjeMxuIRoFFp6+OAcXRaVrdg4wSqmoXdOUvCKkUryQi79tJGwpEp6INrWVqzfwIM7DShTHzdE3y+zmyB0QAi69y0LgnLRQSlp2nAEAPgdI4VxDdAK6XUgH1rggFGy64b1d5qEbrPIICP3LPtHekYA1QEcogUYF2WLJOXkjyT9+Jvy7MJcywMUt4bggaF2tmsYV3NYd8HdnLDpi+ytwc1Zay5iO2YHFwkPdsGvYbca9o27fRU4SFi6lQYrmrnO2Y0t/LqvLt2nP4tX1ZKVWuVDqelYNHSktkdMXopAzudbnB3f4dpnmHwnDnrpRZc1gsuy4KcGCgRIYy4eXXEOEZ8+/4Z33z9a/BSwbnCa9lZrVVBfwMB6YVp2BlZ6uVsBqCIuezJtJYUaO/pQcqeweSVsS5nySA6GWlBLRmX9AzpO9MDVbmVnwKbVFdGKf2lFGy5IlXgvFakXHGcMwJJSco8iSTAkioeHi5IOSGtG3JKOB5mzIcj4hBR/QSKB+kgpmDTMIyIUbSaDvNRNZtCS9odDgfEYUAYBsRx1PW0C1q4P4pCBLugxhj+pp9IMIDVgjR5ScdExxocEyAMoALngCFKd7eHxwueHn/Eu7c/4h/+/m/wj//w93h+uuDh/aNWHMjtDFG0g47HA54/fMCf/tmf4qtf/B4+ffUKbhzx3Xdf4zfffosPjxf8/W9+wLZlvPn0C3zy1Zc43t8jDAMuz2f809/+D/zT3xXUkvD1b74Fc8Fvvv4Wh//xd8i14sPTE7aUMY4T5umg/lJvzrGuWaeXFGxiHA8HxCTNEpa6wfiKRFJetiXVkAwRvaOoac941EqNoSR+UUCIHinXzvxuYKdIC8AxwiBnSUo96XGd6OB+vkHBpudnpG3D7Z10Qi6avBOGhMyTiYaHEGCJGAGbJFlXSkZOs+5/ABkIPmLQxLf4Uk46Lm9L19uE+n1DbD7UPB9sVenW4atGKFdbidR3Up+kQm30DiiypJJ1Qqs7Fn/NBVX9Peie9CEiBhOZDrrXhcVFxCBfNcgP8E6AuW3N8nxJyhJLkSqOXES+I5gPRa4FuCbWLLFHL2drZyh6Y4gKTXCqBAXqLrnlumzCFZD0Eqa7IjEY69zOUcNGuO1bG2shC4g2Wq6bdA7V5IL9XAAej2kUQDKz+N4VEhuK/IWdTR3QMyF6MFoSsjWaMrewrWHzU2wdyxpyHtjSgCEneK0sMVCUWRLeQ5T7Sjkja5m3NKwCVmwoaZG10T602zAbIq+SLOKvWUdHtx/hNmhXjXsIsLIwAUCkhM17h5ojSMFbp6VwJRcU/ZqTyd4IS1L8eZG1sYqs1gEUIkViY2edf4n6mJkObfOrSYTPDdx2TpnJRTsp7gBQ07AOTsp29XYhvqJ0QZbPot2vyeeGGDBNEb59u0s29P/MFzTtB0swUsNqoCw/zgW5LFICMA5wXrQ/yYX2q1yBmhJy2cBcEViSHajCGJc9o3Qz6nvxGjn8n79+NthUitx4LkpFVX2MUgo8eUQXEH3Qchsp3+qbGSBIiVwTtyOr5fSt008pGduyIKcEQ6HNEHL70yna7VDXoC4rVbbYYoWydpib8dJV0wLz/Ubpzpf8zWqYSy1ApkZBlR+yiG+Raq24Vi4LsFBCmRmuVJAu2rpl5MIoScZQatQ1I+Mlc+2D0BtTythSxroW5FxRiwMhgmBlcAEeAZXCFZVb/h7aZrfaa/uZb1Rb1wKWjxaNGVQ0KbyrAKAfYDt31YRydwc1IPQ/hsztul7A1ePxMSOtUg88DFE1gGq7Tw3DUau23E7iHBB5vH/7Ht/P3+PmeIf3794ibQnnywVbzki1KMtTs4dqmKbjjDhGzKcjpvkAgPGYK7YlIW5ZjBSLccm5wDuHoBooRGh6KLaGqhknCHODmTToQstA2HoygEDWiY1md+/JxpMJJiptjnsIXsqQKqEwqeSOMK0IrpfpeYJnW7O17Rmbt/apei9V961Q06M+kwS5lSpKEVaK0XtrFWFHagCIlMT5EMQAq2aHgAuyNgvX5kiLvpBln5QxRfts725h7dNK9te2NncACu9+UYMbAz9gtfXMiGGQfcxAVYFx7+Rex3EWR4lcq3+PMSAGr4BMaTTjWgTwG6KAjFwT0iaZeoZSwgnSVYKN2rtnUqnVYbM/O1q6TRVf/5xgXTIdGNLG0FhOrTTGUkltr3IbpvZv2nE61LlsPgLQKvX6qhGQBcqC4sZSspIGakCYrCkClLHFWgNvwqDmGPSASYA0K7Wp5shqKeLeSbKve+pxiAHDGBGH0DJG8vQWGOjaMEa+JiXIMkHqZBodWcaklwjav02ccT8qxjLZueYKqFh58Q7cAdSJ0jOQnJDxbN53Pr7oN5mdFEdzn02zsje4j1ZMe0+/n37tjknu7TTUJnMfYxu/auPYagwbFb6Ngfk11BZZA+iYhCBMrTSl34PpDGiC8Som7+O5+/oiAaKLBVykJNQy3RIAONRSZJ+QnMMZFa5lBNEY0PZ/sbs/wQL4N3zlIloruYgOYLYykiJAfNSOZ3GI8FGSE6wLmS2wYW1Vrk0dhlGExBkFhSGZyS0DxYIrMuPTBtgc3P2Rz6Qd5mppYsrQsTUAxEpFxJFHW+tq5mGe056JCwC1GitO98NuX/Sbst/r5xUMdmBuAWKzEeZnVz2TvLBmfXDKKqhYlYmakuj8cHVw0PLtEOBDhCcPT6GxvSWxIqBA8EFZMqGVA3mVI9gzvvYr6+Xa/akFtk+UyvjU5hPL/iRlnvQ9WplR0oZ1vYBQsGCD44LL8ozlcsa2LiAIg8c7D2OelSoBWEIB0QbnPN69+4Dvvvse4zjjw4f3mOYZy7Ii1yoaLrDPrMg1AwQcTgK6TccZYYjSSXMpKHlDGAcMGg9UTepw7CW85FST0Jm9pqu5FJ1SLUHejZPZMCuTubKttsba6HPzM6y7tHdS0tSCM4b2Fai6nrHrgLVbwxag7+MX9SlKEQArpYSk3XbtjC41KxsCSEk1tWAMkJ64tc7PIJEYgM5bsA6FCjZVY/Bw3yNy3+rD07Vtbmf/boyI9j+6jgz7WpWHb/cFM+8iERDjIGWCTpjY0mU2KOg/Iw4DGqNPfShJqGrjKOxKOMAYhgBHwKpC6Rbgm89UNUlRa0VtZ7I9Wt9znRGj68YeRefbtdjYwYFR2ljuz9HrDUoGZO79M/PJdmda9x36e4wlbYwY6yzrjG3CaOwkW2/kIDmg5tPqHDuSMnOzbY7guDM8Uc3v7PuuNxzZlzTqhQlqS23vVTju/reVvXf5F+zAow7227PUWru/ugea9Ou+5F7mnvpcmS8G82+UAbhL0LKxwnk3WOjPZGeFeTC1cnt+8Ql07ds5Va+v05hvzVEyv073/u765iuR/Zj2y7lPmunrgiX2tPUpALm9B03OobEYSaUgPFosaeez3ESHmFzz969Xrvn6bbzJvruLFaqsGzhL3O7Ytk6ZXCRjLuX6IoPhdf20NtvNMrYP/1mvnw02PZ6fwAwsS8ZlTYLKrytqqZjGI26mE+4ON7i7u8XdqztM86i1x2IBPAWknPGczjhfLvB+wOlwj2k+wA0V7Dacz494/8NboDA8ea1f9Vrvupt4KJikQSYAbLVgyUJJX7WNNlMQKjrrobdfhDZkeuBZ3aXoKQjaWvKVmASIM1xeQLWgbBsorSpyWxUkEeojQIgcQHAIlwzKQkk8PydcUsVjAp5WgOEwTxFD8DgcZ9y9OsE5wpoTlncLlqXgw4NQdT1PGOIR0zhinm8xTREuH0Fl0haWEc57DMOEOAijaRgHdTyojdUwSI2396GVoPQDHI1B1s43sqW1D475owWmWJNepzb9EjPSjw8PSNszwAm/Lg8gTri5OeH+/g7rusI74P7VK9QCnJ9UowQr1k2y9vlSUNeE//Ov/xa/+tt/wne/+RFTnHF3fweab+CGA9bKiPMEDqKhlcqGGAe8fv0pnHPimJ2f8f7Ht/inf/gV3r99gh9PuH81grkirWekbcUwEoY5CqslCKvFB4c4jHBOupdc1gTvgHFwiEHKrhCk9Xuw0lECcmFEFj2EECQTISg72gFjhq1WSJlICBhHws2NUMHXJMBkzRklSRt6TwGevOpeOWQPBX9zK337KBhlBqqU053PZ4zDhLvjDUIY8Hx+wpYTslLFBYwZUOuoWgJFtKKi1+9LB0Sh2fZSuBBkHWIhLNsKYmFn1aolrE1HLGhpbs9itEhZARWok9bc+UbJ6AaUoWWaJG2nrSSOyKEMCUOcdoAFtDvMpJmlSbPtIu4s6zZridyG8+WCnBNKSSg5YYger+6OiEPAh7cEUg2HVAuy1b5DGQSuIEBauAc9PRy8HQmwUpJWcqEHE7HQWhmS+Z2mA5xzooPB+hmFPjbwVh6nNCUCKeUWIJYMIQNwurfNz2AGSPX2BAyT8r3DacZ8FKAubWsTV5UMs9dyNQ+busoVKSdxToeA4RDlQMMuaIBqJakzJqUTcoaklFvbXQNorbSMVJ/MB4+7+xvcvz7JYawJnCa6yWjC5c351M933okIZlq1nLHqkBl9n9t7/a5tL8F0F/T8YIDg4a3FLan4YwsUuvDlsmyoZQPICXjgRGCx+RkadHMiOWtYmE2liOMUgpZ0Dg5hcM1J1KdS22oBAjdArhIA1UCxUh2ArVK8OWjtgQmoiZE2o41LV8owSALEWmQb+6qq06zN1YQBOsrYxNEhRC1lUE0lK7F3VYDpq+wcEchpYqqBZujPwiw6H8zgbQNyghsC/CTq6BboOXhsl4yCgpQ3bDXDE2FScNSDWwdC2j0+foeA07vHDwCAbSvYkgQl25JRS0EYA+5v7nB/d4/j3RHz/Qw3BymjsSDKK7PpcsG6LDgcDvjss89wuJlxyQ9YC+Py/ITtYYEnjzEM8OThgmjG8W+5L3Zib7dcsKyLMK6rNCFxPmCcphZU9zKUa1eXuar2FFC0YycriCrvkPNoCAE3x4PoRtSdn1EBFOie6+WiFlTWJMnOVK2rmENNwlafpglTCDjMIw43wg55Wi549/iEZSt4fBJdmMNwwDwGHKYJx+Mt4jiA0gzKk7CYjodWOnc43qALf2s5uZbL+Wgdcak76HbWOkm8GAuieU49+mvBi01I1cYZzlmZuXYQU1tduKBWwvu33+Pd218jrxc8v/saeT1jmiYc5iPWdcUhjvj09RtE94y0OaRUsCwrUpbGMsvGSGXDf/3r/45f/uOv8Ud/9DWcj7i5vcFGDhkO7AKGaQKFgq1sePfhHYZhwGe//yUcOTw+vse3X38NfiKcf/gey/kZYTzg1o+oKCiJkdeMGk0oV5LKxnYjeFBwyJWxrgm1MAYvIvGDsgBsnWoVF3KS0i2voDuBhWXDXWxZTBOBvEcMEfMwoGoHKjlLoD5WUiYrI0bCoALhwSuGjirn035OyYtmJwg5JdRS8fz0iPdxwDBOuH31BiEMeHh4h/P5EQQgbWdYuW8cR1RkuOARhgFDEU3aWguc9yilIISAIUaAHIidHNBEuCyL3r8wcIN3rZu0aYQ1Z7LFRLbcDHToa6/bPX0+QQGBlsjZ83ykc980zgBriTSJrtA0DiqvMKisQEXOSe2A2LSUC56fnlByhhdFFQTv8fruiOAc3n/weFeSJlvsHAe4dh2biirJX+v6Z8G2ggsAhO2ovqORHJw+d9UAuyrIvx+Cbr3s/zbfUi0gYM4OfGxHZj9A7H1Zk7XrVvH4JEyc8RAwTNaVPQIsjVTIAXDig7R5qU1tFw6EOHoMw37fAC4ALos/si3C5Nm2rH6Gdikt3C6pMAxapzIFrHJlpFJBXqQS4KRyqVUhNSQNrfRbwDIRYU+lgJU0UXf6aVA/y8rzpOKBWvMUruKHwzm5r8qAxSpkDRBEJ8xKU4s6kOTIaNTKIs8NdLIzQjawlv6TsKxdUBC7AmAPQxF04UCFvnagIbfKiNLAO2VFWTxb5frVWeLDzrqKbBIGBhiNTqpPSKRFapGtzQrGGTvcB2CY5CZC1KQdM1xGa7wSvIdjAnWXQEFYGZ9Wcq9MMfJkbwCsS15KQC1CChij2osgdplIxPtZSBe5JgQijI7gdS9WxTesi3oDxX6GE/WzwaYtSSerVApSYzUJJZVAGEPEGKRjxzBJbTur4BvpArasXC4FjjyGOCJ4DzhpS5/zhnVZ4Nlhotg1TLAPOftX61oESOYnKeUzV2MNobEd2liQZaP7dWo10IkbUCIaEGmXgWF4VAxcpKypFOmwQyQWgAngAiA3g+FIFgtUeyovGSlVpEJIxStjRgKRMHgMowRo2/OKdUlYl4J1kQU6xQAfRng/IGpZn4cADs51ZpOVPFntumQid0bUm5ClAVDUV8zuzNr/X+z2b3NVbVz7gLIBKOj/3rYN5+dn1HxBPn+Hms/Y1lcgiBA8CBgHaeE8xglgj3VjZCfOKyuj7v3bD3gA43Q84dtvv8G6rTh+4jDdjSjMoBDkoDExbE+YDhNCjDicjjgcT7g8n5ELsG5FNVK8OCLFKJgVhuSSfpXSGmHEVA1qXVRhcjLNAHWWPTX9kbpH8Hcg5x5H4f1XtXw+aJfAqq29i7yhZhNiNXYTNXZV1Vay8jlat2sGaPcqWjMcQ4XX7K2wlWSycjUmi3R9kbrzfRlT1+ZwDtiDTV67pviUNNNljeB7cGzrldRKtX2s/2Zw02bqoFN/fbwSjWnjQeiletaVRRylrvVyOBxUB2fCOAwCGKVN6a0rcl4VhCgoJSNtG3La4GjAMHjM84B1FG2tlDUA0lIs2mecSBxVcwAFzFHdElB/ftDVetBZa0CC974JHvJOAHA3ZDuHqQ9SC+qNNYe+q68OCLr+PQCI0WOcB+lKBymDMGq9dPuzjn96HS155gql0ge5vAm/whCWHdjPVTt9dLCoUcDbH2UiqQMzjhHzQQDErF1yut2xZhXd4BszyDI+IkzbBgjGzOhLifvvGGuq7jKd3NdxB3jQ2aJEO52JDHPerMOVMOHsnnVP69+5il2p5ngS9aymJ3Wc26S1OXY7J9GyhibobmMia1OeT11nuUcVIbBzzzLM5lybEKkBYGoi9KudK3odhnSq8+rHZW5nb2M27Zx6Z0ue+vfECFED6wUw1Q8sRTKDwbX5MQ2MtImos4CVWpbopNMRSIatsSD0IWzn/TMn27/aa0WHCfQAAQAASURBVN2kLDIXIFej4CuziaTsfRwGhDEijBHwaOBibzAgJfq5FIQYMR8OiDEglw1AlWA4FVkzw27tK5jHfaTtW/ZXabVerGxGgyvqgUbrEAq0X+yBGLfgP5cOHJek+h7qA5VxxGEa4OA/8hGabIXeYS9Z7fNWq6TzhHwnwFQIEc4aWERBQFMueL5sSKliS2J7aAiIfkTwI0IcEGNEQkAmYS1FLZUbhgHjNIFIrt0CPtvHTvRAjc15NZi24OnFqmrJEXuWfq5ZYo7BQKUmLit/rPkEsKwLHj68x3p5xLuvf431/ID7u1fA6zcouSA4j3masYwFMY4AMrZUQUVsrcxJwdu37/H4+IjD4YAfvv8eW0rwpxu4aQarTl2FgoZpRRgCpuMBwzBgOh5EXHxZkIsEu6XqxtfgvqqtsES4MZoERFR2+L7cRW2mlUGpxW/j1RtV7BOjHQQA1IZWaGJJ2F3ei8RBrSZ6K8F8rt1eeu2A64iU/XjlBMvZLX8BoEx7LkjbhnVd4HxfM+RETFk6jCY58x3DDx4VUsJjerI+BFAhRC1d8tq8R/w1GSeXfNuz/aW+Du06GhJastd8irandu4fqR3pieF9DOBaeZfJDDTRaxCIgRhFBy0OAdM8tuqJEIJUpWxLE5NOKEBhlJLUtyJZWwRMQ8Q4RCyXM4IXjcHEliQSdj0gwbkAHs3B6cbq5T91j5Cj663outbMFVvp6jt0/b3mr6ndhQXWu/XR344GfmlCZksJvjoM1rWMJSYAlLFkG6OdSca0VdtHcq7FoRVSyT4BwbNUfdh+LkW0QwWA6bal3eluKSufu53/FeYnKQPLaFfc186e7Q1obKNMpFoA6uU8ba5sPzXQSpNObY7a2kOr6hEtSyfM1FLhijKXbQyd+Q5Qn8l8leupgNoTK3NrTDKQKQbo9t7Z7Y9XU/MRXpbV1irNm9p5tXuuykZQUWBQ12IbC6amcdv8Zq/+jgJOgN0zdwyP2SxnHwO0JSRrnayFEeQzdj6VLVs5XxiMAgpeOxo6SLWJ+FGOHCqpbIudS60yoQN15qfb5/8cwfCfDTZdFumUkIxloWJSNRdIO9gbHG5uMBxmhGmECx6VizrHqmGhAmg5JcQh4nhzhA8ez08PQM1IywpXtfqddo4Q74+f3astaMK6bfjw+CBOxnnVTLm1dkZDH/eLzP4tDpJmxqs5WqwHRy+Fio5wDB6egDH3Vstey43E4RLggk1jBaaJJJmByA6naUSIM8h7HOYobT+JcDkvqMxYLwXbBpQSRKsjEm7mI+Zpwu3tiNPpBsMYkM8elyRmI+UNrgqcWlkRfq5ysPkA72Jff1dBVjtVGwhqGfweDPWOZ3bov3z1DdkmB0attc+ptWBLGx7evcW2PGBbF2zLAiIRTXVEOJ2O+OoXXyDngsfzgnVLuCwLHh+fFOBL4FKQE/Dtb37A+XnDF+MthttPUFgQ9MpFQM8QEIYBkq1KiMHjdDiAX73Gn/7Jn+KLTz+Hjx7btmkdfUHJjJwK0rqKUa2SWalVzwgifQ8jBiBGEVkLnuBI2B9+b2h3DrQ4rw7DIPXPtjalE5wACaVwCziFBaXdh7JqDTQbIn9xXlqMeyeGrpUi6D2UnwAJCd0AmkPhQ0CMI0rOWJezZKbSgmWR7O26XFr5hnXzsmfsYJNrYoB70JNIBA9FlD629+799H7g62Hl1bQaHXcXTFsrWDSglNpf+xMScgb8qp1uatZ9kvD4vIKI8PQsQWsuRdqglqItYBNqyVjXs9aMl1ZS+/R8RqkZcMDdqxuklJHfPyKvIrhutiPv5sLr/bFjyWowmk1orixJ5tacQCIW1oZtOjvUCOoYUx867kLezUvSffwy5vl4LXRQBSRrkVGxrRvCIpcKgQD2EkQU9M+yfQ9z8iHZM7Mf5qBQDzatpt4cpVqzagLIOqwsjoIEljKGMQoQH4OUXIMqTIy8d7TpAt02Jt0uWbbXwKG+8KoBVGwJXi3BrXKNBl5BgiUG1LmrHUDUz+nd6OTZwxAwq5NE2kmtspyZ5nzJ2eh2AJVpaljZkgFfWta302RqK72Vh3fTYAzg3RZ5caaigTXmoEuVOKtdUkfDwJtcFcyWEnoitLJnMOkaEQ9fAAbAFcj3GsXd9EDQb8b2ss5b1TmqGaJRVXfZeS01xJaAiwN5hzBbebhkZxmMkj0qaem6/q5lHOVD5FwPTkuO/nk/6V/llZN8fCnSxrqWKonVShjjgNvTCaebE4ZxEP/J7QTUdT0bC6bkghgDDocZoITHD+9RS0JaF3gFgu2B2397cAf74EvKXC7LBW/fvpUStLU0yYQtV3TQ/zo4M0DYtCsquvB1YzYp2AQmpGnCPAwYYpT94oMEv45QKiETYHK1Rcs6rVGFYOay1oc44t4dpPVzHAAVin58lAThsgKleAAB4yCB1M3NCXfHGfNpEJHvwWOtDmWroJKR8gbmoiCCMcUrWme6GJudauVgrbRAXhI0qhWn/TjJ9/rv4sr2W/nJvgRcSpcs8SAlkstlweX5jHdv3+Hy+B55KxL0QfbWOIy4u/cIw0F8qKcz1nXDtm24XC4KXgqMt20FP/z4HmuquKWI43AAWPcTgBAlqRmDx7o8I28Lhhjw2Wef4eZwRKgVy/MZCA7n5wWl5NaEo5aCbbsIy5k0qWznIEPPATkzYrQzv0O/FuiKn9SZ8g18dwSwUw1EqJ8qyTbrGMdc2rPmYqyZAstFWEm/91qWXXZMY2WxEVm32dqOV0lEyRnGLPIP1nBnGCaUnLBcnnS+LgiPD9jWFevlIr6E+hMMYYWj2WEtYVJmkwBQwm6pRT7TRysB3TUi2u1J85PgqDFj9+AJ7dedgVWaeG4C7ICyOyr8xmKDK6MU1ZnNhHV7MrwAAIlMxrbCOokL4JxFt7MUeEfIypBdtgWgChc8TrcnWafPCzYVTUZhafXuqroR0sHVziMDS672lg0BdWJD20e63ggSq7WzV89veNLTXcC+Wosw4HQdgKCd5Kp+SG1gjH2uDyLX4kMfR9MIBgkzBOg+9942WLMAEMFHa6jQKxN61Y3Y01pM8iNrokL2gwhok8azwgT1qh8Wo8d8mCRhNwXEITRZBPO1yv6MtM/VcyMl8dNyss6R3NaIGb49EFJrRdqSzoF256usMQraeQY9P1C778ncdZm8B6rvzo75a1XLVdH2K+kylnUvovyuJdOKAnFCIqkwwEr0kBRoY2rleICWDMKYVHzlPzV/CtolFxq/OZEcacQCVnkdSCO1nCukQ73FLBFuIFhi2XzYnAU7GYrTZDHafe3Hub1I4tMKu1cSBhRdhQ+oKWuZqux/8g5h8I1I4byDZ4dSpAwWRMJzAANl17VOM0HGRvs5r58NNj2fV1nwcGA4mbQkjnMIAae7e5xu7yUDcpjgo0dtFHBtO10L1nVF2jYM44Db+1vUdMHjh7coeUO6XEDFMsFogVY3JmYudxGUbuZlXfH2/XusW8L7D09Y1qTBlgxEzrmjoea4ldKChKyCXpU7y2CHt8hBHgfgcET0Hg7azh5CHQzKoFL930YJrXp4EEupxeAI0+mI+/vXcN5jGgkhAE9PC3788VFbXTuULIt4HCO887i9u8HN8YCbmxG3d7eIMeCcNlTOkvHlDBBJtikl0c2pBT4EDMOEaQxa/roLznfBKe+Gk4Guj6cHuE7Fbtjp5UxcveyQ27d1LFVEpX/88Xs8f/gBjx8+4OH9e8Q44PbuNcZxwu3tDT598wmYIWBTSvjw4RHffvsD0pawXhbkLSFtjH/6x29xOD1hfvMV7r8ECrO0hK4FpyHi5nRScKKAc8YYPG5uTpjigPkvR2zrim+++xq/+ebXSDk1sCltSVhpzqHmog6ihyMRqCuZsa0V0+gxxgiQAE+eatOzIR1Is6uk2agYPMbRo1ZgW7WsyIx6heh5+aoBuIizlZKwJRFrJp0kcbq18844IPmCZdmaYW80ZAvQzAHezw11DYEQIoY4YmNgW0WYEpwArPIMylLIOTdAxa7jFdCkHbsjBBGwt/p1QIC5a7CJsWuBBMvqOOcRw6BOvoxZO0TIMnvqSHnzeCpApRlqASMA7zNqAdZtEeZkrtjOwtRJWbqF5FxwuSyqNyFBtQTT3eklSDb24fEZ27bgeDjikzd3WNeEh/MFl3WDZbaIgESldfoLpNRpiax3SQBqz00gdfpkrbATwLi7HLvfUCfRQA4GgZ3YG/MoLY/cfkkPjAbG7Pa7jWVlKcMEQzRAnjNilHbazjnkrSLrKbNnfHZdMjvw22xe3T2rsyRijlnBS+0gpow4ZtfsjWl6xOgxTsJa8EHBIC7Y1qQOEl/ZarTvmMMp91FZMnhi2/T3aml6hMYWlKBF7tu668nTmIOPFni0UrumK0JNsy0OAeM8yrNodn5d5bktOAIDIQBu7zQ525toQZjQ9cUpYaC1tQftRYXlYaVbk3oErQPLi6CYBLwKwQtzpRI4UnMwNancSuFyqgKy54JtkxKZELWbjaPGKLF5DUwI1bfxt8SOzQ/t7sMWpDGLZXo6bR3qEFtLcFbWqvMeiANcFO2VEBxAHiWLswQIIbTqfBc9oFm71YxR2Ag/6bz9G7y2lfWepORMHAQB36Zhwv39He7vbjHOI9zgVX8q9UMEUuafNwWbhojjzQGXywe8//EHpLRiuyzwzoKbDjRVWxftdS1sywDO5zO+++F7pFRwWXIL0G0flpo00OhGzM6Cyrsyy9rBqZ5QIKASjocD5nHCNA6IEN8RzKjOgV2FA5DVRmXdM84LYC9NBsQiTvMRh5t7MHlsTMhMuFxWfPhwVhaeB7MwdmdtZnB3d4/XdydMh4DTaYILDk+LlEkDjC2tqNUBS0Blcf5rZZEc2Gld2h9LgL5M6prOFoCrwBe4ZgHbWbl/X256aQpeVzsTCCllnM8XPD0844fvf8Djux9wOa/Y1owYB9zc3GKaDzicIj7/YkSpjIeHJ1wuK56ez3j79h1yTliWBSltWNeEb7/5AU9PC/x8i/lW1oX3AXAO8zxhGkeAGZfzI7hWTEPEL776Cmnd8Op0i3VZ8c133+LX3/wGpUgZPhGh1IRllTPMkwj7C7gNgBVwVXZ4HBx81SoZNayWZGIWf6tG7gwoK72pFcxOyjssAV5EZypXJ/EHuk+QVRaDCNoiPIBcgA8Vwxg1ySeJRasMAICUspZ+y7Q6SDlrLpooUYbPEEdM4wELX3A5L1iXC2pNqGVDyQWX80U01UpuYKwA5eqHadBKkMDXBynj9C6jFHmeGCOClrALEKYlM3o2mLaoc046ETrfy8KJEKz7rjMwDTAnw4BtZkZOG2rNWB2jFOn6tS2LClgX5Cq+ZtpyS0Kuq5aoc21JA68lUo7EHyml4HIcwFTgo8fdK/GhzmsBb0XjJxVbd9RYfaIB2QFzCwcNSGJFf6yEfc9IMU1I8ek6mAtoF00txY5uhiOPdbtgWYr+3OLBndxD4+R2Wxqc3C85wDneAUrUNK6MdWy+kj0HK1DvvEMMg3ZJQ39WtYNVkxQli+zAtiVYBaH4GwNC8OJfrCsYLH7TEDDPI169uhctTgKM7iKSHqyMtNzW0tU5wRXrtkrnwGIMdlbhf5bn3gPrCnikbF3rLGlC0lwJmuzWYbS5yFkADYtHpHxf4udaK/K2tT1etKrI7XREvXakDFFE2F0wcBEoCmKVUpHWrGOeJUZ2DtELg7VFSSTSJyCIL9GqXDq4Bogv7oNVEAGp2RgGVJe0ZLnqtlbRB4bJbTjEwSNCNMwQNGZkFRBnBxSpkrIujNREqPDiZU4+N8F1SdR0kBPMKEnKd6HSEM57BD+AvPqDXsp4WckqDCDrcqmlwhnAoeWaAw27KpX/+etng02tWw2ziAiylYKQluIMCEO8ElBsE0JWbslXtbaGVKaUUJLUb8s1f/IOXtwP72A7mQjLmCcVerZcNGOvI2CObzdSgpb27F/ll4HSHmUxofF9kLz7Max8AX2DgQEtYQvOg7yOkXdKvWPtLijXdU4KnIN2EBHtllG6Eo0DYogaJBQ4p4vbsmVkQTsaONfuj62kon+PiNQv6pPVs6md1WXDwPo7eBG02qR9nNWTe7DspzDihPqZUsK2buAKpG1rws01SN2+80CAlM4cjjNyjPDkkFzCOEzwLgid2Dp6QQ4TWRtodMKiDlzwHqfDETmOiOyRt4Qtr7isZ6zrqutyEZaSczDRPKEXSqe/llXTcNr+Lo6QGV0FUWydofmPu6wFQK42tpTNVytj0UDW1etxtUC/lIpUpNuMoNF8ZfD7tOjYkGVIO0MI1FkZBC0F0vXt4ERwtmUOAWuh3X3n3YHq3NW1DYQCpJTVWrgbMGViuH3lmQGldti4K2o32h+g9j3WRkUymVaqK2CTZHRrzdi2DTlLZi5blkadJHt/qXXnmFjZo+0LNKd1c8CQMlLOSOpw6vbSgbKgXcs+apUDww4gYsEtNP53UAFVnQ9HEC0bsjLC3YNe2ZtuR63LHDNbA0iAuy3lFhVdO0lt6M0mvAj8wf0wb3O7S9vsKcZCkNEgVEG3Nme7jzU7SwRlhAKtBS9DAETuyy6q8K85rlLy1W3sHsSQ4aLmTO3nZc++bJmlxjLoz90ySej7Vuah9gCaZb5UJkCOIurC1W1crX5Db4701pjRyhnsM9qskJ2ZGnSZXeE+hb08juS+dkdVqywkXS2ui2Y2p0T32zXjhTpg1uy5gU4KLGipJJx9DzuwzZxQ/QRWK6lfXxzhclbuQMH9G/o92J8dO4crUKqAD0W61XCVMhXH2nZbG4PYZDHQwD15et51kPndvAxgF8xLgCYrVwlBWoOb5p2VDRCsvKff6u6xABjbSQBcYRh2EGP/2o/yfr3bTjO2hgXSOVcVlO3rrVp2f/f9/pXbNTsTCvr+3TjY//tCb+wKOKeJFPGZ7Cs3Q9JZnbXKnjNAUY4qDW59AOA06SG6MtM4YBwGxChMFOcJ3pcOYOwc8/6ndwTt42jBLZovZd4QY1+mZPNOV19/6/eJRHS3zfPOCLKd+72zaikFOSVs2yaBTspwPiGA4IJkyb2XkuYpDzgcZqQUAUhb+RhH1Zfq5TMwEWKl4LbW2kU2/jBE+Jsb5CnBM7CtG9a04flyxpZWPD0x0rZegXLee9HccUEDaWOf2PTKc/fhYfWddkyW3ZhenSvtXNv/qgL5akP39t/siGM0f5TZQEAC88dzZMG8nRf7kun9ZwqIE5TxqQm1Kv5GKaVpwZjP1a+/+9PsHYFUH7Hot6hgp3fp4X3UdY7m8xurxpHTrngOzutZAsCyyHKG6mjsGCzGWMlp09K4FVsSsGxLm7C+a0HhjFbK1XynDjR1UEjPHp1P6Z5qe062ftmNS/+fsmqpolRJQHXfmvWJTRuV0cNBvvJr+zz2KhTW52fuDH+vnaC9Cygl7UJLBT2xk3ZonyX3SkBjiTgP+EggD5VzcG3tvNz3lqCS5PC+YZP5G30szMJ0/7v7YrY+g1dJDTgEFh3HED2Clqd5L7FHtTmCxhoWc/Dus3cb6iqmszNzZ6MaU7kZq17Cb/GMSepw1TNNqgFl65ZrMW9d0G0/6LC/eO0Ow90Pr31jamHF1T6GrQ+9BwDs+Oq3m22xx1XH7afmcX9P3abv7me35zszT84urvszFG0uruKsXRnoT73YxqH9Q27ApFy6D6Vv2O1zJiEO1VKAKnqz7AWrYFYfqtY2XhW9PLqV+f1MH+png03OSavhvCWsaQMxI/iAwQccDkfc3N/jdHeP8XhAmCZQNHQP8KrkGhyBa0YtGakkbCVjXRc8PT6hbGLQBEDA1YK2sWyHBVuNq2WHVRxNWzVuKWPdkpY0iYJb3U+ehH7KECBp7edKu55hYZZtrrpIYogY4ixip4XBSrVkW7UVUg5VIUyQyqioYCfMhnmeMIYBZZiQXUStjA+PF6R1A8PD0QlDdHBDBMHjcJzwySfCYjrNA6YhYpoCjscZzhMOk8c8KfNEN5fzEd4LS2Ac5tY2U5xJyT4A/dCitgBlzBtrgvsBb8ETNSfheoMD+Mlt0DeslLelbUPaEvKWkbeMBQtqlXVUKrTlsDiHzjsM84AQA+7uJ9ze/QK1As8fVqznjGkccXO8wTCOmIcRVBICgNNhFsNZGeenJwnmNXv86njCv3vzuQgGZkHl371/jx/fvcPDwwP+y//vv+L7738AUQbcBu8cjsdZ27hK1tyGC2AEHwU8JGCMAdMYUAsJCMTWBYVQM6NkoBDgnMc0EXIWsIO1XM5rNzQBQ4pqeAWQ0Ydt/TMDXPD0LFmmENBYH+Exg1y+CtLIWBK7P8GyjZAa4lpFQNBq8KdRMjyXC2PdFjAMBqUd868foE3HScUqWdfXOI4KMjmklDEMEYeDiLDe3d3hZMwzXT0GCMvasWBXjV2VUtHU9rm0iN2StA43/bgGIqnDJB0QC0pOqDXLWuZOlZeD0WmZqQBB7K38aH/oAqUynp5XuAtwuSQ8PD6jFMZyWTWbb8GKjIGr5sCrOQtVarQNhyfAQ7vbsWqRAEBja5GWXIkOhAGpV4eLjtUQA4gcSiooEHbSXn9SvgEQOhhriESD1tUZg+oMcAE46Cp2TgTuyTcQTJ65t/AOsWdbL5cLHBGGMbSsTztlFbDwPuBwlLlonSgdgVRgn0wHjah1DQIxtpSEgWbsUV3De0tEzjTTjem2dxREDFVYUglp6+Bldz50q+m9WkDPzKrIJ9cx3M15++NA0Unuk5RtB8hk6LnlyYOJm54bQB+te+cJcRDAOwQHF5ywFPVcMQZRB6o0s237Rq9sLYf3LqQ5DQBrlp06K87Wqtaym3OUk2TlajXxeaBmIG+MSgU1C7jIubdbN6aYh4dH0N2he8+8QFYmTOXGvCUipf+7FgDXWlFTAueiS1k+Z32+CHis689HOeu8D1JunTcZL5tItsBLnCpqbYL/7V8hTAAz0iKlTR6EUxgwOo+bwwG3d7e4vT2J5mUMsK4wcpaIP+V1TLhIacOybliWDZfzirxtcAWSRUe3nwIAmsNYmw0wv6FwUVZjQa4FqWSsOSPlIpoZMD/IbKfZOTSAhsHwLYAxUMpeJHIKlRDigGEYMQ4jCFUaSDDDRRF8dy7A+Sir1WsW1ZPKKkqpXWUgbxWpXFDhsFWHzBKtxOEEgugdBu8xH0bc3x8RY8DtfMRxmhAHh/kQxCc7RMxbgiOSMl1yGIZRutGFgHma4FWXpp1TuaBq2WaIXvdH6jbItO2c6TwJS2YP4gJo798DFwZWt0ANnQGZUsW6ZKxrRtoq8lZxOa8gekAIETkXYTdEjzCIhtk4zjgcI6b5Bnf3r1AK4+lxwbIk3JyOuL97g2maEP2IWmR+YxykE14uWLYnEad1Uur75s0bvPrDW3BhLOcFOWf8+ONbfPf9j3h4+IC//q//BT/8+ANiJIyjgKi3N7eYhlGC8WAt23t5siUZrWsTq68KAIUduBJqrrD27eQYPjKooDFQVRxHBNW1UgFO5lJKV3rpmgEtl2XV6zOmKYp/+VyQknxG27eqZSIdoyOcF301ASek8UTaEog8xvEAAuE4n+DJ4ekh4+mSULVsvKP1PYA3QM4HSb6x+g1xiDjwQRO00pRpHEecjieEGHA83WCej3qXGrDWonuP0dgrRUS7uTJSWlTIuGhDDy3LrUV9QTkrJTEnYOZykQYhpSSwygmYHiYRwUGYcDF2e9VONhtHPadSrvjwcMGzX5qGVdVqjA6o6C+UIscmGDC2EOR88uS0EY+y/M2HanaunXYtCeaCdBquXLXShaWUWiUf7k53iHECEfB8eQJBE/MEMBy4saZMaLyDXOMYMYwRYfAYD8LKcYHhfPcrdMJb7LptUi0UgvjKGqrK2lcA0Mgczok4vchpVGF6qV9m4K2B5qAI0Cz+npNzYxgDfGCQy5JkT6mBGwzI+WD1peormh1nFlvnvKjoc5H9mFdtdFQZbJpke92oqsLsm659BQjNbzIQj5183jAFDMFYpMLmbv4zgNyAHAOGFZipWTSItGGNVVQRS6MoAikJBiAUlE38hwrdK8a42gNMzacyna09emT+i559ak8AiaHAALnawKkmy5PFh7QEIpgkeb3ukso2F4zmMRHE7/YU9rfQXswdsAX18ySEKIQWK79E7fpNpUrTjcLY6Iy8bWAiDDGCo2AGVqZZkjKaa236UZGogbfuX7uMDqqIz5yQc4EDMDiPQHKQDuOEYRylU0cMYFcAKs0hMSPBldWgyULOpWBbN5S0gbQF8B6Hs8HUv/UJAbSOVrOWtTNnxLjKBvgtYCA6CqlBjAbzzAzH5qirY6yOsPMezgd4H0HsGyXQbtKC8GukEhpkSICDOCDFgOIcuFSsS8HlvCEEcXCIPIIXhP0wz7i9vcU4BMxjwBAchtGrGKF0wQtBSwP1NpwPmtmV+xT6Zje+teRmjG2cre5WsiLifFfWrL1tKh2jPQjwUxm7jvhfDbWW0KhOiwqQ5pzBK5B9gQ8XcZZiQCmbdNsYCcERhjhgmk5gdhhowzIUDGHAYTpgGCKi90Ct8ACGEIUtt4o2GCrDFWGWTLev8ObVK81Uytzc3N7g/tVrvP3xLX71D7/B89OCyisqS1eqaRwxTgPMUDLQg1enYCYxgnOI3iMzI6UdsEniHNcCVC+GMgQxUCagbaUzRJrNUYPtgzGWbInJoioV2FIB14J5Dp3m7y1DdjX07XlNT2kv9GoIt6x3ap0KgxehTdGSYqHKtvW9uz51h8loqKyfGUKvQSbqYpIxRszzjJubmysHXErasq4/XdfZ1gwDWTR+cl6xqhjlZV3EaSpS6lOZd07Uhm1bxHiX3AIt54xKLmUWFqg7sDCOGoW5O4VyT6wlRFIKtq3UHChzPuTwAbSFhGT9TOeIBL1wQRgYZIcZCJUYdd+OVQHG3hFjt88aSNHn2EoTUSXgtx8Qum2wiTOWzF7QiRTcatkryGEoB70eeCbSqMGPhEI243191SIsC+cMgNrbhF6+Iw5F77giDr3qFjiCC9TwXQNqQNBs6nXmbC+OKQ6w3j5zc6D3GWQRPe4tt/ev7vD26a8VqtEh82xB9g6jMexOxkTHkdsYKwNVHUizpc0ut/vbi45TazzQD0WxAa3lce0imZZNN6Btf72G7ahDQu25OlOlAUCEHVihH1lZ6eANUhUQLrNWFej8VIijbFoXNt7obAZjVbaXlUHo5zd70sAmm0ydX2UFARVlE2CZhgA3iJ0OIYDYoZBoiTBVaAIXKjuK5pD0jMi/+cuRlDAwQ51OOT+idqIaR2Eu+xAEcNUyKsng9xIgc4NKFZZLzgUpFeRUMDJ9xMSRQJR3i5S75tsuKBCfzLRvhLEgEA71xb27rpwhrgVQ7XMIoNr1d+z3uDmncmaBPcCyWMlrpzJDbQG0CM3pGgMUKJWOSmvJKEzYqkdhBx/EN5KW7FE1rSbc3h0xxIhDnDDFASE6DNGBHRADI0ZZz151K6wpg2nmGMtWH1EB1yqgsyZYbCxtfAEBSPclrlcJlN332r93Z+EVm5yNDcfIRcvKtIw2p4x12ZC9luHkhBAdQpFkoiSiBjg3IvgTagU8rRhixvE4YZoOOmZBS3KUWQ9GSQll2ySwD6JnczrM+OzTNwCjlTEfjkccjjd4+/YtfvnLf8TDwxNiBGLUQHoYMI6jAPFBk5klwcRynSPU2hkgzLi2i450/1oAztgNe19hO+CzsZOtg5PtBF3fqCIiDyrw3gkIUQGiuptHmxaHoImEGIV5GDQotuSKBdPSoTcjxlGbJ0kCqAHq6sMZSEGwMnbX1orG7yIGrZqg2RF8kdLZOAgr/Hg44HRz0/cxs/pQAtxUZR/lnKXjKaueVRGm97IuqLVi3bbG7q7qJyUFT3PK2NZNmS+igeXIIYYI05lxjuAgjFLxTSy5wZBWot3u1AqsW0LSxJHNt5Xg7kM9SxAZk68qGEnATj6hnzHFxthskV7H/Kx2DjKptlhtgtaWHB3HGU/PWlLF1I+Idn5x/37bt2gdeochYpqlazVTBsM0Tq3csS1EFE1eheBbeVtB2THljf1tCSNqNtr0X0WrqbPPnQJ4XqsGGKJV6gMJ8EdQHzp/5ONg9zxovpVGgXamqK2XKizqv657itmYbGggW6mmB6WepCZjxQ3SRCEBsfqdj7aLPdHnrv+ddmu8s69sb3UbIu91XgAlYdPV5n/ZvbYX79hJuwlzdvA2b6+9XT/LYminvj9114J7wseaFRjoJnFw0efaMZqq5GfsUXsP334X3ZfuvnCLKcj07ZxYxFp7d2obJ2Wt5pRBtcKF3qFOlishw9ZK9wfN1u7//JzXzwabchaQIiVBRqPzGA4jphhxmGYc5gMO0wHjIIj/WjIul7MwWtYFJWe8//ABTx8esW4bHBPGOKJoXXHdZWXbJJnjrjoBQqvsJUEAGjUVzE3PxTsP74pS1I2pU68Cnv1LDL64oZVL33vVnAZZLAiS5QjBw7OH082ht6hrTNlBPogGgdeF7qTrQkVGdZIdD87heDhiiCNiHDGNR3gfcHM6YppGDEPA8ThJzbVzIoKqXY1MqNIpxdxLdKHaJ0GBsV7aZLXH3jaP9w1Ykh1TUV9uPJ0MEy5s5RzAR1/3pRh2EfENFBn3AcN0QNpWVESk4pAKA2uCcwUlBYRQhPI9jXDBYUuMMAbMU8HpZkTwETe3b/DmExmf25tbadd6NyH4gC1lbJczSqkYQsQ0zYgh4nY+IIaI+5sTTjdHmS/T66KDtKSNHv/xP/0Fvvzqc3x4eIe3775DrVqmuOseQSBEbXscBy+sNQKmecRNqcgZGFZFutVBn8Yg1H3vQZ51DgoIG1CLGipzFggERhyF8RKcMJGCryIiZLEhF+Qihsmy3UPwGAYFHTTrYoeDGWgBuOTvrMEfAxr4BDADQR2cYRwwl1lot1nu07JwYKHot44lJphqE7+LJ6VskFWQEABYtSMuzUGq6uBYiVspu0OkSrZi2xZpZ5ysw0lF0hbCbY8yN+6EJ4fgAhTTF4PbROt3AJ+ejLJyzUkCLDrbHS0KRBByTz5JdolISwMHsZPbJtlEZtWx0N2h8TMpMOhaII4WtNddm3IRAwccSwZPqLdV9VzkXg1A8z6Aaga8Hm7G5MCOrYmeZLsyh6RstBiFVTM5xNGrQ9OZPAaCme6QCxLk7csADDgS2/gxOBm9ByLamjeHyhFJtxO/d/LQMrvMDF9c68xWqvlHbfDamrGgQoK0F4ckSIExjzoy5jq2QKYNhwKOVQWqQ3QgF9qg9RNEf8ccYXsOc2Swz8D1eYCux2Yn0W4QBrhcCXYpiBZCADsgbea8ShBgII6VA3ljhYEhHSE7W0Dep/6hBq0CHNHVwmCWjJiNIQzkZACOlX6tQGSQvV2MbUZalqvdp5oYLYswp6sSxHXRy91wVrk2GRDSyt01a00dUOcsoLsDwKpjEpyDH7x0Mi1edG9U3FzKS0wM8+fn2v41Xpf1AkB0wFhLB8YhYhonjPOMcT5hmA4Iqmu3bBd8ePogDSK2FbUUvHv/DstlEV1B5xDHAWEJzRGV17V/Y453+0N09Q5jj8q+8PCOEVxEdUUdVCtf7UFy+5zdxDWrZZ+nH85goCojCwIUOA8UbeMtBknK3piCin2TavVJQLLvOgkGPA0Y/QwGYUAAQ1gsh8MJIXjc3BwwzwNCcBgHAQamIWIMAS4Kw0YSiFX+kJQxOieA1TAY6OdVi8U1P0j8qutSKjlT9LwwW7srJWu+086vZZaA1crIoD7W1dyBmx2KccTpdI+6ZVQOWDcFF9IK5z1yDgiRRStuIjhfULYLhqFingm3N7fwYcAXn79BHCbRcbk/wceAGgOqlhBlbX89DwOm2xlDjLi9OWEIEfe3txinAQbq11Jxe3eDoNp+f/VXf4EvvvgU5/MTnp4+AJAzoijbJaidc54AFfE123k4DLi7nYUNUcxfl/EYx9A61gXvMEaHRIyVrTxN/1Qgb0WFxx3iIGeQV2FxYrNJ3AB07wgxCvs2eMARd9BJ5xYElQax+TEfSmMLyHUoBnCNiNrldjwccLi5RckJl/OzJGGsIQTt2G9tT+5AWkLz5cg5WStEIsLPBcu2gM6qZ6PgUEpJhe5ZmNxWMqWAx7quqFnYizlt4mtlYXgYo0LAFGObqWYZcfuZ2/lQtkaFgVfbujbf6cqwMwBiYaq1YdREvDIHXSunVwZzMaaVJmWbX1DhXdUzxs5MtLL1/ZnaWIM63qUyijpCTn3i5hdDmWYugFCEndziGXmm69hHfmadi6Xa1AMkZYLkPNgxqpZQZ00KiE8j16sK8rKNEVvCqWu/Cm/CAPEuZSPAhSSxnMp8WGmdjICsf4tjia7LR7k7JIB5LOp3GCNG3iFgqgDsElvGKYB8Z2GCBHTz3qE4tP3o2bV5hvmIzbe2UkibOwNTOhjD1cB1EybvbKEukK+amZqgsy6TtpWsQ6YJxZuGrrMur7pmBPiTEuswSOIul4RckviybUF3O101CWni7fKset0i55z8nBpzvuqD1sJaSUEaRwAlyfPCkv8voCY7EyQJRQ18ajOp52/NBew0IVVKnyeIa2mkw6paXGDWzoAOwRF8DCIVoQQROBJmo5OGUo6czj9+1utne1vrpt3o1g1p2eCHiHkYcTPPuDmecHu6xc3pBvNhxjBNuDyd8eHpEdu24P27H3E5P2M5r3h8/ywiuiAcpwPqehEhRkqwbGibS4KCFdLyuHJH56CDbKKhAjY5FfvyKAoItAVRLbC5XiwtCDTdFDXOYNV4ADcmjgXiQxzgOIJKEJ0U84NIO0oxQPvDKwAVDilJcOwcw88CGt3eSovdcRhwmOVg/+KLT3B/f0LJBauKolVtkex1M5CTunvnEkAeYRi11CXCxy4C2L86DWp3wJHyFEsx6jYaQ6AJeyvqb0b7p9BMG9crhFl+IIsTMm7z8UZAAgzYckDexLEhcngODOcEaDocpXaUwhnkGKdTxidvjjgcAn7/q1/gq69+H8ebI15/+glccPjw9BbPlwcp8Xx8Qk4Jh9dv8Op4g9PxhN/76hc4zDNEuE+Cdek+VjEeRtzc3eB1eYXXb14hrQn/8Mtf4r/9t/+GZVnw4eEHLIvcRxP+jVGzqA6sLZAPpxlhjMiZsS5Fy3tYyy8dxhgRPKF6AnsCYYOUgmSLNiWITwVcgKkEKa8KhCF6jAO3Q0MOrUUZVkDUQG4aA7Yk30sq6O28hbwGNMkfJqdHlHyuHFQRBAlg5ACYJSgoBcv5jJwznBPQDEADm0ysUk4ydUoga4cYDWQyhw8QCvH5DOSccL6cpZvJumFdZb1vKWmJoQKqzCgKMLF2iGuZC93OZnANvCEXBHhRg8vOnEe6/mqmxhykFjjtS0HkR1U/r1QASQ63IYqm0OFwwM3NLWoteP/+Ay4XceKqsVqqHKChqp3QjL45nkYNzsgoXBR3cAK0u54tbA4ddaZI8BEhDHDFgTzAVFFYOjca+wY2NldPx7YkEAeP480sOh+TRxxNWMpYFfLbBQVpE4dp8mNvD66LWAJ5K7ezElBZHhIECHOglCKHOHpXCxGR7U4sM7SrzapMAaU1w4EoopVlNT0cPVRRGsOrx8a6E0jEV70C8jEEPaAN9BXWrThlktXxRBiodwAy8UQDKm0VmV5hc16tQ1vp50hbba1e39alOPZin9vtNgfLkYOPA5gJ26JrA4p6MkuZCmQ9DTHAOUgZNzQgs+yqE1CsFkbeWEtQpSxOAiBdWxUi2mlOkT2q3rs0CYEEJt6DnHSrTaUi6Nr1FpS3ElArWaxaTWJWCM0OggHOGUzU9ECYuQlH0y6AKFpOy0WZot4hTMKwTkmYTY3dlCV7N0yTdJBtzufv5vV0eZR73qQckHzANE04HQ5SEnO6x3S8QxxHhOixPqz47u33SNuK8+MjtmXFsqx4fjqjVimrneYJ62VEa1vd2wLIq60fLen/iftq5UlECC6CHUGqEb0GJPI+s2Pt0lcIoZ5h6NlZA1nlBxVgp2eN2L/Mck6hEsBR7tU5wKs9PU4IwSMlKVMqzE3nIsQZ43iSoM6LnuJhnnF/e4thjPj001e4vTtgXROen87gWjHFAUOIIsQaAyoAFyqCr/A+YJxmkYaYJgzTJEFn8A1oMpvmNdln5x+jJ3xq7R2ajB1lgNN+ehjcAj0qMphEJCycnW8F9cmcY4zjEa/uPwOnisIRl4VBnEFc4MgjDgTnB4zTgMPRwznGo3sCuTNevw6YY8BwOuAP/v2f4MuvvsQwRhxvJoCAb969w9uHRyAlbI9n1Jrx5osbfP7mDQ6HGZ9//immcejzXCtSCKi14nAzAbjHtm24u7/B+XzGP/7yn/A3//1/YNtWLOsDUl4QmJoWoQ/CwA9RtW6YcXMzYwhO28ercHEVBt9g2jMOGKIDUYBbC55YA1EI66YWxrYmoFYEFxC1DDx4Kbuy0FyCfGFmDREYR0mgxQB48xNVnM5Ku9UwwhICZjhYYxQfIqILIGIM84xKhIMyhbZtFUAol1Z5AF03Jm/wMUOAGnPOwesB6lBYBH7PyxlbFh2ly/NFfahV9EfZAszaqhxqlfuopYNzso/bg7Q1J+vVUAd5xqodqix+sJ0Ps+dXYJP8lEw/cQcUV+6/yywg3ThEEVkfAsZR7vX9h0fVJlOxfJIzkuRIFWCcGeS1pGyXRDHmM9BLfa1xApFDoR3Yp+c1a/MrIomxpGQ3g7XUt19P5oYVYCZIxUjOFT4zagkg8hiiR4zaOMpL8mtbszby4XYeT1PXFisqQCd+YZA1Vqlpeobg5cwi7ICWqs8nPiT2yRiDorTTNQD1RSy53WUQmm+kAFBt3dx7h/YhDghDADvCSAMi114eBvHtgnNImZoPFcjDBfO1243tloTXdegUjzSAzGlyOV/dq4FgaL5XB5tEdsAriO068KLi6lxJGcYSb8pbJBEnMYokG7w2pSEPLMsZvIoER32RPIUyk5p/pM62Y1koRS0Os/hXupTke5VRsqxZKaMVzKJwBmcGKckkkINvUJOe5xBA3Jneg5kj28KFUVgculJLa4CmkRkIgFffvGwSb4Q6SMLOe8QhwoWgTeAqiiuinabdSsMsPhRyFmmDn/H62WBTKdZK2Bx4pyyfIILVXhk1qr3BEMSv5ILlsuD5+Rlpydo6UbpUkNZCm6EAdn57W4i4BjBgyOf+X2r7PwJD+rt6SQF23/846MRuUu1+zHEyg2NGtV2rIedyGEiwrbtpXxqj+8I5zdr5ACLRWhnGQWj0Q5T63yEiEbXuHkalJ+cbA0kcb9ccleu/X49D+2rCo/qzPt77p7YDtWfj/iV0OdicUaeIW0eG4CN8GBDCIMENCgCHGGYEZSMdDkeloRYwMeb5Brc3dzgcb3Bze4vbuxtMhxnjPEng9EzSxS9V5E26jnh4jKoNMQ4yrsImqqgKfJBMD+AENDjME3KMOB4POByOICI8naOAM6ppQaSssOq081+n+pp+mB16guQbA6j5Clo5IA6QD64Fk9SX0m7+rNxIxSutPIH72oQCDqbvIpVo3NabXaetgxdAoXUOsT1k7DypB7fDzfaK/O/lfrNr7sOO/QG9/zxjM6XkkLOwlKQbRupi3ZrR8syi17ErkzWdqf3res/yi5/go7X78VJm7O9+f73+ju6MtYvs9glpAGLAWlBqvtlOaE38tU3p92l2QkTjGdYq3n62s2b9H2y3IqBcVXBOStB1z+9P9t/yanOvmSGj4MoCsqc39MMCydoCppclJJ1RqqyY3dg6tSnspJwQsDXurubFhEb37JaPxGCh3+O+tlqwu7dn6L50n03W/ay/X3fvYZ1azS4RuoNdXQXXncgkoHP1YlB3e9SyatjdH/Byf+zXKu0nXH+sNr79Xd738RU+/pfdq40h/eQKt2+9cGzaM/RLvrw1u659Rl8t9NH7rBTB1kz/tL7KbXx2CJesjR2b5OXDcVEo2MA3mBO/6yLW9qoDdhpxv4uX0eXFB5AuSMFLmZYkibTBitaKCCsyYdMOYst5EeevAtoWaxek6pzqUL5Y+X2dXYGbH6+WnlE3pg52c/7x+b8PamTMdU3u1nWPB7r/VHWzWULLxSAde6Nr3YSkzbtHYQaVAqqigVKpMyqd83BBGUljbD7UMEi5tmlCVqoKLnuw22kPKuvOmEe/9c/u5y0R14aj+1g/9Qc7HwqAlNbuth63QULzmfh6cMEsDU7GacY4zYhxgo+juE9ZAqdxOCIOkyTsDnO/ZxCOxxPu7m9xOp1wd3eD29uT6MvMosVqXWKd81oK4oUdPo6YhgFRS+ANVKhwcN6YwrZeIw6HGc4RDscZ0zQBxFg3p+eABHxyT8KsyASkLYNgGoDy3E5L5wiaIHF99Rmb2vuKEEiTpWIXvb6PzY6RJU5l/NsRBbSzhe2Ia/5W//n+3GpzfHUad6YB0Nls1pnXOakgcK4n5Pa+9NVasX2k1+Ore+hrpZVkZdFSyTlLk6XSvwo7XDSqsGNqdVbLNXB8vVmBq2YiJP/+KJaw5fkTft7uF3d2g3f/342njinp3FojENMg6ucQt7mxsuimxUvXV7aZsdQatfsxO3fta+9Cnqv5aHf+E9ffW8N+j+KbugphcBmFS6exsZzN58fOv0Ffj/tl1wF8bkx3JuneKe9xV/dtZ4fMjdhaItJOydQ/f2+DdhujNfu48k+vzwvzm6zbO6tz4NpYmq5XbfNJ+0GzW2fs2N7qg9G1f7RfX/s9yVf31q/dzrCdL2H+l9mFq9mzuYGxnswXt4VlKd7r2SfCTiahz+9+rYGNWc/6c9qrV/RnYrND9j60JE97f7uk+ldMvXnI/g3tuvZwuzFS8Pf67NfPrOJD2VluvytVUa6tw8bwVPyAf6YP9bPBpqenJ/lgeAxxxDhOOBxOOJ1OOJ5ucTzd4nC4aS0LCVb6suK7777Hd999h8EJ9dk7DxeD1MPHsCtn2Q9Oc3f3I/dbXtyC9+IV1AjNAgEAShFKaL+2fO1AkxglVyqKtcVuC8QC5IJtvYBqRswbYpXSJnEaCRwCEIKADqofI+CGIc+yyE/HCfefvwL5KAKFTBhH6RYSg0eYBlRHgFK+iYW94pxD5YLzllAqI1XJ6vU0uIyFaQVYVu3aEdofevrkDgBXk5m5OhD/OYBpbwRaF4r2tQoDBAIuHk8ncK14/cmX8Ih4fjjjqT5hGCb8u3/3B7i9vcPtq1u8+fwTkCMs64pUMr766kv8h7/8CxwOB7z59A43NwekWnHJBVvOeDxf8MMP77GcFzy+W4DKmH/vhK8++wrDGBGjB6gq4KPicyRU8C1l1JzhCBingFg9Xr2+w+/9/pd4fn7GeX3Gsm5Yl4tkSJkRh1UcXWJ4X9AoolCtIidMj+C9liVQSxI5B1AAxsnh7tWMYxqEBVVkDEvKkpWLvjE8hsGhFI+cGWnrhskC+ZwZ3otIOQ7Aslasa7pyAAjUHSHq+000koQy2UsxVbMhe5hh7pfqQMJVmcCVYyyAUMkied1KXQGs6woiwrqucI5kT6VNSuGKHbrGtNKyVR+EjaZGrTLQSxZY1/zH63LvUP30Mt5fY2+wWfYAuk1qPphEx7rnLdNtAB3JOvPA8ThjnAZcLhc8PgpLy+jNtTBKqmBHKEytE89PBubVBJf7PTbQo0qbcAIhqhYWVQa8dOJkIlNM6Pu02dfd9drMVoAyoKW6PshcOyf1/9Y+mvXvBhD6tTufpHMXgjaUyNIprHdx7MCSh0NEVMfFKTBQmy5BSiJSXI0FA6edDD24AiWbrpVqeqFrfTGLIKyAREo3bntG7ov0vnyQrLZofhXVrJHrRO0QJgNkAYB1PrQMKlCSaihpRtlxBVUF/lSEtZYK9RR3QAt0rUHZql6dbHWY+rl+HaRgv992NlcmuwUkpearzkFsNh4CXjvyYpQqg0lLqbyUKgIyB1yBlApKsjbfVvoi88jMSJtoreUk5QHs1eaAtByu07gNjGo77uqcMRCvankBEJwxKYPGQH3fS+mlCJfWyyrMGFZqO6BJsKilEcoyUUA4VSkl+V29zucLQIQ5TjioWPXpeIvT8YjT6Q43t3c43tzAR9kThcV/ulwu+OGHt3h8/4gYB0zTrOKcUvJjIJqjjx3Zq9dP+FDd51IdEC8AefAMZk2EaPbX6b/lUj9xLZ0XMv2VK/dNM7kp4XI+g4swvEOIiCHidLhDDFFsjro0zmsJ+7KguNo64wSWDPowSjeuOBzhgzDDb+7uROg7DsgVAEUM8w3AwBAjYgjiO6SsezdgiIymicLc/hAgDAMvZ6N3wnLyjb3YfS4LrvZnoTF+qdf+9LF6Ee/sxxDA1ftLFaH2w+mEYRgwDhFf/OKPwDwgXzK2p4R5nvFnf/pn+OSTTzDOA463E0CEwsJu+f1/9xX+83/6CxwOM25ubzDPM1ItWHNCKgXzecScDvDOo6xyfr9+/Sk+/+wztQUF23aRc1ltdYzS8Uo0UgucY8wH0cR69eoWn372Cc7nMy7LE54vF2mFfhE9odapCxV2Shnbgkj1+kj8Jq8JEAl2aNddy+HuXjUTqzUvkAYM4n85YTYRQ1xzZUqpnyHaV/LVkn3eO8ToUCqQsrAZBrIzBK0TnLNyrSpapFai7FsCfkCJDOcvYHgwG6ucWhJP/EGx9y2xB0lcWmlgrcbw0nMtV1TOPTyCMEzTJhpYVsYMEtAWEBZZUCax03I72hXU7/f0y7Jm1vItkJxPzJYQ2oFtL0yBnbUN1LG3X2EXpFUaHtY1q1aA0Ssx5sMBPg7Ytg2Xy9J+TgS4IppbfQ3tAv8GDGlMok4QsYeQ8lnjALSzznsHHwg+QIWk9Uy6erYOBNh4tW3MLPpEuWBdVmRHKCUgRIu/BHDNSZharGxcANLQapVzqLYyGQYUkDXwUGI6J0kGPXeJLK7s412qyFRUZmw5IZcM5702OiJlCPW5El/AYoruJ9jzEllJs1UxyIdFrXipVXSnWmKQxdeNURo9VGWbS2nZbq2x7L+Uiib6KnJmkadBBpFrfuY14GT3bnpnIplBCnZ5b8B4Z3CZ74rqRE9Qmdkla6wPLTFU/xOlYtsyQNyS4Xu4qftjUMDdWH0Wb/SKDCPYFO0e3jta6t4yn9R8qK1IfBC8ls7KRuwSP/t1DgX3rhO1spa6jxRDbHtCNmcnLXiy5BsjX1bACSvNlwhmLS1kj8weGRVO4wquVdaZNh37514/G2xaNEgcw4gYBgQflTUyYRwmDMOEOIyNamwLqpSCx8cnvHv7HsfxiHgapSMFOdUe8jtUf7+zd2BRj/Sufmov2/DCynDNsXz53pdo7k+BTeZ02G92VBkaNCR4MPxO20kcDQ94LwARQ6mudXcVakZ1HCJubg6gEJGyBJzjGHE4TkKni16dEScUUZaD3QePLSdsW0bKFYWlfraDQ/055b70ULu6T0LLjuvgCdW1lzD+HKDpp9hmzSDoH1ns2uksBPgozKXj8RZ5zagpYn0iTOMBn3zyFT799DO8+vQVPv+9zyGsojO2LeEP/uD38Zd/9Z9xOIyYZyAOwNNlxfr+AbVWLGnD0/OC9Syd6ogJ0Q+4vblTp0TAiZbNIEKg0A5x0sPIR6HlHo4T7u/vtFRuAjnplne5bKhcEXNR41pQIYdEUOcpxoDD5LsYt5N2qC1gdAA5RgiE+RBRcmhgUy2MFWIEjeVBDgieRFS8AsnKUHTyDAFndZRGF5BLlv3Eu9PdgpH9vGpQKs6sF4Fs0oPMSoF2XnE7XG3P0MfgFdp+4eYo7T/LguD9e3LJTR/N7tWyzU5LESoRyHlQ1dpsMgDs+hBqq/Jqr9t+eJlx37s+uNrPFgwbBfZ6paOBFGJzsNt/cm/DGBFqaEKMlbnXSLfsIqE6J5l66iDS7gbb4d2yc+ZRtLuG3o8EQey8UMSvWrmSzczVY9Du7/3hha7uHLeSNSmbJA3+uR2OpdQmUHzFjHPikBvzSZwbhR5ozxJwKqQoQYWAj5KkAEv3jpSsR58CVeThXdDiMKvht/GUh2oZa80Wto5ZO0dRHG5ua1h+18oLOljjlX0LQDNuPctVKwMZzamRmEkAwqpOsWUrS/nYkd+vPTu7zBF5CTDtx7dPY9/HfS0zzHmUUl51UmrvasVKyzcnmDTzTebIK9hVrcujzmGtYrvaHBrbgCGOHPQ5zZ/B7kyqvUtQ82O5ZxJfvqzEDlCQUm1C00gpXX/KHrsm0dgg1eMh7+GiCF5Kc4A+ziDRl0raMON38Vq3BCLCHGfpeKa+0zROGKcJ4zRjGKeWCWYWwD5tG56fz3h4eMTxcMQ8HtRvYrQGE2TcgD2MZ4OJtvA/sn97G6jOu+z9vgb3mXX7vY/Of+6l9C0asQ9nhrEPS61I2wZPwDB4uOgR4oDjzY2KSIvsAMAoLNpBmQtc3kAaiDFEj2cY5WwYpwEhzpjmGdM8KRjkxf0iAb4B1aAIHsgFZWGkUgD28L4777a3bZ2afbhK1LhrDTIbO/Mn92ei/Ezt70uAieybuxQAX2edGRC74URD8TBPyCnh5u4Nnh5XrG4DpQXHww1+8dUf4hdffYnxEHG4GwECUpEy0z/6o6/wl3/1J5jnsV37siX8X7z9WZckyXElCF/RxczcPZbMrJVAgUSzyWHzm54z8///wjxNn+k+JLtJEABRW66xuLstqirfg4ioqntmEcUzBL1OVERG+GKmKipyZbvy4fkI3mTy2TAMQAbG8QAw47C/wc3tLZgztu2krUwEaS0DXOXJK9L6Q0AchO9kt5+EH1Nbg6XCt2hQWpJ0zkmbTFZCa0uEhugxeJlK7atD15at8tI4wq4ERNVNwssCCS5ww14eGkBwGvjW82DDFfoiHyNcLkkSCGa7P6pcokYbYeT6TXcaCX4GkdhOa2dSzxA2CMlVDNXx83CPj0r9maFBslLqz2b7ik7pNElyaoctuO50Ulf1tQxMXJ3plpTCxfuRCrnsf4e3KrzjTp7bfplOsl8S16dIYjZEtSF9AMSpLEXp5CgM5ll9MLmHXISDD9CWd64fqGdNLk6CHXov1ILltvatclFyLk4o2mBBMrv6j/Spfu8rHJmttTxJsQAVlGKBRHG1K0dihzFyzq3qVfdI2p5boKSUghgDXAwXF9HwGbqkrgRoMrNyeCU4n+ua28ttJaiKQV/51rC+BLR8TdIYxrWAsNMWf5l2KJ0JINJpv9KuVQWbWiEHM5CTJelMnkSfOFdAZD4DfySf9nBaPGCJ3Bb0F/wJwz5KYwBRpbr+feKrw472tySFBLmkOpUPdU2afFsEodq6FoKUe8zdtON63c0+2OdZKVPjlyqVLlgl/UL82qNdT30wUL0YojYxjpv/KF9cg3QSGEtyTpWwnmrLr+kv0/lABqvs/jwM9bODTUUJJCk6hDggxgFxkN72YTdh3O8QpxFwjIIE8sA0jkjbhN24wzTusJsO2O9ua1bD2hZEuUiGlbuAQC2DQycQFwtqyyXvIQeCL4y9gYLe0a08AvVhnyVR0Qgno0B5UYWizyKAuCjoKUApYGLk4pEK6fQYOThZJ+IFiHMsKkCqMtZMOK8OlAlJR/kKOGZ4X5C5ICRp1chZPnwtBJ9kGknigEIOPnpMuwF9ZLO1P/WVTd196rr2utmI2S7LJC+B0k89+mDCteEy6jIb801ZMio3dy/hXcT9bcEvvsrY7/f42//6X/DFF5+juILiN6SSkXDChhVPyzt89/p32O0m3L/Y43AY8Xxa8PR8xDyvSCuDOOKwH/DZX75A8B7TYcCHp3fIJWNZZhQueHF/ixf3N/DeYzcO8E7GoOaSsa4r3r59i/N5xjwvtYd3mkYcbm6Er8gHIBfNlHswWr+sC7GW6YMGMBG2pFOHiDE75eAJgAs6hWAzx4xgLSjOK8m9TudxxBiHCKKAzQBaYWyrVAUNg0MBCzdSkAj/ugoYNOe329SLcvROJ3aOGCF4IYZLcdORzVLJk51XwsROwTKqc0HophplmWZkARMzUDUwVTWvATC71A5o1/N9ef77f/Va4eJUd6Co/qxn2QyrvUoAo14rW0bg4s3qtdVsBjzAQd9BJH1dCcdjavfHjHVliJq1iXVib1OSYE4iHeXuCF7VeVF2lXbfzX+rmXIAXsuiiYBSEkreNPthr9HKE3MS7Kh2lXgEyRx7Bb8lMzJJkIfcBiKH7KTzfNsEFBnZIIDa8ljtLICchNCzsHGjZZkaGYJ+hhp97yQLjWZ8bcADQThpPHUOjeouqZdp8L1hhQZ0Czk4ktc48jXAZQC62h4wEiRxYJlTeY+mN209GVJp0RNs2jOMK8BeS53DwB/ZG71oaueijvu1dXDQwJPqBCcytW4rOLfKMiPNBqDZfclYGw9Xq5RAdWJy4QtbyIZz6mfrwAkUuCLkno4AtiCEtmLXKq0usMfZ9sIcnh6YXdoaKXUHuoWsU9KctjpZFW5F/9B9dk6dCTTgrM/jUgAF7065VoJ3YD/oLpoj0vhb/iMezWH1iHHEMIyI4x5xPGCYdojTAD8GwQpF2r72+z2YgWncYRhmjOMeu90Bzjlsq/Do5Szt9c57sbGVi+Wn7fd1llier1UX1DL/vZfVA/4+aWCvhZb1Bw8Qe5SSsZVWOWZQ1TGDuMBBqn65ZDw8PcIdDeCa3s9gFKzLgnk519agUhjT5LA/7BECQclKsCbCaSkyUCWTcuCViv9DAXwS+c+KN0MUD7MPEg2jTAaWqWOxTqmziUysXi9JdEEcAvve2bi2bm2hzcdvtq7JcP9zdZ64c2jUNoU44Bff/Ar7/Q2wZtCacdjv8Tf/9S/w+RevcF5OeDo/Cq7REfavPwT80+8lGHc4HDCOE07nBe8+HLFuWSpHUsYQA7786oUQwyLhhx+/Ry4Jq2Ko+/s73N/fwTuHMcrkPwmIbljWBW/evMHpfMLpdIYPQBwD4iBTvtbViTPDwkHkVEkV5XGUwTbG6yhcNxbETkla7yUpIwEBqdzQSW+qjwiS+LVAN2vL6RADsBO7G7zocO+kAjIGq+CWLP4wanJnyaIjruTe7IhVM9fECUy3CVk9wWEZzxjHCWDl4xMSTDTOPwuAsDqH4tzmIhXBNijFCKGh9//R4W3SozhGz5CBjovndTrg2onvdSyh8gVdvLA/0J2dK8WqO1plE9egTfOxCJaY9BAybQAsdn7bgNNZeBy3JFNnZdqvVmJp+ytbcJEZjiQ5RY51eq2BkUtkWBEVa3AEXO1XSQXbtoAIyHkDQYIdRipvPMM16Qc0UncCPJwERgFwhhKvM6Dvo26c8vuITFdfrEhFsGCQ6hTXQJaZP8PWtndyH776fqy/d0WmurtSqi6quMqCpLpG5gsbiXwLfPBF9WbhAuSG4a0NrgbGFA9ZglFe1lXBUSdvaHy2zIopTJxru6b5RpcBJlKlaBVutobiM2nxCuSLs+BQG4DSNGlXkWbnBSzV0RYnYEnAARqQ7tzchplaUo+5BXVsQItV3TEpWq1T+MxHx8V9Zi3BMztigWvvnE7UFNlXcotm30WMm4+CS4x/GYm6xGOCgFsSp8qcVndBbRtIfQSHWs3JzCiAyPbPgFA/n7MppSq047DDNO2x299gf7jB/vYW+/s77G4PQAA2XuEj4fbmAAJwe3OH28MRt7s7vLh7Bec85iTkdpwJbeStWhFCA6IALHuA7t9159WQC9iXDIoQM+qkAo369hkC41BpgiwtBQRCDBOCJ6S8ouQVmUpz8gC4UuBKhkwASijFIZUMJMv4SiR+S0UI2VwBXAGTQ2JChsO8OjyepGopq/MTMrAqEWRcMoLXI2Hgm2TkKBMBJNnaOHmMOxG9nrmjKhgdh27KAGQtUJZ1l4dXYjZ7bb/On8w6f2IvWvbl8mepHLapAgmOPD7/4hcorxj3hwNe3t7i9vaAv/0//zO++OolfvuH3+G//8P/EKJDesZKC94+rfj73zxjHEf84ptf4uWrlzgdV7x9e8K6JKznAldGvPrsHv/lv/wFdvsBHx7f4ts3f8DxeMK3f/ge67Lhr//6P+Gv/+o/YTeNuD1MmMZB1q1kLOcTfvvbf8aPr19jvz/g9uYO5CCBJi2PfRfeISHD+xExBhROyEKOgxAnGZGsqVkm4LwsSNsK5oxcVrAaHjMeXrPHQhjptdxRQFgIwuflCTjsA3ZFjO9uzZodjsi5wJNULoALxiEgDg6byWI31Qxo7Uu98hGn0BwBkhaqgUQB54KSEjZHWIJ8nrTauPpaexerbCpF2ohKzpXYz1poHElJ90W1Rh9U7hSmRdwt0yE8ES3I1DIhV3pOjZuZFK7RpaYR+4CTZL4aqJNqEHsj+bIpl7JnZrwjwLFzWIF5Jsxny9JqICMxuEQx7CxjaCu4JEgpqs+iv6JOXyJZZ2a0nuwuc2NBjVwKfBYAkfOGjTRzpitFjuCU5FcMZ9s0M1JESkKojlRO2rLmViEpV/kAgJSkBcEyNQDVbLVkRXS0q2vVQikLrwRwwG63A4GQ1hU5p8oTQiRZcgHvANQRib6AvbW1yEV4cjWjTlyqM2Y3ZuSd5ACGln4H4cWTdjwFV3oOc8koqVS5qnteY01qI4iBGpTSkuzuDIRKIGsgWDkLNRDXZLDJnXHiOC8tH0RUEwRW4VGJiD1hWwvm84acGZu27XFFQqwB7CwtJ8QacCr1uBtALTpYoAZq2OytrpezFl4PdlIBVrStThxy39ZH1CdStvUQOTXAFbyDTFxmPUsiu9b6JQtmjpTpA0gAoDvWF4nr6tzZyGw7I1qBlrKWisq0HIKDHwa4Icqwg3WVfQfAF5/yp31wyQLavMc07THuDtgd7rG7vcN0c4vxdo9hP4FJnJIQBrx48RJDHPHm5j3Oxw2Hwx3u7l6BALx7N2M+r0gpS1VjiABvNRDSZ2CvK5PqNWm1UAPsTjGUVbK5mhVtAcpS2wpaFlzOpfzEKI6xpRUpr7AJQHZSHRd4FhL56B22lPD28Udpmc3NobLgT8oJm77PtiXkzLi5Iby4PyCOBBoIFAfk1WODDBHwATVYxtquIGfBabBvgAuEIQCjAnNzroZxQhwnsctRWjB7I1M02eicF2pbEuLhCt/rol+tPbdrsf9fPw+KBz1R116N6oylzBinHf7mf/+v4FxwMwbcTwHTFPFnv3qFm7sd/tc//SO++2//hHmZsa6rtPZ894CH9Q3GacIvf/krvPrsMxyfFrz58RlpK5D6A4fD3R6/+uYLxOjx+9//Dv/zn/4JW0qYz1JZ8uu/+BV2uxFDHBD3wuV0Pp8xzzMeHx/xD//w93j77g1ub29x//IlJorY7ffYnRPAHuusU0VdgCcvxLPqhvghausX1BEGUlp18mmGsetKFaYE/plEN3vXyNhj1FZkctWW73cDpjEipYJN7dS6OCUIb2B4GCP8EABKOJ4YrFUGJvNZOVRFF7ZWYqOrsEDGftqjDAV527Aui2K6Ec6tALbadlfYC5piI/AvyMWm7WbkWhktSey+orqKZBUQeR+RIyN+1gCL8QXWc8+1EuYjZ76XTrr0FS7BlgVv1Pak3GyM6hSvPoy0hwfV7cqnw1GwUb0HxrJknJdZ10aDb1mCTazrCxY6+E2pMbgUJK1KigPU9re1YequVu9V9suhMFA2RuKE+XxESgu27QyiAq96gSVro5NXFT5Xcy4H1DsPT9rWv1mkTeysBMh0mvsi0+gsOSXYDVgWCZpum+ClUgSXOu+wP4yI0WulsVa9asDD6/Q+ooZ1mRk+t0omC1wEL4OlcspSTGF7VpNhirctCERoVd05C/pRPUdEoMzaWskVh5TEajckB1BlStdK4JAOvJJ+TxlA5WWjDPObXb+uZOplsvchpHVuUFwRIMGmjG3OKkcAsau+y/XDJjznlLE5aZ8TIbaEr+6ttiCWLEEvwz+sZzNGSWzaVL4EkuBj4Yo5zd+ToyZdHblwxVADeUQSHRa0XdgVBxTpomjRou6M1mCR7aScOwk8Xa6d/d3eKme9R8XfBIIEJhIQPChIUiCGAApBMJQmfTKEd+9nxJp+frCp7nlVrrJgXkdu+6AlyqQABp0wQAyncHlEeOexcYBHlqlAIcCngEwW279czIvSzno99qx2UGp5P7Wf+8oei77Xtom2A/XLnHxsVjLcNqbek32yAvVSIKOe2xbCSuKakm4HTu5LlJ3dL7MGZMBwmQGbIaWHm4lRqHTgj2Al3mplLq7RgDvqR9a/VkPVY6JPQe4/CsM/pQj631X8pfvBsifDKK2Bt3c3+Oyzl9gfdhh3Av4KZMT9vJxxno9albSBecMwjkpoWbDMBfM5IW1i9KdxxDBE+CjlnptOOTudzzjPC9Z1w7wsmJdFsnGq7GzaUUoJ5/MZx+MR3gXsd7nKivTpG/m9OVyiuOpYXCMatf3iy6BIJTgmK08F4E3G1PEkoGibSilSIQKiShQHfZ1VDMDgvb7hdRAHJnI/pQn48o+1dBYiruLoSjmqcRGULKMvzXk242+Goc9G9IFHMLfAz1UAswfn15eq74xWXcIf/b0iLbr6PddLq4f18tXmHMgYVAnQoLZdWbbSSt1ln23/PC5K5O2+s6yLgGELXElWzkLCpjcAAVRUGIBw+5BmeS/u2BwOK/uG7W2vi0oN6jV9oPrDHHhDSb1eo669ErDkoU7v0ECDrlbW6SQ9qXKvC/sS7JqBK13mng3wtVJyjaip/FxsqhpmB2i1qH2OrfX1g6quab+40IFMTX7qteDi+ebdaQFOu8YG0y+u04Ki9nL5G9kfmwx2j0tw38S2ZTL78FknvtYyYWvXLVaVP0jbgLPeWm5BrX79LKPZLoXRjqFZBO72QW1GV6lU388WuL0VCFatpjJi7RXdSl48rnQCGpZrv7j4c8symy1r1Jy29hqM6wBYXVvDJb3T9qd+mFxD8ZPzcGZbvLTJOy/JgL5iqI0ZdxVDOUAqUL1xUclrOV3fT8NQ12fmozN0BeCtyu0aQ1nSUQAqw2pdlaFLJg951RwL6j5Vm2nPVd0DWJKitHYHkLZSEFIp4qQUVv3DEkssABfFUiTOaNFzAq0uaAICtZVyzXKz0kLqKnZ06NvmajWkGdILPdAtm+mdTyAmvrqGpjPa3vTC0WOxPtBkfyACyDvsdhMIhLv9gJc3I4bo4KNDYQnMzesZ53nGPJ+RtoStrEicMI4jpmkPJsJyzpjPK0oGhmHUcdZAYakoWdYZx/MJORUsq1SbrNuGdZOK11IyuHjkJJXhy7LgfD7heDxiGAfUKdHaiuF1alhbf90Ds2e6/qJTzNlsyy5vZ+kdtUFOk8G6twQJfBCx4rrS6eVOxZttYQtKNrzkqAWzbTN6PdlXOvUIpcdAdm598IgxIqeIOMhXzsEUFlpwCNriZ0GgcvE5Fz7Qx8e2fu8u81q0YKJI1HNwfvy4lEruMFQnz/pMFf1aOSOOPeng+sal412Ad1K1ydX/cPWZtnaWWLLAkAS07b4bvYEFRUo12XJdhQmWV/uUHmw/t3/bmuecIK1bkmRjIliSxO6Vdd+oewsiqjqE1eA3uW3t+/WeFDvXakpc4hobNmStmf3+VU6n/lxA7x+dTr/Q467K80c66o8Zv7oG7SKajLFWONkZ0OdrgcH1qn/6Mzsde/U37m7wI+Rez/HV6+21xSrBtFKLmoZ10GScBWPs6llfwzZoRHSLtD9fYTowjHvTBkOxAZH2rcqJ+W24zPVfKHxum2krU61qv14/9aCrp118zMX7Xpijy3eub8LCL2XtfCT6SSpeW7DPPvinr6o9fn6wSQ+ccwEhjFIGHicMww7juMNuv8M4jWqEoAYqYVk2nI4znp+O2I+32O0OiDFioIhMG4bI2M7vsZwHfEhnbMcifDGXLfE/EdewTRahcN7BZVejvRYQk/UQwbBAw4XRKEDRkYgvXnyGw+EOj0/vsczPQnKsyVOHgBilqoWXgpQTwA4pOYA94jDBxb2Un21nDXkqIHJKtOsixnHC4eYA8hHrlpBKURJpOdglp1r2x9pXKCSVQUJUkVr/uWZIKt9LV7lS1DI14Hp5SHsJYbNiBvDrQe/hz8ePXmB7o3gR7IBwGkUl2hyHAT54/PkvvsJf/fobpJLxh+9/j7/7pyP+8C+/x//8h7/D+XzC27c/4nR6Qi4SiXfe4fPPP5es2d0r/OIXf4nd7oBffPkLfPaX32DdFvz+u3/Gtq14/fYt3r7/IAp9EFLV52XFP//hO9zsd3AE3Ox2OJ1OOD4f8eHDB3z/w2t8//1rLEsCkTQ1MRjDMGAYB0y7CSklDT5JOxtlCbAGT0I+yAWlLHqYdRIDAO9GsLVSqdxaGXDJQFLujc0BjjLO5wzvV1jZqFo68JXiIadjPgUlqcIXkBPq1ClSWWp7VEojQi1qaDtvU068c5h2OwzjoKPqE47PRzw+PEiWT0v0mQDKlxMoW8XFpZQ02erO8PXD/AHR/ijUBSf6uyfqHFJzqtrfc+Z6LZbFM0dJzlSbvuOnKN+Dlq164etyzsloZkfYcsLz8zNS2sAlgIsQ6CUlGNWlB3PBlhaUkiBBZHWIhD0CDOUKM4BFDOd0oICDtAJ7WRtrkpJqkha4J9ZaAm1Dy0ZAXcja4muWwjOheF/BG+va2WCG4KWSRYJMBShS8QPl1yjaG0UaIBeA4JR0VeSv5IKVU22RYxb5iTFqr7/DtkrVl5Fley2hZwi3QIXsKqPOOQyDx5YS0lK0cqcAvFX1ZM6B91SDIkSiz61AjZwKlFb7GKBjLTe3IHHwSh5dHWwhvs45K2DQiqoavOkQX0MhF+dT1oo1w9mAGSDXKtdHlntQLpIGYFGEnFv4eyATPAtATPAEZHPOWCrdMoq8TqdtarNvA7ho57/PbgvnoDgKKcnQCmvHcyD4KE6D8TexSgRDk09SigvOCZwzCIxADgN5BDhtfETNMnIpwsP28emvK9cDIuI+sNTcK+ecEEejC7LYD4WRl0Uy6RWUch03zjGC+0j+n/pRrBxdHNA4DBjHPYZJ2+jGEWEYASIUPSfzPGM+z5hPK5bTBtw63BxuJSvuVhxuAh4nwnZ+i3UmzCljXVY9C7IYbarlx48W8GU4JeAvJSN44UFpVRuovA6FnOhkZhQiScogwNEI7zwOtzeY9hM+fHiHx+cP2LYNg4/wfoT3E1zYwflBg2wREYzDFDFErWDQ6828grkgGK8fM6IUiWJ/uMXucMAwTtjtdtjtJtRKVogOFtJ7cw4J5EId2mEBdmZp1iMQgpNKcMNQDKWPoObwVLfzwpFD1Xkfra0+/7raSf9wvRuon2LOEMnvCVrFED0cAYEYjhgv70d8+dk95mXGf/+7v8Pb9+/w3Q/f4p9/8xuc5zPe/Pgax+dnGLF5CAGff/k57u7u8OL+M/z5N/8Zu90eL+6/xquX9ziejvhv/89/w7LMeP/4iIenZ4QYcXNzixgjnuYVv/vuR+ynESUXTOOI129+xHd/+BaPT4949+4tHh8+SPXeuAMXwX6Hw17akzyBrSpAdanz5piaDhVibAmUo1ZZomiFCWdwEV3ct79LYImxrVJJ5M8bfFg1ptXrGqqrLfrWbIDqGbVdzjsJ2nd4WiobpGp78wnObdi2DSCpDKttXnqshiHixct7bIcJ3hUs5zPevn2N79OqxOIFpSQJGqvcGhciG79Gd8XUlSlU7MNNT7Y/tiABs45mL60IwBGh9I6lvkf1p40XKlmFOmCBsUrzQJKct/YsUr5eZ0FwLxOhvSX3dY9O8yIcRezAxdUgCjMDroAoAFywLYtUnKt/BgYa8aWuB+maEcMXOf/OAdIla3hYl8QBpBU0dj0SuBZOyfNZMEdJWWgNWIPXzPCOULzIX7U+5EQ2ibTVXe1a0tBICHDkpV7NAogWMCXCOA01mdsSeIoNSCqyvQ68ij4ILcG8NuxKNnxkE9ucraXU8J1H8AMAXyuQrDKnJRMaD5adDQve+NrSavajCRwz1PdsRR2OCMOo95wztiQts/3UCkua1M8CaaW6BXpyDcyhnqOGC207SYNaLrg6gKkwA6Vg2xKICtZlwzJvNRgkWxIRRwl6lyC4KmXGmkTeXV6BJElfp+dIqE284nHF5VnaXeVnkd0QXGcXCOQkNkG+gDykQkj3uMgodjjPdR+iVX3LAQSB4UmoJhysGrBzydk6jz7uQPqktWdU7GpBVHEru8iY7rfxTHAWfkPRnx6OPBwXBLWhHIef+LCPHz872CQCJyX0kqWICF5G2At/U0SIsQl1kX7JlDKWZcUyryiZtX97xBA9ik/gPOPm5oDgGM8+VH4X1KVoCvVTq9cHOKyHui9tvc7KGehuGQOtOCiAcwE3hxu8evUK4Cxln0psKRvl5L5DlFaQ4pDhkLNE6AMCnN+BkUG0AVQE6jMA1jGo3iPEiGmaQD7IRm8JWjgh91SMTBUK+i2+WbQntAXPaiC7A0BmHM1A6BOq4q2BpovoM6NmDrjtAerfrsXh0nT3TuJ1oEkyGw5DDAjB4+ZmhzgEfPHVPX71F1/g+XTE//u//gf++ff/gh+/+w7f/cu3OJ9P+OH73+Pp6QPO8xmPxycAwP39Hfb7PX71q19jDDu8fPkZbv7TX+DP//wL/Pj2Df7pD6/x+PSEN+8e8f7DE6ZpwhdffolhGjGnjB/fvcd5WfDy9hacC47Pz3h+fsaHh0c8fHjEw8Mjgo847G/gnAcz1exUjEM1MKTOJ7NMbpOSalGSEmSQhRHeCGUdrE5e14qgU5dkSRkZWfe2OUFCbmnyF9TIKyZ2jYAcZNlcMRRZiTL7LRTDjkp62bJHBaytsran5AjRR4CDTikSh/98nkFpQ0qrgPFClbPFerYvgDc1Kbs4vZ9wgOjqZwsGt8Cy6gaiepavhbP5Ty2owLkFm6BEh+QDPMno8XGUSTzD4BGjVA/s9geEEAAvIGVZV2Rm4fRKQb4KUCsoatWHlMLn3M6vXLNwETEkKwfSlivdNyYGFSDUl1j4BXpurXoSOjnS1QoDqQYosHaW5hSh9u+zPkM4eEyOqfJklM4xFdAiLZqZk8q4GhvntGXUKjRcDcjX/deWYDdOiEoCKpMPDbCXCxm/5h8SuQ8CqLi7rlyQuBHVyroKkazEWKjKG1/0Xl22kxUtI7cghlUyWNuaj17lJ9ucB9VpPVi6TKG2bFendqlV/7UMoP1RwVzVx+gCZqLzmYUoPacsuYvc+DCExLsDZPqhTJAx8VA9pddTTwqjntGcW1DY5KtYdR413ROiXGtKBWW2aTW+OmwhCJRIRdqriKHMCa5mfXtD3uxMX33W2fvu0V83Kciq2bQeJHevkSXXiZgk5NCcEqB8VAxIQL6EnwzE/Ls/lCTfkUxhCkFK/0McEeIAHwf4GCRpwIxchAtn3VZsa0JaxUEbxx2GIQC4EX6ZPOPDNAElY3VO98buqasS6O7z4p4rvjFSZZbBDNyy7wAqLjHOrhqoIpZ7ogE+BNze3uL2/hYprWAwUs6I3sFRhHMRzg365bUVTYam+KxBBXgUztjyCblscMWrLYa2cxLGaYdxGBGHEcMwIMaIwozU2Z4LvEcAxValalltcx6cBXecVUl19qdfN2hlsWlYupa6j+0ag6tDVbPXQGfsruWv6fwaAYC2CUXBf4PP8I6wv424e7lHedjw++++xf/6x9/g4eE93rz+EfP5jH/5/e/x8P6DJoeE8/H+5R0Ohx1+/Rd/iVf3rxADYYwO93c7nE6P+N3vfouHh0eshbEVYLff4XD3Em4YcV4T0vsHzLsJh92EXBIeHx/x/v07PD8/4fn5GafTCdO0w3w6Q6rxCMM4IMZwleQ02dHbJRYnB0UdWb1vw/CmCIpk15vz3nhsAGlYkgBfBjnBND5YlZ5N1OoCqY5QAThre7Y6gJYQMHxblJRaBmMk+CQ8hs4nJOdBtF3IRIgeIe5RpgiHgm1dsK4L3rx+jcQbcl41MSdyVdSRvcBQHcavdp0vl6R/1CrlKj7mxHdcNdRkVyhE7F1YHVodDKEVhxL40j87c5ClYkna4YWbyzmPMESZNB4C9vudBFSycBWt6wZ+eMayJpQMSaAwwEn42UAe5AJQMgorhiqGo1iSaU6qd4WS0XwOXS/bYwIuhqRU+9p8I/P/hI9I7rniX/NhSnPm3cVZlwSXtDQ2/E1A7VARaxpAsIBoV1GmgboQZYgMUvPl7PONd9drQtSoKWoiKrg2PQ06tU5b04SHTia4oiakDHM17iWT8/5hCXLDIXa/fZVmrXjTZbaK0GEQWdg2mYJ3UZHUoDDo6j95dETa3DC/bdhl1RaqDBpxuVBtkPI1ClG7TLrrfCkKlRheilGEs9d8l1wykGXyKsgpx6RVZAJWLS7TLEvFiHpZ9VpyKa1hT+s/ZFmNr1cDv56qryWfwnAZ1QdveL7JXo+Fqk/zrzwuXnl1JOS69RokKi/PLLrmFqR2Dj5mIGS9F61YDAHhE4UAn3r8G4JNWiKtWbkQInyI8E6+O5v0AQuCZOW0SVUbhhCw2+0xjgNOZcOWBUjN8xnzfNYyxoYfLZPUgiBAfyItAsq6cqR92rXK51/Zg7ZBrk3mgYxrnKYR0zRgN40C4FbhXhmHHfa3L7EbR2zjAXm/wBFhClGyuDcHjLc3SNuCeV0AG70N6fstkAh+yhvW7QziiJQ24Y/g1sZAep9SzTDUEtXK5+FsGso1gEQD5PVG0YEb+0MncR0QbQ59ezMzspfLaQCU6vpfvEd1yuyIkJBVbgu2jbEtT3AE3E6E+5sR87pgW1cEHwAG1jVpVDphPm8omTD4SRREieCNcHw44fe//R0e3n/A7c0NGIyHp2c8PDzjPC8AtCpnGKQXV5VwYcKyJnx4ekbaNumJhwCaOAwYxgmFGc/PktE73L7AME44HU91nCYj11Jnk8eSzaCIkyC/l0wXwOhXnlVgzWFuWfdeAVztof5Q1MBum2b9HMOKkvwmmGldJFPjnBmZ5uxd+Biq0AsX7We2PTT5QxfJT6q0ZWxxrRLsL5Avv+pnXemhjwNGF3/Vd6yRgUomaCOLrWSFNKhmVp6uFo1LxhhHgHVEOqhmeAWAxpohMi4pRwBTQUGWST4o4jIL8sTN3T2mQ4ajEQ4T0pbx4d0zlnlDylmqnphAFLWyKOk9FoAlhy6YSaqyXFN2tWy6FGqVnWAFu20xrbKpdYQoECLUiicD8jUwQdruZ+ur62X6lhxJO183oaNAQEQMw9UetWA99DkyYTGIruuIH71mXoQfoH2uOZpVQ9j+AK06oQiPhYytFSJk9q21pwZlxOqqsyj3xCA4Nghd68Pq/2vJuy4Ao60/iAV86n9E7bWXuhKQOFxj7hIQ1rcydTJpatfWwDey7fq5UABcSAcIMEqCVAMUEn1SyBB4BVyFpSVIpj+ROKXOkKHqdXUY+hNnboYjGXvfKoq5OmfioAm3lATflZvEtQSPZcy8d3DspYJE5bImbPpH9aM6sHSlCwidg0dNRnqbVOx11EBrD3Crk58ZeUtS5RTlvbxzQIj4j3oEJ9xhoSbrBEdFxVIuiDzY/WVNSMh0Uo8YZGLYNE0I0eP5xLU1fN1WrNumdk4ezVk1XfCJgFP/hbbG9vd/Dciaha9nlyQDPMRBq4122O/2IAbGsEP0E6bpgP3tK0zTiDg6hEHOKQazbQLyU1pRjgvytjX9xGpJ1aZmTvBlQ8oLtjQItjK+J2s5dgHeD6L3NVhurXyiN5VnilrV5oVjU5sEUXFNdVaM/xJN5i6Cvt2a6nzKZqd6x7fiOHMw9Lds/I6ytjltOOcFJSdspweUtGE9PYPThuPphJQKhmEEGDifzjifz0irBKkJXvggnRj1tEqQ6He//Q3ev3sLAJjXFR8+PGBekk46JgRPICfVpVgWlBiEZ2hNeDyesG4blm2TKowQ6zqmVHA6L/A+CKn9fsC6yr+ttbqwjsJgZWNMRag0WAhoTWE22Co/FLbxGZ2DZB5Y2y3YoBxbb6OryFn5+rK0S+UikzfJ2ukgVdGCzRi1ff3qLFB1zGQgCnvZv6LXXzSYwSWj5IR1W5HSBpC0LRIROCeZBqyyZcmPiqO6+6l6jc3T7P6uNrjKrg1xUIUvOK8bbMEEB6kstmmMl2dfL6EU5EE6NJwzH9BVvqGoQSWr8hOlUFDKpuTeHpn1zHmHMA64e3mPXBhchCA8pYwPH55kmEgxDAUwW4kS0DKyfHn7TN050tZaMKiI3bH7oB5z1mejrk2PP0zm7HMMazoijTWYvqTufDb9QLp+wncq/zD/tdoukw1uUwwBaBLPgp1iw7kUpE2pCQzvefMHOwytthjVRkIw6aadPIrWnepTs/HMdsa4+gRoR6EXRK0yK/UzRF1SrR7KomykGr7iJnMI7N9Qji9pV3OqGzPnOjG3x03X0KEmSPVcA4LwOGvLLFmiTta1q0fVajALTloCunFbkSMJADkZuGQVkeaDQM+OyY1hMAC1wsvwqHAfynRLmP4gABnwRV5jHU126Ana/0CKpVAh40ePeg643ysT6raGhucv9pQbKrbKMVnIKwzWBWQ4F/GXiQAtuPDOgcPPCyP97GCT9djHOOiI2R2GYY847BGGCWEa4cdBhY+RSsKWFqS8AihwcJjGHV6+fIU4RpzeP+F8PuP5dMTD4wcsxyO2ba08D6wCaMTdnW7QteR6iIV4uWUq+pHsn6yeIGobRFQVk0PANE64vT0grTd4eX+LKTrMJ+EIurt5gZdf/jn2hxuZuJSlZSEquW3cjxj3I9b5GafliK1sIDCcRlyzHsYlzTjPj6DglRTzkt/J8mYxTBjiDpXrKgivg3A0uOqcFLZo+scHU9+wfb9SIGbYi1UZGFAyQkEzUDBjpEaWDUR9HGyiyk9lBpmwpRXLsiKvM47vf0Razjg+vsbT8weAHE7nFWMYgAKcjwuOxxnPTzOeHhcMccBheiH7WwjlDLz57h3ev/2/MQwD3r57i9/87jco7JBKBJPDtN/j/sVLyLhsh60UpCILkPOCf/n+RwzB43Y/4X6/gw8Bu90BNzcLctrw5s1rTNMOn3/1NT7//Cssy4px2oEByTLruF4TyLRuzUkvWR04mxTRZ5Hathh5vTjN7urv3RM7IyWcQCz8PGCA6w7UiisRJyHxNeNBms3vfE+5Vs6aIXIgnQhi487ZKnYUMBnpZBxHkPdY5hMqFLLWra6SCh2ArrfyCQemndFm1OyfRTNPXKQlLueigSMFw8Ey5FRLuy3g4NQxcESY4iigyDm4KEAJGqwoLC2BhQuWZca6LEIavjEoOXiM8G5AiBGfvfoMcRiwm26x393hfFrwm7//HR7eP+H4fMK8PMlt+xHBD2Behdyac83SXTgwzgs3opImEjGKOvgSV9D9rv9pkIqb3iJAdYI4YlRcPbdiwKhyUhlQV9WnmSELWKCO5i0swaYQA8ZhFILqbavBNJOPEER2vCOMwwgOfLWFDYTkLcE5h/1uQgyhAlY5A66+ygDhuiWkJBPt5nmRzJ63NmmPYbCAk54hy3I5gApQvIKanGpAVdJMXO1FZcdX56OUDFeokqMDUqptwc7OL5dS6pWlt71WTlErRUZzKC0jpoIp16pEttVBILFlBQAnCSiDoYEmaTlA6fvLNeAcvPDRuKJBP8K4C3Ae2OaMtGhpusXGrb+wOtGM4L1UyxBqeTjIIcQAIb4EXDCQqvrfiF7JoKcOOPAeo4+I5BHQBYiqZDTb88cerAEXk3Gr+rHKTFU7dT8rvlVHIChpddmE3NcFj+AmkHeIPmCIsZPWP+1jCOJgDmHEGCeM44Rx2mOcDojjCD94uOixIdfJa+u2IaWM6CN24w6H/Q1u7+7hA+GHNwkPT494en7C8+mE9XyWSi5ZufrdqgJbQENtSWkJEiHxbsHD6h8U1jHi7S17Un6q1ZQeDlIput8d8OLuDttyxmcvXuI0TAh0A0873N6/wKuvf41pv6+DEAiEvfHjOXF+l/mE9btHrOpAGPkuW5aeClJZQZkxr0dgZg02JXHmg7TpBbdDjAc4HxB8lGp1p845IK0/zpxJw4yNl851+sn+XqceXQXm+kfFTebIFk2OBJvChk5JWmgfVbkIX2QGs1e75nA+H3E+PeB8esa3v/lHnJ4e8fUvf4kffv1r5MJYl4z97galEN6/e8R8OuF8WpE2YIgBu3GUe8+M5bzhh2+/w9OHDxjHEX/47nv84le/BjMhFQeGQxwjhiGCvMNpnuHWFcM4YRhHLGlB4beIgUDbhnEcsW0bnB8ACliWhPfvHzGNO3zz51/h/sVLpJTw3bffK9eW0EcwZNAOIEMPjJPG1rOfLH2xvmBdQ/+TzpjTAGP/x2wZe21XEwoO5XsiQhzELklixMN7xUbKPWT6X3gedahGzqCUEEKrkJjXWcaCb6sMiSkZ27pK+wwB+8ONkIBrwhMwW27BedObWgFh2lPPZF2ODmczWVCF0RfMGjepBMV0iAc5eNIqee81MEeVM87Ve0bFUFJBGDTgRNXUkSPknLCsM0opWLYFW9qQi0dBBjmvem6HMUS8ur2T9noa4WjC6TTjH//nb/Hw4QnzfMK8bGJf4IVOoFjVteEZC9xUC13PXFIaADjIgDs5TNUuGCauczs6xWaE722Pu+odAtjJ33INdnbJOrKguxrZwljXDUibYNMg4+MtmVe0VVQK4mUQgQR/AmzioVxLUd9C8YW2tccoiQerPrfrB0m1fSmCnbc1YZ43SNWQPC9GoT6QyqlQA02ATZTrMXtDnpBntIQGWTId0t3ABWta4Yr61x7VD7COJfknIeWCbdUgplUmEio2Mz7Udt4bohRydatOEv4lVkJ1QKraCILZvA9aWSQBT+eo2kjR8aUGTRksGCdowm6SVrFtLUhradiJ233VdYcNJgv63pKcDyEgjlGDYILxSgaMeN0q6m39AULUKqfoxao6TSzbge8QlPgTRrPS/cXOg8hy6yKwBG0prPq3ewWRBKyB2mZehQ7SmZBKBgUHP4pdEBqN62T0px//hmBT918N7AhBuPO+ZmmLnuScJJIv7PoN3IcomTy74VIVYM/xYqvVFu36d/Lj5fMtW3VZIqj9oHqAe2ehRvtYInXS0y4ZoDgETGME5xElJXAuiHHAMI4yqSRKdJIABJZCtzBGuBjh8gImyWZpsYBWNTESSfntus6gHGRy1xVZqxkxR7I95kD3hrc3vteG9nIZ6aPnaE5IQc7FQrfvXfCoBpEqH9Sls2CZuYuyX0Y7AGROQ8KWNpxPR2znZzw/SduaCx6FfdtFDb5I0E2ykd5pCba1f5SMZZ2xxAUPHx7w7t07+DAiDHdwXhwI53ytcrNyehCQmbGsG0pOGENAHo1U0sG5gK1IYMw54SGx/nNpewhI2+XaSxumcliA6+TEvhrlo10iqr8x4HKxF22zKkE0a596DRapMrFAoUTylSTRShSqi9eAsf27Kc1u0/rz0WVfatAJuk4Xcnh5b+Zc/rHHp9o61IRfrZMCGw1ItOlwVCcAtmATPhlsCjGI3nEECr4iMWk5KmKwFARkzXIa6aTzHmEYEIcR034vPCHTAfvdHoDDMI2I4wK/rBooadd8vTbXOsv29+LfEIPMFxJk+2O8DZ381J/7n/oN6Z/bOYqEi9/Xz+d6EQBwUUVkz2SVmX4PJYvUhRQ6B/eiIgi4yJjYOjU4gQp6chagbCDZpuoRxH6QoBW0i2oAUW/94mHnVfZW7qedu6YrrL26VtNUQHb5bhd8OKxG36oZrz8c1MCUvbcjcLk8B/Yl7WwC5ExIqv3SRaLuHp1yFzivHFaNvk+frrqjvyJLILjmQJSLe+ouXZ0L4RP7WHYI0tvvGDVbV3e135MrUHT9MNnpFsV+qO9n2biLrByz6sru7Jn+YJZhVo6V8JIkaV715J/+Uattuu9CSaDkyc4BTnjvEgvnxbYlbT/ViTtqh5yaS+EztNblZosvH/05vNK7+EggmmzWr77FiC1eq9viQYXgySM4ubYYPGKUQN40jRI44aiclxFxHBHHUfCRJhVb1USBcwVb0uEpXKrMy35L1a7xDBIRtm2F3wJyyUhF2piMVNX7cmEv9Cbr94YRqX6ZXFmy8l/DWgDwUzruupJMF/xfeVwyMrbgoDkIGeu2YplnHJ+e8PzhAfubWzw+PgFE0rrhOn4PkpbN+qX4UTiPGNu64bkkLMuCx8cHHD58gAsD4nirukD5q0A14SgDVUQPL+uGnIDIjMgErrTQDjkz1mWDc1HttGCn4AOSS8rRU+qKWvCzctdUiMoX/754VPNxjT+gR/9TNvgSP9WWJ+XMdNl4gFArw1Groz7G3k0me2vdbIhMEEt6b7nen7SWdZ0KVQ+ZhaaGhUjwgNzKx1irrcPVMtnvyTiaZNw6kXHBGCWDr06vDR9qraaXGEqqmLo1p0sOQ2tLyyWjDlpxDj4GOfdxwG6/l2mQboCjCQWEOIzwYYZzQdcPwNX2Ndfj8hBxXa32JxmSQU1x1DftF+9Tp7m96/WDrte5myzdv1XFMeoTgL0do3qNLeBENdBX98qSJvWyhT6AvLSlm12VChr7zhcXUTFEHdqiVVQAsidNMFuwTO5IKpxaJbdUAva24tPr0pbW/BGuC0a4Xvb2WawYpnIqufacGgCr98Td31qQr8ELrniwKJ+dak7B8F3w1IJp/b3V8+0Y1j7revyk2Kn5TNevRcVz/RLVH1WdggjOgqEf6bQOi6HTM59YcotlVIfhE0+sf79+ra1Yh53sUnp7d+nbaeykFK2sZ6BwTdT8nMfPb6MjI01kcNkALhinEfvDHtNhh2E/grzD4+kBy7bg9Zsf8Ps//DOW84JlXjCNI6bdhN1hQoiSYUKRnt9p3IMKY3s+Ki+A6+5eVu2TWVAS8l02Q+eU2DcOYCW7tLHXvUJva6MCyQ5UIkII+OzVPe5udnB0h5z+DMsy4/FhwfPzhsPtHfa3EdPOwYWoQQ3AFxViFBTaUJYFj6dHPDx+wEAeo3L/nBKwMfCUCO9nifiLn0HKhyNtd0McEELA3d1L7IabSmhpmRqJ0pJmHLWFo2piE6VPLBdQDwmrcrIgjCkYe4/CqWbmrCf1Mst0Caikoqmtq12AHeJUCuZlwXI64eHNW5yfHmQ/nEccBkz7A0IcMA4Bf/7NNzifZ8Qw4OHDI7Z1xXI+C+9OUb4QcnB+gIPH44dnfPe773F7/xLf/PpLjLsd2Dss6yKGTsvHLSsnWYcVaykoywnzowCu+cwo2eN8lqzc6bzg7du3CDEipw2vPnuFdVnx7h3h9EwKJkp1csBZW5sscHSp/Ot6wAyUq8r+GjBdIghdTEe1HJidncUCUrJMUs/TZAWQIJi0aDoFTUqArUpCiHoBz63KJHgBWZkLkhrrYiTbxnRMhBCjzliDylIbuW3T8gCdJtLx81yvxfXve5A+jAOGQUaaBpsICB01LZElVbzCMQSWyrLCUvK5rWcwM9btGYAYwqzgMGkgQxxR+cxtK9hywW63x5e/eIndbocvf/UrfPnNNyDnASWORy5AygiTw8svXmjAKSDlDWlbMa+PyGlG4RVcZpEVJDCMbFruOcMIGrXlhwBka3mTjB6I4UW3q0HTPm7vdO/NTbEqBajOLE1vEgQYSiJXggZoCQTIn3uvTt6vFOS8oSh/kMgM1ySCkHO38nqQZEBW/TsrV4R9PhQ4JZcrVxSRkCYzEbZ1w3w+IxcZMGG8f9ZCKRPyMpIXoOaM2FWBgQsaZLHqsOqsacUrhPsF3njGLGChtTmmB6sqtYCTBSMZdWoVFzjH9RxakE64J4RgsgJ2J5k20s6ACkws4KVgZt0ysGl1ima3o/cIFJC2gnXbWtWhEXhHufAwGJebDivQtzfQKET2Ddw5IvhRnIxhCAijkrVCOLhKZpzPi1S+aVWt0+cyM3JSMAuLPJCS6yuHArS83WzElefQO08XDtyVrbeEEVUHyMCW8SyUC+fIqlTscwx0OjCQC7Z5AUhbQOK/gUng/+ODahZT1pbYYbfb4/b2DtN+Bz8KB8f7D+9xPB7x448/4ne/+z1yKhjyDjeHA3a7nVSbOJZ2PBLuzGGYgMJY5hWplFotWx0HFodVDyIakCcY9y4pnw2DME4EF1gIarU91qrO63uwIihmBD9hGu4QQ8TLV3e4OYzgcotf//oXWOYF84mxzozD3YDdDWHakegUyDVaRcW2zFiXE5b1CU9PD3h8+KDJBCEOT0lUbzjPOD6f4LzH8/GEOAxIJWNLK8gR7m5fYL/b4+a24DC9lJaIalL7ltse1JtD0WTWXxGaFGakvIG0d/0i5E+oMglAORlbotVk9jqQK3LrmtPOXSuVOuvkHJZ1w8PDI44PH/Duxzd4ev8ewUdMw6TToCPIedzf3OEv/9PfYJ5nvP7hNZ4fZajFtsySmNKzUYTODIkKnj48IoYfcLi5x5e/fIVhnJA4Y9HpvSEGrcQWsmQUxvFpA0qBzwyfGfO8YVsGcNnjeD5jPj9itzvhy6++xv7mAOccXr54hXVdcTw+yaThkpDq9GU06Ng5d5b4sZbjLr6CztvsVLb9rpf3uktiB6t/7iCDWyz5IiUxjmQ4BWBVmVINJO07OuQjZ1CWiklyUqVhLfpRK0K5KMG2rrdAaaEiISJM+wNcCDUZa/woUjXaXEEjqu6DoxXDMVfOzP5hmGscpYqyVd+gBqBM3kzcLFht3Q45bVi0av886xnQalNowKRWQmvAOxVJWOxvR3z5iy+xvzng5Rdf4tUXX+h6y/XnLK1UxRNefvECYQh4eE9I20mGu+QNXFbFTEmFgeu6MDX7rZ3WFQ+UjbCZU6zWPfsWaLRAIjlnrQB1aIUFaYAOk1ZR06BElbZL+ZKH8OsWq8gqLPcAQi5yrTkVnI4znCcMccQQWWWkJdOL6g/OCeCCAKm6cyBwScgJSsI+gMHacZGxpYxlkTbGZdmwbbJ2ht1zydicBBkBVzmaoEGsvkCjBmZUNzlyleja1rIGhlj4OFFsAqUGqjUQazvHpG2AAeBcUDYlLUdVTRcBKu8aSQEgrWlOB6CYzBvROwBk3gA2dKt8yt7DuYCUNsyL4PHKveuocn3G0cFHpQ4Idla0krqIn2ByD2iV1ejhvKxnjF6w2WLTmzOWmUFeqs1DcCK3aisE12oC1ci7dbJs5WPlAkiYUfeJbLsajuK2f6YfubacUo19OGf3pPaGtV2fe9oLdEEks3Fd4DFlpLM4ET4W+OHfubLJADuYwSWDUDAMEeNuwjiOCOOAgoLzfMbz8xPevHmDP/zLH7CtCW4NWvYXMUzSjiJVI9I3PAwjOKU6teDT5fV9BA/NyLMEm5rjKdwhBVL1EAeZkBf1M0VZ25vIQfIU4GlEDAF3t3vsdwO8P4DoM2zbinE8YZzOGHcHTAePYSQMU0QcJyl9VbS2bjOWbUHBiuNywuPpGaOL2PyAwsBpZfEjlgI6rnrN0mpVskxcIQD73R7jMMCxR/4ig4e+r7RSBDcnX5WwLswffVQTxpcGqgFJ8zf5alIC0MCZKeOOPBCmesUzJqlBBjmZmrBuG5Z5xtPDA07v38GFADcMGKYJL19lqRqJHl9++aW03CXCNN7g6eEBr8+r9nlrttGRZmYcTk9n8PYOngYMMWK/2+OcFsxpU4cugrkRVZaUMZ8W5C1jO804lhVp27AuDC4e65Lx+HjEuG54fHzEbr9DLoy7uztsa8LpdMJyXjUYp+10F/WVtor0k1G/ls29eLa8hK+re7rfWRQdGmxyDpTzhVEUElRJfRfnQKV0wSaqlXNkMqD7V5WXeoo2reSi7NeMNwEuBAR1NmT6jxlieR/nunZVtPe6diyvz3wvl9577Pd7hBBw0O+OHLy+nwWOSslIeUMpBdu2Slk3J6QiPADbJpNNUs5YVtm7dU3YUtJgszhUiaXKjhERhgn721t89ctv8Jf/v/8dpTCOpxlbypifHnF+eoCPDjcvDhimESknPD09YV2ANSVsOEuwiRcNDggJpuyj13tVO8GQ/QEhF8uu1wHPMMoe5wDy5vi5q7XsAnWShriSORUfNhPSh5rsTXAB0GCVXgpCHRESy8SPUooa2CCGSoMRW2JsaWuOF3M13k2WjK9Az4Hqig0ywVQCVkJOKtN5NGipr3OuiFPQBZtAgEvQfnuHEH0LwKr9InVuLShUOQKaoMJiJwbKq7GFZcEl01u8glXuBjp0dorrWdD30SCYBMaak8vUKqSyEdkbVHIOQ/BwPgBpQ9qMBFQu0FHr+4+BEAZodZPtewMKpQM2AAMOCINOrgwyOp0ZyDohKOeMLW3wnjDtHWyqTfDWamTz51s1p+h75UQwJ8nWrW+v7nXN1aN3yvvq5Bqor/elwePSEwRfrW0TfwBaPr5seuZYmuw+cQ1/kocTWwgQhNKCMI0T9vsDxmmU0fUp4/npCe/ff8Dr12/ww/c/gpjw1Ytf4LCbMI4Dosq1dwHOKf9TGFBCwmqBdyZIsL+1Olzaoi5wpPYFZOTpJJ/hGDGG6hgH1ypazSuwtRvjHvvpHjFE3N3usdsFEO1RyudY1xUP7894flywu4mY9g7DZJlzBftBAtU5J6TTEet2xOl8xPF4lIquEDQYq8F5OBCd4cjhdDzDh4AtJSybBEfy5xn5dkNwjbOvLgK1jL453xfASfUWWaCSmhMOoCbfdBUBtGCSJehM95kMV3nUtkTLgNcZBqZntPIR1MC9TUzbtg3H4xHPT894+vCAx3fvMY0TDocbDMOIw90d4jDisLvBL//sV5iXBcgB0X/A6fiM98ta74vIpsfK1KPz8wmP7j0cBcQQME4j0nyW1rguSCq6HCiJsZw25C2DEsMlYFkz0haAMmI+HfHu3QN2+xXH0wnrusA5wt3tHdZ1E8LyXJAzadsuQev/q/6tIlt0z3qHqn+0mIzuV9PZvc5pci+/kJaqUuVQ3kPOCzkvXIUkFWNFA9o2eQ0sVYWuyH2Qs4Ss2LGgg1zS5tt+Flk3Amm7DWGYJpBzwt26KOrR9u52n6wTZgtqSx9dBpscSxdFA5Ha9gNGHAbc3NzCe1+DYJbOsmSy4Xy713VdJNGDhHU7Cb7aZN9SysqvpK+t/FZGAD8CbsCwc7i5f4UXr17g6199g6+/+Qa5MI7HGWmTQOa8zCgE3L6Q60vbjMcPHrRJJV/BCkne9OygBmLUsmTZeEckxM4gCeoZJIfo+TKYjdAWNXTtQrjEohZsuhQyAl0EKn/CfhmqMhimAQMbBAMQcmLMvMh7TQSC4vUi15FSwratkMCzVCQJGXnTMyUn+OCkBYyBbZG9SFvGMq/IRVrVcjZMqMGmLBnHUiLioKTopMUCzqqAUJNavXPXEsnaqlcsMC56jXOpZ5SEYwHGDsRoZ1GqeoHcw6/mPrX1rZ9rZxc1SQmgJtON0F5uU/gqZGiF18Sj8EimtGFdZcrpMBiVQxssE6NHHBUjOr0gQicXuSYpDU+HaO1kDiEQuDikVUBmyYyVC1wgjJOXzxFk3c5PMdyibamGiUG1U4a41jm2c9DbtCv5kzXjy99Sl3DRz2GgcrkBqMmVS+9A9SWrhi6Mkjf5HTlQyN21/PTjZwebhmEQwBEiHAnAGYYR07STCSp6w8Hr5K4gAAjFwXHQCpNQWzJkSkNQsvGAHEUwzRjKEvYAAC0wor8uhbHlhFwK1i1h2zZxSszxZtZS60aWWkuewZX3htjBYUEIAS9f3CClHbZtwbbOWNcF23rGup5BDpifP6CsI5AWuLyXbdEe1WU9Y17PWM/PUnECNQzOSzWBl5i+jxFhnNTayWYWXxCyGKbgZXwkSINvRurX5MYQUF13caDMeYEGEq5WUdeQ7FXqiEjFgQatjFn+E0G/i8AANWVq1yTvpuaAmpBWp0GDICGOCOMODMKyLCjMOJ1PWlptQJxxOOxA5DAOEcE7pC1hmc8STOCCLW+6XiJrwUcZE2kBOXOq9bNLLtiWFSiMGAKi89iFCYe4Q0oJcRgwzzNS2vD4+IAYJSC6rhu8i9jtJsSQsN/tsS2rKrhU5UyqrrpqGV1/ccysz7kFY8yZvSi9t+DNFaj6qAqo/0mfa3vbNJK8g9N60FoZYBldXaOLs1XVKCyuJSXU3oOdEycfEngKQaL40MwSCMr/0yqjqlK7Cib9lIPXtyQA4tCmtII5Y57F4KKgcorl0oJNxjWT0qaAacU8C4+A/M5AFdc4jMnkEEcQHFLxSMXDUcA8b/DPM47HI07Pj3KOHSFEhzgEpGFAyWgjyucT5vkZ6zpjSzNyXgGjUDfjjQIir+SGTZ1zd74ILFPH0M59ycpBBDXwrj98BnwMX3EF3rDAhe4BwRwtEZTrbTCZNPktRTJmBn4J1Iy6BiTWdZPgSxLdvW1brYQzh8s50/02rjfBB1/bM6AgLKXUvX/LltppMF4pMMkUICXTlEAOpNqrM5DiCNr6aLZI99+wTZNNRs1wmyNK7exVvditloASUh9J9KJNmLvggKAWbKlVTfaptdQdNUtskIQZWNcNxTHSau0nl9crgTGu7y2AUv7enN/rTVafxpNOnOuBiFWFkU5YFXBYg5lqI1IqyMn4BkW2iq5PZuEE8MjwTPBNrXQOYRVefPS40GnVxajPt3yRcw6OtcXbVqXq0ksYZlJRawZKQUkZ/1EPC9rYoA+Zfjlg2o3wwdd1DSFIRafiKLBydGjFs/E1+hAQFD95JYyV29Lkgj46aWkXow5TYcaahKR4TRKM1+S0Bh4LKCclencSGIUEfgGVB2hWfWXEGHG4ddhnj7StWM4nLOuCdZml3W0mnJ/eIW9jDZaBAPYSbFpPz1hOR2zzDGKC97FyJDELn5NhHeHgcDoNeYDzQr5MzgkZu1ZQ2Lkyp6WdhWuH0lapk01WW+GgVbz96XcXsmvre508abqkOVstKYBmaD95Odx4s4hEvwUvlYZRxqGfz2eknOBCQMpSKcQo8A64vT0geIfzfsQ4BKEyWBdJzOQklWBECMoPOsRJnXatfiVCz9+RUsJyXuBA2E0j3OQwuIjRDVjWFSCH4/EIEON0ehJemUIyjhyEaTfBB495GSEk0h4xSUVfSlut5shZLVkNOttaXiyNBosu1/yjyumLdeWPfqbL/zV9qg8J6rQJdg1DNc46ezerJi7d9TgnnRrDOCi2l1ZZ5xzSFu0D9ayRnuW+xEPxk7u0R3Y9hRlkPE6qo3tBzzlh3Wa45LAldaRraxUjJ0lgNAJxwVA5S+JuXcWe59ThJ/VbHBHIszrzkukoHFE4gAtwfD6CvMPtqyPm9QyCU+LlgC2vwCK8oct8xul4xLKckdIi1dQlC6eobXz1P0pL2sABjmsCrVXRtvZ4o5yTSiptfYOta5MGO6NZJ/va3y5ljy7l4EooG74yZWN+qPIEKSk+kSY6HMSvwVoxCoC6D0AL/kDlq7BTbIXKw8UQMvBtS8JtWlrwxaI5xXh4JcQAoqyBX6nQJqfBt9hkrE6CdB+fPcHTup5WMaPV7Y1ypeE4WyFbw/47IDbcK3ay92GuB7Lqz3asO+7GYrIB5aaU/c2UUIokGYsSXMtnNjwDtntoX7IH1+/d+78Nx0nlN6GZ3ObvisPfeJ24aNIviV3JWfZP8Jh2M9g9QbowkqEWxVA9Kvq0F3Wh2dCpqPYgLV5hRlb6C2cKBM2uK6ysb1Ll27Yz/3wM9bODTYfDLYgI07jHEHYY4x639y9w/+olpv1OnShgnEaAgMPhBof9LbYglU2UhSA8RIcwOEzTiMPhgLLOmPZ7gEt1RIi6ighui3cR6CABSsdlwZYSzvOC47zIIciyPFbJIBUWCc475JTFGeJWAVGKTPyJIeL2MOCwGzDPj3h8eIt1XfD0+Izj0xnrOYKXB0QfcHd3B7q5AaCtfGAc5zOe5zPO5xllTfCI8F5GGjsmRGI4BqbDDfb3r0DktKeWq4FqARwh9c0l18xDk59L0ak5EPEULw5jX35YwU33FnrMYYa9VOe9kYfaG/YVTvVtrErGAEn9PdUNNCc3+IgYJ0y39wA5sGM8fHiADx4pbxjGEUMcMI0TnPP46qvP4f2AtGVsi1QfvXn7Bs9PT3g+HvH6zRvkXDAOBxx2N5imgwQ5fQCl1srmSUjV07IhLwlDCHhxuMMYB3zx2Zf4sy//DCllvHnzDufzGfv9LbZVCPW4eJyezri7H/Hq5SsBRduKIUpJuY1cNZBkXBKFGdu6qvMslSBVGbJllMwRzGrgqqSrIrMoc3vwxU+9Em4BFN2ApvxVQzst8TbgZELDYnuUeLLJi7xeqkJsekpKBTFmbRHQM1vJDjPSuim/jsiViM/HQY1PBZwMSDTgyEhpxXmW557OTwCAbduwLgaAkpbPWhamgX4566l7v0vZd+TggsMQJ9zt7uFdxLI6bMmDvMP7t0c8Ps24efU9bl4eMO52uP/iC+ymCY52emqOOJ5OeP/uA969/xFv330rk5TyEczaghAsqGzX2MrxvRfnMeWM1TLP9byWGnjwYHgw2DESZbBrQQlQy9AxSgVXV76l/F2wGSwAT2pA+udIq6bT9S9Y1xkMKO+V73QWMM9SZk/QChtY6xpfBCakAkrajlOSscbkgG0THi3hZmIBS5m1BFmNMptjpwY6FWTiOlXIyMGlOid2IEfuJ3ivQVBfp5HknCVrVCs3JWspBl/1Wgfse/1oPXtEkmVjYpRsmVJItqxrObbAaIGUKjt/af0l+JYb745EQvSIZ6wl1SytMyefCJoqFXBFco3ktHonCdhMm+qZjvTTgJXzQIjSfmdErygKjFiucxiDVIp50r0rWGaxmTm1VhznZf2yZ6l844yzUF2L7rfWeLsAO4Z90KmutMoquCUO0JxIB2grqQTlXXXMmm41W9U+UnWgvRcA3rK2GPzHPHa7PYiESD/6gGEYcHt/gxcv7zBOgxDZl4L9fgIIeH56wn6/B5hw2B9w2B9kEl3wgOOKofJyxjCOYOUwytcY6l955FLwvMxSdbxsOC+bBpm8cHdt0kpDBAQvcpJSru2c4pRmOApwkJbn3b7gZu9xfn7E+7c/Yp7POJ82zEvCtj2A+BExROymPXbjHiACK+B9fnzEw+MjljXpUJlDJS1nMJy3ZAGhJElg3t7cYLc/YN2kRQIgjMMOgSIcRF/lwnCaqbaKDjJOl2sJrDiMdSInaXCr6Lm3JE7XilSdQb5onwMsKHCZWRbMIByIVjn0iSsROS0yNIAcCXfgOGDYTxjmHdac8O7tG4QQMC8zhmGAjxFxGhGjxzfffAXvI9K6YT7P2LYN796+xfPTE46nE96+fQ9mYD+9wP3dFzjs7hDJwzMQSFrXrY0PICznBfNpwWHa4c9+8Uvc7g94cf8Sr+4/w7Ks+P3vv8Pj4xH//Jv/hXle4LxUQJyOQovw4uW92DiXMU4ytMISVja6PetU16Lt2hWjd9jUqi7k/Jb6d1njZj9te3stY05U50ldOL3yOqMmUO7PWk2k3zW4S91E1UrAzTKdzgIM3ktVxW4c4Qg4nyKcI+ViY4QtIKZNickTctpQSqpXa1GPUnl2qF6X9x5UCooXu1+K1pGwiTFjWc4oZe0wpyR70raBS0vOtUdzY7NNoGqGSdcugCBVHY4cYoiYpgOc85i3VoH43XffI75/h7CLOLzcYxhH3Ny+QIgDUlnwfCrY0or379/h3Y/vcHx6j/n8iFISCs9gJMFJmpi36ioXhP/XkbVUkbTnr4r3YJCLpcsCwOILPMQPjMFa6RrertPf2JI1/Xr0ARjRH41vq3GaCdR2Ut2rWK+wBHUk0AQ984APYodTWkDnFd47DMMI771U/hXlmwtBq5edVBNDKgIBILmCLSSUAizzgvN51Ql0Wc8EVHZkwI60g2UN7hYNNEkA0HuhRGAeZRKak4IQkfcWiDPsn3PShJ/TqitSPkHFt84G1TBSyjBOXJMuS7g6cmAnA0AEO7Vgk1RAyjl1VtHv9BRXf6uAtWqbiyZmC0DM2FiC3AutNVAiATSR5ZQynIcMQHGSePMeyIWRN8GYWekHalKwsPL4OpVDiWlUR4q4UktQF4hils9LGyMtWdopFZsRkVA7EKE4mcq5oWBWVsOJpFLLplU26pxre9FAPxE+AQBE3kWuRP+CgJQ7/cjaulc0Oa3VgjDaC+1iYTDKlsD53znYZH373knVjfeSVYvDUDNqgEa4NdMmBOIM5wMc2qhGVw92O6zX2WPzpdG+1Z9JUVQBi5O2JcnKpaRg3XqtTSBlsz0ckpJUS2uNBgOyjJbMUcpDU9qa0k8bcpYvh4JtJsB7pCGgRK+RSAEKaZ2xrWeZPsGM2tuhzj45gArUAZUWsJIlayWOjwUuzDmmZmt6wSED47Y4rKC9GU9RfFQNBJtjaj9/CoV2YP1fe5gRg11Wl6W/cB4usJxkIokcnA+gEFDKhqRVEMusfAJclARV+5HHEUMsKMMgFSTLLP3tRcb85pQxDAJyY4hCVn9FWlYzEBolJ1AlLz0c9ri9vRUnak0IYcDN7S0Oh1vknODIxuBKVY1n2TsfvAJO3TPv6kQEl5uDCbC2pTQHXb6M+NQyd72xb+DnIpuACofqEbl8TcMD9RddILBxnlD9jiZmnxIH89jr+9ja2vh5MgfOKSAXMqCP3rBdWx/t5Ku/d4ceBrCyGFb7OzOWdcUyr5CRsKnx5dhrFdQLUMoXa0LqVDedQ/AKqr0LyN6Di0OBTh0sBfN5xul4BBNwxxmtPFUcum3bsCyLVEGmBTmtAAsI7tDs5Xqg7YnzHlT5gwwMd5kaQIIsBVIOXlqQs76X/fdHnEuCgDDqDykuwbhtVuP66Ynh3Ueya9NxdOptDf7ILvZ7IgEcc6qrgwCZTlKBQ6f/my7qjSFUNuzMOMkWS1SqOXX1o9tnk/GemUL4ifW6CDR1DqJq017UemyO/pzU1xKqTHbmoK6hvXfnVyhuUd2SINWedmbRrW2dNFZ3F4DYkKxVUpbLbGvD9f6uW/r69bPssSU3mQEuNq1SJ/pkusgGKrbXrJxk5gqZ094tE3fri3btF2qDrr7relkVFkErx67a7y9s2JUdMP1PbC1+l3r3T/kwPhfjILK2ljhEBfly/857hOi1LdVphY+vX5V83bhdupabqrMvMBRXubKH/En2Z0uCoTatbJI9NHoCc8YAQINNOdfqxW3bpM2WE8AJuSRsqyTxchaHNm+Cn0rekDfBUBw8BiIUayvUati0LtiWBdnGYl8EfS0oKs3IcC1gH0JEYYZPNlRFsRf/hHH76GGy087mBSZFs7+yFFdy1f2OP/GBFxi3+68+n690sL2f6QjT9eqI2VdtGy8ZYQ4oJWNAgddWyxgFQ+Uo7XHblgRraftGjMJpOAwTxmGHIQ5tzWG2pdkYBgB1gqdpxP6ww83NAXcv7rAsK+6eTiAXcHN3h/3+AGkLdMilIEInZxZpmzQHFsoH6Jw47Tboo05TJePro4pd5XdCKF9K01H9WluAudc7H0HbC3xqz7HT0dbAeJL6975OokmlhQRzzClt+I4+8n28Oqw5N1/I63mWaqgmSdV2XIlH1eNm8OgaWSnFgCUfNPmZNmnTug42NdwpWN0qmupn6v8bjrRr98qL4+Fzw8XzvCCVLJXfywyQ1mWovc46BGFdFyxa/VhKQilJHeGGccyfaEnzDpdaxTKjVtdWSCiFIxJAUH4w9i3Q1N/cJ/2iq0cLIl+dfaveqWBXro9Zea6sCs/eh0naI9HawGPkageq/HbBl4oRuQ+2WPK6C8Rah8o1brp+bcooThJohpFaG3aTLZugeemrGybi7lz2OOVTD27y00p1YETnVa5c+3zDS1ZJBGrnotfN1/ECZm4V5/o85x2C8gNaYpt8p8vr/3BRCHL5zg07ObLKR+hec32j5ncZHjUqCFZKGAtgWUuvLkU131zb6IrT+zCT3ON3w6cQbHOx7/02dL5F391igdZL37/HlBXCdqtEeq2sE9L/+ONnB5tsmsc0DLg5HHBzOOBwe4v97S3iONSLDMEBFECekEpG5oLdMGF0O+x3ewzRwQWgQPggzvMZHx4ecH5+xrpttcQc6IC3fhVmuMLI6midlwXv3j/geJ6xrBvO6ypLoWMTqz9BEAPmOvI3ZiUvFSduSxkMwvF4xMOHD+CyYggBnhhD8AgEOGawlZwuG0pcwXDI2v+eN+tDZ2SWBpq1yGsYwKYg3a+LlCJ7D0/CQZPSink9y3srP8nucIBzAqRCkIyVgdQaTbd+dousoxWBW4UBOiFi1d9WVg4oiWtdbzkYrA6as7EzZApPcsNWc9MqKtpe1QdDo/tmsCU4d1oWPJ9OIGQQZaxbwfPxEYUL9vsDbm/vEELEbveMqCPrxyiVNYebPW5uD3g1f4ZXn30JZsbNzR673YjD7Q3ubg8Iw4AlJ8xbFq6WJAf+/u4O97e3mHYjvv7yc+x2O+x3B4QpwJeCz9wdtrRHGIHbuwPmZcbb19/j+PwEsMPT0xNSTnjz5jXevXsr2Ql/7SY1ACLVBEJEF+JYjTMpl1HJpcqjVJLhAqAUJVfOxb6XRhrYByOKfG7TLC3T73TKkRgs5dDqPN5K58F8CThYsorzPHcIrR1IyWzIoADmrABBxrCqitSv3rw2p8cZNwUky8OgNuGo/iBlz6W0kcJg4UownimnHCOm7PvrlKJU18l+A2PtIZUA83mGpw2ZI0oJYCYkFvLI1394h7IRbu5vwDnicHeDpw/PeHz3hOfHI7797bd4//Y9zudHeFLjxUqm6j2iD6K/sl23qwDBeTRDr3tS9J7bFQJbkohD8gQgN5J37e32+h7MBckCnb3hs+CHAiJuh7iBbQWO1mPGahwlcFHAeUVak75ft9xk5eiyvhIklpYhUp0yjlHJmBmBozhKDJzOCwDU9udSxHiJITZeJwUIAIgHeHVetk0AqXPi0HjvMESPMHgtpUY15kSMLQvHmmVuhOfIYXSD7o/oZwHEnbFWn1WFSNe1VKNtTxSVqgqW+rVn+KgwyxkQR2uPZtYR3QY+STPjqZ3vevR6B1gysLwxXAFC8gjskBKwLLkSeBsQjINxWAGVP0rb4zKEF8A+p4IpL+cxs1SZJe2XNbjBhoA1IIzipK0cDptaiqUwHGd4chiV4NSBdKpiW1t1A9oZ7jkHOpAMbvLsvFMQJ5VxvW6sSYYKYk23mey6j53PP+HDKY/LNO1wc3uLm9tb7G72GG928DFqgAegIBVs5EUPODgMw1Arm/zoUbhgzRuO5zOeT2c8PR+xnM/IW6mt5CgGVw0/WeuMw5ZWLGnDeVnw5v0HnM6zcLRstgO+oksLrhs3GHcgXJwSj1QggSUGjqcZx+cz0pqxH0dEkmrEdVF7sRWpTHIJhTbAEdh0ZLKgc0beVuQtg8mIxFXfkUP0A0KYNJEZkRNhXTKOx5MeT0IZMnY3d9puOIC8q61IAFB5PtAwivxBJBSQM1rXQYN8NcmiwVhdJPlyTvl4GP2UycuH7Ei1Q9Ymp8C/cr3Zs7nUykZSmT2vK47zjOAdYpAz8HR8ADNjtz/g5v4ewQc87B5rtfegGOr+5Q3uX91imVd89uWXYAa++OJzvLh/gTBETDsZ9uPTBipSXThQRPAeLz57gRcv7rHfTfjml1/hsN9hGCbQwBi8x9ffvMCr9YDxANzc77CuC87nB6zbgmVbkR4lKfz6zWs8Pn4QzjlP9T4vbLUG4UCADzKxzGykOVWiI1sST16sTr66a+BWbSbcjka8rBPx2Bw10dUEbWMqCYXdRWUT1b236X6afNEAzrosmjxdlBz4jHk+AyiKeYC8bdgWSXinbUXJSQKxSQK0xKycQlplZfak6kMby6KV6k70v6RtGodNCypkbFvuMKcEXqDVwlJdfVmJVx3KztC3oGfnYTDXfVjOwqGWWcj8OTus54K0Zfz47TuQ+z12+z3mbzKm3Q7ff/ca3/7L9zg9H/H+9RucHh+RthOIM1y9xyCdCT4ALNMlxR1xUl0h0Wf5N5XqnJuzbo4NAVi3DSgZ3ksQzTtpc6IuCNh4MFk/5zLoooddf2cBSFRcZYESgpNWRT3plZcRnaxaxYiRFTmnlTBO8dwApxhFro2rLpbGE53wvZ1lbxPgKMIhgTnVTgeCcPFQjIrrAc7y922VjqQYPIYY4bW9u/K0NVGo62J+QhwG+BCbTiPSKmuRVWtXb7xYnZ8DwyCsZ7VxGJEjBKC25nkNYjWOMtMPUNkFChVklDocxyrIWiJO9UopMGRd9Q1p4gyEnACXCGkrWM7Kd5W1xcy7qqucJ00UG+8RDMCITVR8Xadky4crtlUdZf6eFrHX6BU7gB0KHDYFR64UAAmeCEOwitrLQBOj3edPPrj7MtJ3DWQ24n/7O+m+u4/epi92+WPFKfb4NwWbnHMY4oDDbofDfo/dYY/d7R5haMEmFzyCckBkJRQehgn7eINpnBCj05IyIcSelwUPT084Pz9jS0kn2biPlkx1Rp0mlVGwrCs+PD7j8fkoZeDbBpCVvYqjUymYyb7UoSIpT3ROyOS2LM796XTG0+MTYmDsJ4/ogcE7BAch6coJJTvwuqHMG5gcivMoIGnvsIwyRPlvpaAkISRNGlzw24q4LHJQBg/yBM4Zy3KuhHtFwZtM4YrwIUqwiRoTP6AZPuYrHsTqkqCKYT10AMxBYNaqqm6VFYwTOTDpWOLqoAgAddTaEXpQVMt3+/czwQWBSKbyzesmQMkVBCdluh8+vMc8z7i5vcM8L/AhYBye4EPAbrfD3e09hmHAZ599gdube5QMfJXkwna7gGH0CEPEeNiDnENcNgSXxEZnAhXC3f4Gv/jqK+wPO/zimy+x2+9kQkgCAIdxfwMiCTR9+fXXOD4/43/8t6ylucDz8xHrtuDdh/d48/YNvAdi6KoA1GDFEBsgMSd4HLTqT7k1VJZla0iNB8CpaC9vEl4FLli2pU4+2cxS1eAUtfY5M4zmHZMpRG2bq6zBTQzqTnErQzcAIRU7a21XYxYDLY6/tA7CAJHyVTVCQVP0zVMmKHCu16oZc8sEEVADTV174ra18nl7mthoC95dgwGos8kX93NR+dBJackFa55lGpwrIFdQikPOHgyHdz884PndjLtXd7i5vcd6XvHuzQPe/PAex+dn/PDtD3h4/wHOrXBUtKpF9tg7j+AjmBmJPDIywCSkmgrcavkI6boWrlw4No7eKn9cJkD3YYgR4+Bgo70dOWSdJHat/y+qdMzQVCDRAJW1UAlQYi31tSyYXDM5ncBhXGCqfCRgIQHOYRzF0GoQLQSnHF/aLqxE/2dtfebra1ZDDCUR91aVx9IWm1ISvoFS4ENz/kL0iFECLmnT6hX11bJOqwJQA7AhegzjALC0BJYt12waqLW29FnWeuDUIJMj1CnLdg/UboSUD6H/PUGDaRp8tIEZ4kTJ53JJF4GmXrdaEJcLo6QizkZxWnHEWBbZL6tikpY55S6sIILqPcp7az9eBZcqkqAu4GsyazejuibrC4p8MTkkJaheCkClYHDAiABrPKHunqwApQanqa17Pas9UFJb5bosalYY2Z/168ppQPEcSziBqWvv+xM/zEEdxhGH/Q32+wOm/Q7jfoQfgrbAqDqIABwrZwkhxgHTtMMwDvBR+J3WlHCaZ5zOZxxPZ6znM0ougn90HWxLpeOyVJ285YTzOuN4PuPdwyOej2dpP1Akfjn5z67fss/NKfPew5EX3pUtIbNMMDwdZ3BO2MUBg3M4nReRRWZwKigZYJ/AbgWcRwnaQqAcFiVn5CQOeIFHgTj8MXqp/PIDdvGgWC+iZGBbM07nWTCWpopzTtLGJH0zLWiMxpFm+2/krBYgBzrRUHkXZ1KJ0hWkt7MgOMCT6jnkFnCyo9IFmex7rWoEy8APtEU3h8miTeZsLWnDaV0weCGkzTnh8fERy7Li5u4Oy7bqfQ9wOmTjxf0LDMOAV68+w83trUy3XKT69v7uFoebg0zbU1vriECF4QkY4BHdgK9efY6/+PWvMO0GvPriDuMUkZK0mng4fH57ByLC7Ys9Xn3xOY7HI/7h7/473vz4A9Ykk1rXdcW792/x4f07eE+IwYLgemZVrmpbjpNJUqNiKO+9TLOuji8DsMCP4DkJqFjA3igzslb2bGCUGtg2vW1ur4iOYJqqr6lVk/VBT0vMsWIka4VfZ+maOJ1OeH5+VNyzAtrm7ixYlrK23yX9yqb+OgWpwUhq+lESl6rbdc0ARulfgxYIynmrdhaw5JDTAJthsU8EVKTnXvRGaW39/QmR+0jYkvgL2QfABZQsE+d4zXj7wwcsC+Nwc4BzEYebPb77/ff453/8Pdb5jKe377GezwCvABJqohAkHMFOMJRzGZZYZFZ7U21aIzxu1U+o52jdMkoS3UBgBO/ho1RkXexnXZ/LR6voaTi7BqNgFVvWFmbSRBdmy96XWXEWUfur+nY+yPQ0a2GrkzQNT7PgQwlcpNpy6XyAo6DYAibQ8jfjQ4IkD21YSFYMT3uHIURt8/cwzqX2FpfYGgBCEMqC9j6oOpUNn9s66WtbNbrum4NQAujEN2QJUtl+OpU/CzYBpPhWrqxWHAoPiJCUl3ZmMi4BVGEIiTnQgk1O7R5BqgyTJLlXTdh5J9OvSdsNDbJboFJd8JoQYMOFJLjPSLcr5i9Un1uBo03/KQQUp90VDknXyumGRkcYoPqy250OIl78dJW26AWwPkda49Redr+vLSoVK3YCbEk7ZhhFyB97/OxgE+kFeucQg0wHiTFU0m+77xbpLtiWDZwBt5cglfe+KlHvJFodY8Q0TeC0oRw9KoOCAkqLUFeiUwW8NtGojmckBx+iCqU3WHCBBQisSsUrkLa2LmiPqtOR21tVvEbmq+dB5AIs2ScNvggZXadUuB1k7xyKAlozas55DENEjANe3N9jt9vj8ekRG0vZ+aokb6TraoTn/YabUu372PvyXwB1EpCtpwSOWpTSyu6qM6UGrHkaHU2iATH7uhBiXVuTu0/Jj77eG4F8HFDygmWRtsVt0zHnm5Thc2EELxUQaUtYlhk5y6SekmW/CTqZLEQxbsiA9yDvEbzD7WGP4LxkV73Hy5d3uL3dY5zGCkwuHESVN5la57Ft0uIQhyjG3mW43FognKuCWqPndTy7RvmLs4k0DuQyUqZ6XtoaquYCQHAa4BaSU+YiTofKk0zlkR5om+hl2SqgGQczgs57HVkM1KihyuinSobb76lW1Vk2ohjJoQI8AyDctURdBna4vic6B9Dk0b61jFl7Xa8T7a3k5/ZCk9lez1lwqd/P7q/1g6/l10zgECPiuEPKjDRLMCO4nfDNuYj5tML5M54fjnh6fML5dKrcC/b5MA/aAKVlUtVRb7JS6ljknJSbzdrI6n5069StRy1f7pzxvoxZXttAZAXNTpypi5JlO88Wka+6tzc8TU+Qrjkr8GQF3KYnnfJBOW1zcVrNZ28lPGCNn09AgFWc2n0LkPbKbVW5Ea6CZD9Zsm3ArJCuf0t+EKCZzNYWCpIWD6uSs/c0U26BZAIrJwDXFh4A8FrxBai+zgVOORBacAda/SfnyTJKrJkswRyaucuaVaaWeW+SQG1/uBGgliw8Sjkz6tRONVx1n22PnZkSvuR6M+DDEs+Wic3WjldUP0KlwAuxs96vcF4FAfHk4BDg2IELkEqBgwwNEIzp4K/lugqIVSSJQbHdZWryUWW0vp4bfqKmJ/qz1LKi7XZF7j8Wnz/FwwJj3gXEYZD2uRhau5zadsM2OWcl3S9CJh4jvE34UXmNSmUwjCOQM9b5jMxcz6QtVdUZhs+0ZTWXUh0TO6/o5ERdrwvdYgEnA/ti20ptE8pFhwYgwzul6VbwVPew2hghHTfn0YLRxgOYc5ZqJOchrcMyUtx7h2kvQ0Gmww3iMMIHwmk+S0uZVpEB6nwWlrNUdeMlOCay7LRVNECdHU1Mkq9rAKjcKA4zx970vdm6ogkCBoMSqg7hvkXk6loKl1rxZ38XvhP51BAiQhwwxAlDnMB5xaxVNMLTIq0xSbkKSTmXbIhFShlxeNYhJhKoIucwrwF0Flyl2RuMo1QuxDjg7u4OcRhwe3+LcRp1ApYGE6zVhJqT7rzHNI3IeVMeFy+cgyUghKwBJF/Xs9lxsTBWUJZzqWeWaFUZ9SC32YrJ59n7wYKhpJWZHjKJWLnxsk02LJUL1ap/TCwJ4hvY5Dmj/xA50HPRVSNXm9xhIOcdAgUMw4jdbo9SMtaVpT2MS5uiy6Wd95LVRonMXFSw93ZeEwJN7/Gnn38l4/ZgldvqN3Z2vmHCqki7JzZdTB/hgLYuMUa4OCIXxrwKPgzkMLgRjj3OTzPKWnB8PGE5z9iWFf30N6q+FKsdMgyFihH65GjO8u+c2n7aczrpUmzT8Pqn8Og1hvpUZdNF6xw6vdg5P4Y022dcJjxqe5h9tGKO/jhQL4/1Jrr3Iuh4e/mMnLPY6oqrNNliPVr1HDUfwfRKT4uhzqWhd+kkguCmyi2rgTHnPEox/YSr73JtNmCoFAaTnGcf9ByDkIO0yEJ1fuWqdVQDVm2LuJ5JebQuDnZylU6H5xTrqqEmSw0/dW5DPb/dV+5lxGQbtagAVpVlmMK6CSwPaRXlheuatRiG3L/shdFimNRLtXaMAYE9qHgQKw8ny9AxsY9tH+22qn7Qm76QN/2fxYXqUsguVazfHZH2A7f9r0/46Oz8cRD1s4NNyBKlG0LAYbfDjVY27Q97xCHKGhfJxGVOWM4znj48g9ghvAq4ubnBNO3qCg3DiP3+gPXuDp99/jnOuxF8fsLy9F6qbRREFyPJJSW+LCTTFXISTpUsxMQhRIxKDitC7GoARFabYbMdyZmSMMCTAXJwICxbxsPzGcwRL+92CF4m7AUiFIK0JoAABIQwIiuwLWBkImQGEsvo721bwD4gcBQ5ZOF3EuN9g8PhBn/91/8bvvjyC3z33Y/4+3/4J5zPM56fHzHPZwnIlFKdVUWjddqZOKcKMDSDI8RyGqZV0CCZIOF6kEykq4BOhEVLVuupbtVOVZiB2lcOWCalHTKuTqvJ3yXYlyyVRxwibm7uAGa8f/sj3r17kAkn84ycEpyb4eNR+JdcAJHHOZ+xzAuICB/ef4APEeM44HBzQAgB+2XCNA1wPmIYD/Ah4tUXX+HPvv4c+90OX3/5GXbTgN1hwm4/gUHIxWFZpMqErLy1mCIk7McIciMOdzvsTzcoJSHnFSBg2k1Cal8yuGxAdZahzqiuv8WlHcHNs66Ltgap0yHGOSDGQSsHRwlGugDvRwUVFtxBNcrWT2y8GQJuufZrm4xIYLR3VftgDOretL1qYG0YJkQ/IueM8/mMnDakvCGlWUGNtfelygXQyDuvHMFSus+4dHzql15zrYgyZW+6Tb+KAfqqNaHZZlfv57rctt1yr4QNdBEyAHaEw/0NXr78HKfTGcu336OkFTfj5/j8s6+ENPz7I979cMSbd6/xw+vvkbeEbT7DQ/iUareaZl84sQaUWNvozPBJ4C5tSQECOqDUdqs60cQ1kJuZAaY28YuaPjMyTXPaRG20e5YgABq4sJ/JJlK0AMenRncT+ValY3tBuZYLOyd8HEFHLEcX9L2lxRKQTI/3qBwcIjPCK8EKuokIcYgYYlRdHiAVYaVyqDXg32TZlu9isk7WFIaVd3uSatXoFTCJbh2niIGpq+RrWVxPJA5WkVG2XEqtGBBnjrHMG5ggk5cImHaDtq5RRWHLKjx1MmVzRNApW6VYplvBBzuU5FCI1DEx8WfVN7o3rGqbCdvKYJJsHGcCiutAKzUuECtHh7boQjkaDFtYyw5BhykypG6NZdTyII6WTP8M0m572gBmDEPEboqIiBh5gmOPnBaktCJ7RiwZmRgDQYJVUP4COZpyvTa1D407xgJI7OSGLWCXVc+U3HTBZbD2458/9sH+OFD693hYA+E0Tri9ucfNzR2m/YRhPwCeRMuzVpSuC9Z5xTqvGDxhHIRLcBpHiFviMO32uL2/B/KG+dUrLNOI98sJy5OeX0hyryh3lyTThNE9pYRl3aS9pgBghxhHaVWqi25bYjb84zWzKnIQVbLZdd3w+HzEGBl3e0vkARb8ZeX3c07a2wqkZbmwUBqknJFyUQyV4AeZ0AsAuSTknDHcO3zx5R2m3Q5ffv0L3N7f49s/vEYuHsuygrABMMJ0qRJ2ZI4XKmG+VaqILVWcpXxVzjmEIdaWEkdBA4YK0Hs716lt+71N+SIibMpPZJPGLPAk69oWm4rKfm7BYQk2EQCH/e4Wec24u32FNGd8ePsab1+/1muXevpl2XA6nRFC1CAd4Xw+Yz4Lhnr//r1Ujo8jbm9vhVx8ftDp0AN2e6ExePXF13jx8nPs9jt88dUXGHcjpnHEOA7ieCbZK6msVdktACDTfl++PCBGYLfbKR2CYPRt85jGnQwdgbUGWfBc1lE4gcV2moNITkbFGzm4VbM6Igm4DjK5cJxGCXj7CO9jlVWok1ay6lCtpq0DGhR3NDwiiSAd1ymf5yXYW7EwiayUIvyxSEJoPY4jyDlM0w539/fY1hXv3r3FfD4j8Vx5Xa2VL+nEuJwLUhYSbIa1eVqbcBGvRgMCXBiFJFhlpM0ymt2SW/2wFZjUyvvVM9CEt04eQ//ry6BVC1IIdrAqRPIBLgpX7/72DvsbadP88Po9tpRxcBNe7mTAzut/fostb3j3/j0e330QvJxSbQ1iFse7TQNLyhtlwy6KBgTkujaY3JR6z/VMmc6vNyBB8sKCkV3FV80K1O6XXtt1GKj6QFbppm/roHapd9j1w4kUftRK2xqrqjlgq6x0ZK1nTf/W5Jf90jstipH9LszCLayYxXvZIx/kTEhiU3zFypXMDKGckaEmIeg0U8VOQgIt617YKistkWgFE7Hi/opx1a+05HQIDt4N0r66CkYaxxHDMGLbMogX5CSdPUIX4UEuKqebq/7quiZwYU2wRAlKKk9XdgWb8nZBeSIzoJytGkSpcm3ebZONIreJtMnvkpGCG6xw0MomCzwLlmSWIRsS/7BDg3b2FNvK58rZC95jnGILVIMkQbCuIADDELDf7+Czg98iqADbumFJGYNnDEUSNN6CQzCsr+1+F8FEtVbVt2u+uVWZWYxF1oV0XaEDbaxHi5Vap6IB+f9HWOqnH/+myiZicUpCCFU4vbLHg1GDRMI7JJMBHHxtLfK+8QA477Q6KmIcR5S0SgVGF8bso/XVweTG69FI+KAHS5nz1fVrzBvqpRpqtVMOiOFgLbtW0LFtCSkr7xNRUw7olAhRVTRArkJZ0Ds6egiJ62cayIgxYBgibm4PePHiHs/HGbvdDQCvJOWS/alGo6nL6pBy9zn2WTa9The5HlYLALeKBqiwc4tWot3bR/tPhF7hXghG9+OFWeoCCxL7snuPGIYB5By2lJG3VKtzbDylI+OkKigMJBaHcduSOneSyYwx6DjkAu8zCjxCznAE7MYRN/sJL17cYr+bEMeAOAbkDJzPMuK5gmluxhWgSt7oY0CIQTJ4Kss2iUTkvS+55Q50WiaKoUNsQCTOXVFnOrhSM9pC0ObBoYjsOmhVBGDtVbbYzO0r6wjd3lEtpcCpki2wTBkqXfVFPOOTDwXGxiNDDsHL5BLSDFMLEpWa0bsONPWP6wBXn3lr79UJkO0FX75HL/v1PfWmGD9drfVT92kLYSX1LngMY8S2SUsclYzgHXbjhMyM47xgyxmn5xNOxxNY2xsvL7R9t6xl1VvVI7G/5xr05f61FyepyZKNui8WTOrWEbgERea0NxSlpkRBTTVIZjj0b/355/bSS70gPhkuZN7AkjMnoLUd9HtrgY9SuH6yyZTpTtO50nIqjtalUPVBMLr4vXzrg5j6OweQN8ely+Tpy6VMW1sZu4AkFKxYebzxJpAj+Oh1YIbcq1X/QIFA5RmogVBxlrwTcO+Dr1n8FpS1e3Mgq8aoMo4KaC5umSXAmZNUXsl69+vS7zOqsmZYa1x7n5qDsM/RfbbSXqsKExAp/Byk2UTvCME7ePbwLJVNEjBTwnAUOAYK3EUQvL/K/ntFTmZD9DRc4AM0AFWXpHM4Ls9/J9ufOGt/ygdp2NQ7jxiiYCJtqy7OFt+qWFWfZgkyy2tCy+jq2bAq4WEcUNKmMtj0RAWa3NYKaHbCWpPlTNjgEqrr2U5Xp9T6OyJtqzcHnKjyqQUt6nPUvwc3OFadVqqyWm1btSWSaq6+o+E9Lxxk4xRxc7vH3d0Nnh7P2O9u4GhGTifYWG6Z6plh1Ugf34f+hq26UtcPgC+lOvcXlqVul+HTy7fmuo/CQVKTcXqWPgo01Zdyq1ypMtwcTR+k2niIQuhNFLBtgimctpO36urcOezSqgUI/59z0no3jsZRmOCTTMEKcYIlBw+HPfaHA+5f3GHaTVW3cxGe05KlTRi+P2siDz44xGCDgbRN2DFKCTUBqogZUoXblViy8bhYaz601BJakZQ1eGetwcb9xAAHxS0yFcrktO5N0MoZ1ZE5C3bsAzSFZTCJbLNWjFvF1AUW7iTbZJdQMSJqUbkEv4g2GI8kV+zed2rk9ns0+14xl3nN1GQP3fnG1b8/wl31eaoz9Wfq//YJHflxgrKXWMUnRJAOEy+J8iRVrB6M4BzGMAjdyWnBeZ4xn87YlhXMRRzny0+4wIAVI3XVIea8o9r4Tr9cnW8bKmX31M6sacTLe/sUjmx/b+ex/qxy0sWN63Vw/zp7DTWfoL/ln/5sru9R9YLrpI+bPrdWXsHwrtoMoqwooAUhDO7VBC26IAs3HmBro/ceAF0GXA3PSXJOgrjoZI+gVYZM1ZXxXhKSzFpRzlf33WFJIlIuS5Mz1HuySlkubZKw02RGIbMbtmYmz9x0tb2eITo/A8Xxx7QO3TU1zCjXwtbWVyGS3nvR9zIC7Y7H07lWHSx6qMAGwnmNjThycFm7m2AYimqMQcIu7SzYCl3gPNsB6s6w4Sm0s9D0gFJCoK2L4U6TPZjs1KP28/DTzw42TVFaj3bjhP20w27aYZgGxCmiOKnkyZxxXk/Y8op5WcQ59ZLJu7k5YBxHLZlmkPNSEmx8RCHCBW81+iq4/XJ1hr1IJiDn0tovoMYAjdDOhMwAazte3UYwpCpCp4ttOYPLit3oVPE7EBcZs8wSAZWNkMycHc6CIiOfsxAQ1swzObggveZ7rbqZdjtsacG8OLx5+wMybygl4q//+m+RUsbrH7/F4+N7hGFEzgXLsuCQhSgXFr0vLYpsRqrUE6LOSi1xb4axKmhcRv+rSrwCURU/MdfyRl3sBkTJyt9tjZsC7ytXCjOc97i9v8c4DVKhNi9I24b5fETW8a/By8RD64OvI17NuJO0xpxOJ3jnsK6rtnRGTNOCEAdMux3IEZb5Fvf3OzAn7N0ecQhwBAxRxp9enhPRhCkXzOcV8yyE7Y4I5AOsI2YcR4zTiJwcNi2D9qViAFRCNerXo1RZrA42xPHcUgbzCnJOwKkGerwzhQqAuAJ6c5br+VAQGwcpgSclVQSkKqIwY1N+j+ZcXBpLI+YXouWosiZXa85/yQnL4nE+C9hbl1naMTTAWXrwVFqQha11yISiHmhZm779rspiE7wKMP41EEXojRVdfPVGpn9YIKLuDxKeT0+g94S0rIhlQ3CMVwPw9QFY1oTl8RHLeUY+PiLNJ3DJcKXIdKuyAXkRw58TpPKrVWHY2dPtrNfQHbtOMuS3dgZblWbBlrhmV4gYwRekEKuO9N7DArxcM21WBosaVJLKpg6A4fphYAGa1VDpVa4IoGvVVbBgk1NsQkfhrFVbQiJPRBjigBC0UkEDdQJcutNBaI540QyVVn8Zb1Ab+lCwrlkdGSFA7oGzVRL46BFHSY4Mg4zozblgnld1robqsA2D8mxtEvi35SDIFKZpJ1NXx1EqQXb7qWuBlOcPgxJIMpTsH3rWQg0exBjqUAkuEH4nFlAXovTuE7U2VcsWNjCgFZUM8KYE59B2aa9g1gB77U0h2JSWbG0fplu4cV4oBgIREAYPH1DH/YpTq44RCsZJghSH/Yjb3Q6+RAxpBBUHihkcC5iAcy5YS0HxkOtTfW7n1xxyNnk3mUNzRjv3pp555wjk9W8VSHFNvPRVuc36f1qX/KkeNulrGkfsdztM06icNDJMZUsr1m3F6XjCcX7GuiQEGhDDiHGcpEJkED5AkRVNfAQP54XSgLQtTVr7P36YHc45S1Jtk/NppKU95upe9Yn3kd9X54qMS5KwbRnH0yw2HLE6NlJBLe2zxcjZDXCTBtAh7QK50/PMJodyRomEs+r4/IicN3x4d4uSCsY44f/4P/4vbCnj9Y+/xePjG+z2e2w6OCZiRKTh8pa4AFVfGJ5plUeNx0USYUSkXIF2Tz1uugTwddommx0iMLu6D/Z17bxyP4ELrZpZzrXHOOzx9dff4O7wAmMYgJR1gvKMwhnOa0uuBrsMU1hy1GmAL20ZT49HqeCKomuHYUBKjDgMGHc7eO9xu9zh7sUBAGMcB4Qxgj0QSafImfPUycc8LzidZpyPgqFiiHDaZuudtOgNw6B2Iatdd3U92pAgJVtnSzjLOnQAAjZafZ5XDaJZ9YaH90ddt+bom92rzr+sSrU5Uq0X4P0egFRZFV3PVdsTJVjmQE7OHpxDiIMM8tF1NPwGSCXI3e0LjMOE8yng+VnIwOf5JDxW2ypTsnORwUr9UBSgJl6Nf02caaU1YOlsqAGri7PTWvXkvDXdaHrPPKYeD1aJoybi9jrZD2r/ZiEcX9YEcgX8+IxlS0AqmBzDDR6vBsLnA+NYNvw4P2B5fsZ2PiKlc7WZxAzGpripaMVOH4BsjrE5xObstmvk3pe2i9bzy2L6GMAm3FwGxrz3CJ1/09q0Lu/9o0CT2qd2lRbMkfetuPPqdRZ0rjemlyLBIeVsUo5L61ppQQiCXTwXgNYMIq30U/k2Hio7l1ykStAoMIL3yIVq5Y/Zgz75VoPlip0kwSRT6AV3ZWzJzqvcV/CDQIychQ5F39taxaZpApzwFoYYQHAoO6AMBSEA6+DhA2EYA8hZB0cSHWi4k7gmD+x6JQguCMFp4DvAgTDI+bAWyyKcz5f7KlWahcQPsMSBEKVbSEJ8fDmXTfcwLOmLej0iD4pRFGfJMBrBnN6TNh0pXoUUT0574WQ+7Efc7CZQIoA9OEGKa7Kc/zkXbIUwekjy0+QNXSLZ7H8VPcVVXXDTlqHuuRhhEKSIQpSrVetpZMWSJOalGO/VJ9HG5eNnB5vGMMI5h2nYYT/tsdvtMI4D4hiw5g3rtiGVhNP5hDXNWJYFXGTjp2mUYNM0AiTtaBL5t0lrofZ1k1eJyU2RVWiozmHJUvaactbxzqJibApdjZtwtyxX4OvCnJP1gDLSmrHljGXzKFn4cggMr0TaMrKQwHBwPqhiz1oCLoGD1FV4gBycl2lyt7cvME07kGfkvGJeCl6//RGn+Ygvv/g1/vNf/S0cedzd3uLdux9wXlc8PB/VoTfyZlQugIsvzuo4azSXWvTUyn1RFXRbCeqsSc14mBPeOchATdJcRKDrz0Qyvv0KuPdGj1mcytu7O3A5oKSCbd6wrQtOx0ds66LBCinNFg6SDIptAh+jORGn4wkgwJ88nBcgejisymsQUDhj217iiy9fAQ6IQwT2YlzHqEAOWrJNberB8bhhns+YzzM4K0m6l5YbcsA4jRjGAZsDUtrgCqlVlvXwNjnLDj0XFG5tOak6iiKHKeXa17s6abcjQxWEum/eOyXTlKyjKC4pfSciBYwOwQ+Y4g5ETqZIMXCeZ6wpYds2GNFeA9R0EWwSg9FANjOL4SsM7wmlbMhpw7bOSm4pTnDfusT15xaA6g+gnK1Lh7DJjJ7QK9mp72GBJ5W7/tEMeb/+7cT357/Gr6yuKTOeT09Y8oKQCsayITrCq5Hx9R54RsYP5weUpyPy8QFpPgrwJMneF15RWDJ1nI0w/fpTG1SW31wraXOim9Nie0CEmiUxoyuGt2DKMu0LsDJvMQAWDLJrsfZXIxXvLqsGGNABIdOPhFbaLbqkBa0FBGuFnrcpTa3MnjX4lnPStjVxbiSYI3wC3nmhClJDDIK2Qsjft2KDE1pm03kPYtW5aYPzl0FOWyevwGscB0z7QR0vMSwpZSyLDJaY4BGiVOsMQSLReds0oKK7RoRxmjAMU61QBYDdfgcje2SW1g9yBXDaGrqVyr3nfUBwMt4+BAuiZxRikHo2zsvYcnOyc5bJc7XVp5eYrCCC5TnOOYRgjkPHr8YGfkrVo8YP4rxwlIhjn+tZK0VAubRAawm9N+c714ziMAUE53DYT7jb7UA5IiwDkB1KzEhRnKU5LwCM9F0rpdGc+upkajWvOUH6AyyAWJeAGsAyfFQ50rg5a31GuAYPVFb+ox5GwDqNI3a7SYNNosc5F2zrimWdcTye8Hw6YlsyvBsR/YRpnLDbTaBYPaRWTeS9cGd6X3kkKwzq4yFs9ASSUEkpKfdfcx6bs8kX33st2+slGMwmcagBiENeFsQQAdaplBAgDxZi26L7SM4raBcgnRVH2WRBGOYr0FbdAd5HlMJ4Pj5h2xZM4wFpK/jiy7/A//Zf/i8wA3//94TvvmOQj0jbKq25Qavf651QNQTNPpkz6Gr7nMlODTZZ8KKtSOc3qm2vlWNWCSl6jbk5sf1ADvveJwBQoRnXPSfyGIcdvv7qG+SXCQEe27xgW2ecTo/Y0ootb1iz8OAYD5CMpm9BFoI4ms9PEozxOvFqGCK2LVUeMHKElBd8cfxcnV2SFheySiKqlWsauwEBOB5XPDx8wHyWpLN0NgDBS/XjOAzaguOQNsOJpa5BSy422c09n2HFpqJf05aRk2DfRZMHTXAbzglaUdEwD8H7gCEK5jGdHELENO5BREgqj+u2oSge91YF6Dx8HEHOIw6DELI74ahteymfcXcn7TDeAet2wrYtKKcsgaZtxaZtlxY4ahiqrU3hUltljM+qKBF6rXYuH+OmPnncf/UPuvqZr37ZAk0tAGr7UUrBXBIAwpqe4E5HTM7j8yFiih4vRsLnIyNsCXx+wPz8QTo4tlU/qWgbmk5SU7/qCkB9hFUu8FMVjf537WxanY74KfkCQ4VQMFggB61Vrr/33ocBLoNz3YppQLpdi51eC3ZeBpuas0owIm8PH1xrf0uyv0SxVfooVYxUj8nBcyRJhnp+OmoJMAvVhQViNZi2oZ2tpBWPTrPqJQtFh/dS7R+CcNgOwwCG0BPklLQ1WK5tiNLBtK4rctoEs2mbZ4gR424SXRQHnSQn/RacGTE6jGOUoFKQDJp0+aQG95Unly0AojxtxapoHZQTjyXYrN1BKza5fxQxMvVhut3+LcNWiAg+SKcVU8NQNdikW6caCAxUPCPvot1IZltglcih0uLZq8W3I4yDJCElYTehbISUHAqxxjskaDxnmdYINP7R4JxyI7bCkv5hASfjcrw4VWQhUlk7ZoZjpdLhVlVIRB/piNZ+98cfPzvYZETgPigpuJconQAlEeQ1LXh+fsZ5PmI+y3QnGVvpKwlmF+YAkQVBbHE6a9U9s/ctGRrJ7ysnui8RMwsiXd0EtfewjWKz6ArWJTugY+YLkIu0CYiEtN5IUxMFZtBTvSY5YMLRpC6fimQCkKRiJ2cACcvpCCqM9EKqc5wLcEGz0g5NgWj0uHCvrHpdLOvmtD1B2gj1eWwnwwSNdak70M5NXRI1oWzBqD6Ixy1yin67OiDQo9yr6zTi2xADpt0E7wnrckROpFUQQgIqRlQypvWDuDkONVgIwMhFpQpBOArC0yOcI7x58xrLcgZBOEV8jfzLuHI7Klkrw+Z5xvl0xjwv2LYFOW01yp5TAkGi3ll5box0uF2LvaOr8mZbINfsqqhXinYT/c542e+ZTKIJpciepsyg0rLS5Jy053iP4oXzhchVGewz/O29qQsqNRBat6oLdBiwY3A9ruawWjVBCwhxf8MfA4arR9tPdN/b31uQqXdyutdfrL4e53pt8gzhItI7N4JWfWVhRsry3JIZ6yxA3etkjPOy4un5CcfzIn3l66wtCeZAqT6o7IINzjUI0j8+sR79fVHLsrdqQq43ZqDP+LmKZj2yZbdsDztVWgHP5UrpfnM9/wKU+n379D3YuvbbzepkgVqm25bDjKDxezTQ1YIF1g7KmsFqbQud1dDnu3pl3f4z1c/r1aIBKOe6rOOFjrpcIKvQAqM6m7JOdg/21D6YIXxGQnIp47AtaFbFtzPykvVqzsTHHoBep3IFOJagnt1xA9rVirU9685evcfSyHz74t+aqb06P/LV/dZG9Va13mRPdHLRNl2pkvIk4AusQSUnw6xZ+XBSYWy5wBPrvnBry+wk7ELg+PLfF12C5uSzyF4lm74IJl1DJfroY/6Uj+CDZp1Dl2Bz2lKasSwz5nnG6fmI5+dnrMuG4AKCj5qIa7pLbqGdIVA7Gxfgx2S9ynnT07k0XjezUcwdNoC2dNkiUf+Geg0VGrQNykWyzjk7rQi5qNUULgh1jIv+O5WETatkiwaXDEPJdCLRCd4BwQPghLQWOC5Y5xmLn5FTRhgE0rqgFUKO62udOiNt3/UUq76r92znn9rf+0oQLqW12VYc1pJz3fbU9zXdV3Vetb/tOfJ2vZbuNXVvH6TdGwwM04j9zQHL4jCvzzLNFloVAq7JIAcHanHIq0fbTy6S4AOtOB6fEWIEc8Gb1z9iXs7I+SW8JhSE/xMXFe1WhXw+SbJunhesi+Ao1umx2ci4HcGmkrbKpdZGbfbagsx9wKQGmaslMAzT7Iatm603QfRCztZSI1UbRatKxT8hrTQVMl5yDUNZZWitErtoq+vOAzdeSdvFGjBCqYEk00+VSN6+rrFU9+glAjCZ7KSDr2TFflcPYH9wUatHPyER+oPKpdo96L4Z3yNFAjFpMI5rBVguGd4XbM7Dg3CeZzw+PUkQPS218tuSIdUvucaQP4Ud7cxe3H33fLUlrZINQG3JJPQYqvkbmtTH1SHp3xLtfXvj0agOuudd6INmp5u/ZJKrpcnQ8+mA1sXQbrdVJxpylTerFYtOk3DOadXd5VT3HnM5oqrDTG+JzKrc67UIdlK+3Ri0Shz1PBi/pkxRZJTg4VjPpBJ8y1CEFkgnEh2adVonAYJz1O7ANY6lFjwxjN3p2U7W25lBtV/Q9200JhYX6Hlru0o4xWqtRa3Hz4KhuKD6e21dr+UDcm5KUwqmjdBdL4DKr0sQ/80Rw0G6kg3/FS/tkMZpZu2fW2F4yvCdbbnATjIS8PrKLh5cn6f6286V0wEurPy/dq9Xr6d/5b2vHz+/jW6/F+K73R7D7gbDbo84jQhjRFmOOJ6ecDw94zf/+I949+Ed1ueMgIgx7DBNE6bDiDAGGW8LBpyTKibnwCRfcB7kAqTcOl85OXoYirSqLWnDkhOSTlTJWu0kmVffQFk96wa22io3kZFDxiztRtuWsawDltWDEFAQQT6CU0Yq4ohuXJAAbJwxbzOWtGJdZmxLwrbK1LGtOPhSkHmF44JcnpDzItH7dQPgsB3P8DTgxc0XmHYBcRjhRiC5DewKghftE4PDEBwyMUoSSWwyIGTTkgm+NLTqF2hWjqWqrH8eoYI5VMMOaUkwI18/pwMC8rEVtMnz1GE3Y4pL8NXeRU7R/rDHl19/jmU+Y9uOSGVFXhO2Zavvn7IREu+qYIsScrXlpU5cALAsC9Z1xXmd8cOb77GbJrz+8VvsdhP+5m/+Fn/zN3+DcRxwd3uDIcZa+WHtNCllPD8f8fDwjGVZ8Pj+HU7PzxX7lVxABdgNE1hH1eYspJBEBBQ0AmMddd1n4ACNxldjQpfrWddVg1J2xwRNDAu54bIkKT83KSZthfOucnmQVtU556V0uH52l+E0GXAOJhnZeGM6xShyX5CRwF73Wqv9jGyRaz+GgggDCxaw7P0Wakqqr6Cy75/8+VKVVuCnP6rSN94N4zWS949hUGfPIwbJOk5TxDhErNuG56NMlXt4fMbT8xGBHHKYED3hX358h+NJqjffPHzAvC5YUoJDUgVt7UQZzEkvsFz4Zhf7e3ET/UOBl7UFe4dhGCsPSiUN1UAXkewRl4LVb+Cs5f3aoiZTyFQ2rsdEcttfK/olGFmlghk20bs0rhaIEOdCtryQjOOFAqFh8BevZzJnT4CQV7BjI8qlrc5eIFOKrLXDWrmM3DuSF1uQpaKUsrRPi6Ng3GVyH845xNErd4iG4aqTLbLSgBXgvX5pwCJ4D46x3TxZVYNW2CrRK4EwTQFcpM2xVpTVUDa3bywgY92ECFbW2hAcAJ24TUFbWYnBXohQ0yaVwR1uaXJlZwwt89dPKS1Z7tVHhzBoRaNz1UGzvcwbULJUYghJp/4+S5DAjnPaZK2JALcxsnfAoWAkWb8Yxb6n6OUrA1vxyEw4p4xt2xCdw91AUjZbekDe7HcbVay3rbqs9y0s6w8Q4hAQfEAupU3lqhleTXYYyP83gKX/r4/9tINzDvv9DvubPab9DmGMcNHjvM54/eYNjsdn/PY3v8P79+8x+Vvspxe4OdxhmAb40YNDWxerorXWVRFgJ0Gp7nOLYienVeGAEDtvSaq4K58WF5kaSFK95jWZUuWqRrJK5coo6Dj7tFWUS8FWFuwGYNmkCjyxTpJkrWQlQuKCBMZWEk7LEUtKOC8L1pWxJUYqDom9jp0GnGcMY8EQCzitOD7NWFyA5xHLU8KLl3+GuNPq+KFgcysCEQZiOMcIWhnMoE6WzNGFtqa7ardRdaAmIbWyqbg+yEAVP9QEGFGV0VY9o8MTXKiT7axC8KI6Ql9H9u/uG2AQguCGAAoOt5/f4xf0S5yOTzjOb3GcZ6Qsw2mICGmRZhIfCT7IO186oI0z0qtePc9n0AIcj8/4w7/8FvvDHq9ff4v94YC/+qu/wl/91V8jxoD9tEMIvg4mybngeJKJd09Pz/jw8IBlWfDu3Y94fn7GMETsd5O01bAMWEg5Y8upC7qrld+ELNfpQBsLzpvS813V/mWCDoCSV1dPkaQSBCSEwilpsDVtta3I8MMwSAWHDwHDaNWrowTdIOfMJmk7nfRnbYmCz5S2QOXJKohlqNEZW1qw5Rk5bzKFed2w6kTmvKULvtc+2ESA0P13QQ6rqehqZ7q/ca2usFR3tRksLcqO2/MBaFJTf9aOEWLhwBWbPkoLuPcIUSpZpkkq1M7nBe/ePmJdN5zOR8zzGVuIiHuH2QdsP/yIdx8eMW8bHp4+YN0WSeiRBQlUBlA6DMUXgZl2f73zboeiX5Mq3fDeYRwnOHJIWknF4IZxUwFIkrYhJGSWKusQzEbo+nfUAW0hxYZQ/ZflcQSNQP1VYlj45uJa67da5cKKQQghBoyjUI0sS6tYj1GIpW0wlHPCWyuDWhxcKfBB2jhBMlwgl1L9A1J5NNJtFoIYpFKwpiR4zFnFrMMYIkLw2B92lVqgMIBcpBpv25BDQIlR2s6IgCj4I3iZvOmIULQKkEgCNmtaNbhCdeojOfE7ZcEFn1pQW6phlUohF2RIUNAmmeZckJOtrVNuKAmQFtKqWMV01zqwD85mMJwdO239K+YDE9dkqveklZ3mP+t3xXYlS7LFOYYLluQoKLwJ/5QWfqybXHfxBcQF7IUndnQAe4AHQklAGTxyjjrpNUmRS9qwpoLoPG5HwVAS5iC119Lp1ap25dqubt6OmuhEtfVR9WBOGaztkC0hoppW1/bnIqifHWwKQcqhhVsp6JeWgIOR8oZ1XfH8/IyH9x9AKcLRCO9Cq2wywmMzqOQq8GNTpM1rvFC2fdaoKDBq/ckdz4Q5VVeR587z0QWuP9S/GWCViW4FuQBZW+bISTWORe5rVo6lpzYbh5QaXmvtU5iPAuHlaT2oK5gJJRGorNjWVUonowc8o1DpMvwSdtAgbXUy7UFqWeliTS3DiO4+dSF7R9++M+Fi6SDZPS7F3OZqqAzr26jPi/JcvvostH2rERv9kBBkPC6QlQdEXtOm7YlTnavD1JwNCzRZyXvfGsEs/clbkZ74kjdM44gvPv8Cx+dfIqcRu2GANRvJHhYs84x1SzifzzifTljXFes6Y9tkCh2p80aQFh8ndfE1mEQ9OAdkf7tAXU261JaRVireV4pBg02dyyXvQMKRKWWfUo0jlRRSEux8rkYipayErwVOp96RjpHvK5lawKZ90kfBHe35L5wrgDHfuN6vBYX6r/5hHiquf91nGS4fNVPxiWvqZfgTL+wSXOZABHgfEbRk3jmP3TRiGgd4v2JdpQS8FMYyryg+YNNWq+O8AFnKhs/zSfnpAGsNkXLvgj7ARt21fvJSVda7Ve9kpwHMoONlOSUNttdbVCdPAsg5FzjInvesdRWYdVmPT4FTu166krn+cu1z7VXc/6VeupWDk+J8DSBoVq6WgaM/v+i+Q5wFUm6RS9GU5zjSbFXNZ8N0y4Xo6Rt6L20iFowEUJ0CqAPTf37Lql9z/QAN77Nyygm3hrX8FSJQka9uo/ulhklGUT3nyMFJT2n3nFal4lirqmq1hT2POn2uu9F/hukm9TSMbcB5rujYWjL6tRNAx+Lk6+oy5Pfc4WUuXDkJmKUNQoA1tLqJAN8qm4hZEktg4UHJGehtN+k57z63niKmTt643TvM/rACIs0KazVsvhiucC3ZJjOf1j//3o+g1eHS5h3rxEZywkFolU3HpyOeH5/h9xPCrRCJW2VTz5N/kTBQga3yqweyWU1cyINlVGt1ExrGEqxqrSJVgwDX36lb++6/XAAk1knBXWVTvSwNwzJXLJdyqlO4WmUTKYYyfQF4J+T6GyekdUZxAet5hudF+B0DSVWTMwxVYEH3DlrW96yBJqBO27EnV/nrxMNAt+t+BlD5cohcx9Fkeq0j0u1sb2/7+3Xtg6m9yLJiVQZEFsghjhG7mx0ybyCvHHn/f97+tEGS5DjTBB897HKPK486UWCDxPRw2P1p//9/2Ll2Z9jbPQRJgKiqrMrMuPww02s/iKiaeWQWWD27pANZeUSEu5maqKjIK6+8UrQAZkV3NKdEUVFJU8/tsvV5m7bAUppPW4Iwks7nI85Zpt3E29evOB6+kTY4YyB3pKTxSEycDifmJXA8HDmfTsyzsIHn+YQxmdh7ZQihrFEa6F8Z4ZUFBIJBF1u2C9DOAKP7vLUKbeyzea12NEhcnDbtaTEVcmWCaVtVzhnvI857UpZWnCoWb6wORKox9sZPtU9sOUrWyYKyZ6UbI5JybDpVjdWkeUOpa9AccXvy7Qyvf19tpXzWf1V/eMmm5eK9zYvvv/h7c/Q1flLJBt8LmNH1WCfx+zD2FCzOHami9CFEbDGEmDBYyvHEcp4JORHCQspR9qCeydJWu2GGb+L9F7tj3QPVjuu/Nceo1622XRmlOUWI5iI+rFOdk6mi+hVAlsJUvYp1/bdx6GX89tJL8pmvtWdQ/264JJ9sQGzZv7Y99i1LKyeNqzCN+WytCO1vJyVi1rb7+vN1oMO65VWeRVt+W+xsVwZjHQiWcqboZMDSOnky2WZdT21NL5VhDMXVOG6NTGWqcKJo8bHu022sXDQus8aSdUIy1Uw00Gl86o2Ey3oGrut2ySgVq96CTKXuB41H7HbARpa8q5I1jNE4qOWgm8/b4hUZZWyZ9ubbjpxK0MipkI208mUjV2ZN0eqsIWvx01or54yRsDWWtcCWSsGV7R0hhlVzdFMvSi202eDmeuuaa6wp2n/rGVdj4ouP0Lv5NTHUrwab+k6c7Dj27PY7xmkEI4CG8479TgQEX716JY70bIhHyzSNdEMnAmNuDdprX6lT7Sank1ZE3LbV+NvBWBekIv8pRRmlqEZmkIpDq/LVU7V16lbntB7a2wioOWetKsSYOJ4COWnLknFghDYYU+Y8zxxOJ0IKcqCmIChvlGvy3jMUg7MFaUpPxJPBhEhKCyGcMVgG6/HGYdIq9FXvM6bAPJ+gGB4ePpCsHFIxyqh773q861oQ3oKUusZmpVHKl8zlxquJYP16aaF925TUFg4uHUH9gcJlgvPytWWtlCLUysGLiNzj+ZmPHz5wPBx498M77j9+aM/WYJgXEWEUAW3ROumHQYFPEWas7VH1Cdd9naO8zzll8pLw3vHP//TP9F3P1dWe5bffsb/a0/c9fT+03lNjIMXA6fjMeZ55eLjn+fmZ3TRxfXPTgschiF6Y8/fksmrhiLjaWolfW4Aug08Bbl17BnX11j1rePHw6PuRvt9JoKO7I6VIWIIGUEkP7VrPgpxkHKixufX0tmrgJllre4bqiNe9sX1+IiQo/c9VG2UrSLmdvvZpIHT5ftv3XX+twSCsh9dfAqRqdRnkPqZh1L73jq4XFtPQD6ohsi6y9xZsophEJBJLlClHY48zlqitGIcSCUnu/VwSEWE1vgx+XrbQff5lXnxtfciXx5/o5OymHc578THLom0mC3XCmtGDI6WsQYtRir/YYjvndJvUWmi2AoFvARsjoglU0GsFD9tityuudma0suY7x/XNRN97hrFrQErW5BFEKybDZoxx0URMnrEIVBZq20suCRtFcHieAzmvoA4mt0PCeUOPox880zTSj15bcKRyZpRdKGOTw/rE1N95JxoepiCV7xLJcd3Dzm1YVwgAH1Mg6zlRA/UtAy3njHXKGCxGtQnq2VU1i4SFsp0K1uzcaNKvVSoBUWjioEXbvTErgb/57Lov9Prb+tdd8iJoa0UFjfVjTKSgE6KMkcArG3ASpHbKQssxKVNGA08j6ydTa6WYYIqj7zx9J1O55pTAWHIU2wgFjjEQcqJ3jkEHdRjzy8DnNlhqvsFUTbE16LsIlGqCr4tZ9+6/F9AEqAC9pR9Hpv2OYRopBmKO9EPH3d0dXdfx5s0brLHs+lv2405iqE4ZvmZtfb+IoVTaQJjitKAZVjCv7glKblo+VaAUanJRRzvXc5uLNargwGqn5hOPlnOmpEyMmTnU52Qx1lMyhBRJJTMvC6f5TEiJJWj8lFJLMupEHmegxEX0fU5gwsJ8PnE6PONdT55yS/mb/VM0jguc0hFrHCEH/PFJ2SnCSum7Ad/1uq5Z2vaskSozBvvCBj9ph6tnTysC6L4BLtq5NvZaY7XallvfV77R6NdLu59CuQgHDIh2Eoafj8/88Y9/5PnpkXfvfub+w70k0CnrRF9L5xeGYREA2Ym2kGvFY9vOgLofaiycosQWORfKT+/oup79/grvO/a7Hd9+/Q273Q6vmqQCIhWMhSWceXy853w+8/T0wOFwwPtX7HYTAMfjNTkXjsZzPgaE2RIVZKoJb9UYU3vXxG47Bcup797GStU019PKYI0HHLtp0Cl+pukJpiRalvWz0fXWDJmULCZqgdMKS24FcpQdazLGCUC/jbNrzBRjJKo20zLPnM9ntfdL5uvLvfSLr9L+cxE/XcRfqnu3BQAoG7ZQ2a6RLFxtkRtHYTF55xm6AWusaFI56aDI6nONzcQ0k/JCMRFjE95bhmHAW0fUPREKEjvlzFIyClfUtFv5NfVc/qXW55crUz75VdR2nAIlXefZ73d47zkY1fPLqYGOleXYBvXoZ2xb7o1ehlGt06zDfozRGEqT8wogrJdXn8v20jfxot7fMPYMO0/XOZH5cJZSEvP5TNVolEJ3IYRwGbujcX8uOgxAWUxaIFsW0QJr8eLL/E9jINFrq8WQOnW76uRZQpB4J8VEVH0w6xyD+mnvq2i4SOqssbF+ptW26KQttFQxdNcmoOaUSG3vSTzjrMF0jmQS5Rw1ZiwCQm+s45M0Az3PEBKF967lNbbqiJYa6+pKrh+9PqeyAdDQFjoDxjp8baPV/5UseoO5xlBR398IYy37Vc7B+45SIMaFOs2+6q2t7kdyxGINfZfpo7xPzB0xCXCXE0QMcxVAb1M+JZ69yNmrMW/wFKDpM6O+tdpXZVjWs2mNrzYr9CI++Euv/y6wyVoBj/ZXe6bd1BIC7z1XV3ucs7x5/QbnLPNT5GQC07STCRadV1EyuVirVFRX9Qv0z87JmHnKZVBzcQjm1JLdOmWhMkWqqGP1qGUTXVdHtF2bLeBXg7Gcs0zvOi3kqFUx6wERJQ8hcZ7PHI5HYo6c55mQAiHIdWUVRLTWY/ICScTSQ8kUawlhZj5LAOSnHV03KNgk95GRal+IgfN8kkPxY+GwPFMDe2MMN9d39PsbMTpq0LLeWQ0i6oaq7AJZK0W22wSaTYIJQsWvCZhOCUE3q9kcdHWvXtZPLo1vW8WzRqi3zlk+/BR5//N7np4e+eFffuDjh/c47/C9OB+vG3Oepb3Ne8/N7R3Tzqqgrdc2tY0gsDqXkrMESinzNAdJSo3jfDpxd3eLtYZXr+64vrrm5uZGgs0sCVkMC4fjM6fjifv7Dzw+PmLevOHN2zd47+m7iZRk9G/netEtESOlJuotcCuXa7AVv6xgUw2MwShzaV271V4NfT/x6u5LnPMMwyrEdzqeSTkxn2cBglJkCedWQUsltcNTKuMFY0vT5apPrR6qbALshjeUlfU3L0GYfI1ZuFaALqbQvXRC9QPq9/8C0PQ5sOlzr20gb+qhaQzTbmIcRsZxYn99hXeOoZcJaDEGPcQzKQXRDjCRWAKBgOkM/agUZCti7gsRE0UoOuWwSSjq8bUNdmrA+plbX5/qJ/+V1IMtcttGT/d9z8EJcBxjIMwv3q2gLIJMsQaTooIZ0v+NVaYRzQtSTFYKrMEb7QfPQiNu37d9hmXd4RWYLUDnvQBMQ8ft7Z5h7CQYrwFQrtPjFJDJ0qos0y5W3QsJ+CuDUPdylFM3xcx8DhJETiPOdbr2wnx0zuIcDEPHtBsZp761UDaKfhEBzLAsYuuVXehsY+1WIEmGQMh+7LX9su5nEOpzVKaZAK6rxkJKGoxloTd76zAUnFPmG1mnJW20SlJuwu+13bXahOA9RnQMmvB6Fk22zXQ22Q9cADSCK5SL9TewYqIgbCNlMiVl5cYlSasJBuPEwn3x1HO707bCuCxErYS2qY5q/tYYOuewePrOM/QZkyxdymBlIl00oitzCBFHYdd3wkKr6NqLXVMTsfavm0DQWmEFtwBaHemazG9EXS93D/9er67TISvTxO76inE3gZVkt+97Xr1+xTAOvL1/EAam3TFZAZt857BuKwOxniWio+naNDo0ya2J+nbYRwWXUqoM7lWEV9quxRdsk4VtotRa0LbJUy2YVJBLAdcQE/MitpeLsEszAiqT4TzPdOdZzqt5YUlawEDesus8xRVMDpQlUIzIFhRrOJ9OHJ+f8H4k3aW2n9cjZmWdL+Eg/vr4BFZaY8dBkumrm1d0Xd/AuBW21dr3BjDanuEtptEztK7YlqHj3Bpb5doKTI1XZUe+BJuqvEE984v6AP2iJjraYmzhcHjkH//xDxyenvj++3c8PTzgnUy6NMawLKmxeEuSIujV9bWCNKzalUn1bGpmXER0e54Xyjzz+PTU2sKWeeb29haL4fbmlqura66vXPOPxhSW5cz9/QfO5zMPD/ccj0eurq7Y7XZY6zidRMOJ4nh6OJGzVWZjYFt2aXassas1yrSoLUFus+croFeHC7XzWCb0GuvZTze8eSMxVG1/k9YvmZo3LyeZ7JciS6jTtMQHOl9k6rBZc5MsBi/nbVltpNpG3Qsxyvsty8x5PnM6nUlRwNVPQ+Yay5Zf9E5rkrzZ15qsSgucxmGaL0gS+2lsLj9fzxFN0J3j6mrPOEwMw8B+t2/AgLOWJQZO57NOIa6FxxmIYBO+cwxFprQGg06XVE58/b1diTKTtMV2q320XY0Lf9T+/DL2Wgu9UsQydH3H9dWerutJMTLPMymhXRMVaJL3CzGS1MFWBrarDDoFTNp6IwBjqeeKFa/Rpni9iH1XIGobL8vPjWPP7Z3kz51OfYsxsaRlJVPo5MewBI013AbMlGddBw2VUlrxW4qUgaoVuM0BjV2LtPLZneozrfmX07btEAJLWHSohMSXwzDi+74BRoDYQkjrhEpT9VIlv2rxUpVT8DIoxRhDjDVvr77SYL3Foe1gCOC26oCqRWzz0Wor6iuttZLzZC/PC4ixgq9bYsAv74taIIQiLXAVvKoxZBUFz5kYNIYKSTQy1R8Wh+YMFdjr9fkkKthUsjCcKuBkjYClpliWWAipYJNhSQmMIxaDXhbnmIgUTAd9LwW7T+cpbsFsRQZKPbMKRofE1JafOgBm9WmbDqIaW39mv/7S61eDTbWa4LxOXfAeNGCmBsSGlpCC0MY7bZ+zijRX31Af0pbutl2RlrQX2u1cIvh6qG/uc6WroRtxY7mfXQ/z2X9eq2TSE1r/Xt+uIvsxSSK/deYi6K1tVrZgkoUi1bned/TOYUsBHzBIMmI12fsUVdysQSna+pFIIWCMMHCKRjGlbcitY36xtuXTf25Or63F5w1HQBE246h/4aXX/4tMFIpWdCCniNHgb5omlv2VvHcTQa1aAELLLQXmecFYp5W7OkGtJhHKamv2IdfgrGy+nDPzeeZ8njkdT4xDT+c6xmGggIIomefnJw7PT5zP5zYNIYTAsszknHFupOs9fd/RD/1qc3q9WUfPX+RLuhwS4Nj2b82uQQ+olhJSKxpdP2Ct4/r6mjdvXgngNXR4ZwlLlMAlJU7nufVRC0iZWKLoAQCNemrNy8syDehcH665APHq06wHZgOKXtjLL9lFPRjbN5XPu6iXAPNfSga39OD1uyrQkVprb7KOnBLOOVJMzMvSGHQ5J+aQiNrugVLGy+b9mz3nfPHvBrFVp0y9GA0hVtDsBWrY1nV7b5f3sd4PoMwOqwF+tYr6nIxZKw01OZEqV23noPki8V01rJBgj1aR0QRyA5ttLuyz624++XNNMtTH63VIoVjtuL5lDdS1B74eeOtSr8naNnHcMlT0KbdrlaRbK3KuViOlX1/e22pwsl65rLHqF9QqeWXGGlmTtg8b2LnaA6W2C0qFqU5ytHZ7OK+XLKD4moxchs/6OZs12vqOqj8giYB8QarpL4Kk0t6qvWv1jdXDt+eg61/TjKytVavA+/rL2TXo3n5m285Gqp91bPM6Mp62Rt47MlLNzEV+T9pal0sd4a2aAVRWmgJe2wNn60JenkNtLcrFn80n35JbevK58OPf6uWsW6fwdgIQgVbKTWkG30ZOW2GRdZ1Xba2XLJv13KtgUvWr63KtsVM7U3SPrZMdN4F6BVDqu2z9FJ/GUfXceukqTEVFsBQVAaissvqtlYHTJveqfpqz2jrniurICDvQWUPvPb135BhZdJKxMzWGupwel1KCrEADtXKcSRRitCqeXcG2bVBUzyBDG9bwwlAu/t7CRSMV7Cy7bVtkg8v4VT/mxWvdX80ftqe4bu2cCufzjCmJEM5YI9OMxmEk7SJ1t8vjE18RoxTfSi7M8wJGdGFqvCWhQfVDK7Bu9LqcglKibXlm6AdOpxOD6vh0viPlzNPzE3NYeHp+5Hh8FmZFWKQTIcp57LStaRxHljkwDD11+E0unlKkELT6/U3Cj8HgaFMONjFUjZXr99d1dNYyaVH37u6Wt29faeIteyosgeN5R05SRK6T4U5alCqVyaL+94IdwmYfvvDbdb+9LMCtQNiFQem2WwHKz56+n+y/crlH6/uX8mJdtufEZ3KDzfVSctMijcEyz2dtvxJNnpAkhkpF2Kkpq04hmocYKWbKO66M3Yy8d/U5jTmk2qIGhPkVkl5u/T7ac94W49azb13T7QKtz8O059IKMyrmU/0FGx+atEhmNcHepK0UCiImIUzyVERz0ZWNxttnX2U9tLjsJmlfb/ewxh1F7bkVC0vlUln1+3W/6hprK1zNwSujSdZj9Ud1b1grLYOi9Vp/XzXlKltJzKJsLnFt16tgU30eKaV29q97w5LJLSatcUITvjZr8YQqmG5Ky+EN6+etLFBW+9i+jOY4bS8W9c/6b2uk1SLgzz2uy3XTN9b3KLDGYNohkHJZzzK99zrYS2Kptf22Tapu/krjLbcpZtQhX/r8vRf+n1OmfraWbGS9cpFCcSqFWEqT0rCs8SilaMxkNutm1oOl+vyynnvVbwjOI7YpR3Xe7MlfF0T9arCpG0Rcd9rvuLq7ZbreqV5TbsFGSpmn52c+3N8z2R1Xuxv2+z3TNNAPXkYSFiAjk+oUaKFWkjcnbBWdRO+35ExRJlOKkbhoy9rmcFkNW43DGoxxcn25LtjGksq6zno8Y41TkdgO1/XYroMSKNmJqLlqLMScmOOi6L4ATs4YeucozjD2KkS5OPLZ0HnHl7e37MaRZT5zOku1zeQrYGDwg/RDu04mYs0LKSZMsRquOSyWGGaeH95TcqK3nrEbMc5h/IioesMqaif39YlTUydlalBpTB22h8mf2Xy6uzYh6K9+bc845ywpBu4fPxLDmfn8zNV+YOodU/8/EpbI8/OR+/tHYZYdD6qbBDGdsNZwOsvUvq7rmKYJp0DVMAxNDwMjrTolFrx3XN3dyAQg6zk8HTAZ3v35B05PB06vTsRZgouf3//M8Xzkw4ePvHv3EzFG5kXaNR8eH8BaxmHk229/y83dNYXIcf6CEIK4BWO0fUBoqzGlRm1tdPQa3BdhbMhhXFti0EqdMuxSpu963r79kqura/7qr77jP/3d/0Q/dHSdsDlizCyLfMbpJODY+bzw/PBECJH7+yeenkU74f7xUfSG0kzKsyaCIpxZxcXFQuQJSxyu01NqwKQJ6UWS25K+WvmViQkrqLZNWApb87oEXba/foEd9RcMTYJUOJ2OLGGGZ4v5+aM4x8rCwpCLiElLa6wj58KSHKWIaKJz8l4xLgJ85KLjcgXIKjoxolYeXt3dMQwDT89P3D/ca2ujMMvW5I2N21nXYAXzNiCLkdTMmoITzV85HrJoQ3kvlS3vLN7Vqoq2yQTRhagC6F615pKCTUF1t2wxOJOEZlwKHkcFPVsRtF3z5TOQQ0wPXllcKBnhV9aJUlFoxWXrX42yaNCKiUxsq8BspVIHmYWNcTXIsviubwHHxeSeXBimnt1uwPeOrlsHB6zJiG1nQAxrZc1YI+N4hwFjLV0v08EoYPT8OR/PzMssh72TUbgmS8LurMMNvYAt2gaelJ2Rc0JxKAyS2Dkne8ouddqSKvFZ8aqm+gatnlWxzKbpZCAXL/oe54W8CKhoNs+q6gRYDWAuQIp6/OVCXDatqbovJKmGrrOYAXxnGQYJOrvBN90raTlBwdpM50WEtfeOaRgZugGPCJmaUhh6AQG7IG0UIWa8QhAlJxEaz4lzypgQ8MbgOnQqj+ollo2vMOukHmNzC2orUCajjbX9Jm8Wx1QgR+xLzouNHte/8WsaJGba7Xfsb3b0uw5c1XNJygZaeDoc+PjwQHc3cfV6p+xGL/ZUahyuWl9Kma8AVZ1QWbLuy1xTJD1TSl71mqKMi//En4MKryIxT01+yib9ay36FcQuzXFY6zBexmEbN2Csl0EVzku11ESdQKcCqTmTY4EE3lqmXj87CwhSgqHMha7zfPn6Nbtp5Pn5iY++w5qO/ThJIa8TYK5Yo8z0E50bmboJayxLnAXESFDCgrWW3XRNSVnuV39VgMAYg8mi3WJYBWFfvgxVCFzXJK9fAdr7yd83zCZFS1cdO0N68d4FqGPA6rkRlhMf3v0z5+Mzj/cfubma2I8d17srYkgcDkceHx5JMXE+n4khMM+JnA4YYzicTqLB0nWM47iJofrmh+vztMbhO8/uai9tjVg+vv9ImAO3N7ccD0f2V3uenu6Zl5k//vmPPB2eeHx44uOHj8q6EMb24+MD33//Z/ph4Ob6lpubG6ZxBGWdGit7PmurvrRWB42nEJ9VicOqFReTDCOR8z1L22WnI+wTlARdP/K73/6O16/f8u23b/n9778TO9FnFFOSGCpnTseZZQmczjP3DwdCiDw9HjgczoQ0czw9CRvQ6FANa9qkbefqxCjaxL2YojBmomq65rpfNGISCohOD3bCYE2l7a2NMTUbWM/mTSJY93mW9uZSD4MLoGnz5wY4beOvQikiE/J8eOJ0Osrn5QLFqCSD1X5uHW1ofYuhQhqEmWEXcIFSEinOrACTfob6G+cNnbeNbdd3HQ+Pj3z48EFzqig/+8mG0JXYxE6wKfKZgjFeLtEWMImCRVo1AyB5wZZZDSgTGzGaLMNIhqED68gkvRYZaJBLJhRLKA6LoS8eh7uI8T8XuVZwrYGAaLvqHMhOYpfiBCzKrSXO6QAksfcW29i1qCeAciEGbXULQfIgja2E2aQMIs1LSkkyTIPCOPaMkwji+04/T7WBc87Ec9KOI6NFfkfnO7q+o6sxlFkHkqQoci+UsjKpish5AHRdp2yotVg6DCJ1kUsiplnsJ6Gtc4Z+UNkYjcmrjyotn5X19W47yU/tx2ZwGVIFsrZElRcgXK6C3jT/3IKxZiswz1FNcf23OnDGOiP23VmGUcg2fe/xnTzHJSzKQEzCVPWWadfRe6+yQx6XHS6LBuCoLY5zjDrco4LvlpKl22qRoAxCwFvDzomttTPcmIsOkKLrbnJu1ioxlDznBtjnNX4AIXJIy6nkj67fDND5C69fDTbVw9R3nm4Y6Pq1R3N7ocsSpPIxjnSD1+kOFuetTq5Cg94qdqYO72Wwc+FMqiPMUOwqTJY/bVmpgSewGhBcACb1/WH7ser8jZXxg9aKer51q4M1K7KZiyj41+BNWrCk+gZWWgaNCDQm5+mdZz9MXE87ZmtxppCzIYaenLwIqW+ml+XWfmLW/xlLSZkwn8kpEIOMEBXjrtyENblj87d217rUtYLWlqaujamwm3691PfaZp/m5bLz6crWta2HY33PzPl8ZDkfyHGh847OWYZupGSD9w/Mc8YtC/NZtK5yEnFFDKScWRYrExhyatNeWnuaOrbq9KyxjOrEUkrEJTK7hcPzEYOh73qmcWQJCx8+vOf58Mz9/T339x90ioNUwOZ55nA4tJ7ovu8YxoHdbiKGrrWplSzi5HUvhJhE1yUZstHAutKbFd2WvEDBP4cGvDUJN+x2O66vb3j79g3fffc1w9DhO3GIKUMIYi/H00n23/HMw34vo7PdgHfPHI4njucF2qG77pF2GFxUYdenvVZP6l5fH77Z/mEL9qpdNWNr77u10c8dx1s7/aWv/8JPFQnOYgoixJlkYpZM/hInjfHgejAWa3us7TRoqqRTOUiziq+XnGp/bbNnQSuEAVOFU3fTRIyB52cPpRBYdTc2Xugz17t5z/Y9st+21aEaTIGMZa0tDS1Q0kSk2r1zmVycjLfVKpG054pegTOawGNwlNaO3O5xu9/LelX1q5e2cqGwB401AVWDRL6vggKwDlr8NNHNqgVmlRFhdZ1rYNgqbbpmzjn6ocN5FSC/kHGTz5dHtmmJaRNXnAKtDu/lPWphLafEXM7kmFQLZx1iYHQNvP6sda4FOFKdA6PMLQF9pKJ3ITje1tBsLri0vVTPmpqI1uoj5BZYrb5883DqWyig5TA0Rf/6fNKm7aI9c51C1kug5DuD76rGgFXByKyTJ9cqnjGIH/ce70UzwGKFck4RVpR1FOT7KJC0FabO08yIyGVMstZV8LJp3rUjSKuRzcds/NZ2fxbaomzyEz1bVQdDbWWz+P+mL+87ZKKQpxuE3SSxRNWQkLVdwtLYl6J31bWpgZdupFZBK9h8GTNtE80GFOnfa/yUXyRzm6NaP8FcrP1lvFTfe2tDmzPFugboG2UfGQTYqefKCo6pW8XQKXuvShOWbCnWMjjPfhy53u8hJebjCWNEQF1iJ2nzyYbWVuJMbhPNTEL9zSpOKyPY9VT77DklG8zovTdTK+XCB5o6EGGzXtszrK5PzlBHlIsfMZs1Xdew/rmxyTbPIMbA0+M9z48fScsikz87x9DvKcXi3APLHKVQN8uI+ZwKSxaGc0wR5wxd11GSTK/yF61p66VYY/BWQGTfdcQYOZ9nnPMcDkesdagSH6fziZ9//pH7x3uOhxPPTwdKAe9HrPUyQOhwYEyJuzvRb0oxst9PxBix6r9TSlqcy6u2kVCPBWhPa2twKVWXSLXprHD8V79vsNZzc3PL2zdv+fqrL/ntd1/Rda6dWCnL9MOcM8fDzLxEDocz0/TMsgQ694Czz5yXE0ucIS6ax+RWXNsOvmiW0+L4F9IC9XlWJ24NJlVGU911plrfZ19rbL6ez9XnNQbVZr+brWm12G5zLe19BRQNYSGAanSKNEgKjhwN1nvcMEpbo2PtRDBeY40ENkGqhdR4+bl63VbPxc47dtPIMI6c51nP+ZoAq8bZy62x2SGXf1IQQZmikvbVtVAwilqEkWpQPT8rEJhyxqSCw5IRPSl5F2GFJ6SjxYnyu0x7RECBvF3X5kzL5oh/ETcV5CxNSXxMdioDomcrK4vugrVmVWOxsD7vXEXOpZjQCBd2nThpjAEFPgvCiMTYJgAu7ei+tflTBwLV51Zqjrxp497oLtVrscYoM2tzztZBEaA6TwI/1L1cMYZcDBkpzm8AA8nvUCHtrESTuiZmu6VMu/66F00FmExpLP+t9TSA/YU1Gan8YsvlkBiKyh80P7/atjEiTVEH08garQWJ3AgqdX8WjbFcm8BsKks3K5fTWTojEjveW3KxuCxpS6aoNhrEXAhZwNVsy8WEyYtXLUCa5irXG6j5B2zWEHU1cs1J193UnPtzn/Hi9avBpqEfcNYxjiPjNNCPPYa1Pz+mQIgL59OZ0/OZK5fpbwf6fhRtmho4FCjbPgGjuRx62FtLMRJ4VqV1EFQ0FTBFpnDFKNTgGAXJXZbA6XTGOpnQ0QJ+Xb8cN33NGmCZzUEuTknYDpKEdBgnU/dKcpSsgVNd1lIoSZkGIkMhAVMuFJLSFw0eGIeBse+4vRq42Q+EyXC1yJSLHPeU3HN3vRPHrBTEGpT6nRj5sBvppwFDZDlOpOQZ+g5fqY7VYDYO2VRrogY9659zRW+3G6V+XykXgddaHTZtQX+p/bE6x+oAcloTEmPk8Hp+PnB4fmA+HTg9P2KMZTfuZSS9M7x9+5qcM3d3N4Qgve7H81ECSJ36J4JvHRTL+ZyI8Yizlq5bRIOgJF3P3Da0BCVJQYFD09+qY+/ff3zP6XzidDoRKgPCFa0gyLSVECLn85nj8cjxeODwfCSGsCa4eniAMDjq3rm+upNg2MtENHk/bedqbV+R4+mJmBaSjUQTGKeRb7/9iq+//povv3xN1wujqbBq0qhMB9Pg6b1h9JbBS8vY9fXE8Tjz9Hxguu44nk68e/c9739+akkBNehfXbNcf52Yktcpi+ths1LcZfKUJVso+n7yjbkF1RsLWrWiNgdlCxw3rXufGPRnXs0ONyDXSm+1KoTquLq7xvcTzo/04zXGeoyRqlxlLOWcePjwI08PP1OK9MenFJS0X3VQ5J7qs+w6y243cH294zwfcU6quJIk16rkS/ZEPcg2yZspF1NJCiIy+Hw44ueF4/HEsixt71kjzFDf2rPWoEqEWi2xJFSygqqF0EYra+hkqaCVhyKtDPJoqn+2zbZXcHp7kIvfSyFzPkm1xthCncLR9z3GWFLMxCD6FMbZxhIoeu8v8AHA6IjpOr5VbCbWALbUhOMywHBKzd6ufq3SWOdFnwXVU9ED3ipgXf2l2TCDfOfx0eOcpe87AY6SaOpZ5+kGEX2u9ocpDH2va5zkV6HpEHrnGIauJSJJ2SBVs0naFWjTQABKUpAw5QtAod3edrsYrap1tSVQgupSikxeKlCygSzO/yV4LKAczafUtoI8q+hnbX2kApub7V5WkGvT7SCfkiVoH7y0lFMcZE9yBkpHTA5yYo6JZDOdTWQLvRcK+sZa9MPMZi+YDTBrNpqNNevf7rlV8P1iyuC/w2ucBqyz9GOPHzyulxhFxrEHluXMMp8J54VwXqBAP4z0o7CXC8g5n+ujvnx2Esvow9Mzvn7ZoPtUgdKYhVkUU1bWRWFZZtzJqo5Z1UOkbcxYmVPrMPXLILOICKtU4a2ww3X4i3Ue4zy4rHYvZzM5Y3LBlyJ6bhRifWZ6/YNzTFdXDH3HzX7katfTsWc0BUzH/vqWfrjmahjIKRH1bPLO0Xcd0zjoeG1JxCzgSmEdJa620XzaBjDSNa7FmVJ9iRYfBfjcPgA2ce66V62CmmKvrEE+ZU2a2nln1uT04giURYkhcP/wyMcPHwjnE/PxKILy4zXe93Sd5e3bV+ScmV/dSdwyz5yOx9YWRinqWz0lW47HwDIXjFXfaGiJ2SpZIWzSFCPLPPP48EBYAk+Pjr73zMvCxw/3HI4HljkQFmFhOFtjQWF4W+s4n84c+zPPhwMPj0/EECTR8sJcFQaqrI21Hf2u5+3rG7En47HWk0sixJk6cS/V2O7wQAgzfujYTY7bmxu+/fYtv/3uK169ulrBBX22BvC2kA1Mo6f3lsFbhs4RY+LuZuR8uuPh6Yl//JfA6XzicDhwPB0puCaanVrcv2qrlZTIMar+yRqL1ji5JX22xmJZJkNnNZIiMfXnEuGihlbPki24hPqJZjafC6OKefEP6lU2/tLajn4UsHCaXtP3e5zv6ac9xgqQXIwQAKqO7sf3P/Dw8Sd53mGh5LAWxtpZWDD9SD+I3uNuNzJNE89PHqvTu6HqHF5eZ7n403pz0hAmZ3BtkV3mheenJ5zaXErCfjO13Zv1nJP4J6/XSCFm1dTKmWKUtVPBQyMaOwZh+xjMqvtLaZd9UQxi/bfKVpJJ2EGKZU4LO9YxTcNFXCSgk6sZ8SerITpdSd5DOyRaN46xhCignwxjEMC5HzuNbTzeWS1i6vVhAEsx0rqFLVqcs61QV+OAEMImBjdNQL6ZFcIQ6pxv151S0Ke25qV1IqOpeYU1GK9aTcUI6ytCMlpQWHIbBGN91cKVMywnnRbcnpmksjVOWc18zX1q7OCcwfe+tS9S5GfTNp+s7r52TenNGlO0UGeQ8FV86LIETNAWOmW4Vr2tWlzVMh22CHi5ApcFSsaaovrZUCcNZusg9yq+XphjJplMr1/3QOde+BFNGsT+bYv3akxkm28qm3NxfZydcxRUG+ylcf/C61eDTbtxh7NOqvhXE93owRgFAAIhzSxh5vh84unhyN2UGfod4zgJ6unAKK0112TGqOiXbtBiLDhPMUHH8tZRlLopi/QThpRZlkxYpHoVo4gjpywCiBOGrjO6eIJmRZ2cUyuzlJqoapKi+gnWOpm643pBeDtPMR05dhgbGkBVcibHhCkFn4BiZJSqgislRQow9j3Xux27oeP13Y6765GSB3LaQ7FQbqCMvLm9hqJURVAxPqkUW2Po9yN+7OVQPF2RUmAaenovVd5kauLW7OgFILQBgcTayHnVDqoGWPVJagXg8pDaVF9MTc62X63xbj1YdFJCKU3zI6bIx4dHHj5+4OH+PR9/fkfnHF99+TX7/Z6rqxvevn2rwaFUHp6eD/z8/gNLCDw9HTidzxu0H07HQEqnViURYUBH13uKS5vNLQHJEhbuHx7pjifef7jHKAPtdD6rwLt8nyDU0h6Zc9JpWYHj4cDzMPL0+MTTw5NOiMhgZPSxU/E+Z3us8YzjxFdf/5Zx3LHbXbPbXbWqXRUUTjFyOh/48/f/wOHwSHALxhiurnb87q9/y+9//9dMY8/QS/IfsySBBtDuHoauw9KLfb661uco9vjx4Znd3cjj84F5eeLdj99L4OuFwp1L1gjJtJaCpAd2Sw608lPKESG0AAEAAElEQVTZd5WXaFBWWTaKuoLRUnULBTQxzGoXNTCqTANYWTmXyfRnQM0LwzT633VukAi2CxjgugHfjXz57e+5e/U1/XTF1e2XWN8JYzEbYQkuJ2JY+MN/+3/z/Hig5MhyXojhJO1q3q1gUyl0fhCwabBc30zc3l5zOD7jvIr2tUCproB5ce1r8luKOHWMadotBVhi4OHpEWssYV5YQsRZw9A7BVVE860oEC/i1lKpLSYTUiK7gs2mgWUpKz27aG+3Jk5Nw6CItk4VDqpszRbglvX3ehBWBtnpeSGcE/3kGCZhGoyjTI88n2bCEvUglwpOBVorfNGACyprTKjacijLuRFClFaY6o/UhdXqsojHCjOmgZxGwCrXeXp9DlKRRQdUuNVnIQGHs06Yln1HXzLeWYZehMSzAjDWObphAGObIKu1XgHAouKpUqHLUVrAa/Uw5cTxdJaJqlqtb9Ut77RqLO+zJBmQkPOmYKL3XzbPxFgwDqy3Eig5EXt12nq4zEGZAYaMtgtqhbOulaG+h7xf1igrzFF08rRaZ6httmjLliYQZVUaaJauyaoxRdrLi8WSsaUQswCDLmXCPHNeFpyR4D1aKFg6p0L3myRIbri0NssLsKnqIrSdVg1LflaqsDXB+AX38m/w2l1NMi58P9BPHbaTtKom4efzkfP5yHw6sxxnKDDudozTDutXJga8/MPmJqwkUkLRN8q4FgAxa9CNMcSUWbRYF7XSPZ/FhzgvbVW+EwCaIr4jBK3Iauu35DK2rblRFrC1Irng/YDrerH5rsN0HrSVMqVIyQmTMqZkek0E5JxRwdQkPuF6v+P19RXj0PH6euJqN5LHjrzfY0xHN73Bd7fcTsKUiUh7cOc7hqHnaj+JILbNoothoLcWZyx919H8cztSNulsqbsiN/ax2P0FYtSYLfX7t+1CAnSrtluNmzbHgUwNq09S30+ZA/XclOuTOGYJCz+//8iPP7zjfHji9PRA5zu++uIr9rsr9vs9b9++1sRBSiWP90/89ONPxBBYFhHA1psl58LheSHGo/ogAXiHqacfvTLPhOWbNVZZ5pmP7z/w3D2RcpQYJidOp6MMgMhSFLbG4r3EKDlllllA1MPxhHEdD49PvP/wkRgCfS8TuUpBYxtDP4x03cDV1S2/++3v2e32DP2OYZhUp/KgAtzSbnc4PvEP//B/8PgYmMaR3W7Pm9ev+Ou//oa/+Zvvmp/PWrAAKUx5ZXMNvsMgfvft6z2g7SOl8MPPH5g5cv8oBcGnZwEianErhdiet3E6+KK20MVIUcCp5h7tzDGm2UgpkIto2W1j9poo1t8v/lcyqST14cpoaZkwL3zcBtBsf1//XDVy6pni+45uuqHvJr7+zX/k7tXXdP3EtL/BWKekgEIMgfPxRFgW5iXw088/k0IhzDMlL63lX1qsshY1eoaxZxoHrq927HY7Hu47rEmYkjBarPk8tL7dLeudUEGSXMghsaQzD1HyyLBEUsiS3/XKwDWiDVj13OSoqN0HBpcMxSm6r+sdFSCQyxJfU1vdynoUtlyoXm/Ny+qrNujGmDkeFwWZCrlz7PY7druJUgrn80JMqQmD19tfWXJrIT3liHG+aawJw1TOf5lKl5nnhWUJjGPP9djR955RpTloxZot2q0FmmLoB2mZ2y58TJmUJV+pRYpcwYzVRSqQJi1XFfASBo8XgKpKI5Q27grvDMVVjUoZymKqZFsypCUQc6JzHV3VgeqkOBiIlBBbsTylWtTT6KSCRisEo0U+cF7Y8tatsUVOmfmsrDAdcFPUbi7ZVYauN/TD2sqXVbogp9I+Y7UleY7OWLxxuOJWsKnUPEkV0SyMgyMVBREppGQ1Ds/EJXAKM84UvI1kZxhMwdfzqqUj6wNcYyhzURSpvqIy9KvhGWPoXO0gWjGDf+31q8Em7wQB9c4L3VWERDYoX52AUFpLWZ0yZ1rbwGWKWPWP6qaoC7ClWavnbJvYlDUpaROhapJQTbQ6byOV7mIKvkBWZNopY6qpyTewCXIy5GS0TVDbNnTHlM2zKrrZbQFvDAaLN7kKueukJ0msei8TeXrvZWx0geIKFEuJnpKFoVCff9ugpZBLpBSZcmQ0upeRwGgrTBFnowdN9QL1+moy+/K1Vi9W5HbzVf3/ZdKvT2Lz5+2X6/vUJHoLbF2+ml6JilcmI5MgQhAh7hAWsoJtVURuGicZr1tEkLkmyaVACDMxLhpUa49ybRMqqB6GbShySup42+0raBqCJL8bJ06zNTmEVlZF1V6owYtsOqM/Y4yl846hGxmGif1+zzjt2O327KYdOWe6zgn4tSwsy0IuQZ+XTFca+p6+HxiGvk10XG29Orb1XGjaLEYSvu1jNRZCFJHzKh5YnWN9v9J+wqw3Xb9IPdx0z7Xj4JL8vQZI675sVqVBUw0ILu1ra2nrQb3a6acH99aejC6GaV8XH5I1QPedox97hknGjjvfUYVGUwjMR1icxfUD1g+YuGCsB+Mvps80EJbCKnC9ZWWtB896N+2qVru68ITl8usU9ZWVpSTHoTU06rmATQoEKesna03QVJHRtrULdQx6dWDt6FA/0SZXlcI6d8G0azGsOm8N6miXWxRckaCu5LXlbQsKt6A8Z0wyLairLcNtKEK1ps3PyvfW33W9TMGqD8kpk525oCZfBtXrHgFUD4hPbHQ9azQEMZtzSt2WrUCctZoAVL3B0s6tWpWv+8MaI207uajOkFYH7VqZXjdkaeu++VuLYNcl0sqT+jCjApPGmYtrrslzLUCUOhN3axMXHr0dQM0+pG2u/fMnO3ebsqz2Xm9Hk24U9KCOPVagyYm+YbQi2lJMbVMvLZkBWjtDu4i2DPXc5/Jz67Noj7asyf7m6/9er67rpRXSV9bZesHbvYD6WWvWNoUKntUfqPFia9+pIFv7jjVOWYE12SsYVn8AF/u0/c+u71mT785XNtia1NbCitFWOWNqfVa0fmxlmUnApzoRpfkZcaMGr5srmKLNKxoHGpSh5FWTqVO9HUsuDoOnczVO2CRImxgqpSj+UavScjbX1jvVc6vtfboXaqzz+TjmxfnDZk9e7I3LnzMbEfj1HKjfuvkpA1WHZHXBNcarH7DaT536GUMkhiA6R2HZMDYlFr/aXxF1MlrKVR/QaEI7i3C46u6J7o2lFC0Gp0yySXXBajeBTGuLKRJTaK2LKW3Eb+vi5E3r5gs/D3KGbadV5RpDdT273V4Kkdf7FWzqR1JOdL0hZWGbn09n5kVZraXgvGM3Tex2E33f0SlgW23fbC5xNZta7V89mslZAYTMvJyZ5zMpxZUB8uIIKZSLic0CKawMNtSu1sItmzfR/WfWWGprTpX/xtYuzaX3rjfzadRfjWm18/addQEuYvuN/zcF33vG3UDXD4yTAOe1A2Kel8a8dV2P9T2lxFWGhG3iXHTP1TOzUEpq3Qhl87XLzbVx8OuStOd3cdpvQoDSDq61KCWFKVEVNUa2YtKkO5cNa4Xqbet6bIMn/a3GakVACNkz65nbHtPGVjbyzHK/CYotm8Ne7L/pXaVMVubbdi0qw/tizeAip16LumtcwsV9sYYesPFL2xN9C47Sfq83Vr/e7KX+TlnXmNXMNpG83CMr2ASrf9iEOtT4Xp6dMnCcxebSunuaRZWN/VDxhGojpsV2LfYxVRqBVnyteUX99xo/1WEGNaZpr+bT1aAMFzafNYayFNGvfrFDzcUv/VO5/ACjz9YWzQNUVsE5yaeNTdQ2slQKMYOve649yU9fZut/PvmGtnAtB6i5Zj0nf83rV4NNN/tbEbfcTQyTx3WObOWB5pyJOWo7kPRUdr7j6uqKq6srnPfq5CvqW6T6irBP+qEnhF4AHw0YUsmkUrCbBGdJiZINS4KYHZmCc55SDF3f0w+9jIXvBnzXtUkubdIbsgGlVcHifa/9kTQRxiro3HWeYexFDLxYYrJELDFDTBBDJi4Jbw23Q0dvDXZJKsALWaurV/sdr2+umIae6+srrq4GwGFwlGRYngzpDJ0RMTHrDL7LOB8Jp8D58UjOBT+P+H6gs4bduMdZg+96chL9nWiCjuFcD6mc14BREPECTad+NaQ1UCotjs9tw6tJbX6rzvWXDLe+jFmrczVhNtYy7a8kOFoix6cTUDifIjE88/x85MPP77FWxLi991xd3fL111/jvAfrqfoPgrYXTqeDTBGZZ54fH4hRprEty5kU4fB84uTPevAUjA2EGC80WxoVWQM8YWatd1d1HkS4T1qunLXsdtfEEDgcHzkvM1IFzjjrefPqFV998Q03t7f8h7/+HdN+14TxjC1YK2yo+/tH7u8fsPdnYjpyON5zc/2K12+/4tWrO25vrpgmmdiSqEmbwW2cYX1+1UVn/XMqEih9eHjg//z7v+f9h4883j9hNdCuAXemJnXrsS3TI60KItf1EGBVgtJ1WgIaXK32Vm1LK7z1f+7yQG2HQimg4KFmm2KtNlNav7RpiZMxq9NDk6NG/SxyXbFkzsszyUT8mNi/suz2nldvJ7p+ZLfbMQwjx8OJd+8sx+OJ8dUb+lffwOmKPgTsfCTHR1J80oM/6X1ZSnGkvHA8P2O94Xg+sIRZBa7BWhVAbEGSsAKquGnz4PXLZU0ADEbZYZGCCBn3XoHXwa1jY51MAQnBk3LBJYeJQnk2VgKYQoGoCVx9lmhCA8ScIUdByJMw3MQWrK5zqebVnmkuqdlaPQOWOZJiZhg7eh3zTjFkbaFbZhHnjDHKVDUFhnMuLPNMWFTBx1btEGnBySGxhKiTq1ILmnKRIPJ8PuM99MHjO8hZ2KmmtqGpyVUGrRQhnLbSrbBsyqmx9qM081AsqmGAtgbSBGFjlhHf0jFdE79MmKWdsLYOWAzD0Mvodp1saaxlnEZJFJckrK9SgKyTcFyrbLW9QgvNdTdo4KEtiX6wOD1DXCcMyJIzUdm29fpNMSqifWmHtmpSqbNPpWiruJpF1nO0uAZiFaMsDEwDOcUfVM0G8YdoJdgYOWq7XgCXmArFOWIS8CIj1zzHyJwjWOicTiKz4vPKmnJt490VnERb/wrNVmrAuK7kXzq5/m1er169wjjLtNthvAHXomNSSszLTAgBVzyDGxg6aS0ZJmmjU8mh1h7nvWfUQkTX9aIJpcAUqI5T1mek951Dpug2x8gzcK4oPb9XEVbPMIwyBc91eC9i785o24mem8bItLwa+NfPrSBS33X43ogPsRaMpxQn8VMslAB2MXTWcOUHnAEXIpFAwWC83MvV9RW3t7eMg+f25pr9NJBDJs1JbNFKjNcroy+XhPMFaxNhOfLh5wjY1kZxtdtxc31D3/UsGUKSz8sW1WUrK3Bn18BfwBfZ41swoOUY7bV+rbVhkGVPbG3vM0BnSxmLnLBbFGubDO33V9zcvsYUCCcZ9nE8nglz5PHxkZ/ev5NWnPGKrht5dfua/+k//Wexk6HHNlFrOT8+frzn6fGZ8+nEh/fvCcvMvBxZliOUxLM94JxMo0s5CTszJgWMFawrqmOqbdxG2ZM5ZiJSTJzPs24/GfrQDyPTuMfbhZRmwqzPAof3li+//Ja/+u3vuL654re//YZpHJvGlKHgdBr0v/zwA3/8/glzXpiXE8fjka+/+oq/+Zu/5u72ht1uYqv/YzS+ufQLsvBZ23gqQPJ8PnKcZ/787gf+/u//Tz5+vGfqd0z9JLGo0kCtXRkvNS5zxpCto9jcuiEoAtIW90KOQv9oq1B0MVpgKa2IIqCG2oWhae7JOSEtYq3gUn83+QLwEGs0l1IZFUzQ+65mK4z/J7JJ9FPi5rWn6zumnTC7r66umaYdH+8f+W9/mDmXQHd9x/7tb4jnZ8iJtJwgHynppNdZAcVIzAtLgKfDo3TGHJ+JMQhA/EKvzwC0OPRFUa/5ONvi4xqp1oJM31lhNHnHOAn7x1JFsIvqhRVSMgTN2YtRpaZCa0uUM13yqSzChMSUgUhJhhKtPhMErG/6COt+L6WoXqGcd7kkYYRqgaEWy2VYVGSZlc1dVBtYSRxB46q0YVtZa1pheglRWdG5saNTLqBAcgzSHp9Tx4qvluanisoqCMChQG7O0g7e95o70XKlWjhMddALhc5bPbdNW0TRrZYiRlRGYEo6HZSCVWyhMv8EE5Ln7Z2nG4Q8UIwVTdzafUHGxETSRNU5jzWFGMTutjmM+FK1IU2LfW9xXliGRpq3dN9K/Oy9pRRLNIkSUE2kSz8u95LkjNO8Up7lmpNbnNpsQdhx0hRisxQzTZFgaJ36JiCcdNvoIIpeSBUpZRwSQ2kjF5TMOS3MKZENeCfPwJtOGXgr8PjyGNr+fZXdkOW3ChCYCjpRPhEJ+aXXr9dsGkSpvus7CWi9pZikSW1WWmrWyQWiaTL0A30vSUe7/gqSGRUjdU4n+fgViaU2oYjB1Ypm1MVJGUEWERBFpsd5bYnQ353H+46hF02NTqcFCb1bhDr7fsQ734CUQhFx4aqbZJArMZZsrNR8yoom55ihc4zOMXnLMYE3Rb7PyfS6vhcB6mnoGIdeNUw8hl5s/xDkaDVSlS7OYGzBmEwugfN8JMWMLwkXA7thoB9v6bz0iZecySaRTWpjzqEG3itzawWOaGj71qhqBfjSJX76uoQjNt/7wmIb/dcYfX7yoUIxHBjGSSnSo06gyuo0IkWnae2mHX3fM4w7rq6vGceRYdzT9SNWq5OlwEEnZxwPB2wxzPNMzoWwLJQM87JgNwKMAsRlDbRdE6q7WDuF41sVQA/0Op0tl4yxlr7r1XHZFtznWCje0vcTNzevub275fWbN+z2O+rEFedgGOuBFpnDkePJkbJodzhrub6+4fr6hmEcmqBlBZG8MQ02rOetfF2ceQV1UxF9meP5xLuffuKnn36GVIWKN2M2y2oX8lwV1KrMmfoB4vXZMmfWBVqffQ1eNstK/cnCqpdSA3f5vLWiXC+mttCudlXfv6zPai07NLunQCmJkBaZKOQz/WgYdo7pqqPve25ud+z3e/xoeTg8E0j43Q6/uyYV8MO1gEr5rFT6tTWuOv9cEiEszMuZEGZSDtIGglT726Vv9xqbSoOpIrFl/aay3qO0H0lw6nQCXefld/GdttmmTLEp2DqRxSorqpSV6tqEoteHkkshFpl8WSOgunfbAzQrg2adrLQBQnJpk63aIW81YFLtNKHPZ53mI8GddfVnk+rVGRWKrWNuLSBfi9p/X6+5VudjiIQlYEwhhl6r+VYDFlrytq5/rY45tq+q5XcBvsMqcKnBTj23ctRpkzk3FmxOMgkm56wTMKWAUmntpWRikoCi817ZukamcVGAqIlbBVUqILTazpp4yh40qo9VB3FI+5x8rbb3UUoTMaadE596+raXdB1qlTdnoyDC6nFW4LdBTApKt+WDVlUTWzFa0XPWYDqLsZmugLGZmBIuysSyRenvfcrEkinZ0DWNpeYl1g8yG3+jZln9cb3WbZ6vRv7J/f9bvqbdjjoBsWWjba2qdpKO0jYe7zp8K07Y1p5Rf8apQKt3rvkHa1p61TyVABdorl3aoJaiPtpZ0V+Q9xKA13uvBbuOvp230iJqrcf5TgCevmtgUysoKEtRQF1NhI2h9j8IU0bcqUlSeps6R2/hlKFLUvk1XYdxlmEYGEfRvRyGkWHoyVZbh7K0ihm1KeusFCitsJxTXAjaumWcDIQoReLZcRhIZ5k+VlSbpO0wFX/e2szKFN869XWv0P5Wz6I6KKB+a1Hb/LzdrVunanU057p9cwyGvh8Yx4m5l6S/aCtmIpKJJCLWOq72iXEIvLp7w5dffsW02zFe7el18lTXdeRc+Ondz9x/fODp8ZEQM6fjiZgT+XwixsJ8Dli3Ah5GkeHGXNOtmVt8X1qLcy6ix5WVVeV0CpUU+lRHL0OKs7Zpyvzl4gxXVzd89dU3XF1PvH37mnHq6lGPMzA5MKXwePiA/SmDkTbrEAN93/P69Wtubq7oOylMtvXVQt3LRKmoLpU8NGG5zCFwnM88Pj3x00/v+PD+I1+9/Zrr6Ups2ipksWFzt5PTrOLhsCae1lpsXvOd9dlWH2wvijs1ZiiKehQEVskWSl6LbqDPIlddqKLXdWmvlWG6RWtWULVFyuSSCTHhksP5wrCzdL20yXddx+3dnuvrWxIZ28kkbjeM9Lsb8S39TpjSYaFOAahFtVJkam3Khnk+U7K0iFaGU4s51rCoXddFTGrWf6/rZzANcKqu1uuADecdfVd1IzUi1bPC6MqmhtBv+EJt22qcauqf5JyNGRSxbuzwT5nT62XrIqzAYK76TyoJoS4gxawasvo9Zm11Fc1iHdpRC+V2bW+uwEdK0jLdGNe6OVMSUH5l6fyCdzKmdShl1RUT3VLf8oIaL9TJz6mKnjsoCs5JdrwylFIqrYCYlBVZi5vV/W4fsqEOSvFYJ626xloBKJfY8AF5Nk71O2uMvbV31hzGAE73qqvxk23x1drRUKfcmSbVsbGgiwe7dnrlFRDOVly5VSB+Y6tAneMjZ1VZ49bKBKzPp+Ip3omdJGvISd4reo910vIcEhSNoZJO5XEbjGD1J5+J99vXN0zQTU5fbffz1v35168Gm4Q2aenHQXr5LRznMyEGHp7u+fDwnsPTkRgS3nV0XU8/DXRjj7VuBTekV4OUFkI8czofeHp64PD0SIyhJRn1ZkXTRtDSOQqIsITSgKVpHDEGumGgHwcBuYZe6ee2jX622t8I8n4kQwhnwIiwYIq6QYRiLHmFoJ9db/FdJ+N7vcf5zO3ta756/SW7oefbuyvGzmMen0iPj4ScmbNOfRp6UoElZu4fzpxPEd9PdFOHNZ7ubkd/12H3A4fDB5ac+PjTO97/+CMlWkzxdN5xfX3HdHNNbw29czgDQROdbMzKYGhGQdu0zRvUIL2sHrywGvMl1c5KovrCnH7JeW5f7T3Xn2pJtbOOoRsoQ2IcJoZhJOeEzCPSvuMYFJ3vcb6j7wd2O9H/6sYdvu+bKLV83oTvHcM44L0nhMD1k2jopBxZwolckug5xNicWMmCoFcthgpktMl2GohbZVLVQ6AmlCUnOu/bAZdSpu8Gdje3DMPIV19/yTe/+YJpt6PrXDs8a860iDfg/c8/84//+A88PT4SY6LrtGJA4Tyf+Ic//F+8f/8DruvotJpwtdvTdwOG0tqBhl5b7ZpTLBwOB55OJ95/+MjDx488PTyyG/ZMw06S0SQr2JhNcjOrHRgBjjvvNZHJ5BRIlMaOksBcPs/W5II6+Wsd43oBKhnT1jpnA+VS/NhdVErWnuAa8LOx9fb7NuDSQ9tbhymFjz+/w1C4ffUlxvaM0x7jErjM0+GZD4/3HA4nlrTgBkeXPcOux9nInD0lKEOvapqp/kRJhY8/f+D4dODp8Yk4B9G2qYejEzaG5B+dAsnr/Ts93DY5ftuuxloRejYGtNphlelR24HqFDlDkYPEWYzr5Fi3gUIm1QOjugFtMaxuoOJoJRdMzRa2+/fFljdGGSZmO8KXFiCllFkW3WfKqpnPSxNrRFt5jFF7YT3QrLPSK2+2PeGXz7q1Y2rTckqwzImcwfkTy+zop45h6ikYDcTQkcBSje86uxG6lGPQ6uSVRk1Hk48q2qpBhVQQk7bN0kQSazC4tdUK9OWwgDGNEVlQIBcDOZM7CVBTbWGsyYfRCqBWWS+q3LoXZLIeMmq3t5vkuAYv6zVVP9f2uT4+a2uLAXgvwWzKhZLW78lZAt+on9kCNfXrXiuzplbmTPUhZiWJmpVNIOZq6Ds5q3NOxNyRom36Jxk4J2EQu4JE0qWsmbkGcq0z1axBb12/6tYayWQDTv2a8+z/X6/dfo+1Rs8pRyqZw+HAvMx8+PCRn376meUswMcw7Oj7oenYyGWve6229BxPBw5H+XU8HUXbQwsJZNWDqtp7BUJWjZVUGIcd1oC/kulCnbZtS5zXKcNC2tPkUevACB1NDXA8y8I3/bWy+nun47FlH0ec63E+4n2P6S2v33zBb7/6Lb23XI8Wb6E8PxOfDsJsJ8o0KGsFEMqZDx8eOXiP7wYZ+NB3TLtrun5P7gof3/+Jc1j4+O5HPv70nqHbcbV7hXMd/TjR9T37aWrTkwAtDojMQjXO6nPr1MNtEr49ZdqroU12lY1gDdgbLeIXXrXYV4Wla7K8fW/rpH3aGsPQj+ymHXM/0fmBYjNemWcpR0gLzjmGfmQchCE3XU1M00Q/qUC9TuAEePXmjmk3cvfqhmk/scwL9/fveXr8SIoL8+mJlKQNfwny7LOeG8bq/kMLnLCJoaxO7NR4QP1hikFiqJJFN6sUltmSUmG3G3n99it2ux2/+eYLvnp7zTD2dN60c85aQ0mJ5/NMjJEffnzHH/7wB47HE847bm5vwMD9w0fO5wPz+Z6x9wzTjunqWoYdDQNd1euz4sfHftCYTlvUc+b+/oHvf/6Jdz/9zOkwy4S/bDCmo4AAAfKg5JdRAEifq9WW4a7rQZPQJS7Uops1VoSmaxeAIsorW07Ex5VCK+yldp4Lg1Z0Fm1LcrGOouPd66CXTQBQo7BmyRUYsRUhrP6zGEzJ5BD46YfvKaVwffOaL78xDOMO5x0xJe4f73k+PnE4HUgl0vUOkg7QIBCLI0VlxBsBHuKSOD2fWNxCnmWy9PH50HTmnHH6XGyLB2pbr+JxGFNBpE0cWO/KXOql1fuS5yFnXclZtLSKsNCsM8KUdNJunl0V1N8CRJvfrRRqK8AuuuamPZvmJxQoqW7C1lxMQfii+VEMSePkhZQlp5jnKECRfob4UzAmaX68yqt4I63GF4WXvGX2XsYqMrSlMJ8Cp058lx+sFsZqS6Csk7RgG9FeLrBo66TYjWuxUbVNq46hDt0C9PvlYpx2G5VOc31rVeJDgBzBCXJjPVcyivhAedbeWkUxMiXr4A9TGsHhsnVzE5PpLiilgnNGCkHe4ntHVQhbYyyr/s1p4CzAGBV8xyiRwGA1fvKdIUUjnQNFBzrl0mRcJPxS324kDrXOU7WKxZ6rTlvN6dtX5Hyw8vW+kwK0TLR1pAg5iaZawjKnjLdgTW6gUR0qcIkuVoyguoAVXNrmyGJKlXRw8Qa/+PrVYNP1zY1QwPc7+qknpMDx4zOH45EffvyBP/3LH1nmwDIH+m5kHCemqx3jfpJJKmWFOwyZEE6cl2eenz/y/v07Dk9PLPOMd46wAZtCFHBoXiIfH06EkNntr5h2V/R9x6u7a4a+oxsGunHUBLa2Z6SW4OScdLNGYhAR6NNJBO2WsHA4HUWUPGUde24x2WOd4+vffMmbL15ju4Dpelw2fPHVb/iPv/s79ruJ33z1BePYM737M/bHf+EcFu6PTyxhocsQEqQ5sRyeMRmmu8LVF3v60fP1t19xfXtD9o6PH7/neDry53/+A3/8hz+wG295ffsdY7/j7ZtvePvNl+Qwkw6PlBQIOpa0WMi+vCjTlBd/1g2MaX9vvaTaF7wmcGL8Lbla+aPN6Orz+dxru8EvwAAEJNyNe7zxnHcn9vu9JOdW2nVijIQg+kvdMNJ5zzjtubm5Y5wm/DjgeglOjFZIxl2vzxjefvk1OWUOhyeOh2fOOo53ns8cjwdyOoiTUXZFqgi1EfG62nJYx1Q6160tZ8ZiscQQmM8nrJHJUt6rGGRK9Fcj3/zmO6721/zN//A7fv/73+ma67paSbBzzsznhRgDf/zTn/hf/7f/p4yYDYlx3OG9AxKHwxP/8//8R0I8s7+65vbuNcMw8NVX33J9fSsJOzIa/u3r11zt922McS6Gjw8P/Pmnn/jTn//Mux9+5P7DA/3XPePNRM6Z83zWMahrkiv00RUMMqbQ94MGLAI2CVDiyNqCaKweeLWyXjLg1EYCELl4tZgmk/OG1kkNqFxbU9FxuNT0WXPELShSkwdx4tZYeucpGb7/pz/w/R//kbff/IbsLPvrG5JdSDbw/uGJ73/6gcPhxCmd6a48xvfs5onYF0g9+axVCUVmckjMIbIwc346il0kATMwovnmNAjq6vh4TaqlstZJ4jl4/bqwUowxxJDbIS6tJBAXqW7JvpXfY0ykEOVgV3DLe8foezKZORdiCRQdXiCHre7dTcaUE63H2WhMugU8Xr5sRUxrFl8TJXXyMSTOpxlKISwyiScsmTBHfVoyyUWCjqIAj3ye7yy7aZBqVRBtkKxfXP2OXpwehmHJwoacxXc4B9d3+6YJFIIESiGK73feMwye0kky1HWdvp3sgqh+FbQNNYlIqXMa3erQg5yVrm+NjrKtApdQA53K9o2L2LDrZOS9LqTYesmULNNTSqgC8+v9yshfK8BdXiuHNRCyHqyTNrpuVMH4xjJbk5bGNFBQKRfx8S2ZtTqKurN0gyHEQsoSCIvWXWn70FihlFsvAaP3XnRwjGttrGaNjLTQtCKqVqvv1ilLum5fI0LUYQnkAtFkDjEoa8VQrMGWgk0bgKkgcxWbxl7ZxBsrkHuBRWui58wlu+3f8nV3d4exhv1O2qnTcub+/iOPT0/8+OP3/PFPf6Ikw2hu2e1v2O32jGPPMHiSEWYIBQ0WM6fTgYfHDzw8fOTh4SOnw4EYA84L664U+ZmTCq+HmDkcF1IuXN/ccn1zQ9933NxMAmr5ga4bgEI2CYy2raYoQXIQgdkYE0sUBvjxdGQJImAruoOFOAdSjHS+Zxz2eNdx9+oV1zc3dH2h60e8TXzz3e/4z//p/yF6epPBuEL/7ifMj+9kAu3hnhgXXCkczzOmFJ4+PGNy4erNW+6+vaMfJq6+esPu9pbDcuTnP/09z4cDf/7Hf+CHf/ozb958zdu73zHt9lzfXjFdTXTOMvS+gQExJjDoPV8WQ5xxa/tptSdMM6OauNRXBYfb19Qe6xCMGnfVr7N5H6i8WXQa5srMAPDFYbwk3PvdHnJhOZx56h8pbfiAjK03s8Qwu2nPfn/F9c01N6+umXYC0Fmdwum7HmssN6+u8FZaMeaztN68//kn7j9+4PD0xJ/+6R85Hg48Pd0T0r3eUwUkKkZnVp3NOurbGO02UJaBTswKYWGZT5ScGMce5wyHZ0sMhf3umr/727/l9u6Wv/0ffsvvvnuDNClBIeONwRuYU+DD/QPH04n/9g//wP/yv/yvWGN5/fotX1xdYyz88O57coo8PvzMcj7x9ssv+e67/0A/DNzc3jJOowoXy3V+8fotN1c3OCOgVimZH9+94+//63/l3Y/vefp4YD4GUjBY25NyFrmGnPVstw0sQtfEWtG6HYexTa4LcaEWMyuIUgdCmApSFKsyAuLMkvr71kJchMXXMmZoYsUGML18X9Qiq9hjajHWqoK3+unK5quxlikFmzNpXvjn/+u/8qd/+gNf/eav8P3I/uqaOSw8PD/x4f6RD/fvORxPpLIwTB5rOuJ+IPqEyR1lsZRstGgCyxyIswCXD3oJWSoFAn5rHO69CPkba7S1V8E77xW89/Rd9eNyIwJ8a75jBTpYliBFMF1BwzqNEwzeijh85zzFGo2hztJRgw5/oj3aVjgBZOhKLJCtFuxW0Mu0/6yAkzG6+vVbjbCdw6LDGpaEOQZKlilmqTFkqtRCbH6jdllM40A/9Bc+ZQUlUUHy0nxMbdGLYQVWfW/ZMeC6la1X93ouRbpxlPWZknQeeO/p+44a91efWMXMt0XpGAMg+oVehwE4Hb7TJrOpfq6ImQdO54U69Mk6A97J9Rp0IJSCT82aldObDDmUFitdFuq4iBFq0Vdkfbz6KAHDHeIrJS8R2Z5CIMV8ASg6LQ47D8Pg8IMhGMUgkLM4RY2l9BwXhprkO953UoixnlzqpMTqSwSoxZimC200XivF4J3E9sbIFOQYDDF25GyJpXBKGZ8Lzor9S2xQuY0ahzaigOEihjKVhbWx5VqQsZuiyL/y+vUC4V13wfjQHAPRsoksyyLJUFGKqGrhOFVzL4r0yi5Af2Zmns8cDgeeDweyCg6uIAja/ynJVwzabpW2wrK5Bd8VZawofp1SQRMeXP8t58Q8n2V6QliY57lN3Mq5SEtJLvhchVFlzCfqqox1onrfddihx/YDpusx3mNLlnsvDhMLRQUTUzaYXIhJKow2F6IRYbqYIucwczodiUsgR7mGzvV03dA0GXJJZGsoNXZ5gUya7aHxS9niJZTZAvTVef7yz37Orj4BnUr59N/qz0NrXet8JzRuW8ecFpwr5CQJtmutNEarM0kPy6otUhF76U2zmvzJJJRRknJTGIaRggBZtZombZi5teqsbYfbCor5zNfkQE8pyfhUYyl2BdWcc0LRn0b6vhcx00LTTdH9SdbrWZbAPM+cTjM5yVSFSpMMYSHnxPPhwDwfKcXS9SMpZQ7HI8Z2UBIlB5nc5Rw5Zcahx+335FI4zwuH45nzvFCKrE/X9eymSUZZF2lfkTO+rLiYqU7o8tmtAfCWGaBh+AvbWGOuSxstF9/Axc+2SoJZg+3//ldZr1eT6RijVBRPZ06HZ4wxHJ6f6MeR4/MT5+Mz55PofuWwUOIMOWJKElK/JhCiQ6GArZFgxmntoXNWKi0vwCbva9XEKQXYtUOy6xxd5xoYJZzCRFSHXiod40KMfGXM1Lbl9hSMVMApBtsmg6HMnJevFQmQR3+pEVR9wed3cg1MyxpIVdBJfXUFxLL679L8jJ4djTe8wuGC06xV4Usx2fVza0BdKz41EJQKoABeUfUxYlS/rgxZWzWfsgr+Vw2WisrU38ql3epSyXU30NO0QLFgJAGwWc+MT8U57cXP6brZCuCJnZhS9xarrb18bZLczVu1s/ZlJa/u53Z2/8IzpfpVc8lA2mA0cuvKwGrgbwWX1jzr02f2yb9pGGUkcJQEVdqRBeyXM0G7v7QlWO7L1hxre9n1Dy+z/xdrtH7r/x3f8n//1amOhq3jQ9G2g5IUqI5QLKbTQSzOtopr3e9ri0thCQvn85nTWTRqTqdTG3zRWv31d4mh5HNElyS3f2/t3xtx3qyCvTnp9MdcSEH2ckyJJS6iMzXPzMusU14VjAo6fSsbvE0I44J2htZDxjqH6zpc57C9BVcwXSdabVmYDiU7TJGJjRRaJ3PU3M6pXcRSCDFwOh45H4/kkLFYrBE5hc73Gsx7ERKnmkn9bzXsjT+rX6kaOfVVSvtqzdMb6PTi27atClv/DXz6++Z9iraCN8FZNu9VpK3ae7k33/WUnEWDztTkTn7JNCpJAkOY8UFHmeMoRVudrYi7O2ckxh0tPmV2u4mwXFFyZpp22lVwZl5GYToknb5WwTiztow1PceL+GnjfzSGopSWV9RYz3nPtJvY73cMfS9FmKK6OKW2Gsl6zMvC6Txz1glb3vkGcGWdjhdj4OnxifP5yDDtOZ7OMu3OO5YYlNkgzJDe95hiRB5htyPmzHleOB6OLPOCs9L21/c9/TAQU6JLEZOSJqySChZlDdQztXnJF/HTxowu/VbFCNQkV4ac2qoaWAOWftHr/PJXasz/r73qPcQlUEJkPh45HSWGitnQLZHj8xPz6cByPmv+EilpgaJdC0YZuqYCZlIEaY3RKtDsN/bSdb4V4SqwtMZQtoGrnXNanK15D9hEK9psOYVlXVBZX2WdyM+udowTm6sxVNbN3Y6XYqhaTFtAR/Z4zRL/4vJTWSGmoPpZwm7OGleKtlVp7G45A/QztnFT/U+Lxy/P/q3t1AOy+bYsuVCMWQpsxgljx9bYSlvxavyiBbJSaMzuqtNU/dsaJFyu+0tf2K5IF6r6jmwMLtk2SKRqX25Fu2sbqFFmWZUEWWN/yds/Wf9tfLT5/PrzVTy+dv+Usq51BQpb/KN/Wc/kjf2Y9b7W/anvWZ9ZPVs29mCagV0s0XYlL96tnlcVdKpAbMnaSmkLGGE1Z1PjjbL6kM+8Gl5TP2MbQ118+n9fBPWrwabbu7tGAS96g77z9P0gQs31DX2HLdLSM06CtJaCVorFiZRSeHh45N2HH/nHf/wn/rf//f/F8+Mjr6/33OwmzqfA6RwJS1Qtn8IcCiEJEn04nVmStA/dP3zAGsNuv2N/dQVG2EsFGekbl4VGFStQKys5Z5ZlaUlo1MqTUVorVMFUjzU91o4YZlIwxCVznmeeT88km+iWHb1d+BCOPAeh9RoMnXFYI1X84hy963F4jB+YQySamR/fv+fhfGA5R46Hs6DYB8tt/wV3V2/56stvGceJ3W5H1V9Jev21H5QqNGi0n9Wq+FhDJNeD/nMgUGk7aAVNPmeK/5phVUezpfhWo66byxgRy+28Y7m5Zplfk2LkfD5p+5zV6QVGWUOOmE78/P5PdP3AdH1FN430vmMaR0W1PRYVOzWSZO/2A8NgmXY91sGyLJyOR07HIzFGjqeDjv/9pFFQNqnqMDnrNYgQPQtrLTFGzqcz42jYjQoaOAHPpnHizZvXXF/f0vU98xI29w/GOrreEk+Jh/sHng9HHh9PLGehm17vrxi6jhgXvv/xX6R6fDgQwkKMDt/tOXWJ0/lf6LofOR6euf/4Hii8vr1lv9vz1ddf83d/95/xXce/fP+ef/7TDzw8HLm7e8N+uuH3v/89f/03f82yBO7vH3QMqYwizSkzh0V1UwLzsrSqdspJBS7L2maKw5jcApKklYmaqAjLIrYJeKv5bZx9sxGxFwm2tdqszCbqe9ckuh4q1QFqgAK01i35XqnndPRgIDzP/Mt/+we6vuf99+/YXd9wOJz48ccPLPPCcj4R5hOkAOdnSJEuzvihl2DIyoHQedsYSUOnkzo7AY+2QWTOaz99I0Zt7t3rYeqsaRMpix5kMSaOp6BjySPzLCLStdWtBmjWGGlVMFKdsM5QikxrshX00ACvkpjq5DlYE7iiSTwXz2iTWG12ygpGbP2KrHmYA08fL5lsOYtAImxaqkB8GpBVSybF2oInVb4YNr5Ok7waHCRdh5yUbZMQkN4CZiZGQSOqEoP3Fq/AXkwRsyAsDf08p8yztNGHsqbqT61+MpKhSLtS1/d6pvkWGIYgbKw6HUras2UNrN+sa6lBiQTRuViwkLOV1l1lBKeqtaCVzaottXkYYAQ8r2dDpd0n1ZWy1uIH8V+JLNNtsuhiVHBZQAa51hASKa8gmLNQnI6714ijZAHNc9KqqzKvqgB+0YrI1t5F8HI1AAuarFqK99gBgkvERdqwYlwIMZHRASEl0+m8s0rf3waj8qYaLUkWqWZW9dZWm60+59/rtb/eI0C0bwWxoZdzrO+EVWtwjP3A1O0Yh0EFS2EOkZBj06KU9uv3/OEf/4l33//Af/kv/4Xz6cS+9wzeEc6ReRGfvoRASJGQcgPsng8Hzou0q394L1XdaZrYTTsKmRDPpCwM8Bh1L2cw6oejMsXPyyLAsjWs7AqDiGB4jBGdJGN6DB0le0KAtCSezifeHx8EbFIG0cfzkWM4k1PEOIc3PS4lrElYRAPTGofrJ05zYMmF/O4n+sdnDocDHz5+ZFkCO3fHb78euHn1hru71wzjKC2muo+SxiOioXPJ+JY97xQAqK2zBZAWF1O/9hK4LbI/cxJ265rkfT7mqj7tIglTu8ym0NqF9GciEvulnITl7RxxDgRtJQvLLKPPjRRAJCkvQODh4Sf+6//nf6fre66vrxnHiX4Y2F1d470TDU31ZdKGbRgmx2t3zbTzlJI4n888Ptzx+PCREALPj88CkDaF1QpY5lYoFFZP18Trq6ZqSon5fBZQoZev9arxut/teP36Fa9e3eG6juMcENBgC84YwhL44cf3vL9/4PmwMA7XeGf1M+Dp6ZHnpweJL49nUoiM45Hn5zPHU+DPP/7EEoVhdTw8Yq3lqy++5Pbmli+/+pq//bv/hDWOH9995Ps/vycn+Obr3+Cs5T/89e/49re/IcbE0/OzFuzEflJKHI9nLSZKITunrPGVjk6XSnqLu2vRo5SiQxmUwdpin1psrYNc1nhJdpsmsk3YbbWlGNOG2bQyT2qiW9uTWsGAy3YoX/V2VCz6dP/IH/7+/xC5h37C+YHj8cRPP71nWRbSMpPCQkmRvBxEbqJE+mnCCo4jRU8vk7qtMwy9VwDJtrbhrPeSsuozlsL29uoZ2oB4bYcCdMw9xBQ5noW9v4SoQ0hWMEgU39DcQWQ1jDUYZ8nFkIrHZEMyWdSbt8l6YW3xLxsQ6iJmWn3D+tsWYECK1soyyynLOao6vDV1rT+7FneoKHd7Tjkmog1y9io4JJMnk+6Y9dyr9hOjAEbHY2aZRY+rAL6X2KOqAmSNOYaxFyY4WsRTsfeXcaCYn/jHEITRI0GrgI3C3E+Uzf1Ja6NqQHWd/uYZRvmzcUZjJS9DWnQLGastqKqRalXDMi6p7SWZAvuC5aRL4bxnmgact7hOGNQ5a4E6Z4wWjSW2WxR0D6rxpfvMmubzJdbNpGT0s3WYgRP7QLt46qNYc5XaWbA+vxXdqn6i7ns1OnWJArRZ+r5jhyH4RAzCZCo5kPNCLIU5ycAoh2maT9Kxw0UMJRP36r/VNhTx7fWWjV7PS2Dxl16/GmyapokqKCiftlZXVgFw1bhRh991XrQJkNY06UsUZ3Y6nXh8fOTn9+/505/+xNPjI/abbxi9Z1kiS8iEICymlAoxlhYo5RBYkgQJKZyhZK6ur5iXGQzEtGiQFAjLIounScr2cA8xrHowipr6roM2FK+yWYQSKhPkIEUxtnM4U4Klj2e6mDmkhXOKlJwaSm9Naai18wPe9hRnCUoVzIdnDuHMfFw4fDjKBp4Nu+6G/XDD7fUtwzThexUEp7K+NhX/drYoOqv98VtM9S+//rKxfA6/vKigcwk0vQQELt7fGLquozjHOI3s93tCCKQcKUUF11QU2XthfeQceHr+iO86ko0MZUceJHj0xiuNT8EG3Xy98zDozxeptg79wDCMhBDAWpZFRv3WAzgr+8K2ypy9qLpVDQthbgRy16vti0Nx1tF3PVf7PdfXe5xzxJguHLw1Fu8MhszxdOL5+cDptBCCABh9NzCOI4+PZx4e7hWIW0gx03Uz51PAhszzUSZ7PHz8wA9//iM5Z26vr5mmiefjia++/SvGceL+4Zn3Hx4Jp4VpumI3wRdffsG3v/mGeV7o+o55Xph19HGMkcPhqI62MOcFlBVSxx5f2oXamTHUCVRZtUJqgNNajH4h+G6+bBNEFJ3yUWm16/PZ2lvLszXx1AQyZ53IUK1/1dtK58j9u5/AWp4en+nHHcuy8PTwJOD06Zk0nzAl4XPAUkSAV5lIvZd2gKH3jKMESNM0yKE4eKZdp4eprFWImXkJpLy2BNeDTO59XcWqw2RN7VJLMqUtJM6nCjZJ1c4gFFqvE9VoVZm1w030qqCYItMzapC5Wf+VAYMGLtVWN1W8FjyV9pV2ONWqjqFNT4shkTWos66C99peqW+3foxqI+h1psoaNEbHaK/T5+rzhspsqq1q62Gcmz0EoZfXKqUxMHb0vUzjyLlOl5QkwFpLT0cprn1Nrr+ODy8rGKpCp9JKumoMir0KcCLVyEwMsrYCiGlwWtX49bA2RtbJKEBSyurPVh+/+v5tQNeCSH0+uehE2JzIaRUH3YJ063OvBwcN9KsaV9L1WhkJNCAf1h+pldYKhNFsaT2XXlbQ6v5v72RWu++cxSD+fFBGaCERohEmqJYqLejUMK1Iqt9fE1EFyYy5dC41uWpnI1T2wb/Hqx97sRlv25njvFORbWFNS1uCDDDwnVcNEdNADBE2ljby5+dn3r9/z08//cQPP/zAfD7xxd0d9uqKENehGzHppJ7qRwvCdD0v+ixEyHW/33F1dUUhMy/HNs6+7YVqZWUN2kPIpFy0JavbTHe0yNRYj9HYSdqqLSnKNLrzsnBYjtjioPPgDMc4s4jghLQlGLXwIs+56ye868nOsYSISZlknrHHM8fnE/cfnsgp09kdr26uubq+Zbfb0w0dIjZSQRHaflIDERupZtMyAZodV9FzzWaofrGuCWwTh78cVf0lsGmNF8Teq/dNSadlFpkc6K1jt9uxv7omhoUDhbIU0azuivoteZ/j6YkffpjxvmN+9Zr97opxmig5SlwVF+IgYuN+GLHW0XWWvhvxnVNQfqHrJa6f54WSrEyXI0FJKiY9k9tUSgFPrfUq6LvGUjlnQgjCOusGjMkiSN919MPA1X7P1X6PsY4lJGVorcLJBmE63T8+8/7DA/Mc6fwgQxK0m2KeT3z48LO0YgcoGU6nhfMcwUTe/fwTT4cnDs+PfHz/DoCfvvyZ25sbfnc689V3/4Gu73l4OnL/8ZlpmHhz94ZxGHn7xRvefvGaECLd4AVI0j0WQmgtRhcFk8rwzVUomzWZVMCk2UWubTeqXVdZLmVbeFGTqXZT7XAbR1EFmOt7rwl+fQtbBHDa+sLKVKlPUc5c+f7ldOLn7/8shXk/YKwnLAsHjaHScibFWRJsZNiS6I12OGsYOimuDX3PNIw4Z9nvB2V5W8ZRfH9YpJ0zxMR5XlohJ2ocGGOqm4mcs05nVma83mSK0tIvU2CFuAClDdfptJBcIxRnao1CxOG9VSkITb5ljbRNa7vBy79+ilyAZDV61vNPZncUQtICjv4CNvHFJm7TN9y+5dZX560ttdhpFaVe/Y7E2SllFqBPjm7o6FRao95z3XSVnQtoYUpAo9qNcgk0aWNb0ilxRtr9a/xWpSLkB6rOm7Ibm5wLel5KMVK+r7blIUMLEPHrOrW66jSXZLQNtXZbFYy2tNXCJRpDdH2H76xuBrnXup7eqk5rBe9UlL3VKD5TvJKYD70Ho9IFogFW7xdtJ81rFbo9y6qztQWa6ht/kkMZmm/0ztF3clbOfWz7JCiuHXMBHXrmrV3tT+PDFsxTi4obDW1tD90yuX4t0AT/PdPodqOKX7k2Vth5j8/iRLq+x5DxqQNNuq0TCm/WiTIiFG5IMeN0vO447BiGHXO3cDrN/PTTB8K8cDjMpBgbDXwJgSVIlRNjJdhEdHsMgrLOs7BIkk4zkLxY6ZVW9DlMqwxnXO1xLKLWXorRnmJLMYYk9oDvB6b9tbBcfl/IMfDVl19KVWiQSSAxRK6mPd23v4GccTnKZ4UAS8Aay264onM92VlSZzZuy3A93fLVW5nKcTzPzCHSjxPjtTBzQppJx0QJQaocNA6IbmKH0ZGZf7mF7vOvasDatKDvX/9tdSBr0lnbI9dgKedakXmZELVPkX/XKpAxhm4YZOJMFJZSDDOUqIeF0vaD5Xw64cJCMYZ5mZn7gRSCjn+ehPZsHM71YAwxBO1VF22uGBMxS+ubNx3Xt7caHMj0u80lYozFtvW7QC2Qy5cWoZSS+iurExC7VZ/A2FWAj9UJOSsg6TxHTLE4K2yom5tbQBzD6XxiVvE90UmhJbdVUDKlvGpt1QrCsmAKnI4nTocTpViZ1mA8XW+4uXXiVJzjcDoJYIYwQfqxx3cdOSWGvielxP48sd/tpDp0EgDqfD5xPBgikcUIGCPjyRPFZizaL+8s3mklWXVrNkssQX8pKm68ttpuYm7QAH8NyqsN0eyrVn7XwQKmVQUa2GpYJ3xYpDXNGPww4DtH9h03fi86XslDmkQHK0dNXNf2Sq/gg/eOzot/c1qd6zpLP0gV0EadeKhqirnUinluvd41SZex8mKL9b4NwqiZhoHeFzoXGfoKYtcmBeHsWGuYxl7os9ZRnNPqmxX/ZixdqXoIGZNX0KQA6HCB2r5FQXTaNgfJBj/AaMJqiuiPaZS7ghnFUFEfW3ss2oPfvrY+qh68RbWpTGvxKZ+5jvUvKyi2ITOTM8SgFaSMnkNaIdVJWCvAVhogJKKhUNvXSlbmVclQ4mpzpiaMVdBSbqdAAwj6QXS5ci54L3vZ9yJC2dYEpc3XCi1rW58xyoZixVLW9lUwtrTCjohSWhH2NoUUZEMVC0UTdfR8y6m0JKZN/GlHxgrK1Ocin1u2lyy3q/GaxeDrNDRt3SkKeBXgk+Oo1OeF+AGT2nrUynfnhZlXiiepgLBYpQCKScN+x3b0bj2xtoBabUlYnYtZH2+1PP49Xv1O2JXGW2E7ImCT73WgSjdgcQx9L8MeVK+tUNpQCgMEF4gp0Q8D+6sbxvFegMlceD6cSEsihcD5eBaGaoyElIgxs8xRJgBpomIMeOlC16RupiAM8pKFIVn9qAj16pCHWqDJymwxYlcm58Y2K8mSsozMHvfXvPriS/b7G0Y3kGPkiy+/pBtk4lxBkofbmxuuxxFKxqaA0BMyJgpbZjde4X1PNLAYKMZgnbDCrm9u+OLrbyWoTiqH4D1+AoywSnJKFPXfF2YPKnpfk/ZqN9snKPFaE1uujoCibcJyFme79m+s3mlNWNazbE386qt+XcBS1fDZJAAVYK/X5bxnGAecd6Qccc4Ql4VQz5KiU6EiooOWMs9Pwkg6n8/ElPCdZ391pUOAPH4YV8A8oQWocxuh3g0D1nnefOGEtRwWQpihZDKrVo5R9qFRXaL1ZWWSZ4gyRdE7bJG2KO9Fb7KybVKGJSgDU+Ow0jnx78kwDBP7/TVX+2eur28oJTGfF5b5zPl0JifIuWrJVCBaH21LxhFmPKI3dj6c5ddpJmcDiHzBME4yFXkYyKXw+PSk8am0j1pjtChluLneEWNi6B1D70kpcj6ddNR8YT6fyabgTIe3UTTn1E9lq0xRnym+aiytxY5qfzUeMkZZ0VSWj36/WmDKKzt8LZgooGSENGCsllcrO7GshVdrbLPigrBITOdkr1iPMY4yOl5PRoG0hZKD5mfKvLICOloDnTcKIlSygqFXYL2KfZcC2UsRoRjoi2/Xa5NRndEN0ygqo0RcEbnIpFvfOaZppK/tw1liK69FPmcMzoBTHTfvLAlLQorUXSkYvDI5hTWUTGKrZ1vPUZ0Nj/agoeFF3dmbfElWM6MdAqZGcgp0b89fPV9pfmLbFKgxivoHKRLJdfHCz2xf9VgsdXE3+U1OoqWVVM+n6MdIO5awrLMIDskOr8CO3v6qJWla+1nWCc0y/Vvi8RhUwsRKwa6xZ0yN49bs80KyQ3Nd64RJ7pW5L+a9gkg1R8g1/zBiL9Yh7C3NPYwx9L3D68CYopGFNdJKm1xWnSbZLzldFr1hcwy0HFGld3Jd57qO62nQQKkaXyHtoJ1VprY+qAb61s+oz1y/XvQYsibrMyk4I3Gf94as01pz7tRiKw9VcnwJ915iBWW1x1L9zWrMlUm42uSvi59+Ndi0f3UtiOPQEzVQ6voe4wzDNDFOE8kXrBkwyTONE10nfeBxTpyXoILC4vz6fuT6+o7r61turu9IS+L+4wM/PP8g96SooOhZwBIDp/mktECIpQjDoJNpd+c5kPNZHoWOvBbBU68V6EHbEjKlSKBtrSTsMUbCfKaUIk4RTzKOZMRx9Lsrbl59wfil5/Xf/ic6a4UOm6NWcyIpLrx5/Zq3b17jLHibsKYQlpllPmGtY7e/put6FTuUFoeH9wfOh5nXb77gN7/9a5z3zPHMkgLPhyPv3r9n1qrB0/Mz1kAPNDE0nejkvcf4yjr7fHJXncD2dWHApcg4YTYbpH4ZWCvupn1EAwlyJunI71rV377/JfNJJzxZy7jfk1IEKwDRcnzmFGdJ/LO2dZVESlEc09MTxlmhW19d4b3n9vaW/X4vk+uGHcZYDs9HjseziOAFETiVUc6e3nte7fZK555J6SzAl7L0pLlVRH8Pz0dttwwyhaUUwhKIpjCOkwqkOTrfM/QTQzcweJkgWFJhPokOWT3sw+I5naXiZfD0fuTm+o6vvvqaZZl5enzP8+HMfD6zLHUt1Z6NaZXBOQgtOKfcGAfnw5FTPvBwd8/9xyemOROWgrUD/eS5uhPqvfGOD/f3elhGjDdM/cjQDXKAFDkE52URYdkQeHx4ZJ4X7u8f+TnJdKDFZhICcPhBApTsoz57CTTkuq0Gz6stiWC/2IDzmqBuD0cVwa4OVQAjPXRVi8SofUkwI4wBcdJyiFZwTn5s1fmq1e0amHnv2Y07vIVhyAx91n59vdZkhBKLjHvF1EBDrmOJAlbLuOf6nOXZJJ/pvSeXzKxVuRASpkhwMC+RoC1bpUiANo4dfe/ovWO4lt0edXStc4ZpEIHEGGSij7OW3U4mXM0B5oC0mBlhVpkUwUiwZkMQMJ4iiQFQhHTAStsFNnanp07FduqXoYCjoJPPWz9/i7mqEzbiO+oBeeFU9Pvli5kUCqcsbRNN96D5r/Yn2iQNKoCwZXIakoqLS4FErs25RNdr0J2BLECQMKkK3ukRrPYvoFWt8CVinIFC13llXCZCXFYWjdqbjIW3DEPXkrawKEOL3Fh79V5SLBhT29oyUpw0K5BqBHCy1Y4tGCe+33lHPwgFvBssXS8C83mRdjkR69YJN1nGzqeQWGYRqPWDxTizBsemBqHr9RlkwosIJdVzAJk4lwsWR+c6etdrq7EnlUTKIvIpwaG5PFS24LEm7gLmynMce7FxqwFazpmQFlKORAwLBUfGF0ttL1/fvCGgTQSTItNO661VkczPBeP/Vq/pbpJgujOinZQlhsLBtNsxTXscjv20Zz+KXg1WILYQF5ZZRsPnInT+aXfNF198w9P9E9ZJEfDDh3viHCR/0PUVnYZMCpnjYZaqrCZKzlnGscNhRfdGmbiVbWaMF9F3PXtc1aTRc9yYhZSEyRGiRNadspkKniVZTHHcvPmS3/7Nf8QX6P82iymZCEZ8UdS4481XX/H2zR2GQgpHik62k+l2nv3VNX3Xc46BYxCx87Qkcizcvv6Cr777HdZ5jqdn5uXMw+M9f/7+T8zzTDgElnOg6zoGP61M0HaQqL4RpQ0FuCzciY3VYutWcqAWRiXcqcGR/YUkEY2hVp2ZlnxUJoIO5li/d8PGK2sBsOt7rm5vSDHgHMQwcD4cOMRZk5XU2l1qi93pdKZOH9zt93Sd5/buFddXVxjncZ0U7M6noAVco8VdSz/2TFciJj59PeGs43h45vj8CBR8J/5JfKsAkMfzmRCixFDLWfSXlgjlJEU6ZUv0Q990LusU4BCKDMEpRlsfDXNfGPrCORiuru4wticu0np7Oh1498MfOR2fmZeZGNZzqyZt3snc0ZxFKqCkQmc6Ss6cn8ROHu6eeHw4Mk5Q8Ay7K/bX17z54i3TODLHmR/fvRO2nepsjkPHMPQYAzdXE4CyxhdCiDw9PDHPMxbD8fEExtLbgeIKOAGWoDT2WvW9QNNuQ/dyddgFmkaVMaYNpJA9uolzWnKrP9q0CmU9rJ5dvrJf1MfXIl7TAlJ/XXKdwCf22HdGpz6C7zLebwKFAikZktZ0a2yQyERtw6qajqa2ZGoSnbJoNjlvRcA6SJt7iBGjE2jnRaa1mU1SPgwdXe9kCmXXyZlloOqK9Qpy5RQpSViU09jjveV4zhxO4p+hJ9vCEgOkWSJmK6zpXDS2qlvdVv1Iub+qhac7XvasIA3iY1bEWYoFba9rTFv0ZrSil9dRTfUtARkQVIAQMyGm5ifqs2mfr+FdBeXqv7dHa4Rx+vw4t8KhUXak67SA1gmzx2jeU3WWpMC7Mvql20HuNQQ5I4w161RKtSPvpcPFWksZunoZjdUFEttjpEiO6kFXsAkTcSkT4zqUoQ6VkVw0aQtgApuwHYyua7ZtDPSDZxgEq6jdB85apmlS/U85O3MS3cIUkw4RQ4E4VM5ZnyuQkm01u5UWUh1R1uKl5s8a342+Y+x6OqNNsUX3WSm6brat6focs3ZHpNYloTUqht4qC6w+/wwpEZWg44oMQfCswFdd9sr9yxSKxlBNX21ru5vn9K+9/jsEwr0urG35iPx9eyCrsCde0Ur556w6SQZDNirSauwqFN33+K4n58z5PANGKw11Ag2ULErwzsqmMylTMK3CnpK0ilT2AkbodqK34ej6Eec8OQdiRUFNVhdg8ElMolOWDMZj/UjXD4z7HcNuYup7rvd7eueY5xPLMmvSLHoZQ98zTZP0JLNgyMioQUFx+1EFsRG+VQyJvltIPjMMI7urPb7r8KljSIFYEuYjFGpL4CytM963yQIt2dJkvNS/NBSymVELji4pf2ZzGG0RZTSpljep6LUc2C+RUDbvp8l8aVaLCsRQKypbyri1FopUsyiZuGnzKFnp2QZpH7AyRtIqMGGdo+s6xlHamHwurcpZJ3BUp1M0OBThet/EQo3NYGM7sOvoborFJcvSddTqYi61agdQR34KKl9tuVLEKwU6Oa/sFdU6ioCxqgkj1+R9xziMurZW11mBDQxYcb1mc/DXqlzO65pKUJ50xLscwGDa/fbDoMycrH3cAgRh5RqEnWhwGjQXY7RybBnOA2AYx4FplCBz7s+t9TAjekLFSYuIeAR5zs7YTauL/FtWcXJjKthkVrYJGaHErja8BYyKIv41ETcI1db7lWZ/ATZVmzdyjOlIjXYw9p3lanJ4Z5imwjhqxakIEBIDxKhJuDq1VGprigJ22QCp7ZlamcYWcAaTLd7VhEIOWZsFRMr1WTZW+Or0jQI4AjTKGPL6uzhGq/3oUiF2GawyF6xqGNhS1JYy1lidBiP+02wwgO3u37j0Ki20niub/Mu8+F2+bNo/1Krb6gz+wqsCUlrBrD9a98PGrbX3+9QTKXDSUHC9B90jDWAoep0b0GMNDtc9ZViryVLtKziXyVkq9yklcrWzJixJOxurnlD2orVVyjbtVP9rRSuC1radP7ml6neN1YpiMWB0mptb9VFqAm2sVUaXiJIbzMrSyjVQqmxJ9e3tDKgfWtqabytrLxsGDLVNXSG/9fFvTKaeVy2P0jd+cZus7X6uVroV4LVFGDCUtRIs+UxpAXP5xFDXvbQueaGUTy3n3/plvQbEVf+L0hIgqNtK9rd367hogDb2urYpF4m1ul6Er52ymmNMzPMiNtJYzmvw6EwHNpNLXJ9HLuQ2FVLONacVVgFWpV3c+3WqUNa291x9vYE6MGFwOzo34Pqebr+nH0fG/Z5xv6fDMBUR9g7xREiznBfaAiEx1AglEUwgJy0uJBm+0Q2dFI2cobMFlwsRS7aFcRy5ur7Geo/xBTdbzssRjNxvzpGUIq4JyV4an6nPopnMykJYvWONGDcAUfUrCkyvTrH+eQVDW6Hu5cebbRymvudFnHURU1WbsgICUuRMKdkpu7TocyoaJ2cqB7AyoXPJWGeJ0TOOMvlXxNllw8+zgE3GWKzvmhaKqzFU3+GtowvyTIwpcgZbNfIssVDMeXN2C6BS4xhpnfFU1nBtoxHdvNjO04JRlpGw7mwUzT7nqmC3yA/kFFsMJROeejnrtJXfbjoc6rlbh2xQRGuFLO1Xoncn8WbX93Rdr7mKZ04C/GLB+HofcgZv2adt4JCRVp1cCsMwMI0jzlrmedA1qVlB2ZK4GuB4MSigrMwmKZqbtoar1pK03rXvu3CCdeCOgE2dDiLwVhiqYFqxpbaKVwgAg0olrNPQSikMveVq7+i8oesLvpM1LQll+EOIdZ3lBkNOmExLXLO26bTYp+Y0ehZkY3FZI8tiSV5a3mOyK6iT18S5NP+6atZKXmi1/V0Ak1LPG69tnk7OTaNrSxFigjUiWm20q6YOBVm3umnXXTfqCqys8cz6h3Xvt3gHKLUlry6F/nArqOm5Kcf1JrbSWKa0iZqb9/8k9Fr/oQJxFLG3nNd4z9brKNWnaDsxtsXyFKnPU3OQRjRY2+VSypshNWpL+j05KTNWz7Zt7rDVV2yrtrmX1u1hs7LI65qUzVqv6y7Tg53alhVCirMNAF0fj5HpmcaQYxSdS1ksjQtpZ/dqW5s1/XSVW1xUNjFUBRbrezT9SS5LrYbadVAu3nPb8VGNqB47tuYKrrS2w1yy5CpmjZ9KjcNa/LRd7ct7+v8lavrVYNPuZgQMrnd6cK2T4JZ54fB8gGQZhxtpaxrq4VRISSoa3nVimEWMy3vPtN/x9ss3OAfP9x+Yw4xF2osMFpN7LEIz//bLv8J5z+H8zPEsY35Px2fmEIgmETbOBGPYv3nF1199LaKIN9cM48Dj0wM/v/+x6YKA9hMPI8577t6+ZX9zSz+N7O9u6YaBb775irdv3+BTZpgDLmV87NhFMfC+F52qrpO+0BgWHu9/JCxHnLWinWIty7xou5vH+h6KrMHuyuF7z5IiyUAoiQScw8Lj0wcOhwMPH97zeP8o9PqbG7xzqw7OxiCaX9kCTqyByi8FMFta4MUbmfX7arKxfkvdaKWJ8+UsyUtVzFuBpdXNtP8aI21YptA5EbWcS2aeZ2IIzPNJRh97j+97ZQ14AYz8meNpxjnPsiw8Px+l1/9a/i1GwZiNFRaUwbDb7dntdppwJZYlENLCElW7Qp3k0PVM/YCxhpvbHYa9UpGD6j/J2Oer6xvGccIYy/X1tVCEO8eHD+84PD9wfXPDbn+lzkOCrSUa0KAhRqlS73YjX3z5lvPpRI4Lx66nXKnAb0qcjs+EsLDfX9P3A7lAWJ44HYXqPZ9l1LRA3dJSGmKkT4lxGnllZVLd1TjijCWXQM4B75wARzpBr+9HYRCcZdJQcagosGG82tONA9e31/zVX/2GZVn44c8/8Pj4xLIcOJ4egMzYd3TOtads9NHXI7eo9kDSqkO1TXkm2jJHboi+GJ9pyUC1xcqc806S677vGAfRRCkpCzNnG2hVh1wkApLqnATjfW+5vvZ0nWGaYBrl+7OKLJ+OkfNJqhnLItW0sKh4OivLR/RyUrN7YfhY0YBzkmzWe725kUsJKSvbKXI6nER8NwSWZWkHtVSMRLjZ2MLhkPWePX0vRYCQIUdYEtL3X4y0RFgwSQDFkmvLsbb4pc1hYuq66mTCLIKsUnWRa7beNE0W06ova0tgamyozSnf1p2Gskj+tvqRteJXfcLar7+CYdvgaJMYXn6FqnMiQJsODfC29aXnmMnG0OYNY6jTssKcSCGrTapmmALMMnVV2rSjtvRgaMWWYezph141AsIaBGmluAbUon1UEy352eiq5kDRYE/aZMOmjTwVaV8YRh1tbOrkJks/iIC5dwpKWkPn5RpzdhLsx8zpcBaWQ0z4TvQTh9HhfBVFF9CrTZTSyM5YQ3E1UZazGWjnj+/cJmhSmzeidVYUhDPaXllbOCswbozB9r6BwXVdhqFTirywsXLOWA+peGwqEGXCStAKveiXKRB/YXvNvNuZs/5+Gcj+W7+sjiLP1Mpkkb0eRUT4eDzR+0HYKldX9EMvdqO2EJagyaU8L+8FJNhf7Xn16g5DYT7OPM5PGGPxdlCNwB2dnfCj56vXe6yzPB0+8HT80CbKpTlRJ/IYI5V/Zy2vb7/ku+++kyTaF/E/z898vP9AzplBtXS6fmDYX+O7nrvXb7m6vqGbBqZXN3RDxzdffsGbN68wS8I8nyEmBtNhyTpyupPqLTJBLMWZp/v3hPksSX4n1e/zPAuY4CzFOTAiQN05h3GWZZkxKapuTmSeTzw9fuR0OHI+RpZTEiH0ccD4bm25Lmu7xmUs9GnaQAVOy5psr3qGa1JbE8Sa+hrAONXAaUzbzeeZOlHp0ySrXU0pzd/WAqEVCr+ARTlzLpn5fCamSMwSszgnMWYDi6zFzZ5ZOw5SLpzOM74T5pK1TsAd/f5xnNqUuGk3UXLmdH6WOGpeOJcg8cci4kjjMLIbJwFZxp3YveoQVbyhFNhfX/Pq7hUYw3I6kWPEmMKPP/6Zp8eP7K6umMadMBpsB8ZyniPnWWK4buiw3vI6vMIYw+l4JKXA4elZn5p85uFwICwL++vXGD9RUmSeM8fnmTjPhJOI6/VeErQYhVHVxcTV9TVff/O1CPlPkid0JZIpdF3PzfUNne9Vo1bE/+d5Fq2UZIhZBnN0w4D1nv1+z29/+x3LPPPHP/6B+/uPEkNTwR+vgGhlAanuksY9tXBZJ0jWP9eiSG6aUGm10xd2JFp+EWtgGDzOyZ4fexmEIjqbl/ugxmRyHvpmswboe8vttcN7Q9dD15c1XkoiG8FZ2N7LLO2ci05Aq7ZAqTFgHbW96kUZZykOOgdZ09Z6dUuQNsGwiBC8AFCR+RgoxaCqBa3wXFvmnJP2vb53ZCznkDERllhEjN4aiXmctBr3CIBngkofGKMTeFf4oADG1XjGaNueXq2hFYbk9lY2DrnGUOnTh7Xd7+XFoXbxvaZhLLahJ5dFW/FJa0v8y7SveixxUXZtdavFtATLOVyAFTRfhIC6Laesd65MPKRl3iAtlDJ5VrTXLBJzyXAtaaU30MgiGGQiqdocek5VkLWC1lYHKxQnCFjymWQqE0ny7b4WT5wVQIkqp5KUsSqMID8MGCzHciKEuMEIlR1nDcaKmLp1lTmW2no51UErpUiBSdIiaR3WdoDaRdL5bgWgKgPMSm5dqCCZkcJarjFq3YsCBq/FPonTpsGKnqINFLSVOGucmXVITIFQAURrRfdsE79/YmK6/pfw3yff8dnXrwab+kmotXjbjKuO0QshMp9mLA63swzDoKwRAR2koiTUbmuc0o2FuTEMAzd316QUcJ0jpiDGUkSf32DIeIZ+z+u77xjGicfnD/jDe+b5xPFwIoaFRELn3SnIZXFux93d14zTyOu3r5j2E93PP/J0lHGotZd82u+5efWGfhz48rvvuP3iLdP1ntfffkE39FztB6axp5xm8k8fRIMpW2y29N5zc72j8445nDgvR5YceHz8wPHwyDSM7KYdxhhmZsDi+0HavawT0XDvsZ0jZklko27PEAPH4xOHwxPHpweOj4+Uacf1tFPj2XKb1o2wPv5/3RC21bT1e//1AHyL4tdRkRW5xUrfcesfv4zTNEk1m+QEOmtUWLK0ZPtwEvaY6HtJxcr3Hc57YRMtoVVa53mRtjYsvuuw2kturdFxuE6n+l2RUuR4eiLEQEiBJUVtA5wFxJgmxk6qd9M00PlOnYYc5EKLDky7HX0noNQ0TVDkIHt6fODoHVgJzq11eC/gqXaat8UowDD03NlbTn3P4ekRoAntpxSxzrLMM8M44X3fRH+XOQhgtiRJ3GTpJYlRUdiu79l3PZ1zTH2PNYawSMLsu47dtBdRzn6g6wedXKIVXZspViYr9uMApeNqN3F3c01YFjpn+Phx5HgceXiUw+RmvxfQB1obnVFEppQsrTVlFYLOpWhSLUFG0va6lFbtB3GkzWLVaVYRealQTWPPfifBrYzdzSpgmJqNV2CkjpRtVbnBcX3r8d6w24E8Sm3PUFArpUyMwJKbQPx8PgMKamAgSyKv/9iSDeccTRTalDaVByAVASLmeeHRii99fo6qrSJtdtLqVenZGdyCMYXr6x3d4EVfTvA1GQmu/fjGKT9U6V/CztFx1Q2M3m7OLCzCurGpvB55DM4J07RWcQ2mJVk5F/Ky0ehR8OQCcP6llwZmoLpRm+Ou+gjpLCjN52yKMau7Ku0/6v/XQKlSjIVBZjf+UYOxUkT4EQmOapBQBxfIL3m2KSq7kvV6RC+uUKy2kFqDzZvD365BQB1HXlsfIAuDo2TAi/4AESEL1qsBrCTlAjI5DQYNzrf4S+6osgVTkZG4QMmBZUksc2jAjPMyfcZ5gwmS0FTa/LZVWmzWkE3BuzotyCidXNgR9Zvrs6uMi1Y12+xfkIJTnZIna7iiycL2dDhkb/QpkbKyFYqDmFpwXqfugehVvTy7Pv+3f3+gCUC7ptQfio+JyuBYwsK8zJgiGlzjNOK9vwAzkk45s05YodY6+r5nGkf211eEsGCdJcQowtwO0WszE87eMPUTX7z9QlqVPnoy8pnHw8yySBuw4BYGmy04zzTe8fVX/4Gu9xQfKSbx4cN7DqdZdaNGnO/YXd9w98VXDOPIl7/9jru3bxj2A1df3opuircM1pBPCyEXyhIZvWVwRjWDdnjveHr8yOPjB5bziceHe+bTgWnas9uLXeR8ogBuGOhUY6jvBrzrMNYQYsBo233RwtDpeOB4eGY+ZsIs2jopZRWXXX2guTDUbUz0EoDSJKqsArwtyW/BvkGphWzh8qrRchHQmw2DfMvE3b42n98mipWqkycMV28tRnUSw7IQwsIpCOgkQvQ9xsqAFu89NgSxFSuMyhgj/TiK3qLvsLbHGhH2lva2jnEYGIZBBMkPJ5Z5JmbRZC05kZaTtCV5GYgj7LtBJzJZje1hWaS9T/SWrsHA87Rjnk4A3H/8wOkorCRnrRROOmktjEn1Nw1tEFG6vgIM4zByOhzpu0kZWI4YIx8/fOB8PjNM11jXS1EuZCnUzUFlDZD7taiunZz10zTx2si6dYMmqrkjl8zQD9La2Q/KlJDPO8+JmAopC9hUMMIEKx2311e8vrtjns+kfMJ3omFkjUzYHvpe5A6MaYwLmUZcBX9js7k2iKRJWKxi4LWwt7Xm+peUhOVnLYyjx3vL2PfsxwGgFVS3QEdOkapRWKoWrhY9Bi3YeQ/dAF0nhbKTTtPNZGKCaAr5HKWNOGTCXIcPVBFincAHWOvBiq5SLWDgPRhhddZum6jMmfm88FgEwIrHIBplWUW3c9GBI0IQiDrchf1IP4wUCkst7ImEIgVJ+gsGb6o4u22sTsl1zEXhTEK82nkgbeBUoNmIjo7z2hIlatnKolNWT14ZwPVZtRjsL8VRFxjUp+xjalyn57HEUL/wfu38l3hFdLtcY0AH1aGtE+q2AGeNKVdczOiUOdtaDwEGBYhkvbWtO0sHgTV6BhnJK/+/xP3XkyxJkuaL/Yw4CZKZhxSvrmbTPRx3AciK4ApE8OfjAXi7F3sXdzjpruqqOnWSRoQzI3hQNXOPU927PcDOILqzMk9mEHcjaqqffvqpc2Irq+wDWdloll67gctXFlaX6hcmn7XxBspGz/VsdVab/TjLEhbOwyz3YMo1q700TpjCV/6Jjo+VhF1hc+YsZItaUVFsuDqqpbjDeyfdZ0EDgIR3Xv6t50Op3qma05u3QudxG8OsyVdlIxoDjaVUs0oFhZwTOSdySKQkmr1RfSmXksTNbK9bAK8CYpb4/fp4+uP8qD8abJKASZyXSmFXgxfCwjiOeCOOcNNIa8JyDSXIMdhKAS/ixjFGbbs+qyCstIFMOsK3N0eOh7fc3t7x1S9+yn5/4P3Tnt1jx+VyZp4XLpczh92Ro7JIyib6/Isv+Pjjj2n7jpvbI23fMseZT8IXxJSErdG1tF3P7uYG13pu3r6mvz1gG89lOePSQAiO4eRoIhyNxTUtNlpsUqefghbLIm2ahv1BNK4a5xV9tRgrJV5t19Pt97KBaQQUMYZxHjDBSdGlGrmKLgNSZ3TdwaQE3iklsZKmmDYq0FMCpzI2V7REszpH68EkKHDVaanIuAQgBXjBrI4PBb0uJXP1Ooswpr6P7C2Z+xAIyySlX+OFFGaiOswitOgw1gOSaTLafjQTMVYRX2uZplnKgzC0w0ATAl23o2m9dg5rcU4OqXkeCDFKPX8M4ET3IKck1OoobIJxHCWgNobYBIrDCHJGdE7q8zvtMDQ4cYQk07dgFsPLsyXGRYNz0XEx3mMVaDBakhWCdsYKgaZp2fUHEcpspEWwNZZlmdnvDxwOR2KK3N29wlovmmVJxrKALF23qwywxopYOVlE9nNKjMOJabyw3+24PR5xrqXtHP2uIUUn7LyQGMYJO4g2zTwaBb50LRuLa5yM8WyKRagBi8lraUtdF1APrJwhWyBpRg9V00v6XWv3CwOlBq1iUHQfoG3XIQZLDFIOWf5ukgjZlmswdW3nOp8GcXDmMRKdvDbMRdWvAKWGtvN4L8KBKWaaTr5k6cs9Scee9WWyK1SUmlz/RxBNJxARxYw4HHKoWvrOQ24JWisdtYxEYpmsHakSKRuGYRYH14GxjpQtWauwt18FCZbS4owh6l7ajEMWpwIyzhhhD+jBjoLK29KemnRQYK+Uilwl4D78Xv+Zr36vx+SVo2Q2TzDlHvRRryOXMu0t+rQGYQUM35av5JwJi6yVqKyfAoyv4IjcS0yxgkylpCEjYt8CZBkwa3c7JRdSSmxLZxShnSugllZxRaGRl1tbHRVnrYJRFuuSCHSWMTSrMLgwSvW6UhQNjKSZMCeOcM4G61J1ypwz+qWlBE6AMa+CrFtHosyEdSK4ak0B6taEE1nF762tNPBcmWPbiV/d6JX+riUamXV/6z1uXWbhK+n4OCcsoZzJeRZGoYEirA4fONuGdU3pOJf1+R+JN60Z3/V3ScGmZV6YxwmXXQ2irTrKwsIUhkZxQiWgTBW4X5aonZqElSjltxL83r665fXdZxyOe7788jNpBvFdJLeBcZjIuWceZ/aHG47HWwqd3xrDJ599yuuP3uC8I+SRSCAaQ3Tio+1uj7R9T7vbsb+7wzcN/es9HC2LCzyfH7DWMFtHbxw+QedFTL6x0v1JGE3iK9SOxymKhpW1NE2nySP1t4yV5g79Hmsdje/xtoFsGIZBpB5ImmxyqhkoZcRrJ7Bc9WRWu6W+S/m5zlXxmUrpyMpe2jLltn5VYR2R15qUckqWOTUfLPo1AfD7HpvnaeMHTGnHHUhxEYbaLP5U03ggMUUrDRFyJsSASRroslYAWCudeSWwhqbriT4JCNGJ/+q8JL/mZWE5iQD9MEyEZcZ6LyVi0ZLDXJM84zgKCy9nZR3YmpjxjXQG3e06+r6jMPZSSoRl5jKcWBZHJnEZzsImaqVLntW9UWwIGMZpFu1PMv1uh0F8yMY3Cqo45nnicHPD7nDELzNv3nxETpl5GBieX8gp0zRSktrt9tpBT7ostprYPQ/SBXieBuZpJB4Sr42wLlstOY1RQJKwRIaxER8qRpZ5lqSgdXqWGrXjVoChFIRRg/pQrD5UScpmJBAvLkwxs0aBqszGF191CX7PalqLdFJKxCCdsoo8wXUeShMICj5kVs2WUjmUYmYaAouDZU44r8kATSg6K9pwMQqsJEykRDcJgyrX5IFZdbbUlqdMbWhQfKgYIstSYhCNhVKiaUSjJiXRzooxY2a5Bu8dIuEisgvWCuh8uUyy92yL8LgtidX2okNRS5002ZYMlA5oq8eyjnep9JDyeNU+3JRHl3tapT6uwe8PfahCLvjQHtR/V0Dgx4mUraWxVjxuk8V+SFnYhzGhxCclBirvn6L4Tqj9K59dZTIK0x10LVOXogIIlGRkiSOsXTv+lkYkVyXgaoOLX51QDMHmCrLGUr6Xy3o1NR436rODlOqWy45prdAyWlJXEBXx56X5Rc5ZxMOTglelkY4xm31cYpTig/zYtq8+VI1E1j2as9rHTclnfY+yH/LVGlh9qDJO19VHV8BUWVd6ZhlnsW2jFSALKag2ZmnuoA1lPlxu5Tcfumt/zOOP12xqhb4fyURkUmOMhBgYhoHnxyfapsM5y34v4paSsRFEPIQZsmQOUs61HnpZFi7DhfPlIoLI0ZEw0rnHGz7+9DN+8Ys/4+1Hb/mr//SfuLm94Xfffc3vvvuGp4cnHDueH575yVc/4ec/+xnGwDyPxBT56KM3fPbFp/WgNNZwfPuaVz/9Ets4PvrqC27evBKPx0vJyMxCIDBczrx//70cpmPATpHX+1v+7OOfceh3Ik+QRBzX6SbzzoBrcM7w5qPPhXG1LARFRpuux7qGfrfjeLypuhpkwxACTy/3ZGPpD7c0/Z5sZHM0Xro4mBiruttVNi0lARtKe/ECHKXVaGXyykjYOEiwBm7lPckSUBVjt2bwi9HJpBz0UNqwRkxx5IQFsNL8SgAq32OQ10zjwDicSWFhPj0SZ+mO0jYCzAxNYElWHPIxgIEmZ1zU7hlBDUlKTONE143knGiallevLX2/p2k9N7cHvG8Yx4GX87mu2Zgiu5sjh5sjOSUma4hhIc4zT5eLOMnzSNM0WFeYHY6b463QxPcHXt0dyRgupydAM6nDmZwjzy+Pdbyt6jntjzfsD0eERi8ocs6QVY9gtz+y2x1p25au74AsWdokZRNN15JiousPDMPE5XTi6eY1YV4YzmfmceLm5i1tu6NpOtquwzQN4zDwcH/PPE28PP7A6fmB169f8emnb2k6w+HYcHe3Awwx35AzvLxMPD1PLPMsWeZpxPmWbDy4RNM19IeWeXFYbSvtbJJWoXkFnHLKKtovde5i8+TwjTlhiAoKSctrAZ1KyzA267A8VsBoCQJKOTJtKSOi+PdraWQxv2UdFoFgyMQZTnNQA7pgWEQ4t5Osbt97bm41E6GO3DJ3LPOOGLMAVTExDoHLRbNpIUoQuCmHCkFLoqIIS2fyegBZQ9s4TOtpmh37Q8cyB168E0HfTA1PknJdpnHi4eEitsWLSKlveylb0PKjCiVZLYFShl22Cw7do9rVxRiLM6rNtzmcSnq12AEpnQ7EnDRY1rbMqdgCc31Q/XceGr5d6f58OOMl47/1nYvdEvZa0ZDQvxl7DaaU0l4gx8w4TMzzIo5slOtelqCZz6Kvo9lhlGKsehw5liyZw/UtxlgtRxpl7GYZN++8dL2yBp+F6Zui6AuKI1SYVy3et9Le3WkJmmkwzkvGdhJWXdbxxhh86+j7VmdXbOx4mZjGCeuclA5bJ0BosuRoaLx0O/XO0HhqB0URUJcS5atZycU5kfJg67SkLaaqQ1dKgf1Gs650zxENQVsDhPUMkLPIetUoqE6pRFVZg3vxG4vzrdm7LEyYvhctvDFnFtUwsaoL6ZWxXP2uyrpdnbLycX8otP/3eIRUQMu1vHJeFsZp5HI58/z8RNoLkNjvemkzrRdaQCmsxcZYO0xFBaqGYeIyTMxLImgHGozDuoYvv/qSP/vTv+L21Q0/+5Ov6HY9//BPH3H8p1cMp4nbwz3jZeEnP/mSn/78p2Ayw3gixoVPPv2Yr376JVjD+fLCvEy8/sLyZSfO6t3nH7F7daNlAhIEjMvIEmYu5zOP339PmgM3tBzw3O5v+PmnP2HX9iKumxZ1voEsweJ+vye2Lc4YgnZQk33p6Hd70ajqevxOEnaNFebyFAL3D/dgLMfjUfUzG7xtcXbC5EUFx2NN0JUGAChoZzArcL45ewpTydYm6aaWxJb1VN6vdHIiFw2nsvY0qK4ReqoB9X+XZaeAaQWksiVbsX3DMBCXmcvzM2GSLrO7XhpGjGFiDhJYhUkSHJIglv3sNwDmNE20XUfMRjWKetq21a8G5zzPpxeeX06yHueJlBM3dzccDrcqtrwQkCDw8XHCWkO36/FNUwF07z1vXn3Efn9kfzjy6vYoYvlOQJlxnJmWZwyZ9K3qk3lPv9/jvefVqzfc3r0CLCkp+J0sOcmeev36DbyGpmnpWgGyZk1mW+8w3ktiCssXn37J+fmZ++/fiZ+lg3336i1N1+Objp2W1JwvF76/v2eaJubhzDwOvHnzmi+/+pR2ZzkcOo7Hg/i4yx0pwvPLhcfHM8uy8PL0JEx932pC1dK0lrZ3hDkwzZPYw16YZ2L2VCfQJErX2NLxdUF1QEk4m9VnL92jiq7aH7JwSVg3ORPmSDTgsUTfYMxq4xUqkQWIaOel0myhBL7q7yxDYVIFMsJua3civNz1jsNNK/usnB9zlM8OotUbQmSZEtMo3QYX9ZeWmEiLgE5LjMqAT+J3IGwh6+Q82+06jBGB8GWJLCFyPo+iGaTJjQKCSQwycXo+y5naCQPPNR2+FdmYVP0uYR1aY/DJq1+rzKUC8iDnjBKWKI1oFFup/kvOkkAM86opG6PGTpuYTb5vDqkt0FD+u5lfPepqV0EDWkmR68/GqA6rtUpGqLzp6ocVsEn2alM+XMSyZyGHiA/ia1mgc77ec3luIRWUhj4l4SlfoqpttOpD/LOo69LUphSw0ZrUsQtJcAdjTG0CU5MCWLxvayOltpVSaWscMcQK5uQsFRU5S0dx5x0Zp7GvAIDDMMl1pyxl3tYR50y0KuRvJOHYahldSuCSJGfFTGuiQe1/o2x0RU81Ro9kTXY6u9FqNOt6KvF7kf0ogNMq3r+uiDpXV79ZG+oU7TfnHN54iXvPmSVKPGJixCJJ1DWvvFYhrQDWVsL9j3v80WBTPQzzehslAySHV8AZrxoBBb0tqJxklLJZD/dKzVTjI+iiw/uu3l4RLe76lq7v2R16docd/X5Ht9vRjQu73ZFlytzevuLtRx8BMIwnQgjsDgca1fop8Y/1DV1ncG3D/vaGw6tbkpF2lilLh68YIkucOV9eWKYJNwTsGNhlj/lYOtyVoNNoy8vCbLJYklXF/ORFqDmqoxzl0BBRYSHIGXXOTYQQg4QOaQVoKvMIqlNU2RkV6FkzdaLjVi3V6lhvxnzLbrr2ca4zeuWVmXXziH+ktNBNALFtUZ/y5ueSSSzvWeZdy6rK+kgpirNSBHBM2UwOktZQF8OVEkYKxjDWqP6WxTnRagAjDmXelLRYOTCEPhzrNcrnuCqEnZMlAiFGbBJ0uwroogGrUmjFZpraAlwOE2H6xRgwQYxyycYbazFOM3PGYl27IsiaorJGSgSFHi6G3rsiiL6ChV3XY4yDlFiGidAsmCzld13XV2PrvMM2nmV2dT6WJTBNs3bZ0/FQBocxFu88GRGEdc4R3Sp6WTr2GP2+GtO6QMsP1DyuWbNoFa83v+errtT1tdv/bpbp5uCWfVDFBY1VY78u7O3eKSDKCjihDlDZGyJK75wYf5cgtcqqUF0ynSmM8SooKhm5GKTFvbA3k6ypzaXnXLDiwqaRrkw2owLzRadBBTG9pfHaRrwAZWRCKgERNbAxCI3YuIQrbEIKC3V1UqxmNTJSciFgsBzoZZ/I/67BJh01Ssa+sgC29udqngw/mrftBOq31VcyV4fZeqiJk1Kdq4292rIxf6S1UtfAJpDTRZNZqdsyJ1shS2lrjDSjYptttLpW0tU96yXVtYgEkyaTbGHqrn8rzmUZACkbjKsjuUa3WAs5r7oJpJWFWnWQqBiaOmSiP4M6jGVzmZqF05JCQ3UmytOKjbyKT4ptK5+Z1vmrSQiojvh10LyugXqe5HXSi/g9pn6MjJMpv1jPmXotMqMVlDPWogMlovibtV6eW6+/voV6cGbjyP8HPHINSqhzt5bDJC1LVB0rdeLXc7uw71YB4MIGSPVLSk+apsPZwkgR1on4UB3dvqff9XS7HW23JwXH/hDwJnD36g1vP/qYTOLl5JiXkW6/wzbqJloLxuLaFn/scF3D7u7I/u5IILKkGZIIK09xYpwvnF6eiPOCY4c1HTsrZ573XoPjkuku605LLqyV881KF6AQEzYbZRTqXlS2oKw91V3TrHtlFrHNFK/nxRVLoPhaxb5t9naZt/XnwuS+duc/mOlitvSfuvIK4LTZ4+uiuH6vD0ECg9HbLX7batvWoCxV32a7351TIWXFtioDUH8GqoapdU5KETWJ9+F9lUqElKIGyKV5iZHOl8pWSDmRtETPxyj7lIyJhaGTtHRMXmvrfhQQO4WRTGJeFkJY8L5hUf3OpmkliWYsOXvkdPbSVEj9l8KQa9tGhlhZU9ma2up7v9uL750y02XUhK3MT9t3yqy3OKQLlnOuCpcvKvUwLzNBS9JS1rHH4LxX9qgmuqOWTxfGRjmSiu9E1rFc14ipiy+vz109mI3vJKB9Mmbzfuuc/b7HdsnljAICSW2ouV70v+e1W3evnIWSRNZKCyI+GVyjazM7StdWA+BErt5hiC4So7IbkySjxa2StSXl6OvtpKQMm1CAEtF7BYvxOh7W4pVdJYkSYW0bK2yeEnfmLIx0jMG4SFL5CFvjoC2TRL5LbGsVNHbr4ZZZfcQyhKpPXG+gyorkq7H7wzO1jvmP/r6J8yo4sXpK6xpjW9FS72ZlxbHhWBaX/g+A4DmvwM726gwrYwmk4UQ1f+urN9dX/OjVN6kdi9lY16vYUYe5MOFMhhhr58Sc1bbkVJP3xW9xNmN8sZ3r+5T9WvyXFdzT6qtUJH9kvteGaGscU95TyF2GDwoh11EqpYGGtdte9Wm4ivV/9Ljysa/tQYm//vAq2n6WjGwt1dPr2tqCpJFDYflfr4F8/Vb/hscfDTYtOdafy1BLfW3QDliZ7Aytb9l1+6pzU7QZ0rIINdELAJBS0ExIwmSHtz0//cmf8OmrXyhyvegAG/7hH/6Rd+/vWcjsjwfePzzz/uEZUubVx5/w5pNP+cUvf8ov//TnLEvgN7/7hpfziXeXE7/9uwdZpMaRMbje4A8W3zme8wv7h55xGHl+eiEsgdPzM+NwYRxOPN1/TwyBO7vjYHvM51+RPv8VdmcIORDigreGrrCFTCaRmJaJr7/7ltPpxOVl4PR0rk4hZA43N7x6/Zq+6/jys894dXNDCEvNdMW4EBal3GoWNKmjJSK8rI5njGQT1i4c6Kpn40gXY5YySYWkBbhQwWJtUS2ZahHsE5uY62IGpGV6WgWct+stq15NofvXjgQleDVKwdWAK2fou46b454UAmdvWcYLz8/PPL88k1Ki6zv6Q09YAss0k7KwRGIUJox0+bB4B9mhLADpEnI+v2CdoZ97rZFtmUMgIB1E2l0nB5lzzPMid2Id1huwCzHn2o0NpQ7HKPf2FJ44PZ3YH86ERcZ9HEak3C9yvpwJyyIMlOp1yhhcLgO752eapuP27g1N05G1+50YvaiHg3AIhXExqTMom89aS9vtORxFH+n2eBTATrWn9ocjN7dHyeztdzR9S28hTzdMXUs4vTDgmS+Bf/mnr/m2/4F+37HbdXR9x5u3b+i6lmGYOZ9HQoiM04llCex3jn53y+xgWRbO5wvLPGtmwhBDYByFEupLCZHWNpcAyeSMTZZkilijdPxbtHwypURc3Fpym9LVWluD+7QeQklKLZPNGF+Eglm557r3JLgrW+LHhwa4CgoNQ8aYyDxnzucFa6UTmbWiXeO9I5NxrcE2gJMyyZQS4yS6WHMwGC+ZLGcTccksRkqnUk7EFIT9lAPDSYTqkwIcTeN5/WaP85Z5DrVURthmEbKpgGRpnRtiII8jpWwXLYtD77HrRFRR1DOkA+Q4LkKN3jgr0i1QrruIeMbKBhCWVk4QU7E3Cl7ofJQ4ZRs0XYEyZeDVq1jLUlbtoTIOBsShKI60Tpbs/+1huBHuLaC0Qeva1gVkFAQsQb1vnAaEmu0zWbOTorlRrjcueXP+ra6UZD2lzfLWGXDGVQZLDIApNlszdSLORHCiH5Kh6hqULpcZ8I2j30m31qLNZkgsy6xnpCxoay39rlNbm4GkovWQTaLbeXyj4Ljuh2UOzEvCeUT7qeyJOo+iI5EyQlxVrSFyxlsJJtrWsWulba/TzPH6pYm8Mp/ljdcpq07vFYBX5jWLjTcIiL+kiG8zNquQddfIOIVAnMVupywcX2stjdMOlZpNXG+ufP4fAgz+HR652BoNjDBVu46U8Vga4+i8NKhw1hLSIkLPYRaWtVU7mlE/YYScaP2ewy7zyz/5hD/5hScsC+PlQk6Jl9ML/+V/+1/Z3xz5/vEHul3Pd9/f8933D7S+5fOf/JS+7fnsJ5/w+c8+ZZxGnv7lkfM0c/7he37z/r3oys2itdLftuw/2uFay3enb/E7xziIxlJYFk7PzwyXC/P5wsu79xASP339BZ/dfkzzaSR/+QvM3hBiYJlGKZXbieZNTIlhnhmGga9/9w3n05lpnJku0ozBqhTB7as73nz8MV3X8dnbj7nR8vJFA8eg7K9Us8sC0MeUxIcC9U8jMQVdI6j2BivDoPxH12zK0p00xZJwkWAzpqD7U+cTrjoKlnfbJkWM1bIHU7LtW61CeUgSTZgUThO5gCjo5kzXtLy+e8U0Dny9DLyo7ziMAykn9vs9++OBECTBlLOUwcQQRbcoxXquOSdJtmm8EMPM6eVRNNralpQD3jfEtND2DTl7kp7bCTidzpCVRaHNa4qKZNPutFNcJIaFFALvf/iB58cHbm5fqV9smFX8fZkDT88Poqm5LCIabJDSD2t5eXzh6f6Brt/x6s2ntJ00NskKxi9GOug1zUwIosVyPgu7yHonmp/G0nUtu33P8Xjg7vUrGXctLdwf9uz2neiNNS3WO1pvmC53jEPLfVhYzmfGlwv/8Df/SNd37HY9/W5H13W8efOWrmt5eHzh/v4Z9CxqGrAuI001RUdongI5ZtVBzCzzRE5BE/cluSDraes/O/VhUpbyrJylUqSAiwZbS8y3dhVK/CBnV46hntlBZRsqiLkJcmtiL2scood9tfUqCZCMAAchGoaLgJjzGDm/KBhm1y54Xlp30/Qe11hck3CNk7K8ORFDYlkSklfN2DljAwRDva8Uk3ZeDpxfhHViVC/VN46PPj5ineUyzIzjwrIkwiC2ImeDbzodE2Eth2VRv12rD0yVKcda2B08zjU1DspZmN5BtYzKWRaj6j9pMqEk2QvjJyjYlbWzrXaU2fhHeetmrD+zxpLlaUAFQuwGsJCTszCa5E3KEWzLXG3fJAskVPy0RFSGkNfyu1x1l0zpErtJfJUSsXW96Jte4daFKaPl2uUsjJEY5bVXvdhqO2T5XnxQDFW71ajjmEhMadL3tzhNNrS9+CbCiFsq2yoXOQQv+z7rfa9NTTImGUw2zFk+LyibSnNcqocE1okfBSsLq+4RDCarXiCqXZWless5R9s4Eat3XsZQHadtQqn6Rx+APBUsrHMmANqa/DMVcAxLgByxTUvTObAQ20buPUbCHOp0OUQeoSnsqSIM+yOU6Y/zof5osCmWBaaLxAA5RWWkSPaJBI1r6dsO7zxlwRXqcrJBg+j1tRJ8Wrxt+fSTz9l9cUuMgXm5sISZ3/zLb/n66695eHxkyZl+v+P5FHg5Lxz2e/7kF19xd3vky5/9hC9//gWXceT74YmXNPPw8sJvfvOtaJ+Yhoxjf+O5e9vgW8Nzekf7ZHh5eOH7375jHidO7x8Zn0/M88D59AAp8dnxIz7aveYmtaQ5KAIaCXFSI9FX1DiTmcPMu/v3vL+/5+XhwuP7F9VzGYgxcHN7x9uPP+J4OHDY7Tjsd0rrlExfCpHoRIxvC9LEtJaqoAu/zkGK2BTJxVsqBmdruLIhxYCI5ShrKGdQNoeUOy51w5V4vARzonOkWS0VKSx/zymTFgmeUmWqmdouWepypcCpBKLdrufu7pYUAi4uTN5zuVwYxwsZuD0e6Pd7whKYJk8MkdPpXAUSUTS9HL4pJREFjJFhOGMtxLDQdS2h7YhGa5WtpWlaDeZEUBWUeuqtGi3ZU1mzMdUBTYnpciKFyDROCEYl3e9AAMFxGJnmUealaAup8zoMA92pp9/tads9RQy/RFzlkM8IEzCnxDhedF7ESHnf8PEne3a7HnfYi1NrJCiV1sFySFpr2O8ko90YiOOB0Xue2g6HZ5ki33z9PRiDayy2sRyPe37xy4WbmwPTNDFN0t1jnmdtUXoQZxPp+DGOo4qMStQYtUTBWQtNIywdL+3ZxejKeEg205CzpdUA1ViDjVYzphYTk5bBCei2mjQFHrJVdloJvtTYannOaghXA72di/LnNbsOZKcHWiYs8rnjKB1yjM00jTjn+33L4Sivc43sNaHGQ4wGXGZZwArRTjLyKWjJjwghxpSIc1LxcVlPWe8HA8fbntu7O7q+YRgmxnFmuMDjQ1LHxihDYL0nAYlGMBbnM9auJt45ox3sxMlrvdc6dBgHKlCUs3SoQPfxrNcYo9DXZS/ocJXAuQBBuZiclfW4fRgUtCh/131mnGaQDCqqWWzW5nWgaJRRE7dl4Xw4zwo2WbnWYhbLc00SB6wpOiLGYIzTRKQiKwq2xyQZLnFo0bJHeZ/KelJdtnrdFJBEHLcqrFrHONfySGOTMjJ0XIy2eTfSvdV7sZtylpYEQSKGpd4nCAOybaRUoWj6pJwUOM+0rSN7SwpZvnJkXgSQajH41q7jo8FHzHqXCfVOc/ElVa/K0HpH1zR0jThKRY+xAk15db7K2FD/uwK+4hfoGBdkvWg9GC3bDwvRGtU6FIYM1hOMFVAUCX4tCY8RsMkYadGIAN1Xa0bPyv+Qx3b96f2llHRPCYDmcLTO0zYNOC1VTIEQAikspFJeQ2m8IgBC43t2veXtmy+5u/mI4XLi3XffMI0D9+/v+eabb+j3ex5OL7R9z+kUOJ0Dr+5e8We//oyP377hzad3vP3yFafTC/l3hiHPPD1eeH9/Ut9Dkl43bzre5B2ugfwwgps5Pb3w7pvvWMaZ8+MTw/lCHCfGhxcchuanE7vP4Oh6coxYnc95nmm8J2dhqsQkbJbzOPC7d+94eHxkOE9cnkexycpA/fiTj/nJsnA8HLjdHzju9xJ0aplpLOxSUj3DC3gey/qs4E/EYIURmDeg6Hbqis+FSElkY4SlrH8vIJL4YqH6bdauNq4Em2Ux2Fwy71l8jhSJYb767FX3zeGMdlzEYCgMZwE5hsuZh++/4XJ6JpMZ5xGM4fZwR7frpdTSj4QQuMSLAE6F1aqC2NLpKIoMRbQMlxexKV2v3ZZb8J6mkzNFm6KRcmIYRgzSP8g4Jz5/Fp+q8R1du2OeJpawkFJgvJxJaWGeJvquF0bVMgvYtASenp6ZJvEtQhAgT5oHZabLwHA6cby5Y7e/w/lGErGqy2IRsClGT4widP2kMgCiFSVi54ePPuFwOFYwElA9KKvgntj53b6j61q8yYwvRwbvGJ6eeU4wXkZ++y+/lbOkFQHxw/HAL34ZOB4PPD4+8XD/gLOW2xuRR3Aui8+CsGvCEjFIMwcQnzUGKeWnlRKjUqK8uvPSeAaJF5HQMFf/UapFwKSEMUl1I1dTZwo4lJLKb8jzY8xkm7SzZ/msVX+1VqNcMfw0qDZqww3kbGW/DnKOjsiZamzGt1Kqvt+1HA6ireRb8YEFcMqkmDE+EBbpCIcp7PNyLktyWcrRRK6gNG1JOdF20LSGQ7Pj7vWerm+4vz+xhIUYtRQrSBaqnNtRu+3FZZFGL9bgnDDcSjcwi2XXN3S9o8R7KSUup5HRXJ/vIaxjOk9rI5UqI6pnQT0TKIBQ4aNvz4xVwzDrnFCeo8+zlCTNdfhfcRpbknGmOkM/YoRT/lRYzhrHtSW5WhhnRhnhVK2jgguUq0y5yGlQY8l6ZfW5VMCpsNoKEPrBHWhsY2pMJbetYJO1dcxilFjJOYfxLdZIx96maSWOGiVeLlI4KJBtNM4T8FY+r4JNEelknGTPiuSDGPeoYFNjxZcGNClHtftFNqR8lYSCtRZvpMSucZ7GOSxm3WsbwKm6T7AZ53WM5O+ypyUecZu1IPFZWgIpBVpjcV3WhhEOrCEshmXRTt36P28MRgFv8c2u18ofCzTBvwFsWj9EncMCaJQJUhaCMBlUS2dz0R9e1pbGKAenaAxkI9bT+R6M53jzmrcfJdquw/mGnC0hGsZJDumn00jC8u0Pj/THHdMy8/B04eU8M0yRJRtiXkXNpzlwellwPnOZFlwbmM4z89NEWiJ97ug6x5AdM2dSDuQFFhsImtmTTKOwgGwhcFpLDJFxmbgMI09PLzw8PDGcZqZ5lkWDtG+NEYbLhDVe6tPHmYRofKCibLaWJfw3fGGzfrsKrY35/UvgKquRtOtY1s4Tem+K6teFrZ8vgYB4FxaDUTBxDRYySUXSDBZrpMStdNWQe1LRPT1UvXd4Z4l5DVarA5izZLJV1NoawEmnQ2nLm1dtBNB61mKKqXRv7311HmsnKM1yFtQrGzFUuGI1rXZPEUMyLwFnpCuGDKOpRjqEgM2ZnF3tMlUBuooqU0XcxDhF7UCxEJZFsyeu2uJymJSAsQBh2YjBsNaRVO8sKbxugHkRZox0v9OuKY3Hq/ZHv+tw3vHRx28pJWRBne6oFPCubVX/6cL5dObldJI5164U8zTL1zLXEslyYGx3uAAgwtQLmumVg2c95LZitxijAnlyGEb9ngGTi+je+ig4hCldSnROC7qfS5exP/Co1OXqvBX2lGYhDJotzJSSWUhVqH6aI24UkM07yXLUGvWy3dRBcSoeT+fxLuMXmdOQEikHYo44JyVzOVtxuJyhbRuWWRyg4TJzuUxMUxRGT7Gr4odVAtfmLNfuNqmKSTunXb50ny6LHGQhGlK2FQAR2yzZy3LmV4pvSTTY60LH+qNZB3V9/urQ1NFZvYU/aODWtyqHbRY2Fpvfbb62j3K+mCxBQ6acujq3tgSDph7IW3bV6pXrXi97ms0qv/rI4nxsBOFzVFu3Xn95XXUkcnG4NJjV6FXAzkCx7s5LYiBrti0EaSMNrFlFJ3aLurYzpSzDGAkiMoaYNYBTMEpKRwqAtwH1yoRmuZ4YtFxLs1sOqmZAGb86dn9g65WkXZmHArBtPanKhjQGE8pYUiJbUKa06FJIA4RkpQQoJ2WIKHsk6n4sSjtyNq5AqCyvP2wn/sc+Plg/rHsE9aFEJFv2aTSx2uU6oOXFZU6kBzfWeKxJ4lCmDDi6do81nru7jHeNNDaxLSk5lpAYJ8NljDw8vYAxTDYwmoXLMPB8mhnnzLQY5mS19ET8qGFceH4IWJuInElMLMOMGSw+NBz8Df2uZ0xnFkaImbxk4hSIcxBpgRCkQUhcdTSsFWbwZRg4nwdOpwvPzxfCFIUFkKAwEENIDJcRa5xqrYn2RtO0YE31NapLvvF96uMPTfvv+30JjkwRSl6TedXJ3+qf6MYWkWAowqsl+WaMxSkzALXjKRookhN6IdZY7ca17q/iVRQ75pzF2dVXFIaUMLpCCDgFa6yW57eddKVNrOzQcs1Fp6cwDaTDoWiZmI1NLJFwCUgLi1SLsOowppxFfNxaYdVryFz+J91oF2ySLHrbNtIG3KwlZ0XDpEB7JfklMgCLlL9daQTKWS2sTiOJWL13Z6XUDox0gZxn6sSSiZMwwrxzdG2jDX+k4521luPxQNs2hGWhbXyt3NhYdzrfsIwTl2x4eXzh8f6Rxns61a0SnbaZaV4UNLKiWQm1JLrMhzDdZEas1VIoTWK40h8+l0YN4rP4nDFWbWBc4zU5aq9mB4qGjdH5VABydfzLna3/rezUzRkMuSYKiiNSfCj5/KgvSYRFEnezi3gvjH1Xz71yrau9s1YEvY3NtNnjvJWg2Gjpe4rEJM9pO0/Oia63tJ0wAcdhZlkil/PENApDvJjUWrmRWeUyjKklq85KckkYfl61bGwFJUpiXRKdpVHIBijQoSrg8yq7oj5JGa+6pVa9wiLPsa7qMu7r+qiPD32TzaOCWEZ/VlZNBS507SdNwBVgXcAxkRko+zAh5BDyJi5UW0DOlUSeNuBkYb0VO2zqzZa9LGW7pVugJNW0PFfXYWFrG1OkCFT/sLK5ck0wl/kpwJTZnK31evR5XjublxJPKKV41+NcK4nS2nUUJN5YmfisMbOu/wyQdA8mSYUlZQWaLDpjzhZpknUeP5hAXSCrv5+3f9L3Lut466sX7a7ic1ZGY/WhNHVhjfpQtgJ9IsSuzMnttWw+vOpx/REu1L8BbNKb2jjOpT61tJiNjQRNbeex3lbacglIt2MWQyIsgRQzlk4E8ExDNA7jG9rmAMBXP33Nl19Glhg4zReWGBgneHzOnIZEyPd0/RPf3D/zd7/5lkTmPE4sMXIZFsbUaEcoS8Iwni48Pz6T4szw8gPz+ELvem7aI41r+OTNx9x9fMPD03vm55kpDOTJMM4j42lkHEfGaWIcB6ZxgK7F3Bxx3jFdZh6eHvjh/T3//M+/4ZtvvsPisFm6r+x2e3zTEBb44d0Lwynw8MULx/5It9+xv7vBOI9pOozzms0wFcDIGwNRDOWHQSBms16vbFGJIuRgWEIiaWt3yWSJ4yclMxvDxIrCSgcHcZKapq1AY87IJnRr5iOrE+Nt6QhlNXNjquE99C27riHYLPRDK8LiIQSh018u0rbXedqmFaHBbodQrRfOl4sIGZIr1ZosQs7LPNdSPxF+FCaTbxpxgIIIOZeOd1bLFY1FS2sackoCrIwTbePZdx1GgR/j5J6HYcA6R9cdBNipTC67BlH6GnQ8pezMMQwDKUPrO5qm14kT4CslCFq2I12e2g2QIN1jUspKwWxIKXM6vTBOA03Tst8daZpGDLaVrMTrt69x1vD5px+B0kEvw0AIkZeXZ55fXkRv4+XC+fGZ7757x++++RbvHR9/9Jb9bkfrO3aHG2nFuywVaKpdGnSv55QI6nzEZFmsZGgb5ysg7axqSeSFpJkI6xzRipGLNkNcnZ5qgTaGE+uUZWv0ANpk/8qh9kF8Ub62ZT1XpQugQKnXw00y1tJhZyKmyLxkxlE6yO13Xujg1Wkv84S0RdWo2u7EsC9LYtD2v/YxAoGUPI2Xg+Fw07Pftywx8vIi3RNPLyPn0ySZsrS5Tg1Utvo38tkZ7yLWZXa7nsOx15IOuft5ipwvUbUPDDFJy+ZpDNVJKveSleJtnX5OFsdKHA1pa7w9zCQDaFa7w5r537zp9aRsHh8et8XpLgCuVQbStrNpWRdlqYgOWZDMjbHYbBQMlolxqkfmvaudVIyiElsg1GrJjTWQC7BbRauNZLC0Vt9ZYeUVB1QcnJVaL5dftAGojpVxdmU56FcMgWkRkLXf7egaX/+WswibBg1WSqBVxHdzTkQ9L6Qww0i3kbSIGGuMXC6iiYKLYLKuqTWYrAGtznOYM8HEun4MsrYl0F27qFw5S1vHpK6FTcCqPyZly5WzzhrVi7OWOZRuRbrwYyLNi5b/WFy/wzUNeEvqGhHln2bxO0xkCUHKj9D33wRCQZl6/1GPtZPj6mw755QFDsssJUPeO7quYzIjUxRQhnL9GhhktCPTFInR4Jy0eo/BMA4Bsuf25hMAPn4bsVYA8vfPI+McGEbD40tiXBb+69//K/u9pz3s6I57Yk4MlzNLiAyTYQitABN62cPTCw/f35PCzHS6ZxkvHHdHPrr9mLZpuLk5sHvb8cP7d4zfj8xpIo6Z8TQwngeVKejFlxqFEVO6+I7TxPfv3vP4+MRvf/uOH354oPUNne/0HBPx12mKvPvhnmGYOH9xZr67xbqGmxtpvNJ2re530Zkq67IERys0sJ4BUnqU6z4tzwdqaUoJQCUgzBsWX2Gm6542WiJiVRdPmd59t6fvd5oAEDFmAY6l7G+e5fnlfQ1GwSaDt8ImLAxQg6FxhtZbgrc4l7FObM6ySFc4N1wIKeJUiFeuoQMM8zyLD6WZ8BTiWtZiDMs8c84vdXysOHIYJ8k+6dwroEZQtprTNVrg0RAjzy/PnM8nWt/QN6I1ma2UcKeYGc4XrJOk2M3NLUuY8K5hsYt0uldbLAxPWfen5xMGx3C5SKdf12inXFBhOaRTn4AcTdtod88S9FuGcWAOs9pmQ0yR5+cnLpcLh/2et2/f0ratNvEQseQvvvwca+HnP/uJlJ2EwOUicgovzy88Pz8TQ+L88MJTeOSb333Lb377NbtdT+ssFhFPHyaVysiIrlTMpFCjxboe5znq3l/EJ/GNMsEMNnt8RuUlxN63zmHa0snWVkDXhGuxcJlTbRGvgscyXwGbDc6BVbZU9ZEobJp1fW67qG1ZqSWAl+ZGRsshF2KKTIN8DwssS5FSWJNgGjLKFZmM84ZeQavdQWzlPEf6QUBzjIihN9ZhDzusgd2hpe898xx49/0zSwgMl4VhCOo/FrizxKUbgNogepvG0LYW5w27XcvhuMcYaeogQGxiHJV1t0CMAoIv86KAQrX8eq6p72BLkkPtUSkLQ+xOrnst61wpALgBS37kNG3m9g8BTqt/Kv4UG0b/6u/lFbgI5VPETjnvxL/Pq04gCpwU5jYF0Cj+YF1ZZYxtjVVzQuP5kUoGMFIlE1XA3brC7LR1fEIIKl+Cdi3XPa12yzVWgRDVAc6WmBZitFLunFeb4GxHWdlQTlat1FFyRYqJtEhTnxAWQlxE03ORo6XB1UY/SdcVun5yBDSRF0Mmm7SW+hsBeRrvtDqlFBT+vhmss1jtQ31WibnJ6otJpYvo+64l2jkXHyqSJyX7OIPte2zTQHak1ksSS5vlGCBEOW8cEotuff1YGYL//ce/GWxaH2UBffDPmokw1wj1FoVVA1aQ06ztmQVFUzUDq3XV+x7vrIA9TwtBM2xLkGDxPC4sMZCtISp6G3QwlpD1PQ0RpVGHRB5mUpi4PA/M5wu2t5ijqOvv/J7b3a0ADK4l2iDlOjHXrigl8AwxEJOjzH9KkXmZmaaJy2XgfL7QuJbOy+Fe6u9jCqKV4QLTJEKDvpP2vs55CWpMMQS/Z+H9yIGv//jR87M+x1z9RgxYKXmSWtn1q6LrhvUQMeCy0U4HylQydkXvjcVoBzpbkGzdTNZoBk4D4sJ8E5aFiHJrSLqCmbqQrepWlXuV12h5ifNEYqW/1iFAApgQSic3DYJNGYtSdy6lSJZMLgdAeY4GBimIrliyJbtHDcZAO2FBdTB/9FXCNt30RTy6tEqPIZBs6fiAHurF6Ker9yo3KO+TqzZE0ANqmmeGYSTFjHet7gFh4Tnn8I2n8Y7We1rnWEKgPbW1xWeMgXlemKeRFBJhWpiGkdQ0VY9LmF4LcQmV2VSCz7LWyl5PahBTLKK24LQ1qDXbFblC5cawEdJM9bsiiTJBG4qtUYCutgWt47fdBZvXUsLl4kDpv8oBrtdlsDVrYkq6AqO2OivDKZKSJfi8Bin2OmNkkOwFgFdAEwMhWUzIGrAbSvtXDLSdp+tb8jSLZsEcWKbIPMX1wLarrQQ0qKq7WwHejDVC7W2asv6ozlyIUgoRk8xgynJ/xfHJ9T/rvpLds/lFNpi8aiWt84KCP+b6DT6YkXXZ5+Kr1HlSHG3jmBXvrLxmfd31m8urVqbb9d8qc6Y4MeXSPrwoPrzmDZh3de1crbmk5c5Js64YZf6ZQjnfatcJ+yyrvSmWRf6+MvrKWiyaSDUJkVGR8bJvio0tQp6q4+dWW1Kdzer8Xt+3qdNlysDrlit7JNdgt+oCVNv6e4eOkrgoe3wzxZsgSP9gtuyRcg06yEWrQZ1RslLGdYysvl6eqmug9uMx5f8b7PrDxfPv99ie1et5ZVTXEMokyPqUey/Jm/q39Q2qLploaBnIlhRFK84ZS+OFwdJ1lra1nIeJx7OU7KRkCMEwzYnTZWCJliZE/CLrVTpZiY2I2WpXI/mYtCTCeSQvE9PzxDJO7PKe5qalNR2H9shxf2A4DXjbEDRqyVE0x5J+L/5GBaGNdBeapolxnGrpsGktjdU1Z6SkLOXMNC00fmLR4A8rYKtxa7e/ddA+WJDbaO/HM/WhuapnljGrALDIu+UPGm+a9b/17F7/6pzV9uxyHpe/FUVU75wELMrQE7DJ1jVR9kUBv2rr7YqnrUyjnIvPGtn6ESWwyVm6SMaNf1Gvm9K1LlzrSF3d6+bMzRqk6RrRvwIKphlNuDXUfV2YoCFGnPqFrvHCht/4AAX4z7l8JlpZoAzxGDFGSsrWExBgZelsOzyh9irGWC0DFk0mjQzDRYDuWbpIB/0M70TnyXsnenUKonTKdCIl4rIwzQvDMBOXSJgXlmmWedU5iQUwVwBIfO1VVriGVBm2jGujZYnC1ticqx/EA9ZaaTxijQjtp2vbf7VWzfq3snayvrcxVMbTj8GNAibkK58dqJUVW4ZqPWuR0reoAt/LIr6sxAb2ao7LNaBnTTl/jcYlIYrkgQixG6wz+Eb2g8gFNAr+lDhLAuMCOJbkQ10WWtiQ6+cIsOysvH/jtfnMQtWtiiFvfCqJY4ucQ7n4XPzH8hmbMjZ1ktRl2cQwuUzAemaaD6ZgPVP/wGN1eX/8++JPfRgv5vU5W9CoXGNZDuVczps3rOyfvP623E+5nc3RXzGAoN2anSsJ6BXENHp6W5u1lD/XOKTECjLGdVCqP5Lr2CvekNNm/ec1GXC1fjdO4DYW0/O2+BzFHTEIMJVVVqG8d11T5aLkZSQtny1Df8Xi5vrj62CVvVB8b659ieuJo545W9hqTapnKDIWCsQZ9feLD1XOgPK6nDf+0wfXWNfHH/H4N3Sjs+tFV6dRgvJd3/Pq7pbD/oaub7GazY9KKSwMglLaELOIzs5z4HKeuL9/4fR8UbGsQNs4bo4dbeO5u3vN2zd3XMaBxYz4i6VtZsiBnAxx9oRssbml9zd66AYwiZecWKZEKM5VNrAk8pTweH7xxa+56TuOhyMfv/2Irm159fqW482e3fdHHuZ7zucXminh5sh+d1AnPlfBRWcNc5ixDs7DhafnJ55fXpjmmRgjXaPtep2n3fU0TUt2TuiGjeHp+ZHffZN4++mn3L55i1DEA5FFS5VE58oYLZP4QA3/9090WShpNWZ1EYlz7pxQ76X0MRNjQ0yR1ocaJG4DB4MiwRvmTgFPSsBnGhUjrgdFKTEytTW2KUCVNbRtS993jEMkxonLcGYJkwZBqH6LgRRZZhE9zgm8k3u4OR7IZNWSUVZd45XlIZsrLoHzWbsT3t6y6zqIiD5V6WKnB5ig09KlyxReL6VMTRlNmyAp5USOUkZXxUgB7xtxoIMhp6jg3LrVCkgTw0JwDuc8PgqV1GYV3TMFlBOAsnQOqHvPrsagMCTapsPstZTGSJvyYRgxBrq+A5vxjWfXtfSdCA5nzRzevr5lf9whulcfE2PkJz/9gl/d/wkGQ9e1OCuO6TBMzPMk2lTjRI4i+kkBGeudqrFWgb1lnjmHsKHqU+8VI5Rrp1lToXKqg6pjVw2nLU5RlixBgpyKnpCylIwTY+u8BmZycFsN1FOyZJPWA0X/Z8q/U4aQV4AwSbmR0zpoEI2olDIXFuxUnB4tK7JOgIXN4TTrvSel0xqXOd40dLtjPXjLqM2LCLNL9smz3zu6bqcOi1xAqve6ghnr4bCxBjkznEcyRllMoi0Wkug9GesxZHx2tK0CtdphRzp+6fsUOrBRxwpDJNfoYpNauLIBgHbh2DjIm/lc7ZU4N8WRUK+GypMywiSKVxk+VgcDOeaNgiwYzRw1jYB6jce3oiMmHWrs6jDna6ZbEaosc4Uxa0vjcvYZ7aCSYBpn1WBaWzuXgNoYo2UAQmfPVjKZyyyArW89jTHCqtRbskVXTtffPC2ie+bX5IZI4FkavbACTsi1qpZXTDVJEqK0mZYqPwFonbdYD76xVRNhnZmkQDHaPRFlfkLWsrWmla6ZThMImaJ7sPo/1Xdm/c/WEa1rRAOS0hWmCKLHEGRsk2pAJNVTyZk8zsKQVsaFtQbfNKAaPLGW95eMagH+t0yj//hHWbvOORrf0O923NzecDwetA3zmiEmF92rXH2qEKMkF0YpN3u4PzOcF/rO0TbQd55Xr0Wna39zw93dnvY0cP98IkRwNpHzQo6OsAhbqHcdt/sjmEyOo/gdOTJNgZATS8yEnLAh0iRH0xz41a9+xt3hyOGw583rNzStpz842t7hevjd9//CcD5xvLuhvz3Q7HqySYQUWYIm2pwTYWNruVwuPD4+8vJy0qYnUm7fa4fVdtfjvSTsQpgYR3h//wONMxzuXvOqP2CNZVlm5lkahuTCrq9Br1mXeLFF6peI0L+re6EmHCrAs55dpYmslIpNVccyRQGJSle00iHNGEPbeA2sEynMcg0pIe3rgcZq0CoIsLWWrmkr86tpGmrHZyPJt6bxhMUTwsIwXLSD7tppqNiQaRpljzYN3gmT5Ob2qH6k7FEp51bR/ZyIQZqzXC4XYso0ux3NzmqQIZdvrcUhLHzrip2T1CEZsCKTYa2vOiJJy7tSlJI455KU0DUW5z1d25FSZAlWtJqMdhMzEOagya6sXeEmChu/sq+M2CerMg7W+tVe63UX9lUmU5DUXX/A24a2aYghMbNwPp2IKbLremFn+0Y0Vrz4Kng561999IbbV7fCyh9nQkh89Ysv+bOHX2Os5XhzwLcNl2Hk+XRhmScuw8AwDJAWiNKopgD5Ffwp1wfM88zLy7MMaxGoh2rbnPcV2Cp+oZQLbVrY64QLKGnI2SNVqMJ2d9ZAW5LFVlkPcp4V9lK00klXml1swAW12+JDiXCNQVhjJVawVpo1pZSZZ9FvSjFvgNPiQ1mcXzUKc07EZdU+sjbTNoZXrzr2R7+ZTQGBLueJZYk0rsN0LW2byTclyrcV1FlNQQYj0gEr00h2e1giT88X8eOWQjpAml7pWWydHJDiF6p+WwVpN6VzChzlTGluLZ+Nqf4n64iuQLDaIIk9jPraG2+7jH0W/4wCxhRjldbgZU0OFgToxwC7syJQ75xoRKQYiQqy5awawvlazLuQMUr5ad2HBTDW8rgQIvMiIHYZI6u+rci/lr6ypmpcJcmPERbxhySxLclaYxLWKajupEyTXPbI1qdZH7GsUxSIYvVBUxLbl4vgZBmqAuJYXUNWWfLeSJMVRx3vMo9JdQZD0n1sM9kJJb50zSyabCV5XK5jC0CtGJS5up1iC1CfRuLGMsfqh2qnW0rspX4UGdK0qDinwRtDdga8J2gWMijztQ5AvQYjDRc+XDh/4PFvAJuuF3X5ndWuDne3N+z7I23baFti1RQomTeoBjDmJJ2V5shwmXh8OPP0dFYKbmS/9zi3kGnYHd7y2ee3vJw8z8Oz1O22FoOATWlxhAwmNXTugHfQ+BlnI3GZeNGFVMGmkGBKtE3DTz//JT/77HOOdzd88vlH0iJ47/Gdwx88v3v/G3bPHZxmzHlh1+/rwS2C3zPeWeawYJ3hMg48vbxwOp+knlz1CLp+h/cNTddLeZY1RCLGwvPLE3G60PS72pUghIk5BRbtpFE6qshBrvC7RJYrYsmPt1MBgSwbzSBdnk4PZZADOmk9avSxgislqCoOWtM2+KY4wqV0ZRUDL/tsm3XzXgCypmlo2lYDPa9aA0IfJM3EuDBOFxWJ1KDGmNo2fNEsE9mQXaZtWw6HPcYqOJeivk7WWoyhGoyLdiJxfc9eh06c9oC3vtjatYxDAxcZ1HVzyexIZZfs41SFNZPS6DHgXIP3cmhZDXScOj01k4WwrsIy450nNYEtVTRnp9kXMUZC8S1ZbmqAXFkKGLxv8b7Vv4uNHMaREBe6ZcZ4S9NKl0jKMtKywf3+SKfz41RKYp4C8yQZxOEysiyBd/ePfPP9D4zjwDhOzNME2vK6LDb7wUIs9mKeJs4vL5WRRZZgS3S41Og2XuY4r2PhjPmR/an118rEi5ROPmvNMaaUL0I2UYXzMiTp0aEnTRlN8vagzwoI6ZyVL+ukfW7JroCAhiAspQJi9J1TrYsiqJ1YYlQdHoq/w+EoNP1yTyllnl8unC8TS8jkbLA42r3fdJ6j2tdUmB221LOvWe1lEQBuCZnxMhKTYQ5OM4IWY72s1zJnxtFkKUdMs2QgJUjTMZHEJAZDUnFE6RKnjjE/fmwdJVPK0ErWqgBE24MzF+0Aysmu+67odayU4VyyRJvPIRf9CQkMRaC2wTeWtm+1pbVRB0XKPOYiLF2EGNUW1kWqwJdRTbeKgxkL2ZISTNOsJUGasceoLpto17VZ9lk2iWwNKWbmKVRmpPNOnPecaxmCU3H3qF2cfKWMoyCg3IdvxakL2r3HIGCTjNei51+sLAe5TxlR58E1WhJXy7Wp610An0xYBICzXhwS1Im8cpR0TSQ2QGBZBygQWKGn1XkqoE8JzMtqKh1Si6MkzUTAJqqOzTLN8nltg931ZGdw2YMRkeI4jgIym1SZX76Uc1sJYP/jH+vYeOsFbOp7bm5u2B8PWO/WTqZ5bU5R5qMATvMsa+58Hnl8uHA5LXStp/WW423DzZ3oX+6PDW8+vsU2lt23jmk2OJcgBSnXDga7WLztOO6OGKMdE9PMshhe0LN0iSwp0YaIz5697/nzX/4Vv/jJz2l6z+6mw3qDaWZwC8nMvPmnO06t5Xh3pD/uaXZSkhejto+fZhoFm7xzDMOF56cnTueLMJutgE1dK3qDfd/hG88wRoZpBiL3D/eQIh8bx+tPvxBtwRBYlpllXrUFV2dc5n8FPAtr0GG1FLUESs67GuRVNm5J4kndGEWvaLFy9mS3AomScJMuq9YYWu9FQ04TluUhdgO1MavN9d6z3+1Fa6ltRWDaWNq22XR+TIyDgE3jOFawCajnX0qRJc56LxlrGnzTsN/tETHtJE0sdF+DIYRJpRUWLpcLISV2zmK7brOOdewUZDIqjpYNxJxVd8Yq2OSqFqYxqz1f5oXoMk2TK+jXdi0xh+prWuskmYZhCAMhRWKUjrjiG0qyJxsLaGm0K6xh0a4UrU9hoaSMZPY14BRfwNB3O3btHpAgbUkz57NhDgtLv9A2HW2T6LpmZRw6AUVubo/s+l7uS0domRfmaWEJgaenF8ZpIqR7pvsHprHIcoyYHDBJBNC9rtGaBtv4H9M08fLyrAG9r3IETSvdHMsayVeAicX7D/0nHdeUqg9V2PblQF7Z+fKIFIBOuwkn0G4f5dCoMUlxrXKSnoTb3xlbRJCluy5kwhwrsOy9xzpD14nOZE6xJphCkM65RuMH4wztrsM6o53GpPzn6XFkuEzkZPCuk3Oysfi2+Bx2Y4qz7jnxD2MsneIyizZHWZbI+SJljzFZUrYKjDlKS3t5Z0f0RoHSWfTqEDCphBNZfyhDZ1RztHpQJZgruJiOvzWGtPGnPjxjy7yWzzDGqL6u0YCgPK/cdx2ATSKoPHTfeJFNycrUFnH4chbpe1F8OSk9iyEKUKXEhFZJCjFKiWGMBSTe+MJAUyTs1KbUa1RALpmMSQo2zUGlTwS0MVaF9g1S6mezlh67K5LA9rEtAU0UkE7BpigyPzlnbDJXQyP+lwC9tuigNgbvwPmCdaxjXBLMcRFfyriMaQX0EfDaVzmHIjq+TtTveRSUtM4U1Td12rFTLiLWKpoUReOzJjMVbDJk0hTIS4TG4/qWbET8PWFBO9SjfqnVknR75UP9cUm7fzPYdJ1NXsGPra5JipGcV42J7eushZxWSnLTSo2/wdI0t3h/wDoRLB7nhfuHM01zLyKQweBsy93tkS8+V3FDVaO/PTbcHSWDLUYqM+eZh7ODYOiwmGiwTYvd7dm1DYfDjv1xx/7Q0e1anLOczi9MjyPv3v/Ay/MLw/nCAc9u39N1TQ3uC8Uv56wLXyi1UYXDRetnZGpHpnEguoVMxnvPNE8Mw4C3lhvnaDUwKQNb6W+bxW9YM2xXqGau5GU5BKqzsNZXFm0tgdElYjQVbQDnNFA1yK7GVIMkcUW++r5C8spAchIgeFPAqSL2DI0GSN6Lro2xqnmgAa6ujtq2OKa1VWuKiWgFSClGaJvxDstSaZACNK3MEgwQwVgr7AKlg8dNp7za4hW5nVSAixC1bCzhrMc0ondQEGOTo7BiKIZ77Wqz7aJQADtZ63azH8SQxiBda5Zl1vbGRr9bATpsrkBfcVzL/EsGT9+XbcBkVMQ3XR1UMQYu5xfc5EhhZJ5aEcHshbE05ZVRUtaTlI5Ke95hGJjnhWkSfS+hrwet8U8F/qzrdaVfV9iy2pFaHlOcfycHWi0dMXUH1PeQ18J6RwXQLNoaCZucOmliG6wx4Na1UxaG0WD5Cgj50L6xBt1bh698dgH7yhUCK52arEBR0vKTLNmrAkSUjiMGPayMBn3yWmOtCn1C2yZSBKv7CN3pxTYkBYRKffW2u1UIAiyEUv6rIF7VeTLl3jdr1gqwU7tHqlO6RmbU9VvnMlP3aN4OyHb2PjitpXRgncds1sGsWTd7DVatg10cpI0DzaaUs/y0sZWVnWA/cDzy5msDkpT3Kzp1heUAAhRJ6ZIwfmQ4EiBln6Lpsp6ToMmxKsZrKittW3IH2l1RKpmw237BZvNVR0DAyJyyss02gGkquiWrQ1XXnBXH21g9O3TvL0sBsrZTVUp01MayZXlsduMmMCnCpuXfMZfx2S6ia2cJY+p71yNmvdG6juS5+q+82ipTqFRZ2GzGaumXZmUzEvzWLJyWUNjtzf47P2qgwWYkSjkkuTaOqJpfZZ3Xta8MW0sNdJxr6LuOu7tb2mah725omz2+gcs4s8RAf38m0zKOE8637A+ZN68NS2jAisam847bY8ur214Co5TIuWWKAf8sLJk+W3zKtAb2Dg5dx27f0e9bXGtxjSETeXx64DI+88MP75mnRVgLztF10gUs51xtlAQo0uzCWvWh1MGdxoFhuNBYT+d7nHeELFnzYbqIDlDTMI0zy17O9wLafGizMxs7/6EtqclTdH+s+lildE2GX/aUEcRd36Pse9azp3xmjsrgkYAlFwChLEEtdS2aIxQfixUUc84LwKYano0GcEXTrEhRGFukA6KySOQapLxwc84BhX1prDa5MVJqa/Q8dt6rbxtIyrSWxJj4t1nFx1f/sADsouOUlU1Z9nPjW1rfrj6UnnFGgV7xVTbdA2sStdgfp2u9sJRWAG0aBwEaYiBFAdm8E2ZWGwPktQxPAHgD2en4U0GvbWBL/rDjleyHeZl4enoQFmAv7HCrpXXO2cpmwihLFtHBikG0UC+Xi3T4HUeSAuglOeR0PRS/aHU19Kwsa09tb9ZEZCk98natOFjtzcZX2iz5K4un/rvUIEo5t9F1XECR0s6+2vjNV2UsW7uycnTu1lRQ+dX1XltdrbW5S0yikwjCfskogJtKsxJZN9trcMqoW8u+UICxEb+rAK9u9VFqeWItjcqIvmKuZX5ZNb/S5t9r+FsOOa4fm/VprWPbVexqXvRMNmX8il1QRtLvBRrMxpdl4/9c+QRQ3KdiA00y9TymnOEUsN1s/LNtKmhlyYhsg62TVsc5Ja1qX+PBIq8iLEyv9kTlUnKmaNjJmtAryFnKSDfv/aP7yknZd4I1bOODXP62SALOF9vtxJZdySWYNelZxL5zzkRiHbfq9xtK76HV73G2kj5K9UKJN6Im5WSNbeKJH62RdR8bndMr9251ZNe416jPabaDs/5crm99rODuj5bRdmBNrh16ix5X1vv0xkjHUY1HE+JDlYpBo+vV/ZE+1L9Zs6kYCRHxbDFJaL/TNONwTOPANFzwe4t1B5zyXYQqKFkea4UF4K3j1d2RX//6Z8zTwvHmFfvDkfvHJ/72H/6Vh6cz370bSctvuTnu+PnPPuWwv+PP/uRj/uIvGqZp4od33zJPA59+cssXn93Qtp793Q7fevp/djwPzyImd/GExdG2Pbu7Pbu+5YuffMwnn79ht++5ed0TwsL/+r//DX/393/L89Mjv/vXfyGFhT//2c/49IvPuHt9Q4riBMUQMcaTIpyeTwzOcno+Mw8T43ng+eGBh3c/EMeFPAc5LL1kfy/DwOlZHKXmp7/AvH7LeFkqs8mq9oRByl1iadGpWYwCksiCUlFKBJV3XrIbxphatpZS0HK81bAWQ51zroYgxUi01J9Fq8movqYRI08UZzRLROStrR0avLOVudR4r4KGbtUZsKuBACTYUR7pNC3abWupWYVxnHFLxDeerpPWyGLgZuYsYIe1Igbq20Zq6nfCXFhCZFEGzTQvTEugHwaWYSQbgzMO622lukNmGYWOvUwT0zBijeVmf6BrOrwKuZVDIqEZlxgwRVDNSctUk7NqW2kG3tqqQyBlNXKADcMFO1nmaWIahyrkbYwwkNpJGD99vxN6tJc6dGsdTddpSaPD2QaMqQd6DJFp1tIBK4ftOA7c3/+OmBZab2m8ZX848MUXX9H3O5ZF26DHyLwspBTp2paubVjmhccfHhiHkXGR8tF5GpXdNOBdplNEPydhGa0HHrXbgtWSQFnj6kx7R98LPX11rNTs5muB+sqLMBKK55zxpoWcCFHQSwOkZFjmSNMYjJb0ZpshFaq2rcE5XH//sGvF1j3LedU7KtlR+b3R+1WnyUjG1WBq2REGrPG0jdMOYFIi0qqeyrwEpiUSUpLArN+TE0L9zqITVYDYsGgZViidVRKLamhJC+hUx23N3GQyVoEsAYJFS8pUhhSgmnGZBnEMUowitp+3YMHqyG6p3SvsrUddcSCMEK1FY8hgc5YMXV6Pwy3Yl7SEzWqK3Cj7DoMceSVju6FECUgpcVXeeNQ1+CwgixewqVDxBaNQqnZCBS/lXo0x7HYdXd+u95lhHCQrJyDsIsGCRzuLZGy7Asur9pvMgbEG68T5DEEyyWGxLE6ytQmhZAurUUFx5xWMXcFxAbiLbpHcbKygFYQcFESSjFZOCWOTlB70BmM8mURIkgmOY2KakghetlbFWo0ACMngUjkrjNp87eCShfDmrDr9BVRjbR2ciTqn8COgScdoq0WTyzrI1K+cxZ5i5fPQwMbkjMsIm0TtvelaaBrCbMlJ7j8piJONsMGcBWekk93/fx7ihDonNj8laTbhXcM4T6KL5yJGSIgVvLRWWHDZICyM/oaPPm7587/cE0Jit9vRdi3390/8zd/+M5dh4l9+c6LzP3C86fnqZ295/abls88l5TQvM4+Pj8zLwpdfvOanX32s9mohE2n+yXH/+EJYEjdtj8HT+8Sxjez6lrefveL2YymNS3ZhnAb+X//1f+Fv/u5/J4wz08sZh6H9ouX129ccjgdKB6JSphDCwsvpmWH0vFzODMvMebzw7v07Hu8fOR9PDJehBjzZwDxODJeBXd/z5njHzu+Y36horJ7niUjtD6f+S+mKWy2H1MxgsuwNbzPegfdGy9Tk7BKh5VDnTZx0IMoZ5UzGOkMymYis35J89N5jaJWd4xHmTbFpIvpc5AkaLza6U4aKtcKG2gLeVn07a6TTa2EyLSEwjBPjNEsXX907dg40jYB9xhpNuAkQOS/SUbXre5q2xXtLv5dmEuNoMLNczzCOzMuCa1u6fqfniFyDUzZKDIHTaWSeJwnSssG7hsPxFYfdAWvAW1j1QgEDSwhYXQcx6pd2prLG0XgpSew6Ye/M4wQ2E8LM/fvv8c8NbdcIM9s6urbHOk/XtXR9r0DnDuek/Xnb9TrWUoVRk+a5lAFJgmdRwe6cIzFmLpdnfvuvf0+MQRLVux37/YHPP/sJXb9jGCeGSXzIoGevNwZvpKHNw/sfxIeaZ2liMM/EZSEtEeel/NcYpNQoS0K4AJ1G5Tuc9TS+w2XpHNw00nVYqgYUENiASx/anC34QzYCLpmGnKW5wKJvIbq40pXPN1qqZ5VZCjgXK1hnos5pvvahQMGczWeX5HjZk4W5uepEyngbA0u4BoAFK2jwbUPt6mbAN3pO5UxcMiFmmqbjeLuTRjUhVoC7JuKisD6kUZUkicOyrMmfyiTNdaySluaLzIap14Yp55X8wrcCqGMNNlhh587KJDMloZrBpBV8trJfFAepY6UnRQUhClBitXvwj2Z3MwfyMHpulI5r6JknFSoFFN12YxN8RMTd266RJiBqn2IB/lKuLDLx/KSKZ7/f0TYtTePpd20FUzC5guvGJsy4aGK+RFMQgyW4DxeuPCemLIL6ab03U8Y9iTbaOEessxxsT+sanPfsDyJ9ox+le6UhJ2EJLoswv0tHSaN7yKAleE7wHZsl8dh0nmzBWY/1DTknQpxrQle0XNckZdYYzKLFH0mxE4sCcyoJYNa1LhMm6yGbIkuQSKisRt3fGx9ck1biG0r8VdZu0g6uxkhyTcmnlCDNkHARSczra23TkVwj4xqidABOiSUn8ZsUgPTGbjpE/7cf/18JhJc4Yc1oSJYhatmSOBHp6u+wRQnXr8Z7bm4OhD5w9+qG482RJUonjXFZeHmcOT8lPnoT+erLz3BWmFA3r49Sn748MlwCt0fP7cHTdC2H2x2+azgcOtpGOhfhW1J29I3j0Hv6vmG37+h2DW3naVpHzAsv52e+f/c9l5cXTi8vtVV7v+to2mZdmArY5AyLZili0ExFFKHAZZ4VSBhrpswYGC4Dl9OJ0HTSuaBkyrdjrIthRXplLGuQt0F2qRmDVZegZL+knXCGHNGGBmK8NqhqFVLLkK0+R0tUtltfsm7l9+r8GhRsMpX+26iOwBrcmav3yQVxr9eP0rhLnXlBimNFw1eYWw2k3rK1Ft96vfeVKWOz5mpSVifRVDFJCsvIrtr/OUsWSkrvJDAxmlls21b1owpS7TCl4FUBnkIz3XY1g00WyG4CUJ1DCQS342tIqYBf8v5FP0Kcj0zy5dTNa4bblY4DOjPKNFpdC/ms8+mZJcx4m3EWQlh4++YjnHOMY2DUsp7ScW3XB1KSNXo+nxkvF5ZUgloVeE1B2QJ2hRr0wLta0XqAWbW8he5Z7q+0V96M3CYuLWt+myQoh6iwdWy+zupJ5uXHr9pmh9a5WEu6KgYCFXDaOm5l3ZX3zQWsAExibf0aBUg1FlzJivjC3MirLVQwygQ9UOQ0lvsym+sxgbSs/y6gTNHjWZYiuKtZODKFN50LIlDYcioMvd5XrmODMQKWWodE8b9nDFmnxnANPMkPCjRx/ShjzQf2YPsotqGM9XptXO8f3XcGc7VuVuaAzuvmFsshXS6zAO9bD/zKgVMwtG0lI17ApmUWrbeMOKtS+1/KiLdrjbova2tqUxhwBdBEbUdWoDRBFKcTChDDqh2DgU354DZrWrO0bN9f92S5Sbsym1LSZhqpOCZpA44qAFRZEYXdem3D2IxXpb6bH+/TOgn1v+bqp3pvm79Up3vze1vnXF+7jZ70S9i9llz09xTclB2xrnU5L/7QSvz3eFyf2eW+i1hzCMoYLUGRzVdbr+aii2NqHc56uhbu7gwxZXa7jrZvuIwDw7Tw/DLgssXkxEcRfv6Lht1uLz5P5xmnkZRGxhFuji03N52WIwkYud910mkzQedanOnYtZnjLtH3Ld2uwbW2lv1lIk/Pj3z77bfYBG00GNX0arsW33g5a0vTCBSYCaWzmeoe5SS6gNNI41uGtscYo518pPRquoyQpASn+FBb5ndlpepoF390zexuLdQKldfxLYGugahBcN7MQw0CszDsKa/R98kpaqLPCFOsnjU6n7rmnVMNJmcrG6DrOgVXDE3RUtPX2crgNliSlHmYVbZCmHGy92OMKr67ZtCLzRAygoBNzUajxqnGSukOm6FqUpaSVgtaiyF20Rkr5RchEpcgyTxlJImEQifnHhGSwVjRxyrJ0gJQrN39SiBUgPdViqBqFqbINI0sYSbGlhgWSZakLN+r/IRY5qJbJOCfwxivLNSVlbY91+vZq9c0zxOPT+9Zlol5PjBPe0JYePP6Y6z1DOMo5Z85E5IEr42xtFbKRM/nM+MwEGIihVRLg7NmRwrrVsrXy0G1iT5JWjHgMFl801LC7J2ndO3bLuvVn8mb9comqi02UKQbbHR1fSepUGI91TZWvYJa4vunVBKFV1tK3qmCJh/4hPU99RxEWDjbFvcgZf7CUN9qrmWMKdIZayJbWMJIIOy8rCv1KVIo9ZNFWmVtjpSiCInHuAWZtmNp17NwYyeqKdncjymsWRtFn7fGiuUFJWnKakSKb5RXn+HK8dQP2dqO63HO1We+YnTmXJnPZSYrC2Z1rfS167XJZ9hrVlP50sO5dolFASOjGoRtQ9OsGr0ovz/pPOVNFzy2NrrYJTVU65CstizGbXxFnaOUJXHmNiCcEGJUwzcWtqeUzqfiG+dN7MaanJfXl9HS8bAG6y02aTWGE11c4uqPhywaZIWtXKdxO5XVjyrz+Xt2hTF8GH/Xyf49kZAASdtnbX1o6vMNG5+pXEteE3dG56PElblo8GXtqprFB8Os68h+uE7/wOP/h250aBccvXHdIMssdeO7ZSfOoVm1GOZlZnr8gRAiP7z7gcenE5fzSJgmYszM08TFNwxjYJwN0+xYolC3knEYFzF+ATsimc6JvjcYGqyHKc7MU+D5h5lsDd+/f+J0mXDG86uff8nrmzfsd5abW4cxmXk68e77b9nvd8TlFSlF3ty94Ve/+lMe3/9AnEbiMuMaR0gLSxTwyGpLwbbZKUNE0N83RGzj6NsdP//pz+ibXoKREKVERru1tb7li0+/4LA/8hd/9lf85Muv+OizT6p2TQqpdliRWK/Uz/r62fWRpe1nmAdMDJicMDlijSUuRcRbxX5z0s5ta1mMbOKFrFnyIsIqXabkoPaNV/2kqPWZ66FhSnCYpI1izqYa8ZSKRhFr4LIJgKrguTU434gzYGxlaeQsorw2iG6A1OgKNuscWOuxOFKwBGO0+9NApcrbcvhIiLHMC9Mg82ebFqwRkdJxVodRNmNjHf3xtma/xPkQQwLgvMd5TwgzSVubS7YuKH1crzMj42m1paXZglvaKQ8tIVwmcfSU2bRlMU3joI5FQ9u1WOfod722821o214OBucxRkAbZ8V9XpaJaZl4fPiBf/z7v+NyOZFTIKfIzc0tD/dPHI5H3rz9lDdvPsao3kHKmekyMZ0GlnHi8Zt3jOczyXtSK/oQKS4Aq5MM6livmkyyRowGApZ+t4OMannZK0dhe/hWmnLerrb6btXkFixEWGHNBg3SoCQEHW9JK+RtEL51+qvBXA3n6mxcfdrqDJTnafCbgFJhUVi7OaNi00lbhOb1IDVSujkOkXkOnM5RxX8NMeqaK1m5WIIICEsk5bUjTxUd18Eo7JByWhurJ5HeYyZBjjp/Bmqt+DrSzvm630oXqSLEv973BsQA/VyzdnakQKar4wB6ECsq9yHIvs6wgCBlD5cSz7QBVH60Eq7eanW2QghkEm6x+KUAs/KsqLX5AmBLGW3Tevp+j9WGA+X9kjpZpVzXxbUkz2w+tQBLW8dbfDItH9I/itMlYrshREwypCxafm3X0uxkr7fatrt+UBaw1uCkm2CQVr4lIwtI5nRFRsUR9AZbdBsQip43CjoFoYDLH8v5IudOIq9zYBFwNSfJwMc10RJMpDTvLWO/7t/Vs13n7Xq6CoNWrreU761subKvZZ1unEDApEyeg3Td806yyjnTdh2pTSzDTMiZZC0hlw5oVlox/gc+VrC4BAhbZ18KJ5dlYZwm2bLdtvQzM45nTvOJeQn88O5b3r+7JwVLXBzCMDeElBjGhTkYlqjsmYI02AB2IZtIYsGYha5DwdPAaTiRc+blMjCHwPuHC+DY7Xb82S9/xcdv3uLsgnMzkAjLwm+//i1d13K42WGy47NPvuDP/nRiOl94+eFenFhjqtj7PEnPaGcbDocbmsZxOOxw3vLxxx8zLjOPd694uT9x0x+VdahdX3X/vzrecPf5T7g53vAXf/7nfPWTL7l585qiPxS0xFu0HPWscXb1OcpJnBM5LcQA03jCuoaUOmJsawLNGKNdXRc557N0by1BF+QqAvvhvnfG0HrY9Y3oE7aexm+SZ6hmnl2/W5PJKRAXKb0z2Vc/qQT25RzJqbAlpWzINy3zuKw2DdFgLPIO1hhSlmoE7z3e79Xn9MwXQ/QJ4kVYDHmp456iMC/DMos4tzZBMMYQl5lJF7a3Dtft6Lqefb9XoWDReCrgscHQ9Tv6rmWeZ4bhJMFoAZtMrkBVlSbIayJRJPEEMBjHAWNgnkYFXhxjK/5S23X0Q2E29TgvzKau64UB1XeVVdZoNcD2cJYkHwzDiXEaeXj4gb//+79huFyUve+4u3vN+XTm5uaW/fEV++OdjPs8i1D46cLz+UKYZ14eH5mniWhgQcAycsIru7FRZpPBrOwN2fYKWmaMdRwOB/FTm/VcqAxa9AXrq5FKhLLa8uqYFF+klHMqUKDGlgyEmGBeMLoGcl5L/7ZgTA14t8ycOul5/ezNlcmfFNTRwHzVmSpljoVNXt5Rx6UmRTLTIqzdeYpczoskrQkktGvzEqu0RAG5l7h2Vy6NPXKRGDEGu/Fh5GzSuMsYkikASFKn1QDl70gsZNCmIF7voYDOW4BG7snUqSpgTCk3q0EamZLs1nS/Wf+2uczrRxb7UICVpEn7sp9WX3E9TTfuszShmLQKSdna9bXi6Ii/a8Eo+8k3nqaVe17CIms3BwRQ3szl6rhjWGVQ6lmnX6WEsgDSRQKl+HBJO4pjBER2Xvb6bidgfdHck49MdT9hhAFbGv6kJOPtnK+6coX1LH5OwjhDt2vxrdc1mzAp4ZKBJAzwGDLJili4EuFwrmhtrbFHzmuCaVlmgheGfLaJrSxKbVrDKsGwJuY2M17iJlPik2JDSkI8bUpGy6IW4Kl2D02RtMyQNJa0FmcyXd9JifZkSMtCMqKPlrXcPrFhTPw3Hv8msOlD2p6sBlOD+4x0SxgvA8t81PsxFY0f5wsvl0emeeaH7+65fzyJ6OQoi3IaZ5IZuQwL42QYZ0eIRowGHirYpOwNG9j12vXDZ8Y4EZbM4yjUr+/fP3I6T9weGn79i6/4s5//gsNtz6uPDozTwP/z//F/5+uvf8fN/oiZE8453ty94XB7y7fffM3T+3eMlwu+8SxxYQniBBrn6LsDXdfTtJ79occ3Dt95Djd7DrsD3//8e479gR9+uOe7b78nqtBiipHj2yNffvYlr1695q/+8q/55S9/hetFQDwj4MiyLNqNSsbQadcyZzdaWGoZcows8wBmBu0ggwI8qFHMKmAd4qzZo1QNX1hGYgrqfmn3FNNgjcM3AuTZ7CSLVo4zPRQpQFNBP41kwUrnqpRK9q4c3ptg0WTQkhHvPb5pBWwq7XYxuCybxy2ib+SNV60noTEanHTUUWMyjhMYpEtS67WDj4xHmBemy4TzntY0WIfoEI3asc17nLV0uz03h5srpkzKWQyOMbRNK0ZsNtUBzSkTQ6jGsIqmZaUe6x6wCjiVTi9JAcjClCtZBO8dTcla+W4VL20E2Oz3vXaC6tjt9kLRb3c4L51rWhUKH8eJcZ54//57/u5v/4bnpwfmcWSeRo43t7z74Qdubm75n/6n/zOffPSpNEswYmzH88jwcmIeBh6+/p7p5YQ59Ni7nWQ6FchxVii3kkDQzNLGmY4KiEjb566y7rx3qtU1b2i/1bIgiz9XJL7+jhJzF8dJnC1XfqsloBLEa+lDgT2KuGtdg+b3fC/149TvPwbvy4mob4tmrvRavVFNopyrgyMAndCNnZcDeRzlIJ6XyGUMlZlUOposQQ+hVAKtDT124/RJsCPXJesPPXkyRrssyn7Mdc3FlAGL8W3NipZxcc5jnDooMRFdJE+z2KQKHKxzAeh7rIH0Olu5jqmUmGo5XP4AuDNoadwKHmUt8YtGOo18CA2UQzdrO+EPQQwpZwnEJGCL6BLZKsZY9DQEfBRAy3vPzc2N2qtFSwxz3aelvCbGD3XYjAabJVNblwelw2Ispbem6LDJmMUCRAZZ8865Wp7StqJ1k1IklI5F1mKNJ2QROBdWg1YYmgLc5KrMZ4wBZ8lWyossQsPzxpCzsH+XVILlgqAZKRdAM4chYqw65eroCdglnT29iSTnVSNmHa8a4Gz2Wd1/mcry04+UWbW6l8y281VdXNXf3ZaDswQIRmp1jARPrQpexiR2IRkIOUknlrSK4f7HPLaQpNxL9avF2yZjmDVh1/iGzrQKjgA5M4xn7s8PTNPM9999x/37J5zpaM0txjhJzC2BYVyYFliCxXopccwWjI0Yu2i3MMBGul66WGUTOF3OTEvg23fPnC8T59ME2bPfHfjrv/w1f/YnvyCmgTmdGC4X/sv/8l/4+jff8OrVHW37BdZ5Pv/sC3a7PQ8//MA/DhNhmRUkEdb7PM9gDIeuZ991NK3jcOzw3vLpJ5/SdC1PD0+cfzhx2x15enri/f19dfpzhlc3N/zZr/+UV3ev+Mu//At++tVXBGMIxhK0W1+IsneNNQI0aZbeaudE8V8i0pUvMQ2AdaTYk1KnvqvMj7yfBNtLHMXHUd+HvDK1qm2xlr7rJRnkYd9LWUfbeJyyhXIJempZ51pSQYrERcBRNPh03tZEY4jl/FL9EOdwvqFpOowZWGp1gViA0mQgGUtKnpQd1nicO+KsJy5BG9ok4jRgbcY2BuvFlkdlCYVlFWhO2mmznEPWWvb9jqb1HI833N2+UvAvV7C9RES7rqXxjsv5xDCc63sUpTKr/m7eaHhaVwRwJXBLKWrHZgEUy9i3batMuo5ey+haFZgvpXTOObp+p6yrhn4nAJRvBRT0vqHvd6QEl8sLDw/v+e673/G3f/P/5uXlSfSWYuLt27fM08Dr12/45a/+ildvPtEklySBLy8XHn73O+K8MJ3PonvlDLFR9kSKeCe+XlMTG0aFutGybhm/GBPeO3b9XgJlrWBIWZlUOWM1qN8+yrDXIBMFoMo/NUAVNpqsN6nSKHpFC6vvpOz9ooBc7DgKhoBov+rnpXoQbsrnPri29as0wJE3MMg5lqrPoyV6SdeCjuESZmJaWJbEOGiXwpwIpdxrUdYj5ZJLqd81A1g6uFkdn5KfU79QNXoyUDrjZbKWglqNy7QhjAHDWpUgLpSwrMK8VLYVqvu6PRtNLoDSGm+XbpplUCtbukz07wOc9IeUkpRjZTBmbXiDjrAQlUydSqMmDSSeySaTkqONTdXFKseX0Rp3Y9WGeUvTSuldCKE2Z5BmTQr6G199oxIjFAHvtcs5laYTszAEK1iYElXjjtUXtr7EkJ6+79ntdvhGSAEg5f1bHSWbqQ2qIpCslr0qkUAjYbH9eSGmJI1/di1Z11wIUtbnMphoCXNiCZIsSK0UBpREgKndjRMmmQq+hbgwL5nQ9HVtm6tCHrV/4iyLb0+JUTYTrYNamIYy34UYYtYkbSp+xxbkLGslkpYE0WK9X7Wp+k6ip5wrASZGWecp5So6/t97/JvAph9l9HXyQZwV60WPJMRNG3LKAIhjf345MU4T59OZ4XzBWc+u1IB3LdaLun9MbA4pYQAM48z5YnDe0DYiDN11PW3bYZy208wi6jbPgbCkil5P08h5OIML+D4xTQPjMDJPM6ENlZrsjSVm+0GHqFQ3dwxBOkq1uQrz+UZats6LqZoZ+13Pzc2RsCxSn13BpsSru1tubvYcDjua1mKdahdtsjtXZRarj02hFF4Df1k6a5gkddfVeF2FOxpgKjiSBWgSCmEgx0ClY5BBwQO7FQfPeuCsn0phISQ13BLsaocWTE2Sp2KcWA1iyZgDdF3P4XDg5fkZp7TnruulJl2RaYMwoBrfst8fef36I+nQpZTsEBem+SLsAAUqCshQKJopRSm5IuM0c5mU7tk0Xtt9+lr2tgY55czcBrQKJXN9OFgjQZ3ctwbLSqveagJtjoZ1TPX3OZm6BgyBbLO0+gZilPWZclTaqTjQMYFzAe89uYlgDNM8Mc0T8zwr2yzpWErb3uE8Yo1juAxM86Rgo4Kb3uOaRoA+58hW67yDACTSQU6yidVG8OPuBIX2XFdN3qzhvBlLytgWz8jU9c7mWfWH+jSjwnbrkNbMR974WSiYoWup2unrGai/2c7Rj3D2el0bp6180/a5NsnPhclS6csbMKtke1LUr5r9KSMgZVTJ5I1Twgf7fzPW5QkUmveGNq1/EjYiSp9VsSJttV2AgULtl8DfqoDpWsZbMpH1c8seVYCtJB+uRUPz9bjl7XuYq4lYS11Yr2fzvvVeKU5EVrCqvqRuT9HpQkvRNvfwwfUIcFEySMU5yLW0o9iAWupRPtOsoMcVvV0H3GzWSVlSdc1c3WapvUf0+Zx+2RJgWdVqSNWjNyV9Vt4lr/ds9LONBnBVM6uwJHR95AzOJ23gwFpyo+O+ZsMKMLLOidi2xBICDkNjWnBl/X44x+vcbueMD4Zs+6hnHnlD8zZXL6uBiv7SxQxRAu2yqp214lvkrCxetLPQH+kp/Q98XJ3cdVnbWr4kQs8BF219ttHyx7AsvDy/MI4T0zARl0TTWna7Hms9U0rMWea7lFXFlEk2s4TI+TLi20y/b+i1GUXf93LOWFcz/WFJLEHYmCmK3zMOZ87nZ0IcmeML4zgwTxNhEbBmDa60mUFZIwVIyNpEZgkE6zC9oVWdoKIBZsiYJELuh33PfHPE5CT6iEmvJ2dub44cdh27vsU7KWktOn4liZbqeZdrkFnWbMlMF3ZBzpEcZ4iWYAGjXT51rcXC6MhRE3axBlvifykgYuWclODbVB1L1HeSZFRc10GWErukNttGSMbgstvok61fZS9V+190dIzhsD9we3fHMs0CaFlL13c0TStBexLb1nU7vO85Hu/4+KPP8V50GUMIwqiKI8I0WkT3KifI2jkqIUk3XGWJWWNJNgnA0wjbujQ8Wc3h9T4Tebzr5MD2rK82L2cFdqxq6sTazTYX82HUHmi0LNl2YeKEoA1MrCFl0UYjQ9RAKit4UlgVMYm+qm+UMZGRZj/TLH5/ljkr2ikxJC7nC41vmYZRfGm9ptJpqm1blgyTsXUq1y6y0pDjOrYqfvXqvFyfL8Ui/v6xLcvt943rivVvfIQShHPlUomNLqyoqy9DZuMv5HIGbx+bv23eoAxfWcM/dmOuSxilCCNv/mqq4S+xQymdK3nEKrNRXmHYnMvbu1z9Fvk5rxdXDlLK+vqASUsZ4wzKEv5RfdLGU3HKlknW1o5yVRg8r9dXS8yKr/N7/LxtTLi6qzqf9fpWaE/8MHStb+cpg127v1bfyeQP1s9qO7cstPLuW5mQLQu/dKKv85zFj83qCOVyvWonDGWtmNoD5Go4N4m9MhvFT3GlM26zNtIBavJ/m/gqZ0SZ21KiC6u8B5l67QKYpbrrJKmgmqdGWeYmk2MBgFdf2VBYVVdRY73nkvQNqi22EGkaeR8qE2ndu6a+w4/3+e9bJ+WHMld1F+pCMWiMioCtklPQICRGYWf5jM3KOnPi3JUz1Nb1999//NvL6KqnqW1HQ8A6y/H2FmccIUXOw5nbaRTmg1nF/b7//sI//v0/cb6ceXw4czpPfPLJ5/zyz39N3+94CTNDWHBPI2NInKeAmQ0mwHjO/Otv3vPDe89nn9ySPrllt+v5/PMv2O16Hs4n7k8npnnmdJo5X2aG80xcItNl4J/+5R+4vLyn6z37Y0cMC7/513/l8fGRXdfTH3q6riXMQg03NrAsI/M0SDZChXKH84kcI8fdgb5r6fqG42FP0zgupydOj0+EaeKzT97y+vbI9MXnDJfpCtXu+o7Dfk+/69kdMpEncu6kXCULarosAmqlRTqjBaVBOydjjFUDYaVsKSyTZDhGGDRuKwh6CVzEAUrVCaybKeiBq3X2Rluptq3TTmHSOlro5h9Q5owD40SvRg/QpknkrOKRJXvPStcsTLgYMykvZAyffvYph5sbAN59/46UEp98/Bk3x1tOpzP39w8k4PjqDTfHO7786Vf8H//zf+ZwPCI7wnJ6eeGbb75mHC483r/n+emBJSyEMCgTJxPmCUumcZm2MXS+J+8E7GybtgrxWiM6UJL51A2pzlrMGZOiCv7acl5I4GJEINAmyzAaceByBnPBGquA46IgkjizGFO7t2lSQbWrpMwpoDpT1tYyymEUwXnvvVLALdY3tfSv76W0bpgX5iXw/PxMztLN0fUdtDIPD+8eeXk48d1n3/Pu+3e0Xc/h8ErYFK6h73rG3cDL0zMzMKeF6TJgTKZrW/b7FpsixEXGw5gr8CmTwWU5WLOIpgLk7EnJXTtN1a4WkFVB3qx6GurUGLse/kYDlFScGj2sqp1V3aYKKGRk1PPGidmwy1YzV3QDygGYrgx7AaL1Hxo46HP01I5Gx0PPvtJRp3Y3yZkQhMUUIsSgiYekRt94AVPRrINmL8OiGei4jpUEWupspfUwo4ItK6phMFJ2FAO1ZM2ua6yMl2TFslyD3q/MRySERUfCUgiANXtiTQ3C6hCzeX1aQc812C7ZqrRxdta6+lTsjl3tR3HQtqBJEZUvz3HO0HYW3xi6vqFtpSw2bnRNisfmSpmGgRgXUjLKMF1b9MreXIFrY7MA115tnd1c1wZoFw28cj/ahSlLYF0ydcYa1bVx7PY9u34nDMDW47wVlqh2OYxBmQXWSLbQqB6KipBKCa4kP3LRx3H63Sb5ud6UCCJ7FWF3rcU60XkTNl4Ck6R02YnAubUQc2KKmcs88fTywuQb3E1D13RyFsW1O2d1Dq++l7Li60DlKslSHNaUlY2kmjVGnOSobLGs44kxGL/g0LF1Hqyl9R6zc8QYmIdJ2Y//4VV01/fJqlVonYiZ9l3Pssxczi+Y7sCOrjrTvvG8vLzwN//b3zAMI6Qeckt/2PPVT7+iaVu+fbjn/csz2cG0LAzTTEoNKXnM84V/+Jfv2L9zfP75Wz7//C191/DFZ7d0bcP9wws/3D8zjgvjEJmGzDwuLOOFc174u7/5rzy9/4aYJkI8E0Lg6f0Lyzhhcmbf99IlzRtCDixxYZwnlnFiXmbCsjDZicvphWZeeHv3iru7V1JC5mcgkuaF+eWEXQI/+fQTPnv9WtjH81RBzZgSN8cjb17d0fc7YGa4PJNdQ/Y7SXjOM8s0EeZZyo9jZAmBaZmlBD4vouWVF3IWv6x0npouVvyael5kSmOFnDMhS1mu0f1bJxNwTtlFXpjSexWmzkGy+0uIhAIEWyf2Ny41WFv0e9t2wtDJjsZrIBjVyWc964yDbKXj289/8Qtubm/5x7//Bx4fn0gp8emnn3Bzc8Pz8wvvvvsBZy0/++lP+eyzL/niy8/5T//p/8Buv+NyHhmGmdPLia+//oZhGHh//56HxwdiCqQ0CsNisaQp4FrDbt/StI3IGai+007XgJTAlc1VGBTUIyFEKStaUqzdZ3NGOwpC13hMTszDmXm6EIIlxgljDeMw6Hurb7spOxHTm1QYGjLCqFiWWZImVthN1lraacT7Bu8d7aWtZwYYmqZlt9uTgYf7e55fnhnOI43r2Xe5BvmOhu+/ecfz+2c+evM5w1dPON/S+I7WN5hXr2itZRwGpiUwRmHp5iTssKZxWlaZCMssS6loQJYzTv11OSfQpGEEnzHGVf9kfchBte1EWgLk9WxabW5xa1JK5A1jzrnCWiv3a1eQaoUoyJrMSFqGXhk5lCA71wB1/f11SfxV1kF9uXJuVtBHfT8QWx+0PC5GQ0qOGFBGuNE1JQmWwoCqXe1ShiyMMGmCpOeHSPtfBenlEDemVIqg7y2JD9GDRbRtFP0sY1zuT/Zzqz6/URAhEfWcM9U32yTna6J5AxHk9T0rEQNTG6UU3FBiLAUszQozFJD2qlR93TQap1RcZ/OVq1axAEibZBuSpPBOYo95VpH1uNE2lhWnPrqKsUfRcSpNgopmWlS2ZNFLKotTqmNWGZJy/c7Jmtjtem7ubtaGGznW7s7AVZfzev0KRDVNiZdMxRpDiIzTUJnvYREQGe3ga5xUz5AzjVdf3lstu4amczgnfuYSw3XlgZXrtk40CKcQGaaFp8tA7yPHPeydI+mcCdtJWV+5zJW+12ae6t6q/tMKEK7ret1vhTGdtNw8J0M2VrRKp4DLBqOlyRLXOpLrSCGyDAM5J2GI/ZE+1B8NNhVEXa1gBTOESqvdELDKbAp1oQE1axBC5OX5mdPpzOl5YBhm0pvI8XBkdzywXE7MowxsSNJVwClNK4bAy2lkDpabQ8c4LrStlBDd3Bw5h0A6nYkZliWxzJEYhC6fYuR0esabQNs6dueGmALn04l5Ehqub8Spt9Eo5U1osIUCWETEwrKwODHwwoJx2pbWkZN0Mksxsut7+rYl7jPxVrtIzUulwjat1Ec7n0h5EiOeusoQKuDGVaZOA+9Ekrr7TRZeuu5ELZFRFpNS3rzq/VhTxLxXo5VzJpfKGANFxE4cXG2zXBfzqvWkESIFS88YKIYiJqyJgppbK7RCPQ+r0S7BfhQ21G63xzrP4bCv7ZEPhyO3t3fEkDE8QYa27dnvb3j9+iO++tnPub27I6u+/uPjA/MSdV4XLueBnC3GSM05WdZCzgnVHMQ4oZMb65R+7TXgV6S3qs6shqsAILLfDUZPiMpsckXEmxpcxyB1u9IVcBVHrYa/DGkx4XqgGJSXkKMAAVrKF7PFLmKoQwiiCyX0DZpG1rcxlmmJzEuU0gWQ+UAo/TEEpuHCbGaG84VhuJCN4XA0K5XUWKGKdi22a8lTYJmkTfW+b0WAP2R1UrZg4mo7rJFDVA4hOfBi1Cdc+xgVuNkaS9g6JVnGeztu9dXX+T59NiszozDkylyVV5v6bMgfZAyuP786zHldC9vrqI4VlbQro2K2X7pfc16ZTQlSNpXVJO8pHShLaC7gV8LaRBHk/LAMMFffTO7L6AvLYVSywFmdJbleKdMTQpqt91sBUc1+CVhm11otrh1YtmNvQE7uDU1rMyt11mqmzVx9GbN+Rs7rrF4zlz649zqTK5tLHBIpQSlMIQlq0tWaKu9TWHlFDDFGAfrrLVLmSxywVTi7vP6adVNvrbpm+ou83ki5bmNM1e6QIMjLtdfSkUKRtiRTSmSE2SgNC9bxEOBM3jyWEgL1JCWXrl5tqfZNlkb6KMjrrDjthZFS184aj5ERux60g6VJVGHcfLWGyvq7BpU2+cl1ZZR9mT9w+nOxL7IGSueVMk/lbMTkqiVlnMPqa521taxVuF7KOMsfXtV/0GPj4OekpZmNMEJSksRWjB3lAstaXuaFx4dHhstI376h9Q3OeI7HI23f8f5ygnMpZ0+EmPA2EkxiWjLPz5Fptrx6dSvtoo1jtz9w2HW8nCbCUthMWmWoYxnmzNPjAyaPxDgT40UAmkED1Jyr9gzwIwHewqpNMUoyT8HCtu107UqQkmMkzgvExHG/g77XUnh5v2kRhm7fdex3LU3rIAeWMMnacD0oEFx9t1z8qcKwKr9Ler4LcyqFSe1CYSrLfwwCWjq9t9rjLivbrkypnpeFYuGMCn8boza2lBLLXFr1pRMZNPCJ1WZJ2Y1VLb1i0kt3r2q7lPlhjeX25hYwvPv+HU3bklJifzhwvLlhmkI9Mw6HWz56+wlffP4Fv/r1Lzkc9ry8DFwuEw8Pj0xz4OXlzGVceDmNEBaiiQomiIYfSZn9rpF161WTquvUxpZkpoxMWfLlFI0JklEgQ23DyjjIKppuMSTVCjLMuheiCKAqmFBY1JsDRg/5lCI5qF6Y2sloHU5L2TFSrhaiU22vlaHeNG1lzoyjVkCEiDVeunCXrlDAcB4J08J4GQjzjMHQNFq+17WY417OYO/J1pKzgCTSiENsfNkb8tD2tQocYFYRb9AkkEGCZrtq2q3h/zoi2wRaMaNbX2D9W+WarnO1sY3ru6jdqhqP+pcKJG0P+pKEKwwNrq51e13VV9Gz3qx/kFeUBNPmRSnm6kNlLRXL6fr9pHRLbVIdoUQyWTpv1SSX7Mt6Vlcf7NpHL9+l2kJZ4ej+zpFrpvE6zkWSI9hFSx/BRKPn6OoL1zjAmJUVvpmj7Zit87N+nnplupZXj6iexdtr++A6y6Sv62Mz/3nLCN14M6aMhwBBYj+1yUPc+A16zSmucW15FKZ1Ruyb1LyVRLT6D5QKjlzXRZkbaUTlpBul+i7leoucUImp63Xlcv1GKzQasRO5+HWxAmZiI5KOrIyPY+OTGb2fmEleNKAKM7OAXGkT70miYd1j4kMl5iVgsmVXyiy3PpSuiWpE62bd7GFdSdVd2sZNuf5nXWsV0ymfgyYtDST1oazVfaLdw63Y9mRYm638kY8/Gmxy6mGWLmUpGsISmCYRNt4fD5AgEhnmgTnMpCDIZZmwruv45LPPOZwvLOl7hvDMECJff39P8zTwcJl4GRe+/2Fing0xWnII2DlgnSMs0jr95Tzww73lMi64rmd32PH+5cS752dyyuwbz/HW83FvSXceZw2v9z19a/He0DaZlA39qz3TznK794ThkTBbvv7uW759fOCH777ndJ5Z5sQ0B6Z5xjpX73eepMXrMg88PXxLzpHnp0dOTy+ajS3oaaxdyoLqr2A8hIaUF7779nvu7x853r7hzSe9ZLsyOCeZgvP5wjQMzIuUv0HGO0PTGNHLKHXUyiMtAuEpZ0ihFOBWLSDr1m5nSYEL44TNILXq2kpV2zIWbWFQke+yQSgGTEs06vuwOSR+7MhnBdEqjFOCIQPeOfb7Ax99/BEpZXa7Hc45jjdHPvviC5qm5a//+q/56quvePvpp7z99A39bqcmAHwPtv058zTxyecf8XT/yDhN3N/fM88zYRlZlhHnLPMcSWmi7y3dXtBbpyKAJiUVdV6DNCkLWB3pHKQWWWrrC+RmKrMo50zbtrRNqwZ5YyR1o+eKUq+GaHuAF4e2BKZF96C81lhtF7pIm7KaHfWeuMwYY1lUyyWGGe89XdvRuA5vW1m/00DKohE2jNJeOiwj3gtjyzpwjaU/7gg5MtyPnM8nIJFjQ9tYGgudW7OXWb2KwtbaLoaixSI2Iaz4wta52ow8mz9nrTeOxVGQRQlmU25XgtQStJaxLgH+5nu5Thn7tWuiQeqik7IoSqcuXcHlBTKPJcjNpRS2PGe7fj5w3DTIMLDqghlDqw530A5nV66enguFAVSFOIsjVx16zXhpx7mtA7N9FJHrnCn5PLlHiUDrR5brzTmLgGgjTDYJ3OJ6qOe1vEwcilTxlAxaWiP18zULk1fm2LKUNrrqKH14OG7HTsdk6zyVLF3SPWSdsP5cI9lj36ytaHMJ2rJS7mt5r3wvrdkNpgqw5w1YEkMRqyxMvnJP5dAuizrXi5bnbQPSDEZG3qnAvveOvu9ou4amUb0Sg3YXtDV4r0FZRrVJnI5lVLaVJmSzBGbLJEyMojNRPheQ8h+K417mz2iSJlVH0ql2U/m+jrmBBPMcwMHlMoiuHgZv3MpC3BwE27VYrlveS1pKbwOmAjTklHB5q3Mva945h/ZEqK+xADESp5mQMlhLahtoPNZC1wnTJ88Jlj9O3PJ/xEOAY7Vhei6nKPR56xz7ww7vpPnCcLnQTx2mao0YyIbd/sgXX37F5TJyeo5choWHlwu/+d0P+Kblt+9eePc48P5hYVmysLdCJKQRZy3LIqyTp6cXvv3W0/cd0xzpupb7h2fe3b9AzrzaN7w5tMQbiK+k5Pzu1rHrRWsiJgfZkjoRRj20iZfH74jA19/8ln/95hvOT8/Ms7S4nueZy3Chy5lud8C7xDhceHq6J4SJ56fvWeZRkx7D6oVnKGBRzpLsiykyW0mcLSHw7Xff4t7fc/v6Iz7+4gbnxSEubPTL+cI8zcSwCHBkVJDb6Smw1aLJGx2vrMmRYts15vWa1CGt2XFhyzh809J3O5GVKNpMpsbKa5BBriVX6Not9tVoSWHR5fEFJFefqSz/jHx+1DNgtxeG9pu3b/ns888IIdSM/e3tLX/yq1/R9zv+0//pr/j1r3/N6zev2R17fOe5cTv2h5b90dP2hmmc+eKHj3l//8Q0TTzcPyjgMhGWCWMtyxzJecIaR99pNzS1I9sW5cXupaIdSq62KhafWOcrCB2hglZd19N2I5DrtBTNq+sAamMBclr/rWMTQxTgykSSanbFGFUbSliD4kPJ+VPZrBiWZSbniDVGAlojQZc1jhQD8zSqdMfMNE2Si3EN1jVgMk3f0aZEe+hpwsx8mnh+ehJGbujoW+3c7MzGthW3bwM4FDBGWfUpBqZJf68SGMaILmj1CExJtsl4xLBCBQV5ssWHSrn6WOW7zN+GGVR9rOInKIvcOqxpAA8mYlLEpAQEsrFVe+sKAjECyFY/hjV1LT518aE+jCJkMIy1kkzYjFHbij+2pETYglWb81hACvVFUxGklj1uCiCRViFqyvfyyfqjtQZXEs2UWGjrua6BfvExnJOktujIKii+2SurLmeqndeMXrDfSFbsdgJIFpAy50xQqYwy71fs/XJFHxy+q+eo96R7AGNwDfhOmTimFBQXO7km2UDL1TDkRd7RbHx5dFRqh/HiutsVhKsXUt4vy/utou7UhNF2/JvWVT3gEAMmQQ4yD9aJ5uWa2KFeA5mqxyes1kVsgibX4lLIMqauT3VyKaWlWXWJiy+WcrlXtBGMli7rSHgnTZScyxQmYklwppwZxploE613NWlpjfhEdrMGr315/bwKSKnuWvVFUTafJAgM2h27XJuRhldFSyutE0BagjYHSrKH2wbrPc4Zmr6V3y+RvPxx1KY/HmyqQZEMegqb7l7WcHN3lHKvIRCmhWmZFEE0KiC60O93fPnVzzhfLjycF+7PE6c58E+//R7jWp4umdMEDw8D42iI0RGXCTOLKPeyeKyDp+cLS5houpbnZaHpWl7GmcdxYt80/Oknb3iz7zm4HbfNrdT8L0GZNwg6CuT+CByI1rBc3jMugX/8p3/gb7/+lvHlwvPLCDExTAvDNIG1jOMIGaZxVN2nM9/85h8YLieckU1Zg2qDiHUjbBY5WCMpt2R6phnu7x9ZlsRnn88cDx/j2xaLAEo5Bk4nEeJcplmDq0zTCNgUlsyCHuBJRJENcqiSEibMQhOVVS2ZXittiFcUX6jf0iayoes6jDE0voBNporMWmTRJ3LNsJV27cYYnBrFyiQpwXHZFuX81yUtLWLFkBR0+ubmyOeff04MEe96nPXc3u149eZjDscD//P/7f/CX/71X+CalmZ/wKhAYiJzx4HPfvqWnOH8NHF5EUfzd19/x+Vy4ftvf8f3335DTIFpvDDmica3tE2jRlyC4cSaZRKMzughjoIBS6UyF7DJQm253bYtGCMlEd2kz1u0HKwgypsArAIG/Ag4gQJmoIdZAWPK88uepB6K1jrGRvQ4srVkYwnLRNs0OGPp2x2t3zEMjtPLM2kRoc3L5YQxMC8XKQuyXlhxrWV/d4DW8vDynufTMykE5sHQeMtx19HcHLQVqKAUuVwb6jzofZeAX8qTlnoP4rC7qtfFBvwpfkLNrOjawxgcW+2FNRNQAoOVO6GAkxEwYMuaEtBHAkExc0IntRlSkuxqAWzk/NkwuBDERMpQNwd3XpmdW+ex/LNcl2iVrOKIspei2Kv69HX8ZE0aUiqAU3EIi++YMVV4soAL9RLqQw6xEtNlDbZWUGWrbVQyvNY6XOcqYyAmW3XoioOWs1CkRUi8AKAWYxSosirgqtnvEpS8vJzEtvKHDtUSW5RfrloL1hS7tC46Kd1ucY2l6xyu0exZysoezdW5vs7+CAAwT6XcM28/kpwRMDAIa9Qas3GASpncBnRXm1HKKY3zGG3LXXQNvbP0vTCZ9vuOtus0ltVg1xhKF6DSea5UTVjn6H2jYyYsjZgk8JFgThJCErBLoOe96B6ClqBl7cqjJRS5sA2ysKcM0DSO7KRLj6x/OQ+cgnvzHIgm8WIvpAhd03C7P9Ty7TqHpU64/Fs/G8TpWZkKeoQUYCbJHnR6HpWyEKc6exWkJBPDTFoiMUeWy0S2Bnezx7od1lr6viNjWFhY0vKjvfHv9WhUF4KUa8mG6CNFnHMcbvYYDW5PLycOr/ZUwloS5/Z4uONnP/8TzpeBv/27rzk/3pMeT8R/+RZsw7cPA/fPM8+PE/MibMmwLJADFsc8tUDk/v6ZeZ7wTcP3Dyd847kMM5fLxKFv+IuffMTbmx0+NzTJgwoyZwqTTBocWG0kMufAw/uvGeaZf/7nf+Tv/+Ub8rKQxwVnYJomTpeTlMJHYWFfLiceHt5xPr/wm3/+O87nE33b0Xd9PeVKUFPOwUWZTYXCkDNc3r1nXgJf/TzxyZe/EOBAz+lpmji9CIN9ZVYL0OSc2Eux31GScwqcy/JPpLgomzSDQ0tGJOhLMREVPG67Ha7xtE1Hv9tLuZZ3dWlJuaupjLyUsgqO695LiaZpaXyjQYaCTaXLk3OrDmoB2TUoDUne53A4stvt+eTTT/nJT78SGxCkc9zrN6/5xS8+4vb2lv/5//qf+cu//vMKhAEcb1oaZ8n5lp/9/GNiyjy+TDydJk4vF37zz7/jchr49ndf8+3vviGTmKfAMgfapqdRjaYUi7i07FtjDLhy7q/dkKdplPtXoUJjSjMPGR8R544M+z3TNMp9xkDKog22bcAiq6OATXnDHi/lSFRh+S1wUJNLVhp2YI12GnZ4P9eSnmVZIEtL877vaLywm7xrmKeJcRhJMTJNM+MwiD2zDucjbdvQ7DuizXQ3O7q88Hx64OH+XvyisGfuG/q+43DYobSMem9XxXGahCll6MWHKtcvjVe0qzNsznANhlMWvbG0goFGQQxnbfXPxUZtgmEFOKT7lIIqaeMvaFfV0sXLmCDaV5owK4DBekLLvi0B9fYckvKvvF7DlROwHsQCGlsFFeQvpet5yom8LFJ6XwCXzRleQcUkwy0pk5XpXTvkbkEms2ogreX7Bl/BBQGOqhO4za5sfBXnPN66upYxhpiWNXGn5VZRWTVlfqyRJHarHcvbtsc5T1iWqsd6flEgxRQuUHH9NvfPBnDSJE4tFUTslDQiMLSdo+ldwRTFLuYVdNwyudcSRYkHnVb8qHsgcxylVLme3Qqq/76H+PhZGxtI9ZR3bRUTL0m+rhOJAdGEXsiIWH5KCd805K7Eb9qZPa7gnHECOqeciLOszaprW+7xasxycWBqpZP8fH3NZE3w5wIyyjpqGifNS2wEZgW8xM6nlLlcRmYj4Bk50fiGfb+r/s3VGs7rfpDqJJHHKVpRqwnRJGKKkCTRIj5USaAbKYX2Ku9RyjRDIC6RCCzDJGDn7VEaY1mL6XsSWbv8zn+UD/VvYDZtwCbVIsnFiBjL/4e3P+2yJTvONLFnD+5+hoi49+bNESCL4NBVXaWW1mpJXzQs6f//gBZVzWoSBEAgpztFxBnc96QPZrbdT2SimGupyQNERtyIM7jvwbbZa6+9Ng4DBc8VLT2zjlCsyLVzksEdBmlxXxrMS+XT0wIOnmfPOTmus2bnm5OszhCYhoFpHJhGAZws43ldMhnHZcnMSyUiXbJaycTYOI6CyFYvdO8eEPZUE2QaVye6RGLEpSuUZOKtXEEz3vMMDQ2ULaj1mv0VwfBtsC1+UqM1E42W7mLTdBT6XJ6pNRF62USgLIUli7DzPF8lWLBMaJWDupSgVHs9sPthu9q6tcxmE1zfxFUdDehjoefx7d/1Z0PY0fEzap8xesSZ8j1wlvIbMUjr61gX5ib6tkBeOj1FDXLEwA/jyP3Da+7u77i7v2N/2EGIuODUsArz0gwQwDg1apEMz/2rO+IYma9nlvlKzgvXq6fURAiD6udUYhBjG32A0QLNTZZML74zDNSooYa3M1z8KrIdY1T6ugbjxq5gDWK3NdAmgLuNcPuBYTOnhsaC7+5o6VwTGsWxAZtE38UL0koMkWEcyHnQTgmenDOXywXnHKfnZ2op6riMpJSZlcknnbQazivgovfcGS6bR8fPMJSm9Xvtost2S2pTbD1ZO14b+172UG3smjoNSDajG7t+PLD9zdo9UUbO2E52DbXZunfrBnAi/LcF9G5wG3tji2Jutoy+dgtWsDnoN082UMzYObZ3+/Ob/d1rOUDdHLj+5j07WHZ7MfRMyurK/fyjWbar9b213rTaEbvoDkqpvok6tuKsyEHuVYQ4RrH7rtfoez2sV9Dvp4+fQclY98J2ffSxfPmKDio6i13XAMXs4bq1Fcxk1TpoLz6vQS+DNceVNYg1B9W5VffKLuh2iejcgQrt+r7mm5Y1Wmlj1UxjB8jW7dTXp16hXSAdlK3rnjMbUyuiNWNgX3tBbXc2zk7YG+uQbT5HgKboA6EFKW1t0nlqWZKAf7VSLch+sS9tnsQZvZ012d+bjKKtSdvD23dSoJTtZ9i99vsCXyraJhOnJcIumODlT5bYv8kj2Hw3Y1DqTVRxEuMYcdqyOCXVR2yNtcuhBMYihJqpDeZUaHPGPyVwjdO5cp0bSwKaducKgdF5xlFKDYZRnfPSwFeuKeMbXFPmmgtD9qIpUzODrxxG8X9KNbstpZxg4qgecmVWdrXoVIiEQQyB4FY9jpy1DJsg3Y5aU/8hEn2Ujrvazt1ahIPYI1+bskUCcZiYtFvYktFuk5FhCPgYSDlxPp+5Xq4ifp2s2650ALpczqQUesekHmC227UJ9L380oeiv6P5N2sZVs8qb+19fz+vNlwy0FL64bvukQnFb8/D/vp+ma1/35qx5iThNQyiEWMdJqdpx5vP3vDw8MDucCAMQ9dVQ1/X1E+zzPi4a+yb+O+vXt8zDJHr/Jp5uVCLaJoKEBe0xMxE7h3VN1xdgWNjpnXQvGQBQanaPdkRVM9IxPy9JiDl3Kit4ovvNrX7AWpfmzbXWdmuVhql9tHyL5v5WEtU1Pfy6mkp4Bj07CpZuig2LR10QTqWDnHogABIJ+7n52fGcaEAMQ7kPDLWiXmeWRbpzFhrUd/YkhNall0b3ldlTNikbnxkQITyizKFlMlKw1evDXeC6hA5TLfnpoS06OvaCja16jtotJ6p9n3LZO3/oQc3TdcNqx3v/KQbH0HOstboc8LmU7a/6ACZ951pZNdy6+eZH2cumsyha5rgYmVpmyPjaFTvcFV8R0w+QP09Wu0AlN30z8MhduG2KVe7sPIPbe+u/kn3Qfq4aGdZH1Zb0aTRQNTGRXEYFEiMRAUVjcwgZ/9mjLZH6c+7Tz+9hfaCPdbdpfXstfnuU2FT6PpF6KXra2qTeHdztm/9PHXfu93C5s6tOlP0EXx56q/33n0n84/YlFeWTfWOs/WzsfWAdW6zMdx+bVlt3Q+2OayN6urGp9wkwx1d4NzOAzsbdKf08z/4wBAivihTrWlJnQLvtVV81+SyV2/8tBfz288fHeO+ndv6ubZ07Hern9TWF734uXknh6zaDK/6WcVLl8Zf8vjFYNNO0XJBGCrFB0ouLPPCECNvXr9hmRfOn06cLxeu80zOhRDWgD1Gz34/kWthafB4zVznmcfnT5QyUOOB5ncsVyhLINTI68ORVw8HdseRt796YNxH5nzhmi5U5/l0rdQlc14qz3MjLZlP4yfi5YnXX+x4+/lB6akDzqhiuticAixLrZxKZrhWog+kGiBMHO9eE4Bpt8fHwJIS3/7pW4IPvHn9GQDjOPL5268pr1KnBYq2wKyUxoJQs6FIgoT7h9e8efslrcHHpycu1ytffPkVn33+luYaf/rtH/mXH/7ID99+z5/++C3zdeb+7shht+d6PfP73/0IrTIOnnFQQV8nYJDH4ZuKcnt047qeEbcscQWqob3yQgqNVLOUMzQp5xNHUMohlOaDQ0twcJ1S7pwEkc45xmFgiEOnG/daU9t81ZwCL61aEaq/ZLg9026vrTPFOf3s7Wf8n/7n/zMPD/d8/Re/YjzsKcj1mjihGEJDZiGMgb33TPvI4W6g1MJf/OWXnJ+vXK8XfvjuOy7nM4+Pj3z6+JEYAp+9GdnHSNgNxGGk1MrT0xPzPGM029IqaZm5zrMGNeqYOEWNozi7IUT2hwNG069VdAa2nQ1z1pblJUu5TlszPNVJqVzTz21uYwjZ1E+rNsbWyS3eU8IgY+JWgxO9x/nI8e7I3fEVcYh8ePwAwfH0/Mg//9M/SjnFux8Zp5FpnJimHaUUHp9OLMvC5fmJ/T5CC+yCJ3q551xKN7BmA6uV7WjAK78t/f4lEN+EoaVSvWQxQhBjX1rpjIzOoGnGJHLENuhhE3CEjS+0Ceg2YI6BVGII5JIq1l7UAgEBhh1e/Y+qWTZhClgQIZkpq69WwMnAz16i0bTEdVNa1rZUazk8PBJISmbGE/TALgaQq4C01+DB+3bj6K6UWels1LrTh3YUYnOIOHUi1oPRY7o3upa8wlJuPUyKitzKWIlooGRUVwcC6C1oQ5D20yEG/TyZP2NDzWVW4FxLKnVCtskumS7rp7Y5Nzf3bAGCzV/w8u+UFmrzxIz2EHB4ZbXVsgpP92C+qDXxrpMFm/3P5rtp9rG2DVuBrpHknCP4AZyT4KJn603csoETsddxnPBeWEPjGHHeSUODYoWNaPbOEwctedSyQwGewPlKVaa4BCFF2AUpq40pa+mdATClkhZZz0UzkdSm2TFtga2lDyWb3yF71SNBvwuwH0aO44QrHp8iVMd8yVzPC/v9xDhExhqFCRCikaL7BK4+vjmswuRqOEpzKwNNHR8PRKevc7Kyc85UWs8QOoSZZjanJRV/vc7inI4DYRxwwdPagPMD/16P3TTI/aZKo1C8h+ogO8Zh4uHNK2lo8mHmNF95dXpNXWStSH9mWWfjbmQomee58P3HC41A/dMjjZG5eVLz5GvEM7KL8MXDgbf3e8Ypcvd2Io6eOS8seSY3x/kqdvc6Zy6XJE1ePr3nrgzcPUTePgxawmCaMWtWV3wDz/NSqBfRknQhkAjshsj9dGDwDh8Cl2Uml0ZdHGMcebg/Ctvx4Pj1N39JWhYMta21smQpmVPCHjSw2bq/v+f1Z5/RGjx+euRyvfLlV1/z5rNX5FJ4/+Ed//Df/hvL5crpwxO11l5O+/R44tOHb4HGGANDNJZlfXFWOPVf5WBLqWj5nZz1otuj50VV5kguXK+zgC5hJISh28UGoh/jg+z7KOs+qAirldh4L1o/MY4iSm7nvUZ4jnVfGIhTWyPlSmlS8jAd9gKmNsgp8eVXX/I//1//L9zd33N885bnxXwGMbYZCJapN4xoDByHwO4QubsfKbnwm+dveHr6T1zOF779w584n848Pz/z8cMTwxD5+ou3HA978ema2KTn05klLbSWqGWm1ML18sx8naXkt7MOhOG32+0Yjw9477l7WLrYs11WKVnZU7WDhdIIRlhosv2t858GjtwmfcTea8UBqufjkLPOeeIwkJNolpSURCfKOaZxwLmJcXcQNtvpxMfHD+RW+OHdD/z93/8vDMPA4f6OOESmace035NT4sf377leRNfp1cM9DhgH637lSEvufizqJzRNyBgjTDqRpu5XSCt1AUksQeuRZJ1H2Fo1J2W6VhYFu/p69E50XLV+wcbI2ULDStsR38aLvIAkF8wv5Ra4bMhsNWUQNfOPzP9Z4wDrzmxSBUE7okqSWjVo+vNaBwsaBh2pn4We7whAFb2n+ih7BPlAAcY1KeycNEmpKsnQxF9qKhzu1KfGAnZWoPkmFt/822xjw6oitKu1asoCZG2yJGsyEnzEDwMx1hVWcTAOo+h9Oa8d1jzWzbPVJg0XysKSZq7XC7UUSs0rimBrXZ1xc3nXX6qTVZvGiMqIqY3iJF4leZoXH9OanxiAA7pvNblJUQikNjBWoXXWs8/soJaxy7Wc2YAjBz7Kc62K0/vQS+trLVREWDs4h/PiZw6jgL6pSMl2UmZlLVkJeq4Pi/Pim9u6j0MQf6lYXCIyFt45hmjNeSo1r9p/xt439qSBP1b66DQJJ42xTGBf90Br+Cb+iQ+Ou2HHw3SkJEmatAanS+K6LOyniRCjdPj0vhN+fqL/xDq3Ta9B4kr7Wf3q1ojOEZFSOtQmLkuiudQ9VHEMS495WqmSjJhnYffGyDDsIHhaHWnul/lQvxhsiqY3oN0Bgnc0pfqJUR06xc6ycoac2650DhHiHoJk5Urj6ZL5/t1MSoW4G/FjoyVoRQzHbvDcHwL748irhyPjbuDxUlnqTMZxzY1M5bI0rgliq1wvV+YKLnv2w4ExOnx0smhr6x1oDJmNpVCWSipey7KEpRPHQASiZuRLzpyeT4BjmUWQMoTA4XAnJWyKzNZa4CJUSVrBNalTDS7QqmN/eMOrhy9FxJORMFw43j2wP+ylBCItPD898vT0xLOKmO+mCfbCqHr69JGaE3d3e9xhUhrtgJU84ByuCUjU6tYh0ZI3s0XG7nBSClJZ9WeaITgYuuu7E9YXOk40ppTFZGBTb9etWbJbKqqARBZUOufE4OlGtwC2Acsi3Q92hx3f/OobHl49cPdwjx/EOcy59o1uJRSGaXjv8aPHEdgfZTPk+wfK0jifzlCFwTNfE/P1R6p2fInBM44Du8OBnAuXy6WLayOjJYZNu6oZ1owxDFrtnWtkX0x6QG5FM+U9vPO9xvoGVaeB03bIHcBxyhwyq2IOVFvZQvreTUvF5Mrkf957otcuLMPItNuRcpKsSU7My8Knjx8YhoGUE+M4Mu0m9vs9pVTOpwtpkdbIMco6i94Tbc23ykajeHWQ1WFqZmzJK0igp3Rren9OHAnvG5322grFBAdvWFGKsFdd897hVFNrW1/PC2CngzO2ZjSouDHgrIa8YXo7Euw7Q++MfSJvpNHvdr8o9mRj0KPsF16AQUIdpHO6byTvaawtq+1uvnVAu2spNNPxMtjKDkG5fm+Ct3bjTXeNXcImQ7LNrrXtHjXgqrb1AFf20spCk99P08huv5PA4bBTdp+Uktqhnprsn7wJHG7HZ50v2+Pbv9q6dhiDiA5o21hIOUOj1rhS+hXxbnpWbd9UfmfvTf/Mitkn00taL8bGx3SSJLtvhcfofWm52WZdOq9nYbRSGXUkipS7rfevtf7OnGG5zlosiAKnjB0pb6zdIWy1iSaT2YVuX1b9JuuKaBvyFgTdVDJo8OOs120Th2oXB1lzOdIcXPOVlEUEdclJx8WrTgEYuOz6/W28YVZHSiUGWLOhlpW75UiVKq3Zm3P4JgmQdfLUNtKkpCIl7TYoAE6I/sUd/9s+ooIauXp8UaCyAU3OzHE3kV3mVM/M8ywdcAprRIOMV4zCgEnasTelxPUqZfZtmCAGSA7vRCftuN/x5v7IsIsc73eEwfN4fmYpS/fDUqnMqXLJhdFX6cIbF9zdnsMwEIMzBF1BSC298CqESmNIqjvjHRXx6sdxZFRNs1wKrSy45UQKibxkKTcbHHd3r7QrTiVruVVdZlwtqBIBoMGHc+yPr3h4/VbXdCAOF47He3a7HXOauVwvvP/wnrJk8nURJ9/J+ZfSzOnpE7UWHu7uuDsebyfKrX6O1xIHsCSlnV2rH7Q59ESDy844ZaPbCu6+mdOyT72XYRyJUQA9Yy6EEHsJsnzmWiS8DX5XBpXod2YDjONArJUSpJTueDzw9Tdfc3d/j99NzKVt9iC00sjVCUVcfyci3VJOc3ccccDD/MA8N54fn8lz5nF4ZL4usv5qI4bAbhqpiNh5zpnz5aKsZLFttWZyXliWa2dsOD0z7ZwPcU1W7PIeBwxeQqScpUNoKQWP6122TD+rabdZGfRNMpI+eN0GomBHbvY86craWiMoWJBTouREjJFxt8f7yDhNjOpDWUOY8/nMjz/+QBwix+uJYRyYdjt2+wM5Z56fnljmheg80yjd76IG2a2x3kdbbbKV/BQru2riQ5lf0e/G2POlUH0R8CiI3TAm2fZ7X0xIUqFrEup3Wa9bS+v6Mnc3Z5msf0v0rg8pTVujfCcl0h2dQXM8eq5h/srKDDYGxpaB3h83DswKppgmqHee4Jqe3bX7Bd6Lr+b96gP5umGHt4ZvWr7YWm8qsa6bdb+1m2sxUHqjVeYEcLOyc3C0yqrH6YJ2o24CuCDJBOccu/2ew+EglRZRgJ6cUy8jXvJMrVKuaCCrSVjcjtE6hutjnTtjlrIBo8yvEJ/N9SoVE9ntLMGg4MTWuTSfSk7dG59n9ap0/pX03Xzr+997fXmxKxQ72RPxfb14cK0zQdfS0PVLLrisY9GEde83UjfCbGr96gwXapvYdZVpEEacJOzaTZMZ80dNKqXbe1s+Nj7NVrnskNEP7IeRpTaSNkxIWTqIO+dJpSiLqFc7biKIzZ7c+LCyFtgw1sHiIIeU0W0raGqtCrY7os2XzWNtkjVwTVpmp6RJVnqVQmjbtfXnH7+8G51lH5XZFOPAq1cPxBiFYhVcb8uXU2ZZFq7XK0OM3YhuJwUniu/eVdUsWQEP72E3RiKOX33zwG++PjLuB45f7PGjp34/8zTLQOScSFVKMnxrBBy7YeAwedXsGPHRi5PsoDmlv2GC146SK3POXJdEWhbSkghVWvo1Y0Ooo1/KSp1zGlgMIeoYCchQasNPe83KVRUzdng34Fzg4dVrHj5/K07Tq3tySRyPe6bDjiVJVsyCbXNaTB8oZxnbWhKljuu4mqFr68ITTx/Z1ZXO2rCyP0OzrawlhKCMJCmLjCH0jJsZA/pBIMwGTJPFm1HSTbrR3tDBknlv2168MAABAABJREFUpnMiApvVVUKIHPYjVVJLpCLliufzlXm58vT0yPfffcvlcoYoB4jzXkrpnLaRdBtNHllo6wFhxtGBD45xN/D2y9fcv9rhB8ewm6BVxiCaXtNu4v7VPTlnTpcTKYvw4+n5iVwy58uZeV50vKSeOngIXtZArYVcpNZ/WWYFmzQ13QG7KowIZY746NQxUKNXqggRq8OxdvcRRxZtR2o5PwEc1iysRYgmYh5jZNhZx5iR43FPLokhBoJ3LNcr6XrGB8/5fCbGIJ1s7u5oTVqB1rp28TNjIw6xOUhs/G7tYrU5XwTIibdzBGLMNg+xjVquYZsN01UCbxk+fdRWCc2vpX1aStk2IGa7cc5WW+Sc5py8Hbybh7N1JSW4mOOhDowBSKvT0TbvbOCs17ltqhlUNte0AmjyKpnN4B2xeQrKUmprieH25y3wK7+/BYxrM2u7gnvb4MQ6KlpgL22E18DK+YArqleigCIehmHgfnrVNRrs+ZY9dc5pu+xCehKgtpQ182waA2kR5+lWgH1dK2ZzWZfVzz5uaM8KfHkTsrbDV8uyDSwUQGZ1nOSNdN20bXnlOs+2/kSzTj43azbajYHgRcHBgh6HrXlzXLwmO7KeHZE4KDAfxMuyVrdSP29ZRWhNRcBtPPoaWEsnc2s9a2o3FofAjrGXt0nmS7PQbj0Dt1TxzjwsW2dF/mj3DRC9YwqB1hzVSzZSHGwp0bpcpIOTO2hpNJKkMoaXjray7lp3TO3zhbWtLFhb99AbVwBEF9UO6lvI4Mi9ERjHFWhtqdB8ooqYEc5FYhi2Jurf9GHOYfQiC+Ca4/XDA/txx/NygeszMzPG/kspkVOihbABw9HAyQ762sGzZjajZgbv2B/3jGHi179+y29+/ZnYoR00X7n+cCY/LyQ8qXoyInbsWyUQmMaJ3W4U9l2ULj/NOrc5p6CjMZvENixLZllWIKA6tePaockCvZwLjoxzjjGu41+rZlBVd2VIM7lWKXkpYktF9y3w8OqBN2/Fh7p/eE3OC/cP93KdSQTNh+ghO5ZaaKWSs4j051SUVSx7xfR/ikUajh58Ox8IvQTDdR8pDgPmPznvGaZJ9/PAOIq49X5/ZBwmzaZbab10vvU+4IMkCGOU0sGtTe8sxFpJuXbfS6kEEszY+aR7ahcmKo7j4cj93QPX64Xz4xPn64WPj5/49ts/cXd65vDqFdPhIODWOHQ/1nsLHlsPpqse1EF9t6w+8bAb+fLrtzy8OjDtB6bDhMex30sHxWk3MR72pJR4Pj/jro15mTmdPlFy5nq5kJbEMAyEKXYb6BWIK9qYYZ5nrpeLBHvGTFG9TGHCqA/iB2lqQqM0SfBZJ9Et26EzwWuloJp40npTxlU/3zeomlBMyywdFHc7wvGut0rfHQ6UlAhONFCv5zMlLYQYuZxPxBg53t/z8KBnfhJNMBtv55z6UgIUWan79mFl8s4PSIKt4dCy9Zsgz908X0pxF0CS39LEwjP5cV1bbWODa5E16c3XX0XBczafszt3N9+dxW9t9UPt704TcY2iHYvBlKha7/S8ScW1pj1KmsRt6mdGF1YfpzPEzUesuo9XF8x7qb5wPdn+UyvvnPmI9eYM6CxHuE2+d5+gKa5ivtQG5GjCLpQ38no2G1tbDuthFMbjYX9UoKSs2ok5d9/ycj2LT9BWwFH8pcq8zKKFnK0q4qf+bb+ffr8/9aLMF7Q5MxMj9kVtgluTpy9f+/IzugfdFGjraAhQ17krrRlxBlfAV4ePntA23T40VsSSh1XA1uAj4zj0kt1+XZs5Eh+vUUtSH1DsQIie1qKUGo+BGsVfFB04Za27eusXOdffumiytWQV23dWymd+kQLeGx/TpBRkDSljT2PW6B2DJpFHLwmDpQiDPecqouG5ctiNxGkUX9LOph5LrpFIF8loWkZYb2OlDjPaeQyE5npXVQvhXFTfvjYGBexda9RFmPp+Eh/K41ctyn/l8cs1m4IdcnJj4zjyxdvPef2QWEphLtK2zzVpzztfZy7nM3mMIgTYX2sTomCTVzHs5qQ0qomjcNyN7Af427/5iv/5//ANbnRwhOIql/rMdx+gJQlc5iKT6xpEAsdp4P44st/tieOeEET0ubVG9bWLc1pmKZM4L4nzPHOdF9I805pjqIHaoVYNLkx0rqnOwBDZ7yZBpGPEBamF3+cqXdaMMuc9035PHAaOxzseHl5r96FIjKIflPMVzo2gXQecE1HF2qQcIiVx5q7zTMkLd8fdGtwryiS0ULUMLmhJiAY+1m1NAx3vpQRpGAbNYkWlcUtwEMzQrCkN+aaHuzFDzJE0UKrrDWzWz9YQWstIcWLAucC4uyfEkWGcaM5xvpz54ccfuFxPfPjwjt//7rfc3T9AcJQK4zRxuBfBMh+EYSNgtrtZa5u4SwzD4NgPE8e7L4HKmy/e8tWv/oL5euHdn37H9fTE/rjnsy9ek1Pm6fmRJc2cL5949+G9ijJK56xpHBl7JtIR1Vkygcxlnrler7LZm2h8hU0LZYldHdGZwK+xc+Q9UpLa/GWRcgLROfDKImrUmqkeBe9bZ2oIaKDU+nlmSQvTtONwOAqIdNjx8OqOUjPjGAkXx+npxOnpURMuAh6+enjFq9evpcXxIPc5jZE4jZ3B4UPAGWUdcSD6+Fs2thttT/AGkMh/JKumNOam96DOD6yOiXOi39YB2LZhc9VKo+KCUli142LOhaQGNyvotrLtbB2LM+Sb4+VZbcwh35D686qsENoaeNmpqMCNgR5emdPOBcn2A6FkWgudbmsMt96JpMm4WTMGh9i7bTdd9+IQXIEmdYjYMsDWbJsd2AYWiOadXLNosayt0sX5qOCK2gv9rppm427HF19+xW7aY15BzpmnpydSEmD2er1oVvuke2bRrj7r9cnetOPN9qjRgrc6AnYM2k/rRHWgToPEfgC3W3ZRKeosV3UEtFOXsRawO1Ewqq8+Pax98H39ldZE/LGIPW5UPJMw/hxIuYAAKtbF1bRtUi0q6hqIcc80iS6Id16DIbEtZu9l3is5h3V9Osc4SnBlWTdA2AkpawZLHNxhjIxjJKVCSpI5y6kxLxKATLvQ7bzXjL6xhUoRx18GUfeEToUDxhDYD1FYDGp/Z4JeLzw9X4hBWTvTqK3S5V4dTbPzTtgrG0fRaOry+VnAu6Zl13i8a/igWj/WIbRUcdT1IsUOOOIgY7Mk0QqqQLlcqUMkTjviFG7X37/hw2C2Icp5O4bK8PlAyYV3z58oj/Ic04ac55l5XohRbIalJp1v65drkrQIntqcsIJyZTfAm4cjx8nzt3/3Df/Tf/41mczjcmIuiQ/nD8zfXknVMzfILUAt+FqILrDf7TkeD+z2A3GcCF7PG+12aLorxmxuJOZ54XKd5bwqmeLEeZYtLj5NK5BKFhvjPdMkPoxpCIVhJAwTDSkVKa3im+iCBR/Y7Y7EOHK8P/Lqs9fCRB6ktC2XxJyutFYIUcRja8padlXxSQIT6RyWBPivYm/l2FnLfATQk/K/fjajYNO0Y9CmIibMvNuJbzft9twd76SzXBzwXpoB5CrULB+s821kGHeYsPLaKXMNDDroat2T9LyVazFmmXaKcp5pnPAhkpfM+Txzen7m2z/+C4+nZ3748Qf+6bf/yN3dPV9+8yse3rxhHEf2d+JD4Yd1Hxjontfzw1mJszbk2B12/OVf/wpP4/OvPueLb74izTOn9+9I1yv7w47Pvn7LMi/8+OEHeKrM84V3P/wo4IUCeyZ8LOymdZekLHbser5wenqWsuPBADEwPaIQvXS9dMrs76CcJvtmDc7npGUlmZQXWqsk36hFzsVYLQEmc11bpc5XWmssl4t0o1ZwdNrtOB4OHO7uKSlJyUyD09Mz8/UiPvUkTTA+e/uWlpSd0LU8nSZytYTNOVoruv42wMjGtgtYabe2dgn1GiNsy4CsLC0lK0u3jqmiFyssmdxBpFoyuVSG0QuLRs8C5xzLspbg2XVt2Wh25oJ0Ku2xfk8O6IndnDKZKihDRTLghiwAmnhoRSUpwjaBLaX4oejc1HXuSmeyqPAxFq9Kd7FcN3uKbSyinuoLx+/WR1n/3lnU/fdWziqsTdMKKk1qN4pXPwpx0p3zTLuJYRzZ7/d88cVXTONESuIb5Zw5nZ7JKXG9XjidzIc69/mSsvzb5OmLPN3tY3NrK5DNzXdYWZvOI4lb9S1DBx9dP3/MHbslNtjnWXG8Z63H3YxrWX3PaoBTlbUSosTCohWpb6skCPPhWxPZjkljbr/FJWyu9JpKKZKsqeIXlVIYxkBjJMTAMHlpHIMI62MAUTY2kzne67jlLGNVkvxsoGZwnua0RA55n4bGYdqBzyohvHO4UaQKRu/ZBSc61NGTgZydNGCj8Px8IcZACJ7dbtQkmhW8reCvybzZhZofl7PqVjXTrzNWrVsZU00jGitXBdUPlORoCLLWcs2Ua4JaqeOAHyphGInD/85gUw+ILNhqleAdNQSig+JEq6OzCvrFr4yHZgOhz3CWoVthP3qNglsD51wrrojmUXGVJTWWDEkn3kRTYROIbphAaMbP0NFcxSn1arSvszhK87KWeRhi/ZKqvKLDG4MEcjCEIE4T0EJDOhwKVdf7wLjfi0D6NBHHSNSWq8MQaIsYkqTZ/5suSbDelx3+eqjeBJ7iIa3fvYhDNy1P65OgY2UHim0sYyStSPafc8L/Owg5Np3tp89BDyZ3+zo7RL2XUoNpmkSIGqFIX69XPn76SMqZ+w8P+CGw2+8oCGNnv5+YpkHn34KHFdRYL2U1mLLRPOM0sj8IcOBjoDlHriKILcY9CVVV15LRkDuTRx/SZvOFuKdfA16bP+eLlJuxsicEfPMbQEEZN17oosEcDT2ga3W4GpSRIqBta01qr9WJM42kbbbU2tUL2ylr8LCtha8qpC3Z5JwSeUm0oJnVEKi1qzz29ccGYV9dj3Wd9CwBuqYMiHTgnKd2MebW18ZLeqpju6baZh2tJ2etkpGovmr5Wb35EnDIHCK3Eapc99rNnmO9Bv3/zT5suuh/SvG2rLTDBbt6+t58yUqyzIl9iO29nlXajOV/9+FeXsef+fnFtW7eACvFdd6D22Q5Fezzwwo8Om/2tyhAUVgzyplc8rqHyk+1gzYeyk/ur68my9z0dijrCtvaktVBv73dn07N1ra/sFNNkh64nw7lxh9ej6oXZwRV/KuX62FrRm1fW6mkZZdaM3D85Req27UCks5BjYGmuhlO39j1sVkZel73mN+IWb786vf2YokJI0ufo+UJtjadW5UobC/jTNZP7Y126zLtACeekk7u1uHffL5N/Ob+t9fj+oe9mCC9rr5mFEQWyG8NKqypiffiBDprFf3v8GjVgPjV8wzegwoO2/khZ1bbjMHLjbz56t2bbFFunqf/LLWSSiFVKZWbc2FJjZQbuTaq0yRgXxTmf1QFoIu6Mau+ijEgnZZAzEtiSYmUNmU6PxMAbBnSEnwUtTWy70IU/6jRIGi5cAvyFQLjficdZKeJOAzE4IlDIwZhDBojrNWG9dH9yT692TN2fsk+kTPT979ZYmItm7MF7LSEUAKBEFTc3ES+e2Jva8c2W+xm0a2gzvYcau3F3viZl/b1bXZFy26mcSANURJOKXG+XPj44QNLWhh2E6VVpv2OgpSsTfs94yhARO8Iy58/NnDiq3kP025kv9/hHTw7yLWQtBPgsizKaM2dZd3bs29KEW2svRdQvydcOmAhvg7V7I2BzWscYWT6bcMK732/1nXtmV6kNDCwLlpbmyiSACKk3V/X6N2xTGewbs+0DVu56j2WnEmLsOCDnpvUFR1YfXdP06Yi9n5mY4GfZZg409m5YTitr6/aOEiATPExzRu58e9tfyjjC+eont6soL0AwW7WZvvp56Jn2fYJL/0mk1gw9nt/hf7HKkqqVYX0M8p8qM2esn3c94v8XY6Abafa7VPazy7uPx/z/MzjhT9qeIx30oVSWJ8BOymdk66BUjYrQovCRF/F3q3ToAAFucsMdLZoXWPAP3tw/ysPG6rVD90wyP+7b7XGVW1z/zc/6/x51yDcHvPd39o6Hf2MX2Ns+ir9+YfFq06JIP182djL7je/sP03Q9f9Pzv/1tfKpd2ewf0cqetnbn3BlyNlXq3Egres9H4P0P2owLpezZexTr2liKSMxOk2pJtrXkd04zP/NDbpMdjPPCw22/68tTc0VmmGUmm+gC9rfd+/8vjFYNP5/Kyfp+1va8M0XWOIhHEkLYvQZ3dSf15KxefKdsXJZsrr4dBET6FkR/MJ5wKtJeZ6oebKb//wHSWfaSGQpoECfPv9M99+Jxu1eAmymy7W7Avn58pz8XwYFv40LcTgqU6Al1zE+NdWpRa7FE7LlffPz5znhfPpKvXOSh/FOQ2WBMnf7/d4NdqXyxO5jDgPwxA5HvYcXt1LaZkCDTlXimY29scjwziIcOpu0HKyTKqJp9MnvvvuT5xOJz5+eOR8Tixz0QNZ6qqzUiyHYaAFx6AivLIABxxeBOecOAtFHZ2csxBrcOIktoJ3EafCc06NIs73fViVLeLxneEhbHLXa+9tJVqdtZXQBF/E2YJ1QykA01wTZNIZ+FF1XUj72P3Osz+84fl55B/+wTEvM3/69o+8e/cjcRz48h//noc3D9zd3/PFV18y7XZ89dWXfPbZG6Zpz+vXb4nDSAzjilarca0bg7Zoxj6MkfvXB8JQ4TtPDo3v3n3Pv3z7B1kbzyeWJfH0+IlZy39CEATemXaOc+x3O+6OB8lu7g+Ao5UERfQJ5ussaz8VUtqyc1YHXLKcg2as1FHySCtnHK0NtCaOuJUAlL6eGzkV0Ywokrk1ttEQAw3H+XTicrkQx4lSK8/Pz5xPz8zzBVpjGkdx4rwamlaZLycRg6+TsN1cpUaHCxEQZpxHWUegYoNtey71g8AyZmoJxJC7imlPARv9qarrsPS1Zk5q0DptaxRHa5SSSHlGss+xM0WqsiZM76q1RtFgoza31mBvy9maOQ9yYPVsYZMs4La7iwVnsB5wYmckkC1FSoyck/I4rxo2FoXYvukZbOx5Dl8cdXRYG+nO4noZqG9OGtl/XrNvyhhRd93htITY0bOo/bhzGrhZ97hBOj/pxnfOsb/bszvscDhyncnnmfPpzOl0wsRaS63KbLpqCYgKkjbp5NPYHPB6eMEtw0hvRG9x69Dpveje6J1Z3Gp/Uk69fDDnSlQQPcagYygldTlLJnL9OAUqdLxaH9gVGOx6a1neu9ZKTTJ+NTlyBO/XPd2D7oY68Y0Yg7TDHgLjJImGlEUDTrK1a+vdWsRYzXVhUeZaYy3HrNPAMAwMQ+zzHmOU9dg00FBHR4BBCZRqaVBVcDzJfXkHPphQgmY1o9fSFNOIghgb4whj8AzOCyOgiX5bBZbBUwhyvtZKro3T5Qq+MQ0jw/2gWnWVlrUE0YWudyjJqkptot8jrCY6+Gf7/SfrBaesD3BBVEdbbZRkdrIo86nhzjM1ZMqccXHm3+txPp0AK8200vqIQ9gd+8Oekque63JGmuBo3dim1rtQZbzPVJdo9arBpZz9KRceTzPXa+Mf/vFbTucLuTWeUiPVyvc/nHn3AZoHt2u40AR4q4mSKqfTRx79GVcGKMJ2xgmTOefErKwP2QeNT5cr33185nkWJkRQBkpJiVy9JCnQBiKjtI3POfP4+IiPgbibcDEwHva8+uxtB8l6Z8bcVB/znnEYGcYobbmBVGdSyTw+fuL7777l+fmZy3OCPEHOlOK7aKr5KOM44lpliFFZEJJBb0g2X3628wz1UYWlUKsAwHEIDFoyZ+BXCFHWXavUmlbbIcYesWOV1jKtzWyZTdtH97kc2tFzo53SVkaFJTsdEGgEVznuI1+8vWeIlZRn3n38wGWeeffuHeM48ubztxzv77h/eOCrX33Nbr/j8y++4vWbz9hNe169fsMwjHrOamfAbUmMJm1yc/gKcRq5f32Pf3Zcy8LH8xMfzo/8859+T8mZDx/ecz2fuZyfldVUCXFYx1kDt+PxyGF/EMa/Ao7X04n5cqG2TC1X8iYw3waaHTT0jhiHriPqvSfiifupz0NrB6BRcqLLU6SsbKCibIRMTuYH08sMP338iA/PnK9X9s+fOD09c72cKGkhekfY7eSsj0FAjrTw9OmTaFntd8QYiA0YRiAQBll3zkDOFw+3PetXISpZm0WYyLVVLZ+28038FYsXOjjlHTGHPi7BC1u2yAHVk0KWtHDOKcNUy9S6hpiAaLI+FQjUsr2XYILXiL+UonIQrUtBmDSEnbWtWXJEjrA5ZVwWjZkhrGzVoLp7xuq2pnO1aRDsBGhuzuFrVdb2C3KAuajOusK2Dnr137W1nK7Ph3MCRDYNzdTHjmEQHQ2Np/COEMa+d52C04e7A/vDnlorj0+fKLUwXy8s14s07rAyuXlmvl7lHC0mOL5dH8qgqWuZlozi6ruIT2Px9wowOLfujXEcbwD02lQPasvy1P0v4736AubXG1jWxwTBBETTk3VN0rq4O/2KnFQMOLGpJanO0yYJV7Iw4bzzuOA0/pJxlYqPpr6z05hT94cPhCAATSsyv1Ftmth800RTkFXvTT5X5qC1taGNSZuUorIaVRZSzgVXq/r2rHPlRKdZC1lEY7hKU4BpjEwxMDiPL5WhyVlccOQYev3EvCScg9M54AMMIXK3PxB86GVyMt46pxttZWkwJNUxnlUDra+gXlFh5ayuxyaWABJ7qf5orpTUJKl8nsXPigni/85g07yYU6Z9wJqDKo6S9x43DozjKB0/VNDMHObuFm7QbXGExWyaeCC1CMWySTa8ucL7j09QF6qPLMOO4jwfPy18ehIHetg3XDDWlXxeWgqzg9O58fgkTkrzkea8ah7N1FK4Xi+knLgsMx8vZ64psyxZkWjt7LMJBgGhwAtKxpKkS1nKk572nmE/SWYrSmlUToVlEbBpd3cQVDs4YlT0sYjGwnW58Pj4iefnE+fLVTux1Q7kmMNMk/vBrwegaAZJJi2GSPBDd0AsMDZQqNVKNcOOsZv8xuDoODY0u1OlDE83sERSYPXSGDKuhsgyDBLAOPCy+U3QuGfiWgPLlLZGq0KRHMeJ3eEACHOulML5LAGt844PTz9yvD/w6vUrHp9/rYZ7prXE3d0Dh+NRxHdDwPvhFnVWY9gRdoRKOA2BXAZcdBTXeDo98/7H72W8FcW+KtOptUYIqwaDBbYxSh1/HAbGaQIc8zCShgFaYdZN20W8bT43DxFZFxacGUXnV2qz1OrLwzJDJWcWzQAvTkpwXMpiiHQuvJfg4zzPtAan52dCCJzPZ23Hm6BJIAyyr5ye+DnNtCrZW0ejFk+tw4bOLkh8sLSOwpVO537d93acKdjUHDgxvrVrj2hAow6BCN2te2/VwpGAwA4Xe27Oog9US+lOkQXoN1bWHPTa/3kDNvX5YD3wts5R/25gE5u31zEXQKupndRszKAZYx2z7iyzfr/JPAQn9dTOqNt13YN2rdsUygZw6sDMzdG+PnFLwRXHJGhp14RznmGcBKx1Agw67zgejxzvj0Ltfn4ip8zz6YlPHz/dAHbLsnDVg9oOMseaybHOig5ofvOzAkqbbrkdlLNf2Dgb2LRlEtaq3ZheMKi2zE/b+6axIEvOxmIdLftoNp+6AmNG42+0qvNY1FFpDueEISjsinUNgegcDeOg4uBBtKWylq4pxdy65HVhb9Vxsv851aPxXgRFbXnbOdBkQ8iVb0owtxl88wo7aNOFgV0vL3X6foCI97dGjKIhFUIQiLKqOplWmw/BMTRPLk2Yx62xLJkQkEy5ruFmDqpby6+3X31PbudjM/96pG0XSl8HJirX+mfpfddKLY6yZFxoIozg03ai/00fyyw+lMyiaLcMMSjQJ1oewzirBoTatrYB4u3L9r+rwlijKHjhlJkquoGXeSG5yg8/fiKnhdw8pxLJzfHpKfF8Bh9hGqSbqhhj0VZZ5ivXIRP9wBCygE1BfKiUZi7XE6WITlPJled54fH5zGURDRGvdrBW1cbRteydlOjHECmlavJjwI2RgIDdu+NRAgljP5RKTXIu7u/2vdTfBzmjBEhcuF4vPD4+8vz0TJozrknX1F7CUNc9LMkRv9HH9OAMaI8dZJFuqA2qozrRq5Dkhaw5KYuPIsgdB6yRxI1OhoKofT5rVbNWcE60Rregufl7YrvWwLAzdRpd+299SEmlpzENAY4TyzJSigh0X84X3r97R/Cehx9fsT8eePPZG67LicPx0O308e6ew/Go0gDGtnYbo7yeV1UBqBACu/3EkmZSzZwX6fh7Pp0EyFmuwvBJS0+WuL7vV5mKaZw4HA7EIIB8a01jioGcmwZ6uX81TSZtjYScXaOUMQ4DIUwCUmw0sWy71zLI+sxFdQQr3ifp4JmBlqnVMej1lgqXy1Ub+1RSWbieL2Tt8BaDJHtlnjThUArz5UKJUk7vGah67ZLE8d23WplXN9Oq/pN2KF2jfCnkb2viq5fB9N/dsgxlS8p5OcSBGKL8Xt9XAm8Fkfq5hc6zDbB8vL3vCjaVDiSuc7FRZ6rGyqn9Z+t+Kw85qGqjdykVdpiwnKThkSOEQbAIleJYfQxhjFV1IExjuGFnWO1+GWz8DUcXFTfA6SXzfPvYRLNb+AbRu1I9tkG12IZpBYr1XD0ejuzvDlKt8fhJQKXLmfly3syB+FBrYyK9J+S87+FMU50qbq/Rrtv8qvV8E//P7i+E0EFlO11LzSRtm97jpO3L2+p+mo+yTZTqhyugLp9nvpb59c2eIwZRvEN9v1K0wZI4wn29W2zp9JwPPoCTxJ/pt9lcdB/Rykxd69/Fp9mC9pVWRSOua0yp75a7qP5aomoNWGwSBHyrXT9t62uu7KDugFFdk6RujAIQoT5UW5sFDMExIB2+kwJtc0qMs4ehUXciP1P17HPOgeouu83/Vp9c8Tu9P6fjaXuzI4dO2XjObdYMfY81TYKSq2g3BU8rGRI3z/9zj18MNn388AGAXBZyvhJ8ZDe9IoYRVxZogcvlmevlyvUyC5sHT3DamcSxlm2BIPa1YFnY1hy+SW0hTZkzLXOeC/HcqB7KEKgusCxWQoBmj4Qd4WhEHIdh4GEXOAwDg5NraF7Su8IWCZQGNQy4CiVUhhDJxTQppPStFtHMKEumXDMhDOx395JNjmPPsLSaaNXJ95aE/VBEnM+5oA6lo+WFXDOpZc5VheDyTGuZj+8+8PTxE8uc+PzNZ9wfX/Hu1StcrVwvF67XM2m+KrNC7tcCHhdQDaZADIO22229Ll6QXGUdhdgdmHWBbIKsn8SmdvopEND/qPTmDlZp2Q+ub+bejtqxZuVYA6+tGE1ZrpTUmC9nnh8fOZ0vUOGwOxLDgPOR5hohjLTquF4S73/8wDg+U1Ph3fc/cnd3z7sf3rPf73n7+Zd89uZzQhzY749Cd0f1d0AbKzSen594enzkfD7x8fEj5+tZuygF3ZzqJFsWzkAzJ0hx0MB+ma88P8EwjTImXpkSKgjaalNBNQSYw4F1xNg4Sx300FJQ5xzJ6v0xwbwNrVqZT601nI+ScR2rlHPWKhpkaaG5QsiyZpYl8/h4Ii0L3kXGYUfzli03gcfWafnSAar1fdFKpTp1GLRbQs9E0PqYrWBO605+q2vNOVjgayU+tQsyr2i7iSvq+1YlxuXV6bVsvy3gUgtGnJYgwtby6uybAbb3WDsNtQ5u3OiWqzPSs2NGOTfnGzrzb7ujKnKGCatPxfic621M0ZfIOOtdunULBtlics9Oz30VwbbDce08iLbxlXID7x21rmtYPuvWc3DOqbbdjhAG4rDrQB1OS3CyZH1Ppyeu81kc6HnWTFzCyk+CFyA5xsikB504oEUHn/XG+j3qdXkZrL4fNiCQd47oRNMjxKFn3MdpWoM0tMuLD5RatJxm0ayWo2ZHqw7fArQq3NRO4dfLMwTDe3z0/Q/NnHE9pEuV7h12OMsleyzu8W1lKvb72zgd4nCLULFzULLsKXRNBtUwjFEYaiULOGEgjQHg0DTzmfAt9Owx5uj1M0A+q4tts2aQ+7a25zrROXJq+6zMwVhhwmQUJ8k36dzjmnTTad4xekfxkJqnqLB1rTDPBUfifL0qiF9wVUqogpOmARjY3INtQEFbB3iq6EJa6Qy3SwqzBVm2hjm4gLSSH7WhRpPgeQ07/n0e7z68A1ovJRqGgVcPnzGOE9frmafzR05PJ5brrBoTm6y6gYDOWIqmB5nBgMrawGudkTqHlcrlCiE6Co4rkdIcOUcBY6qjFdGyHFojAqNzHIfI/Tiwj4HhBgiU8766QPWy/nNwLH7VD5Pcga7PWkXPKzda9vhhZH94YBxGwhBJNavgRMERqGUhzc/gRG+lNgjeBLQb83xiWU4aDMkZmeazMkgemZ/PtFT41Vff8PrVZwKwRMf1ciUtZ3KexR7Vinfr/nDeM4yqwxQEPJIzTD7HuQJO/DhjMJkv5bAscoXmKJSfBKzbwMO6zHkfdL8NP9G7tLJK+dn+tmasq5dmHTgRmW21cnl+pJbM5Xrh+fTM45NUI9zdPch1KNgn7KvK9Xzhh+++ZxxH5vPC93/6nvuHez69/8B+f+Dt27e8fv1Gyuwm6S7aaYZNul+W1vjw4QPv3r3nfDrzdHomlSTJFq/BlI/SyNACGVZ2st03NC7nE61mxnHk7u6oBqoSgxdQvzZhkjSJJSSR6VcfQE1Ibco8wIA9R9poz1jzCPNXnUMBRvDqQ5WSCKqV1q4zzWcojZzUHubGckmUDON4xLtJwT7Zs95rudpGwFiaM5h8gcQtouG4lh83ZO9Y4gX1R6rGROKrqKKgJSH0LJDkrtP3c7RmZXarv9OqlMZ2q9c27B31a8DsqqxZfyMHUW9APgMzejkhL32j1a/qZXSdEd5WA65Br/jm9ktlozs5D0W/qlBi6wG1OQtSKi7SKN2uNznnTKZCAFIRNW5WJmjIsTP2qF2vJabsvldn0Bkg0fe253A8ME77ldnk9PXI3kw5ie/QFp4vj+SUuV5OwqgrebXrCgB2cKY21f9ZR2V77qE2V3zbPhwd0LVGTcagFHsyCjsoRHa7nTK75PWlZCoiNSO6iPKetThdP76XCRb1DeQ8VYiwx4ubzrC32cNttKnA1OqL1NpUn7FpLwSzm3IhDSkpm+dF97dUWsme02XkvNphqMpaCzGq/pMwU10B8HgXpYtnFl2lqKXQIrsj665V2e8vG8qITW8deFt/v9Urs6UubFc503phJb4ZF1lsRQXxoZr8PZfYG/dcZwG/p2GhxtL3UPczN66MEEZW27BG8a1P0zYS6D9U2z862k3v0weGXSBO4g8Xp/sXpc3/gscvBpv+9Mc/0mhcLyfOlyemccdXX/4V+/0dDJU2Fx4fn3h6fOL0dCHNieCkPbIE9pKZMrTRURGvMEBTVLEVXCtQM6Us1FZ4PGcuS5UZGQeaH8hplrK2lnCl4shEhEI8MvDmsOOL+4njzrPzQY2wCFnmBj5UqguEApkIzXGJmVq9lF20StP2rI1GugwswXM4jDy8ectut2ea9pphgVoWqm/UcqWUCwBJO//s9/ccDw/6uzOpFK6XE8/Pj9SaKflKrZnHj0/8+Kd3eBf4zd/+R7746ld8//13vHq45+nxkX/4X/+e3//+A61lBSFUbC1XoZnGUZ0WcYRqazSlBtOXGyvYFEIvl1qX4Vq7qyx/aKuj1G7AJq/AkomZm4CzdFgzkCLEVZzQgtKq1L4QA6Oi6efTE8ty5XpdeD5dWJYCGd7cf8ZSM1NelM0jjvrp6cLzp2dojX/if4NWubu74+tf/4rD4cj/+F/+C3/zd/8Dx7s7vvnVX7Ib9t2xaHp7pVbev/+O//q//gPLPPP49Cjd41LF+UhwTemSjRgiwxCptUqGykm5U9CfT6cnLqdH9oeDMAxi7IKnJYtyf8tFtJ18oLlGcZtA1lgTSjHO0LMKTofcSuu8d+x2E8MgbJRpEICrNgFhJcgXwxZOwpRzSyJl6QR0Pi98+nSVuNqN7MYR03OS0Uk47XJkhtM3xPEuhZKSdCbImeY9zQVtxUcHjLa2b+28Vig5bYAk0XEx6ue2pr81QfQtsJSDaO3YUbIMiruJOsUA5rxgtO84xPV4a3SArAfjespWPcioq15a0xI8W7/YnNj3LfPCWZbRNBFWa57VuocqDKHoPWO0jNcaOLvg+ri1Jsd11Frv6p10pnPrce2aN4yvO0W5GcNw1TvoGapml2pZpYoP0tnp/uENYRiZpgPOeS6XM/NyZUkL+XShlMSH9ycul7M6ERZIeZwLmOa/OPGSOS2lcL1cEBzFnMntmjYgxmyUOjx6oRZ4Bc1Sex/Y7fYMwyS2YxSwqer91VoYZ8kyn88Xzu0sjJvspXurCwLeVRX4xvQ6dL6dlmnGiPMCbuVWewbZmKWmkoNz+Djo+ENKEFojROUguq2oq84T6qjnxjKnXvZqmUFJhpi9lKxgK5qFqlUZPSsYW5sI3jrnpXulBVmK3OVUyKmRUiYnAbUcdGq3rYuijL21q6j8zVhiKUt5SfBRkkgo2FTk/IlB1sShOQKOxTlq8+Qqr13mRM6NIT4zDIEheIbgCASiGzrtnL6ela6v7DNP005pFlz0bad7W+6jIbT2osChU/Bwd9gzThMlFZbnq9oA/+8KNv3uj/9MA/K8kOaF/f7Ab/4qcHf3wNPTR969/5bz84Xz80kD2YKVNVvnT+/UUW3gaoGaaCV3mj8B6RRXMy1nSqs8PVfOCzTvKWGgOU9JI9QRa5eOa3hX2TnHMXje7EY+P46E6Bg2AvLOOaLzBBeo3jFGT/aNlKtS+Z0AkEVseG4iRVDmA3UIhLjj4dUX7Pd74jhxzTMtVBp7vCvkdOJyCuAgabOCw+GB3f1rWq2cnt+xzFfSskiZSSnky4WyJJbLwuXpSgiR//w//EfefvkF//z73xEmz6dPH/njH37Pjz884VohUBRglvM9RMdBmckuSKMXW/e1NUIuxCiM2WGUjnhxGIXN4CSAIVea14DJOWWea4cuC4hV58n5IKwH7xnHiTiOAmSF1eatHez8GpBh2XjZr3GIhGEgzVfef/cDz08f+fT4yPc//sh1lk5Mbz//qgcmjSY+Z048ffrEx/cfgNYBsFevX/Gbv/4Nd/f3/Kf/9D/y13/zdxwOB3ZffsUQVJPVC+vkMgsr+ne/+2f+P3//913TsrOyYsTXSigNnMeHRdqlN5GdGIdRErFeIuWnx498+lg4Ho/4IEkLqIxDoFVhrrRclNlgoYvTGEl0bqDJfqCRE8xqGkAMRQhr9+X9bscwRKTRzw45GaVBSy6JeVFgPF5o15mUCrmI0HiaG8tVyiAPhzc45yh5oeYFqHgK0ihCAf4m5WMg/kkuVxqBUjw+NGgB7+SerDzGvPKGdhVWRlDOSddU6xi9JXXRRIcATUHPG9cZZaWkDnqlZb7Z1wZQN+g+UIyDNlGg2xhhe6Qbn8KAEfHPkpTZGWmA1kHGjtKs/1K7bZ9bO+hj4uiFRlLwJJemDYGEFSrkBfGDqneErgWlPpTuqerbTQBuzJ/amrB2MUWrzf2of7iWG7UO5ijkpAzAyMObVzy8ftN9mNoa18uVZZlZlsx1lhLS64eZWcc9GBPFWeMcjZEaiCSKp5bCcl06QGiekl2Gk4tQu0C/AwPEjPntQ2AcBViapgPDMHV9XO+9MqsLuRTCGGR9aAfhVleNrdY83o00LXUX4N7AJrsgA/ecbbv1mtgMIXQQ3cY3p4b3wvr1zSGKMK4/V/ZP5vx8URxK/KAYPcOoovVNWKtO12xzaydh3JpYdjUQGCk1sVxn2XM7rcxyQPW0AiVDTq2fFei6MkJBj29a60neEIKFI30t5VLItVCb7xpNAUdollR2cn4gYzKXQK6OUhspSTnfOIg0xBgjY5Q9IAtm2Gwmva6mTYCakByspNUeVrnRU+bm7yFlsqVKfBAHKXmeppE4jOSUOJ/OIinTnHqD//rjF4NN64CJCKN3odcDpmUh5SvX80UMut/QY9u6+FesT+fd8DPTMNjwnZ11e1K9ElwzGQqrENC3b/J8JxMXvWOKgd0UmQYvnaD8+oWKmldXIUaC8ywtExavi75tDE1dDUzzxDBwd3/P4XBkt993odxaCsUJTf56udBaY1FHiOYZo9SLL/NMKZnr5cz5+UmYUUWYTWmeJRCIgd204/7+jsv1zKtXr3AOhnFtWarWuYMUTdFH0/rpKLnzSNe/je6SM7r2qgmwGs/ta833d/1vbYN8bAV0X5ZArBnQ278Z5fMmy+e8osdF6+QTaVk0MIns94FQM1Rh6szLRSjVJZNVl6hmYZPR4OnxkZILT4+PPD090pCMGa0xDgPjMFKaMDJyKVwuF06nZ6WtzqLTVcxK0Md7W5ZjGZz13uWQLFo7X0rGaCrWVdDM67r+nQTZahh6N7Ht4W3XoOhDM9RFyyRKEZMqgExlK+gsiT9HZ55pxrYhOgvOSWnEoKCHgU3C9hDgFyq49ZDrmRYzrJtsj43Htuxja2y3dmTdvS8fawZjc7Lap6/7/eZT1apsQSDWOdqWoOgTNkCTOkj6Th0QMYell9ZtRPnai/eBnrjpNoPV3vWRaYBqoElZiZYEemNu2WG63sM6KhvHYuPs+NakVHI7gnp4S6y9ofDqG7m2gmD0/dmwNur0e1cR+bIKu+Ysth9cX9OmQ8XmbS3rTGvSpcN7ZVncGA2ZZidZRMnMWInt9l58B5tCCMQoOkVSqqyaTRsGi2XKLWu+Zp6ge+ZtOz82qa5nlG/2nU3wxmno129j2O+8bZ67mbybmVzfxwS011KC9b63IJVTI72yWjZv11BGUu3AmTMxMyeOkDBpVhBVXmovXo/pvux+Zs8aBR7W0kMbQQGM5afgHNEJuyl4zVlUsfutilaWMAAUdN+O0w3YtL3WzVdrff33YdjahJ+ZJ9fWLK/39WYM1735b/8wh918qBiTCMDWzDIvnE9nrpcZmjAtvDMwdFOy4rY+1DphHcDXwNbpZFqJTFEyQbGkUWd3rb6OdzB4x6Cl5dMQuw6FJCa0c5b34kNVh4ueUBuDlVz1gZVrqSpFIOVCA+M4cX9/z+FwYNrRA42SM8kLQzicJUhesgiTexeYpgO1Fik5mS/ia50vtFLI8yzAWrJAwHM47Hl4eODh4Z67uztyTsQYqbVpUNl0q27srAKtq2C5EyCgNsmJmp/VW8T7vjd/7vHzfpFb944lXo2xtgEUu4ZZf+4651aWQwcB5e8pLSzzhXm+sswzOReGYeR4NKa7AAXXS6YqaLLMC2uSR6QZnp+egMbT0yPPj5+otXD/8IBzEAcRP69VZCjm68zpdOL5+ZmiLGfnXJcX6mer7cu6nr1u02TEOQWM8nreWLMhY8m/HFv96Wast3YKLFbY+FbOKeNaGNC+eJwv6jv5zZmoWqaACwIMxuYZRk8oJv1QtfRc2MAlB0rW5HmVUqTalDGuLspagl80WL0xunrlG/u1eiZ/5tFWO3xjG8A+9CeuFOKv1s3Y49wNE7S9uJY+thsQxg6On/h0W/+qqV/Bi33y8oY2htjYVdWtPk9D7HzprK9KqKt20816cCj5rt2eHdz6WG57NmBlRS99qJ++5vayW78tG6tqPnJdSz7tK+dETovs+WCakyB6duu8mS2iNdX29atvq/fSug9ltqk7h/0+TLvMkuXeB2lSpf6U+VDafhePyrQgAFNxEnSv5ff93bsNkxjztuoFXHer7Nk3QBhwu1jX94XV37Lywe2CabWp9qjZEAHB3Mu33cydU5+hy7Zs1vBqmzY/99/Ty6+NkNdvbLuc2+3P678VsOwxo3x5O0/XkRR70JTEoGV1Qc/rilZ9VCknzmTpaIqWVfa94rpu7jaGXHeH+dduMzcvNuMmRrJ7FdO5wVJuZvqXPX4x2PT555/TWsN/gGW5KotGgqV3333P7/7lt+Tc2Mcdf/Wrv+L1/StSnsEVCQC0DMgMozfWBJlWZ2rN+DLQXCS0RPQJT8bHhIuZ5jPFZdUbKlqaIa0NXUkcp4FX08Cb/cTXn7/i12+PxFgZR6WMGso6RlodZXg94Bw/Pj1yqmeWlnFOUfuSqDkBEPzIfnzg66/+gv/n/+v/zmefv2Uuzyz1zHK58uG771muV969/0D859+Tc+Lx8RNpWfj8i6/46ptfqyiqiAs/P33i4/sfaa1y2A2K0A/cHe6Ypj1v3rzi7WeviAM0LyKav//Db+GfHBRjH0m9ZkqZEEoPzPomR5hG1cZeqQcm8hdiUBFDr+i36AQN0dhJami9tdvVdahziFsFwLGF+MKZ6pt9GzyBvF8IPVSx+uBajA4ZmSbPr16/IQx7ioPsG0tK/OEPv+P9+x+ZqzDFqjICHIGS4XKaqRn++bf/zNPzM4fjkT/9yx/ZHw789V/9hr/+D3/FcrnyT7/7HZ+envjDv/wLf/zjHzesBaCYU6T8rQbn+crpdKbVyjgMognVwE/jJrgWKu7leiWkxDgdmMaJlqUbSd04shI4WXX6CnjY+2wdhzVD0Mil4Wqjnme8n7FSKuc8Ydzj4yhHcZMSnJQhFXB+4O7VKOsDCTacczgNzlvRbGktApTWTE4LKYuweV7kd81VfCz6GWLFahPU3iHicdI1Zg2StiUC4zjpXVXseDfg0oBS018y3YFS2ksL3p0fE53cOj3OrZonkrVfD7ptcNuauXIoG+vWGe6gQAed6O9h+lv9vaA/F1Znzft1XxrAVBwUbcM9qJaDBTGgVOYOItPfJwQTrdQDMYQeVJqjaC1/vWrwVA34zCGxwzS4wOhGcI7n50+crye9CbEfS0okrVnP6lznnLtWwmrHXxw2uuejj1TvmabGEIsEQmnR+WHzIu3AY6287aadYxgG4jCwmyYeHu43opNBA0EhIDctL+iMAO87PbzUwjJfSEvWzxXnPGjJsYjOy+ulTa6slxyEkdEUuDFtJvP0nN2s3UXwch46FUM18Qld09a6ehUptnp7CNETotplFa9MFOmti4jNCnuidjvq/aqzIBR3R1oyacmE4Bn3om2R8sLpeSbnyjKLmKZ1wqOtDnbTPJdr2kSiS1SuazwEKemJITKEoF/SkCJ6ZRA2JNNcG7kWBu8ILvYua9frwjzDYT8pm6l151qcVxncqmVJTZ3tLv9mG7CaB/VyJrS0RqerqjZKThnnEy2bvoN6kfWXukr//z8+++wzWms8f3riKVW8d6TlwuUC33/7Lf/w9/8NqueLu6/44tXXPLx64DpfCFnXew+6de/5hg/a4bQlnUwj6GfGmKRUTP2n6hxaP6B7ptBKpi0LvhSmu4m3d3s+vxv5/M0dn3+2UyAi35yFLY60SVkYzolP9snzx9MjIenaaQJOX5crgw8cdke++uJX/OovvuH/8f/+v/H6swfeffiODx+/J6WFdz/+SM5JdSSlNfvz+UTKma+++RW//su/orXK86f3AjZdrlyeTzhgN0rzimk6cv/qM3a7Pa/fvOLNZw9c0xf8zd/+NR8/vubHH76n/uH3SBmtQN+1yD4MddXhMM/dgejWIULtJQoTN0Y587c6QNaJToDxraC3U91FdbUt+NHstwFNMinyHzlLavfj7HsPppxjnKYVRHAS2J4vjzw+vmdZskg9jDteffU5YboTbcclkZaZf/n9P/P+XaJLMWxKQEqunE8Xam38r//1v/LHP/4Lrx5e8Td/97fc39/zxZdf8sUXX/L09MT/8r/8f/nw4QPfff8DP/74HlqTUsSgpbZOguWiAruX65XnkyT+Yoha0hdUX9OrTy925zpfiVlsxrTb0VoRpofZU+e6Oe7xk46vd8JYXLVGLXiVgLxo4Hg6zTgW9Q/Ehxp3e+IwiKh00ZKXYcfOj4QwsBuPa+m27sXqJInXcqbmTMlJNQ0Ty3JlXiS+SflKzRkXMmFcGGpjvy+ANHWw8ri1Q7DaKJ1zWWPG+Gq9HFSWgIxA8OZDFcG7miUHf6pJaX7OUvLq+0pUycqsFTKBuukd8OhyEAaAbIL0zTLHdfCvf2gvRVrj8bVI7LZRy0aHR+c76ZmYvSOnjHeOcZDO3sIC9Xo9azmQHCkbn1oD/Ybq3qofaHEIweOINO20KX6xJPb6fcpla/zjeP/+Bz4+vr85t7KygbdstKbaXh3k+1kYUVj5fhjEx6v00uuU02aO1rNZqpo6fQNjuO12O0myjyOHuzutbFFtKWWgO6dailrOZ00TLI7LpZCWRM6ZDpCrf+aAXERqoe9HJz74zS+2qBgWF744t7WzZ2sqiVCrCLxXi1VQH2rVfZYku6z7VoURa5Uz1klyM6wqFl+o1ZFSIYYiouTq36UlaZMWsYW1SuOlvJSukdQ0+eDbqgvbJ0I/p2h2x/Zfaw1cxXn1o7z4T1H9KHD4JsDR5PR88I3cpBpLmq2ITublkljUdRpikCq2LeCq12N6U1Y+7W8uVvdhDzI3d+BMNF9+Lq3iqrDjG5IYMh9KutPdag//uccvBpvu7u9prXG+PKs+UFSUq/H0+Mjv/ul3BBf59Vd/y8Nnn3Hc7yhFus45b0SrDSLmmgRErtJa0jrfLIJTLhN9JrgCQb6q0y54xoJCKZ8lQ82EKXKIkbtp5PXdgTevj3hXcD7JSGYZGMsCOe8IY8QHTyIxfgzEpGVetdBU/0KytpEhHnj1+jP+0//4H/n611/z/Yc/8eOn73n6+Ik//fOVp4+fxCEphWWZeffuR+b5yvOvn6gp48Paienp00fe//g9jsabV3ccdjt2+wfuX7/hsD9yPB443u1xEaqvHO4OHKyG3QxUW4XZhHIrB8QG5lbBsNuHU8DDOqAY68mCNAsKtBlOf749xJCtivcvgP4OLvXZ3m4C/fu2BhzAa7s4C9SF9jnw5rM3HO5e04KnDYHrPPPp8SOPj48kl6S2Plc9YIXKvszS1emH73/g8fmR/X7P6fmJw+HIm7s73F/8BXm+8v233/LDu/d8+8MPfHj/noaIv68CnHp4OxnDJSfmWQQuXQNio4S4uT8Hmn1YtNXtOB6IUUobbzKm62hsdsX6u/Up9r6m0SNgDrVpNxChNbcidbvjwREnaASakzK+XEXIM4bAbrdTev6A12vH6KXVOg5kLqczOWXm+UK9BiiJuc0SqJZGKhUXajdGjY2OQDMRyNrBQwMBbK3J/W1q+rfz7qzdrmk7OQwS+omzxGpQ5bPl7zHqXoAurH2zRvtPrb/uBsl/AV7dMCU2/+5Z1HYLNrWb19pa3zj0NLI6bA4RsZUsk6ylUl6cABjAcKsjYAdDY71HYwrUJno6NrYrcCbvZw5DbZXr9UTWTmV5FrZg1kNSPDPVJrnRjKE7Iy8fW5Ylw0D1Xkq0UnrxRLtNh8YlWJti50TLZBgGpt2Ou7s7ZSYYbVmuorHS3M22tNa07M6TUmK+Xm4ELL13Iuqrh7z47FWXYgPtomolIzZ93ZHezEk/pLtdW0snzAt03m+YoCuTxKCeoUV8HHWOvTIn1rk3Oy4AqwBO5uRumVQlV3IqN9dTSuN61XK9pA6GYdxYTsuuVUthq9bkb8Amr903DfQMXkQ6TZTcSgKGEIzAzhgqvkJ1wmCqtbIsUkY7xEidLGvOT5gLQgFXrRHWL9tsNjq2B14uLO89xc4UdV5dziIKvtn3ptfx7/E4Ho8ApOvCOUh5fy4LywKPHz7yp99/yzjs+Iu3f8Xnn3/BsAvktFCqZxjGXq5uTBfzoZyKhINuolrxPhNDwXvR96mu0jQb3P2oJsFqK4nWCtFN3O9G7vcT93d77u92wjbOcj577cDTAXTnIASadzymqyYfwdZ4qYWWEs5XxnHHq4fP+Oqrr/nP/+V/4PMv3/AP/80xp2dOz5WnpyfOpxN1SZR5IaXEh08fhHF8vjBqtv3503vp3nS5cnl6xnvPq1ev2e/3jHFiv99zOB453h05Hve8ev3AV199wTgN7Pd7tkL7a9Kg9vN+a8/WBID4ub6Kdx6V2WR+zJaBGWPUuVrPcfubrDmLFVf2gtv4bIa1234Rm++2cVpnKngn3aOKMpKX+cr5eqJW+bww7Pj8iy85vHpLSkn0VK8X3r/7Af8hALmDTZ3dUSrzvCAafc80Kq9fvyYOjtevXzPEwJtXrzk/n/jD7//At99+x7Mym3Aw5al3CY1eSklqzlIOpKWPgJSEjKPIKQTVUime1kL/e62VwUsZR0xDB3gsKbWO5401UKBQ7JnTcp7WA19Z95I8sRKhlb2zB8ZWEfUlnd8gYr773YE3r96qqLL4MhVHktwaqC+W5hkfJubrFXc5U9qJUhLXJIz9mCtLkqSGlcttE1U20cZGA004+Fufu5Wspf61P28FwTY2jtVfeQlurLqKta9l50T+QoBOSTaZBXZ6GMpP68hv2Wt2Hat/S3/W5vbW37bVv7vxxfpGlE8EuhZU0eot0xVd99P2yjZgDBo+2dCsP8jeQlmkNH2PVQtM/JGtL7gy6Jp3mJ7lkhc5Z7OJa693v71GAwTtr7enj1yTCYo372lDU+AWEslCgvXGNuNEs7hLG4kMA9M0Me12HI9HlVgxO7PaJZf1ehxS3tvWe2htTf54T08MGfvW+dL3kJ2uYtNY2eG2brax4Yt1IfFBlDWXVw0wiUNV59St0gdys1UBqNZ9BRP9NluqC6iviVoaOLkfAQTXOEMqU8paZKXAkYGGK/tPxRTcZkf1zaAafh1sUpGOICxh0zIOTsXKFdz1mlIb7EZoTLERauvj1aoAf4nGNA59fty6KG7iEYlXTQplIxqg47GNTNzme/el3doJ19UC6Tb5bgz9l4y/n3v88jI6G1TdBDi07jfhfeTu+IoQIsf7I8e7HcMYpX6bpoevBn+mLdCs5liRwhpodQYXwS04t+AQ8W1qAVeki5Fb0UKoUBWcorELjl1wxFAJTkqAUO0Kt9ng/Z7U6c8lc02z1Gjn1I24Vk8So4jRjuNIHANhkCCkKBX2+HC/dgloMM9XKlKitd/vu1MRopaz1QO0Vzgad3tBno93d7x6/Yrd4cCoQqaN1ul34tcFEQn0vq+Q2/ahSJB8Y1DXxcPmu9WVChCwdjpZ2UkSivxkDbX+n25M3PqHHmQZBZpmAY7p5mzphGtgbIa95MIyL/ggNaqpJHwYCGFkGCfevv0S14TqPfiBZVm4nE/aillYUcEPOBdwBJYl8/33PzAMH/nmy6/55stveD6fOZ0uLKppMAxT3zy1rpGM2SkD7qw1smQtTKhdDxJlKW3HMATPECMpbij3zWZWQQMTIqyalXDtdojbltK5/mzsFk/QQDDg44SPk+poyjEW4sDYVD9CM6kWQMvnmLaJ7BEfAsM0EeKAHyJxmig5EaMnp1lLphqlBpZU8PPCEANhFI0b17yCBp6mAXMvaWI9ZJqNg2ooyaVUzR6tXVUaTZ1HC7ZvD6wtwPDnwKHtubbhi2mQ3tQWIbTkzfltn/fyXNxSysEO1NVsr4FB++m1bJ5ZnbTklQYHjhY2Zl/v2YJxcbKVkP5iTzocTYMS67DmYQ0Igabzsr2m0lbNrOCaxKpBkwC1UjQQNyaRrROJINQZsd+5WweqKQJi+yBqxr9nWTduqm00y14GZU+VWmkpEZaZ6zwz1CqadDFibpoN7S3F/3YtjKN02CuqQVA1UyizIO1/m66BnEIvb2itrSBRW0GKdc1t5hzLlrpeuuFAdbjWjK85AnJt5hSs+7tYdrvYGK2faXvUOWUT5grREzdjUUujBhWzbGsQzeYzTdvBHHCxb+t7C+NY5j4o6y4MARc8wyCMTlkuoj8mWTPXQxGxiTAEj/fiyDm8ZnwNjHWiy9ccy5L0NUGD69vgqGekbRBfeuj9KNG12FZGVBxiDz5Nf291FvWNbofo3+zR7Zd3vdwo54r3hXHY8fmbLxiHkeNxx7QLkmyyYDS2fn4IkK/7q1WcluOXXJSp6mkuQZu14UqCVnD4bu9X8F5EKVwrRNfYRc8uOoKtge1O1fXRnFOWlJYGVmEcpGUhLYt22ypybRpgDUNkt5uYxlHXlA29MDVev37N8XAgL4myLFLe5RrzfGU3jXL9DtGNCI4xeAYViD7eHZimHYe7O+5fPbA7HBmGYV0bujK7z9NMQ0meYvaol2Kx8WOwwGnd57YXvfcd1O7aKBuQyZ4PCmb3cwN62SuSvX/JEqG/DpyT4MlAFikjKRrurFIPkmUWZuWcCrEK2J6VDTKMEzjPF198TXCB0+nEu3c/ktKi+jJLL1sMIZKLMIevlyvf/ssfefzwkWncc3f3ik+fnkiL+E/eCUsUZHnlVKTbstJerUuSiaqjuo45J2qrChgI0x6qivRGgvcCNIXQ9YXMZvZT/AWY0vSvctTJmbi1sdtzoxQJJEOI0uEwBKbdPeN+L4yGYn61LlbnhO0LhGJgE5Sm7Cn1Hat3DPudaFaNA3G3E9beKJ0cQxBNoZIdKVXmORFiZBzEh6rIudM2ds736gRb1Jt71lJp840sKfETv0P3bvfXm/kV7qYc35JX3ctyK6i6cRx1/Nduwd3+OqeSD67bvNsLofteN37Ai4vdvs795BmmS+Okg5mr0tBnW9pqgFJzYNqj6idtWVg4uZbqhP1Ru09CB55qrTQv/rrEW2JDRQtSktLRR6TXd+0AjZqRfoZ1/7PZOLc+Ts6tSVLz/2g690HsVKzxFsCwodPPsOsy25tz5qo+7C7tqK0S4kiMBt6KX+67vpxdlwAhTRmZ5kNJclfsVfC1l+ntdjtaa6Sieolt023biQzONg5tG0fIfC9dQXRxdvVlsbhJE2XNNjTr6wUMk32RlyqJcW/sU/N31nHGocBg1u6TWk2w8bmodh1r589mf9brQ5Zc93/Nh9qCrlH1bF2UZMwQtXGC+lBrFzl5f/G/KsFJZzqvSU9XJa7LTq6zVLjOmaHCMGadd32fHj/pOtZhdCpZ8dKF6pusryc585z3+Bj7HFgFjK3j/j4v9/jPPH4x2CRyvY2mASnOscwLlMYYJz7//FfEOPDF12+5u7tjSdKK1kRdjTEigqWSURP2TIacacnorg3nr3hOeFeofqS6ieqiZOiQRSXIZoG64NzM6He8njwPk2OKlRizUEmNhuqlBEOo80K9q7VQgTnNPJ2feDyfmOczNc9QKk4PwmkcOR6PHI57pv3AtAvgK0tJuOj54uuvaLkQtRb2ejmzO06cnp6ZdnsJtqLneLdnGCIPdwOfvz3g0LbRwMPrz/nim18z7Q7sDwdd2Kp5oKCWtJuO1BoUQ2ud2bSNZtZ5b93R9hosmpcXfGDQDJSw1BRlNeDJnPFuHP7MgmoGAK4bbLuKTUPEI1oPYic23TAwvSBZxMu88Pz8jA8Du+sJt58Yo2ccRuLk+Zu/+Y/89X/4Oz68f8fvH37L6fTM7373W55OJ4aKgFJxJPgRWuT8dOa33/8jOSdGPzDEHTkX3r37yPU604rnuL+jqH5TLrlnS8SjdKAbbhpGii/UlEi1UKZRtJG8w6tIsnPS/dC71cHOaSSGQHZhAw6qbgaOVr1mXB3FAFWtE25AK+0ngWnKwlIZx8h+PEh3id2RYZzIpZKXRKMxjnumyQ7bNbCvva5XjIjNPTGwnyadGVmdtWQuz59IaeZ6OfP8/ESrjdM1seTM8TCx2w0boxluDPs2eytdTGwPq9hkzi80oBoNAwPWA+rn0HN77y1zxbKExrKza9l4qN3hqGoLOqDlnVC/t196MDZzQprtM2MNyfjKNcrIuc2e2DJvnLst6ZMuGIUWWs+WynMFvHRuFSkHp108aydk9OCIrXMmnxDcqutkTp9RvK31MEgG2uMINPwoLJRQqmrlsTmaaneQSs1r0ISWjUQRZhSfwEooJbsMspVqrSI6XrSNuK4YK/UVJ0ZUVa7zwnJN5Kq2dRx49fCaw26S61GnxNaAjbN1TWut9fKVUgqn00m7mAg71nvHbtpzPByhOeY4yvlUEnO+irODOEoGzoDslRDi6uA0Y+d41fKQY8bH1ht1iPDqqpPXmpMMIypmWuV7aonsrLGDrrdeZ7qWLedSJBhqjnFUJ7pCLg1SY1kKPqzg4/pQ3Ysizrd1SvXBEwd5YkWC0xgdwxjwwTHuBsIQGBr4Ar41onMMPgjgbeeKczQHg3McRlkFkcDovJQA+0ipsn5O54U0FMboqTkzDCPj6HrJQClVq+yk1JJNqdP2/Fj33PZvIiQ77nbgHWUplCTlIuaSi337ZZ1U/vd8BGVreBzznEmpcdzf83d/9XfEGPn88wfujpGlFOYlI53Sxh4UFXWOXS1EKq4ulOWZkgM+CuuGlsCfERuyg7aTUWkVAZ4LtWVoGZ9n8JnJ3fFqF7ifAoNrOJRNjgapeiZ2gBdINVNq4zJfOZ9P2gp+hioAlrFaD4c9r17dc3e/Zxg84kKKLRmnkb/8y7/s5XNpyczXC/vjjvPpmcPdkVYTPnju7w8E76g5UZZ7HI7d/kiME68//5wvf/UN027PtN+v2KRz/TpijBLAVSkja61q2YQyBr12MSpS8uB7kqQfE/39hmHo5bor2HTL/oS13FvGzBZppdQsZ2X1GrHI3AiYXM1967YndIZUJaXcg7cOQJVGTY15yZwuiTAU7i4X4v7KMO44HO8Ax2F3IP/mb3n/7kf+8R//G+fTiW//9C2n5wu1QIwT4zCJTl+pfPrwiR+//Rbv4HpN4Abm68LlPNMKRCflZbUWlrTofXmICmaEARdgHEbG0bo4V5Y0U+uBECUR4d1IDV6BF2kIMU0To4rS9kC8H3MNrFxq41dV9V6tk9QN2OQc0h24MmcRgD/GPYfDZ8Rh5PD6NePhQM5JBOjrRuTbOS6LlN6tDKMebeJ8AC+g/OH1a50XtBQn8fT4nmW+Ml+euTx/pFU4nzM5V/b7PdMU1PfsUXgvjzMiqwX7dKDJ5DQWPf9WO2hdumwP6A/qzzi1De7m/DQmaHNSQi5C9hoKOytbl4oSA7pMqsD+7ryIdour8tOw1lyoxsqIt7jE9tc2jlmTjva3FbAQX7hSqnQPHLWdPAoS0RpO78l7aUix9cm2S8nreexw2GU7PHjxtb02ACugGpSYdWQIg2qZNWowbT7Rcd3s+s3nmf6UVYRbYk5F+Jvr/kIISonRa5LudosAjN04yfpzxiJX//aq3V+XnIjTwDiN3I0Du/2obyYxmZ25rTPtpKP1EAI5xJ5QOJ/PnK4nAdhUqmIcp25vz9eLSDCkRJpVyD40nG/CgI4SG2zLOi2hKkNlwJKsrWbby0Lcte6/+6Ig3eLSIr7y9SJ6ddM0bkqd9XOakmWaMBtrSZRcmWeRPqj6ns6JBjQNadTRDYl8dSaVVx/Xm5SCzJlJYQyDZ9xFvHfEUQgnexcITXwoYYZrWaz6Jt5JszMXHAdlTw4EluYptXJdPLVKhcnj88w4qHRCkXg+OC+4gCVR0C6kDQKty3m/jObbZqcKcCYEhTBNAlxeF/Ii52boC+9n3ujPPH4x2LS5ih7AmW5JCJH9/iAU4nEgDoFUlH61yQgDN6ikc+ixUFRpoODIOHWCQHUFtHRuRcINWlTAqYnj5anaSa7oYJfVmPmAdGnRIFEDRposjFwyuejzqywuY/ZYRszKfLboqPOeOA6gAmzjOFBbZRjGLiBumYJmB5cTR5iO6CqjZBh7pqxnqyzgZhN02+CxGmIDgzqybQ44emh0J2cN3Nf7WP+2PUR7XL356eceFoqZU9R+8tw1uLd3ta5aP/deAgAIPTyXQmxVDxrPOEZcdBwOh16WMO12Mt5RHBTnpaMImvWwrhDPzyeenp40qySGSYC4IOCLWzHfl2PTKfUNmt9kbXV8+nhqNs/BpnuclSB5dXBtRLsLa7Pa90hf6c2AhNtxlmAVmvP4KGVxPkTppNMKzmU1hqZh0Oh6HfbfDb6zzSIZI0YANE/1XtqGO6G3ey9dYiz7VzRQliG8dWK2a62v6ZdgjnqC/WdnV7mCTd22rXjKzePngKit8TRH5QaIXV+9zmN/lX5XHKnvof6maxa8f4De9xaT7Ydc36/rs+3takW6Wdo4bN5v+6NbMa2boMfsSOu/1+f3321YR5u9vr37NXAxkGvNZK7Oob3nOglifyxrr6/tz918hu0f+5ztGG+vUQUIq64T69aWcgJ1iG0unJa4urLNDP40m2pgRd/Pus6qOnvOMu8+0ALUVnQlmMO7rsU+cTZmZvVsL6lDZBnL2322js0WyGx1/ZxWbVw3e3Jj92UNtj4+q8bYmg200hjx2bbrvPXzt5mm1GbNdEFeuytlakhZs5Ov0vr2tCTGOhp9QXX754CI66LUwcv6KcV1an4uhZAlsK9tw36iKQV8Xfdbfft+V+1mOW8elmn0FIoN/GYef/Ljv/nDlk8PCHVtxDhwPN5JV50hij5F3Txhe51qR10HzipOwXn7HWRoSddERkBhK6N7uVhLB4e8vlfT7kTVQGeQpMv2EpqUOtpXrRawFOhdqGzvSxewsNEosjPCOyes8RBIKeG8MLjjMPRSjaodeNsmCFvPXDlfQxD/03yo7Zjf+Dt2mLh1L94Y7S2axk9ti62pn/y++050/6Z/3Prm60z2A97OwBeMi25b2s2CabAKIPcgXYJru79SGvjag8hY6yo+Pk4MIbI/HBRoh3GatOQ/aom1oRsCbJ/PJ6iV0/OJ8+lMShlqw7vAKtKsyUS1ed1imY3QOTK/aOv3ONTvaAbYiTaM9wGvJc9d32p7hjlNwNz4UJv3Nj+zH6fqi7P6ej5ExmlHHEbiMBHiKGVxbtHX6V21la1xs4aV+Stj7zp477UBglftqGGUjnclJbwfcFTVkFkb/bS2niu4G6tqN9D33s+zeQ0usUW0PRP5+YfNTzeit5/q1GD1o6+xYUjdPEuvcv28LTi0eerN+27HU0pG9R7Ud+oOzU9GQz7TuoBZoxDzl3/2Pm/cH/fyz+vxYNsOvdfuD71g23QfFVwT9jnqb3tr+sOaYNS7vLUJPa5d9475MLZ2Ha6fxS99utbvbWMH9P1Ec1PiqJwzPviutbqdt175Y/T5rQ/bP89v5mldgzgBxFprfe/a/Hfb2m3ci2HvrqT5ULYPNj5Ue/HUGxyA7kNZtccqL2PA0QufXF8pDNGmZ5fqcul7e5wKbW8+2a5/o6G7dmV2/Zxb1z29tLP7Ud51VpP56H2vbFaBu/GhJH0vDHZloCFs16oVCCbhQ0P95+0Zv1rHn9iTPsTupunX9p62a62fPz/Z///64xeDTUPUTHFYa2RVBpA3b17z5osv5GxyheQyVWspxRiI0G9rVR2DQPSe6ByjbxyHhaE1QjwRYsbVKzV/knr0tqPWPTVEWszgI7SCa5lWF8gnaGeWU+X5w8KYJ777vuLzYd3gzhOHCR8GaAUTvFRvjk+Pj9K9Y5mp8xmuT1Ii4ISq7Xyluta7lzRgGicejq9Iy8JpeSIXERZb5sb5cuXjSYCNaUrss+jP/Pjhe3HIcibnBe89d4d7pnFH8/d8/lVirOPmugXpNibZivDLAnSsi6DWoiUYTo2jF+0a76W0yUpiugZB6Bl1jzoi3al1fe7k/NTPaoL8us2ytZrchugJ2aIt+gxDUQ1kWU8svT8vdfpxHIl5IowZN0SaC6KR9HSi4Zl2R9HXmjM1CwL/9TdfkXNht5/4+utvJBOXcs9GpTlRkpQPeOd5evzEH37/zwzTjsP9W+72dzw+P3GaZ2qFOIyEIfb7lhuTDRnDwH4vumVGEBrHQK2iizLEwBgHXR/ikASlcQ7DyDgdac2R80wpCw2nmRRHzeJAG6DUjZtTjbEgBjznxJIXWnOgjte4P3D/2VtCHKQVc4ikZVEDVCglkfKyOdAawsm0mZbv1XtKNqe9SYDWijrAwsrwfmB/uGcYdtRamOcTJS8syXO+ZIJ37EbPEKBRsRilM05U0F4OBNMJ2DDoWtEAkxur2IGJnzhWt3GBs/JStzGt5pD24EDfuukBbu2Bb4AedfKdGmDvuxC27beg+kENKwNlc42yH7dB87pZNs4yejgiwu/XOW8cVa8Ri+1zswmiKSDlFebgN7Fl/aBe78NOtK73ZFoE5jSx2jS5FhXOXX+LaURt58MAcbEhRQ4+xNainQ/BsnaAgqK0IGK8GKtHgOQQB5w6LEWpQbbP8pL59PG5NzJowDAMHA93UqJZAjUIC6xUaeN+nZeemV7mRfeCCOe2VilF2glLkiFJgDV4huggNQpiR1IWcW0BY3Rtme4Ra/OEWhvLvKwikhrQBHUWfa2gzKfa6maNSLYteskOl7pm0S3jLCWwQmGn6NyqI1VyYbkmnHPM88KSEr5kSss4nLRNvnG8VifRWdTqHD5AiFJOF+KIVWBuM+otVUJ1+CJdXwOqo6AqTc2COt0ng8b7HhiAxTdyEAcqNUeqntrg+XLlMjt2ubIvwhbLtei6Vqq5belKzz7eOj0rgNk2NkOy7rqenD1/c71/LgD7N3gMwwCt6V6sOBeYxh1DHDkeIp9/GWlUUjpzTXMvC4CGq/rVWndgg4foGlMo3I1XsmmWeAdtIc0nef1wB0Oi+kBzudta1zKuLYT6jGcmnzzP7xthnvjxPtHyRKlim3COOI6aJFsBwaTO7ulyISdpqtLmk/hQPjCGkXFYSzQMJAXxoe7vHjBWylIKl1lKui7nM4/PJ2EjlkJqwoa5XJ7JaVGzJkLTb15/wWF/x7B/rTqBTQEQ02fTEi2Hlr43gl91wkqVgD/nSgiVptogzgsLLYQAYQ2iRSA8CDhaDbyQPe6DJ2pwiHVChtWGOmX/ehPkR30MFRJOpQdvXsE9W9lmqcVvCnotkRilU+/+/oHD5Uz2J7hmmoP5eiE8f6IWKYV3zjOfL6Ql4VzjN3/9G3KRbnNffPmjlJ4MKnjdxK7VoozYUjg9PfHu++/wPrLbHZimIx8fH3merwgbIhDQdtnGKs3SeCHGkTdvvoImXUqdc+zGiZIriUwMjmGcFIBUEeJxZH84kNPC/ni3QQTUB9AGIcE3Ldv3BD+Kv+JMZ06SZd4HLucTT4+flBV+YBwbr99+wa9+8xuGcWBRvcKlzJyu5940whgfaGLCkojeubUkqRVciLQm4HzDi45elr0yToMkpIfAYSc+VMpnUk3MxXO+LIQg3bRjUP3Y7ueIH1qKMINrbaJxq0xx0xDbdpRbzbElHCu51pU1p/bPIWrDwuZXFrJf12l3FOxM0AYsBgS5otpcHVTQj3drubmAcmLErcSu1EYwbaCND2JC3U2b9nSZDTOkze7N9bEprdFygdniChORX2Mpr7GT4AWebfnWCpCyjreOofmUAh6qf4eUqmHbtwMlW93O24qTzbsLgKA+mdhEiZhqcT1hHbz4ph30UltWmxdShQE/Op5eu9uVWiWmaJVKoFGZl8z7Dx+JMdKQUuvgYy+P82pLeqUBMM8L83zVNZe6btE4yjlWayPVRFSfCmwviG3LMSmLMYtdDq3LNdj+xq0xpGg6LuqfZfVRZB3Klq9IE6ZVTN8SZGLvxZ8qqVJzpaiwt/cqFYIykkyLSeeplCJxpfpdXUZB94I0hzFfodk3aJ2aIJUB3mmjF5j8pO+FdDQFRIuqUV3E+0ZEC2fUpZQqXAGUQFhPo/pXvkFsjeQaxTsyjqxxdi6V5/OVMAvbdhwGAZ96PE/Xa1o/Z2snVoD39iGM2ZZLnyMXQr9CW/s3SN5/5/GLwaaonZCsdtjpEHs8d3f3PHz+hlwLP376kcv1TN1QOJvWaEu2dM1mCQ2/sYuZUAtxcPhQKPnCnJ9l4bsrlURriRaqbuCC02xcSxdaPZEvhXNcGNvEh/eRoV3pWS/nGXcHQhxkUzcVDVfW1el0ZlkSOWVaukI6CyAWR4JmbjrQpJZliCOH/ZGrCzyHEyXJpLdcucwLz+cLT+cLWTUzSsl8/PiOeb6QUmZeEiFEvnj7FXfHe47315+UxFnWJChAVG+M1+bRWCmwm0BWnB0RpxXhfCesFD2Ee4mFEzHhGzaA/WeLYDorOjDXZzXVMs9yClQFnEzDxJnRb+uby0GmgXUT6nQYBnyMuCjOzrJkqrsS40BaZrz3XM4XlmXhsD/w2dvP8N6z3+/4/PMvOD2f+NOfvmOeZ5blSs5ZdCx0pZ5PJ374/jsO9w/cvf6K/fGO81Wc+gaq79EXrRwYOffDfJz2OByDCX5TqE1KSb2TtuwmqOiQvRJi0BKgCeuMJKL4mkBoSDv6F/RQGW4BfUKUbGMFWk4SbHmPa404TezvHxjGka22TphnGo2UK0k7YaxrZwUpvQZgrXqq8/IeOJwLPVsgr/O44BjjyH7vtY1rIaVKyp7rtYizGESrpR+2rIdwyUXmtKo4LcIOiypKb61cfw5wAsuUWBnYzWLSa/a3r3Fu8+X7WvabBe6MMVnyz8SdTp2MFd0P+uKG60KLpa5gla0bGVOxV6UVHXpDd1x3YiycrEUAOOccAwPRLh9jGtG/ixO3Xt/tEWHAVus/O6cTLee8stDci/Fd7dvaptWWzPpe69DquJrgspUs6JrdbvemFyGAtlfdDnPwxMnyCjbVWiElepdFHCUX5jnhvWfaTcQhsN/tOR6P+CBgTA0STPoic1NK5nK9CGA0L72sMsZAbY5UUEaGCuz6pp1axCkf6rCWJ2QNXKNlW51K3xh4Lx06apGESlEQVei6Mh7OC4RXa1udHAWbgveUoel+zcoWlrI276Wczcoom1WLqpdacyUtUpKYk+xJoOu05Fy683uzPmyGdUM4DyGiY2xdYdRxRtYmrdGqx9eAR6jU1mN2XUy6Jh19r3icOnJw9bLwi2pE1Va5zHIelwY4r2NU+hr0zolOFK4HJcXK482WKWj3cisI2KRX5lfH0P6+kd36N39EBSa9U7DJB4Y4sBv3TMc9+4c7clr4/vsr1/Miom7I+e00CJMjWcbX6xgPvrCPhaJOIw5KWZjTs57xM84XGloOgPhPvlVhNJUzvl3IF8/5yRHryKdHT2CP4puiu7QrhGGg1UytwprKCjhfZtGMqll9qOWEGyaGcRSNCr+uEwO7h2HgcDiQc+ZyPZNzYUmJ82Xmcp15vl45Xa7k1mheWLU/fP8d5/OzsF6CZ4gTpU68uve8+mzugqj2cN73bo8GNnmMidPUjkuwagwtCfa2pWtWimGdfEfWBhTIvkA1XRzUJissOAuGLGusZ5R+7yCSoDo0J12H0JHyPTOyunUdiA6haxqN40Qumd3hyHS8I6aC809UYElX/CXiHWQtPz6fn7leZ+7u7vn6V9/gvWcYB+7u75jnhU+PjyqeTS8Dq1r2frmcefz4gWk68Or1PXHccbpexaZRiTGobETExyC+fxKgP8aB3f2dFOeriRwGYZ9DI8ZJy15WBbgYB8Zpx7jbMe728jkK/tRaqc73sZO4M+D8JOVfXsomQwjsjwfx74DHT0/y2eOAD4H7V6/54ldfE4eBj0+PnC5n2rlxnWfSLJ3kLHNm7CrRoRRdKTBGR0PE+gO1Crs+F/H1vfNM4058+XGk7o+UnPjwCZb5TCpwXTLRS1wUg56h5ofqkpbOYGtClVbxDu1whqzDusZe4jPI+dPZU+o7iYtlq1Bttm7TlZmxMmnY/K2XH6tvZb5y63ba/mxAk++MeWtK45vYltagqGi72/hQqA/lFBDYAlkGAMkeFP+k1UZLcs63DYtyPZnkPLUwaRtKbROa9oebvytwsOpiqkxDv541Bup6WRrgG+Osb2zEg/Ro11SLj5vDuQLViwbnpsS7+1Ah4FvrTCL6vAjY5LyXM6/rjXkanpQKs8ZQu92B3bSTbr8xSmLJS9MUclYWspTNnc7iQ+Wcu+2RUuRG1tLNVS+M3lmyqhaaA2XIyj3X0LqeaF8POialZHK1TmfW9GddSyIn0jbEClT2RUBd7ww8qp01XbJoHBtzq1ULvIT92aqAwTnJPVg86pzTmFkHf2VVrHOtP0rS2hptia82avOx2ue2UWsCPSe8G6Sb+br7sKoV+lnj1L44fBXihncwa6xU9DVSxr4IyFW1fVpdgep+8uq5W6EDuKAVmgZcbnaE/cJKwMXO2dXqoxr49q87Ub8YbJrnmda0zlEz06UUCmWTxVcjp+CC6aF0IARFNL0dspUQGrsdkimNEEIle2iLo1Q59Hv3uSb0bKfdVFzLtDxDuUL1eEacayrapwNQqmhO+IiPE6Us4ohvgr+6cZi9d8QgKGUMoQug9olQYzsOA8f9QWtLJaBPi7SXvV4ugGTAnNM63gYhDMShiH6UH1SwOazlBElYTyKMtmrKmM7KxuPoC8VtNmtDBe16yZ9sRFnwaxlJ7yrlfA9ezWnfAktu8779J/1cAROl3KXq6LVNUC5GVsetub4h+zVDN8g5C82z0/Gb0ItzTZCDtE2/XjSTKFoFpWQul3MvUxyngdb2fPb5G9Ky8PT0yOlZnuedHPwpZU7nEy4O1CLd3JxD2RJNatO9ggS1Qq2kVKg5sRv2HLX9+uFwZBwmluXM+fmDHPg+ss1u9J+hO01lKLQ2UJsIa9qhHJrWg8vorEeMk+dYJzdyEtHmJnpQPgTGYeydSmot1NJISTMSOZGWhZyX7riAmQqZ32rAsbPOhMbikCzCSuuWR62S4ay1EmJkmnbUsvB0OhFcwzNCiarDMPZ1DOK4xBjVt1amo1uXtTNQSEIAemByA4Sq8+JlZHshqmM1eLqeMSPqNuL3di8NvCCitFbx1ashtsDcAoPWP7PvH0SLQL4ai3a0kEFeUUOH3E8Iut5XGSoNUNjcl+4jPSwdFlAaG2UzRptHa3aFaxB6Gz3fHgLbf23n5iXQbDH4S6dsnQP5ySuIZbax6RhYpksGu7tygLDCvDdtH10Xw4SPUbt5JnUoVEi1iCYDTbJtz89nam0cj3dyJiV1GIpoCqScOF/OzPMs9jNJh0qvumR2Ttn9p5y6iL04cYFY1gDT7s/051oV9kMzhxN68GMZ6NsuLOv41s3zWjXniQ6eGosAHCFIMLydo9u22KYHIkBpzpLRw9H3bSv6OXU7+6sTwmY5maOcE/3MaVbCHJrita53onu5FmHr+7p1PVoVFpLU8DSCvk/F9UC1VJiXrPbB9AbWohg9fG/swZ8t/diclf1b2949P9l//9aPZVn0vMsaKIujnnNm0HntsvAaFNZShLVhNEoNYMS0SNATo2O387RiYFwj50bJUIujuapAk8gSYELhlrDLC7XOuJbX1ulNNCFk/XlcC7gw4oeJkhYtQ69UVWez4j0QDYtR2Rldrw8JqlZn2jFOE3d3d1wuFz49fuJ6vXA+X7XsPWnmfUcIEROZHyfRBrGujQZOZO0Y1M9um+umZSS53Mx1Z5yqX9VBSycJMLFRoQeUWx/oJXC7PRvMMG73xhYscK17S4pUOXwpGnjRSce2d6qWSgh4q/areopz0HwPTFJKpCxSEKUUZYdKkxW/XIkxsMySgK0S+VFq5nw59fKO492BcRoJ0StYXclZBN8FUBCd1uenJ2ptvHrdFFwSP9bhiVE0fnDSMr3VSk7CMjjc3fH5my+JIRC0RL+UmZxPiC+mTSxao21K/p2W08VhZBjkbGhFmAjVSdLNVYerct46P4Jb7bmNbW1WYiwGaX88sjscmA4H6caaGqfzM0/PT5zOz5KwTEm14qraMoWqa6WVSvWyl7xzuBLxNVAMTPGBWuksm+AFHC61ddHhYRhobk9Zznz69EhwEF7dEdyOzm71VgbkiAHqKHa5FtGllWWnLAu/BU7Uh+pnBn3vmb8nz3b9NeZLmJ8D9CYg21hDD3uZG2eMwfU96O+hPr8m/dc9Ir5TLrJHl2wxooE01q1XrneIYl9qkSC6X8Ym8F+xoqZNqNB902Fd3Vv87MNAsaICQTe+T9v8fPMiWG3N7RN6KZyz+Wvra1YvXPWxVi97y5B6eb7Z3IQYNX5cNZRDHHA+kHPB+1lAlybjVWqhZWE4X69Xnp+fmKYdwzAxDJBSJqVMzpnz6SwJgIvoL5kuWGu1g0S31QVV7EwHYCO1VMZhpHjRDyp5Pdel1NSvk6ZnxzZB3defjkvrc0uPl209Oi+s397BznwwfZ4JeePWc9X8r7WLnbtZQwZgbsOK28c6l27zK7k+SKngitUHyHsZqCM6TV7B0PXFHeDd7FGve6a2ilPgVetgCF4FiPQsE3ymYhIqtbW1mEKH0jVj+60L9zbCe3mbrY9fZ8SzifmbJS3/zOs3j18MNn369IHWGqfziZQznsrSFvBI2U5KdEE6zU4uKeGdZJmNFheiOggeoDIOjTevPLWg1ObKPFd8caTscK1SW1bKaBITVBdcS7RyhfkTpI/4QyP6PcFXCo2lNWqGmitxCBzigXi8p1xPzBrMSMcySFWoieAZg+cwimj2EAaGKJ30mmYM7QC4P95x2B344CO/K//M+Xzm08cnPn18FCNB4LC/F+fShFynA3GcsFSyMW5yhiVJ148Q4k0r95yS0NP1gGw66W7rPWPbQozQMA5C9w0BhePlmnwj6sFtgbAEtCs4ZbnqTu9rqLgt3WOvTTtwNDQjKIw162pXaxUHBAhFWQFube1oD8tO5pyFsrlklpyl40cDlot0/HNNGQxSkhZiYFmu/HA54Zzj/v6O+4cDD6+PfPnNF5Ra+Zff/Qvf/ulboVDHiZQKp9OFlBeWlPkP6YprIgYeh5EGxEmcrpozJUl5zXy6cj2fufv6FX/5l3/D4XDky6++5uHhFe9++I7f/uN/ZZ4vtHyllqRZQCk/q6rThQ9M+4PSXBu4rHOmGgcOU9wQbbFubNSYKso950wWEgN3hzv2+x2H+zvGSairp/OFeZ65nE48Pn6QdWPtcW3xyAbthnzbPc/arZY8SEbYiw4UuO54pyWxXGdwTsRRj0fev/uOP/7pT9AKy9t7Xh137A97Xr9eu1Aag2PU7GIump2rlVKSHO7eCeWVJoyZJkLCdessKQhk3e3soJKh0uNbnaO2uWUrB3JNMmo2HH4TyNVWccVR3C3IYhiY7H15/1wgJXGon0/i6Osn4hyMUyQEyXDsdgMOhN6rGeKiz7fAsp+kCBCXvbSZlbJl9ICyUrVV26NugJPOmPgJSrw5LV+AdzeAQVuPnA4UtNvXN1s9doBpRtdiJ6PBl5LFufSxz4U4f45hmnTfRcZplC5n454YBlLOXGcRePRxJJxOLMtCySdKLTw+PvP49Mz9/ZFxHNntdlAdrXiu85Xvf/iB63yR4Cstcj2qa2TOkBODhA+RUiuX65kQoghKakYq+CCdXC5XZnXYLUhzrKUBzlddz0WEJHUQ1wN8Zb/RrLRVgQUNvmuplCx/T4sExkMzJswaINVSKVqG2vRzpIxOEhTLUnoZjk1k3zeGSvZdg9pl3RuIU1GUyl6rnXeS+Rr3Ah4E59n5kZ0PUkLXJ3adXwteowrLFgXufa2EpsKZPkAYKa1Ss5wxc2oSEGM2T5yjiEp5O43Guy1QoMCvLADbr/ZY24k7XHPdibRM7J/zsf4tHk9Pj7QGl+ulJ7yWeYbqCNPAUPIaICDJvDwngg+UqSi7YuuHNEKsRBc4RCllydrtd0kN30SUfaGS6qK+U1J64wJlgXylXh5p+Rn35sA4SDOTVCvXnEFHP/hI2D0wHo5cT88sZ+lcRgjgHZWoGoIwDYG73Yj3g7S191KmUxB2laypwP39A3EYef/hPf/423/i/Yf3XE8zl9OsgfiBGPcSWFexJw/3b2l3FRPlds7hW2BeMikVbV29MvlqqVoOMlNKUZsm2fGG4qCbjeC9ZxwGxt1OA0HtMlwlESHrsrJ2buwLv2tHee+7zZOST9ZmH12bZ51OC6ycl66P3pvPLGelfU4IQTq1eU+rVcCnJL7T5XLmfL1yma9c00LSBg7+8kzKiZKzMuGC6Dx6x7Jc+OEHYTvc3d3x1TdfYMBayYXf/mMgLwu+OR7dSK6Nx8dnvPsDr16/5etf/YbdTroExziBa8KKjE5E3ucrNVeW00JZCr/66jX/0//0f+Sw30ugGwfevfuBf/qnf9B9n3viutaC9xIcO+8Jw8huf8S5oH6WJhByVaFl9eGdx7movo2wrFAwJBfxLeck5dRvv/qaL776ChcdlzyTcuLbH77l3Y8/kK4L56cTNRcC0mwDVhNqJXrCzNamOlEF+kMgjXvVEJsYpx3BS4l28NCyCDY34HA8cvB3fP/HZ377T/8k3sx/+DWBN8RhYLff63oSX34YGtNuR2uQ0qyJRJMpaYTWhDikYJQ0nqiaDNPEqneyn/3aqfMGzIBuX+WcMhFve4LD2NnOGEutIJGXe3EWaJfirvfjpFGQcyLMnCqlwPkiJACHxQuO/ShnzhADu0lYMimVXs5VOhtdQS61fw5uAFqsCYYCd7rp+/1tfSFJNre1O+QLoOElS+nG19y8l72fJcN969DFasMN5NsAitYYpFb7LCdArl/nxznHbr8XezAMjLtJqyikVHRZEqeznDEWA6a0dBH5jx8/8vz8xN3dPdM00dpOQP7rzDzPfPjwQX2urI1cWr9v7/3K0JWrI2dprhRj5P7hlTTF0qYzUl0iXetblQZhTn0or2xT8dFXrSXndU+pNp7ZS2E1Cls75SzPc6q5m0WiwxavU9u/zIsCSeuZ31mpHXTS6zE7X7U7tDcdEAsY2IBHZpc3m0bte6VxnRO1SFm1V7bTtNOuzCEyxYHJh5+UeuJU0wkhuYigurCLXM241gg0aSIVAsRBsJZFmfqlMC9FY/jQt2xwTtm1G19+ozflNbFuYK09q2IH1WZ9Nzbasa7HA//a4xeDTSkJbdpKveQgrisToLWbQZPNJ1ov2zriHtTq+3oHMWrg56SmswbxYWpzuAJOBcJpKtzdhOnkWEvqgrM6fJAA1NhVGms4By7Q8GgHZKHzuVUoECwDYQwny4xsUH5FQ72TzRK09ENKLhKXyxWAQQ+I1lQvA8SZsayClsa13DTjUoXhk0sfY+kGkm8ojGaw1tG+fTg9ZG0n2L11QW4DMbDvZjBfet79jntAvP1rZ+/Y3FZ6q3srcxKwqmnpzmqkbc03L8FWKaWLJBr9T1p7C5PHe898HUW/SkvTai2kZQGgHg8SkMfAOEkLzmk/MY6jiK7HkRQFoV+WhaQgjNX9inBx66w7LIiyAKaKZtPheMfxeMf9wyseXr9mvl6YdgdokFpRw8y6YVv3JfEhEqIEvCaUbCKV3gtjAnRdaCZsCzj1wFVmjhACwzh20EXGMWsrT2nxbloJ265phuLrxPd15dXhdq1SEAfeGE+2jiTIrj3jsjKVKpfrFWpmvo7M0ak2zi2gYWuzZxHUOTEH0+GV2CTWzA5b+tKx91m7tq0KYj9dz422wddWB8EWYQdTbKy7A2Uif/bEmw3W56FWqEUYJSkZ0KCgWalib5plEbUUSvUSqnoo637u2wPLaoljJp8jdd9ucxlrtswcLgMQbh/tv/OvF4++1Jwc2DZAOva3V2D/sEK/benj6pzILKyD7nCdbmwNJbyu5RhHnA9atiNlFyFGQtHgrjpyyZRaWJZRysZihiqDlHNiWWYNLLMG9M08QRkjZSP1NdLMMa26FDSj5NtqR23vbTJmPVum43DrtNJf05+0tQkvAL/OcsLOl3qTfZPMtHYLavXms+1M7q8zu7UVt1RnzcbB1snm8vt1wEpDN5B1uwfNVpjmgm2hm4Xl7M4tIF9HQkj9TQNfKd+18temgtRAB6qArt21ffx31/H2rjbD0F9rY29n4r/Tw9ZjLRZQt850M6p9s/3iVk0zV1U3bxsU2bg6qUqJDum046A4lFEhNl9KU6yjjrEOq+7oJj4VBa+NS0yEdqXhq76gCFDQnFM2nsMFs7Vrqby3AFyzt95bYFc7u8TAklHPsJwzy7zo+bwAqlfpHbVmpKuVsMPl+5pwqHkt8zKh1KJM6axabbmsPlTfD+sP63mAnC9WvlDaZo3rE+WlZuxaX+C3TD/52Rz3Bpt9b6Vp67OthEM6kXtJshU7z27ftTVPyB5CkESfE2aB3bPZiNok4VuqJHqWeSdsnzjiguqzlITzniNHYSUpWFZKZbfbMY1iZ2MYKEH25/V6Zb/MfQ9ZAx05+6wSQED0qixdr/pkDw8PHI4H9tOeYRiZlyvjuJM1UYzxw5rg1AHwzqsuZaG4hity374am0+bwlgiVxOZPqwsjG2FBU70oHb7Pbll5rSwpIX5euF6vZCXpFUGVZM4K/sCEFZrVWaClt1Ig6KCr1GY7rVqybiusxtZAdX08wEXAqVWTuczrlWWedZGLGslgPlbgAITjd48qZW+pw24bBtApa9FvW/xs1awbC3meXkWIM0yqr2+3bzfZkX+1ECbzX8ZV2ycFANcS2ndhzLc1ztHCV7jOdOQ0uSg7t1aN/fVVvtjUYYsT+nw2PT6bxlOt6xhAyV+/kz4+RNne77d/t7d2hu3zoYNRL+Wfg6tcBSajDL9I2OUmI/itbOmaIAJo8k0WxuOIRWxY0HKSEsRYL4qWFNKZpomjTXl3wJIJZYldXa5xEhtM/es3Y2d2fXN3nLm3wVlpGoZpzhJP2HJbEf2JVB3kzTdxGP9tZtqUfOVwGQy3Bqf0vr5Kn64vUbXSV8RayJAOzD82en/uXmX65KEVjWmLYg92ryH22AM/fWbxWHr0Pay+Fmtf4kPpftkw3oE+exWq+zosLKl1mf83GPrCep5tvWb7AzbzE9t7Wb9/rl33j5+MdiUk2RKcsq95WLW7m+iUSeHc/ADMTSCar40pzXWRSoMhxiIMRCjCFhX34TKra1mpXsWDFG0klIrpDrjWqCUK9RGIBF8JQ6ew+t7YnN8+fYNbz97w2E/CdIbI40CJdPIXC6PFJI4M8tCa/oZQYztquni8S2wiyOv7w+M4477/cQ4BlrNvH/3QWrcp8gwRk6nZ67zmXmRjmdS695IpnXTN1Vbg2qlQzuctB13Qk9+fHyUQ2aMPF0unC4n3n14x/P5mSXNTNNAcYUlITW5Wm9acqNVx/+PuP9qkiVJsjTBT4CqmpmjiyIiMyMrs0ADot2ZH7D//20fdml2dnp3u6u6KlGgC/w6MDNFIrIPzCyi5jeyOmhoqsaCPPy6uwFVASyHmQ8fLtnhiALInKM4AYYues0weELosO5LbTGHGlXNusekA5c61cWUmlzdYN5bAE0WpPdWP2vOiNuAeXXWdEFajS+abZGIrHxOViA2LwufP3xkHEe6bmC/P9D3A99++ze8efNOgKRGsp8eH5jHs7TM3Qv9uO8iv/7NN7x+fcfhsGMaRz58/ImPn35iWRKPD5+VsdZzc31NzplxGVmmlfU8MR/POOf46vU3dF9Fvv2b3/Hb33/LTtsqZw+7m2u+/f3fM08jn95/z/PjR5Z5ZFkntsKazkeubl8hLdlBmB+JWfVZUiqkBLiMDxrI3Ti4rVtVJkYJtu2v9lxdX5FK4v7TB3LKIqY6TsKaSdJ22lp/SrZbMl3LutQs75bZZF/WkSZUJoini51kEAr4TkBWQlhT5/GZx8+fSOtCzCPn5x1v3y7c3t1i3fAExMbKLBGhwkJJmWWWgFXKCzkLfb910SqAfF70Yq6s04uMiDpUFey3Q3t7StVjrRRlmbD5m2bTNnXyW8egARj5LJxkc8Y5sayJ85yYLWOjLJF5GcEVDvuB4sQ52sWeIfakJG3pS86sSYNt5iRsnBmhmcu9ZQW9Ztdlv9oB67T8wgIlcv0mBNrucgM/dX4rNdZpuUb9u+liuRq4uAAILzGkayOeC1JmQFEmvwUm5EXOKR07QIgq4BqlbWxxgcH1hBTop4Elr+A9u2URFs/imJcZ6VAl1Onz8ch4ksz0vCw1SCkZV9EKKxpQQunXrsiYdSqwK2MhQKwkc16LjmeUzHEWwGTMU5wBBkcx2r5HGReynlTSQzJEm45xgJb3ymCmVXXclPadU2adV3W2E35SdtWqFP+g6yIJW67k7SK1NbtBSCb0r0bbOqSg9naZk7Cr1CYE5/VenJbowjpncge+k6y4ddmkUNs427bNRUS+ne1P7wk4dl2hK4XFBVbnWLMj58hCFuHLtNbXSAnXBuRUJIjSy1EbqQERQ5G09boFeAbijCkZ3JbG/m//WGbRplpWaXdOkCRL2lD5HZ4YIl3syYuwNvAi9pk0At51HX0va9Y7yVi20rFmy6KKYvslUfKMlF2NOJeIJLpOSlr3wy2Rjjdv7ri6uWI3dIS+l4xfkWDPmgvn4wPLMrJMgnNA3VQvgQYJJokdDKpbcX27o+/39B2kdWIcj3y6vyc7ZfWROZ1PjNPINE/M6vCI7TuJpABY/FsY7iULK7Lv1cmXkTuPIx8/feR4PvF0PtIPA/cP93z4+ImnpyfWdaGLkZKU6WFsl3mmi52yCYS1WLLiIztTFIA75yqurZ1m63/yqOUvZq9t2W4aPljVHDQ8ZOU/FqCqAV+197I35D2fbWGrIZ7miWka63ssi0g6PP7wnvM4cX11zZs3b+j7nndff8PN7StSTiyaIHt8uGeeTprEGnA4bq6v+Ie//3tOpzO319eczyPPTw88Pz9wOo48Pz2poLfjzevXpLQyjo+M08wyLizHmb7r+Zu/+S13t3f89m++5c03rxiGAZzgiqvXd3z7d3/PPI58/vADz0+fYZXS/6KOrteg5KvbV6zLwng+Mp5PylJSXb6UWET0rbI5ggbBSslMypbNeeXm9iDddX1iXI88Pj3y4cNPzPPM0+MDaRQ/IwYHIRD1vUw7MFc7ao6jJZN8ZYcv44zzgfF85nR8rvcQtIQwBEnGTdOJVBJPj/c83H+ilMT7DwdcSdzc3TIc9pqgdJXpISWLsse7vtPGK1Mtd8o5iW4q2nDFSeJb8qiGlVrCrnbUogU2FTrgi6WS9D8NcknwGpoTkKkJtexUmmTj0Bveci2BmVJmmsSfXObCsuhb6avXZcV7uNpLw4rg1TZ2oqdo5Vxr2jDikm249rnrqlg3+6qhBko0cK2E3eazssSd2yQBuDyLaEEfp76QNPFo+KAy8qHq5VRWcsWfl0EAcZuKasFBYSNJYM8qpTG1DFupjbBAj+H+3W6gkAkxkBT3Y4XP1oSpwNPTM8/Pz6SUZV11HZIb2TYzUYyj9071IxFttCisw3k+iySMViXYOKHJhrLFUDIR2EAYuSNE+Z6r7WwJGSh1LXtNaAiBRPCGCdkL1t98jq5kqwZoo14XcnveFswUfrZTm1U5lFxIyBm9pPb34OUeLDFXkpx3uCIN0nzTrar+BrQ1V4RpLvckpd2Uwt5LDdlUHDPShzbFCLr2clqrLpMFKlsi60VYyOnu3jAVNex26S/Iiqlrtyi+tITjL3n88mCT1kPW+ksnADoV7UikZQXBRaIvWpNp2dmsYL8oLVICTSKmVXBJnGNhlGQ8KFDKhDUTmCgliDaTK4Sw0LvM0HneHK7Yh8C7V3e8urtjN3T0w4CLUeobQyG7xDg9M6eRvBbWRQapCyaGbM69l2ATgT503F3t2Q17DruOPnpIiYdPjzg8++uB/WHgeDoyTSPzMrKsswrFquBYbsbExq4U0b4Qh9mx73t8jCzLzNPTE/O8kLzj8XTiPJ64f/zIeTyzLDN9H1lKYHWF7DSTh9FK0WBTIHgJNiU1BKJBoDDFRb3ntim2HScsaV6Zg2XD/HKuvtYb8yQ4DTZJGZ3dr3yv3vdF8MQEcq2Ti+iziOCy6eAss4iBfrq/J8aOoR/Y7fZcHa64ubqW7jF6kcenhROF0EX6/Z4QAzfXN9zdvSOtK3e3dxKpL5mPnz6yrpnj0yPewdXtW66uX7OmxDiPpHllHmfG55G+63nz9Vtev37Nr779Db/69td0fSfU37Wwu7rim37HqrpI0zyJyTp6zQqI0xpCZLjay5wsM8s04tzKvJ41a6sHngdn2gWbLV6Dc0hJaIyR3X7H/mrP8/MTj58/sywz5+OZeZp0H6oIf4hSEsTKPK+qoSBB122wyYC1GUkJOlmpgifFnVCvu0joO3CQWcipME4nnp4+C+U+j5yPPTEGlnUldhGvAYWmhaFtjZ0TTRInnbaW1bGuaDalaSdZsMkCVV6z5iCHQC4NJOii1UyQjJlkq5ICBmMNFcx8AjL2xcSD/ZcH4sbfBRFynRYp3RiXlXmRYLnXYFNaZkx3KPSBvovsuj1dPxDSqs5TggXW1ZyLfHGoCZAqFYB43a9dF2rQ1y6uaiMo4KgZ3ItHqaeHscxKKQTtltEYCM1u6ZvquFkyqZjvVQPKhaJBLh3jFuWS/xW1Bc4Lg8Jp2XTwus5U28oHivf4lOh3PXNawEGad5rwEDDttFQ7rZnj8cTD5wcpF8gmjCXZdAFra5v3rbBnFg2MqNm/kpGgj2ocZaNX6zjZIWtjayAA55SKbUEP+6KNkwHVFi+p7MUabELtgAad0prIzkmTAoktKsvHifZRcJX5JI5yAwdbUGy/tN+0TLl48MKKSixaVjwMg7B2vZwbIHtyzYUStOxaGZqNxXyZ/SyYrgI4As4FQigMOpbRORYci4MpCOO4qKMh72fvewmW0DE2YfbNTWH0eLOViqQux4HN+1X78u/zMIZyUvayU9b3VjdCbHZHDCuLWwScFpSxIs5a7KJ0+zI9mqxOgZk1nAaTVdx3zZBnKQlLE7hMDIldcPQh8qq/ZhcHXt3dsL860Hdi5wm+MuZyLpxPT/jpWLO2ONljsvCl3KaoiLn3nqEP3N7s2O0GugjrOjGNZz4/PJBdkUBz9JxHafphrGNLhpxPEiAIIRLDVpQ20Q8SHPLeScDYSxnt/cNn+vOZ8PyMj4Gn4xP39585nU+kNdHFSCorCbDOkcuyCL6tXYeEyeJw6gi1YFLVUCvUILwFhGRxWZBI5sq/XIOYzpJisI09Mda84MVE1jIO0/owBlzOmWWeNUmBapOsVVfVym2n88j33/3A/f1nbq6veX58Yn84sNtdcXV1I2yGddbXLJxOoi253x8IIXJ7dcs3X33NOI4cDgfG05l/+ed/5uOHD4yniePxWRK73Y7Xr+6Yp4nx+MB8nljOC+tpYXc18De/+Zbf/s1vef3Va169vSHEyLzCmuBwd8uvYi8BzGVmPJ8rc9TG15zf25tbcko84shrpjBTyqjYYWWcpdOiUy2b4D0xCRY7HaUxTwiBq6sDsY8Un5jWMw+Pn/jzH//AMs96+st4R0uMqUMr2FWaMGyZEsErLikqQuEcPs7yuxgJURrKdBogvjpcc3N9J7po5xPTMnF8fuDx8TMlJT7dXIkSmnd89fXXtCCNBrT0ugIB5zI5JU2+2Fp2UKRhgNkCO4tEwuSFzdsknC6C76V9LmZSQYM6dgaa/6Rlyfqz132yPYuKvp/CDVIqqhOUWZaiwQ0LxmSmIoLKlMx+CNLxue9FC2gjNQKFVR3mlpil7qnVtEFzrni36rGZA633Ag1DlVKUgd6uvyYg9XkhNGaJ2cktq6l2YqadOTXYsblOX023nQU2Dh5j/deUqbItLanvNtds32uwaRiQ4IwQGoRdq5rHTkruUiqcTieenp5wztN10jURsvoxGdOkdDhtRGHXoKQJZUWmvEo3X9XgKjUIKSx/dN1sS53RoI10w5Vzy8roSNawBgk4KXa34GvQgI0EfFpgRIZXsJHMla/ruLGa2TzbJqRNSpWPMiir+KrZb/FLchHNqJSyllo7hj5KF+EtA1xL5ImiWRmtrFP3zTbIBBucqZvSqzSNs/2q5/2KYw5BYjJFPkdwvAWSWqDz4tHcJYHnhUvbsHl+vXcbIfMRdE//kscvDjbVzHWWutjgMiW037fntYVv9YYmcrXZQnqvpYHgLagUhImjEH2hi4VAxvuF4hxDXBlCoveZXfT0PhA7X1tEO12IYA6GMDucS1WhHmD1BVdiKzfKLTrfdYHDYWC3G+gHAcqZxOl8JD4H5vXMaYw8HZ+kvlXFEPXGNPJLNeTbMazOiBol67TgDTzCxaJDx9B767DQOmJ0oRPjELsKQC1zELynqPE30RrrNmabbWukDDQ5aBRbbypOdg1iXC3fkXHq7FvggjqhNdNhYE3n2tog24YAybCih6F3cg8lo2MjANDhOZ9OHI9HYYdFZXDp3BXAhZmUPCcvXRkc0so3BM/19RW3t7d0XceyiJjw7uoVQ9eJ0c5QUqGPPbu7yDAMvHn7mtdvXnN9c6XClza3RYITIeBjpN/t2B8OUFYRMkeF+ZL8HDsBHLv9jjQfmOeZaZlVHFecD7IC2LRl6rRsZ9roGYznEyE4Tqcj4/lM2opFgk1CPYyz6uisq+inieinavy0xYDDkV2q68dYRJ5AUZHgmCVbOE7PrOvMeDxKRL3I3lpD2oi1mlijAzIliGMslYrqDHmZW6c6CB4osQhNPZu+mRrbTVBMt1pLjJjxrI5B87BLNTKbn4usYDlJ3OZ5L2yevdb2pe3JIOUlMXqSBbccFVBYOce6SnBpWRcWL+DhJWhhA3AuL6TUa00KGpK2x912lCgSGanOebNDW4f9S7tiTzTgZaLoXsWt7KASUFlqVyULKWDjXH+qH10PaGiHuzBLmgOLLg0TkCxO68e9sN/6rodcWKJ0sBuGAR8cQz9URy3rGF9cga57itobRM8uxsgGaVRbZHa4Mhd03bag3RbGKGjRuTY7CpsSM6/jdTFC2wFylfVXndXNgV7XWkEAqM5BoJWH21jWlmqC0dt5+mIu7Iw1p6A6EyBMKbSjSrSztNkgGwILiPjtlZbth1zc4hcLwm2ebnTwQCE7SG7DTiqWxFKAvllL24+xMfL+ZZDU00pxaXajbGxHXfMvJ+ff5lHZw8rIk/4yNDBa55uKYSzwf4mzZG27zSQXTQEbdrLIkwc6XxhipvhECaLZtAuJXSh0Hvo+0HnJfpvGhCyKFpBxDkoQlqPsN2E2uQWCy4qh5GJCkC57fd9zOOzZ7XbEzlNIrGnh+fgs0xPkPh8fn3Q8bF4UlwQvGjTKxigYe5oNi80C4fLZtesVXMz9tix92yAlBmlkYezGi0yzYpbttr+YApuJYuwIaziibDvDORdnCvWctUCtBA3amMv7ytzK9jOHuK1vp3ameHPoxUksFMFS9mbFJBpWxlEEwkctFWvvaax7uRfvJkJYOfsoyZyU2e8GYvBcXR047A90fS8JrtOJw03PMPSy3nyA4jkcrhiueq6ur3j15o6bu2t2+0HWf2lj4dXOl5zph55+twcy41m6gtr680DsO8iSaEvrIk7qs6tNJNZFkuAuJTk/vKd4X9/DHFXrEPv0+Mi8zhyfnqSJREriADpjpLVgiZWrbfVna9OdIrY5A17tSy6Cobx2zvJVd6ewzDPLeCalxPPDA+fzifPxWJ3gnJPitNZJVEpv1QYqPvabzJSteR8yXhnJMXZkH2qgAN1TL+2dNFvaLOrLv7bPfRFsMWfWlaKO+dbPcYrNSwMh+rBrca4Qo1y3fZcEnbyTlNumqtEDEpzyGsSpWMawchEJA1fNX/vMGvgyYWnbf5vyZF2VP3da17Oz/VCfbtBZbcqXQs9tL2sQ6iIc0tZZu4JqCXX8C6bFaa+t5cj6WlfUT9AublGZQTFGYhImmAWgrPwqhqC+hZSMppTxrpB8096tTCIvay7GxpoKNJtqOMm630pVR2MRv1gCdU4uzrWNL7o1tg272tM2WEvZTbk2aynNiS0WuKOtke2j7vMvr4uXT/25rbGdL2eNAAT7BSXT1LOcds5f+DB1SRlGVmzJixK46tw0UQrBUIIiRMcJwVHe3jdfYP7SPuaL+7XKCQsIU6/vEt2Lr7iR2KhL+V8ZIH384mCT1V+mXBjHmegLdBK8qBlFgaIEJ5HV3W6QD+m0brRoxsKEkzdfJWu03DLXJeFLYdcnuj7h/IwPTzgf2XWFoS9El9i5SPRwOPR0QyD2ki0zZ2yZF5kU73BFBA/P57M4KnNHFwPj6UiaZvK6EJxj6Dturvd88+tX7A97fByEIZXP/PjTdzw8fiKRyS6xrAuPx0dhNdXSJIfrAhRrvyiZaa/MnxC0FW+RTLq0/YR+GISV5b3S4pueTuw6hmHA5VXep3iG3Y7DcMV+f83V9Q3Dbk/sO0IUgXAfIk0Z2TJ1JuvWFvHWcZeWv8JqaYEiK5HctDB2ZvS4WIy2eO1nb5GAIhu26IGwZTaVIlnOXArjPIsI+DRLZ7VZMu6ljEz9xPv3PxG8Z3c48OrNW0IMkgldFlg8fp7AiaC9A66vbvjd3/ye3bBnGn9D8EI5v3+45/PnB25u33J3c2CeFj4myOeVt6/f8Ouvv+Zwtedv/8Pf8vrta3wUhk5BxdCRSLIPEnS4ff0KHwqPnwPHp/csM+S8Mo0nQgxcXe/ph4GhK1wfek6nE+OyCP0zz5ynUY6embqZm7GR76uusZRWYX19dMzzwul0ppSiGlWmEZCrgU4ls2oJw7KsIjpvbImN6TFHsGo7aVA0hEC6SnRdhys79s6xLDOf/vxHHh8+8+npnnmRzl/TvEAuTNO80SCTDgkhZnDS5af4gvd6CPsgNGnVHCilEGNWoKyAy5zpuk71mksTr68aI2b9s2VFzO6UalgppepZNTtph7kF+yTw4lwDWEnLDpyHYRAx1DV3hC7UwJI4k1KeEaKjP3uWORALpH4SsVAttZJDymvHF91TqQVPTTAybYLh0p4b2PTpymnVA8rX695syHr/AmDL5sBTe+UCOTupnClFA0s6XinXw1sCH5t3N9+WS8deqqscyRgX2vEx56IdHjPBZ9jJ+07rmVyK6GhcHSB6rvZ7go9MoaPMidQlvD/Q4hGFdRatl0kZfVE7M9o8y+8kmNx1PX3fyxpToOccUn5QCjmPzLOvZ1EpohuH0rMtGLg9rK1ds+nJ+eCJKvIrCMXW5xYca/ZX25e3Bb3RTyuQtcNhUZaflGiI5lnbEw7pFgYlJ7KC7FYQ2f5/kWHWvYYDggRM7br7LupZZQDF4bM6Uzhpz62OU1LtETMgDqqD3s6VzYgVgfPBzogCna3jIGXNJYsGTUmZlcJaSgVV9Z30H9UZy7kKRgcd16z3WcGjgWwXvgS6/w6PoDp2a8ocTyNDV+CusQ1KaZng4AOxE9F6OY9DC0plkSagiAWopRt5k83MGa/7+GpIHHarMC+7I84Hhm5l1yUChd5HovMi9jyIqDe+kJ2Umc3zpEHGgi+BZRo5Hp8owJD3xL5nGo9qtwp9PxBcz92rW371zVfs9ntiP1CYOZ0f+fOf/0g/DKSSWLPYSQuEWBAoBBiGjtJp99Ikmfwu9pvAkRiClIqW5XkRZO4HEqWytKNJN6gGJ0W/e9jt9txc3bDbH+h3A90w4LwThqQvhOK5BP0gGThXz6pUCkW7QJrzI2eQZvOhOpsheIKTQJS0Bm+2KOXEvMw1aGfOUvGlOjseKN5LOaDZ9Vz0fm7Y5cTxODVN0IKcx+PI/aePnIaB16/fSIKy79lf7aXsa1mkqQOOsxcJgeeHR7oYuTpc8Ztvf0Pf90zjmfP5BM7z9PTE+Tzy2/2e169uGMeeDz/s8cz8+te/5h/+7m+5uj7wd3//W16/uaW4QC5aTlIAHD56hn1P7Dw3r6S07/jUcTw/kFZhnE3jyNAP3NzeEUOgHwYOhwOPT0/89OmeZcmM48LzswbQvNgWKbvScnvdG8ssjV9KKXy4/4nsijSDmUT/0/V9ZQRa2ZCxC5dlYhqP0qGOpoO6ajLMmKc4VM8GYVnpusvc0PUdZV7hODJPE3/+07/w8HDP0+lR9r53zMvK6TQxjrME0VZjekOIHb0mBYpriYPY9YrZIt5LqWnpel0jyqgoyj5sHi46OO15FnSUq29rDE1wZIOXrtoZK7+vzCAvFS6SDEvNgdW/mwyL97DfR9VlFe3LeZZGQSkVnf+FKcLpJLInorvaCS41dqvuS6f7rpQiesJZHeligbpU7X5QDJRVO0/vtu3xuuXr6VmxYjZNQy1rtLPOMKMkPuz8NeZTC660YEaLwGwTo3YRdglSCUKtCGjJihXnPZ3OzzJLE4jYdRz2+3r5VmpmEjj7/Y7dIMHi5+cnlmVhnEbWddHAUao4M6tg96BNXbrYM/S9vLXo5+C802QfaKPtyri0jqpOx7cGnZpZbCQEZ5UU1fxVtmfRhVeDNYq3YgjaoTMI2xbbE7YRC0XP0xD8JSy2704Y74Zl2bz84nm6Surrlc4uCXnwXSB0rgabJOmgLNmClM+i35025CpUbScHWmmt++jCB7R1QW0OFhWJr8DikPM+FGEw56Jl+JlUqmKN6lnRMLyeXw7I3gvGUgxVKyQsOGzXiMMFK+3cjtC//vjFwSavpT1FB6cW+tSdaQNkz29Zyi01a8tc+mIU7aJLm9bgJWvpfSbGFe8Lux52PXgynZOSoRAaW8heXB0OoKRM8VK2k1bZEckJsymntR4sQSO+XRcZdj27XU92XpkqK9N4lsxDSaxFxGpFSFAdZzUi4u9JZD/XxaNZuQ2DyYQtYQtUXoB3pwKJobW7tHrVqBTz2HU1O2dtRiWbYg6pTUxrWb1dxhap3FJJ7bWmimDioXKLrYzJ1oUt4VLau5s/oxPL1vWQshtlc7igTpsEL53XA7+yIASET+PE6XwSTa6Sofh64InTqLTVLEyfLnY456SjxX7H9fU17uTJnz4xzwLsuhgpuRC1w9J+GLi7u+Xq+sDd3S23dzesuTCbLoutc82iEAJd3zHsdvT9UOfInHsRipSsQNf35DRIR0fjNqtxNMfewMBLFk/LNGTmSbo/LktiVqDUaae3GhgAdVSp3VikbruJo3+xA0ttBKeBCMgxsqwzOMghivFZV5bTmfHxiWU812tLWQ2cUeF1vzvncJts1JZhY9ko7wPZK3BRrQBhN2nnoHyZgauMG4oWzVyuvS9sYcEiIzUQ1zJ1an+cMQ7lBU7/XUFMfb4ym3CE6NWQZnJ2lX5r15y0Q0paV1bvRAci+AbQdH5rMMM1R8bWRctOFLTsexMQa3XetRTui9nVa1KbeGFnbP63ged6qFkGsNQgSUNPLw5nqHNax1Of40oRcGwnnX53RQMrWYLuoVgQTpmbEXJMUtKAOY7STtcYpSaorZuxWjtzzltZaFBmk1YE2HgWA+Mislozwbmwze7VcXHGtCjbW6+Boloe54wd0TLkX4z3RUnD5X7fBoeKrnY29rZ+enVoHVwET3lxhXbPxuaxOZW1bPpZPoqAZbb9YvNZtsXmbb6LDUyx+9re48VqsFMBR1ZmkyM4NswmhxVo2Mfnzetfruvten6ZobbLsIywXeJF8Gt7i//Gj9YyWrp9JZ/Vtuh86x0apKq6HLiL55Qia1PaINs+u7RNMlfyQ/AFFzLeZ0InGGroEkMn0gadduIxzUXnhcFUaAzNmunOjpzWymxa1wiKq2ADVJHg7rDbiUaPFyu9JkmOLOvKmuWrNp2x884DWfV2vJSi29qLlgRzzW42O6Tj5b00kdnYLO8aZsp1jzWbEGNUjQ1fwfgX2WybmI1DYFn7Kj+QwW2SJtXWcbn/BT44vT61xQnc2jTy6qPUj7WDqK5pYTaJDYixw+VW+r71mnOS0jvnHPM0MY+j/Lns5NzM1iHVATrf68riPV0XiTGw2w3s9gO7/V7YqWti1sTN0HeKpQSHHq6uefvuLVdXe65vr9hf7VhWGGdlKSIDLOvFQREM1Q8D0yjddUUzp1TWtHXf6vqOtPbErqtnU3VsyboWCyUINmxuElo2uZJLYlrGqhFnZf1bl7JupZzJTlk3ymxic267F8GmQjPJ5IRLnhyjOPPeEQuspbBMI9PzM6fHR+blXM/+nAVHbRsrWfMHwVDSMMJEpw0HVN9CIpQi6F9agq2UAtpsoJ4MNfCRNUDWLHWpFkn31xfG91JrxsoPnXOCjTdO6ksMJeQrccpJot0o82O6r+1jpDw+45J0MRatwbDR7ZPPNTwol9ZYRaUGnRSLIuNo2M72WEVNFuipB9n25jf+a9lcJPWlL1YPdc/+tZ8bMfnLg0jG3hp/uKq5dem96TlZJDGF+VEoXgqRFBJRExZ932sXOtWGVOmXutZK0aYSzc4EL0GdWNnhkgBAk6KWHE0VU1U4dREouhijZr4363iDTUobkcvh29h5s+9+M136nKL4VXw2JU1U/dHtLDnzXC/n7WJt1HfGvbDPzokPYxhKOrNTtS6t/NTwfvvP7q0ZeFdcw8mbe7mYaH0z79DSXWmPYF3NRXtW2OJ1/7bLoGzuvI1vwW98su3NXaCqaiO3a/iXAahfzmzyndJGA6UESnasKUubejKoYClrUcCbVKDW2AmedZ05zyfG8aRZFMk+DN1A9gmskwSBkiULGLpAiIHgHUOX8L6o3hMCKBKQJQq7pAVc4TSOLCkwjxOjKnYtzPglSJ16FcTzJBzZR3bDgRAS7m3gcLjl5ubAWjrOqwMWijvjZjidHunSwM3dHW9u35HSyvH8zLouRPdcs4teRber02oT5dAuAj2lZObzyDovDLvIsp7xobCPogdVaDXLQ99zdbjGl8wpdqw513pP50XHoRt6QheJXVQRchFhFMxjYNV9YezqtWGAxn42oObrwqu+Im3Rv1iO+r0B58u/tyxdM6Sl6hE45xkGCcYM/Y6+321KkQLn8czDwwM4x6vXrwCjgKupWNdqNDywzBPvf/qBx35gnme66Dnsd3z97iuWNfHu7Vuurw9457g57Elr4vb2hjevXxH7juFqYC1ZHB4ljATd5HbmOA/d0DGkHd1uwPc9Lq2kvDKPJ8YYeH5+YFpGjo+fOT4/Mo4j5+nMmmZubq+4ffWaeZn5+OmecRoVHOghYyAciYrn4ipjqBQqrdXhqtNt9illyR5P88j5dGSZRWg5p6T2XE3Rxm6YKF9BAgDee86nIyFE0s0tu7uMW1beJccdPd/lwKe1sGoGsDip0e66gb4btGVpxhMU1G0Cp9sDInhCJ0EFK51Iq3T5E2HztbKSjLFQO4MVpZrbvejhXUtbLbBlWiZFMh4lu3pQg5WCKnjUCTcas3WIq+NVZI31XSQGWGPQ7FvPro+iRxUcoRP20jB0DH1PDIGh63AgXQNTqQd12yU279rlR/dWgSr87ZwE4UvRzK1Onm+RgPrVAn/2pxbkNpahdcBsrMNSP6/oWqnHcbG9XurHJBOATBJELwXWLJpvXefodz191/Hu9TuuDlcVeELBeU8mEwikecE5T3SBMER8geVwIKVVRF+9Y5wmxtNYmQBD3+ODp++7TaMCLS1QXQGvgKCCdoyOriwmDZTaeF2O22aPqJE0iyo2WO2DM8DXQH1lcFJUskWuJXbWWVPZY2YvXwYBTUnMtRJqy0DX9WLr/SVotYDVZo+brx6CZ9hHQueJEWIndiZG+ZyyZpZFmGlFhctdgc45olNx1rzJNhrwt/83X0A+Vz9cHBPR+gkOMp61OIJu7ZwduURSFp3EdZUW152dJMUwxuXcGPAsuZCKKTiU7UX9n/oIsaPoGZcSmw6spkMhwQp5tGCPQxiCqUhzh/EsGIpc6FwkhIzvlM2X1JnD4TugQOw8XQQfCl2/4nwieGUWInoTIKzNaZlZk4ghB5dZppV51jK64hlDZk2F5KQrXCodpEgIV9zefiUZ9+xwGQ5XO3L2zEsGNwuIDnImO+Dq9or99YFlWXh4eGCZZ6YwEZx0hzW8ZNPonDRUseYGIQp7YjyfWZaFEB3zMuE89PuBXd+RyghlJeeFoe+4vrliPjvS9KhsKUvYSaCj3+0Ai9M4vOrxqLlH1rVno7JiXkT7qlNYxEE0e+EkMYKeJ6lImb/3wpTySClcNuZaTUJelj4VjCEgrMLsNMiRHSV7QujZ76/ICXbDQN91epniRI7nI48P91ynG66uDnhi3d/NXkASmivn85kff/yRvu9Z1oXXb+4QjdaA84Gv3rzlzas7KIWbw55lXnj95jVfffNO2NChkyCTYZnNEGlyX5oRdB1dvyN0IiBeyiosn/OJlBOhE4Ht4+MDx8dHzuOZXBJ9H3i7u+Orr94yzzM/fXgvXaGzuZClTowrEJ0ICofiydmStpqELSiT15KtsKwiujuOM+NZOsXZGF04hVtf1RjAGuTwIXAeJ2IXed1dcbW7ZZgT70rg4Hrel4XHtZCC+FghSiflYZBgrWgbJWFrxdiElF/oLzkfCFGwhaWzUloF85XMus563iWsi92q53bScksJyDQcb4F6tERSjJn8fV29SDLUEbHNI5PqlSktWM0wWbrAJa5AHx3Ze7zvCBFKzhwOPTlnoi/EkAnB0Q89u0EaA5idWBNqRxuO256Cok3oReNGf9sSKZtNa6/NRRpH1XPmxVljn1D0XpDAiwWzck7VdhsrORfDSbq/WuYDC6oUkI6Mpagmra0fuZS47zgcrlS/7BW73Y6aiFIfryC4J60Lzklw/rAbCB7WdS8JeGlTSk5JAs/zhHOw2w3KAO+q1lCtblF/0NhVFrSzNZ703mftiFk7yBYoKYl9odkXC5DSRp+SUbkbWvmy2tyamCsFH4XZackDwx+G69smpI2xBpu212B42IJifzVm8iJWKEE/6Z/ho6ffBULn8RHRRnZO1o9DMNSaFDdJQDsglTGhiE5orpUsLwAT23LxdjG1TDs4godYJJG7ZnCKV7PzEKNs15RZlSAUwdRdaV3KNQhbik2MBruz9p/YxAa2A2uahX9l2F4+fjmzyavgNpFSArl4CTatSYJQwVbIpiwuJ6klzYlSPMs613pxM1DBe4a+lw4hWvbiCJROAOQwRIbeE4Nj3yeiL5LAxQndPoG0hZauBIWMGyEs0hFi0S56LhVwCec2GjUS6yT7jmE40PWFYbgiZ6Q8i0haPM6tOJdhLpzOHX0aePf1V3z99Tes68Lw0DHPE2TrOOMIQTR6TPy20Swhdj1DP5BL4fT4yDJNDENkWUd8yMTuFYdDz7IGBSeZvpNgE2khxkhOS3WmnHeEXjI+Ub+cAiU04GUgNrHZOGowbLFsr7ExHEx/5GcofZvd+fJPtm79Jp5qmZiXAalCCzZ57+j7gWFJ9L0EK1avc+il40yhEDsRVTeqnznFltUyAbl1nnn/0w94Hzjs9+z3B2IM9N3XUBxv37zh+vrAfrfj3etXok3QBWIfyQWOS2bRYIAlfsyI2n3m4kSwtEiwKXQdfonacW7BR8fz82fi3PP58yceHu5Zl5XzLCy5N69e8e7d15zPI+N0Zl1n1iLrWeZXGWZF9gsJFbrP+OCEveUbA8VRmj6Atoqf5onxdGKeZrK1GN861Q1NY/Z6yStL1q5DytaKy8Lr2DPkwrsEAz1zCfzTmklWI4zDqRZG1/WwSAbbORHfl24sKkJra4NCcFJW4F0rh1qWRbsTZfI0SSMBLcN1Jas2AgiraKVlndrqvMwoNxBZcNoAvGBCEjVbAtWfyFqe5D1QxdpRBwiGTtrNphxIqwTLgt+Lk5gX1iQlXv3Q0/edBJtip+8hjsVWGajYJizUA9acn0JR2q0GmrT9b7I59KXSbOt8blhmlwft5aG7DTZdBqVsjbw4jS/O9FKd57Qm1lnWQspCI/ZeOhx23cC7r37F2zfvOB2febz/LI6ED5VNkZYV56TTTowDHseqrb2tXcE8L4znkXEcAXGqfPAMgwSdJMOuZSqVPbWSi5Q5kjNZnS87r5Z5YUnWZUduzrK127EzVhmW5XH2y6LApPLsFCwq0NoICvvgayKFJGco2YLz24ejwYNNByFXoKS2ZvgSDNsmKHWuNvvAOwVKkW4I+FAI0cr4ZA+kTGUool/irDmirs+1iNh7tMuyfeHBxJWtC5+B11Ko7K/gZT8mhQ5rFuC6ogzKBdYsZeYDLXljpR+t44+xHF3NstYgoDn5NTj611Dlv+0jaOkTWgoh8QQTUtXSVV8wjS5bO6AMjyKaJefzifF8hpTpnAjqh16Df2sirZngHNZZc9cHhl6CTcOwCHts40BZMHnNiUk7PSa34MmsswQcwTGnBWcBKrQJSY6QIyEeuL2R4E9AlmcInpw8SykUt1CcsBKWaSI4z9XhwNe/+hXTNEGB8/lMcKEmo2LnsW4+xsQMTuxI7Dr6YUfOmU/3HzmdTvjoWNYZH+DQ7bm6GphmCVqUvNIPHTfX15xc5vjoyUkZ4146UnYqY2CLWJxsX8dfRKtlUTXkpLa2btpNam2zzFozABmcYmwNV3Ch3WcsskbySu0mFF44HEXdyoy7JDVqg5UabMqFoR/oYoclgKEwnk48eWUUrq8lAJxzdXQvwE0InM9nfvjxB0KI7HY7Xr2+kyYBbiD4yLs3b3j76pa+7/lP/+FvpVQ5OGEWFZhmGGdaQJ4NhtI9WoIkzWI/EGIvnZTxut7P4mcoU//h4wceP30i5ZVSVrre8+ruFa9eveb4fOT56ZHxNKrjtdFy0XUpiWBYssdn0XYSMXAqFnXeV3bNmhLztDBOM+MowaaXLMLN5Fz8Q9jkoo8ZTid8CAzXb/Ds6FYJNiXXszDyh6T73QV86IjdwG7YsRsGSh6loiR4uiiBVhNHlksQjBr0ky2I6p3XdvZzvS9h2y8SnMkOWPWsFm2kUoQE4E1GQNe6xijUjmtAuAi/AETTtmIW9JzTkuWqaVZzf3auiD/WxQBIV9q+lz3ntRQ0rRPLdMJ7hJWj8iwtaS3zLMF6tZ11kSmjBUvAWnKOeo2Npaj/8wYhNXGE1Q62L7nlXP9kOdCsQWRLUFIsoSCfV3MJen2lNDtSShPOXtbMsmkaUoCrq2uurq4Y+oF3777i6nDNOI48H4+YDpbcdyYnqXaIIdLHKN0U09KaDZVC1hLpaRwlsT5IMHffD5XxaV16RfDbzlsNomFQSfUtS2GZVxYtm5NOqTrHJneh91276LVftXXitrhLv+Mr5grB0/Xa6Erfwbsm1m7lk9sgiUnBOMP7Fmiq39vXy8fPoQVvukydYKjYS/deH0oN2OBkPlNeRSvSC2MvFEcsgYBE2nMB56VpSv3M8lJKxX7ntTkXdfyy7r+kGC1lYTVRguqxJ5a8EmzdVizU/IDLPdOqaJxzONXetpe6GkX8mYH5Vx6/ONhkjxCCtN3VDWw1wLZpg/fkbUmbawdtzcaoM+g0KxqCF40J1QlxvgFDa6kYtMbdKNTCSrCyFc2MK563+uQi6VuZ0BpFNdoyJHVEsp14yGfbQq+tqkvBOe2apqK/8zwzjaOILm9KOZwzdf6o+gBmaJsj4b22NC7ttJUNnVh9qhsbfR8Rl4ZSW5luRb1VjN1rhyAt0WslGs3wK86xnd0m9UW26aW7AxuHvS7+8uL79id1f0pRSiBYZv3SF9oY743j0K6iBbnqxspNeNnavKLP87haK2/XnLOIVhevOjrLovMfa1nDuq4SqBQkohFzoDiCcyRnAU4qTboNhaugJqlmhXNBAn1aQmVzCUqRVurqPE2kdWUcz5xOR87nkWWele2SLlqoyt6hrqdq8Is4hb440Wkol8BXRwXvAjH2lOxIbhWNi1Io6lxfCC6a8SlynuI025dhWmaO00gqjmu0htt37LV8KfogxklLEoxVYkB7S2e+XHGbeftivehxoTX6IldiDn17jnUNK7bf9L2cgvvLQCd66LkvHPF6RTW46PEUclYAJpImAr5w4AKFjXByUYqrHqqoAGzQ4LOVTzpQBqK0hXVFqKx1DGycnAbFkbrs7Fy95wsq+ObWKijEUXw7tGrZTf2U+mH8tYeDtq/0etrh0z7cSmCE0eahOHIRwNj1vQYfOynXChLQ7/qOkAOZJOLDRYKJ2HltneuCCTVlBZbS3WebnTGad8141TUn7Bzr5HSRDbTD1gJJ+j/TXCh6j2aqbBhsHIuNhSKviyAeFsRtY+lV58EFnROzIfbvek6aM6Osti8C/W0KL1hXm0kzYFVy+6V8xMvEwebFxdg0/mKfBrWL4oS8oPK7Fsqp+2Y7lgbyXux75ySArqaW4GrCXDWhVBvHayZWicwKPev+raDIm7Xj4nPqMWtBge0W+D/hEbwIaMcg9iol6RDkNQNvnV19kP0kdsLkFtX266RKyQoEfF2jYrDluQ7VzIxRWJYqHOuLvQ8kZ+V8XnCJV80v5yhe1qqU7eg8V/CvHW+LfpzZNKi2Uzr1QHFSpmPn97quzPPCNE3VEdY3r3vXRG5Nk6omCvR39uW1lTzFsy4J760TsAZwgjRPsTIpuT7f9qLhKBMX1w0td6PsSBzZl40tbGAd19Z83c822T9rm9WQ6BrNOePypiRp6/ls1vf28fL0tLWwxYRbJqSV4FKU7Zzky5ogOKg6Z1ZiXzb/FsZLZl0DKUjGPHRWQihd0HxQ/RrF6MYI84qfLq9W17L9xmmwY5lrW3s7z9O61k5MXnH/uorupLDAE6euo+sCp/Moyam0UjayGhaMMaxpHTjNhzCdGgPpW5RbMXaIxK4HpMmHaf2UbHov1WVTDIXIAWhAIa9yDs3LynlZ6FKmc54+dOxcpC9SaRG9r2L9F+tK14LsqdwkQ2TyvxzfUk+wZh8VQ61FuyXb2Yb4LkG7PhpTXhLzudpUs/EWlKz2oBSqkP32nKxB1kx2HufyZr9RE2vyeR6JRvn2WsT+lxi0rDi0Sgv1MYTVEr4op7bSXPsuv5NrMw0v+xybr4sRLIL9nDP/tv3ZbdaTveJiqzsbfxsDHZfNurKzcutaeQ3QDqGn37VgRAF2w47a1Tl41VmMlQ2Z2WIPZUVufcQg5IOsup0+BPpeAnchRrz52TFU6QFoflTrHr7xFWg2q3Zfr/iw4czG6LpYoV+u17rG/MVfDSs7xX62Bi7c2C8Qvs3RBnuUVhlQjImfX4CBihcuf/Xlw+7Skl2X91Gg7i8jAATVwW2soIbLL/DlBqNtMc5WY7ZiORQneyd+ia7XbEkKn+vZLXJAL9Zf3bNuM67ND3GytS/WtW6CeiF/BZ1ePH5xsMnw6m438ObVnbTxWxLzmsh5ISoDptfAyDJ3rdNAF+i6wLQIjS0XodWREOpw3wshqmigaHNgm7hj8MIGEDDgqyZO1+fqaFjwyGUFrSHi95IpWkzUbeMoueIhi3pE9qiRzfJl9ZYKymTDOKZuJq1w/+kzxUWdmKRBi4IrEhwzuuPpdOb5+XmzoAt9X0irXMWaHIWOZXEcjzPzXDifFnb7BYrn5vqOvt/xQ/yOdT1TykwMHjRzH4PU0A59z27YEfpQGSM5m4EtmPC317H9wsHixeaqeKhsFvqXW+7SgSgXvxNMpvxEizYXceSKlZkUsabGtkmrivNmuQAfAt7q7gusywoFxrNE5B1O6O9dT1YhXwn8CKNHShbkYM5FMsMhdlwdrgmqRfTw/MCcFq7vrnF9pIRCLOK2dAHNBEsW34w/ReKYXRSB0s/rxOn5mXleiHFP7gVULPNKt2QckeA6SnYs08r5PHF//5lpGjkeT3z89IllWfl4/5lpnDcHWStpMn+0UFiTUqBFJxDnHDs/SBZURYPBqNSRofPc3UpAU0rppCRtXVcFb6tmtbIIYGYtay2+lqWUUrh/embFce0j79wNV1dXvJpHfuV2jCUxDjvWQ0+363V9Bla/4pLM/7Ku+JxFHNmELlAjq0a+lKLZ9EaPBk8XpePNMs/MqQgjKMmlOtf0eIymXbDDsO3Ri2CU8xDcFwe1bQbpwCGOSXF+U7KW8QGigkinpR1Z6arVZhiQ0/Kk/TDQ99FcfgriCPoYBOz6VQ+/dqDXTJRqmNm1utK0KJwrSKJRBrBpwFm5h1HB9T6TBVuKjlM7pKs2nwVK6tyo42N2QgMFcpuJ4BwuSLbp+uYVNzdvkO6ZA86LiP+8THRdpB8CPiaGfcS7OymRTIs6QTPTqswtJ9wzEQsWSr0EYzNd1/Hm9WtpWV5Sved27aUyupZlVbCU6jqwhIQ5vmbvgiYnimaPhHGb6zhUZ15Gvp0nRfRAfFZnxekJpvbWI4KuotsWZPzC1kkMwkozDZakTgwvGRFqaXPZlCWY3W1rtzqnxf7XHGQ21y0JFNmHXgHSqqVzKSnb1Dn2u54+Rg59L4DUta9aZqRBUZwC9MpiUGertISC00CCM5+6QEdmQPRRXOdJxbG6IsyYnJmXlVQyERi8Fx1gZS4FH2qrchOqruP1AgnZvPw8W/ff8KFH4dD33N3eiGOUF6bpTE4HuiAi+rsh4n0hp5kYZfT6HvoBwkky0qmWu4idClGcyBSlHEZ0tZyKascqpBoHxVCbs9pK73zsWFIiFQedsE/x4DtNyiiGakEMCf6REqlkXCgyJ5rmz8WpMqmrjKBlWTmfRtY18+njp+r0ztOsAq+O2Pd479jtBkLwHJ9PPD0d5azvCjFEwlJYFrkHT8++73Cl4/lppJ8St7cZciCGgZvrO2KIfOh+JGfROuxiwNPVlt2SyQ+1PKP6mxtSgzf7WplNggn1mRV0uy/226VDKe9bKNqxzOy8zQegZW3NSf4iOLxxBrbvCygzWHWotJuslBiJQzPPK86P7PaTNLFw2pVvUDb2UjQwL7bBuZWcRYzY8EPXdYQbaZAxTic+PXxiN+8Y9j1OHeEuRIqDPjiSF9yUtveg1+28lJKcpyMPD/dM45G+6wgOUlbxeB/ouo7YCZ4/n0em6cyn+5+Y55H7+4HdbseyJD4/PjHOS3WyKcL4yyXXWSmlsGoHulQ8a1nw3tMPg+CIDSAJIeB6dcReme5r0kRi68QoCUI7tzV4iscarqxjppB44Mx37jMHPH/nOt7s73haFl6XjrU4Dv1Av9/VCoXtzEuDDWX59n1jNm0Wgb3CmPGlSDLeF1flO6SjpAYRUqFkJ6Wk3U7XZ2ryBLoJUk4t4GC6WBgucAZX65HjFL/LPeQaaDI/LHjo6qKVpFTOmdXJe1vZWxcDLh5wzjF0AzHEGvRwFOnCWJp2X86XAZHtv+3nVStyjMULbAJVLUHjQ8DjSa4ASc/dRKoWoG1CW1s1yVXnQ/1RJ0lKq+azv1tJnSXQvA8cru64vnklAbhiCZREKatUZvRSvuUUX+VcWNZZ2duyb0spGpiRZkZ79qScmaeZdZ7Z7fa8e/dOBdtbybYFMUXfbBH7PKuERcXJcibbPKRVdFWDBYlzpuRV8YmWBVuQvhRJYuiabbZLsYyvyFYCkhrYiE46lndq20oRrGLJfO+CrsjU1qDhpbW0+8zmW1hpX9tfTgOmF7JMF26vGfl2RoidlCCp07N1WcRvWU0Ly0mH+13X0XUWwCyaIPPV3pRiAV6a/bLLUHxm69g6hTsgauykB5LzZBXQT8WxAnOSuZoTJIqU8nn5rKD3HLSRgXMi+J6MLad+7zbaWq2SZdV/weMXB5vsEIwhsBt60poYtT2nRMXlWrx3BCxrVKdH/2HZtJbxdciAqh7wRvhWgGAMAgS8Ew0ibxFXu0FnToZE36oeV6G2IZSzea2byZk3oAEMMdQmed4c4Go8S6GgmypJQGrSrnbGWLCzSWhukrmU2tepdi+wMfTeFicKViSava4Z75QNkwRJd10vzqWHXFZKSS3D7Dc0c10o3kQuMZBUqvNTdLxl3Wxv8q/N+SWI2a6Dlz+3TEfbvC3TU39RgVvN3uns2SGAOXPukr1lwa6cConWUl6ywgJOyV4zoWrEc5FOAwp2nQpgdnpMOKcdYOZZAk9pVd2WFmDzuhZTVto6Ta3BuaLUTcmSLctMWpM62R3gKrPJ0boPWKZ2niRglnNh1taj0zgyaxmRgaKtQLrZHivNsW4NzmkHwzrWOo4aNAs+0nUDwQtrYXVBja5m6ZCoeMkZ561rh3U2y9VRWtbE8zTiQ0/ZeSkJDR1XBLyD5AM5RlwIjdFYjZMGUmxtlC9ZG6V6h6WtEwwM6OHtNSCABS1l3zk9wIqztVbq2roAHht00AIGbmuo6hoUmwYFr1kxOwDsnqxTlCe5DYMjb9e/CVRvyqDM1HhhTeGQlsVaAmQZue2166gooGrApo6Qc7Uc0O6jli35Qi6tvp1iYRm7mAaMNoOjh3YLNrfPa+Ui9m8TvO37gavra4LviHGH96K1Vk5FyyMBl6S8uJcuOmUBVkdBAjbyWQW0nbiVIq+urYV+6ImxMU4L2rWvNGBhc56SdR40ZhMXYyvja+DGRqLUJIsOwxf20CkQqueER+bAXyrV2Voz1gquMUWwOdE5dM5tRIK3WbPLD79k72zPrp85/Dd2dXtNssdydZqrjU0akFM7GYJXbTJf1/1FsObl94truNzfl0Fd2WNKKpWsHBAV9BbvWXRdmeClt03u2rhtS73b+FV3oA3BZqx/3pH/t3vYfYfg6Yeu2gprpW64R9aIiZ7qavRtP9h5YPvSOobKgGRc9tI10DWGUNTGISFYyXW7ruRzdX4kCCtsb2MSOa0rEQFm2QQSlG7YqOjaM/aYjH4ri5D7l0RSSgm/JsVQYz0T65lbM/dRGY1Ouy85ghedIxGxNnwQiEGYEWlNrC5UrOOVRbZ2vdowYU7WBiovmE11HelZYyUK9eGa3a/zysu1tl3v9WUXP8vekx+aDuHFYqm2d7t2tp9Z6ihf+kPWfao2W6nXLG9nHc6SfcXUOmPqOjR7ZrgjJXA5sxhTWeezaMfCcRpFtkCTfKHIqSBzAEYNTxvdHBvGojp367owz1ItIJ2jAikV7fAqQe9gbCd1hEWW48SyTkzzmTUVpmURjRIvSTdJNi+qB6MB8SJBWwtYSHJBk0R1jOX/jRkiTJCcMskrsz4lFlxNDJTa+UwSpt4VgtOATZZk1bImTusijDzfs3eRne/YEVgQdriPceNobm3Yxlk2W7rZzBXHlLZm5Cl2bkrwy85z8yPlb4Go5f05OWEjlgJ5U0Zeu3Zt/DjntNGHLXLqFqg22fsL364yU+2JvjncwTu2W8q55usEvzl/7KM259AXzvlmjKy7rlxXvjwqnVz/NvDRzjhUJL7IQeW24uINLYhtKJvlbZiybJ7fmLx1bmwrOFe1THf7PTc3t4K/1Z+Z5zPjdKz2yXsRVu9yr7g2SbJT2Xo21nLGavdLl1i917MgsNtJKbIk+tZ266VU38USdVahU+/7BX4qNv5OGJIvA8tfGMPNY2sfL/W3XR1b066rulG2Qze20bm2NraPl1iv+gOlBfTre1wIv2/ml7oqLv5a99FmvxmGarfcsF+NjbxgBv0cvnx5D/b+NmiG5Z13uCzspqBnX/EeVxzJ4ivZWRgO5yxZvmExui+/7HMv/Iw6IM429L9+4fr45WV0GhzZ7wYO+4FlXrgv4jDntHB8egIH03JiTQuf7z/z/v1PlCxZ6OADp+nEw/M90yjlQtFLFslFr7PouTi0HUqdtEIW2/R1ewq95MW9Zz00TO+AGshQkUJbTLXMrJDNiCrHzAFRKdUSzRaAEmNP3w/cXN/w9u1brRWVz12WzDKrhoykeBmGjqurfRXfyznT95Guiwrge0IMWk6QRUD3qzd89dU7zvPI4/GBjHQROx2fScssgaYuMAw9u34nNfJ6ABPAKSq3Wl/Rh1CXRcfugtnkvtyc9thuzJdiZaW05wB189vvXHWUNieaPiqgsZ8RsHd1fcXVzS3nceTp6QnvAg8PD/xw/EGFrUUo8Pj8zIf37xl2O+7uXqlz6xuwdtpSvpiWTK7R2pRMaHFUhnNhPlxxe30lmdjrPYN1ZnJBy3ictuumOmbzMvHp05Fpmvnuuz/zw/fvcTihpHrP6RGmaWLQ7IAcAEGNvhctgHlhXhKn00QumXGaVaSYOkDm9G0fF4EIZYGltBDOQQ2H35yjUmqaFhNSl/p2adHZUYA+9xhFs1xkhRTWmqhjjNB1XLnAEG8IfuD6fM2v9zecy0rpe5YgAvV2UNUAjfNi3HOpnVl8kG43lwbf1UOjFG9bvN17yqyxI5RM9BaYsK1cKNpd0oRWizPdoazgWzMI6thqZVxd49X50H/nGlCXjLEAnCZAUYGOa+9Tim2QVm/u4Auh7todA+rnJaBkCSp7BcsWOBFRTNu/GRNAbytEmSNQDzXvRQA650K2VtBF/ldcqbpPFgCpe7koDVtZVa6Ypp7WmbsNmASw0jUSaxpZ08x5PJIzjOOZ4+mk3TpGnp4Hrva3vLp7h8MxL8qkSUnmDMuM6XyvFuy38tlcxzKlpjW1Zgkq1ffSsbsAM66xNGuQG7RsQYFSaiBjc7bDC0up4Yo6XhWT68lsgDN6OWpjEJZuQQTJhe1jGhIWUHQVJJodR/eiJSkE/F0yrmxdOf46amnBWwHXOQnL1nsoWRicy5JYl6IaBApUrbQYYaGmDDkKoKmOxcvP0oioBF5d3V8tkO02C7cQSqGnSNMOMgknrYJDkHa+a9Lfw4rsteClXa8321I2c2sOeSm1HNg2i63XLwU4/+0eWefusN+ziz0piR5NSjPzdOL56ZFSMo/Pj4zzxNPDA58+fKSUwm43EGPH4+NnPn78KEmKUrQlteiziF3QWCeiyWMBTivdLdga2TqgygitjonQ7SuFF8NOsi9TsqATG/uljnpp+AksWKWaR8j8H/Z7ht2eV7d33L1+1dY6bLp9GT7JDLueq+uDrB8nmdxuCOx3gwaTRGtESkAifd/x9u0r3r19Q3go3D8Ii3peRk7nJ/Ka6IeIK5Fh6Om1aUMukqF3QfFmMXu9cShw6vtZSYPaCd/G0x7NbteTGO8bg8JSQ80h3JZ9advxja3agv/aWKW0Ug0Qe311daDvO07HI+9/+IFpHDkdj3y+P4n99p6UE09PT3z48IFhGLi+uWa/34MGLkMMpOQrU0fYo+DcorYo8fB4Tzx3ZFdIvnB1uOL6+oaCiBJH3V/ByVr0aClodSALT0/P/PDhA9M48dMPP/Jw/4Bzheg9rotMU2GeZwbtfijncsvAz5OIdk/Tgg+jnDVzIuVyscYt2WCONAVtkqK2cpE5mJdZArdycGK2Us5uKKlU3CqJXmENmhNez3Vj729YNqviK+mo19Pj2C2BXfbczie+2l0xe2HuFduPtm6cSGU4XO1wnEJgtUCYsrHcxhh7bfVeL6kUZbcVYtez2+2xpE7dr06Sj+syazBO9mApGZ9LxcsSPGqOa8lW6tm0ZpxDWd9QSqprve873cuanEPXMGiHUpkj61S79WcNQ1mXTFsTTSfKAu9cMLyLvqedPajIdcVjSEK42p1ayu90LB0RYWWVXLSKJlcTaftwMwPmelYM0M5ptaqGEbZ7X4/mZZk4nh6hoGWhWfSV5pEuRvrBsSxHuv7AfndLLtKIYV0WGWvFTrKEsgZnZ/V/jOlte1s6UVrSo+GqhOmV1qBbkfdr49Tskdg3IYUkxN+hlLaON+bxIunUwPv2Ce2fOqbeWZdvRIs5w7qk6qPY6y1wkl2uJXOmMFU/t1z6q1vbupm++v/2e0sCNECZM7hUtMRXsNy6CGYVIfEg/qNhKFdIecWXUEuPZe1fPrbY9AKnimHTETOMI2evL8IWFM2mpGW5RexDLsLs1ShgwDQBJfjrHBefZzPSArY2HgXDqvhQmWj/o8cvZzatchHXN1dc314xjSPTeKTklZwWnh+fKGRO0zNrmvn48QM//fi9ZqTkMS0Tx/GZtC7M01QF7Iyt5L1ovbTOT81JoCDCyDX4IUDGWiC2JxXpjpc3+j/qQAtwN2AvM+I2G9wcupJlAqgUSytnENHjvt9xd3vH1199pdFK7SSThFWzrisPz49ySO46cHtSyozjyLqu9H1kGKQM7vbVHfv9TmqB1kTfd3zzzTu+/uYbHo+PLGViTTNrmjken3BFgi0+dgzDwH63Zxj6ahxcciriuQk2pVL/rXUHF5vdnFxzQ14+LGBgEU4wW9Deo27cwuXvLFCyAVzVaDlq1wLLflxf33D3+g3TNPP8dCL6HrLjL3/6nmleCKklQXyQNp7WGncYBm5vbsShK54ShRaepplSShU/XLx0ZAteuhOmZWa6uub25paSCp7CYb8nBth1nk5p9cWAhy6ZT+eZj+8/cDyd+NMf/8Cf//Q9tze3fPub3xFD4B6YplFbtFuAwxOjUGVXze4uS2Kek67drYNUPdY65ttsaFvfMt/ns41wM1xbjSDrkChMOAMpodbyiy6CiDk7pYRajb8Bi7nAVGBXHLsS8cVzM574m6tbTmnhsXc8RnX+cq7ZRBMaXNXhWsMqTngR56C1BS/VFsCXEXYQpy1GcUhCPwgbpZjQbSGvk9alJ9JqhlJE87yOsbMOEDRGjjnD24CTDG/TRzGKvRwgUe2FUuedY9VAkAEX2QWbHE8NMJh30OICPhglXg9vpxo01eZpmUmUF6wbgFDXh3P1em2ftOBZIWcLNjlW27/e9rNksHWXYkjPuobU7KyuMZuri+yll+zusp7JuXA6njUDPXE8nfHeMc2fGYbIr371LV999ZU4u88iQpmyCdlmKcOpGmcSQLKAc07bgGiuZRKrjkcNxphzYdbHnDf9soCqBeVCiOJgKQMufREErdNa36+uTUOQm7/bc4KXfWYNI3IpZGUzGjvP5kDe0mPBegO45tDI55mAo12Dq4mSAi07VzYwruGlul4EKKkOWnHkBPOUmadM13sGEy/2olHmUA0VV0jOVybSVh/QxqMoI1LjvDoWvjrc7XAXoBQQGngucoY7HMmJnkROmdWLo78WVL0QuhCqsGbJzXbaDZqQKcUAqZYWW4D0F8Gk/2MeWTHU1eHA9WHPNI18//1fWJaJcTry9NCRcuLTwyfO45nPn+55/8OPpGxtqz3jdOLx6VHK6HJmv9+39eXU8juvzVzsxNLPL6jD25wih9dSFwW9DkDLqLYOgdo5+27sYc0h6PNsgZlz4VXc2oHuKe89h8MVh8MVr1+/5u27d+0cciLwvSwza1o5HZ9Z1oXdvieXg+zzJZFToRsih+sdMUT2u4OUXamobd93fP3VG7766i25zMqUSMzziePpgehFBDeGyG430Pe9rLEs9sMXTwkaPFA7nTdOYk2hlbxZU76yjg2Tl1w2gam2Tw03WZbZPGnnHG7jKOcKVNujMVJytV3JcIKugZvraw6HPafTie/+/BfOpzMlZ97/tGpnRynFopgGa8+6LuSc6Pqeq5trQgisaatRKg7qsohjOs+OeR7xwTOnhSktXF/fcHv3GlTk/bDb4SjEKBn3SJPjEEjl+HB65l/+8R85Hk88PxwZjyO73cCr2zu8lzmZxlECI5g+j6wXnGOaZk6nsyQItKw4v3AkwX5WRzrpZJpMhtuaRpsTNXho23dlU3S+q/vNqgg61UltQTCPd3Gzp9Q+6Y5cSmEqhSHDbsrsl8LdfOZX+2tGVzjGjrnuxZb4CqFpWGXXkmEhBGlKUysaFENhLKB2JDltRtF1PSiro+8CVn5mSZ3ZwbpYSb6VSykO8RpAdU3DrxRjkhmGap8r61YxlJeSTe9bmW8u0sgmZymhFmFpaBw62Aa1bW8k7eDqg8ebbMRmDKq/sgnYmuMR9X2XVfaEK0XV1W1v0c61GujyeF8gFxyJXFzVWmuM8o12j9lYff3GRarjYgEqK+czEzGvI+UoOOd0OrIuC8uyqkxHIHSJcTrw+tU77u7uAM/zswSUQA91LEDhWda1auOtqyXr8mYspTzW8NQlA6itQ6wJkPki9TyQRG7wKmdRMusqa9ht1nLdj3aeOAf+RRjCfJ9t9EV9Au9F4N5w3rq0hDiK6aPuR1JhVRv+cx0FKwu6lBasVNR1ET4pl7ak/dxwh8UVSpaf11mIJ3Hw9H0khsZWxomvLqzHoAmUssFD248qF3MiOHUTs6jBM1lVQcfKkjsOSAECUQLU61qDTdaZLrq2X7dnju1gY3s2rSfaut7GaP4Hj18cbJrOIzjHbicMCMnKHTkeHwSYr3Jz5/mZNS08Pz5yPp02teiwpJllmsVByhbk8DX71a56uyjbRs122lfjbdv2JYpu173Vs7iMpLbF1hCZ/btUkUNztpwGwozSGaLoUIG0E5XMj6dkL1TitLLtQiQlVx6QMpKcV1IuzNMZSAQnXX5ylq5903zmfDry8PCZp6dH5nFUsJfB5Too7mfGrHlC+k+3+fHFwrDbt787BZvNNriLxdSi25vh3mzGcuHdUDcBoPWwlw873J0TAFLyyjydWJeVGB2Hfc/11YFXd7eM08SaJlKSLNc6S5ZtPJ85Dz05rfRRjJ0ZplI21Nos7aMtICbgaVFNAM/j4wOFQtd5bm6upGzEgdMyKMvcWHvV83nk8/0Dx9OJnLK0tY8CqQxcGvgwgw7QSh23xkqzBTr+baC2DmYb62roN86VOHhoVU/RuZKuZeDad82iOOcJuQWVjNnhtdTOAI68xgyxE2cGNVSImG8XA50v0g7UC6ho9Oks9dS54DVg4rZrY2v867r70g20tWeBAYp2HdSopS8OSqa4QK2J1jJA0xiBgvelGm6n6ney9pVx8eUnV0eh3teG1VS2O0jH6dIAaxmKHdzVTJUqON8o1+1m5dLs4Nts5M142DW0CFAbvApekDmRs121pyzQ3m4RV4QFIY5kufibjkJ9jYWmvdU/1XsW5ssyKbBZFg2KpToG67LiyFJGOp21tAf6vmNZF5ZR9PJyWshpJhUh1kqVoZXDlQsTU8e1UMf5i0A47XC+BB5tj10+r5WlVsBoe1ZBq63HOi4vprF6qJv3NbZApTYUoJiGgbyHCPO2YJkBvovAYmlrwqnYrgHsLxMD1HspmzEr0qleEiWrMQDrgfji3NwsXtfux9aqaSRtz+W23t0m8Hk51vV3BQ1qaxCYIrpQ3uGKJ3kvzniWcklQ59XW/+XNykXqcWRBfNtnF7GRf6fHMkmn2tRJqdG6LpxOzzw9PWJixSknHp8eGKeR0/OzlllnKX1wThIXGnCFlihq51M1Cno+bEyDBjlUXeLFYjVo+uXjIohXdBRNkEuPMZm/y7Fv7E8nMTBgW7YWg6frxIGep3N1fERzJFUcVZByddPFk8/JrGmhlIybYF2E6R3jAQhM05nn50eOz488PX3m6fmBeZ4u9vwlkLn8usQ0+t32/MVvt8Db/t2YO+0J23Eumznh4n2w128coaJ4oGGvjf2y65WJAudY15lxzMzzSN9Hrq+vmKaR29tb6aSmz885M00zJWfO5zOxi/TrKgLBVbdIp3lbnqRXnUumJFjmifNRNLWeHh9ElN0Xbq52pBAoxbCFA21XL1qvidPxxNPjE6fTmZJL7dYqwQ1dOspiKrlIkoEthpL11Tplbcd6O8alBQUs8Wrr2UyezXEpFL95h4JWVHjwBY8n+4z3ImRONpmPQE6KFb2WeWrSWvZIkGSQLQsHwTmilyqKGAPRSSc4p8Etpz6SD4FQ1Afa+C/2Rrbu7ECys9qYQxVv2XO9JfnluowdJOXqScc3YQxwMBao6H/Z2djszqUOTU1eVyzagmMWjDIkUffM9qvuozaZNQlb1339w0UAYRscufD5NmO3PcYENrnW+p2GpyouU5hT9DNMtsPK3ev+LxpA0w9pQf32sS3wpH/3TrUefVtra2JFuzCn9RL3lMIyi98yTRPLMlW/1ALHiwaWctKug8qUzJRWuWB2hBemu0WTLuyg7Y/6tQnitLsrF29Tx7n67O7iveqaZTPv9oT84vzKmjzK9tmX68cwr4nIJ1O2vlwtL+7nwszpL1+CuHYf5t/WBKG65DkVsitkbxjq8kMqd9DWSQOUL9Zl8y+343bxcIalNj5A9c5cJXB4xJ/0CKtKtKm9sNFVOsVu99Kx19s3HMkWS2/+RoOEvwRK/eJg0/d//A7nHGl9Sxwcj4+f+ed//i+8f/8DndvRuZ1sgrSQSmJd5nq4qxt9CURzIcb+wqBI9qhlbDZj2xzyQm3DLuOTLrRqnG1v5yipVP0dowZumQvGqNoGYEqwz2ysjuCl917X74ixk4zY0HF11XMej/z0w184nY412IRz+ChBhjUtrHnBORj2EefEGIzzE3nM3N9/T0orN1fXvHv9hmXo+eGnyNP4wI8//MB/+d/+N56fHvnx+z/DPAug95oNV4BKKRpACLTRtG4Pel8VxBs6bA536y7U8FHDrA2g+83irpuvGpSyebF+xOb9trir2aZSXxcDZA+n0z0fP/1ZSgQ6x6++vuXq0EmwaRz545/+hY8f35Nz5vT0BDjWeeLh03thNt3d0nU9t3evubm5w3vJ3DnnmZcZFglU5ZwoLnF8Xjkenwgxcv/4mX7o+du//Vu8KwzDjtvrawGxIWq5IsyzZF7/9Mfv+H/83/8XzuPEV+/e8Xe/+704k8vEqtno6+s7hmHHNE9kCqlAHHbEfocPEecihZWs9dIWeHVqAEqBVFIVNL4Yu82BsP1yFUgX8ub3lQ2lekI4i5LL4Wmf7b2UtQmdPorIbC+lsK7vod8xOM+u9NwQidFRrg5QVoZdphsKse8JfUfoIkEtbMmFuKYNIMz1Hlwp9cBs8HmDAuuSkwBT10XMyrlCAzgGRByQVIyySItpCzJ506Qi131Qsm9OhY5vXZ6ow+t8Bb5gNu3STlVdKTPgAo1lXSj7psDFgdKsdgNdlsUkIYCm+NYBJZuz0jQs6uh4R3Fit4w8YkvFuSyaSQ5cVoHP0g7irPfV6vQ3m9a2uNbKe9Ok8tvuLzIf4/HI6fmZUoSFUvQAjUGyRtN5ZDwXuviRYfgDu2HH69ff8OrVGx4+R46PR6Yx8fD+E6eHR8KuZ/f6Ghe9At0Ny2rrMJgd2oBSmUrbC9Z9JNdSPBN1NWcGXxDh+UVfpyWndU7l7BJZJicliDpn1j3Ixl0c5wzFK9XYk6Yi1ECZIaRQzJItXro5+sCcZpY06jw0tprdYTY9AF3X24lqDrW7AHzVSUyFlYJPDkfAB0dZCnmx0iFZV5TCumYoTmwQDlzEB+nSWbOBBQHqRTLFOa/VeXGYY9gy9NC055yTvSsZbmPdSBmNF8QELigbeSdM6bQyLxO+iJMWlMkT8mW4xMLaBbREUG2jnne6E/n3enz+/hEcpNcjiTOPD5/5r//1f+XDTz8x9Hv2wxWlFMZ5FlbJukqmuhRlX7QyOBCn10ebA7NJ8v9SpGynoUNZF6thpSACvQCpSAq6BtFdc/Sydi6rDl2R+Qzdrs5xPeu3oKDacxXDV0Aa+0Gd0szQO26uIs/PT/zxX/4bT09P7PdX7PdXZArjOpFyJnhP14e6H1OCNU88Psv+mE4n1nnh7du3/P53vyOXjj/84Yk//gl++OE7/t//5f/F8/MTnz69h5Kk/GIVyYGURQfTIr9NAano8SMOoPZ+lbG2NaSvcE4ShbVseeMgGDDH5sV6vzvFmIDRW73tfyCHIPqjWYNqOu9OPB22JYtqEaREohSen554fron58zNTc/Nze/55uEdX331NeN54vvvv+P+/p6SCo+fH3DOcTqf2H3oGXY7bl/d0XUd1ze3XF1d4byn7weccyyaPChF7L0j83j/wOdPD/R9z+npkcPhit/9/nfg/jN917EbhEXWddLEJqfC+4/3PB9P/OEPf+S//f/+iWVe+Nu/+z2/+vU3rPPC+SiJaucC+/0NXbdjnha1hZ6uPxDjhPc9znVQhK0u9sbXshAJehSWVCrz07Z8adPc7KRR2FyuAac1S1Cz1BdR51/OYMNNqsspFwGulSQ6J/qrPgRcjLiuxxXPvnTcuMBDH+ivdyRX6Pc7yjDQ94N0cO17CJHQmW9k5TT2me17W2sWEHYVNwjbSfZxCBF66r1kp+X2nWh/SlDXSZWElpyFqEHAlFhXTy1LtHFRvLP1jy0oHkxvFwtoOQ2uN8aTr3ZH5sJbgrAgTNcizXiS8loljqBnXKbZrYrDhEHMxj+s02cIyjntBlxAA2hyZMvsVgauMlJKzhACSc/3oo1vnJNOwlk7jVkzDAtgmVfWEo6GocATKEHwbEqZkgrrtFyWgBXpwNqFDgo8Phx5fjqRVuiGjr7v2R9ecfPqjoePD/zlpwfmceJ8emIaz3S7jv3tNS54UtGYa8qawLP17xTvGgLPFUdlxXu10YpKYRTFicJSkmRAcmtNiJQi5ZB1LVZTWAEbLmgbIx8IQbFyylU+pF6aVtg0P8gRfASt3rCAtiWEU5oppI2Mqa3NDSgCSnG12qnFfPT+65zp+lE8nTOkRXzWglQ2lZApS2rXph00pZNqwfSZnYuiZ+oEu1jZqHRipna3d14aLbQgrOyHUBNM1LJCrwk5sgTxhbGk+91LN8ecCy53rD5AXqWhGdppWINSvlykzuv+ajayXHR8z0lYfs1J+OuPXxxsOj4+471jPF+xLDPTdObh4ROfPv6EzxGfxBFfy3ohLGrLxYyd85dtwMtFpKcFmZrj4OrP5qBtuQSFvF03VCOrJ4UFmbbvuy37qPW87eUvDLarQMCHqKVIJmDpcGROpycenx7IOZCTCq8dDoQYtT52xTnRVRB68syyTqzryvHpgXkaIa/cXu9xLvN8emRh4eOn9/z4/V94fnri9Pyk1IRCcYmSm2aALe4auNNhqwEkNcJfjlN7ntvc//bfF/+s72OQts1bm8aLD5HXbn9VXj5N14okjViWkaenj4Dj5uoVw2FPCIEu7jiPI58/f+Dp8TPLsjCdBQScWFmmyDT0QJZ6+H7HYX8FUSnPIUi21K1yvQj4SArqcXCezvgYuL294fj8TEqJrpP6+b6ToCPAvCzM88rT45GffvzAOE589fYdtze3zPPE8fgk1FwvYslSmpNAs4ohigigNxZNAaMq+tLm0YBSMrp32ewNM9abYJJRU9WlhCKdibJ2lbL2xdmAlwVl7JDWgErwtsaDtsr27PIgP7siukUuEEh0OFan7bWLI8SE91kDwhKcqQvMKZPHrvWF0bd16kAYaLo+LuMyTbC4Zir1dRag8d6TvTAgnArZGt2zCYCabflSMLouT7M31dBvAtSbjE69C2dZPqPlNvvlnCO5Vk632To1ICTft4wUnR+1WfaDZfhaVrG9mWUUbTzbuEIpvoIwyzYaaK7X4qWM1IJTL8fdMofZbT9rU+qXC2ldmKZF/hYCTdtK7mVRGvd4PvP8/EBKC2/ffsP+sNOSj0BaHOPTyNPHR4abPeHQEUrX3EFdR5QWLKtztomwNObS5X6pLIpNOepl0LZpX7EZx+3n1CMKNgLV9rzN51omcfOd6qRYqbb82zsJ6q4uI+K2tg6383yB1Tb7o1yY3+2+aYuiVEcRBCxUBGWI3aBx0YCZp46JdMzb3ufl+xcVa69lHE7DPVs7sx3UCkBL/UwA27XBi9B1dtTOQLkUkpZsZCdXHeo7tv/Xf1W0xOWjUJnP/x6P6TQD0O2hmwun8cj9/Qc+fPiBLuwYwh6ANas2mmvZdHOXnDeh1+1Ybp5AS+rVgLaAL3GA7Jyx/bHdPdqlxc4ee9Qsch0qrwkJr1V7avNAg472ZFdLuywBKMEnuWDvoY8OysrT4yc+ffrEzc1ruRQHU15JZIauo4u92ifBE6sG4tK68PTwmfF8ph8C6/oNzmXO45l5mfjp/Q+8f/8Dx+Mz0zTWexXmzCY5wYuyw82eu4QslsyhYiUrB/Lwwga4i9c1QyL/dmzt+vbcRwJRXscxbd+lbfr6bztqNPE6jUc+f36Pc443b37N4XBLF3uc6zmfzjw8PPD48ERKC9MsZTc5r0xjYJgm8CJP0HU9+/1eNJdCK2FpC0OuZ54mxnHS0rbMbr/j5vbA8fQtaz9QiuoQFehDz5oSp+OZh4dnPn9+4uH+UfCSg6vrA+fTieOTMP+ckw5q3gfV0VspRRJiFY9bx67qMLqqB+Scq057ZTRtbMIFtjA7ke3cledndeCsQ9/W7joHluJtlRJO2o/puEXV8Ex5Jz+XHmnUHYgEegKdd/guSGmNdt8OQXCr94HgfI0KVEF519ZQs3c2BnqfrjGbtthCWP+XYpgmIl1clrENiYLgucaiLSQHpQRMk0fGImOh04orq23V+dDkRNBMQ3JtRdd9oGu/nhUg7G7tmFVca1xhz687q9Qb3+wnw32G0WzdUvGS32Am8w/b6WF7U//uNxiqgDVwwCPXmK2EkWa89Z0ucFmhCqbb/peE8lqTYesqCeiW4FQCQYF5Ut9nf+Z0fiaXPTe3bzgcDhwfTqxzZjqvnJ5OjKcnhnVPvx8IdHWJWxKwlHYNL61dPThf4KKsUjd5aw+qXc1tL+m6uWTotFPH3ttsnwl/p7J5D+Q8yKUFNbbniVVlmI6bCujhWDf7uyWjNy5su4ovfq/4zTAcF7ej0gt6XiSbzyJ+S8WLMp4t4a83gpVNmq5uO6eLYi7pKCsBqu1ZcsFidnUkNFlHO4Np2k7BWUBJAqu+OFiFqemQxlcN+b2wI/az3rztm7KJNZT0c+Dqy8cvDjYZRXVZZ8Z1ZE4TpUinoK6L7AZpmanNtVuNMaKVs6pYa8pb4yJ3cQn2L39nA+0cF4EhAwlO1191zh1gE1lM+6XgtG15jKK7JJTRWB2mLd3Srs02+JbKOq8LuRT+8pc/c5oeWJaRx4d7pnlkHBPjqFkfhS45KWvFgXU/OZ9OPD89SaRWyWzPD88cPz/ivGdKC3NKnI9nPn+8Jy2JGGDoDuSyksqoAr1NA2Q7nmZMixnjDeZslhbM+d8MdHtsNox9eXNMHW0DqQaNLED9VBvDsnmvulNhy1Yx1lRRYY+0rMxn0dxZzqNSiTtc3NHFwm9/+ytev7nj+Hzkw/uPLMvMPI+sywwZzqeReVrw7iPTuND1Pdc3N9JiXo0SNJ2e8/nE09OTaB/o2u1ix2635/r6mt//ze959eo1ZV8Y4iCgPUsk/O7VK/7n/+n/wjTPDEPP4/Nn5nHk6fEzOWWuDwfubr8SMcaDZBVOpxOnMRNCpO8HhmFgXmbdS17E9EOs3WRSzpTziXltOlxbT3MbYKqaGphDW77ohGgLwiL5xjt03iEaZrkGEtY14VU407rN+PBE6HrOOL7LEVc8x2ni4XxidPDoIiuedVlZk9bD2/rcAHtvTCHvG7gvcgIbZiibtXphymxN4mrHlA0+qAKR8r7GArQDUwFYaT8752qZR32UlkGs63RzaFqwo9opA0qmXWOZUL36bXDA9lXbXxcfjAXH22foCFSA0DJOL428vcb2meA2vbbi2oEMFRRsxXuDZ9MJzS5WTlhzYg20bllRdp2FojX7Kvxp9lVvIVPqITVNC/f3D5xOE1eHnwTIZMe3v/2GdUnsfMf1/o7kM6tbSWvW08+xrCun41mcH6e2rkg2ShyEVq5WtENdtpr1UiqzaRtsMpHxi3nfngd6D2bPLmj61eGQJ23HGOco61qdA+pbtFJP080Jmh2PIdB3vQKPtV6n6VTIZ9d8KRffLgBTW1x1P1nQNxdSQunpqL5CgQ3YN4HftvZeLuStaW9BWzkvWncvWyNb0da2B3T8VDvOAiWuSOAzBqF890HOoESA0kHJrBlcyUR9n1qcrNcjTuImYK1Oj7gh5d+T2CStm4GcVsZpZp7PBAdDiAx9z34Q/aUMUJwwyIInYx22pKwl22ZqB30FgiVTxXbrQ9fdthOmg8aWMwPkWiClFoBoko3qkECIHSE2TZrKylSgvXGr6nMM+xQKT8+PjNMR/jDz8PgT5/HM8fhIzguPj594fnxiLZnjNLHkRBc8nerjTdNMUrHccTyDsgcchXkcOT494XDc33/meDyyrAvn8STnpot00c4buRevGjLBbzHU9lF46Z2oNbzYdiVninfqQG6C6zT7a2u82ZMXn1dkvW7tiiVmN5Iwsm51TzaGf2MfpHVlOo+UkvmYfuAx3lNcJMaew3XH7373LW/fvuZ0OvLp40fVg5lY00JeE6fnI1OcoMA4jnR9x9X1NTHGmqA1e0CB8Tzy+fNnnHMcT8+ETnDWfn/gcHXFr3/1G25v7vAuMneqGdQPXB0yv/rVN/xP//P/lXmZcd7xp7/8ibyszCf5/DtlV3Vdx+5wwDvPeB5FZLvr2e12zLPoeY3TiPeeYRjoYqymT2yoSnqYsdqck/Uce4GrLDDbgq0SZJDjXcWhjSW+wb2CdSQqmpN0mXY4xmnGOdGUiTGQiucvaYAS+G4+8+P4yBw9bt7j1l5Em9fEGpI0k3ihp1Ixua6XnLMGQjZ2dWN7t+u7ahvZ2oXKCMELDnWOmohtgQbFlTmJT5VaIMoEya22pjgbNxubl871JYapOGVzzZU1bUnB7Xlb99flfdb5s3NtYwxbQJGL59fpV4Mqib5LHVv3wo4GEHyuLnvFUCXo2SI4UO5YzxzDnThhUesdFIRVsmWt1CBYc7pU+FkxYsqczyMfP9wz7E50nSQrut7x9//x96zTyk/fX/P542f06BFtpixBkXVZRe8spXYe16Yz2ghEGUZrMvyRGk7ShleGiwuGoVDfVs8Pp9Pz4lxq7OuW5MPcAOc0sSSJclecssOLLWzFJ/IVQ6Qfel0rDoqj6xLDsKvB4tb4KLc5foGft48tsjObXzZ/KAWZE+0zoL+Q66vBIOoerZ+5wSPbroTli0vZBDn1vJHhzjUesvUjvHdktc8ZOY9dEdZVhyjHpqj+j/OKo4SQYMz0WD+5fW7FyNu4iO23zTn4P3r88mDTKtT4eZk4z0fGRQ4z7xxD33G721enDScdF3rNahzPZ+ZlZllWzirWXOurMSPGxsHaDHeN4mkEupT6GtvPoDQyvE5swLmAEFFkkp3qJ8WuY9jtKuvCe1cpj0ADA5uAiGQYPCXDNC+MZebhn9+T/ulEjJ7DVSQEx+eHE/efjyzLyuPziWVZa7Cp3V/h+Hzk4fNnvHO8uXvFYb8nBEcXPeu68i9/+hPvP33g5nDL129+zTDs+Prrt7x+fceaJk6jdBxwSHvgWNvMUw/RUgq8ZI5hALOBnbbdzOzRnKKNw7E9SGV+Uj2Qm0Bbo/dKnYRQPzefrvOnlEpcBU3m3Kd5Zno+sSwz5/MTyzxxdXvHm2++oesH/uE//o7d/pb7j/f8y3//I6fjiQ8//cjn+0+kNXOaj2TgdByJ3SeGYeDVmzf0fc/N7S03t7d1Y4KAqY8fP7IsC8/nE+u6Mp5HxnHk1d0r+tBLxiY7rg7yWhOCf/f2K97+394wzzP/9Z/+G999/xfG84nHjx9xwNs3/5Fvf/ctzgd86GogYJpnYowMux375SBguGSCZhSHfiDGSNd10rFuWaq4ec0kXByqBoosIJVV8wUVJt+ApQLWGUpeuzbw6qyEz9aIZvZKZk2zGv0CuXBV4M0C5wzPHu6DYwmex3DD4nYs88yyLCwhEIhVY8kO3xACUbvWVdruFkz46tNvAi7tYe+XXxAbndNugMGrcG2iFKGGF7U5ph2WU6EkBUK+va9X2rh1M9s6BXkDLreZF8FJ4mCDOvGb+7kESs2uWXnR1iaWzR6upWz1fXI9NLf7iovPsUsqdmGVlWfrQzK+8hlrNtquA+0MKtenujibQ7nNR6kgfbu+iitYd6xcBNRktX1S+mZ2x3E+T5zHka7r6LvINB356t2v+If/8J8JvuN694qPdw88nj7z3cc/sswTPoALME8Tnz8Lw7Efevqhw4KQQO06ac5X0e41L4NNWwC+LMvFz1vb1xz6VlZ84Sy+OLO267mUQpllrILSvc0GFyfC8LYXjFUYY8cwyLitSbQbRNhz1vltTkXVJahLZQvg2/8vlostqbWI2GyRMgDnwEdXg8DBSwlpQc+vl4HI+n6bPaGPlyWnFGrZhIHF6jA4E2hH50cYqMFlgukLREfCMftI1pKGdZpZc2ZARV+dqyynUtDmERsW3/Ycy82h/Pd4dK5TB/TI6Xxkmp+JDvZdx36/41pLlnxdA4HYR3LJPB6PUl63ZmENlkLR9c0GpOdcWrBJnU1zTB3g1A5sz40WUBXHCcRGoljKBwP3XjGHdNNqAWedey1jvAygy3sHZXXnsvL58Z5SEj9++COw4L1gSO88Tw/3PDwcmZeF+6cj07IoWpC1ZZpV5/OZ4/Mz3nvevXnN1eHAX7JoiS7Lwp//9D2fPn3m3bt3/P0//Ef2+x27Q6TfBdUYXSjFSoeiBs8aiJbH1tVsvypsMZTaPyf4cNvRz22+fwnU3aXTIiOoYt+SlfYKwnzwtctiKRIozup8Ou9wISD6k3I+LFqGti4znz9+JKfM7au3fP3r39L1A19/9Xd03Z5PHz/yL//4z5xOJz59fM/D4wN5WXlepLP06XgUvDwMvHrzmn4YuLm+5vrmBkAbKRRN/L0n5UQqUuI0nkfSmri7e0UfB7puABeIvbD8h2FPDD1XV1d88+tvGKeR/+V//X/yT//9H+l8YB939LHj+te/4rff/kbxidzn6XTieOwZhoHD1RVJy2rLc8a5wOGwZzfssMTIuq6M0wQsGOCtji3tHGNjN4UFaP+umwkLPGazZbmwrvJejd3qcFF+znmpdkYwVCKWQl8y5+L4pxR5zJ73PvMnn8h95G665rDsSIsk63wQRlnKWbtfh+oP1Y65GqRs2kpo46QX+F/vyeRESpEmGBddgyn0GrBb1kXPCkvMSDdwCzwlknRN9Gw+K9dxpSBanZvPy+lSf2h7eFZsXiBpuZbgU9o8bZ4re2WLz5oMS8Mo27PY5v6lk6yJqi1O0+e3z0HOF/UbSeCT3pM6otIBVAkOzpHKlomt76Xv75ytQdfEl0PAl0LxnhjlWlLesLlK0RiW3OPx+cQ4j/S9dNXErbx99RX/6R/+M64E/un/+4ofdu85z0c+nd5Lcj4lliSd5D/ff2ZdVw6HAzsV9Ldgk7Cr5Pw0NvoWQxkOrUlj51S8vp0rFmipwaZyqatm9rMlPnPFn3VmdA14jLHEBm/Leul6afYA0uTGCjdknBLrstQufNbt1Koafu7Rfm1YT/9twcMNtgN1fX27N68NYUzDy2/0uIrpa8IXR8xlUKedzSVvPpN2TFnSXbRxBecXEXejqL8mXecKwUGJDh89awhkVyBn0mxYwNFfolrBUDo3WwmibXD3r43hy8cvDjbF2NXggyyMhPeSdYlBgJHV7wM1ep+LshjMEGPA1EZ6+28bwGYULSL/cnJfeHnQ5gg7FByyEAvU3j6mIdAGyya2Cf5Wilr9CAP2zeidTmdOp3tCdMxTT4iex8cTz49nlnXl+fkkLStzqqAwq9bH+XhiOp9xznPuTzX6GIN0sjufjkynkX3c450IaQ69ZHGWBZa1IxcFpdtbNgdGF7AsXBmrdrheDPXLkQR3KS5bn3Pxu61js3G+zSF1rlL5Xj7M1prBqONavZ+LD9VDbmVdZg30rFAyIXiurg4E7xlPJ9KyMK8Lx/EkIKBIVmYNgXmaoBSmaaKfJrz3dJ2Ay3VtHVdy7byycD6d6WPP+XTkfDox9APLPIsIZNW7SQKw8so0j5zOR5ZxIqUVB6xpZVlngo84F6qz49WpDNoGfRvMsw0t3c6sLKw50VRgtJlX+OK7zY0tYwMizhUIEpiVQ1i/U7iIa9Qp0aCH7b+UISfWDOe1cMxwCp6zc6xey9/0qxQBba7SqEpbF+ag6nu7LG1ClbIHZeuw2I00gG+ZFHStNdti92rMiqqMrV9QVP+ogSs2DsImw10voDEhnPW03whxVzN2sWW+NMLur+ytLxyan3kNFvAwwFs3cx2udg0vrmV7fGyd7W2G3cZT2GKlPldzcBdb85LR89fvoAZpsBKbliNySHmDlWWM48T5fGKczqzrAsHhA8QhEpYWtJC9bYGkFx1GxNADFnC1LjryvWW2ysUN/RyjYZsx2gZMXo6lPeqeNDv28i1f7K1qn3UP1Cm7mB+Pc7lqB3pfkLK7lk20N99mg3/mZr60rfKH+vpmxwXYZIqIltrFK6AuFjN+GXCrx6N7cW3bc9n2fBsQ+8yXZ5JZqPr5TkqMC+aIOxXsdZQkbCAZlbb42/9LG1d+fr7/PR7SybKwQAW+wUvCqFO8ZDpHEqBR1nKhngENmjQnqt1re8hztuNa6tKUHy1wymZ9NIwD2zk2vQ0JNpn9KWbD5clbBPzXTVoxpkliPJ8Yx0dCCBz2O4L3PD0eeXo4sqwrx+OReVkN1VBy0TbgiWmUhJCc/2c8TgJN68K6rEzjKCK5KRNDkIB23zMMkZJWlpLbWtjatnozbRRluLZO6M/cVhZxWAsKyXhthoYX/67neBvLLyZQv1/sJRq+ct7BRSLwy5eTS9WgW5dJprrf412mi4Gr6wMheKbpLEzklBiXSfTTspTee++ZJ9Ff7TsNNKKYXKUIhEGdSEW73c0T59OJvus5n04yRy6w3x8EC6lOVimJdZ1Zlol5nBjPZ0rsGVxH0W7B67JIENb0yQwnKUayMjWnY77t3Ca4ppXptD1zuX/qfFxM8HZeVI9PB9Z7iBQxOtEgT64BKn1LwUAm5aHjlYus/6U4zgmes+dMYXHN4bYzys61mhD3Hl++XJPyb7cx9f6vYI3Ls207nu25Ws4UwOcsQeLcfIuivkcpjuLbWbpVzHM2vi7gfGM2UWWJzaeqq/ri+srPbbIv7qGdxj+HSeyt3c8JPsOLz7DrKRsI9QX3UD9Lnm/BlEwbS4Fqbf87OegvIZnhwGrJf+5DaHjvi+vcrLFcWOYVcIzjyPl8YjqMrGWVpEtwhC7iNChmIvumVfkyGVpowabWsKFpeP580vTyjK+jd4Gh7C+Xc3bxKr0+u80a1HDtNV/4obqHLfi2nZstvhedVvn3di1/uT8M+15iNbeZs8vZ3J4RGwxVyqa03dW9bFUEFxjxC+yzxZ2OL9fA5XlhmGp7HtsR7Ll8eFfwZcO2cl41mKwSQT5qG6b+Agv/78RPvzjY9Pb11wL4+sw0j6zrwr7rud1fcb0/cH211wmRqHaIkdB5icaHAkuisJLLulm0vFi4bZLb79sit4iqMBFMVFEno9ZABtEJUAe/CpNtAmGpIMK7KYNr2QINT7VIubXbzIU1r7JNgkStv//+e/77P/1/KDnjtWhuTVnEvYq28twcFubMyyIskMTofpzO3HvRpggmVLes3O72vL294dtffcX11RW//vbXvHv3lvN04uPnwLIu7PudrsXSNnzd1Brdd8LgSEkPrVbuXRdRpv1sNM7tRrS5sEyolXaY4cq5Hd51k6qqbnHlZxdthXUvOtR57+n6DucLlD29dqu5//QB7z3H5xN9v2e3v+Z3v/8W7wK/+c2vOR3PPD498sc//YnzODKOZ+Z5JC0zTw/38trjM5/vPxFV/DLGyOl00navSFAoetZ54fPHe5Zx5k//8gem45mvvv4K76RbStdLm+WHpwf+8t13HE8n/ts//iPfff8dXQjsO+mo8vH9D6zTid3+wOs33yhIKxwOV+Q1sd/tWeeFvt9J+ZwXEU356hiGXjKvMYrmQWplP3XdF2ptvOmTifFR/oiKZVbj7xwxyGfZezvnZMwmKUs6j/K9mEPhJDONK2RWcsosFH50cPSF2Rem4Cle3BLRUixsW6va/g6uMdosj76sBngM9HgV2G/XbNH7tsCLOmShAm6j2cqaks4pXYkVEFe6eI3Uu6bPwAubr+CtHm7OAqhZWZLyGdss2saT+1nffnv4NUr81nDbPMn2KcW0FbbXZOUSvgZbDPNSJEBQWvzsi4cFM3GOuAEYJN3BXvektULd2OJ2GRcnnR50LTvVbDuttNMObhWL9E67Jk0Lzi/8+NMHHh+fOJ1nQgz0/UCeI/4Q8GtGZTmYppF5GUXgl0ZpT6lQyORVrkFKQ5QBkht4t8EU/Z+fAxvtUN0GfylFxMC3961jYQBttTKGCsBMRwxSret3OH2f7ER22HmP18xSF4WZl4sGlzaNKrxbSKnglFGQSmOSyCMr0JUg/cX6sn2HgeHL9SEZZ/mbZbkdEKJkZ9dF9nbCkYOuD++MwCrv4UQTwMSStw6FORDW5CPpZ9i6kDFsayt4T8CrMclNswhH9o7YdcL6yplcnJRWpaRZvHaGmxPqvQaetwv53/lx+/qGQuFxfeZ5OrOuM/vdnnBTGHZ7dlcDzqlIO43pJXszK3ZKlKKp21yazJY5N86Ccu0mjaGZS6ldIU3jAqeioM4CwQakFVPhcJWJp2c6ruqJYK9w6qA6anDKjENBHfGsQeDiWZPjX/7wHf/83/8rzsGu6wnesS6JNEsn39m6J9UzjbqHrew+4/g4/8S9VzFhLeXZdZGv37zim3ev+fbX77i6vuLq9sDusGMaRx7uP5HWlRjjBRPYbqiojTdmQtazV/62dap1/5WkbdAz1oJbWCYOitusX9TZZONMtu8XCYBgCVDt9LW5wCyteyvuTfoaEH2OvuvwDnrvyKmjLBMfv/8jPgSur18x7K7o+z3/8A+/B+f59OlXPD4+83x84vsfvmecJFi3rDPLPPHp40e89zw9PrHb74khsN/t8d4zjefqZAWVrZjPE59+eM/0fOaPN684P514++4tnkTXdXV1vv/wgX/653/meDzyxz/8iYf3H7naH7h625Od59P7n1jGE8Nuz6s3XxG7DoB+GNjNA/v9nrQuoo0Zg8gTdMrywJxT3zSn8qqdLDcO4ybQtDnB7bgSPwIJbnX9gNd7H3Y7HJ6gNUpPT888P4te52k8qr/iMGHg4DvwAdaVtcBI4QdfeHSJ0cOoLkrKmbyuFOvkjfg+y7qK3pHiv5Kzlr6B6StKklK6Z0eEmWiO5MX6qs4sKpBte1ifZ5UJ1tU5Z5Z1IaWkSVL5/OSD2BeonZ7rKi2F4EzjyhzyrAyQTCiOgnUe/JJlYkEKQV0tOWjNEGrToU0wwm3svl2Oq6NoAYRS5Rfky6psfNuXbcB4+WgliI4QHb4Y61jOX7tfV1rS3b2IL8i/crWNFbtvx6FsxqwIo9G6iJp24bKuzMvCFBZ++O4HHh8/8/T0TPEQY8/zvMAOER3PEowfx4lxnsgp130BKF7K5FUkcqyLsLirm/uqARy/GXe5p+3PrRmIkj5K0cY0uh4cDZMVYbwtiguCkgGCfkaBi2Shc1pxoeW39n7OeUIcVDIlELtOmHXOkVNk1TUsWKlpOFX/qK5TC3y181DW4yZBgwXR2mvMF861jNDho2CmlBKrh9V3mhyr6R47whUnbWIb5XK/2nqFVqEgOJv6O3u+yYkUJwnkjGpN6XmfYydxlVTIxbGWwpwFQ0WcSBP49j5bm/G/hw/+i4NNh8O1GL1wZk3nmjHadT1D3zH0sjhy1iEMXunXIDosRq3MdXM322IDKj9d+DLFwHNRoCWL3WXqoreshc4WAopUoFg7a/kgE2hUwBZlbKUNLfpugan22UUZF6b18/j0xF/+8j15WUjLLNoBXgGCXkKzLLIgbIKiDwzafWBaRNHfsjHOOboQ2XUdh93A3c0VNzc3vL675dXdHf0YGZcj8zKrBkRpI7i1iwrghQ5M3aSVXljauBUz5Bocsjt/Ccq3QadLx1Kd7drH/TL6vfE52jxtftoyaiyjSwnQRbKHcZk5n44ALHMixp63XwVev7qlH/ZcXd8wjQsfP37k/vMjzgVyWlnmUQUzz4AIe5/PZ+ms4sWhneellm+axkheE+fTCVfg4f6eznv6PnA8vmZNA9f+QAg90/jM+48/8fT8zIePP/Hp00cOux3Dq1cU7zgdn0nLxNX1LfuDOBq4SB9Fb6CLXSuD3Ijcbb8k+x103bV5LJhY4OXB1CZPx3ezpm0vDP2OrusJITL0O3WonyhFDpwREQ0tG6dFAhQFfGMRPLsiz3SQ1BDtHHS2/nTfmLPgHFUXwNhOsm7bZ1jAqfiNo2iCf9toqt6zs5aLNWC0yajYeznLsllHKrSe2aHtWSq+sECJGBjZ68U+uygzK18ygy4HvVSbVU9Jm43NgfFlkMPuTV1qZ+WF7rJbZskIKDIBaSsNLHX/vHxXoH7mFowZrd2cmfaCUrWeXG5j8/OPzeFcD9ufGY/Nr8UZFc2LZRXg//x8EqZCDHz89J7dsGM33NF1B4illjmu68o0TfVzDNBYKa+AIwFK67rQQEMbYctI1uADXNirl8GmFvC83GMSIJF7s8/IFHzrmy3183kTcNdSVmhMwouMoX1uZdi1Llc5F7wLElQ1lsl2rp1FfnJziDfroYGpl2vP5rDdl3ye3FdxDml+ATmAtf1tb7yZW+cJ4a+tbXuarNXatKNqyrXn1LJw0wEEPBlfPMGcWlfEedN2w0kPtlwBv+leGEts41yaE/BzEdl/o8fusKOUzNPJsY7C0OlixA87KQXtxZE2rZGWNbY51a5ppe2pok7Nxfm6mQ/L/NqZbQm7SNxkN/WrHvrV05I15WIF12Yj0zZrhY5z8IontvNtzEhzpCAXT86O+/tH/vCHv+AoDDFKV0GaEymNGl3LBqNi3BijXgIbx7NiqBCIg5Tj7ftByr6u9tzeHLi+vuL67obd1Z7zqWM6n1jmRfdnvhCKL3U/NMxkrJRSXtgKNg6untG+liRtdO64PKLlMLd30N841WHTNWuO0NZuu83ntn3lKV5tjNrzGAJYxzpfmJeJ0+kR29jLPPL6zde8efua2MlYXV2fuP98z+PTo1xDTixLISexuQWYFylJ69SJ62JkXdaLsXDOkZaV8/MRcuHh4z3BBbroeffVK0rua6XD8fjA99//meenZx7uPzEeT3ROAhg5JU6nI8sycnV9w+H6tq63GCOh64j6Zdh5ywq3R1Z8XYe95IvrNVy+Pbcv58upFELUjtSRq+tbrq+v8T4QQ68YJLKsGTdPMI0iaLyxa15xWHaFTGIt8OQKoxMMtTgR880aSL5gvmYVY9ZAE15bKJRS7UNzfD2+QPZy36ViikvH9ZI9cbEyLVdMZeYoicA5h8TqMsVLwjwrrqrd/jYPS8hVP85KTUs7hwvuZ51Xs2U2gpJk9dqd93IP/tzDzkOn/zcfyeBI0VKjXJNIQjZob/gSy9DGyzlhiPiiezZfjK8FluS6qXBwe83V07rwo5q8TP3o0s5H58w+yrsJsymBKzw+PjPOJ1zw3Dzc0ncDZR0oMVJCY9St68IyS1duv8FAxhZPqyQ1mj6TEjTs8ytGaYLlF2OkI/kSQ1kiTJ7U/JaiwcqtnmMoNsySwCo5swlTyVpEykcp4lf4xXR5O8AakYW6XrzzleXYhLfbvF6SIC7lZi7X1PZO7aFYvRIv5NzOWZjXBV8TLbaXLh+N51bx6c98juEyw9WNALIZ2s06fHF1BMVeBWmylHMh+UDxyJxTKE6OXvMn/CbOYu/1vwdD/eJg024/AHDyI+s6k/NC9J6+6xT4tZtqzs9ltDanJDpGOWNdeGxgcZu6VSTTlKsxuHwf+wxhwUinihA8ELUNelIjJ8aqLn7xLCnVbdAt70wVoCm6VwtBE+sN3qmTXri+uebNuzvWeWE+nchpbVkFB85LlHvNjpR8wxWuBZu8cwSfa9Ag6+Tu+oEudrx5dc3VIXLYB25vO96+GRhOK+OyZ5oD6wjrLLTAl0sXvT8Bb5tD4CXgsV+Xok2JysXzzAHavnRLC86bRXfxuQaULfbm3GbT6kDoXJpORaAoLbrDUSgp4kqmj5FUpNthCJ7gIE0j9+9/pOt7cpbDqo+Fb3/zK6Z55tOnT3x++MyyzByPzyJ0WFkQidPpxDTPTFr2tmWwFLTbzbqoAPnM09MzP/zwo4CcKDXbHz594i9//DPn85nz0wmXCgFHHzthQIVI9AFSZnx+Yp1nhv0N/a5X5koW8eJa5oNE6oFcJINtZX4A3snYmKPhQIW9JZtaI4k1C+qq4LgPga4b8N7TdwMxdsTQsd9f4UNgd3XFzTyxrgvPz88siwirHk9Hcl6Zl5PWa2fNchRWH8RH0b3ri+n1BLou0vXStrdlE7br9Oe8VVtzVICFc8rgKFL+57Ydumyvbl6r/69MCTblYSgNXrN2VccJWJPsv3VNtZnBqoHzoIEZD3ROQeOmU5tTFGPbQHwOKdUrijZqVsIsj3tJ+y4XNoeXe6oGGe33ejTVp5q3uQVG9lJZL8UV0QTSVvPRSg1ybg6hOuqiZZdVb2GtgSSx6ZZUcFW4s9lyqiCzgUSva8RMic9I50Iv15BLJq2JkjLH5zMfP9zTdz3DMNF1e07HE+N4Zllm7Ugi2dgh9oDTwJJeY01mmLaSU5akORc2Ng0MmaMi5RgtiwNFM5apjh9ls8ZezEkpBV+ctIP1VBvonZUbbC5gs+pLzqRlofhECgFHy5C5+kTVJoiRlBM5eXJS59YbuDAwkilFdRXKxUfSAOPlGtEV3JabOdbqCAgrRVqIj0uhhEIMhRBKPVnNeSs2vl7PH2PL5iIZZeSapaOk2jrdAu166sEt/yzgC6Lf5DyRLEwrJ6KYLnhKcqQs7CtrZp91j1hJnsNJK3JojS3493l0u0gpGT9CXlaysgRc1wmg1slqcFWu2MoYSs6sy8o8z+rMKLJxOsb1fmVPL0k6G60bUde06ve0si5i12LXafA5qM4WahOSzod1YZHPkwDXxv5CbYdcNv83e3bhhjgRcI4xcnt7zdu3d5CzdvSSvRJszrUbW8qgHdTR/q0iCNtHeY3NtvNIEsZz2O8Z+o672wP7oWc39NzdHrh7c8PTo+P5cdByTMGJ9cRUSPjydLrAUC8eNXiqdrBq4iWHtY7+wr3Y2O1L519ZE8VsSjtfLh41OLixJ5o0DcETYmxjr0HN3IumiWTMM+N45MNP3xFix5oksHXYd3z77a+Z55n7+3seHj6zLCvHk5z/3kPJK+tSOJ2OBO8lEJVlD3u9ppwyi2pTLsvEMk88Pj7wlz99hw9eKwASP/70nvff/8g4jqR5Yegiu75jNwg7KQRZ3yklTsejsC/wgq9iEImFdSanBVRyYZonSSSo/VuVYRRCxOPxvZ17Rc8uayvRGiB4c/icY7e/Zhh2dH3P1bUw4nd70bjxXthOznnC0LG/vmJZFm6fXjHPE6fjkePzkyY/z1VWI6ujkTTBlnJmySJREGKgHwQ7hRhr92KnHY6tqkNsrCSl2lkTLjtd1WCXJfyMKd0wif3b8IS8TNaVBXorTqfgfMQHWedTyqxZNWm1e2rOucopGBvQghTgterEiZUuBRCdTGupUov3VVbBURAWnzIHafcEbVsW3Tf157L9++Xv233az//KKaAfZ/vckj/eO2L0ineCOvzqX2q0yWfB9cK8Lhef14ICUt7UTnz7twUfqNUJBWETSz7e4VOTilmXRCHz/Hji44+fiF2PTwMuSwXHNI0syyw+aBf1vPa6R6T8uLGsNgNrNkPNjR3Ltj+s3FsqJTrBUKXFAkwfs+HUIjmTDYbixTyklPClNRhxmhi1deC29hr0bFxwPuF8EKy6wfcGAKWKKeJcKyNsAZXLAFTtPFmxZPvbBYYCJNhs65KG17ORkDOpQMqOJcG4SpdfH18EliyAJ1fT2GN2vpaC901GwRh8zrWGRC9OinpMuCIBH/t7RgPFQdmXzpFVJ2Ftm6X6lVbKLzpZoZ5128YF/9rjFwebbm6E2TRPj6zTSFpnuhhxKiTXoEY7JKVeXCc9Za2l1zr6GJVRFAidanJshNBWVbpftBzCMkWgDuGa8D6wz1KyF6M5CQGctFEt0VF8rEJdwWnpix0t9cC29tzWCQZdLE0MDCC4QN9LueCbt6/5zd98wzxNPH9+YF1mOh/pg7QvjTHhXWFcHOdZjYR+TOcjg+8IwXFzHdkNgXlZOZ1Fl+j6cMV+2HFze8Oru4HDIfL1u4Fvf73n6QiJW87jzP2Hiem0kFIDS0g/KI8AAQAASURBVPYwg9BoES/B0hYcyr/MEII4G+Y4tO2qB1AuKhpmxl0PCfXm3GZRKqEMK51hc03V6BbV/EomLN+TvMPlheSyAKioJYZFaPLL6Znv//hPeB843FyzO+zZ9Qf+03/6e5yPfPf9j/z4/gOn4zPff/dnxvOZVCRQsq4rDw8PsqEtcOMcXmv/SxEh0uAd0zQxTSIi/nw+AXAazyIo/vjMh58+kBQEeOeIeHbDwG7o6XzQYFPi6f4jzgfefB04XN3KWkyJtC4iIK8CkNN8JuWFsEbmWSj+a1oFyIVA3+/EqVbarld6ZJvjTTbUO3b7KwFKXcfhcC0B0dgRtWTv6uZO9Nj0saaV0/HIuiz89P4nfvjxB+bpzHQ/Mk8rZU2kNeGdY+4DOUrWgZSJXgTqhl7EO3f7HcMwUM6lls1sL9UO8W22wIBQUX2CrIe1gEenmSReGNZqnbkIAmQJjChSwrJPFtxNRcZuzYVplrVxGmfGeeEl8zEE0aa72UW64CmbTJb3rspC2YEaLkCDXG0m62HJF48tPbae9OXl39vBbM5KDTZtgIFzbH+BZUBqlgnTDbM6dLlHcUIz21fL+gvKCG2sUNFELeJMKX4QHR1q4MpAuwyJgVeIWUJ/MUhgMmfHMs9a6ihrO4RIP+yIXU9aE9M0S9lUSqCBof3uCuc8j0+PnE4nG/y2vpzXUrmX+8PVAEjXdTUgK12P+joHOWeenp+k65UDiukeNFZnqnMm31Ip0go2S+fTaGUO9Vy8DMQBwiCYM15tZM4rFGUu1VYuklzp+0hOnrQurKvs8aAl4gb4DNxZ5zqz6S0odQmqmmVvQMnWl8ynMMdSgpnCM5nZO2LMhOiFgMKXmXNfSzyUQetLHcOq6agCnk58Dr7YHM4iDxJokuSo7KEMrMGRnbCc0ioMvbVRFarzSAFfxLETvT7JMP5SoPR/xGN33Uvw9hHWeaYsq3TNItSSKTtPzXHyus7ymkmLCJ1O45lcCl0UdmrxXrCFBvTIApSneawttI3RlNPFaUHwnn6/q0mergw4J+Uvgp0LLiv0dXaYU8F3LUV1ygClOREXhqlAcYXYBQ6HAwX46t1bfvvt16Q1kScJjMXo6TrjR604CsvqmFex467IZ/d9ZL8TDLUbHDHCMmfGs9i527sD+/3Aqze3XB/2XO13/OqrO7759g0fP0Q+399z9J60RNLa2NXbhwSZMD+l7dfNcwwZ1SRlzrjVVTwrGOpFUJqN3cYEh706boaNhLmKje/PX117P1xtehNjpO87kpc5KZosCdrpUcrHV05Pn3l+fMJ5z93rt1zf3HJ3u+Obb/4D4PjzX77jhx9+ZDyf+fDhPbN2B1zWhcTMPJ7V0TF74mQt40hrYhxHnHNM45l5OvHhp4kPHz+Rc+H5dGSaJ54eH3n/44/knHl994qbwxVXu4Gr/Z5+6CXpXDJpXXh6uCeEjuu7O66ub5nGI3mdWaYTaZ0gr+RUOJ/PUmZd7OyT/d+FXvUqnWI8EQ0Wh16SGE61X4LzeCcMqTdv3nJ794rdbs/d69eSDFUR/xAjw2GPD4F3qoOzLguPj0/M88z3f/kLf/7Tn1imkWU8sWqDpFIKxTvWEKALrMvMPC4U74hdZH/Ys9sPxL4ndB1+WfCqn+WM2aqlwaZh56DKENQKDUBYkchZ7S3I1LA+m3VZ15Oyt8VJ1vNDgwq2/HLOTPPCkiYNsARygXktzCosnZVyETUR752j8x2eAGXBKfvOE2oA2zBJQcp/fGkVGSaT0I6qFzhnG0Xi0j+p7KrtfV7sxb/+KKVg4gm42PC+4ibJ+ZqsgqylWEK9pnXV0nc9l7d4z+u5J7EUV+/BrtQ47lbjWAqEIBYyBPnKGeZxJY+ZtDyyTJkQI30YiL5jXmZOpxMpJ0LXMex6xcLSafT5aWWaZqBUWRjpdvuS/VoqdrHyuL6X7t2ivXeg6/uqfZtz5vn5yDTp/lK71cgkDZ/YmZFLJrlVyuVjJHZR5158gC1ZxEyj4J2pru0QFlumYEEbDZKE0OFcK9/c6iQ2dtOqXxaYNB+3IaWXVrkyjIujFLE/IjkjPs6apInSlOA4JxZfCC5gxVDW2GTbaMA7YwtTz1Cn3Q63ur7m72x3fXV99LXOScBH8Jr8PjtIwQvOS0ZyAJL4R75k0dMtAtCk8t7Ta4OQVfHFL3n84mBTiELHdLN2sCoJ77QE7WcOw6JotYLrYtHSn9/VBq4qY8Zo3wqcAUrxNcthbI+cEy6JjkN1qEqpi3CLqovhVrdZKjVEad9to9tBvjWATjIHugm6LlJyIsZAyeJYSD1zYdd7QhAEksy5UKcg+qDCoJ7d0LHfxWbEgb6LxOAJzlej5BARcfnSOli3PVjawjJDbef/pmIbK4y6nLEX3o85kRuz/PJY2gaavny/Lx/u5Q/FpsayAG1zee8lW71xXqrTam+gACT7xLpMLLOUTAqdONN1gf1+R8mJw/6Ac455WZiXBRMordTUL0ajVJBia82tK8u8IAHXWeqkp4lpHEnrStd3EnQt9o4b1l4R3Qxj+zWj1kbVywtrYECEFLOWfW0dN8kaJLe2ckabP6XSW52t8/7/z9t/NsmSHFuC4FEj7h6R5LLiABrontnt+f8/Z3dEdqQfHlBVlyUJ5u5mpvtBVc3MI7PqVbc8tAO3MjOIEyOqR9lR7VIxIkQR2iJsLd1Uy/dM0CqR/zCOcN5hnMRZBBT5Dtm8GB9XV7vLFvXZtpLepmt3y0tlga3T7XjYKbkbok6eoAH1esLu678VqeojSXUdqkDOLF0/crE2r7YO6ooAwMgsGVzEnRHwwnjXGzTvEzWnDnQ9CMBtX+qkVHNMdO9xG7SXz6Wv9pHK6+M6Y7GJxy6zFAC7loFkn3JFuHNkXCX11tLHGRq9cwK2nGOglJrp0J1MZJEZbgqQjYNCHkKcXcu8wnkpBRMHV9Hgg0ZnDWQbub7JEKDqIoIEGOw6NvS21gx8WNdHUdxBZbnuwX7JvqK2qlS8sj4ZZqR2EqvXQ7YW9KZYL8AoSuarKec1GGKDxlWuVCeOzl37ezt37Qav1v7m9+1nTUvUvev6PUzIrNG6YqV9drIuWnt1re6qaEuD9TtofPv1S9tMEJs3UmDvSHSUJw1CkQMrt0ghVEdx/6DbnfEfWBf/goO8bYDmsHQ6vrzRb23GeifzC4dz/3ldJ9YqWrrE5u5fM3CajWk8DpqJU+T7zvYTs64EnaOGKnoBssVY7Wa6F9AyPEE1eyoEcTg6SHt4JkJQ48kRED0JoenSPaPq11DJoQnj6DEODovLQJGuyTF4PQ9VvUEEBKfnN6PdDPdNeUQ3Z/2zvnhxi32uV1QzUnpHE1+9v9VXvZy2e2Zue+vFNbpxMWwrDgghfi3UZRpSZzwCNeuNyAmGWueqh4mkamG3k3bqu53wM2GZxaGua6xiKBs/08tXGD6nJFmNuUhQbZ5xmWfM81zJxzmXDi/oUFPbB7JOjUqDdGwKrAvv9rOG7QQ3Ba1IsLmWc3jklIXLJs8QR5x0sfVOuJ+895h2O0yTlLpaV0VJXTWHj6wjB1+DGNO0g/MB0864nRjOBxhJdrUvTFZ1W9ochq4rBezlPV+tPVOxW2O5rb22aDpbxtYFtuuuYg6yTGxUHEMmu6nHUrZvtDKFNbu0q34wfViTru07erKq6zYLmxuGUHsEKvP7rPD+91clun1tc+761u8cV/vRxrLiVNL/K0ZSOgcGuvvWcSrSCaxYoNRpaSc5FM3QhZNAQdFuvrXzs+7/K/i8mW/Z62ojF8nGXuYFLmVwALLLWqkhmUs+Bs1Scc2Rhf6eNVsOQtkAANR1ljXdHoLZwkIHIoFs36gDrvTCbzWNquPMr/3dtHY93wb76+/c5srkBMGwEQNWSeUsi8lkwbWNQttr1fvpVF79172I/t5sh/aYzOSv0z0iZf9WHSRr4Pq52vqy89kf1zar3POLUd28V5+BULl1wYB19EOhunZL913fP15VNroHfmdOr48/7Gwa9lGUyznjcjmCV6l392GoaZ36WKJaC4PLKp6vnMWAA0TgOkYIUQwNkpRbBjAvC1YlJVvmS81sEs9Zy2zK2vmCueBymeF9QsxRuY8CnJ+k5tgJQZgtMqB5/usMwBaD20xoTeXkDvABktbqHGIYEMMAXgs8PEplE3CIwePDuwm7yeN4nvF8uiBnxrw65CwGlieH6D3ubia8uR9hnSxKZhyfE+bzgjMueIhHzJeMx8czng9nHM8zlmVBWhO8D9jtBkRNjxanVAMTZmSxgoy6S64PfvlzA4q6hcYw5dgciS9Oxy3CIN5xPV/FqT1Ek41o5YchBMm0YUaqwqVIxBCiiB15uQ8tH3x+fsLj0yN8iPj85QtciBinW3z4cI83b27w9u0d0prw8fNnfPr0Ceu6KjF4amDNxkpBdmau/DDn0wnTfo9hN0lHlWnCMAyYT2fhflhXeLqR6HTJKGlF9g6DOhXFaSHE0o5QoxHeOwRHGIPDLnox9gsjMQsxrIKlaboBiNRBFHRIxGg4X054en4UAetlbY/TiLu7ewQfMCo3FKNrO66OhVQKLssFLq0dkJGp8SHg7v4e5Ajn8wlpnRGCR1pmrPNZ5pOljSjnAs4Z5AnTNOHN3RtM064S0jKJoWVRYmZU46cRVm8Fc694KuTQlGxrLy3GVV10rzqYBBRy5R4igpb3MKg4cYxwwbJmrKngsmbMq6SpVvLpJKBWyoaAGBzGwNhpth1liRhWRyGztMLunCh0tfleRKudg+sMQTM0qvKzPdntOQIqL4gt5BpF78bC9iNBSz0U/RlMDEruXgrDaeaSubyMO4eZkZ1D9hqhy17BZdfAIcj9i7y3TIrcyQtxEnilFopBWp7nIvwiEotinM4XEIBLWOCdlxKDtIJB2N/slaBWylmJpHTEUnwHBVIpFawpq+FpGS0DxnFQedNK50IcNg6QVBLOZyHJX9elZnu97jx5eQgvhQBuaBagt/Kk2jbwFT3NLNdLq5YqaPacGjdcmlx2ysti69lQhIovbDYQ7O+t3H154/KQ3lvWF2EYJJo9DQMG7xF4QC4eayHMqcATY/AOMdia7gCmpXvo/XB1Xojznc1RjmtD6TowJef0TnSnACUxborzcEzIRFghhueyJLk3J+UCtYJRT7mmVYIXvyUz/lVHFLBfkJDXFciM6ISGIHMRvoSKsS3oJqVvPa9gVJLkoEEDBsv+YMayLljzipSycJvlol1WW9Zkha86BpZFDkjAhp0G7GAAlTtZ0AH2bs42YHjjbOrWuortYYhaEuqlVbhaLwwpw3IFGAePb9/fYpoCnp5nPDxekIs4tAtLh16CcHK8e3uL+zvhX7ycZsFaC+N8WhH8BY9fj1gXxun5gPk0Yp0vAAuZvx8GUNzBywLedBMjavKVydWW3saM1vmFbES7/Qf0ZRX9rrPtacBdqHj6shrR+0Zi69z2PTtJvZ6+4JyHD6wyLYIArH3U2XChltuhMLzqnMeHL3h4+IIQR0w3d5pZusOPP36PNSW8f/ce65rw8fMnfPr8SdfXWcnn7anaveVSkNKKZfU4n084HkfEccK0H+EZGIcBzIwTEZZ5QckZaZVyuKzd6UgDq16Dq1ZOZbkN9jdzRnCEaRwhTYEiGBHDMGKYdnBOytKMQDyGAGYIjk4Jj08P+OXXf6DkjHHaScb3zS2+/eYbxCFiHHcYhgFJm6dwYfgYJUPCO8xlrdUTpufjOCKOIz58+x2ICKfjEVxmHJ4cUl6QVslwykVtmZJBjhC0Q+Cbd2+E/JwZVMQhaMTqLYAvgVCxJ7S6pAo6xUvCK1IdjXW1UpPXRkBtATXAOqx1RMVk+RVcyzWdVpX4EJAykLKVWhcsmbs1J6VDKRdx9saAQAA5hg8ZYPcqYTdZeTXEAQhWfqqaNVDqs5gD0lm71Gpdt51n2TR1fIDGf8XWLZzrJt7qB6sYYDD7zikn0o+UV7UFf/Xaun8dSQZKcgWuiK3ncqrPanMaFEPlnJCKlTy3snrToZLoASklnSJKZlwWBlag5ILj4SQ4x53hnJcg3roCBATlB2QG8qpd3DSBwhleIunumbOsy2GQAHTU4Bw5lcHObDbJCBfMtGJZFpxOlllrRPdoDkczNK6BPqOucRQ5nzRccPCkjizucH+35NXER8nSBd6oIuBI/QJiZwQGSpES3FJawoYtmSbD6cU90tWa2txE9xhEHnCGcUn5rSdMcYRn2Q9cGHNKcFQQndPyPmyURRHQV6/B4MqrLBxQbQ/Ur3Y2xDW6qdntKrMzA6NzIHbIREhaRrmyJBQF7zAq5jJ6ilxkLRGolvf/keOPZzYNDo5lg6f1Ak4FA0npkR39+rESg1zaP2bUGsPa5QDafUFBz6qpratmoBgjPqAdfWwQdXMSyedksUl3AIu2OM3waIKyGWhtVrcwwDyG5miy57LF17esD84jq5BxMMJWuebtzQ53NwNCIAALUmKAPVYY6bEA590Ycbsf9F6BnArW0wHnNWN1K07HBSU7nM8LLpcVyyxAMpcMclJy5hV8crcRaukC0BxQvRDWwXgBttVA3rzKqManfeba0dSbMVUh2j4lhauMFxEV2ySOJHvCUnW5uHbPDLHgdNycd93LBZfLBZf5Iobn8xN8CPj+T3/Du9tvADi8fftOogYATqcTlnnBOi/iJAGEULY9aHU4Fa0DXtcVMUk3QuckDThAylbWdcW6zCjTCHAU8FOKdhLR7AA2Pgd57lb7qnXfnjAEiQgtWuNr8SsxkkeNHAgP0maqnMPprHwKMYC8w25/gzdv30uJkBPnaMoJ58ulZQlCothrWmsNMIAuK4ow7SbtDBbx9csN0rpgJQIUHKVkpU/KPcUeMUSJAkZRZgbepaMJ13qFqtQ7MH4twvv1RDDF3xad/dWiwb3ENyNIr0Fdpl91MjcHm3WSTKlU/gookLCMp8KMOUkXvajZNXb3VeiSRbd0vVd5YjtRz/uiHS9vn/d3PRsKDHVtyeC1/XgdKe8NoGoY2LDonNtYcanJ4voc1MAckQClwiAq6kRyFSw5VyroA8neTMzi0EPjLSES0OgUXLtCyEHSmlMSBw8z4FZxFpVSsKjRNGnJj/dBShm6eXTOIUbrrpIrB16Mkjk6TRP2+z0cuRqBc77xoC3KWVZKxrLMtQTpdSdmtxSvMJNNosgcBpxTo9qMPZMx13JTyHgLhHhUjHlzxOrc6fzVrDCCBR87h9nVjbyyfl4DUvYo5gD2XubHe4cYAwYf4LJHyYQMQsqMlVjIJIPrzkd17VmWFPc3xrwx6p13dQ3Wu9g8hOlzV++RWPgGIhxYGS2S8qEkl5CJRUaT2xpokIBOodfG5V98+AKw8GqUXECFpZGK8ma0LlkNcxTN7JPgnTy9kR87LUvJrA4pLljWBUtaJGMjrbWLWk+SL7IPVdeVIp1HfbEsckJvZNk8muy07Jlr5yJwhSe4XbPNvwBvp8EWTQiQCLs6wKkAgRzub3e4vRmBQricV6TMUtLL8j3BUQ773YT7+x3WZcEYpOnA+mXBumTMlxXn0wyCx3y5YF2EAsJ0s/cBnsQRYfffZG8L3LUgyFXG3GuyoT5/PU3dB208Oj3GktEpgVBxghUG6JVGFHUuAPRd8ZiNG075L72XAFC/l/TjLRNHS8BzwfF0wmW+wIeI8XxCiAO+/+HPePP2DUph3N68EdmcCw5HCbCVnKTQhK0TaSfLCiNDMprWZcGyzPCh8buGEBDVIMxa5plz6jLxEkr2kKYmttZ6zYSGC9VxGEMAyIuhBw8XRgzTLWIMuL27xTAOWmI4qrwXZ1Mh4OPnj2AQhnGHcdrh/u07fP/TT5rZLU91Pp/x/Cx8lrEwQgQoE4izBrAE24cQsB8meB9we3cHMGMcR3z5fIN5uYhDQJ1kJWWUnOp6dM5hGKXLXhwiGErGT9qlVG2ifq9R3Vq6HzscIO9vs0xeLFN18HSDKnqHFZNY9rGeTe7Tg1GqDiXFR4aVsskbaxahVEvMwBicNl1RXc3cyWjptqvGgtyDgSYYgpIAYl990WeZ18PsvqoXqdvDtBnz63LqTRapyWTudHcdDfmP6C+Vy4p3Npnv+n0mAorTBjl8tYfFYSwUJgCr866UrE62NkPqx4L3hMgBxRWsSSoPcslY06KXVnoYlown0qwpHzxKZiTkKlO8F1s2xqjZLg5EklRiPHvjOGCaJpGdwZqXOG1mxBrEX7Gu1silbHR9rwdsRjcSlBp2AJQ0PEsmfbAO1SZNu/XfKZlaGQInjYZIK6LE0eKU8kKezxqx9BnV9RZ/4/g9ZN70K6ktJc674D2iD4gugIyDkIA1FwRXQBQqppe7aPO9FXl6f9aES1+3ypc20FtbSYa2y4ciwOvlQrU2Rb8yFWStFgOAwfRNtmsK3vgPB+rq+MPOJngGOgEp9PShOhKMSM7SJkXwZAVQCow8KxEmqkysnDRdyZKVTtTW3tgaUJvB6wzGUqS+sKhzy5UW0e81f/3bhMDm/a2BxiwGmNUee08Ygsf93YTvvr3D6eCwHAIuZVWv74BpDELEC8LdzYS7W49lLfjl44LjUdInyUl3jpwKzscVt7cD3t7vwcy4nJVUzw0K6sTrGeOAlItGOAjIAxyPlbPK2jtbFleX9I7twrMNbe80w8eEX1uUVI3SNvyWKdVlWfR7tXNqFbEypVQA6Ja1ffblfJqx47Ru3ohmQRrN9ZpVoaSgQwwAhMAeTlKZ59MBXz/9AuclMkXksd+N+PHHH7HMM8ZhlKyl8xmn80nWq51TnyHnjMPhAC4Z5/mMJS81ossAnp8eQMjwDnBU4EgpadVjzpWfxwa65bcIOIryL44Yhh0KCMHtwBThXVDC4p4EXw1jsJJuFyGtvLsDM7C7u8EwTRjigJubG0nTXVch/0sJOYtj1infALMQA1a+AtVgOcv8Who8OYe7e+F2Op8OOAaHnBOW0xFpJemI4hnjMGK/3+Pm5lZa12sKPZir8O0WWt3TwgNElXOmReH6JWgp3Nt1TJvF98qhl9yCEXmxFM2SZHN+WNZZq3x+sWu4PYKdx9Zszbhi7ZriWkakOS9bJ4rO0CeAi0h/E+Z9mrj9bKXDClTsDhkSdS8ic+UW2jmK8lD05QlySwqKenB6vdeZW4thW7tEYI3kGok4gwAlGmRmsPdSwqFzX6TmCoA5lkVvBCdlTzF4LZESxbDNMGjRVeECWJBc0dOREtdqpqCWPoy7AO8CQJJNRYCCKXFYrMrL1YOblFYBastay7erM6tbB9Vxjk5/bJagfp65ZiOVXDT01uazXwKMZtCbWMxZmkwAADnWssDQwFW7oc3f1zZwLZtQoUvdM9vn+3u3rMPAwjzmibALAfsYQasHJRnDVArmLE7DzCLbe+6mzTX6sSGJpku6u95fG4rNcwBUn4V52/HHQeB91A8H75GJNBNIzpt1/IklY4YBjQz+cZD0n3XM6awyce2A4jYbsQVxuJXC6XN7L1myLnctuoGGnRT3lMqVyfVzbQzlBev8Cbu2yuq0JjjP8LFoRoWHEeLa96WjYnOXXK+nzdHJPzP2pnFEjAFv7nf45sMNlnnFiS9Ia1ZuPI9hCAg+IviA+/sJMRKWVPD1IeEyFy3XDojRIaWCy3nFED2+/eaNGLv5GZnPGKdQs9mthFyyWyJSIHgf4SlqduS14SHyrGmCJh/b3HXzAEbfiZer3LDV3YOk5n66Ln2quFNfsTLHfl9tkGvFYEbe2ugIrLsroZXgNucuwzuRYqNy1UmGhmQ9nY4HfP70K5zzmrlAuLvb46effsSyzHh4GLDMMy6XC87ni67dtjaK8mM+PT8jl4LpdMF5XgGQNnxYcTmcJNsleBAKSlpQkmR3Fu+A0JXkd89eMaKWU07jJE4pFxDH9/BhxLDbYbe/kff3O4ToEbxkfbE6ZnPJGMYR33z7HRiM999+i9u7e0zTiN3tDRxJVtLlcpGSv/UinJW14x2BsuBmpyVQKELxIMJfdFMcgvA9xYDT6YDD4VEccecjMgun0RgD9vsdJiUjd85L+aEzWnwA1JzujV5EghRQ/eC96T3RmQ379Puy/dI7cwybVMOXm/DoOfjsFJJ9adnL1rEOlR/M1qYZ9d5kydagELtF5Z+VxlXcAMUqDGRyNSPWyMLV8lQo1Ck/wzN16Kh20TTfkslcezYrodfepmhlx73OIDt1RWGbZ9F5uj5M5RMJFBDKAnO2qf530JJqCaIUsjFp9ybVEcafx1U/xCjmvMtNrsutqd2htmFaJXObC5DXohldght9cJimsWY5WWKG2T2WWYRSallesycZ87xowLAF6aqs2jgC21rboqs2VrbIWOkTinQhqnNZcW79jnzJdfNjWCbnpDjbcGxPSWD2rN4tAc35+vLoJTl1/91+RvQvQeh1oneYQsAuBnBicFIuL2264lypnGBKVS7jUxOXttcgUC1jtv1iWL5+kl4ZWY1OS2Nx+V0kL4HJCYccEcjrfmLjZwUCC+b/jUf+D48/7mwaLO09oczCqMgUAK9t5mtUTu4ic8aSxLiFg3hSGfBZATiz8qSI8dCXzFlE2YwqAHXBMBsxVmiK1BwbOQNwSCmDKcGZwUDaRQGopFlgAgnfGJoQ6QATG7EgK0BMABeMwWMaA3747h73t9/h8esTLg+f8VwWDOOEadojqlIjOHz7zT1++GGHyyXB8yd8whnkAuDFX7heCh7nM+5uRvz0w1v4IEp0dxMwzxGHQwRRQIwjpmkHJofd5QLvMyLtkcMEcg4+DlJGhbZRCzcDsj7f9U/7DIu4KwwQE5y1hOmkde9NhhqFr+oxPadylQqpGQhwDlaeXSMMxRSZbHivvFcoHt6ZwcgAAmr5i/fKqSL3u9vtMI6Slp2TOA+ev37B518/YpwmvPvmWwzThHdv3+Mvf/kr5suMf/78C07HMz5+/AW//PxPcXimJBl4uj7SuuLT54/48hUYxgG7/VgVPQjIawJ4RfCQroJIIF5R0oziGczCdyTj3RmaYCmfG0bsxj3W3Yx1WcAuwE9vQX6sfBbkHLwzQkJXozDH4zN4mTHt9wg7cTh++8OPuHv7FqVISnpOGU9fPmE+ndWQmEV5+qhRMin5a4SLW9FZuwSGgO9++AkMxuPjV3z+PGGdZ5zIYT2dpAMfSQnduzfv8P7DB3iHGqkMFcijglzpPiaKMiUD04OU8ECiJdXAwdZR0ox9ljVlSgLXnXy4c6A0J6zsDYm+raloVJnhWUrkCqR+PnWe/K05oKMkloKA9+56kgLcKXv9Xq68QwVc1wWrEizICsDsmrIvGrC0jAZToP0dWSmbz9owoLsXI4uuBgujA2u2Yds+Nn4VRVvyOncdUQjGaim8PdZhrBihLeo6daSZqzkjJeG7ggeKgxAPQjpgOAA5BGn8oHxkSfejgCtRguuacDweQc7DuwtABM5ZjM8QMEw7DHHAmzdv8ebtW4AZy3xGydLFa5klmn0+n7Esom+ku5eCZXOMUtsLwbXsGLB2nKur4NpN0tYh+CqrhKCZQkHXoK0AMeCZUK9disoXAPAZcCSk/kH6iWwi1Q1tdcaAAUCbYgPLr6EEqvcHQLOQGUMhBN3bb4YRb3YTlgtwTrI/LjljSdKp7GbiChvriPTOhzqeAqWsPMAcyM417hIzmkmzkswoZ+18CNJsIIijybOutzgoASuQ4YBcsJYEKgyXYcmxKFTqs/4vYKb/5eNweRJAvs5CIs+S4eCI1LG0bUjCRcpRcylSthBl7os3B5Hsv5yKOEhL0e6lBSXL+FaHk57XynxB1ptXsqdk0hJKnpV7Q5wPITRHrx0WVNzq/M7Y6h37VQZJRhkR4f72DvvdgNMP74D0DqfDBT9nxuW4IoQBIQyYpoBpnDAOAW/fjri9czhfEv4///cDPn+5IPgBIY5wjrBcEh7Sip9+fIf/47/9KDKB/gF2rOeTLEjvI0IcMAwZ0zQBSPB+B+92IoMr3NFfWDEUKhJ6cfSjUsdY6Qwc+012dy8nGgZSGWLGk42wEoRX/WVGEcluUC3ZdBGg2UrazCJ4gAOy92DNVCbLhDR8aC3BmbH3HlORsq01SZbu188f8enXXzHtdvj2++8wTRO+/fYd/vKXP+NyueDf//0fOJ2O+Pz5C1L6KEHiJEYTl4IC4cb85ddfJTtymDDt9iLzl1Szvyfv4aKHKwnrckJaPNJ6hveMcRykFAZtThy17C0rGRyGAXfkEOKEmzc/IY43CEOUTnGO4IPof8mc90hpxfPxgGVdsLvZ429v/0/EYcCf/9vf8P67b7FcLjg+PmKZL/j4+SM+/vwzSslYl1nHWsp6xUkiZUXQ5kBUGHkFcnLgkhAjwbkJP/7pL0gp4evXT/j1139iXWYcc8GSGDfTHm/f3GO/3+Pu9g12uxsALC3qSbK2LPPEhVD3mwWw1pp5DzQOTldlaFuhbQ+3PWv6pNMPxKi5yGw6XTCp7WcurHpdiNmZhWzduYBIAdbQg1l5qHyQwKzL4jQoDHBR54tvBja2WKraKIB2h7X9kfVJ9GdhsCtbvWNbT2WWVyqG0uMz1es567PlXLt2WsOqlmEEqEeovqcngTl4eseZ4Qbz2zmpjpVgXeXkbVis8UuKfWtVO7mQ4jh1SxHBs2TkAy0pI8aAlBLcQsrJpkEdJkC7dc7zjPxgWY82/4DzQBwC7u7vahb47c2NNM5R0v1lvuByOSOnhOPpWWkGpFSujSdgGVW93JIFK4upoICKSc9amFzHsw9ulMSSoYQsJYlKNg+VtdfuHwuaW6a8iXOfJevRacBOuB+3AYaaTFCdON2e4WsCmOujw12aLezgMQaPIQbcjRG3w4B5LjjOGQWMOa8onAAi7KqDS+qkmi1wdZ/UbCALRBhuEpwut9E/S7NFdIydOJl0Oao28UgsdB65EDJL044lS+IOa3Muc4VS99R/5PjDzqaCjAIFz1lrfF0DHsXqbNGEYMmlAtfmgSQRZAV1M29TFnVI+o384jDw0ybfNvXLKCHXITaTn+0eugHbXru7cjeSLXLkMI4Bjias8wXj4HGJrqbLCemtgFvvHHZTBIEwjdJ5jpXjyQRk0RR5O/84BtzcDCDyOJ81UuUs7c+cDizlZFmypCqJax2P18Zua/x2j6xjZwb0S4D12tlecd63a+jit00BjXjVL5qDqwpii3jIGBSiRuAJqpyC1blITmt0GfAtKsEOUrajHADeu/oTYHEmxIDdOIELYzdNmMYRa7JsqaTzL/cqDhOAHMPN3NWvy0M6pwRruiRrmrc5KKiyf23GiKDkxIM4fsh7kAvwIcKFASEoYIS1mXSVTJZUQTAkY3DQaN24mzDtdljXVWutm/FSnY7cG6T9AmjPXHQDeGhpQ82ucrjMF8RxAiC8Ttl7BHKIzmMYBsQoZIFS2678P25LYF9HoVPCm/usC8x+tG/ZbbdP/Z74fxll7gFAv89lTLiCyAJIFyY9vdO57OVFXc6Gxuptq+Pg6lnFoOBq1ZijqX/cXp5tItlmaPB1SnyfsQK9hjka7LNXzokXV+zlHXV/8NWnzEC65hch2/Cds6bdsyMhHqzlIezEAUAOzkGAmTqi2QPBs7S0V91RgHoOsJQVWItt2xchRjE6orSMDjFqA4eCnByku1vL1rMs2pRSLZXbZn247fhvRuRqTaIf7zZOW6DS5GJ/our8o45Lp35HYl2kJFDNCdnGnnF1QvTz9/KwtVKvDaBGVa/uFfpZByAQIRJJu16SroMMyWjKanxkp+Tdv3n13zLZDfCj7e3O2cf9AuyelSBrp5YcE3SdiTOqYWlqq/xKv/3OUP2nH8KrVJBLqs9rDiCLUja5JKVVWXHUi6yhqmauDTLevt+vCzuIrmbBvl+UmNZtznv1SViGbh9VBdq6uZY1/TolUHUSjFPEzc0IlIIYHVZvbbR9pVsoRRy0+70Em8bBY4iasaNleOJwk3u1EvBxjNjtBziKmuljRo9lOfWZP9QwIeld9mvmety7XzY7kHlDDix6xnQWv7r0a4bjiwt0Bs9W4emnmrYQPdI+QIYR6/OqnOya0IhTwLq7msxmyY7VDrdFM91S8MhpRU7iTIkxoOSIaZLs5WmaMAyjZJ3yCiqlW4+GoTRmr92VkKQKwTtCiK0BCqyaQcvj2vrp5Cmh4nCvzianuiCEWJuheC3XNOPTxpnRMEBBQQwD9rc3GMYR080e435XS0st0JzyqtwkTd4yc3UqiJIq1aGdcwZRR17upOFKLAWnyw7DNAIQziPSQMk4jhhGCRw6R+pMVr4b5yqO2qwDc4YwQxrKWDY6wW8++XLxbR3EXMdF3+ywO+p89sGropxCMr5autThXht2g0dq++p57V+3Il/BKL0TrMcWpktkW3VYyt67Flzd+diw0maPdXKrw1ANi21x15b0oP9pt6DyY3Mf2z0q49I/XzONevzUZ3ZbIwlLMDFbsDBqkyn2DO+cLEnV4VKWq89cxClMZE4MVOftECOi4vgYombJaTUOWZaQVCzVTqeds6nhTTlne946kFd6gpuMbKNX/74OHPeBWFtgfbEDXy8hw/uloBgWdVfz0GHZ1z0oVyetsnyL8frV0esOycAmBJJ/qY4lqo7L5gsprAkxXDlu+3t9za6Xced6Wwy0DCR7ru6urg9CIwx3DuDS9KWt40ImCurE6AP/1llfHn/Y2XScH8GFcT4fcTleRABFybqQGs21CnAwMK8LLssFQhinKd6ZFRSwesK3LbnlX1HSLklhlsFCbfNnL5hbJWUhD48+gLQbWOGi3jlNC69RBwPs6kHs6nT7xW6/ek8Ae7igtbFBu3k5jw9v7zCN3+B+5/Dx3/bwNIMRAK0PnS8JaQEu5xFpYTg4fPfdLW5uRzw9JXz5skK6Oom39XBO+P/9P58xjhFv39/im2/f4+vDiszSXtYH6QJoKZOkxpvWcFUi33q8AKK93GvgVHSVAl1iMNQLXpsjboWl2rO/4YS6+oslXVXWZK6SwFlqum4ui8gYKAqDZGvFcdTIr0aR7BlJogpOo7a55GpAmsE3TsJlRUQ4H58xn45YLzOOD5/hfMQ03WC/u8PNLuLbbz7gMku20+F0wrosmOcLAEbw4oAgQLiK0GqbfQgYRwHG4xAxBCddBF3jCwshaIZchrIcIqcVzhM+fPsNbu/vkLjgy9MToCnQxh9hxHqAXNdKhUouWNYZyzJjur3B/ft3ohzGCRnAsi54PjwhKVcCQyJLU9iLEtAudC1Cha78QoiV+3Iv5wNu37zBMA7A4JGjtjNOM1ZiTOOID/tbTNOI/d0NQhTyPbl/WXglW17MdqlUAclS2pSSlFJMuwkewu9gwMBrxM7KwhiaDVFzopUfRqNW1tWSGGpwQDubrTDHdPDCFSRosSBWzjDG4Kmei1mM2UDq6MgF65p1L1B9CO7BFtDJxN7x3RRnYYkAw55DfzaC/dd/AlzHAWqYWlp5jXd3it2yJozXQ6K90lK25CwBBH0WGe9eGW5TiokIvvNpsCS3dCDCEp+2bb3NASMynlX+yXW8kw4mIRd4L/t5Xrw0jKhrEoZW67M4R3hzd4+7u1vEONRyz3m+4MvnzyjabCJn4RC4nC8SoV7XOmatE6gBn1aqUIMkFVSTjE1pY7GdlwYSG5mSRaCsNE4NEM1P6MuRGzjimj4ufxPIExIWBaotO6ds1p1lVvAGd7foV5vH3nG5MWgb0gNSAajAp4KQGYWloUEuwFoKEhhzJjzNCTERbgZgCrL2az6CgUK0n8yawYq2v+pgvTgYtsXsv5a+L3xxAKnD2xNQvAMNA0pKWEpR7jDp7ukAhNqD54/CpP+c4/HxE5gZx8MB82VRnSK8UinbGm9Zisu6CnkyS4fMwqglCiJPZC9YiaxzDpQdSImlZWlRDUTJEdoaUAdm1jIY0u5CgJXHcKUkMN1sVkOLqJYXe6CWfUGDQwA8ecBDOj+qYfPhwz32ux/w8OUJz5+fQWWFcx6OBjgCDs8zLucZ03SDIe5B8Pjm/YTggXkmHC8iL7Nmyz8/zfj7379iGALevrnDu2/e4Hz0+PI5aGMCyTokzYyrATzN+GFT9L0NrNk/r0LqDlO1QGdRzkVSjlOn+05l48bg3MoNO2cdSytJrj1fm6HtK48RNZnoTHYFxFEwVFrXKuNCCCoPrAwJCKHJeHNu2vx7RyhDBDmHw8NXnJzD6XDAtHuAcx73Nzu8ubvF/d2NYqgFv/7yEafjGTmvSNmygMxwcWB1nsTgESgKAe0YtNTMq7NRO42SBG6NeiOlUg30ED12+x2++/4H7G/2eH4+4vnpIGvheIS7rGpFidDzIWippGTYiH6RDnTT3R7f/+3PCDEiIePjp19xeHzEr//4h2Q4XY7ChwnAQZpJBKW4AAR/EpSHxSawGt3y3M573N7fIQwDEAmJEi7ns5CiE+P23Vt8++P32E0TdvsRRIzMknULSJmc8V0Z3mg6owBaWVKKlDKFELDf30rwkixo24zFKmfA6tCyXF1Z/DXLVAAMACAleZ6UEi6XWbN2M8ZxBC0L5mUGocC7jKDlVl6dmc5lLWcvSMuMxBmeMoLWNqeSu51he6XbW70dI08KC2ZKu/bcMBaj4jaTVdUoFhBRrySULW3sxIGIhoXMVoLiIJK8EwfAuuKKDJYskI3zosNNrRtoe0brsN2ahnAN9IItgCLl4UUzxclJIMAoYpzj+po0U2GE7BG8fH5JSTl+NWORRVeCxRk0DkI78PbtW9y/eYMQAnbjDt47nM8X/PLzL8glY14kg2meZ1wuZ826XRVDOOUmbrNW9QW6dWqfMJFVt4o55vQ/1dEBaLtGEHUZ/QSgmJ3egrD9xWQIjUdV9KZTrlHnuToom2xqOKin73lx6NrYOJkMLoGv/guhhkgMT4xYGAOLpRGD14ZgDktxcAk4XzJWz9gFoeoBoatW6jkS1aNtFUP1sbk5g6hf5ZuZ6Z6lcwywVC4MzoljKRJAxs8pNkku0jjEGrRcsW39h8cfdjbN6aQC+oL1sqr3LMA5KXdY1/UKKC04K0FYUgAtqd3YOJt6wNvK4nK9rk2ks/IqNEEo59ESDueg0LUJJyUaBEuUB8YXZZ+5Uvw1Sq9ODWcLnoQc3Tg/nHO4u93hw9s38LzizZsJyzxgXQOWRQzUdclYWX7mJM/25s2Em9sB4DMevgqItKyky5zxy6/P2O0GfP/je/z443v4cMLHL4uUn3hum03vVzopyP26q5VlgpW7xdTeaYbrxlNsgtpkX5P2ck2gdiAl4GqpXf2lQqFe2pRW3QvtTTN0JNWT4EMECEIoGVbp/uepu5KQ0npdA6kIySWRlCoB0gkuBOFzuZyFK2O9nHF6+oLd/hY//eW/Ynezw93dLZg9Tqcz5iWBnMflcgJYHC4xiOGcixCuMlDJUaOT+mbvmpMpaLvlyp3gnHqdZUBlj0jZz/2be+RS8OnrVzAFEHktXXM1A8McdrbGpfV8xqqtTPfO4ebuDnGIcFGIjlPOOJ/FaVaUTLLPTrKMMXE0yL2llJFTgey8VPcRINlTu/0eu5s9kgNmygjnEfHrJ9B8xnB7g7u37zCNA8bdCOdJAWxuyrsKNF0CXTTB1mpKUqYr5VDSLta8m2RthiERWCJzzPTOGwNRpQLool2YrEV6SivmWfgl4hBrbboY5wXBauGZkEmdCjV9Vj5DEI2RUnM2iA3W9oDXLMTaHnqjvDpnk2Y1QIERmKsDTQzB36odbxFGizYxa2bJiwBom0vb/dIhTcu5iqFKbGSxjGEb1/796l8zA6iTL+ZgkPtw6hAzhwcDWeZQuiwpeCKnpYKSJt1/J5WCwtbpBYZHKhi7udnjm2++QYwDbu/u4X3Ar7/+gufnJ2k2Mc+V6+lyPm+ARHXad0p4G8HczqvIQM20LNvMDvuonc8AlwBiwCJQVtLYEg2oyggGapl5/zdICHc9SXClzyqpcTSTp1dA6TrTxHRgy7o0oLX9DgGgXADtoOMLI0DkngOwkkOBw1oYpzUjFCB6j+gLPPVj0DmbOjDqnI1N3lz96m5fvGafZBaeMpmHxu0SvJSOJAbICeF6cfK359La/r56vX/dcTw9S/nhfEbSEkmCZKFkdV6zysHCUho3zzPMhQwIH1VOuRsuXX8kjhRXSwwNyaPOARFVx2rldaoySEsSVN6ayJLhVcNH7+I3gbgevayw8viePNlpefbd3R73d+8QHfA/bgIuJ4LkYwSgFJzPM5gzvv1Wuk86cri7HUAoeDoUnGfJOpYEVML5lPD54wG7XcR/+T++x4fv7/H1c8bxeUYpVqJimdItU7yuT6t+VdlSYxivIJ0eUm32oBorKp3Qn2EDzq9kpsjoLmuDUctvm7PJvkqQZkdafqI3bBH+xrGk2cdJWpJbF8PCWctPSNePGmOuKPWErImgpSo5Z5yPB+SScblcEMcjdrs9fvrpL9jvb3B3e4vlfcbpeMJyWQEmpDRjWXQdqNLPRXAGiIST0nvE6DGOUeZCmm4KBqoYyvCQGf1Fso+9wzBGvH33DsM4YM3Aw9MJnBn5cgaR8DFlTiIThkHKb5xH8MJ7aQHyYTfi7Xcf4GPAl0+fcXx6xuPDV3z8+CuWZZF1H5zgUOe1xMUI5QGwNctomK1hpwDnAwbnsLvZY9rvsfKKUzojnEY8PXzBss6Y7m7x5v07TOMoQT2IfLPAWMlFKiZkY1XdYpnGVpKYUgYtQvI8jDtx1FFrZFLdGtxK8CTTsq0xwRONq0hXCayx4TLPOB6PYGbNahukxAwMIAt/qbNSG1vk4uznkpHTRZyO3krzUfFLrwecyq6+5E0FGiRAXqr+sI56Rl9g5cOVAgVNJslPdRTmPrPZrkvN9mub/FW9anPCXGqXMOret/Fsgf3NCQRTds4Lu3d9W+6n0o80x0ombTBBMkfm9HGF1WGrZX6LrhXlZTKZJtjJ1UqEN2/e4Lvvv5cMJtUph+cjvn79CuNVLkV4ziQQX01PNZGvG0a8gjkqOWh9/PZntTd1fjqDltyWFoIKCQWDzRM6bIkrH0DFRJaIYHK2fa8+hI2/OZzwO4fKf/Pz9xNr7iaTyb4IfZAv0gkvkNiJmQvW4pCLdKdbVil/H9TOa1mpVMfWMDfYOKfcxr7gbmDrkHYHtZvU9chQYkuhotCqjsASmssEoeUAgYWObkub+z9x/GFn0/PhGcyMy3xBygJ2VkpwTuqFjRDMDL01Zen6os9zbaxQjeb2w2GGjlNOJouobe+lZhKApFTIZr2CBvunbPO1dnF7HnOOSWDrKtXeGU2XOUMU8qk3e1kzDscZ65pxdzOivNvj+ZmgPH0AexAD68p4elwQo8O4D5gmwmGfMY4e3puzSRwSJUv05nxacXi6oGTG+3d3KCyleFBvfilZ0+uTtsl2gG8CtAnJ61XRSTXdEM3wtzIcdO9rGUc1R9o5ycbJXqGrmaT2nca5YUYRbVasKUJoFIicF2Gi/EzGQWCR1CpELBJRrD2mdVKTCLyDcE8xBgFPGlElAs6nA1JOcH6ACwMKZ7x5e4dhGnA5nXA83AgX2SpROi4ZWb8r6aUeUWtxHbVsJuuy6JyROlr0WKT8uorBWyCRhpQz5mWtadCs6eNcsmScwAxVGelsNdhOyPx88JWPYJnPSLngfDzgcjpJe92UgJzhnEchTbv1VKMhJWU0nCF7zSLAVtLgnZMAAyTte9rvASLsbm+xrDPIexwvZ6xpxfAQsKalnYdkDoILssZ6zVL9FqRCuzmfc24OrwrctK7fSkuE1J07YwswR3GNe+ieIGepvU7JK4s6maCZaYMaXcpDVAqKdnOq0W8VC9Sdz8S6Ce4+wlLUAbV1BrSMKzbHkpUL/L56q/tvc75rEOXM2YE6lhJZbFmhMvaujo1T4uGNEumM2deyd/StaszaqYlUIb3yLAa4avYUix6wZycVC/I7i4HkCBGEaefbRcnWlcyLNE7IKLwgPzwCBBwOz8oFmGspN0G6IJme2srHlgLexglNXlYl1FmZ1MZmOyj9V7dBjaoLWeUhAc3R177T/tkXlYNBuTks4NLuh+1j0EFWsENX1+9KCOozdxE+dOuKGcgM8gzH6twHITqp9Y/eoXAAUUFSp+9q2REKxFl1s6kk6u7jeg6uwVUFcjYFL6ATzDcCRwwuSSLBcJLxy4ALHsgkuiIDhQhFM4II4kD5X8RO/9PH8XAAM2O5zCjaGnyFGMMpCXedkH2XLptJszVtvQDVSWdOSRuH/jmki2no9tt2DxO1gAMVJZA2hz5tDQfWiavLXn9WJ0tphpCeXOVeW28NKusZWJ45rzNyyri9HYG8x+UccD5nKStVHbosjKfHGeSAcYjwb6R9/ONThiRVqoFEpAEjYJ4XLJcVjhzevb0FIE4NC+LYP0cVdUNJ0yqgl6AGlDuFNyIA/a/VSLrO/BbZ3tky7cudWLEZJEVbIhdR92aVI53u5ELCuUSyiruRVdkYJArtpTW9VQaQrn+jvbDMWDNaiSSL32nGhr02jqIfffSi1znjdHhCWmbAebDzABW8fXePcRoxz2ecTyeUkoRUOycEBoYg9zfGiOglA8Nrq3XBJaROY+Mb0qAHWwaOODtOpyPmyxmnywXneca8rNKxlAle+T1rSRmRcvAATFwDUCDRfSknPD8/wTmHh8+f8Pz4iOPzAfPlgpRWeNKM4EIAZcW2AYTG8SM6tsmsXOR6gcSJBgi/zprF2TaMUoI4TBPiNCFzwcPjI4YYkcuK/W6qxrQ40L1wV9W1Bl2raoiT13WjuMR5rGmFdf21YKc5QHMXqCqaFWS8oKbXqp5WYWl6gdHvBVnj3jns9ztxTCSWTCW1UZhZ6UW8OGS0bNW7FnAgZw6iUrPfoNc2OWIqyZwBpWLE0vDLBqNwt4+2xzbgpPuvYpJONiptRc0QNdyqYKd2SO2cAZsNXq9B9Vn6vW/4qgX5XO00xqXp53pK7s/ZbsXKaolo09AlxggfpKHUfm+5xnKnzjkMQ6zltefzGWBGWiWz/HQ61UYpljUvmVahu5mmP7ne08vx3uAU6rAOvbQuewjzmnJmBmrnZyMosjHpv9KgOCyzWzBo7uyFq1mr2PwaH7b3bfDrfdoas20JyxPkCu+slM5DqgKCF6dZ8Q7MknG6arXGmhnRM5gKyANCfdJ8GL1j0rrHmnPUuJ0qLm+gEm3uO8yjH3GQkmKnpZYeFphSuh4COEszH0Ap12DJA38MQf1hZ9M/f/0nwIyHx0fMywqwDAqRw7o2Z1OuGUvm7efa8loGxXV7RsjPGr+JbTiPcZzQhIUoxWVd6wYU/g8Gk5C1ktNuUEYCqCVN5qRo0rENck6SQumdU94fFaQQYi9x3aIa/uACF4Qw+XhacTocUNYFP3x7h2/eBPz7P8+4XE5S8hAGEBwuZ8Y//u2A/T7i//V/fcD7DzusM/Dl0wXLWpBZWvkya3o8Cr58PIIysLu9w3/9bz9Jh6UwgDmhlBVrWrGuGWkl5EUMyUjWUcEpBwGuFpQBl86Q6BZbH3cmJQc0bhlCS5+vG6kTaP2Y1qihGfmsIM5I7Bgovn2vj3YDYnA4H0XohAinNfjTNEimSJYoRq0TLkUNyiwgaIpQ/FvJPcdpkHtXI4OZ8eXTzygMjPsbjDe3iHHEf/nrjxjGHc6HCw6PJyzzBb/8/O84PD/KmnACNIYh6rrqlIxK+BilDE6cXrLWxXAQcujj8YACILFkA6w54+l0xJqz1ssmcPGSkaGRN+ieEW4KAJDohfMDhjEiDjKghy9f8fz0jMv5jKeHr8g51QwbEEknKdKub96Bs0TPUaQ17zSMcA5KAgmEEFVZSVvOxAVhGvF2N2KeLzidD/BTxPL0jI+fP4O44OnwgDF63N3d4ttvvsEwRPhxh2mYKjAwh4sBoBadkGcDAbOmjy/rimVZAUCdYlSJSAXUyRx77xC1I+MwDghRCOZjkFJKAYy60mJGLf9gxuA9pts7AKhdZ9aUsV6OSGvCMI4I4yjnUUe2J9TMFMvCkXUpSip3ysZUYO1GV7h26dwo2x5YdEDk2skjjRrKZn/3zjBfo0LNsARcBzgJRB7OSzdRTwTyupdSbhqUjSNhq4z7LVsBGBM8dfJF5yV33+vbrwsHEzYcBHJqKWckAqZpAJw0R9jfvJUSU+eVj6BI6jqE6H1ZxDH89PSEdVm0A+OiY6LP7KSFr2SPSHlJK0Xsju55DXTWZ6hoCFWubqJqVbReR0LlHljr86lzMEmWhX6Kt+Ct/kKayZbWCp4aUPXNGOBuDuoyoHpv7YR2fZHtLpByxAkxeSnCR4Ik9xoKMKCLyjkCI4KCZJNeFiklmXxGdIzoHGKIyv3JdUxZdUftVAnAB0LPo7OZgpeETRvdwY5r6TxKEnPdRwQtLU8cpTsZS8anY4AKddlNfwwo/WccHz/+CjCQD4sAepODUH6mldGyCszBJE9af2fJCmFmJOPE08UoultdL9pxDWgGWikF6yJzKzrAg7jAi9dBAnza7dWCYIDgLOIWdGrLSLJeCktmojkzoLjMZtwOQxOknZbOxwXHpwNKWvHj9/co73f4+ecZ//jnWQz7IG3vj8eCf/u3Z+wmj5/+fIe7uxFEz/jyZUEihgvSuQuc8Hy4YF4cnh6OGAePcXyD//q37+D9gLCPlaMtK9eIg/xDlXMES3EimMOUwb5xGRqw2OCr7ucGQ9UZ3MpkGw+buWoOWJaSOhp648swFIMkm6+CN+30RZq1TB4hToDzCOMIRkH0HuMgpWCWTZtLxrImuU15MDgHjEOXtQNZh9N4tZbygk8//7u8d3uL/f09Qoz469/+hBhHHJ6PeHh4wrJc8PnTzzgenxCcBOiEY0+5Tc2wV9tAHCsRwUd4FwGQNBLKRUsCGcfDE9gxLpcZnx8fcTqf8XA44niZQXAYi4P3zaEoslEC0+bMIOewu90jDgPm+YJ//uPvKCXj53/7Ox4/fRZ8qR1LgwX0ujXs3QDngpRpLxeUUjCNo/BYMWNNqzRAcA6RBhRmzOuKMjuw99jf38MPETdv3yIzY75c8P/8j/8BB8L9/S12uxFv7u/ww3ffYRiiZI0PEcxUcW0fiGPpyaklc7Jmz5cLCpfaMVDWnAfg1LltXYjlubxyiDrnsZsmxBgkU9qzVpPq+iu5fke6kwvuvb37AALh68MDHh+fhGh7XVG4IIwjQhgBYvgipfxWrWJWF1xBTi0Ql5E7w1jkimXYmA0AmJPP5NM19mn6H2jOglYlYhhHdTm2Op21dAhwQusAxQSqt1t2eOn2S6mOFMNQdc9T2/N2q0YzII75UvVjT/xtKttEUBVVRcSVK8KrI44xBlhs6/1uhzCMiqHuhbZF8ZqMoWS1rSnhy+fPWNeE5+cD0poqrYNgCcGy3jl4xVA5p5q5X2r+beO6tPFomLYhGzPJxTI0p2Yrp+szzZq0RDfWRWVFqM7B2ryplk323exR5z+XVce9BbVIK2csy/e3utEZvrPxNxEMDfJKcgNrZYLogcBAKBI0HSAOsjUCmQlMUZz1peCcEhwYwbGWolKtVCjQhh7EjQUoi1x0RHAx1HXUZ4U1xG0Zit1I1vVn66aAchaSAS9yYHVAZq2AKQVrEQzFRWSCNWjZ+AF+4/jjZXTzLJs9pa7DieRUWcvd6hUsgEEgiUxw2yD9T7Q0/roMbV0amK5+jlIX4SYFzgaqAwt9hE1e6oCufa9byNxviM1PEQusghbQBeqcdJtYMqhwrT8fhkUIqC1vH6Q11AUhSIeSECx1WIDZnBxQCKUo+RtLVtjlkjDupRvHMI4AvIyUCqVKJsbSNp5LqU475p4IEm3QOzt2awZ1WRpXq6YBe958qR9R6l+ldj71lMgE9RdUwFSDilUA2+cNQLmaSSZ8PfJdiTI6EPLmtHbtCvpsE9h6UPwnndlWpJLhQoDXuuUQvBi4GeAEBO8xTTus8wyiAkICETDE0HhemlWkf76MDMsjm1EhfDGpMJY1CZ9ZTfPVkoaSpZuBKS1noqIzYJ1xyGj5AwPLMuN8Pgmf0nxByRkleK31F7Al3nEPx+JsMgAXQ4Cl/5vz0XjAbOlI2adkU4USEQchE1y9RypCyn6ZF5Qkadzrumo5FldFzhAnA/WyvCp52ZuVLFeNsJSSKGDdkqWYU1sEYR2S6vlv662lm3fAwhGo2yMWOQSs/M2m1b5joMUUVDftzRNx5WRQeUVVhaKl2bcUcDH2t3VvzUnx0hCWOzKHvi6xuvF7o6Y/emXeMjxrAZWOkaWBv7xq/7wN/vU5IYqr6njK36+dCXWfNlLs+nK9AqAlqF7KP6QrkShA4XfKUj7LBWVdkZPs6flyEZ6y2q1G59/uCw2AltJFbus4XStqvOrwM7HWO6bq9yrI6j9OV++38THC//qtjW5qv7RIln1eUE4jnd9+2UTwi/vvAGsdD6Ja/ir7o0XlSDn2LH/CgoleO5oUsnUljr9cSlfS3o3V1Ri1LKsrMvZOptZ12+l983dylYq6ss14gDaOJo0Ug+Ue1Xgvda+YXP3fc6yz8q8od4Y4HrWELRfkrqyN2+KrBoZl58nLr9/3Zj8p+Wt1kqCTj+izF5Sovysr6/FALxX46hp2X3w9wS8Og70Ec+zkLDQDxIwhBpAnDMMK722OZI3nwpgvSdab8xjHgGEQHAUU4bUgBy7CE5OzlCKua8Y4iNM6xhEcBehbVj2XAq4E2d3o6Vqz7nQVmVBbMUyyR2on6A5nvj4hTSdtcumMlxQdru2+9lIatXPJeVx9rxloNsZSrmil+cafxdBSlA2K62W5Pa9moioeA9QY01TrtC7IucCPESktcN4hxoBpGpFTxrKs8J4wjiPSOigdgjrGfGurbpabZBrrGjQcWJ+Lq95LSUqjl3VpHayVt5MAzSLPdS8Rta5eQq0ha86yfnJacT6dkHPC6XDA6fBc14fMgMXwFdsCYE/wTCg5IWnX7RID+sz7pudllAsXZLUjpONjqP8ygGVJILA6hhjjMCDlhJBFmjoNXirF49Zq0bGySo6iPGzW1XVdFzADDtLRMueCNcm3nWs4wGXJfqkYitpa4+6CPf4x2yj4oJnjlikp7zcdo2tTs+as4qQqIwuK1P9aN7j2d8NQuWa6Ae4ldQBv13Ov/9r82N5v+25zNFhVz9M99fWnX8cJr7z/G6K72rCsyqnHVC9RmeHQpmBlbXaYQvWflKsG5WcKOo8k40dC01EW6Qa/LAvmywXrqoFq19IB2PAzWbYhgYreb4NQHe7oMaG9uH2tOm4q6tOx7aot2vPrSbrLNQy1HdTX5oG5VcbI33rezjaumXKdI/K1c24yhAnNrlBHj2WU1+AP0Ei4SRw0wNY5bE7krDjKxsI8JP04V5VeXzIwZ8O2WTxyB2xZxtT09QZLGYZSZKm4UJ5Ns8J1PApk7RXGhr/1944/7Gw6PD4DEBLfSi6swlpIOrkuYjMmbH21ja1PB5kcM0StXrdGItAB8ix5UUWNTkmZ9EI4aUYiiYc5aOQbMM9i2aB1A952/RCMvLYBaFLh6LTQnLmRJ5pRPsaIwxJwTgGUHeLMoJxxsxvw5z95LEvBw9cF86xkiyAkJhyOK4aHC0Jw+Mt/eYNlyfjllwuenlfE6BFvBs3YIhzPK4ZzQpoTgo+4f3+Pm7s7fPn6jF+/PnU1zg0wcGEUJwTGgjlc1eW2Z1q6JrWFpe+5br3WRVYN1XZYKVRXeLj5nCMDlTaRCn56gWDrgRmsaQ0FwvNjqZveBcQ4SBaRU3Jt3YhSfrbI3JS+7ab8tKix3rH8k2ABJFoV4Fla054PT1guJ+S0IMYB47jHNN0iDBF/nf6GnAtOxwMev35Gzgl5vSCtq5SZWUtdjSoaAaojS7GWdeM1rT2njPPxhFQKzsuKtWRwSZgmIRI/nw84nahGKGUYZY1L22rNaFFC58PTI1IRsPOPv/8dD1++IK0rlssZXBghSqTaeY+oZJ/BS5cJLgVZswU5rchphvcBwzDCe4+CFWtisCtgTgCizGcBiIt0UBkGlGmHdX+PkjOczuPzMWH5t39ImeFfGFPctl+2hAeZHV2HRnBqOQcsUUVpSQtYE4kQBsQwAiCkrGVbJKnYzhF204gYfAPbAKw8ESg1Wt2pLOS81nuQDoFSvlmKRTZD/SwgqfNF2/raP3sakfMEhhCK1AzPWjpnDkbUPdZtjH6n1d+Mt6AC2F67d0poY6gqQKzXRjNI1iTZUSKHG0+VIdj+HL2jSfQyKal5k+39sX1N9YGVE7C5CEwBGgCTqJ5luDCEe8d5JxlTZUHmhMu6Iq2pklbKWBbhdcoSqTMH44txrOJS9IX3pnv65+uSgvvnMpm2OXSOzSCDyVIWMGcA/ZWDASTNqHLcOgcZ6XPbG6jg04yMKnHJ5tjWcpu8dqdyBoMr9TWWezQjIETCOInMWkBIRAjBYYweY3QYnEMEIbGWszAQ4cGOAE9YtGRuSRmHkjBFj8F7ROcQOgVk688ym5wjeE3G3pTPVVD1cn3VlHUmcNLGBt2YaF4GmAiDZmGV6CVjtBRkVgdHLwL+NxyX81k4HLKUKIMASlR1YQvidTrXwF0RLh0xxw3MizwllX8yrsYJhlr6ZaXX8l7DWhYJHYYBIJGrIcbqnG0LsQDsWkaDAmgQITjlhCHLUG2O7SrbWDLPLItrnAZMuxFfi8fhIJHcuzEgeIfb2xHffVewrozTsWBNgqGWFfBr1ozugt0U8KefbrEsjOfngnlm+GFA3E/wnrAuhK9fZjiX4CMw7BzizYgwxVriIM0oSmfPcDW6UYdfDGfnnOAqVi4a+53V4aTBDAdIJgR13C/1aA4Tc/rXTNFXpMv26I2uZmig0wXmG0lrQk6GoTyGYUSgFgDMRXBIygnLsnZZHlSxdr3fatGoo7bqMCAMA3wR8urD41f4ELAuF8Q4II473N7f4JZH3N6MSGvC+XjE08NX0Z28oqQs8j2arg5wLiDEoXLAcGGtKuBaAr2uC9bHVZpHrAtQMhwXeCdNdC7zEcySleaVExWZQWxcmAkohMPTI5wXQtxCjJwSPv/yMw6PjzJHmhUVtAzROapY1PsB3kUULkhpkbVAjWfIkYMLHgQWovQsFQFMkplkDVksI3Da3WBAqFbkvAIPjxek9e8Yh4i//uVHjGNQVd9smBpkp6ZnxZnn4VwEs5eughqwM7tGuvYpN5TqFeHNEv07TQNi8OLUsWCo3psjQgyxOk4YQMoZp9Op3sv+5kbWpMruGEINaOZllmBRSkhmx+jnjBCbjaNRHVkte9x+ttckA8h0PFcD+vpo/JiAcfIQWoDJ7pW4XUtwU2uW0G1BydTusqLFCdP4hXrlb+WCXvGFJWD0dsurug5VPGxkbDWlqMBpF8SiZb81y8dkEADOCZfzAUSEZVlrx+plXWFNIMzOJQJC6Jy+PbaAYR3S0lynnX3b/drPZp02d4ZhkX6CKtYxGxUkNkf3Zo/R+iOzZjajwNt1OuxppbiGQ6vM7c4pWTrUyhe5OSF7B49l7V7fh3TFJKF9GIKssUUaohkFTAiKclRnxCw20EAAvJPsRl0jlyS2yhCcdCVX5544dZodUX0cVBFBNz89tLlaV0Rd/gehlISeI5UICGA45XAcvEd2DA6+JRaVsikP/CPHH3Y2nY8nAUVLgieHgtbFpBF2d89jDgZI9E49C/UBN4DKhoT7yG37u7WrTm0RqHHvnQd5VwkHJZ0adbM3FdqPtRgiIpB7gF5j/XVDbe6LVWjGCEbAnDxcJmAtcLlgNwbs9zuczwnnY8IyS3p2gbSIPl8SDocV487jhx9vMS8ZT08rDs8Lhuiwv5mEDC0zzpeM/SzAijNjv9/hw3fvsGoZYckypjaGfXSxdJ3P2gLUWSGHyiNQ3c2on3FoC47q964PvjZdYEKkpbO2k0pE1kooDWzppXVdWAcXE3pcWL3yUcqCyEAraknEkpJGN3qBrfPFqlgAAE6EieJmAEJ+CYclrZjnMwDgdHoCEeHDt9/j9m6POEz48P0HDMMenz9+RM4F83zB+Skh5QWOrH2wcIyZI8fKGQGLsqE6aFOSLg6pZFyWRfjPSsIweKxrxul0xromxDhgGEYdT8koKizZQy0SyUiHBcfTM9Z1xa//+Du+fPokQkhTjIOWwfkQMO4mcTqFAcEP2gI1qQTO4LLqdQPI+WrIIwOSJaJolgFAOLCGEFGGCcvuFiVl5CWh5Iz5fMLXz18Qg8M37+7x4d0dHKQTjOT9omWeoQP5OtUeEsUzroleWO52E2729wAI68pSSscZzAnkCNMoQMnWqji0NQKnyrg69vW8VtZGBIQoqbnTNHV7R85lxtq6KKllXVLNmV1tfz2/fcf+tRKiPlLUC1Cq8sdSgythfHfF7b1BgehL0NKTlhYDOUmcM+SclkqaiY6re0F1nl1fqz9ec6qo3Szgz4kTsdpWsHtVo82ROg1bJpJ3TiPgDC4rMoDz6Yjz+YyUhazWeLaqXtGOhSbrANTyPTOaiFB5CgRkb51CW6mIzRsvTMJWA14PRw1a/dbYmCwzrcid07ECNcJmHuVc7VlaJLVcyel64npGi481WUn1fSmdJQyjgJ2cBDT7QIjBa+auNeBo6z5oLX9RGVgKsOZVSzGBNGgnUW7ZF0aUXrMXO6DZdJI8w6vjpp+tzit0RgKw0T2ehFfKMbB4B0TfmpQo0aVyF/9vOdaLdOcaaEBwvpGUNwiyPToHZtvTrOQDqPiKnDB3Gsm8YSgr1RRjwJxMekk9nyMn8k51WC2FI7sxcTTJTyutdxVPeG0ksMk216MfWwHHcv9DDBiHiMIOp3PBEIC7UTIWb/YDGIx5zsh5RjmLM3hNQFiF1yrngmn0+O7bGyyLGK/rvGIIA25uJzhHWFPG8rTi5jbBBWAYHfY3A8bbHU7nWeVy6WSDPW83/Db2EKeeOZs8LJBlWfssOAdcDQoCKifgq6eva/+PrD410nTMLeukN1gl2CiTKyWCgg+lq1uEkVcwSjUupbOhdZTqMhZ0nqoxpmCtYSt5I2iZ5rLO1ZA9n49w3uGb737Auw/vpBT/3TfwFPDp469YzjOWZcGySPMecqjNVKRjnOCV1slKnE1EVGX2PM/SHatklJSE3xMFjiSAsswJKRcMMWIcRhCrMxRcM5uYGfN8UWdRwrLMSCnh6etnnI4HXa9W5hsrDhmnqMblAO/F4ZKLyUNfuYmGOKhjR0qf4V2bL3Sdz0jx4zghxj1KYZyOZyzzgmWe8fTwBWP0+PDuDt98eGPCT/a+clhWpzPZ67JO7P7WVZquAMrZSSQY6uYWACGtTS4AoouH0RwJwFqkmsW0h4MD+U6Oqy2YlTianMO021WnFxFVOgcuGYsj5VuCUKN0zhn7jjhtUl0D24QFbJwG1o2TmbfOn6tdZM6mPtAopZtWNtrsCHD/fFsMVTVwYbA1++i67tZ722CodjcEgImqbXDtaNo6Bkz+q32m2W1VrjpxbrOr6kLlFumaV+2fE5bLCQzgeDzifDmLPbO2rujWgMsyD6v00oygjT3pgE6DKbXDdtR7h1P3zY01Tr2M7D1V6hmqduIrB0Oc0SAo11CPg+w+CeYor9+r44y6bqoMNXyE7RzA7sO8q/Utqh00YwwYBuEFTHkFo8D79j6pTnVFaAkIQFT6H3YOhcTGm9WZUwDsOl8S6ZoqSsVha5k2wefrQbJ1aECrVeSYw0lkvq4vkx1g2EpLXgjqV+/BXveDjkNAtQr/w+MPO5uQG0cI0dZYa5ur7a8GidvEdiNQnRIFgHXf6g2vcrURZQMIMZn3Qdu4kq7JK0Defa92BqnOox7AqRCoK5rs//XaeLHo5B7HYcDd7Q2QAM97UAbiGBHHAeOY8PRU4Jy2qYbDEB0GLdcahgH7mwnDUPDhmyRgIASEYYC1pQQIu/1OnUNUo5LlKouHC4Nc0Tabyq3gdOQ1XasUQILRHfkZtyfrM5SKGkk1fVIVWT+JMj+mNqlV8RS0OalesM0qaDNE/d/deHf3BTLPtHUd5MrVlIvNl+xEUjBUjZjC3ZpTIVIACwlYGbdTRdiEIWOdZzw/PSAOIxgBaUxgTri5u8E4DYiOMV9GBS4irMmxcF8AMN6sdsaXa7MURlpWrDlpHbpEkObLGfO8IA1Sm+6IQCE0oaiGnkVSmaVeOqUEx8AYhjqfVl0jKf+EvGaUxMhLAdEi3EFplWdOC5ZlkDUaPIZhBSiASAyRdV3g1gA/RIQQ1ZHX9qkP0qlx8AMIhDMxLicnLVcX6QAX1KnhlBvN5vqFcc/bvwV8dISWJSPnBYCr5OmMIoR6ALgkIeDt1lhNjdV/rMKqlx0b8G4AvC57XV8GOtTAMKOCNd/AHLnynkRNnbs2AtXxugEZXPelKbTmHBBl31r4NrnUSovaoLWyvX6/dplNum9RGNRlOKBw3e/m8O22YjdO/e+vAcHu/uouaI9W90XnXJA9080J2X1ncAKYxVBPaRWjSssiiIRzSow96DzoKG3kd4fEujtqGba97pKx7HFFzcrsx8E+VE+rSsWh8sO1FvH2XH2ye70LXcPdwud+j3B7v/8eW5r3lWOmroMXT7/V4QpeLbGtH3vhINDIWujaxLM50yyqxUp4ScjkQPBizIKwZuNxoKpna7ODq31n4/R7R13P9mydkQJqEWoZLGE5cFrG4pyAPmKPrFmyhRk1ieN/wyFNEsRYE7O/7ZveiKqHPpc89wspqc45cTRJ5Fwdtb1MqPtAPhtCy3zwmhXeLtzt9/46m6v2n5P7qgbDyy3SrdFmAFnkfZwm3N7fY3AZ07Ri8AXwDmEMmC8Fy+IRQoZlQE6TR4gRQvYdsNt7rCtjvkSEuCLEIG3Yjc+TGcM0iRNUm3HESnjbnO8Ve9rzdl4yWx6S2SCOr6zZo7b2TB9bZJzUMIftrW5ESse7ZOeQUmoD7azX67KLsDWQLTOg5h2YDLDrONZsZIBY+LFEf0gXOitNNyPd5sbW2MaoZtM/bT77WbY5lVJ9+TwX4SB6fvyKEAbsxjvEIFn7d2/eIqUVl8uAdVnAnJFLEt4v5W6DOU9ct5Y7pFADNiljnRfBUKvohZyTdMxehYpAsKxDLrl2h82amVlgJaxJuvbmjOA8pmHsZLGNq9xHWjOICtJaAJKMptoxtkjDFe8DdtNUOdDIR8A55JTg1XEWo2SJOy9ZXd4HDC4CTHAUkaaM+fyM48MBK4lTcFkXbfBieLDtOwuUN0ex7k/df5YVxl2GY0orAClTNexOEMMzJVa7Q8nDbSlcyRQ7LLnA1kjlxJTTomTlINM5soz/2pHU9OQGt1vAqFS77FqWmO6rHDtX94XuOzYkbR2r475Y9lSXudTbWOi/094TeJSbXKO+TK7T+a/cxwvc2X32+ns6FBXOVqwBgFnGVexow43SzUzet2589nm08kO1f6C60ewg61LaRM5WN9gYNeeWBQg7GcS2c2jz87VxoHYiWPYQG1eeZi23wFobD6BleNkd9mu0SlNW04/panl0mPUF9JC1tQkXmHembjqqjYLqY+u1SZ9FEhFcdbaqaSDYC4ahoBywWomk1RCFpakAwNIATM9v83MFIrdj+RtH72irU9s/c11nrBjbwbF2f6eug7AQDGvS0e9esh5/3Nm0ClmbEJJJrTwnyzzi1qaVAVgHFXSv6SG1062TEOkAlSJlORb1t4iLHc4RhmGqtedOsx1WSwHmTqnrAjWBalG72kHK1jZVXQroduhBhwlasIJybQvpyOHdmzf48N6hLAcsny/g9Yg3bye8fTfhfEkI8Q5Pz2sDV8SYgqSM39/f4Pvv3wIAbm7f4XxKWFbG+SIbIgTlJvEBzo/IWUjY58tF2tnXMS8S9dGMh6ZoVBCrUkpZyNxN0Eg6fjcp1bAxkN6icpZa25xyG1msQEs3XF+Oc4U8N8rhmsOpO3ojkcQaQuGMWQnrLvOCVUly4byWXEk7emaN4BatQ253Wyea2NaAZU94RBWERl59eHrA89MDfIh4980jdvs73Oxv8ac//wAC4XS8YFlWPD9+xS///DekdQGQQV6uE3xACFEdhfZMWyMrp4TT8YDLsgBUAMeY5xlfv3zG8XDCOE3Y7XeyDkKodb3ohZmu0bwKv9MAj3c39+oskhTp4/mMi7Z+n48zSmEsi3AdFDbCYUYYJAV0HCfMlzOmaYdx2mPa3aBwxvl0QOaMG3+HcbqTsnuWqBmDMA4THDnc7u4xDTt8/vgPPH75FSmtOBwP+PIl4ma/xzQI0bt1QzGhLA+zVQ7QdWitdUu5aPr1jPPFBKumyVIzx9aUUDJVYa8ioRkH6rTBK0q9qDFiq1FkhCkldbKqkdIiiZZBk7ssp7aGrVzYHL2liJrhwkh51dbDDKPT7m/JqSFiaxrg6uize+qPbue1Z6qOKgPtWm6TTIlDWyuTZvzps7wC3OpRtxVXome7v3YnW6BVfdZ6h0ppLuuPrVNSqWOeNf2fWcpnwZ2+YUbQrjZWJloYWLNmP6YVKa+wyNN1BE3teFgQwxzAbT3I+PYg6fow2V7HvXOwM4QXpQfT5jTgzeflZmQIbW32o6TlF53h8BpQfXFv6HBRe6IKVEm7UoYoKeBioIsxTQ5wHoiDw24XMYWAGCVy6xkIzkpaSy0jmoaAzMC6Aik5rCh4nlcEAm4GJeXtje7OkdlKPwlEBddrpz1nB9LJ1FWpz2slSyxkSAAKvHJZDJ7ALiJ5h1QySnbInDDn/GK//KuOm2EPACianWPcc9KFDhXx9o6F3tjpjTlAsxScq+XJUvKbYKXo1jbd8IAEuqbmXLZ9phF/KtIhtzqQTDZfg27VY9XpcTWAW1vX1q2v0XOvOu3du/fw7q/wWLDHIzytCJHgB8LlkrHbHXE8pNpww3vCfpQrvHmzx/c/vEFh4N27E54PC0pxKEWcK3AR7DymacSyMsppgR89fATSMtf92BvdVqdN5FWmC88XiJCyZAIxW5fAHgABbGTgXGA1JUE7uYpzTfZ6dTDCnE0E0q5yTi0QMSoKirb+4Y5vUO5PeUCIAOu2DKhAZSRHSm1BYHgNKhk5fJYGGKuR5Eo2gwUPS2klXrrY2vpjW4NtbZgjw2R2KRmcJUPo8fErYhzw4cMP2N/cYRr3+Ot/+29gJhyen3G5zHh6esCvv/wDuSTJpBykcYWPEtRqgU4AGqQqJSNrNtLz06NkSqUVOS1Y5wVPj19xOS/Y7XZI+xvlWfRVdkrmP0RvOIe8rsgX4aS9GSbcDjuZsyD47Xy+YF5WaYRwuUhW2Cp/F26l2MM4YhhGxCHg/v4ecYgYxgnjtEPKCdP5DOc8xv2E6fYOyzJryWDAOO5wf3OnFRojHEV8/PnvePj0C5ZlweF4xPPzE2KM2O32cM43udlhENuT8rvJCcJ+v0dOCefTCSklzLPhDdutipeUuiFlwT6OHIK102OutlXvODBHE2kjmzVJqbs5rzaCgxmck2bCcM1aJ9IyTdtD5sCojTQk9cJYx1D3iPE3qR6o6rutW8OAvbOokkyDYRpgo0frvm5yuK+6ARE4Z6xatr891PHUEVRff8b+Mv1tGKoGOrt5AXFrHGDkz1fnY2aQBzKxcCkpPs8dX5cFHE12OXKImvEmMlbs72WR5inMjJLVMbJpOtNjPChRut/qaJ2m38JOdRy6Dn/NRoRic9Sgpzkw6/PanHXioXf6GvppdyvOWcP07Y1ev9p/XsewnScG1uneaedOJymtMIoL5x0CCa/gMEYMqr+EdYAQSGycaDrdOYxRmiHwSsiZsGbGeZZumGP0iNakoJovvYXbB32vx7xORgtYb7K9bK91y6qIfHBgRBJuzhw82Dnh40sMRsaassjTP3D8YWdTBXWdC3ATWUS1g+vDdrB9ey5wXVw2FGYYWpaTnb+PfFuqotOoh0SRytXZt6CIa+p3Z9S+/oTd8lSvtBmlaGnGpmRDDBiGCRkrSojIOWIYIna7ASCP3W5Fyl3KGhiOpducc1JORI5wc0MYYsb5whXshzBIpygtO8kKFqyDysYDXlgIpIs6cXTBMByIC8yYMyHQMjNsKLo57J+ZXF14RHRF5ku2drceO26z/pqdWheyAofrOdt4vOvrei3z9hbeGCpUzetOwJmiqRtKz3Z9SWrRfYtyMomhuqwLfIiYzyc457CbJmkT6jyYHULMWOaLRJlyQW0dXnfslQLr9oQJznVNWJdFIqleOmSty4xluYDU8Cfn4IuCrqqI2mWk44fW44MQNetvHEYAEBLyNeneTBpZMmduUUVUUNir0wOY54vux4AQR8A5pLTCrV6zrTrlwwpKvIMnj2EcMY47xGFUA4g0XX9BSoMaKTYeXJcOcYvg9waWOWv6ogyJzqUGti0b0IBp0e+7LvJhYqpel19fpHXO+nXcCfIKwrv1SrIOxQFV7MavF5tmOMlac8TSuhpUr1FPrNcVwMJbmcpc915/n791mJO4N9LtPAIoqJbomYFFtsB+77x25bq8eTOcvahtEb+rMemUW3UMFqDYGLI550rjVurApDmQahczBlx1GHEDPXVct/K/OTjaPdtHe51VMQjakqnO97YEXqwHoIuW6mv2lT5abq9UMYxe1vbQvrs22pxeA9mXYONKQxLVfeWMBJS2cyhBFUsBNxDY7tz4/RwKPEknLFuz1j0z5QQmNc491bG2sdlkItVnkvslennfG1zBrz1ne1zjMhB3pHKjaCky6TpjUFeQ+q8/vJVrGEE1Gp+b3vZmP3V/AngJXSomqb8XnctmpEn2gMkftylL3qwqvj53h8/6pdoW8PV2uvqA/s4yzsZlQ+boJIc4REzTTjjLcoBHwTB6jDsP5zJ2U0JO0pDCB6/PmVGylH2MowRUbm6FNiCtwLwob0qQTpbeB6QkwDkn+SdZFaYTFE9IS8NuXO3BXcVFPZhvel3+U51N+jlZvi27qN87myHsx7YfOVsMV/tgM99oGRUwRxUBJWWR5SQ4zlK1xFfQ+GdsLmyOr6BKp3O299djYcPxgqEKDD6mdcWaM1JcMd9dEIYB47jDME0gOKRcQC5gnmfpfMisHRB9dQxZyQd3eNHmTAzhRmqcchI+Tc1yWpcFwXusMSqfZoYFDoqW0weIPjb+RWKW7sc+CDVH1K6PKYtD2Bmxv3LIruJssoCITDmj5Ih5vECye5yUB64BOa2VtkDkqtcyRwmYhChd+Ia4RwzWGEgcgUkbYDiizRosTJWovscLba5QMwnZt3Ixy3gxuV4Ddx2Ghi3/yoaj43+16akthLpca2Cvrme2N8CWraF3uZU1NS+/rjNGk2fakgvC8Ugbe/FVKES0kUjt6PCU/dUt9Gs32YvTAl1malfSVMHCy6u+yGy60l/XjgKqm5JgZQrt/Kh7b+OEdgBKI3Lubb7q0ILRfHDF8YYDesAstyIYsadRuMZyDfvIqBiGfzFmv4VbdKE2OSLPbE6higerxdqwlP3dKc5uXGvIt/31Agdf/a5vVsvx1WXQ7tWpeO0zMJuNZlmf2sW67rWGj2t2E6lTlBmZhHpHupgXsJNudkIvSHD8yurc4PDtOm6ejfb89bUOz24wl40jSaIMgGr3MUlwktmBqeCPuZr+Z5xNq5wyJYAz18yEkkXBWMeTSnBqG7E+mDyQpXEboTKX5uCIMSAEj5SSkvMWWFq40zaTRMbrI8aHd9KQMgSJhFikR6LOrR48BG31bQKvBxBax92sGRXYusat5jJ4h2EIGAbhnZlTwXxZ8enTE5bjEwrfwgXCuhaUsoJoxeF5xtPTBVw0DQ2Ep6cFD19PiEPAm7d77KYBy3zBw9eDfjeisBdjPwxCUBgA8Irj8wUEBx8iyuql1pIZII3WOBP6XBd4VdAgeOr4b7bIRteZLGSvraNd3ShopI3cf6UpGSu9q+/XxasCWa9lo9yUA6M5E1rET9wnrDwsUpvqQ2gAXaMjkpAk3lrvA5yTTIFS7Fpa6uWctAdGxTHKB2MGgEg37z0GJ+2US2YslwVPXx+QlwwfBtzcvsU47vH+w7fY72+Qc8b5eMAyX6RTIXuUrOmRMKPCoqIJa064zBc8PT3geDxJCdu6IK0J8+kE5Iz1fMLzMotCMR4aNRAIaijWuSggVuEHwrSbMO0n+BDwJtzj7v5e7kFrgedlwazZTYfDs6TUKwAhcjgdLricFsy7FfMs0bdUMuI0gchhd3ODUgqmOOD+5g7rZca8nmXuS0IuC3zwuH/zATktIAo4n2YMYQSKcPeYEQigEoLLM1KN5NraLBpRFp4TkdIlW+tTJfhXQEWQGnYyeZQ3+W3tuDLQX+qU14CCGCXc3RvqulcjygUFpM05aPNWijrIlQhbnJu9QdEcVTXaYztEs0frPMKyFLei/jWD1FGXgaPP7R0ju9YpR6L7HsVr7wzn4DTVvxg4rPhTVqGDcR7oPjVASE3uRNI9qE5iAazmDETtcAaQZM0WAZesY0O1a5xlh7EGPhkt+C4tk5t9pt3IoBgtW0G6Ux4N/R51zg+WUlgRKxk1WPMagDXF3Q82NTCBOnc6j1zEIMDroLi6k64MT3meLSqqRqh+4kXEVP8um3IEkXdOGWyNW8B5IIzShU5ApXKLaRadA2H0HqMPIEgpd1FjQ2IcsqsCgJEYgQCKUjqCrGTOpSAUgitSbjd5BbWlAdje2ZWSdPy0bLT+mQx7U/esFJRLSnGE7QsJvjhpGkAOseozjxQiEgmBZ07/+9xN6yLXSllKgHJpEXYuOrfcOHGYG3YS1ayy35vjxTKJ5RNEVEv1c84IQcqPnTM+EVdbdaeU5NlJukgRWjCvBuXIto0gagcnjhN9v67bDuj2h4FpIiC4CcEB0XsMQ5RsVTDOy4y8nLA+fAWnC9693+P9hxvMswUoVhwOCeezkBR7vafH5zOeDkfE4CW4ESJOxzN+/eVZSoDcBKaIGGJt4144AciYzwu8NcwAa0m2ykhbj10WvMge1U0gDXTiau+Vih+JJXs/BuPqEIeDmTD1nw5db/BvSdbtaIZxz0+G7rsyVxad1swsB4Cli69nRokZVDxCNkLldl49GbwDEEiN04LCeWvMKm7f2Lzq4AQTnHYIDW6AD5I9lJYVp8Mz8iplbz5E3Nzc4/7tHabdiPs3dxoAE0qBECJKJiQUXZOmHYvKCOHumucFD5+/4ng8Sse1vIpT5jwDOWE5n5CXRQ0m1WvUdK73Xm2QXO2bIQ4IPmAYB8TxFs553N3d4ObmBswFqWRwKViXVZxali1Um4XIXMznWXiX1hXruiCOZ/gYMZ+O4PIOwy6i5IRpGHB3e4cpjgguwCunEggIMWJ/e4+cZnABTsczmAk3N6J3q2MIralKM60bVQTU1gELhyc50dfWQMDWqBjPktkkHJ2yLsy2M75HAml1C5rOR5NDr6jGut4B0R9bUSEyDaKekEl0JojgDOPr3jLHifNFqlsKA7SIEw9omNIyZtAuLFw3gmV8sYzjhku2d2Rfbe9YhlTbC83Rw8xY0wrvhAMP2lVRupIDVjGykZHmnMM2mGOynEgqfwKZTWUYEJv7IK0Q8oCW8LZ7ArfsfGUtg2W19P+Qc+0oLxU+MpcCO5qc753bVRIRwXs9V2mZ3NfYlLulQlCHFLVxaE7sDkdZx3FmDRCZw77OUA+H7OT1T+7Gwt4G9y6Yl3Pe7rW3GtS5GcQWizEgxiDcVZE1k0yacQAAMcGzQySP0XkMartUH45eL4CVO5LADshMWKNHcgTijDlnuMJwTqgKnDm5SJ09zN2Y9RiKWgf3/gFNluv6E8vbyidLpathIxSlLAm/RIjkAE9YmZBiAFzRhl1/DEP9TzibBMjl3FLAS1eyVB0MCoo3JQkVuFAlqtsCSFnkIXoFSqF6rGvUuhvQZTbhYt3onHSi81EH06mCIfEYknIUBF9rhmUjJR1gaV8qQK+Vzhmw8m6EIyHMi+psmjNhyYzTJeHz5wPOTw8IkTDtRylbyQscJZyOR/z8j0eUAgQ3wJHHly9H/PoLsNsN+O///QfspwHrvODh4QHznHG5eKyrQwgSDYoxYByBQAmnJQOQ503kqsJA0QUPV9eUIyiRmy1ESLbH1S5r5p5UkBKhtr30DgiuRREMaDWHkgIwMnKxJhTlEOGeinWN6wyhTj+1Hwa6IVqpAigRki4EyV5Qx4kpQVnvBO/6rmFFZZTcmHcO0dLGYY4bcTgVFrDGzPBBnVJEKJmFF+Cy4PnxCTEO+Mtf97i7e4vb23vc/PlvYGb8+vPPeHj4ijWtOF8uKKkg2n1DSSRZiONW5RV4fnrC8/MBx+MBh4MQbAZtVbwuM9YkCr9XLqxCz3uvhn4rFfNqVPjoqoN1mnYYxkm/I2M5LyuWZcXlMuPT58+YZyPtXLRb3hk5p0pSGYeIwow4TRjGEffv34HIYQwRfn+DCwP5dBG5z8Jj5YPH7f1blLyC+IT5MmOdUt1X4ruvqratQiLNnjSQ0bJDJG1VO8pkye8lzy01VUvAKLUys0qIjWa316WvKKhtBau1fgmG5OMEpqJKt3u3Oi1cza4qybWSKE13zWSZFQxyjayyXYpBxNUwFH2vBkEpnZPJIlWETD2AuVafclhmWFXokO9kL0BrTasoSQIiF1lX3oPgtetEQg1Zw8R5mzsj/heCVlQw0lKvtWxPeRqyOoctIKBPLsCVJHLDLOtZOKWogpMC1vbR6qAAtw4ZNh8KmLw6vCz1nwzNottVhGbg6bhQ5g4oXTltupG2F3qAJL9bBFnvuxDIZWhAvZN53XzpPDYDoh0VpCtaes3hdJ01tl0Tep9B0r6HXcBuN8A5wAUAjtXxopiuyJJ1cBh9wOg8SPnRCrfyZCnS0TEi4WlCiCB45HXFZVnABQgF8BmIAZg07RzqcKrRWBi2aBwY3rdnsj12Hfk1AtqcM9badS3XQJXTKHgkCUoROSwhghyjrFn4m66cJP+qI62qC3OppUrbjJktz8cmSlmDIyLX5X1Up4dFg2MUR445m4yeQLKZUHFZSlm7ATqEEOC00co10XBz4jcDYJPdrtLVgnfymhzErE3jCRQKAhGidxiGWHXKeZ0xn854/PUR6XIEwNjvRyxLxppWrGnG09MZnz4exAGq9/fwGPDw+IjdbsDf/voj3r8bsa4LPn38jHnOKLRDwYAhDriZ9hIkHAnDQJgvq5TPRyAnCB5U+W3GmwW/nJa1eZWhDGteQVf7zgw7M9YIgzqbpHwwqv6QMWwGNKrsaL9vD/tcVoMQdb3w5nt2HsNpKAC5ILjJAz4Kt6dPWTF7AWtXVFN65FTuM8BYq9O9dm1Wp4Q8cVY57oxCUrsjsmARL+V1UnK2Yr5ccHh+wjCOuL27xf2bW+k4HP6CUhgfP33C4+OTyPms2VedGyVr0xezQZZ5xePXRzw9PkrpVkpqUApuX5QTU3hM1fnQEr20/FTVjuqjkkcpC/QMT7cIQbv5RZk/c4qIs0lK+R4fpZRvnhOWeZXmFfO5ZpCvyyIdbp3HeD4iRIfbt/cACFMcQPsbcTS5UDEdIAH0/c0t8jqgMOF8msXG4ZfyvmlkmZnOrpRXzNmksiDnhLxx7DsYvwxgZNqyu3NHkWIrLlTHSx98Q8VTFR9c3WZbsw33EFCpOlj3n9gPXdaSftpkOzPD+6j3KYa3YDDe2C/gzkHVOZvMUE+5KB8x16tsbrnatN1r+lB9hY1VnSAEhDqHjYcSuWW/GYA0LCDiVrlnyWS6yeHWmKOUol2AbT4IcKx4qZGBOx0HZga8dWPWuVK5IdmcVB24PY8d6j2hOpn0pjbPX/ONOhuk8tZR44Zqz7S197BZJ815J+dvOs5B1m+GAhBqjkQqdo+0mcF+Div27xdc/0L/ev+RZjnYgwp/pfcYxoBpiipHMkCMtBbJomWZEwdCgMPoPQZNBOgvQMwILE/q9PyZAJADO0LJwLISUBhDEEdUdQrrYDZnk5y2VSlItjm692yx1cw0stJt+T0nIK/CFVwfmxqWDiGIfROAJQawFxqjNWdc75HXjj/sbErJeDlsYb6cI3l+NeCoTZdFyiwbw1bfi9tjtAi+tfhWg1G6iFtkI2kZjQdRqJu+pbLJfxuIEwBKmSqfAVhJp1k4jEyB1wmsxlQ7o/y99bwypL55TQXn04qnx7OmmBGClwV5ezsgJ0ZaUTPBUnJY14LTacHz0xkpZdwoaThpC0vLFAJMyXtx/gRprxijB0cB7rXJl6MquI3rh7IBQlwZMldCFK2MxkAT2DIJbH/aIt+ewQxBAjqSv26jvliMzXAVhxWak8xKJK1W2RYXWuc3ptwAWyYY341dxxUGmx1RZYUqtP4WSA1mAMVx9eJydXI18G2bdZ4vOB0PyDnXbLswBNze3yGlFWGItT2ktadsrev1qXU+RUg3I6OAKg+d6xx5QBMkda84Ge+i91dIDLXz2ePp6REhRpwvF8Q4Ch+PdlnLauys6woiSDtfDAgaEY9B2uUO44BhtJJOSc9f5xmn5wOcc0izdJ4qWfaL7Tsz+HIWbgXHK5jXlkG10TbXaMRepm46t8ClB+dFa4tJf7epcnDQBJh66v6gF7/YxtCIEm2XrBm6VqJi82XXqydSzS5YQ+bSyoocmnxhAK4QnMvKm8GwFOSt1mvrn6iXrbpPYGnH+gzVGWF/X53mSg3L/bcUWnMIOTXiq/J3DhZVqI4h1IfX+W+roAYTrsecCJahIQikjbM4wloquhkA4DbGpB0gm3yx/KEq9ascsfMZXxdfgaYXo1R/6cD8FTpqy6k7x2aNdYCM6pKyu6oOgvbd15R0N3bUf+y3P/vKY7UvQ0rJK+bQQBHQsleFH8YuJgBHjDDUNu+lv7yCZWIICb7OpQcjkMheUgLqgiJdVLNxp3X7skn+tmZePMd2jbz2lA2D0PZf/X7RDGbTT12k87UL/guOpNF3y3J94cXs9vaLUgV9yB6Qt4Be2/9c13rjujCdYeU48poZAmLcVV7GV/YtUCWL7P9uzxpHhYGC7k5giOLFyex5oCVvBUipYFkEQz0/Cbeg9x673YjLPmO/Hyq/lXQUZCyLOLjP5xWncQYYuL/fYVkLzrPHsjK8a4tNyok8vBcHXCiS6VgsE95wkxE7k3yeQKBcIJaNYAOTfQ3IG55R3FTXlWEvk+2u7p3X1t1r5Scmu6r8emUcu0kCoJkvFnxkBhdX9Zr3ARwhGT1EdY0UNg4gOZmMjUou59pPNYyZbY8JJ5cFPB3J3/U7Anf0+pIBdblccDwcEOMITDKe4zjizZt7nefU2QGNyL1m15A5SISvj3Ju9ArK7wNC4xtC21clF1QeHFsexcqyFy03IjyFZ4QQEOMgpXBOSuuIgJLFudoyMT2GQQIvuRT44NTR6xGGUHkB0ypOt/PhCICQllUzMqXBSYE4PxlQWgXlolqAJcj+lXW35VhpRnq5koX9kpGSmKLro+h3egeEq7xlXTZYj230vc7PiSq8Oufpa7KcgEr8XMtTba/YWu8+TK45GnsZJ7KvZVNYebBo2Va23n9LcIQMmGFKUnlaSBEEdbdyhal+8+jwmX26b3ZV7eCNLuK6/3tpa3NVg5ebZ1AHCynWegUP2Dn5qvZLbJ52zYanOi4oskwj0koZwVq9Pup1kl2+Zhq9Ird6DE/EL+RX02+/r383Adnu+tUHscFT3f3pqckuW9uvtevVccH29Wa32jVNjps/QTj8nAO863GHXJSYW7dtbtcqnQ3YMDI3RyHE+RScQypS8m8Wzmp63Hfoswc/3dHWCiomaEPYP3+HnWDPofK9jp+iaw3osiUXGUdrr4N+5/jDzqaLtu3l7a1V46tmtdhi6NL4jc/Ge18zm4TIWe7aIuMlZ627zkhpEeNRs7ZTTricJVrgtFQuhAFT3CGEAQRJHRa9ofCHM3JeBdyBkZRUL2vJnEUVAQbVEhVxdrXyMXse6Zds4MwM3lKAZWGcLwW//nrE89OMaTfgxz+9w83NCPetx80+4nJJ+Pkfzzg8zyg5YF0k8+Ef//6Ih69H3L29wV//9j0Ah19/OeDxcUbODsss2UVxGDDt9uCQcZNXxFQwuIgUg0Q7B6cRm07IO/Fqr5m1u0THEcH9Hu02limOsgIKirMaEo6Hqoz6zcy6oplzkwL6pq2Xxn5ly3grxG07u5qGCjj2YiwWiRYBQIiDkJhWR44Ak6Rh+aKORCKGr6z+skk8tdKza7BtN6mrQWUMVZBhm5CI8PD1M54eHzHt97h/8w7DMOD9N9/i+z/9gJySdJNLCV8+fcLjwwNKhnbQUw4HOHgXMIwTppRwPl8ExDIjlQwgy16JknpPmtknLX+1bTM1YlsTJBadeHx6xK8ffxFw7SWi5r3HOI7w3mEYR8RBygTjMGAcI+LNHjFGEPpUftF4uRQcLwvWJeHp8wPSvMp34wjnghquXpIVckHCimWZcTodkNcZcz7ClQvGccKaMmLRgqIaIaUrUdUZis5cGG3dNvtQCMoBVrliPDO+ltTZOmeTTdwi8K8dxqOAfhl3QKdFgK7bzW8Pa5VtAh8AMktnB+YCyh13mnGG1U6Ttsc6RaiInUhzlFhKzBy3rna2FtrfnQx+7R51nl2XrTgvM4ikHCdGyRS1TApxLEq5LhUJ+RMXyQBlrhlJrzkEJDFA3ndEKlMaErY5RqfsnL5fCFVHwBlFaFeWpwPN3GS/J1LS8NZFqpWhMPrW2ka0WO+b1JgBo1Aj+WwD1y2J3xnX7agTrACxRlGv1tf1aeuu6ME497wQPUBt5zMw05/bzmddKc9cEKJDmAb4IJHhkqUsgTIDK4OSZCQRQUrnOXfzo+WvDgiFASPH906yiT0hDSNyYaQ8I80LUnDYR4CCcRUwammS3mGTtQ2otrX9cpyp+11K7xnSQVOz3xQQl7RixYrEQMpAYgDIUkL4O3P5n3mcTicAEsW364pDQxwupTfMrpxOZBk2Qci15T3NfO3mXwJxEv3PyiUj/HyCueZ5ViM41pKaEELtVqUJwlsrUb2DRZEmsSl9KW2q67diJdVzjkCagduMBNP77V/OhPO54HLI+IWFFHyaIr798S3efxix203Y7yLmOeHzpwPOpxU5MU7PjPWS8fGXZ5yPM/Y3I/7f/9dPKAX493884cvXM7RyFM4DwxAx7SZkBOz3QIgFzBFgdSxZIwF1YNijA0DW0i2RHlbyb/81vNnKT+SLq8qeUp1N3keQ+T+AzjDcyu/2e3utGp/dZwDLXFXKqSKyS+azqHNVyyVKBhFj2jkN6go+5iLcjesqGEqciWZ4tnbogGapmczRe6nlREpbwWagKV6ybpYWYCNy+Pz5Cx4eHnFzc4v3777BMIx49/4D7u7usa4Jp/MZKSV8/foVT09PEhxL1rSC4EMUHqhpj2lNyJlRygxzfjIYMQ4Ydsp7pPp2SZLVbUCC7FnVXjmDNY5C+PjxE6B6xJoSCW+nwziM4oTyHuMYMQwBu73wPfVrW1ZGQS6M02XBaTmD8QXrXISaI8r5EArcIGHPlDLAhOPhCY+PX5HXGQETOEm3YJnfqPpSs79q9mFR/CsyuDqGdB2tq+psx4AFEZUTMXhf5zIE3+ECfR7FoSJfkjoXO4eWrknnHGKMVbcyN26ga6yaizj2CpvTArqvNGtVnUhtT7Qyrdx1lqxOHa1MYZaA6usQrc8CpFb5YarAwBD3tkq79+vzEAB2DU8Y+X6MsXb8FBvDbE6hUKA6XlQrM17DTlWXO8nz69dr+4htyBd3KJge1DjHnOIt9Riw/a5XskYbcA7k5ZlSznWcxdFHqgK086faZ7QZW1fXQCnXY2c32AHk3wDUFb/bOkadnpZe1Y9T/VZnX9JLWfua4ufu5RfTDS3RRwEv0hHbB4ebOMJ7oU6RTDbA5yLUAQVwsk1rVn7rVm636OC5ILDIN1abbSXpFJkLY+GEvKwYvEN0ALx1tyNYRYA8J9XsSENHppvaKF3p9oozTQfq2iqqC3TQy5rkfpiQCiGpzdoxU/zu8YedTVaLCDNEIYNkD7hRQPYx+5TVebuWbmdkZf1RIyz2jwusOU3OCcsq5XMhBHgEWHtNyw6pTrZuIGVjanp+4dqZqW407j2b2K7D3jNtm5FMjdQdIhOQgcslIa0WPRWhO44BRKO0kI4kQh7a9SMxzucFOSfsbne42U8g5/D8vGJeMtaFkFYF0uq9D4UQQkGBA2KAK5K9FKOH852ZWg0eVEPdxqIK7ioAOg6S+pKMjzy7ChdL4yQVVhX8QMbS6im7IUQHzDbCRK/VchLsI9ZxQstoTKEWS2uXzcXkAGpRL+Ht0MyLGqHplYYa6dVLbZuzlQY6RwoN2r1Y2mLz+ALLsgiwASMOAwpn+OCwv9lLZtAwCNfE85N8t6jS1s1rSkXIWkOrBWfU7LD6/KaoqlFiGVC5TpfNrZHHFy5IRWvYlb8hhIBpEqG42+8x7SbEGDVl3Gm6+CBAIUg6d9GxXHPG8bIIIee84AzAOQ/eEUKQBVAFGzfwkpLwGpS8goqktBfmZp5sDJq2n+wnEQnJPXUGoRpCBqL6SEOpe7mPGkAhmH2nH2G7kc0KrJkzVeg2qYZKVIleNlyfo8nE/okcnJCCF8FtAsIcmL1Gw2RvtfNRAz8G8tHyhxy5bgxUIXTa14zQek/c7ofRAJoZvDVzjjTaWYfb1c/RlXfDXrNh6hXZVrXbeJgc7Uu96oiCtrOja2D7PeFWourkpm4uUJ9Zr9eBEdsrFvW5PtrtdM9U77U/y3ZJvvz+a69v5dyLZ+fufHZ73Ud654PN4CZC9eLaryBPFYmlMDgV9fWyqXTU2TNngmZDmcPGpkF80E0LSgYqlCeL4cHq7BNekZQkCycUKaGUJdZlFtVnbPvmGne25/69o0UWHbmNLmdm1V+9LSFjyPQbE/effFTMQ9w4T9qtd47DDvzr/uoJtht3yGsYqjQ9UKxEgiuR8bqugoWcQ0BUn0AnL9kkDOokCNikiqfk/uy9ZuxtZ4fbQ1Wc0PaOrTdA9lbO0m79ck7VkBIScGm6sq4jfHB4evSY3QowkFYAzLicVzjH2O1H3N3twCB8eThhONo6lms2gnQJTogxGkEUAGolmWSsr7C1Is9vrbNZy+moe84mW/Q1kg6D5mwwg51hRuZWOtr+fS1wsGmI8hsGmeHfOsaOABaeLdEpBUQecEVwkAdK1gzeImVpzhkuFizotEFNf+2261lpJmRwyQIJXscJhEqB4DycF/dyxVDzrA01HG5uZpAjDEPE7e0tlnUFHGFdVzwfDnUNVV0HmSNH4nj1PtYMAFYMBUgA3LptJWhpre4RVlxBNs6W7VgxVOMiMfzlvccwDppxt8c0ZsQYEWNQThWHYdRyO5JuxKVItyZp0jJL6d1lgXNH+OCx2+8QYkRxxlFr90DiAFxmpHXGsnisUboiSrmnkOgXFidTLb9jiHwhrYzonE3S3EUzeVhKvHqboHdqmpyRt6nOPxQLWKXNCxVTHShOZdGVPrZ1RNRhkO13TQE6NFlo2eRGdQGg0qwYlma1QWQdGMpBwyyw+9A928mF9m7LopG9ioqH6vj271fsQ/Ve+wZX/fasNiWgpf4drH1tX/N2eK9lcn2szYnsg933dKxr6ZhhKpPBna4xacaM2h3TOlVuMiwr3GK71XZ/3flkHOx3rj6C7j92ky+fH9jMBtAewU5s2NL+Wz9vGVv14x3+rCfZ6qx+PfPGHumkvcqK+hlJ+zazpOFiPbtlT9pc2mhRNz52FVL55PU8mUjtN+XFLtpYSG08kQPbcewzmq6e7OUrtqa7UbQEA4A1QlwHRGRkytL7nVuTkd/WSdvjDzubvI96k9yElxk4rJQe3dJ4sSrRgCsAJWplEV7ODNSikTkrO4KUohDBUcA47FBCqYuayClnVKtjt1k3wzKtQhBIyvEkd2ndSDQK7jwGzSLhzgHlzGDk9jyO1PHjhDcpeA8fPXzU15xDKcDHX5/w+HjEzU3E3b0Y8T/99Bbv39/g8Lzg8eEirbpTBAN4fprx6z8fEGPAfj/i9n6P02HF508XMJNEn7UEACyAxYE1M5SrAK1mQSXjtZRfFRR9bS5vZqxuJEfAbvIYooelhTMzLjMpj5CrKdJVnrI5Httc85XBBmeASLMUGEZnA+MgLiVjzRneOdzc3WEaR4gzQdbF4fkZl/MZzgPOcwUfwAqmIvW9Tshfa0pxEWHryFUeFwP74mzyYEi3bGY00jPd7FWCa1pxiIDVza+XGZwzPv7yM87nI4K2piUi3L+5xzRNuJxnfP78Bcuy4Hy54Hy5gAthHEZwYRzHI2KM4qBZE3IpuLvb4/2H91URMoCHhwecNbvPoiJ1L+h4l07QVQCBglRWnJVUe54v8AfJ4BmGL3DeYYjCb+GcwxBjTU/3PqAwsORSI9uOJAMoh1lLnVwFZKwh+nWecXh8wLrOGH1C9JrZ5R3IW9IoN5lA0JJJqgaQIY7CqA4HUVxOojSAEBJKOFeMLCIE10CuRRpZ/0lnC62fr85Ui1hIrb+Mp5UN9c6kTilzB+SuDIY6L7Y17Gent+rZDIA5iT/Zptg4D0yBG7GhOkxaaYbufIKcQ8FZqSUu7X7aTzNoNfZFLRIFaObpsgjgUK4v2LwwaRdQc8YagMdvZo3ZdRnmRNyClF5L2BNRB/2onWCDq0BUy00Bi6xznRtHVnYsq6060bjjDLtSlhZVBTMKUYvCGvljd9+vqXFZo6wKutRPVyNbnTgts5ZQunlq8Kp3pGHjaDA9Jb9v76L9SZvXSi6gQibKABSss5bH5xYp9Rp5C87DuyCZkS5ItoctXFv3Cly9zQELGTEYGMkhOwkMZATkApyXjJQzpuAwaoexivq7GbCXrrM4+uftHTIWPa8OAQVCMryiD40HZkkFSbkffgvk/isOy9gF0JW4QXUigO7etwfDOEnkT3nfEUlQidTAZiiGyp2Ol+wDDwJRAPOAUkolCrc1Wii3FH8izShQNGH8ZZbNlHVNUhtn0vJ2M8xgegEVkqFGXZ00P/HKsynNXQJClDXGHDDPwC8/P+Dh4Rm7XcTbtzdIq9Rhnu5GnM8Jh6cFBQXny4rCQAgX7PYHhODx5u4Gd3e3OJ8zHr+KxWsO/komzw03Nblj46t4Ce0Zm5zPnRxqn7PxIkgwYXczIMZBjAMlkBauLFN4DmZy2pT3WX19y3bmNobttb7MBagclcoV5LzDm7u3mKYRaV1xuZxRcsLpdMQyz8Jx6CzLqe0p0a0Myhko1sFK70+1FCCkwIA4fsiLYyJpvFH43VQ+qPPO5p5ACFbt4AIulxkpF/z68SPOlxnOe8RxgAsOb969wbTf4XK54MvDA5Zl1czxFeQ89vsbgAnLsoBwAEhKeUGE29tbfPPNtwAY59MZ65pwOD5jns+tJJh6fSNZtELmrLgXNjbCO1pKBpE4yw4hwjuHr19jzVKKUQJ1IUgGktgLgoPXLBks2S9IawQXj9UTOCeUtIKtfG4VrPT0/BXPhwfkdcHd3qHsrE19qM2QgI6fBajOPILJ+LqLlYcR1SFSWHVcZw+IPCDl0oq6z73uazmzdLEDLMhnusj2lDmAqkOaO8eI3pvr3t9+hrsP9kV0DS/YUfWw7hkCgZWSgMhs0noB1BftGlZe24EKO5/pd5NxdZ91H5TTNXxiDUdsL+WaDSScbxucU+/5ep+/1Hf90WOBflyvsUj7XHu/Q4qvYijQ1mnO6mwiUr4/1zKbqlPiSn9yN8leK41knMzutOz9rb5/eRhQtnWFZiNQsxNMj9bvXHEx2Qy3BjndJKBxDZnc7lEps6uvWOBZuK70nBDxmHIGJWh2pQbeSDK8xSfgEbyDh4erQQfUa9s68E6puplBLJniQbNtEzupjMjAJWVkJgweGLztkasxpIZ1+4VRtRxznes6PizygzxqwIfRKoPYMBQXrDlJdngXqPqPjj/sbApBnE25tCwC424yHoaNUq4LnFEzoLgNiVNlK5krsnNLLkjLqp67NhFgp6mrAoAkfTKD4CVqV1vZaqZT8LrJcuWasi55Zsgy2n27SHDOMkxM6Bb0LYlse8oicsJvw0EcTlEdTs7Dk0cuBb/8/AguGX/6yzu8/2aPyTvsb0aAgX/+4wFPhyNyKliTR84ez48LHL5i2g34r//9z/jupw94+HrCun5BSowYXeNoUCOZIJ5OR30EWu+XW5mJdXBi7seqCfUqyHUs4Qm7acTtTYBwpIjzL39dMS+iaIRZluqCBBtgU5DZgWCGEgBepdLWDlUsPBZS4liErD0E7Pc3uL9/A8sqSikhpX9intXh4SCbxh7FFQ3AFliOEAO1fEqI1cTREarA6p1NShSeS0sLNYVHaqGRGGHWan25XLDOhGVd8Pnzr7i9u8P3P/2IcRzV2bTH4XBEzsDpdMa6FqT1hFKAcZzgnMM0SVkbrSvWdUUpBbv9Hj/88AOck/VUdO6+fv6sDsdSBaQpjJbNRpWw03gYMjPmi5TgFUqQhpVNWVTHqbaU9s5jGCeM007B3x4uBICl1Tl7j+SjOD19gPejGtBy4eVyweHxActyQdl78OSkRNATELx2iyt13VoEiYwHotblolEZdS6LBvw9GNrlL0lr4KRrzcPDK2ASbiOqpWoSxRQZwR15tYuackzoyCTb9eygOtadgu2MBqaN+dKpdz2TvaX7BED3zA7VC2tfIGq3UGxXERrrOWm0jMAkkXRRnh2HA64P2Rd9yq05nCQzTbqCOoq6d2QfM7Pk1WkavYPwcJSKV38LMJGWtbSsSFN6dv8GDq7HezsYzYAVmd7WTctSMQesk24uAFIpQgjaWYfbeWxT4hUAUilwm5T9FyP4AnDZOmjOXvuwOfbkz9Z1rAfS22c3J3kFp/ply0KzzL7NeG/uUZ+PWbnVRHOYY3iZi24vW3si39gBsXM0CY+NlNlZh8d+0KzLn2ORAQSh0ktESOSxICBzwWlZ4Z1klAyhRZS389HGsN/r/Qruo8f92Iiob6WlpTpBGZxkHpd5xcoFPkb46Df79F95xKgYSukCWOfEjDhCy1S0MZBnbAYJ2QtoGEo40AoKREcIN1RbBEKW6zojsJNTzNWANl1MREIsq58tJosMk6nelDvU91yomRSdcKs/zWlKzrgKfTWaQ4wIUZ1NFMAIWJaMn//5FaCMv/71W/z5T+/BYMRIuJwXfPp0wPF4Rs6M89ljngHwBSE8YzcN+PPfvsP7b97gy5cT1uUrUpJs54Zd1YhxzWaqDjSg8VOgYcc6J6Vs5onb0MjTqvG2vxlxcyst7+d5Rs4Fx4N0IgQ5kGvOORv3/l/f/crOW++ikx0V6ykGts5uERH3b97h/bv3WOYLzqcj1lVI+9OaRRZDO46qQQFmFK9GGBE4q7ypmF6ZPbuSOKeyoTDgcqlZQUkDdlV+OenWSkQYtMSIAZzPM+iyYE0ZX78+4ObuFt/9+AOGccCb928RfcTz4Yh5zSB3RkqMwgnkAnb7WzgXtMFKC3gSAXe3t/jxxx8AZjw+POJyuaDkhEc8qPFqstFkbgsIOBThwuRmKBcuyIvuW8Oc3TrwQTLEHTkMcZRgXowYhwHeB4zTLXyISM7DhwXFOzgqKEEbI6UFDMZlnrGuK56ePuPp6QtKSnj/Zo9SbgCWwH+MA4gSCMLTadUAvY4w2Wk6wmSBTHPpZKh8Oq2rOO0cS0e+OEjAMUg5vWVI5uxVXmTNlLSSuFJxds1e6rBAc5Bs79Xw1bVdshEj1c64wmFovEswovqNzmj7peEL1WEbnbM1zAU7iDx43RXSMATrXrH8CXNQVQzlHFwMncOje35snU216ubqav1dbLAAi41dMSVXjb8ZQvm9DuSL13rnF4s5pxjLdDRVuVlLFzue5Dp0OsZGZwEIDjAn1YuKJhuLV0a5ZlKVblJIJFCjQdDy/bo0bKyu57N10aQ6b4bx5YMvx53qB9uzseoIIfzOSpFCxEhZsgAdS1Zo0IBd8F47aUuyQsUj25GDr2MhZbesWAyOxPYtGQQWZ5MWfERfZ7WaSL/lULo+Gu+ZyECCdLCrj86NK0/sMEZJyvebElZmhCFugmi/d/xhZ5OzrBRS268af80jSNSEhYHqFjeQicolg0A16m5lbaUaUKasFbyqYc9gdRqgOhdswVkNKVDhmVyxA1VVMPTLur7WBHIHdTfWh21gsgVPSqrpun/mZIEZPkICfjwsCNFhHIJy5gTc3Y1YE6Ms6kQCKzEiY1ky5suKUhjTbkDJwDAGhOiw2gLS7/TKro3z9tgIHBP47fE3HxSQI217h8GLM8sTcmZ4n/TZ2zPWRVFPWJGbvEC/AeVfXLyBtKaEJKMpBOmwE3zAzc2tKLeckNdFuZeqm0vvyYEc1xRGi3hXFv8KlqkKzB5UOv0HqDGtz2PZXO350BwEEEGcknCLlVxqKnVOCcMgNezzvMeaVlzmGefLCetq2SGaHVRBAxSQe+XlEb4OqEEl5SDqcugAaw98TdBUw9f+Z4obTRBl9fKztgovngFaAZIMJ6YAl4t4aDOLEywX+BgQw4BBHT0Dq7CdL1LnkBPAEsGVddsBim5vmjh8YbdfL+DrNVSXmXVNkqMwo9HcNYUKaineRSMXBCgHEcvaoRbFa/Lk+oY62dLfErelLw6VdobmjL8+3WsK1xSGbq8OxLz8OtULb94nVIL9Kq7752EDPAJWCxoAKt0iMhBkkVpT4hXQtK1en2Urk9oHLStL1YlyxNCGlPLq6eosUJVur42BDoGhwzpuLf19s746J9DvRWZIFkwtfSFNY+Y+M0YBdi3ntjEA6l7bFgfWwe/+1AmmpqFsbqxb0OuA6HfuG+iuK/dZS58hYKY3BkTONZliwEWGj+u+7YF2u1630hUIOZI96JSYGdDs0SI/LcGDwXUN9cPTBtEu0kCTzXef9eFcN5f2AbR5V8kvnzV88jtz/599WDa3EfO2563SD9sHl6OlumvmqoJEI763rHDDUL3Dh1TeNf4MrmMmUXlzKPVyg5px1uGL10fKMpk6wFsfy/CT4TqH6nTqHCoNP1HFF5ahBgaWOeNwmDXRQTruTVPEze2InBglO+G8YlE5q2csS8GySDb7fj+hFCAO5hDrMZ9cREq/dO/1CtT2Ddq49UuSu+fcPD8BwQNDJCQSXirBN33wwvDbqwO7GeM/cth6NgwnZffCy0QOGKcRIXrsb24Ed6eMtMyoGbIV02h2rPPCMQjIT9031dmkDsnqyGS1DViwuuvO52Cfo4qTe6O7GTfiLJ0vF1nPGeBBMP44jQBJBkHWoJZ0qrb7kaoCsswksqwigg9eM+dapngvb1iFtWEq21vcTzgDTYC29WC/UwYSLDjg4Z0Egh0pl5xbhEcU0tDdOYe0BvjgEUPAbhjk3PMMlxLcvAgxvWVBslWRbOlGtni8lxdbWcLXz7sdArSmNS3DZSsWdG2x006XhqugAQbZK1Kqql1CiwcXanYAiZOX6rxXd0e9V5Pn3GGM7Vxd6cFuLYk8wmY8zMHVfsr7MHwmCq/pYN3JtS6jw1Xb82xLiKr0rkvE5II5hKGd4rrSO52MzXnMzq2j0um0+nl1sun9U8WITcfX79B2rKrQudoETWUa0qLtaaDyq7vXfly2R8sOs2QBcwLrI1Q71DLYnMoURssY2wTrKqbpx3q7bvrrVxlDqDQ+FZRtMEy/nq70LkOf90pI1yHs9Ai371lizQvJ3V+/jiE68Utq3EmZnNeMKtfJ08xQSiBUDO3qpmkjZLrJ9jJtxqu7pW7gKhbrXqm4mRrktcCeI0sM+I911B92NkUV0sgWLdS05IJqpLSsG7mh4M2gl8fPJQuRM9pQW3tQLkqepcRXwZki8zWabpk9zmUQSWp0LozCWTuqSNlX5iKE33VitwCnthUnVACd04LiSInOFWCoI8OTg4OH1LxL6jG5AMcj/DDCxwEuRvFcEoHYIWqJ3/Pziv/7//sR4xjwp5/e4u5uxJs3O9ze/4R1zfjnvz9JBzsfsGYPzIRff37G6bhi2u/w3fcfEGOopM7lMKM8MNY1A1lAkDDYtxp0r2DNynGKGXFE0rSXJONlA8Zt0REQo8PtzYB394O0gI2S+n04Mw5nMU3NeCA1vGRBunaymp5uWk2iuPJrlyGg+07KdQiePAYa4B1hXU44HTLu7t/izf23cN7j5vYWy5rw/PiAX/7+dyzzDMICaaPtQD7AAL0nLY1ibVlMlm5MWkanys5ZVF43drEOfqgbtGbbEAHsUCCtues69QQ4wjIv+Oc//wlHDvv9LXbTDsM44e27N/Ah4M27e5zO3+Lx8RHH0xGXywznAmIcwUwgdwJTATkh1owa8SXnsHuYhPsgO5RcpPRQxY04cqUDUVFyRLAJpK1CEcjvN8oERUowCrHW2TuEJcNfVkkLj5c256qoKTjAEW7HEe/3Nxidw7fssQNhfHpAOD4LAeQuoJBHZiG/TGuCY0k3FQBrUyF7S57JoromTuts1NdNiAJiUA1OwBqTEFBTyUglKfiTLEpHDIqtixuzEJzTSsr1JSn/AlYtffdKkKqiaQEXc2vpXDCQ0fjmeiVpStbq4GVOCM2dzeCaldehrS5duFd7FVDpHmtYiStA2IAKw1agRlLMBIYYFoUUJJQW+UxrknsMkuFCOjv2BASZR3K+a327dWSgfs6MSWzbeHfn6h1Rtv/EydXSxqvzoxsRqopSx07Xl5XseSPGBLCWIg5h77rU7G6KbW5dc7A5X1AKgVdtWGCywxFiiBiHUblxsnKTEVIPlugKgJjm1gyAfnK991LG4FomZUrSatsyf4uBWNVh7bTCZyLAO0u2JhiyILkSoRqoK1nIaslq9LWDl6MCDxa5mBIyXZdIUl1L5ogvOUv2LBGCl/kYg0NxA3JOmC9CSBwjYygFAVKWbo/fuC67+eB6OZhxY4GmlHI1uKy0tYJ4tBJLT0U6csJJyTwDFPyL6Oy/8gjet2dh1iw8y5IR6NQ7lkhRnkmFzBnIgDa1q5h1TRnzvNRyGDP0fHUGiG6U96wkNCNrWbUELgscacYukeKxrDKLqnyusqoacpIZVxh13vXuYHMomEOaYjjnFThLeWvURgTknZKeCh2BjMcA5ozPn884HP4d4xTx00/vcHe7R4gRd/d7LEvGx19OOD6vADucT0BaCz79esRlztjtdvgvf/0BIXqZ70BwMzQwVOB9hpQi6bpy8nw26pIJhVqCKU8m48HoshNtR5FIGOcc9hPhza3DmhyCd0gJOB2NW5Cr0fgaUDcnomHXOt92teoIMB2CykdFjgWmeofLfMDD04q72zt8+/03IHK4u7/H+Tzj+fER//x3wVAM5akiwJFgKE+5ER/r/XoNOAjmCSqbfaUlcIo5QmHtnmQBRDWYdL85J/QZXnmX5Hxy/ct8wc//+BnkCPvdHtMkvEbffPsBzns8Px5weD7h8fEBnz99qhnTcRxRckJZC1Akc4ucXHfcRbgAhOcAJsn0rk5C5lpG32gmSs0+rF3rINnSDED4QmXdAJJRK05friVijhxyLlhXDdScE4gcimYhgpoj+M044YebO0QiTEvCPhWcDo+I8yprrQArCEthzPOC4CNSTlLSpjIUQCX7r7iQdY+a8d4WWNWRVY47hziOIhOYMa8rAgPkhZOKnBcM7R2GIQCMKkdYKxLEnhItl0sB+ag8SnKtwkVsLZXZrupqs0dEZ4nd8jI414KmaDQd5ISvlllkKPp9ZWFOoJCMheEVsMlXLb2rtANNBqth1OxbNFvXqVPWDPq6LxUD5ZJrVk7KWbnSnDae6jBUlfEAtKlJn+FVKQeqHlT8TqxZlvl6lDY6Xr8EczoxN16zNr49flBnP5p8IyJ4Api80pfIMwnXW9Oh1bnTwRkipyW3EBuapUmXfFcoaMg5xGHEMIzIOeM8z8jadCTbiQyTEdRpX5dv/amIF4AE52OM1QfDYLWbtLpB7SbZ77k6OQHVmWqDFF231akL09cFXKSTby5iievjIzhGZMATq62je7DjgrqGHU4byKBkIGep5vJAdARJzxd9eEmSGOA1mOF1BRN3q8DKnCpg7oKIOogWgLKEH9I1YnaDYRHThp7EeR/IIZLsMxdbw5L/6PifymxiNqAnD1AN8W6Kq0+0ehUb+KgbUL8HAJmvShRU4Vs01zlfCZwBI7xUgl2Y8AEsXmFeyGaI6ICRRTLbtSvPkQpkFEKxzzDQIlD6hHYCXYgOXtrlamq4TQqIpDMTMZZ1wXK4SHeVDwllP2CYAqbbiGVJ+PL5CHcQpcjskArhfJKsJh8G7HYjxklbr3qHEJrjDZv7q3utPnafxVTnzIy2K4BT59BBM5u8ZDYFRhiAlIt2FWlOGqA3DnT2qRtXMm6ZtglYnVPt7+5+WcsUvSjskhPWhQHOiENACAPCMAo4zhmffISkEjcT7v/P2582x5Ik14LgUTNz99gA3C2X2kgWOfO6Z2SW//8/RlqkW16/12SxmMvdAMTmi5npfFBVM/MAMpkUIStSkMAFItzNbVE9uh21w+SIpKVxMz/egI+0TYGVxZUDyJLd4VGKA5oJqh7cUrymnngj0gOJQ3UaZwACUOOy4MCM/sMHKZvzHv0wIOdUO6g5r/wVSbejcEmQrkUIQcjh1XgAGqCr9XLMlXi7bI3yzvIIZaWrMwfVMVl4vjJQapRFWdh3IxMFMbJTxbrZYBsXsPNgeHh28Jcz3LLA2ag0HVeilTVln0gdAkUZGuCoSrAoYqz3UftzS3LLqMZ4zllALQjWErmkC9sZIEn/Z6ocOeZkak5WmdM1BDJA0oyvdQo18n8NnKqMajOTita06SA9MzpH63mh8ndqb1Ueq/0tFWdyxVFVFpR3WgaEnQt1ZtCtQwP1vqt5sH/9kgFv9ybZd7kBKTXNvd5j9VyvXU4RR00lb+YSL8fsHDXOmUYJt2thz2byntbReNM79kAEUvLhAGLJULWgS+UGKbNWn6gd62rcEA4cNcK8dvQq3fcMcDfP0M57kfcqq1ayvtEPtncqcSjrMrLKbgMeKAaYjdv0iO2i6nyoepMAeFaA4hyYHRJLqnnMQFRDLqOIz2bvQpygLYBCGwGuz1ScsNz8xWS/ASai4uRwzsEDlW/gb+Rsso6KjmoTAiPfNWBoGMsepA6tyawpjgaRFznnVbegNtvktqQFQMEPxVCG7AFusFF1FNsGqOegDA5VhjLLXq+FkXWfc8MnU1u22zjV4Wdt4wpudCAthxzHiPN5xHbb4/vv3iCEAOcJw+AxzxHPjzOuZ/HAmSPuel1AHuj7AYe7Lfqhx5wiImfFWjUibUTD4lhAu7UqXuH6VNCjWp6Uyl/KdwIjBGDo5FljNAzZLHd7vVf2i+2FRiyUueZXPiC2rzgeOCjXR5oxTRmHwx6b7Ua5ujy6fkGMEc55MdorOC7Z2s4zHHyDMy3CXh1Gtxn9ZWckRi4ZC816m/519XvJ3NS/pZgwxUmulMWJuTvssd1s0A29lp6SdE5VeU4knYMJDI4lxFlEq/MOnq1KYq2bW9oOw3252R+kJSZyRFWemGO7WUgzQDNJMJAdlIxUnVJJPr+kBUuadV1lgGG7w6wBU7ckdDEjjDNcEseh7DMpVY9JznuKSfg7W2zPFVcUXJi5kRnNTr3BiM7VUiNmqDPAPlv1ijkNZY94hCycZNJkhMv+JC1ZZVfnEjkhkTO6KS0908NE5oBv8dZ6o/PNz3VNjHqgXae6PhWrVL1V9mpzEMl0oh3y5tXKUHtZIMrmjMh4QeueN5mdySom8OK65WdU6KLKvoy1PHeBDDKe9O+BJLsgrZ+p7oPbWX3lEvZdbaC8suFqgBFU93RdhzoOMvvJ9JghFLWlfAiqU2bdFvr+9hlbnLiGuM14SW1JLfm0cnqCYqeGuxjtmakyujjQ9HryM5ffFSzGDAsOExmMUj2/MgDqGay2WDPtJPcpWJszPLJ4GkiSGySrsxSYFOy0Aj/NnN/u19V6mq7P9X1sIV6qz1wvq044tgzXl92Df+31m51Ntrm9+NBUGCekLC2vzXBx5MHs6h7gXIRdZokmM7g4+FJKWOJSa0EzC0cMqDCvSzevptuWZS3dLFj11Ot8WcvOArglCmOeuJyygq62ftH4kGxzyQG17AiJ/nk4CL+A80GI97yvpFpsm1sG6ZRk+eOnE46nEXf3G7yNexABb9/e43A4YLwmHJ8SmBOWOQOccXya8PMPT+g3Pd68v8PhYSdljLkagMQvvf/VaDUBUDcir06pvud2rWFGSJN5wOvsA/upxhnadVgfymY4imfWRrNcmJp/yzWXeUaOwPPTV3gv/A7DZovQ93Ce8e3vf4e4LPj65QtOx2fEOGG8PiOnKGnc0m+9GEwEq20nq7kQoGTdx1iyxLL+bMJSskCEm6Ds/aylpSq8bL84coWbg5w4n67jFT/99BO6Lmj3lIAQHH73u+9xd/+Au/sH7O/ucT6fsKQJfBROj9Pzs5QMbLcIIeB6vWKepUVxUk4J67BjxrvMszkfKkeFRJ6iOpSsHbOBKoCd8Ch5H7Dd7bV0ccCw2cB7j82wQ/AB8zwL/0ROuM5XLGmBA3AdJ2QQrpmwYYe4zPDeoXMe2+0W/eGAYbMFSLKOOOv+JZTSBtkITUksi/Az1x81O8/2T8kQMuAGfSZofXmSM9AF4Z8RI17LEW2vknbO0rISYoJzDJAvQCtzqkoIRnCue7oY3UDpsrVSXmvh36YVyzO0nCj1uvWa9ZxVEu9aVrUCQSRnyda//u4WLLUKdv16oTj0LKTMoJTKmLz3tX6/zE1TjkeVXLteu15W2g4bF53yTDWKqwXRLXAjy7Cp3riCV9cGdcNJYdfRcg/h3NP51s+swIX+3HIMBNUbm81G/q6t3YmEUNVTkBKQRYhefeiwtcYaer24TFjmqYi9dmJKuS5QOJIIpNk7i3LWRTWMDBys19cMeMlAI8RkxOYqp5lBXva7D4Su8xpEECBJzEoKCgRH6JxH5x2McUCAWhl0GUOb4SE5XQ4BYsT2uubOE0bvEQHEzDiPC/rg0FnwhiRqZmth/5X1eaGpKgBq9Y853EDUOJBtfgxcquHs/3acTV4NXXPqCebRzCwLZOiCFp2r5fKZk8xtw3NoWi1GyXBosyUtq6kYAYBiqBZkt/YH17UtBpcp7Oogks9YybdAhKwlpcxZyyQFv5hDwrgEWweYOWeD7+CdlJsbnhCdlCsHHAggjxgZP/7whOenC3b7AQ9vNgAc3r7dY7fdYBozLqeMGBnXS0DOHoQJm+EJ/abDsB/Q77rSRECcTC0O4XKgWnkmw2+MK/uBaqCV66/kd65qK1luKk7Gkn1HN9cDXsii+o71/m7f+7qBKGs8zzNinPH16xc50z4ghAHeBQxDh+//+Acs84zHr19wOj1L9uSkJWzqwNGbVQyl42+79Jb9wKIdJTc313VXHRua8yb6zGMV9CNzPvXlPTFGXC8XfP74M3wQLO0csNl0+N3vvsXd3Q53+x122y3G6xWffvorxsuCZZ5xOp3gHGFaZsSUMc0TlhgRU9R9R/A+SFZ00T0qUBX/5ly5aqJmO7mc4bT7WcqSaRC8ZMj4ELDbHxBCh/3ugP3+Xu6x2cH7DtfrGafTs2RwjCOWJSKAcBkXRAa6mEFJ+FG6rpNOx7s9Dnd3GDYb5MxYYpQsrpRquSIRKMZ6dlFlXTUm695Zy3KAckJ1JssfzLFFTgjQJXtOs0NXhr7uacfSpRCia3taZ08we8XbktmSUpRxGO8TqCUBvtnTVc4LbhTnfbKsKFu74gmon5M/uXKODXtVrEbFUCGTfzfOmddeLd4o82rytRmD3UfmwaasBgFMnBMDjmndVbjg2+YxbR6UeNqyc8SebTCUI2gD8fL4DJIkZ9RkhIpWq8MVqn9aWUW6rkQMzwFosp1bXWPPbJUWzOJ8GRQ7FdnhxK4qFCJEAGkwmgg+dPBdL3soJcX0UTLLbSO0eBFCTF7uoQMRHZk0WJ5W63q7xKbrCpdWcjD+ZmadebI9qLZhycZVOW90Is6VhmLrJICXmKNNwoDaqlYz0VuTARAWxbBzyjhPCzonPNXB6WfKGpjj+Ff2sD6DVAYp4iqy+NW3r37dcnP9e6/f7mzSaEdQ4zZlRk5QQ9BVIaZlMJxTIeONcSlGr4H3bLA0ZSxKumcpmSFIujU7lpQyUOHDYTYCOikGMqdBMTRkdsu0ENqoiwDxTjNKEmkKKOeGOFjJx8nBGxE0dPOpp9Q7j0zV2WQOJ0AUhGRwcRFY3gfknPHjT6JgvvnmDkQOm22Pb755i/1hi59/OuJ8/ohlyZinhGUmLMsV06h8TUOPw5u9zIUCJeIsiXeNsCqQXA8Mm5TStLoi/0x4tAW+xeCHoUhl+89FOYFaaGPzLT+/AsdWG1NkeQOyVKEUjAcT7iLk5rgAnDHPE07HJ4TQ4d2HDzjc32EY9vjD3/0JDIew+TfQx0+4no84nc+IS0TohLCxCh3xyMK4VlxViAYazbGm1Q0goAhFH4SUEYB2JSk7fnVOnJMuS/aQKUVczguOx2cAhLfv3uLNmwd0HeFPf/oTcgY+fnnEw+evePz6GV8ff8Y0XRDjgsenr+hCwG45oOt6XC5nTNMsZacK0ITIe9BIoRJ2qnAjaKprzkgxYpxGNW6SnE81PnJxchD6fsCbd++x2Wyx3x9wuLtD6Drc7x/QdT2ulyuOxxOWZcbnp0+4jBfw9YrL8zOWlHHKwJCB2TE67+E6AV7b+wdsdzvZv0mcX1RSU50qUmsRXYUyI6+APqHN3FqXo5kcMLJT4oQZs2SF9L1kiIUAF9alM5JB5iSqpqR0InBFPKYclWBmvaPLqIwrBVXJFxDTSOfWqLVmBFVBEyrpe62Yfy1iUPhXjKuO69kjBVu2onwz7Ao67SHW+/c2esfNm0VJi4KxLhn1MhW0OBnk6n6re9j71MCWTh/mlHIlalacTHo9kf3VKM+5dXZX+WbnuII+1nkzPgrJ4nCs5TSaaRd8de6V86sgJYSAvpe217vdThxOTjsrEiFOCXFJmOYZuEqn0a7vEVRmZDVILyfG9XptHHQ1E6X9bk5pZiHbn6dZyzRUB2rZW5GbhFLy551DFwKkdCprJywq8+QcEDor0/XoOtn7Ugqpzl8nZfCd93KOSXm9spbrNsu6nnMN1hBr8qjMZSAB0ecQkMlhThOWOGMIHhtt6NE7XzIeXOl51ThrXxwF2w9rIuVqNFYdKA4OCwroPBBpt8q/zctAGTmAMhVnOBgKtivpqeEhM24TRw3W1SYfJlwKFQFX8lbBUE4dwvUsWMDO+1oyB5sRVqchA2ZyVCddNcRJr2ufgzYhKETKagR7NVALMStJmZyMyyH4Dl0YEEKnBoxcL7ERMhs2kHHOC+Nf//IZnBO+//1bbLbfoe8D3n9zh+A9Pn8643x6QoyMyzlgGj2WeUTOX9APHb7703tsDhtYhm4l2JeAQgFHLSQyhxKhYCiAi/O4OqilUYWQbrOWlXL5crqnpSNbXsmYin9ujP9XZH8xMld/4pvzWNd7nISTaRyvOD59RQgB33zzHe7v77HdDbh/+/fImfHXf/kLQA7j9YrrdUSMCaEPSqCPNl4pe4CMgwwr3svC/YfqZPPatS14LWspe0XLhwuBuMkxcYATJFgxzzPmecb5fAIR4fBwh8PdHXa7Hn/60++wLAs+PTzg/u4ez09POD5+wvV8wjSNOB6fQESI2nzmOo6YldSauiBZl6HDZiPNWpwP1TmmOmxeFizq0B2nSY3ejJC1UmMewTkLL5R36IcBb9+9x7DZ4P27b/Hhm+/R9xvcPbxHP2zw9PULPv38E6Z5wqfPX3C5XMCnM85fvmJMCX0GXGYklzF0AzAEHA53uH94i+12LwS9S5TudVmIzL3uFwsqyh5pcJPtNT3DZo8BWHWQbR2ZzAxyM9wozsR+GEQPdh08odphK/kgDXeIJHs0dHI9KbmSIKcPHoB0zVy09I4tMxMEJKtgSWt4TYA5dkVHiEYT33bFgDeQvNpFpFijYJy8Ou8rp3GTcXV7uVvH0mu/W2WYcROoz9qah1D2lw2RQIpBGY6dBMuIgFTL5IqjyRwr7Fb3tdEmy5glB9KMfqMJKVl5qMkKVCSQ/G+FnZjBlolIgNfOkwFOymYb4u/W0WVOzhgjUk4Y+gHb3Q7BSwB6GIZy/hnA+XrFOE6SCqmSs+t7oY/JuWCgecyIcQIgmXVWwm/39j6onql7OS4L5mUuz2ZjLU3ByvwaHqtYTHwCJXde5tAZo444x713hVLIgeC5ZnV7X+2xNq68wsZF14kNUsZh9yRIkBDA6B1yAqaUkcaI3jv0JPqVXJ0PU+q/lHVkv3VqD5eUHKpr3Z6KggVQM95dgwX+vddvdzaVOVHF1iwY65CKccVASyJWBl8MnRfHt14XuDmwZoSuf1f4c1ZX0XGJ5VqcnjaBzjiFyj1fPueLaFFrrLXGAdVInSKRZrzNZtLPZ5aM2pQZ85JxvS5gJsxzwhAlsrnd9QhzRlqccgQoNxM5xCU3xIh1RdpHsEe3P5R5NgeO/r8YkI0EI3v24qjjYkCW2+laiHNgJaVfvtrf2fWBQh5Z7tcMvoyS60gJUhcr4DAhLjPmcQQhoB9mEImC3243AEfsdnvMXQBhgVb7ro180nKBIrAbw6QOtzX3Xz4g21av81oOZ0GmNx/RuUxxwTJPYCbEqMTfDtjttpinLTabDTabjXjCY0RkxjJN4JSRlqWAdu894IT0sut7WKcX57wAOy3BMeLYlBKCCu0UF+S0IOWMcbb6eRFUfd+j6weErkc/DBi2W3ShQ7/ZoA+d7MmU4JeAfbqDCwHJByyJEVIC5kVai1OWGnnNsui6TsdkRLB1/5mDiWyPvZi8mx/55n3FBlidhiqOlMOKlGcnpaSOLuOpwWo8K/DRZgUCrd8Llnlj+7kCGs3oQc2oKHugPaDN+8tp1XGsdxC98tN6vqqTS+UyA22xbIUSBKbcPCutHDK/FgVh/buVa7aygWBZGbySJ+V5b51cIFgNblVwAoyqc4GKfjGl2WY4tZ+1QAOZ7rnRT+Xf+n9LhmllZhl/8zKjXEiJJcvPnE4MaOaJRLyXJZYosPNCrL96XzOmCnrWYKA4V7gx3nPW6GDNEuOy6W9euk8l8/U2i0XOnQEg56vjvxjRKqfU7vt3X0VbNPN7c4yKUeDs3kzILJ1cUmbtEihZbq3f6MX9y6YjVfFU5u9WlxgGKGruVq9jDYz/pi/Gy3VBGfLqReWQN8bSL1325sNl7+QWO71yzl+ZBzsLa77+xvn7C8/Vfl/NO9X9V6QlSWaZEevb8VtjP9vP8vuYAU7APCdcLrMEJ722lvYe212PZWEwe+H7yEIWDspIsc7F63rajLEbIGXPUeaulky0GMhQTmPzlfm199QpeplRbu958Su1HNbOfbzc9yvpWpVDCeophlrmCeP1iq5nUJAOyaGTjGYiwjhescRFa1trUE3R0gv5XDLYUHWkOFQtUFv+V0bZZtW0/oFf2V1l/tMSMU8TUoyIcUZKEcE77HY7xGUWDNN1AAHLsoCIsFjQTcu9AHGEdhpE7PseznnJ3tFgd9dJUHqJi/AjxYRhnjRAviAu8nsGKy2CF2fMMGDY7LDZbrDZ7bDd7UuWeN9vsNluJfOp6zHNET50SM5jiQkuRmCaEaOUm4EY5BXnddL5upDcF+NmvQNezOCr+Hyto1+TC+ZctnNsDgVHhBh9MTSF1Ln+R6vN/wtL2dyDAGTngJxLpoh1NW4dYQDW/EbyAKoSquZRrXDz8LcgUv9WPmZ4rP13o99+7VmauXshg5uf7TqsNpbesQ7DZE8dDSxZgF7T9yTPKUThVZ+Z3SvPw4Xv0sRai0krPjOZpPdq7HXbZqufSYOF/DJ79naMoQsICBj6AcMwSMKG2idiF2twJUZJTFEM5VE5zcB1PzYPuMKGKp2KjOIGQ722Nq+Ot/weq88Vs1jnQPYpKoa6OYfiI1irmF/aGSufg96nOH6aeXcQDGWk3MySIe6IkVh8A9V/+QvYCFiNEw2Gaia0vvEVTHH7oub/v/b6D4f1ck5YotY/NgoIUCOeGzNdH8AAe0pJSC7ZUnGBWKXG6j6W7h21Lhmoh4kNkZKSYFqkn43AEeXv5p0M6u0kR6W8wro5rASNTZpFuuzQ6n/GCh98gPM9gu8gUS0n2V5RN3VuNqyVDmoG1Oma8M9/eULfB8wL8PBmRD/0+Pt//BY5Az/9dMTz04SUgOMlI0wZx2PE/fOC6aICX1PfKhbicj8BrawpjBUnSdTRCCrbeuO60XJiJMfIjT3qnNOuJAkpzyBY5k6rVl5utnY6TbmJEIOAn2K4WhSzzUTIDbGvpe0Szo9PuDw+I/QbPB6e4LsO+7t7/PHvvsc8z3j34R2WecbXLx/x9PhZAFYUUlrvpB2lXF2X19UUcCudS5ybNHgVapkRF+WFyNKa0pEcICKI51/fW+bX1YhdH4SUdr5c8fF8ltTw6xkpJdy9+w6/+/57HHYen376PbaDx3K9YL6cEZkxHk9gJpxPFwTy8F3A5nBANwzo+g7DdiMZTv2mZGBttzsFgFYjLUYxM2O8nDCNF4zTiE9fP2GeZ/TDgL7fIPiA7XaP4Dvcv3mLd+8/qIE9iNNou8Pu/gGZGR+W3yPlhHmcMJ5PyMuC8fPP+Ho+4jpPmC4nkHcY9ge8ubvHYbdHr60yeZHSNIDAmnbNXLPMWLvjraueLSwA/RspmK77qThbVkKeMU8TZogsmudZxqXzV7L3Wqi2kvRFJiuxvp0LgvFdSemagK+q5CwDgfX9zYhuOoGxtSphBZHsbuQRF13UnrCiWJuSvGwR42yOZdvxjZx9BUHdRuPK3UuWEhBZwLpTviXp1uhlDpt2wmWERU4wjMeoqienPCOAd+JYTpRKWZ0vnQErmCvRKGJ40Op3kgFi/Buu6EqrgS8cIzpzQkPDBQDmnMCJixHlnMPhcCgO4If7ezjvMU1TibYfj0csMeI6zhjHBS54DLsdOr8tXXlSyljGESlKCWLnAzJpWWvpBGU6yIhllQw8Zyxxkey6Vy0JaCSw7vnMGfM01f2QGc4DXe/hHNBvA4ZtUODC4By1XbmUxAdI+VyAKzRqxoHWgg9zeLXDIudKGrsZyU5JWXti7HqHLhPOo8eYxBF3vM6YAuF+GCTLabXDf+lloLpGJi26bU4WU3ys59ZK1mxfmmz+VQP3P/Fl3eJiihrR1zmkiqGIVPeqQ6R0OHQQjIGkGeUMyWStZ+DWgEiaTSDlKqns6VvnptMgAGzeZBb1uix88Qpyy3hy5d0D2zPYuaq8PihjquVz9rxdF7DdDpjOvYijnEWUZiuPQe2+ZaWgLgAU8PUYcf3v0njlj79/izcPW3RDhz//378XDPXzFc/PCyITTiegmzIu54jDVcrQiVCIetvnlUdaG48rw0PHmYGCJ9uXlRWmpCi4OAxEHku3NTOmeK2obA0bx4z8mst5KjZB0R/raDn0k6KbHBheyoaDx6BZRU9fvuDx42d0mw22928QQoft4YA3799hmia8e/wWs5bWPT9/VTwr2RVOM/4LuKNaKmKBQscAJy1vAmQOIDJkiVrZkBIyK0GwZjYXS9b0LJqgLlUS7OvpjKcvnxDjgsv1GSktONx9wB//9Ds83+3w8w9/EUe7Y5xOJwmqjbN0Cp4XyWIij7uHN0LLEDr0g8jr3f4Ow7DBsBlwuLuD874SequOyynhy6cvePz6iHG64svXT5KlqRhqM2zw4cO32G62ePf+G3zzzXe1AsI53L95g2HYIueMb3//B8SUMF2vuByPiPOEpx//Dc9PjxiXCfl6VLy3x8P9AdvNBsO2h/cBaVmQ43r/EaFyblmmmKl0mdGVI6HF3JZNCNQyXPscA+LgyxldCFjmCd47bLcD+qGv+tNkgekixWgpJ6Qc1QaJsMBJWzoOV5tDMWvJouov6Tot+x7g1X/ZaROLXDkgf+lVzIumS68FFZm0MUvWDHvTL1TnR+b4pQH/wpnxC+NgFnJ64b6hRn/plw6wZJOwziEZhrLryzdHADvplsuOQOyQkMHOqR0iWctZMSBzzWRh7XgGZmTKcFaNqM9DlvVDFpwzzlsU29uhzWSq/MuWJeidx5s3D9jtdsUuIRCulwumccK8LDieT4hRssKXZYHzHsNmC+et+7ba9xq2cs6j69vSugzSrHWYnIQ2JNPMuRhvsuSalwU6dYVKtUSMqTwX1KfhA0nWd+cQBqcZUIABIRN5wTv0zktDqmy2F9a+HFRds4ZWVOxP20VBLTkQMIQAlxnTnDEuCTExBkdYgsOePLpOPrniclo/cfPsuv+bvcWM0jFy9enmH5bp7iHBw9/y+o85m8yBYWn0XDea/P11n3bLek4q/Uy5rIDPSpkK6EopIUbphnSbriWXaDIDymJW+LsCleasWgnaeu/1le2Zmt/a6psCdF4Vr5NnZ+UDbOWG8iuxTAQASGbTeUTXeRwOWxAR3r7v8PBmDwbwdBxxPE/ImTEvUuo0T1JeF+M69bMd6NpOZDWim/3WgCZ7NIss2Mbi+r/1g5N91pKkG6DULjo1Q6Pm8+2v9H/rSJ1FMfRQtcCJUIDGPE6Ic4TrZ0wpout73D3c4+7hgLgkdP0GyxIlhfp0Qo4RNcOpdpaqMnsdqQPjhUfaxledlI3H2x6o2XNgXqXZeyIEEiPqcrlI5HCZcDx+RUoL9g9vcLffATni/u4O83jFKUVMz49IKWGeM1IClmlRgCuOkmG3Q9d1GLYClDabHbpOOjrs9gc5LyRfql8AZpxOT7ieTzhfzjhPF5B32G732Gx3cM6j9wOc8xg2EpVzzpdMqdD1GCBK33g2pmnG5XrBMk+Y8oLRMaarF94mR/Bdj6HvJf1aHc/ZZY18qvOYCZUmWB1JVJWfrZb8m/Vn3SdMRTat9l3zKtETTR8Xsv2AkIN8trip+MXnWfdGBWa2XRoHdTG21sTrbefF12RMkV9Eqz1ZxsDr99s+I6wvagpjlfmzUhd2ZvX6zOWZbl+/BJrYOCxYyqAdLKoj8tW6Y65ftp72/9u/6twpYHJUnWyyZwm1vTPq90b8VP3CwjsBAdyyv+o8lawMmyMAnoCkPyfVUabXnHPo+x67nfCB3Kuz6fnpCcsipeHTNGGaZ5yvE66jOG03hzvJNjQnmK6byY9Smm3LqXuKyh4SvWH3EJBuhpvOGbDSA61hb7KqzaYCxNnmg3Qb7Xsp+7aSLeMlER7AAK8Ak3TsrNddOWZultrmdjVG/T1xlrIK7dpJREhMoMSYo3SCicp19+LhfuVVzh+jnmA9p83OfXF27cO/mqnzn/xiHYcFueyMrqOK5Z0gVCeqs1JTcgClorfWTia5nr1sv5nT6fb9IgKo6BQLvFnGnb1HfqgBtzrWBly0e1GNo9UeoAaL6d+9ymCvZZR2HSufy1BZ0xjBUD06zQmX64ShD3j7sMdm0+FuGPD2/R45Ex5PCThH5AzMs2WJi6NHHFcC21oM0+64ihFRnEz2iza7cJW9qdNgDqeV3C8HuzHub/Z4kU3rU1ZwcYuP63Ba9GbjrmssmdziAA7SsgvX6wXTdUQ3TUgkXdzu37zBm3dvMU0zyHeYpxnTNOJ0OkI6Wmo5YJPNb3qxZKMAcDkr52UuQTx7+BZDpcLll+F8i51sZpv5UDkavHRAO88zTs/PiHHG5foVOUfc3b3F/f0BnBP2ux1O2y2mZcRlmpBSxPUq3EgZ0jnU+4Dtdovtfg/vO3S9kKff3d1ju9tjs9vi4d074awSRlzBhur4dK4Ds0N3PeM6X+FmwV+bzRabYYv94QHbzRaHwz32h3uVd4I9hmGDvhtkj5M87ThOOD2cMU4jjvMVc16wjA4cJyB4hL7HMPTo+w4+eC3bcbZBX+AEsXl0v6zgPJU5tf3CWq5VHPT6+cJZA5Ts+CVGNUSlFDd0DqFTvpoS7M+wjnSWUdN2+cvKddWOmBqdKLhEeCyyGIEwR2ZlseHCa2SyxZxWtnfWbEQ3uKbO1FpusSli0gvVc7z67C9hJ7sw68Dseu3fITLNFxRn61G9xi38awMKL/GVqVwqVRulWyQA9SWJo7sZe0GN+pgOBHaCOyxpxPBXO8fNJ2swmz2IKt1NwTna6Gm72eL+7l5slc0WzMA0zUjpinlecLlcsWipaoxi00nmX1d0gS0SM0oZd0kWKbK0WVPIs6SYSlb4r79aGSp7WR5DAi5lDqx0LggNASnlQFlbXW9zjjtCOQOturzFHNx+ty3ZbAIC4PUrEIEdYQSwaDOaJQlGiNmQw68/6eq+uk+rrJCB1tDwK1dr/Ab00mR69fUfczapxSodCmQY6+8tSGkJWkXBGhl4UdBE4CzEetwSB7KkP5uRUVv41rpCuZsqe712jEsZATPQdxDeJXJIMYG1Vt68mHaYSno6M8BO+XiqlCaYkVMBl/B1eOmQ8v1b7LcJXz894cvHr+rd1O1hq9EcBhe8Rr2FFDAzkMmh3wqvzHa7w+//sMP5FPH54wQwQbipWYSf6WXR1cJ/VWnpy3KtBJ/+uu2esEIuRAiB0HcefUfSKrjY/hlAxjAQDnuPnL1EH5kQIzettanctzqMTOA2Y2rW0EpGVmpBf/Deg6AEciQZCV3Xi4PPCSF7XCK+fvqI8XKR1qy+B0DYH/b4Q/gj4jzj/HxEjAviNCLO46rrDpT4fSV4mRAyFQO2AjjbN1mDHVICAoihSlGlhBpcwQctd3PCHwWJ5hIGOMo4QjhY0jJhmc7IacZmGHA4HJCnK6ahQ04B/RAAdtgkxmZhwDn0+x2Clrxtdzt47zEMW3RdL0Tqw1bLeTqQRoo4LdJ+fBrxdHxEygn7+3vs+A673UHT6J1S+xKG7U4iIERSHtTsFSJCcOaU6uGCR0pbABH3D/e4nE943OyQc0JiwtenI5aYBDB1HfrQoTO+lFwBkmWtQPdQxVKyn+ScWvak7hqSqNbKeVK+yeYvv1YjnpKD93NRoK6NUNt7uY7DAdq1R6IrrWFXP0s6dAazU0dTa8TZxV8CmBYPmlxDs03ld9mk6y9K95UxWdqf6thQx9zCsVYNF+mwxmnl2qZkxJhKgJd2yAAkywkOObdXtExLWwu76/o5LbPMHGbts5NGAW0Mlr1pICuXvYECsmyNiluOuRxNACUAQE7aODMDoevALHLHOkDu93sMw4DMjC9fJcp/Op0KWf88z0gpwTuPzWZQjiaJuJn4y8nI/KVsKHRBs1ygKeMiW2Rs1TFieseRlJ29XOw6xyKrdI11M5W90+wl0V1U0r9ZOR/yEpEWCQaJc9whNICiOmpYz7/8aNurHd1qpAU4y0p4zdrxRPBB5NIYI+aUMXQJ15gQnMPgpQNLJbtv9yHQGkt2U4vol3PEXGh2JCMDcKRccdyo5t+ClP6TXgbSvfNFF5qMq10SoeeyZguIszwLIF8WxbTCLcnM6PtuJVNYM2gMa1mwYBUchJyTnBMIGXFJhRfTHOkhEJgDgLw61+SqIeSKsWMXzci5BvZK9qHyvInzKMOHgO1ug3i/w3ffv8N2wzg+XvH89SxdHNUR1sJnAgBHCJDurCEQjkfJGpxnRt9LRPxw2CL0W8zXiNPTojxKUI5GM5JULlE1FBhocGvd9+vuRTpzDdmv85rxHoAwCIbyvn6OII7tzcbjcGBkdshZxpGyOdegGSd6xmAOGju/twE6NGNqAmANxyYp+b5xU4KEl9GRNLXJMWHhCZ8/fsTlfFU5JA69h/t7DH3AvMw4n07CvWId0Fga+bSBXJkHX7IxvDpUb3GDPYuNVzIIEihppljzmS4EhKBmud6vCwHb7QbTxDidMpZlEWqAHAHK6DcDdvs9aCJkJGTu0PVbyRgkB4aQ0+/u7iWLaStOodB1OBzupCFL12PYbsXmUKNymWacnp6xTBOej894en4ECHj/7TcgR9ht99jtJCt8vxWCcPIel+tFYHABFiLXoDLQeScYqnPYLRtw/BPevLnH6XjE548/gXPGdVzw1x9+xn63Q0py3oeuQ9911dZiyWCzhjHGGiIOJdu1tJITLYcRlf2HFfYtPzfrtigPT5hMb1UbyRErTmu4vrXUg7kGQVobpPDj6BfYqYzLjYxUJ9ULPM4Fu5vttw5sMcwh8ZqDCKYX2XCP6RTNXC/DNIePXNKZg15BlD1TqxOLAV9uRRW35FzOdDkXqDi2HWt7mYoj28e7eX+5Xl23EmgnXp3J1fhV7lvHzoIjXuhITTwgp5xFW9VDymfWdRj6AT4ITxsz43od8Xw8IeeM8/GE62UUmz1n1TWhlNjlnBG10Yo9m3MOIZDa57nsGZtHpzai4WtuBQnfLARaedoGWFrsLftQJLP6IpyD94QQPLpOgyRO7sNROBiZGL6TBitOwe/L4lLDNbe/rcNtkbr97CCdtTMYnjycC2AA1yUJz5732MQI7wgdVbJwLjpkNQH6N3MSa5YWU3PObASqSzQorPUyem5u98brr9/ubDInhROuh2r4oaZ9G/oEigCsClAcA4tyxMiEEoIL6LoBjqSGOoSAeV5wOp9LOl4h1jTAUa0XBTZAjAumaSrK2c5jFzowCVAiKElscV7V+mcTJmklphi1HTTVg0iSaeO7gMNhi7//87eYrz3+Txfx+OUjEhjIAwCvERHbavIVgpfyHWY8n2d8fbriMkUkBrbbDf70D3/A+w/v8PnTEfP4k2yijgFtNQ9dambbRALg2raaFbLW38jzq6KTRSoAgAD0fcB226HrCP0ASYpxDOkRkbHbEh7edEiLwzg65ETIKQvBLon/p7l5Y1pWTpX6l2YtaX2gxDggBHXIWamkA8FvtMtSzpiWjBxn/Pivf8WyzNju9nj/zbfohw3evHmHuz/+HcbriE8//YxxHPH1y0ecx4sAv+A1AiDgCgqaZJ9n6f6jSrWAZY2+uAx9D7AsBuhtv+jzEKHvhewe3qP3Qn479B02fRAlygkpzlimC+brE/IcsduK5z9PV4zPGwEQwwE+DIjwWKgDiJC9gOZ+GLA7HNTZtEEIvTiMnDjohIOgQ1pmjNcTco64XM/4/OUjhs0W7777FsN2i/3+Dvv9HcBAWuS8eh8A5/XsqlKQ22oq64DQefSuxyFIVsLbdw/IOeL56Qk/H37EPI04Hb/g549fcLmO8N5hMwx49/AGm7utZP5F3a2OQF6jMpqNVUtdIdxdKmccWBOaFM0Uy7HuOzGk1q6UbASaigQyS4Ru6HtVDFBQpFku8rZS9sseqCTmdV9Q89myy9lKds1plqucRAuKSM+0KdbmGdjwj5X53QKK5pnVQLMzVS5E60iWyWnWLB5nJTGoKlBNnfY4r5SzdTgzBQwSg55VCNXSZ8OGXNTDOgMFZa6t86ApROekpt9xSxqO8t24CBwImeQ7E9V2sDq1VvlYDbU6x847hG7QMyPEpl3fY7vdwHuHYZAAwOl0wsePHzHPM0Z1NJXxEyGEHr0SHYOFfyDlXMiObX+H4OGoF8DkfCmtsn3DmcE5afTY8uSMPLkBQjB5WX+XNfNM1u5lFrAQFCtvUgcF63KHJUorbQdC6AmDcwgqcx20VKfoC53Fl/htpTvVJiiOHceMYEaRI/iuQ0oR5zEjp4guRGyGBb33CC5omVPdc6C6jnUtqexDcza1vDxy3EizMz1CTnA5K2ACyiD/hi9H2hETgDn7Ysxgvu2Skwuhd4wLUpbMgmmeIZWyEiQxPrFK1itcNctyVnL7DiF0xRFRry/gLaUFyKSdRmcA1hFMdo0PnciFVDvnWflEbdbSguOaqWT3JBJiWWlVLxke3dAhDHsEt+Dv/vw9rqcN/vn//AFfvzzqVuuLEVEQjZYXeN+h64RA/8vnCz6liMsloR922G4HvP3mPfb3d3j8fMJfpo/iEPbrMsLWkMkQw9g1v2M0JWq5Mb6BRp5nxYQe8ISuc7g7iLOpC3KWwRmOMrxj7PeSabxE4HKRTPicWbs+qWQ0XWKYNNU9cZvhadulxdnmHABszkVfQ8/zZrcDMWGJUTkbJzw/HRFjxm5/wHff/w7DZoMPH95js/k9LtcrfvjhR1zHEefTCfPpBHJCfiuZTobhSMpGQBDKhaQYtZZX3zo7pURy0fNaLSwzZMRLEgAfwCErUXUHcjsQsjgZxwnLMiHlGUDGdrfF3f0d/JUACE9jGPZwoZd1ch2IPIJSA9w93OObb7+TjIrdDv1mQM6MqFn8oe8QOo/nxyccjydcTid8/vwJnz7/jLuHe/zTP/7fsL+/w93+Hvv9vWIoKQef5xnH81Hksh4SIl+yMzb9FiF49JsB9/0dAODd+wekGPH582f88//cYxyveH76gp8/fcabhztwZmy3W3zz/i0O+53g1EU74nW9NodA+Uopl2w+01ntyxyTRkRd9k+qjQpss5mzOM1zQS0pRuE17DvU7JdYbUNY0wnSpkMNObzuCWu8ZLxiJZNHMbicPSrcbcVu0UYUTASiqB0s7RwZLmrOhepaUSm0cqQYNBJwIXq88j+ac8uwvv26qdoxPaVjIJKMoaKHgFXZmc2rldubo2nVmfvVF9+c+7pmhhDlFupoRgac2S3QDCao46zKmlU2pNmLTXIDALU/Db8JBhTOs+1KLw9Dj51ywEnnwYTT6YyPnz6Kc3hJyEmyoaBOmdB1cEGyF1OMiBzrJgbBByeOlsRIiieFtkLnvE1uQcUA5uBr9/2LoItl5RW8ZhzPLQom5WVz6HuHYRAdnvVeiRNyTGAHeCJ0juANf5bmEuv7riBUA2nUPFk5mRia2aRvEmdTD+aE8zQCOat95aWRW+hQ+c9vMA6tvhm0Ez0BSZ5YYU0i9f0IjisVBIA6qP99DPXbnU3GdcEM0taEtqDthocB5/aAr5xO+nD6hDbMl+ngOhmNkd+evcwZjp1+fn0/AwQ2jnZJW4OtOgnqKptTSd9Q/m1C1H4WIMLlGuQkK2i76xAXxjJZSiE10RoZh6Ui26ZmBmJkTGOEowVx0W5nROiHAB+cGClubWDamG1u+PbX5dn45jNlcstzmhHRBYcuEHxgSBWWRCmIgBAchp4xw8FNlhHBdacW29YiF8UcUoH7MsHPhmjrzBp1bh+t3EYNzJXjDyIgsrZRXZYF5JyAc02/9V2HLmfhJRo2q7lgc6K+MjXyWKa1GwGuGRzVI4zGc8zKobLe6zVrQ1VAcXTJjbIqns12A3Ie8/mAy24HZsD3OzjfwVOApw4MQnJiWIvDp4NXIm5xpLr65axrFWNZJBODIe15u6HH7u4O2+0Ow2YrddCZAU7IqSGXK+dK06MNbYNXTyfnwCm5Zl/anF7HHjR7MAjTsgAETPOEae5VHfq6VcuGeLldefVzcw4aZFWEJ4mUt7NKrQI3oJ4FSFmUCeq1N7BQN7SOqZyxVt7V71Vwt8bBS8VWzqTJEhu/Xa91KjScQryacztPr7yaqeHXp/JmNg148IsplfvU98ieaD5v83AjXuysmHysU8JlWtnmsZHfqwuYWLm5xms/3/6ODEgy6xyslIq04HYE73uEfqOTJoaSd+YIQMkOWZYFUdO8U+MAtciOuG3kHjllgISzpDo7q3YXWYfSxYmyONnA6jDK3C6zbj+Tr+1ea85fuybNWrWlEayAvV2LkmXGBtJIQaY6FJrRV7GseroZS3PyVtrWgE4BJvo5A4CAZG1lJsTMWJI42RK3mvrXX2aY1Ie3P9zqypfXo9d++V/0ciT8GZQta0VuXuaeqyy1wa4yC1qs1Y5ffzKd2L5MrxZOs2T7hbHu8lkBem3+sZ4/Q2sGLmu8tkGujayokfL1V5G/jJLVI2VSDv0gAS9phgLFQbqfgfKMzjWRehanTYwZ07iAnC8OGucd+k2HnDx8cOWx7HOizprd2xi5ZWZa2YXXfq7r6BwVDGXZgzZeQMpI+84csXx7iTKGW/V2+3qx51evX/h9i6GIVnxlnJX/JEnmnHcOSQOiBOkKlVQOztqoxAK1r9/Prt3slQbjG6YXR9vaEUJF/zdnoZF1Np+2J4o0ZOHC2e62wo/nWBypIPhhCwodgABoIM6HXnhlQleJ6p1lf0CzgVjbpTvhfBpHXMcR5By2ux32hwPu37zB4eEeQ7dB13WalSGZiDkb5yyv9i7BFf1Nxe6QZ7FOksOwkWxz5zBdTpjII2dgVIfwOE6YtgPq2XfN97pv6hltv7+yYs36tC+THWTcrZxLpi1zzQQsjWbq8slzMyAeDp1P1YsFT1DN5GlXvB2Xc9Lti51kixvvEMCl0sayhQum0AFWDFsDP+Ba2q8w4eZ4mw6+3X+3r7XONZle7bQV+Gkw1I1eagbwAovJL2H2cvuZNQ4FWrllAb6y4jcQuMV1pvm5eYOpgdeOuGUYkmL9vut1w5kOcWWNY4zIOWFZ5tLdN2umLhHBsW+wgYylBowsiEQAebt5Ceo5WGdmeW/Ro+0eaMb82qtuidt1kr1cul+vIMYtNqK6RexcU/uuOomtj8HW+YVZ/8qLXvmShaxOWMNQgDjBKkpbPTFuF9RUzst7Nr/lV4aoz/w6gdL69ZudTV0/yA8xgUkEaJy0nWXDDWFnNKaakp0aD7nTNFYbOLHTqFFGRNTMg0pm2XWdpOFlaaGYOSvhpZGQeWk/jWYDKDB3cGJ01JkDuJbnAcILJUDHAzBCQtvUIrw7H7RrRRCel+AxpwnjcsU8nvH45RHz+Ii7uw7/r//3n3C9LPjLP3/B6ThJNkbqms0nAMiRF29nLzXkYIfHxwnnc0TXf8T5PCGEDt99/wE+eOzvegybgHGpLes9HLzrSkr7+lU3dgG0eH2zZIiBE0LA3Z1H3xPu7jP2OzFOkmYW3N95bLbA+ZQxXiKgkVjmDMrUdJlrLg6FGg3Is9Q+85YygM6MKSUE1H8o2ORGOakhREAfvHQ7cw552IABnJ4fARCOxyPC8CP6fsDD/QM2+wcM+w3efvstpmnCly+fpC1wSliygAEjqqw1vhXYCL+E7REnWU0AlpQkWmOEhzAjbSUSirOmRI2Ypa1tFp6aZZrQDRv845//CV2/wccfv8GPDw9YUsIcCTEDCxwmeGRQiWJIWU4Hy9SDU/J2zdaSQl/GdbrgX//6LxivF3SbAb//h3/E3cMD/uF/+W/YHQ44H0+4HM9SbrqMkn7eRMNynLW9r0OnGy6lGeZYzFOz4vrYb9+/RUoJ3SZgd75DjBM+PR7BnPF8OmG/G7DfbPHd+2+w6YeSjmoHtspujRzkvFIIjNpSHqU+WgW3KWdTPDrnxF7LCuXsT1NEktoeLW8hLQvjYgxwqllHlqlSgDHVFPC1oxow0NFyzbWZVjJXegZirGS4ulcAgHIlKVyT9wJk6dDlf2YyGkyXGVrNmO5r+XEtEcqONd1uRKPWkr15n/O2B8TJ68ghuFDkds2AAiz6L52NLAInACGpJk+aXl/kAlB8BQbQBF9UUO6aVM6cUbLdMivvGptM4pIFl3JC13V4/+E9trs9fOjRhS0yA+ezcAjEtOB0knTveR6lrXzm0oZeorg9XAa6JKAsZxJ+ADAmnmF5aADUqRW03ASgoF0oieBYSuk4STZTThlZ9WYuAJTUeaadZVjWVYgnK6A0A9I5h+BEJsRlkVJfhnbjArrFYVnUgUdKWr1kpJkRHOAHJwThTkrZPEl2hOK5wlFA2dWI3a1i0fMGtQkcaTtgTd4x/gEhdA3IIJwnBmPEJnj0Pii3MuMmYbacO/m50Q0NR4xE0bnoHCnht0wzfRcD9O9ROfwnvrquk7mOETkKd8k8L9J5lmu5lHUXsQ6HnDNijgrQJZrbClpmIKUoZVnmnMoZ3gd4z6U7l3CM5dJ8hXOSvRzMIQWQM0ega7KWqj5jKJcDpypXkUuHQwnEyDmFEvxLWarwzPggHC8uOJyeFxxPJ8TxjOtlxjInvH23x2H3R1yvM/7yl884nUY4H9D7zlZW95RgNmbGsNkgpIQlAj/+8ISuvyCjwzhnBNfhj3/6XrIUd7ULZWYgsV2v6mh7lSBFs35rfWTvQ/ksZ0YXCPd3A/qesNsyhoG186JTH3JG1wPnc8LxFJETAw1GZd2zdvOVD7X5RxuYFeOVlBRcmvhAm9JkzkASgz+SNeaRNXWO0CvRbhdkX4AIXz9/BBFh2G7Ra2nw4f4BDz5gHEdM44RlnvH8+FUzPE03UdEZYMFBDIKl3AtnnBiWlpEQY5Lslya7VpaYikPJPBeZJUvMMgAFA/bIXUKgAGRgu9niv/2v/yvAwJdPH/Hxxx8RE2OCR2Qna2ElbF4yUX3X4zovmFLCNS2a1SfZ4QDAF9nznz/+jL/8yz9jvFzwh7/7O/w//7//H9y/ecCf/5d/wvawx6cfP+LTT5+wTDOOz89YpgVCDJxVPmsZYOfQme2iAirFqGWANbC92+3xp7/7eyzzgs+7OxyfHrHMI3786SuAjOfjMx4+77Df7/G773+PYRgE25h7SSc0F2O04iCoPrbf2d53VkVijideB7tMtuQUC8aJUTLeM6LIeS84iiAVILI/s6isnBEX6YRs+EzK0Vj3xDr7G5DyV9uncXFIlAT39j0AiM5eZO6u4wUpJ0gXhaT2nuD7nGpDKKP5aB1sNjXAy0QJVMmne1TnzjJ+y7k0h4ls5EIv0tAAWOmzyY1VAweToZxBrs4RoNgxSzC+DT5YACG3+NiOjUotC/CAUDJFGQx21cvB5bnlmYjMoc/lSiaQQhfw7XffYn/YI2ehVskp4zqeNag94Xh8Rs4ZyzIX252RJcOUPJAdHCuGykCkjMjiA5iT2LnOGS+SUy5dV5rSmL0IxVBJ1ykpiX+Rf1ivc3nZgjdz6X3Ve96J3R6TcL4SM+IigXjvqZbRWZgxJfCSAS86MDjls3NqM2YqpZo2FAfDUKvd9eJltoVjoQ1C1jUlSfqITMiZcJ4T6DxhCF5kTBfKOZVHbnUI6h7OADtUDKI4Uk2IYn8tMWIpV5MLUGb8ltdvdjaZEHIMubhGd2OUDl3mPJIHEoO9kPKmSkJaCHTJnEPVGyydlGrpSwUqUsOZchKnhl0T62wLOTZ6B/Mq8lpJt5kaMgxbdV8FA5m4sM1inVR8JTheGPOyYJpmXC9XzNcrHh4GvHnY43Qa8emnJ4znDC6wmkpECc3GJ09gL0Rm18uC2Sc8Pp6RcsabNw/48OEbDEOHMAAuAN6rAtDyOYmOA3h1q94ervb3jQmqRqcjxtA7bDaEzcAYBiBlAhaZw83Go2eHtEgGFrBuxS2YgMq/y53a2xHDSjcM6BFYnCTMmg7bRnH5xplpjisp32ESXi50wLzM0tkgJ/B4BZzH4e4eb96+E+C03QIgXC4XHC8XTDGr4072MOUmg8KcE+bcUjBt43YMpOzLerai3YyAtcOpEWqqAILvkINE8nOM8BuH9+8/4HD/BoGAvCxSUnqdMS0ZMwienZKm5nqv2zG0nYAUVCxpxtPjV1wuZ3z7hz/g4d17PLx7h29//wfs7u7w6cefMI2zPDtVQC3zLxE6cIbLLOQTEGNFfG1ZnG4AjJUy+IDtficOBU5wIeB4fMLp80fEOCPGEZfRY7m/x4d3bwHXW2JJ3T92f7Qgv2ykQn1Q9jS50jWj3fNttAPZOABMKYnRbiUBUGVfMC5sL5hhm4oCs6G0EXyrG7fPUnG81GguN9c1ZVOyJcsegQLrhutg9fzV2UXtHlu92vfbnfWLb/7eGE9sIAxm86zjFvV31sEtaZ26bwgl5XtDsVDPlsrtCm7ac6GfLU4lNFlp1bgCuBlr5WxoT57yxotDQ69va7U/7PHw8AbeDwhhK3shE5iviClimiYsy4LT6YhpGrXUcihODe8cfAL6JNt2NoXMGTEtUo6tZ9C6NZF2yAPUaQ6PnKX8OWdzwOVatlCfujwztMxQtiTXTQgDVAImgxpMWUGsgG0xOlOSnyXmI+uQMgs+Z4FOwbmaAaHz2fIpAyjOXRnHy/3XYBxZN9XRjvVnvbZ1mZlTBo8RuRewGbOX9sc3amyluxq90BwInWYq7y9Gkjlbm0vdYtD/qpdT/ZFyKgZ0igkx3eruXMZrwbxabmmZBrR6DAGJaXWeTN4Yhmr3VW7LO1FVSDlzVAE63chUk1O6q0R/sfB82YTKR2iFmQrwVjy1LAnn04Q0L5jniJwy9rsB27cDjscrfvrpC4AIR17IrVHlihlCIAIHyehNifH8NCJ0C/b3V/iux8N9wJu39+i6gIwRmZbyDPZVJqF5sQmtFy++3eYyNSqznSNsBo++d+j6hBBYjSaZsyGLk3yeMyp+shxCKn4A08EmK153NN3+rvK+Ze1UbA5rW2/VfkVPBnN8S78AzPOM0/mMlBOu04jQ99jf3ePtN99ioxnQyxwxXi+4nC/iDOVqpFj5cpHDVH8hlBiKoXSrCA90xCpTuTxPo0lJZRXXUnpAsJ91mgYYoevw9u179MOAoeuAJWGOCc8LMCXpcBhL1luAdSNeUpLATpLM6+ADuiBlnEuMSCnjdDzi69cvmMYR/+3w/8Cf/+mfcPfmAX/6858x7DYYrzN++vFnKU8cR8zjJI52r85bdTSAocaz2SgWTLOyqg7WnKLvt5JxtmR46vD0+Bk//fQD5lnKBsf5jLcp4dvvfw8nxK43QV/DcfYleqZ2qHtpkJdsyNIJuMHeJkdJ1kGyVtQAJvm9SPTWQcDV2ZXFEWA2oeljq2qoZ0851kCFSqU6fyCZ+Z3ws+Yse986j0l2vp6tbM0Y6nfY9fXRVji9mZf2eYumKxPHFUqt5IHqn8bpI8CEmj2N1c/MqfIOlcqEul6UK++bIu9qS6y+XiLA1W8qoCt2b4v3UMrrJMmgxcBracjwzuHu/oA3b94gLsA0WUBnLlUlJ+V5E17LCO8d+r7TrDQAjgRDRcEDOTGsGUFSZxMzg1idLL52/yx8XQA416xB22N2lsqbVk9yO0ONP4AaW9959U8sMCdNTmoPJRYnTKs0GUqwLhyv3jibijR0ZR5XZkuZ35djszeVzF4QwHm9v6iwSmFKGW5epPNnZgytjm9X8mavyDzr2VPdYBjf3mkdi7NtnDKlvw1E/WZnkzmVliVKNE7BTy1xMw+4bFbHrvAElNbYQNOe+HYy9QH1eiGEsgGsnaIJKIkOCMDoQleIJ80TZ51AgnY5YXCpv1zd3JS2TTLMGmKVD4ycjYSu8YxSIwDhcLkmXE4LvCP0JPXa798fsN91OB0XPH8VI96RbF7S7h0AkJWIzZGQFjrnQOyRFodpzDg9X7EMEXfvNtjsJMvLhwAfIN2WsqB4Wu1gQISpPl+d5rUFUN4JXduE82lEWhwOWwceqBiKYKkLn+eEcYxY5oS45CKUinPPZo+be968yoYuRnUVzqxp1VUA8CtHUB/Wzrm+wXuHfujhc0ZiIIGQlhmPnz/icnxCP2wxDBtQTnj/9h3u7+5xuZxxPh+RU8I8TYiaqWRrbqn6rrTGrPMoKfMBnjOyEwPaMjBIHVRlRnJGdnJ8yVbHOUn5zxnjNMF1I8ZpRJhGLHFG5ghGkqwdLxJFWirL5xlrpSVzpfcgW9MF85yxzDN8EL6D+4d7fPPtt9js99oWeMR4vWK8XsExwYHR+eqwYs7IUYS4I+No0OyqlJuOEWVZJFMxCsGfDx022y0YGe/mb7AsE6brM56ejyAQjscTODMO2x36bdAzXMuKbp0R7b5aC21q8UIBAwYqqsJW8KvPR0TqbMjiAIBE+b2TrLp5zlgm4TPIKmRbLil7uZINQCWi13LO2Z4q+74ZN9m5sL1iAEe/Z3P4AeVvVd5XkFgdVZoJdpO9ZNlF5eA1YKnc3+ShyXTU9PTbV+vUtMwzMyhZgZxk4zSCQJ+56CgiUGNw2/oUfnNCOYdW9mUp63J7JzpHndQOXKI1Bvzs5JGWkY3Xq2YobcWpnrLKgium+Yp5mtUJzWVNi9yC7RvAM+AyC/E0LNrUZCooWI0xgpI4rJ33qmZMF2aduzYyWa/xmhBV11Szbij7zbpDEeys1lJvIoATsEwMkGQLMBhxymW+JItTotMFZLNkAlrGAagBaQWJrvWNrF9joGRx8Eb9nqMYKZs+IHMA8qLZboRxjnAEbIIQhrbYphrZXL4LtlC57d3N/Okcp4QMiMHwt/IwNa9lkf0kfEpLKZX3rtJt2vkjEgdAF2Ts3hoOFA0ihkF1dCtXTmOwtefaOhvaXvHO1yw4xVCWjWTAGLBzbMafYaDa3Uf4DivoFwhlxpAYUvaSFvZVjzrv4PsOcSEcn2dM1wve3AV0LsAR4cOHA7Zbj/GScT5GiANam4W42tTBE4FYnyk4IZhNwDgmdGHG+XRF3wf0O6DrO3RdWpfjt4tUIB7pfJrRVSkXGgqpxvGjWDUyrpeIHB02PYF6BzI+OmbMS8I4ik7JuexoUHvRF68q89oX3wjkSqZs8gAi71DLVsszt0YQmWErXJb90CFn4XjinLFMI758+oi+H9B1kiXXBY/3798hPtzjcrngfL4g56TOByUGN+oNcwC/0oSDnGQIZHYl49VwF1FbqgdVV1WfEZEaoA4xJ0zjCGbptheTlO1YU50S2M5Z5bo4ZSz8Y0MrHDuW1ZxZ8dGIGCPevn2DnBI+fPsN3n3zDbqhw+l8xnm84OuXz3j6+gVpiSBi9H1ogpR1vkFS3pczSZDGeY2XqzzIXOQ3kcxLv+lxuL9DRsKb8wdM0xUxnvHp81cADufzCd4RNp02qbiZK5sv2RqGnS3QW0te2wAD10kvtltWeW/7tRjkhMJNw972agKzYMB5lo7aWXEJoFlOKYKgJM+uOhCIzEkngUvqaPUcNRRWbbMS2CMAN874mr2kga7c8BuWDdbKYEU+RgFjc9mojtaUKo6hdnM3+pEbh16L1wt80i/WhIu6PijOw5rlZ0ElI8dWzI2Xr7VDWvdAcZ61GEoxsQPAVuHBBcOV1jQqW3JOuJwvWt7okXNAjAnX6xXX6xXTNFU5QJXbbxXggLhfPAOUJajkWBtOkUPJLVWuqRwFz5aOmFhj16R8YHm98EU23+JXw8m3+8Srw8850xG1gZStXc5AXETeZrv/IqkuZstbkMVuLvjuRpY3ds0tImmHW+ddg1DK7UmcpfFE14GDYN+UMiIY4xQlc8w79L5mfdu3Yi/oFIjfJJez1/pLKoZL2hG3OTO/EUv9ZmfTPE1gRsnmsekhXyP5zCip3sEI31gdCK11BTv0zQM03jHnpTSKAW39PhfAzswIQZwuTp0LtqCbjS56rCRf5a66QXNRNkaaCJ1p8UhyA8iMfA5QQ5KoCAXvHTrXg+Hx9Tni6cuMPCXQOKMfPP70p3foB4+//F+fcT3/hBQli4Eg2UlGEJrZuls5BVIEQod5JFw44jOeMQwddnc9NtsNhonRDQNicuDFV2eQw+pQ3QIoAxS3eKZVSNO04OvniM3gcH/YYb/thO9EQ9HjuOB0SjidsjicFoDh1XH2EkjYrW63YlbpwaUYFpUrh62cgCE+1OY9jcNPvsnDkzp3yAVs/RaZGfMcMS8Ry3jFX//lfwIA3r//gHfv32MYtvi7P/4R/bDFp88f8fNHIRD/9PPPmOdR21bWCI8oQVoLK4JkDwx92cctyLM5J4hBJbpN0vgtqkjewwWPGKMQ4oNwupyA4DHOF6Q8IYNBLghx3pKQspRbkZLcq8oogKDMiQqS8XoVnoHrFaEL8H6Lb7/7Fv/wj38GE2GOC6Z5wul4xPn5GQ7ANnRibIYAHwIYjBS7IoyMDyMlRlYSP9YHt7VOWQkACeiGHpvdDtv9Hrv9HvM84b//H/8//PDTR0zjjPeHB8zTjPDBF8LLFFNxOJV9utpIRQKhVb6AKMmVwimooKaeElOJLjJLarftQ9KmtKHPcMS4LBOOpxFEHq4bQOSR8lIiaeYEty5TUpoSCvFjV8ocG+4UsdxRI0wKcprIn4CVmgpeM0Rj4ziTl3NGIm3PzIUPxSbBQJyBE9s/fPM++TjXuSzO3zpWk7lEThI3GYiaWh+Cl7LYck5vonoKI1yTwg1WzodWZlP9hM1b5rzKdJK/iewTHaJ6hYBMGsG1wAhIuhFlxvPxGdfpis1mj/1BSkienr7ieLwgxhnTPBbnj3VDtaipC2qoZyCwZCbFJKVOzhFc58DKWcBWzqJZJV3fozPuAX1000mW2QudKcsmbjM7WwCr/2rmqxKtlg6uqZYOOY2YpgWYT2IAx7zIcyYGR4kmh+Alm7bzCr3FGZaSBJGsjo41G6sF7MUIEJuqyPSUxcm0xISYpVlIihHkPQ6bHZyW6FyuGSkCz9cZ07Lgfjtg04vzwapsQc2+sf2as6bRA4ECyFI1qO6tGKNw3XmTBn/b1ziOACQDd14myN71ggWaFvbSyZLFceKCYiVt/62KRbBWG323M6wBtvI7LhjKfgak82Lf96UklJxDCFL2ZRhKOi2RZjHlQm4rmC6DieBhGXya7dQYVqwlizaOAr51r/guoNsMuJ49Pn684Pj1GfzdFrt+i+Ad/v7v3wPE+OtfvuJ/nj4hM8H5Ds4F0aPesINyt1CHzgvnYYyE0/MMTg59EAz1zeaA7W6Ly2hjyWghuJGPm2Oi6FH7nRlkbEZaK9NkRy0L4/lpxtA77PcDCAFidCeknHEdE46nhHEEcjInvGuu1Z51HRu1P1f8bN8r7rCyDi7rVLNExWhaZSuSgZFqiJHzILdBziz4KUZczyecjkcQEb759lt8++032A493r//E3zo8PHjJ/z4409SWnd8xpJiCbK0DvCX2blKYD50ACrBcVkPqs9rhr9rHSaOQD6AQsCSIs7nE+Z5BlFA1w8YxytAGZWDTPZtjKLrHbF0pszCRSTnRoxF6fAsYz0fj/j6+BWeCH/4/e/Q9z3+/h//jD/++e8xTiN++PlHXK8X/PDXv+Cnv/4FwXs83D+obaJ20MpxkTEvI0DAFEfZXRp4FOeKLwF0c6Bs9hvs7+6w2Qnn6PV6wf/4H/8b/vqvf8U4zfjjH34PIMHd3WM7SHdVTlWvyz5mRUDm5NZsQW6cAs1ms6Cx4fGc271mvFAOnrk0LwAY7M2oSsg8gXPC5bLg+BSF4H27gXPCgTXNk8olcRQINYrs067zmuE1qFNr7bxkxXXi0PO15MrwqI6iyCzDMjmrsy83Zx2VG6h1FuVXzqOr17SbmBOOUR1OJUiq5YNVZuhce6DYL3qpFkM5r42LTMuX88CFB1iaslh1z01AFvWZa2a0ORaaDGnWbFmYc0m/6x9ZBYQ8rwQaUox4/PqIy+WCEDbouh1SSnh+PhYKAtM1pYkAbJ64ZE57EEJmuMRYwFigJfZmc2WWfWxZyaScZmEtB+1+hqFY5YfTNTUnSuucKjK0kbm2l0oZOQiUrEmFLgIkqDCNmhUepVkUMcPBw7uAEES/esWbudxTxpMtg6zFb40jyL7ZvrWvlDKWJWHR53QQnrTNdgNHhGmaMV0nwDHOYUGMCfuNjIXUcSewyG5C5flrpqFgKK+N4MwGMBskO5YKEDuHVPfvr71+s7OpJYFrAXF7m5dK0Tw1NW2zCP3mwUqHlPUFys64VVAlFbsQ4lWDkxlSe6iH3ARSOVVoJrr8rGO5dSgosKtg2qw0rH7PSnC6LBnjaDXB4ozoOoeh94jOskMM5tpY6pgkimP9fyQzIMYM71MDJjX6oCVkry+0KdeqZFd/vTEs7eechah8cXLfGFlD93rAknJ7pCb7gdbL9tq1WyFrhn855uX0vxzRyxHWqK9FYlbvUGFcgIpeICcho4txQVwWBO2cJk5Dj77rkXNG1/eawcdKhN8qh/qcZU+h/n0VAS7zUX9uV8S+2myUnBJiSkhJCPSWJWJeZi1T86sdY0ta+Gjsyry+DwDNJkhNaSrKHhZBqYTHKRbeBGJ+MY/sHICMnB2cU94Tau7VPGizuqVcxsBnCF2JYjELQeySkqaq19TZXzQE221UflWz+Mrrdh9yWTi0swZqsm4agQsIQb53gPes/EC5GFnmoGmd5hIBaskyZX3bn+U2zb5vRR5acN28r1WMqzE26815NSkGEFqBttobK/lalfb63N4oY25gWDl/Fcjae1cverEyqLKay/5fGxZ1sHaG15+l1WftcQDSdH6JZtm42r+RotQUxRHqw6Jp35qVdStPm8Nkxr6KPZuZFRCULk1e91Uzl5r10TqluZlQW+citenlrAHVeGi28810v6IQqMovMT5r9q/pyPLdns2u0RhqdQxczpAFiQgvb1s/sgYzLd+Eg+hJHxwW56SbFQkPxQJxmKbMgKvFRijrwGU8DEjEtl3z2/MAmzRa//a1ifwveJnzZZXBZq96MMu4isxQTgfb2ygOhLxyOK11j/y93tvwVtVXbSCFdJN4xU7ZSXDMiEeBWzTxypr/gtw2uWZZkFR/WZxPKTNSlOzpaYwIHWHXO/gAdJ1H1zukBHUcrO9j0seMcytdYJbORXFJwuuY7Qmo/IdGLsuc17+unoVt3l95wOaVs2Ak74AcLcjERX8bxkrJUGLFylWWrU+SLXv990t9IOvNq63cGlflQi1+wOtnlor8rPczZ3mKC9KywDVljd579MqfY9xgNfuEVnvyNf1S9iStV5Zgwd1GJ6LuRYAKnwuz8B4ROXF6kK8NHZLOT3EtFhh6MxZ1StwYX0kNWXEAhRow0oY00zgKlcY0I8VFMmsbfVrlfCuvzPDUVcgVK5HNAxGIJZvcdygVERIEFB2TdHyzNn+xzDJ5pnZf0woArLUyoeZLNq8GPrRYh5o9VJ+AyvvqDHPpUO0k6iN/MQzV4I82U5xIMshTkmvmwmlUnT/ixMnlYJh8MWcqA6vr3zxW81xrJUHVUC3r9NprpdvLXJn+XuMqu1+r72UfuHK/4rx6VSVRkUv27+ZPZT1KJlAzxtbGWJ++GwUJO2eCjM1BSzoYuQev5i3GqPvKw7moGWusjuV639t5K5iObJegUKNIcZIGF0FgTtpBkBRDrXms7Jrtejca9MW9X07urwh0ttm4fdVgD5g124gb6dJgMFUbt7LmhWz+tUE0nzPtV/Q95PrBS6A7LglWYhgTw5MECrNh7BX2IduYjZ2h6e2o+NnGUPdxfbZWl/x7r9/ubLIuJrnerQ6E6gKvlJ+NpAGApswbQ6wa6iibJiVNh2vAkUVKfAgIvquGevHcutUmlLReLT1hKwGqZS2t8ZdKKz+9n3fougDvPLq+1/bBoZRUmPD23mG732OeR1zOzzh+fsJm8OJRPPRwcPjHf/wG0xjxw1+fcHq+gHMAZ6k3NnPFuU4PGdBvArpevP8pE+YIXK8Rl9OEaYog5+EDwLESveWcqoBo9IouSS1jLAqEy3fbMzkD8yzr9/Qk2V/9xuFwH4T4dlxwPjGmicH5Ji3vF17c7BUrqyg0x8ylrNJT3RNQZWskgpZ6K2Tv4pCzzzIqgGYQUtZ9meWaPnTY9J0cNGY8Pz7ifDrjcpnhQ4eu73F3OGC/2+Ow3SPGiOPxCV+/fBFPrhoGrbOgcmPYjm0MuebVRiGspE72mjyT9xKBWmLEvExwocN4neC7EV++fMVf/vmvYBC2d98iDDtkdnAhyHVMobaTrIeQG86r3MxfTBE5L/jy+SP+8i//A94H9J3y0MwTOo2wMC9IicBIkrlUgLfMQQgdGEDQMaSUlTzZFCoXectEzf0T5hixpIRhu8fD+2+xHXqMMYPGCcfLBZvT0ESqTAHrGis4a+fdAHTrtCxjsLc1wLGsjS0aoFlsvhyOZUnoe8KbNx02G8KwYWx3wDQzHh+jdONx0gZVAIMp87pHomYnWQSPyEpXXL03GamuEekK50JKCVBwb5mWK2PyxlYu8/AaWmxAYftecxLYPjZgVNW/KcnyR3VK5tK2WZyIVEpSSsMZoGRFOCWXdoB2smGwZr/W8yIyy7mq+JiapFPHwuhbnr+epduXc5VnghTQJ8jnrWU7gzHPE7BoW2gl6T8ctri/O+B8ueLx6QlJz2XU1twGEiTqLd1xskdpLS5l0NJSm53D9TriyqOQiysBeooJMyaZe13MnHLRq94HBI2E29nO3JRVGvV4A6TrNFTNn5IBQeFXQJFPeqaSrlX2IPa6JpLmXWQFm560SKNc3CKWdS8aBCIYV4b9BqhyPmv2UdJMM3Li0N1p5C2A4OFFby9XzHNEcAv64NB5h13w6L12JdJnN3LVzIyYRIeHYG2kUb5a46rKTdQN+zd9tY5nBXfcrE0Bk2qo299UqxslgIMDgnS99X5NrCtBBig+asp7GwxVM/YkkNSeLZs/yQRRWQToZ1Ays02GWuQeUFJgV0snvJdIb2nxrfLCGrz4rkO33aDbb/DlecTj4yO2m4A//OEe+32P7WbAP/zjB8xTxM8/XXE+nZTDJTTzwgA7eMqAdxhCh26zhfcO05SRc8Q4iiMrxiy4LlhGuT1zsxlMf61/VfBpNb51i6lzZpkZ55yxLITj0WtHX8D3HpwdljlhujJikiYx8NTIlhrsbJ1JLzpa6r55achJRB4ELdXl0r7edDAX41bLMm8MqhqckufpgjZ92Mg8pWXBzz/9BB8Cvjw+C3dOP+Ddh3fIKePu7oAlRpxPZzw/PZd72J62zIZ1low9x0vDznBX/aprACKEbkDWT03ThJgyXLgihISnx2d8+fgJgEPYv0PoOyQwggbVEHxxtsKwTM7Q3nFwPhYjzJFDXBY8XY5wDvjv//v/hst4xJISTifhrhrPZ2x64XmapwlxiSXbWS6TwMjSAa9TTNo4W5d5BsCYZz33jgp2nOcFwXe4Xs+4zmfMccJmv8U3332L3X6H4+kkjTr0/AUXMPSbVfUGsbZiZ9amFi2GMtzUisQWG1iGg+hViT9TXTOygCsgQcmMYUN4926HEIAuXOH8BTFKeeusMqULPZhzqTohajLUSzZFFsxF0u5dMGhA7rX0r8gZh67rQQTMrAFUVl7JlqOOSDODGqczTJRV9xLdnLnmpL3yY6PrOL94n81tykltXkIg6TAOaEkwa+KJfqxtikRQx2qWxaRybmuWORglEWSFdc1OvsXBv6D/DJZZUaOUSNa5s0SIabxinib0m4gMwYUP9wfc39/hehnx9HwUWZKUEoSV5F9fmYVDLQcSR+umkxJeOAQKyAzM44QpSxMChlzDKpzaleHiAxDd5FnI5nHDDaqT0zz4Dd5t1tA6BDOznKNmb8o4pOrA9KyhjJRYu6myxii0LDFXnW861VuGULtm5Vs9jNXBqs4txaKeCJ33uNts0YWAwB5Iksk1xxlLTCBH6IOXMlvnEcgaTKkzPaUSTBB8SeW+lhELEplp9qTlzDCj4c399ddvdjZVT3/9d/PXoiba4yWDRW09TcXGajhNDGRx+ZTxO7RGWUkvdQ5OQX25tyl9U1qKCrJuzDIiV9N62+cCULI6LFvKkUNQQBaa+ksDSmRDcw7dIG3eHx8f8fjphGHw2A4ByxTx5u0W77+5x/U649PPj8h5VgXmUNZUpTXlACYFYH0HUucJJWjEbymeS+ehaZ8vI5uqh+tm5Wq4VKOyCjVqgNWSAUbG+RrhPLBDwO4gzoVlJkwjS/lcSfv/9Z0mR7AqMTOiZA6asTTOHJljIbm0z5jgZUclWphbYlV97twAdnMuDkMP50jJ3C8AEU7nEeQ8PnzzLR4e3sA5h/u7ewCyN0/HI5Yo0UkDs0UYNc9h87caCFoAVR1ott9sv5rjc47aVl3bCnfzgtPxjE+fPoOcx7vuHpswIJOUXTAAg//l1DRrWceIklKaVdDHlHA6PePzp58wdAMeDg8IPgBxQWicCwwrk1MhTjW11KnBgFJKJZ2Ssu1FG48+dmYGspbiZCknCP2A/eEenXdYMgNLxHWecR1HhOCx3WwFbOlZrtEAQiHzuVGUZU9Vad3+8XXFqpNm6fkWMSPy2O899nsHUAfyGZdLwuOTpKaGrlvJkRV/E6MIbwFLYvhbiZ2kUKssopqFsypN0/FkHc9aOWrc/deOngGrl39YzddLZ1ONLra/t3nJOZfMN+HIa/a3OdJQCYTNkeaoOoXLxdEAGz3XMGBj+4dE/pmck89QkWerZ2qcCs616cEkJXWoGVVxEYBkxmLoerx5c4ftZg/nHK7XCQtJZzqkeg9mlPXIIER14gy919LJAN9vAOeRYsY0LchUo0UpC9krEYF80HUuKbhKJC5jTDk1xq1t+F+OttYVrgaqBDLcy/fo2lJWA8HOfSYYkTbr5Ag4F/BpnAEASuv0uherLuJmLMXxnWsTENbPOEcYOo9NH8AJSFGIXsdxxLIwxjlhnCOSdxgcISsot3mxTLGs5aetwf5i9xO9BEamLP9mr5rFV4zwLN+rs6m+F2XPAra7S7BODVXnWIIDDYgmMlLcJhPcSXdfy2gy52MuNy1mVzFQDIy2GZrOuxd7qp4LvZ86xbydCe/hnK/cmToHRhodhg5+6HH8csTz5yfsdx3u7zdC1NwHfHN3wPW64PPnM1KaAHR6rSrvCVpawBLI6boejoC4MMAJy5ywaDchoVXwKCaVGXRAlVPF4wT9bvlOVRaZWrHZSEmJ7jPheo0YBofQEwYtR48RWBYgZcC6wqGQ/tseuMHWBXfbPVuDtn05OOsmaLxqqZ4VZgn0OWYYs8kt72DboICg3Vk1c8k5wvU64nw6Ac7BX64gH/DNt9/h3fv3AAib7QYpitP3dDzCLl9wAXglE+zVZpTU362/7Jw2n4ILAV6vE7Wjq/DtAZfzFc9PR5APuN++kdIdL+VJWTaqXbhct8w1ZfiGxNoRYUkJl/MJzAk//vBXTPEKQDoNMgNpHtEFcSxJqZ5kWjktm2ZI1nzXM3wnphcp/yWSlna1hjABpLxFyWd4FzDOV8xpxpIX9EOPu4cH9MHjMl4R44L9Zov9docu9Oi7TZEVFoCk3Mi6Wz5Hfqld2jUqWEDfS83xkMFKpo7hTecdDocBw8Yp3+uMaWJcrwlxYfggXSpZiZPdSg5XeoIYM6T3M9CFDsEHdYaqE73r4JzInRA8wAGxMeCzcjSZQ1dkcM10W2d7VK3Bq+dbvWX982oKeSWH2zlktIEjyf6xLpLF0c9V/rR4B8VpUR1ZRTSZ3QQHsuyx9rNlHBm8hqn1h+YZDGeX7EauWZPt2JZlUYzA8J1w/+13e/TdBo48zudRsLA2KzAMCQikyiTUBlnL1YbeI2x6eHgESPJFjoyFYnHCFWzDtwkANvYmkJMlK+6FHfAKhlo7mvQ9RS/b3DdQoWAPwLjIGW25XHXulWBGg6lzoyvXa/RSDrayUqWnknRLr6bgHLZdh77rkRbGNEuge56EfqhfMuYlIXhCHwisAdnifMxtoOq1TC49IwV32fNWmfl6Jv769R/IbDKtYUpZHR0o5nUx9vQE6KioLnZR2hXjMVDqTwsZsIFXhnjyUgY5Kh0QiBwsP9O882I0VkVWZkwdOS04FfCkU2j2j6tAqyg11uRSbYPqnBnZUOAhJW+cCYkhQtN7JDicx4gMQjcEHO4SmAlv396h7zrMM2McZTOb7HdOUmNFGVLpxEDk4IIXrgI/gGgG51G4QBiQev/meW2qm1+ZYVYgJb2S3mhrq2szz4zLNQGOsLkYyV9CjBkpa2SSUMC7zHu9WnU/WpnSi+PdCOaq8AGUxkYZVuNLxXitvBDAy3NJZU1tnchRiaIVTgAGoIL3ejnjy+dP0m2fusf3AAEAAElEQVRq2IijL3i8ffceMUVcrxcsi3RXSMrRQ2gJi3OdX8MIZPu7SLAajc8Nv4ZmfZT20lS79fSbDQ73b0HksNlsMHQBY0qI81m60XkvRG1g1Lwj+78zcVTmQjzrcpZSXLDMMzglUMrw5DFPs0TWuDrVZC9KhGFZJNoZNJLpnEM/DPAhAE5aoZqBnF9EXbnOg15/s93gju/hidAHKZ+ZU8bj6YIueKQsvG9dEGdvXdd2s+rztntdNknd62VrvIANzY6TOaNCni3tWb0XfrXd1sO5Dl1weH6OkurLuq/K5Rs5R5Vvx3lp0U1EKtRl7JwTmEgTmLzyFcg4vHfISXJwxK0hYzKwLuLS2vlU2dc+KilwWQGKckbX720jzG00xYRwk+ugHclqejU3X6totV5hWRJEBiSNanETfSvbohjTK8XKzT3qcNavRp+gzIO9sf1qn1/OXDUQE4AF03hVcJSw220QY0DmBVm7xcS4KCh21eGl+oKdA7yH73vs7x7gfQdmjxRJOrFMwsvEBGk3TG0mp3Srs4lg1YUvyElvUWG7RgRYxx2Cyr5mjdsfRO6afFAQxcqH4RzmxLguEVMn7YRJCbVLejxqGeqL1H2grFd1Aojx65mkFR3kml67QHoFTb13yL3HQsDYSXMRJsIYJSNqmzx8AdYostictl5bidvfFFFpBJURs3RLKkZmme+XAO+/4lXLW7jIZHkY40HSOSxnVPXmStdReU9b4VhEYTmPNSMypYQYl+Jkksp4Lfdszq85f8yotOvaroFdNwvfUNGzZraVtWmMC92yRL52/9LLCYJyIBZHVsqCM5w2XjmfFhCuuLvrsBl69B3w/t0BQ98hLsA86dzofb0P6IJ2vytdRUk5Mp12+eoAajN6alkHNwLTSgjkfYRWzlVxwiXiL85smSwCgES4jgv8Ceh6h0XnbZ6EqyyzZMVadzU7j5X7xV71zLcgX2Sl/IuLjC7v1IBcLniDwMjqMLZzdevEKvdo+EkMw0hGhjomVRHLdRMu5zM+f/4M6+JEROi6Dm/fvUVKSTKOYtSyM81qdaTce/Z8BGEC5jKJMr51Zy5VCYpvhTxaZDarDvXo+wGhH7DZ7bA73AHOo+88ghfO2bhcxc8SAmAyoyGuN0QlmZ2iYM15J9nhEdN0xfVyBmdxZmYGOEZwivp+r3I9IARCTgnX8YKUFgybLXbMmgXbF15McZRAu3jnaiBBZUfpWsZwnjDst3CD8N54JQO9zBFfHk/ouw4pSSOlLnToOwlsONU3UsrW7rE1Vmj18IvsMhSLqmJLhvLsMkIAQnDogtOsJmC/80gPHcYxY54A7zOUaBZaYb7GbETou171Y23+ZMTeYMGx2RFAGZ4DcoqqB6wxRp27miHeBO6o/A/rn+zfQlXSJN7BjP1WDa+1H5p1q/cpmJokYF5tA5QsQgmgt3aUfY5Xsh2ofsJWTpi+XWOo6kgwnFhkso6wMVNWv6tlnusXAyVjR/CcNL/ImdH5UT+SsdttkFLA5ZIwzVoGqVVOjuXMZQV2Yq95DU706Ic70RnsgEV0wxzFBgFZVzoq8naFQvQB22dfP0bNDJO713UzH4FOVVmD2mUZZf5tnYTMn5SmQWZ6ignXZUGA7G+n58aG3YaPX3vdYhLTs+RU31mA2pvNKJQfXXAYuoDkCCkFcAQyE6ZF7PaBhFB8JUfN17DC+xBxnLl8ZZbnXo3d9vlvgFC/3dm0VJeoh0fR0Gg2tyDpcvMKkoGyFVbKWxdQUwmRtDuOnVVd/JgiKMvP0oZeWiIzQ9s1KyBGRl1RvNp1JueMZZlhKeVm3Hsvk5315kyEDIJjB3IdfBjgQi/EzM7BsYfLku0RMxAjkMgBoccCxqenCeE0A+rd7zqPv/uHbxGCx+ePZ/z1X58QlViMYc6mXkrkOiHdJSIEJ+V7od8i9Hu42SGnk3COZEWcDegr881V+BRDtUgRFIcToQGyupGQgfMlYpp1k+rHjqeIccqwbgWeoCnH6/s1lysvLvep6FgOdpXNXJCaXCtB0iwdZ1laIpCRaprEQyNkFDQwKps+s3ACiRI3kAUBBUz4+uUTvn7+JJkN795i2Gyx3x/wD3/+J6SU8PnLJ1zOZ5zPJzx+/YKcJQU/OI/MWcrs0BBaN8CldrGScg+AC/gDGOQCPDGcW0DwIJJSHB88Dvdv8e3v/h4AsN1uEEJAPD5jOn1BYgb3O8B3YsR5mQEHK1FwRVBKtEd4LHJMSIu0dR8v0gHuaVoALSMyEjzruOZDh9D1iDHh6emIaZoxbAZsdzt0XYeHt2+xcVsE7zEoZ4M55nLOskdhwjxDpRcIjLs3d7h7f5D5iMIXdT5d8fj0BX0IeHOY0XcBd/s97vYB1jabCNpxwvZx3fYMlM6SWY0n6LOIh8YM+soRZ3jDlTWTuegHh6536Htgu+3gnSjNZc44njxOJ8bxWEtHykbUMQXtLNn1HTbDAAZjGkcskhZY5oZTQlbj1zsH7wBOQd/DiDZvOndAbfltZ84M7hb86WnQM5CLU94cGOZsl89Uh0ZrtJoKN7cMESGvuiZxIWZmZizRskw0WpIZUcvUvAd8kPH5QhiLogNaQ9vubYT0olpah5PugxdYyJReg6baN5RngpKjSpfUZZoRXQTjK8L1hM2wxbt3D+oUsy5SE+ZZO6y4oFwzAJN2WfEe6D363Q7ffPc7DP0OffcFHl8R5xGXFJF4xOIYs+q7kvXlGT57ycTVrmFt44wKkF9q9LqOptsW1Ru+gCSn8kGAHlQfJFgKfuEIVI6yyxKRrwmbEDCrUdJRaMh5qxOiHL8CbmvAx/Zc5wO8d9ISOIop5wF0Xvh4eiddXH3nMVDA3CXMaQfnOzDPOI0TgicMXhywDg1wIS3VtGxf3fc5pmqgZsacEqaYkL2DNuZW/o+mRfJ/8Sulei8Dr5YTY47rtaFwu97UnA/FPUoMSxqByZz1qzqdlkUyxbwXAzh5Ru+EJ4shDQfEiHVlfVdbrRgjKkc4I2qWUwi+lAJI0EQ+WxwjGWBHcC4ghAHe9/YkcEwI8HAgxLRgjjPYAX4YkAF8/HTB49cr/viHe7x/t8Ow7fDnf+yRmfHl8xU//vUoXGvkAZAYKV0vWKr3IO80K6dD13mEfgMfNnBe8npSzghU4GKxWKrRZvimLUFRWWXrYNmHqJxvGUDMhK9PwOUa0fUOm7MEH87HGcsoXWalpM2teAqNI6voLqyNwQryXV0T6yAEdSqx6BWGyV/lE9QES3smcA2WVJuMirOpqhnGvCyCt3MGec2ujhEMwpfPn/Hlyxd0XY93799js9liu9/h3ft3SDHh508fcT6dMU4jpllKYoIP4pxg67IqpSelo2QhLmdkdXBDuZdELxBA6lgKAcsi/EnBB+z2BwzbPTLrR8AIXYBzjGueMF4epZlAvwFCB09SdibZpirP4ZG4ydzwomzmZcKyzAjHJzCiEAVfZqTE8N5pCamDV3Lwru/BDliWGZ8+f8Tlcsbh7h4Py1uEIGPt+h5dCNhuFEPNizSM4GrUphyRIA1i4MVJf3//gDC8F0x3uiDHjK+nEV++XjB0Hd7cXzD0Hd7c3+Htw72WjnbSHVyupodbsWmje1OSjlfSrbLBs3pQiqPfQXkOXenk1/fyNQyEzeCwHYDwNuD+sMP1ksB5wvmcxL6YoWZbxfIC1zy226123/YlmHk5HjFdJ3COmKYZREBKql+YEZzg4LlkborcTSnBSrxLMG5lG1ZMVHWqvYdKGTiRBRnbDJAb7KSHxxzaYMnsZgDwqvdhdOcVk3GGckfa76x7nwRwhfPUmkhRmbN6hm/scSh+stJ7fd2w0a3/deO8IQXVRSba88FBGpHKfIyXUTJtM2GeJ4TQ4f37e+Sc8fFj0tI3QJrbqCNPJVahaQ8B/TBgs9nj3fvfowsDPvuf4RdCjBPGS0RkRnYOKbgqg1nkry/OInXWqrDmm2c2K7UWpqPsBVYM5cg6SkO7y7kb/SxhCqm4CkLUbriXCOdlAa4ZHoSHzUb2tBMK5Kgpc6vd1+j6dSYTCsZx3oFSAnyUTpregbxDFzw6DwQPbHsPwiCNWFICY0HMCacxInigd2brUNF75AjBC6A2/ERM2v0vK/dgRspALHa3vMdI5F/Dprev315Gp/+7Ne/FMKk/t/6OdgCmQNkMRJtUGzsA8xqbUi2HTl3fTKz2YmPsNAuzGuzax7T6YwFCfBPZKQdt/WGr8V0Jp0Zgee2g4L2X9FjOkLbSoixSZnSQtrubTYdhM6PrhODP3mNdacg59VZCHWtauuQCnOtANJe5YQBtp42aXXGzcbEadnHCiH1agVWLuQQXC/fAPIsTL6687rYTtH6zuV97N/6Fcf2C7SQAiOo+sPe2jixRdLbZ6miY7BCrkQ0Vhg2Ya+9fo74Ctud5Fp6s7U467BGEq6vvEKagXF9UnEhF4PNryuvmsdQQrnsPoGaMdsih8+W8lxa2YHRdQAgSmXO8COdTnCVV2TmQdiDKBBA7ybwxXgKYctV1IPlbilKnu4wjckrFgQYidTYRAgNQws1pmkS5O4eul7IwcSqlJuMQxcCtBIF1XdvFCiHA9cJXs4CRkyQAx8QgypgX6cqxDFKzz9rG3Z7D3TDjq04Ev7ap1DFTBc/Nn5u3yZlDcW45Rwge6AIhdhnD4LBEj2lKOs8ooL2qfirywalSACopL+dch86ioAp3hA7EEco6rESqjrjunVceyPZU2Y+Wi7KareZz9TC2MuDV81kQVUb7lpI9mLnIbGt1X7ghiAvHU3EyFaVKVejrN16d29eVmZz79Z/XEFJ/Ry//Xkq/pV0MkpZc5154w4glSuqDh8/WHabNbKIyNlaZI3xW0sUxBOH8Yyfd+QTWE9yvPIvNySqT4uahKnBq5Hgzl6t92H74diNp4MZRzWYhUi4FJeZOLK2JLXBj+6oMywxivLJCqzWpe1tkEpXz0fqD4czp6uFdRsoSzKFc+QII1DTGoNUYytM3IKJk3qFyWtxM6d/8tdYV1WxoyxRMbNnLRFgrygwIrDGNPi/XaL5wOmqGsDlNbvZZ6eho122/Q3e5TastbqPH6yPd7DuYLKx6s/5Oy+004CeGpYfT8eUkXJJWrtv3HcgBw2lB6PQcknR/DE4cX85XXVH5/zycCyAXAHVO3Y529fpFTGNnbK3bWjWX9TDEyHAkTh+nSNsaEZQMiYYXpMV1CnqaPXCj7H5hyIaPrByrGqAod2zCkDczYGerkRc2SnOGosFzqiRSSohqMC/agKXv+8KNGpTQOkSvmXMaOBIlV88vmQF381y21QyvlvkQB6fEanKRTU6Ncu8lU4KZpbuulzJD8KJdroJcyvnSaZEI4mvLQMo2+eLMQxOUySlJYC1mTNOIHLNkxWuZXucIzsvvMgt9wLIsWGZrSJFAziHlBJeSZrYaTlM8CYgx164fV0ekDx6h12Y3GlxI2i2YKBXH3rxsEDXg2vmuBGosQNWu/60p9WKXmA13+7fmyBfs1GRddEGcUal3GHon2WAZmBfTZ7weCriRDdLRlzXQ65wlBbDaiKk42+2zhr9eHu4Wcdu/X/791Ye36WpwSvtnO1WryhFe68byMzWYNVdn9m2H0cyKoZTOoug1e7aV7FmP6dfWslHgErCws944QsyhVvROmR4DHIppWDCUA5SnNJZEDtJMfa8ccvZdAvKuDKUgF4IG0BVDWWd6cgi6Lpbg0KLX8kMj9251Wbvb2/WwNVtNT/l/3UPrz9VMP++9OHApaUdccezHXPl5M1n2bz3fL4NJ69+v/trqVrMLWvxEco4cEYJz0uDDWQKBBIRJM1ON76lY0eV/+lyWcGPyoMULzfPbpvitOOo3O5vqA9c2gKxZHav6fc0oaSOzomA1Ku809c5KLvQQM4RfKaaInLJk/WTGNE/FCeDcAGYn7f/mpShBWZgGFFmbxVwFS4FzemKYjTXfadYJICRzRgReW2k6T+vUbCd+fA+PzWbAd9+9wd2dw/nO43yvbdO9gOfdRryPCRBSvJngOo83Hw5IOWOJrBGEAOd6wHlQGADXwVGA9wOC79Bt7uH79/BdALlHwDK5dOM4Jc6TmbCaYBQDoaxfQ1pRhGODG23zWje/cUpIj9KeNS4MLaSBeexZJ9W+35ZV/NJr5cmFGaXaJtwM2VwNWiHxBdjV3V04Q0wxOwKCOImEoG2deUJqXFUwBo3cSJnW6XjE5XLG6XLG18cvcN5js9lgu90ihA6b3QEpRlxOZ8zjhMwJjiU63HUCRLKSALfuBxGCFi2UKFLreHWOKkDWPRdzwnWZ0AWHh7t73O+36N0V+Uq4zhH/+vgVj9eEYeix2+9KhgKBCh8FoQou7x12+504OTNwOV6xzDNOT4+IywJAuXicQ+g2IO8xbLbYbHdIKWO6XrEsC4ahV+40wjRdhZTSWRTAYeh7NbKFT6GKeXlW7yXrynkHF0h51TJyTOiHHTbv9sgp4jJecb7OmGPGdVrQdwHv7/cYhk7apbog66y7XTZJdU4YSCvGmxFHK9AXIckvDIWuc+g7j6F3EhHvHcAzlihRtHfvBhwOjK6PYIpYlozn44y46FmESJyFF0REkCMMLOPoh6GAJo4SfSld+LJ2zWEgp1iuFbxDJiu5aIliJWOpclFadFIBAyrnXc1sako40Top2pOp6b6tcimAl2FZNtky9XTuBRRVZwAM+LvKVxFjKgDSOABSaTxRAXWNtNqXPh/rN0tM0+ej+g8UmGDP2PxNMlKFANEAn+hZL59Uh9N4PYO1pWzoCG/e3CGnPR4eHiR7SMuJ52XB8XxGyhl97wHuEOOC4+kZ4zThcjkhLiNonnA3JdCUcfHAxQORgNFHRCLkJSIp/4GQXbflcyjP9NqrBUmlwxhZt9bqnLUMH1ZA4r1wX9zfPaDreszThPE6whHDBQY5RsyE8xixeIYbpDMYXHWeEtk+qhqWHCGzNupoZbztpyJ35Qx7L6Uj8nunzgGHTR9ABMwxI3MEOWDJhDEyBi+ElwKw7Cw0nb8aoM9cnVQJmgVDmoVDrkSX/5av1ggyp6utW/uykn/RV1VnWuZsyVhh49jKWOKiGIq1tEGCKBKVr6V1MUVgVrGZape8FYRnRirllnVcRQ4QiaFnf1dnUgji3NFfijxRPRu8L4G7EDz6ocPhbovf/+Eb3D90mC4nTOcjHICBHDwRDruAcczwC6HfAj5IedDbtwd1iDpx4roO3m1AzsN1Ds4zOu80+6VD6B/gujdwPgD0BaBU9sFaVvzK2oFw20GqGq7m4JLfpQxMi2QXRc3KSZFgzi6TUW3eYgvnb25cv6mYK+9kw7u5kZmtOaaoUKPuxpNay6LM4WMcWJqLnKKQLNsGKHhSxuBgwWInzUI44+npEafjEcMw4HGzFcdL1+Ht27dYlgWHwwE5JVwuF8zzDPKkzQcYwYcy9qS2g9kGZRrKZtOW9/DITHBOuUydOJpCCIgp4/l4Rh8cvv/mA97cbeH5gsdPI8YYcTzPGLPH0HXYbbYgzbYVOi0CqbMsxwSmDOcJ2+0WsROZNV6uWKYFz09HxNkapAiJ/ma/Q+g67A8HIN9jWRbJ4E5JM6fFGbcsoheXecY8zXAke1tKgiVDn6HZOZmLfLT4TUoJrJnp8ITd3QH92wFxWXA8PiLFk/IlRWz6Dt+8fYvtZtD5q5tLgj2aZ8JSdurUKeCLvCdYo4pid1kWpZ11dRQMQ8DQS9a987qXcoT3jDfvAvZ3AV8fEyJHLAswTWIDCP8fw2XC5XKG8yP2hz32dzsAwHa3RfDipEtJnIbzMmEex6LjwAxOWbJ7PYP7XssQzQ6tB0owlGV4ac5f470wblrOLYZKVY81wYFf8u7UoJk6HjTYqImGYjOw8f9Y9pVTvMKS+6kkPcafJ5U4Tq+XVnZtGU/zUgmBIjjU+ChOgxuuTkA5GmEYiWyXSKAXVbo4lf0AIcYFWQmnbV6lBPqdJFZoEPJ6HTFNwlU7ThMARlxmxLnHiCuenj7D+x6X8zPSMsEtMw5LBkXgmhnXLJUvE7JUwKSIFBddn4off+lVA2YN95PiJiv19hawKByqVbZ67zGEAd577LZ7BB8wjSPG8wXeyXxkdpgTcJ5ibXCiFArOS4CvbThWsVFtdJab5RJO3JqlRk0gxfAVkdgMYGDbdfBEUnmVEjIBcwZcEr24MXqPVsJmczJxxRa56XqbWbMZ1Q/CTkodf8PrP+Zs0kUysGOez5Xi0gi9dIIz4ya9WPi2BTScOpuStSpNWOaowH7Bsiyr9qrCn9F2yaoKyeySVjlWxd0aIlYrK/9IKcM5aAQkKHBXz6FzIF/LeAhWeysG6dt3dzgcHK4D47IRgRmCtnFMMzhOYABLykBMoOBweLNFzox5SYgpg6gDuV4OLfVgBEkHd512TdvBd/dwIcnfadGZT2U8NdtBU/5gc6AAl9fCBM2sFBCjXxnihJrmjGkSQeQ1XVARwMrTaR7ldp7L4qIx+ldgCGWzZzUmjZxWvQGGKyoQ4zreEik1Z5MnOG2pljnBvBANVFHQTAV422HPmXG5XOTepyNIQeof/vgn7PZ7DJst7u6DpIOmnxFnyVFwJrDUUZ9Sxoy57m+u9zYLt5QwUv23ozVRYOaMOS5wLuCw6/H+zQ689LjugICE+XrE49crdrsdvEPJuqoe99q1w3npRDBsBnjvEOeI6TJhGq94enzCMo+Stp0XOB+w2ezhfYftbkFOIrznaVRgkzRC6LDMcykLM4PCPzzIPUmLiAF1+lUjk1gcsEaOaWnOu26P7W6HeRrx5XjGPI1YUsK4LNgNPe62A4ZO0u9759VvynWDqJB07SG32W8jBqQwuSjmegicI3SdQ+gCQtchBIe4zEgpAuRwfyfdMlJ2uE6EcUw4nuda5w11dCmmMWPROYcudKrXMzikmiqdopYdxtW4iFhLVBQUMa0ei9kVkuvmY+X8sT7cKtsh1z0pOGptlFDZpyoT2JQPUJ1AWcqduYl4sHbfgBjD5vy2cqGcpctZJkJgKaMqWVDmCNE1tBu3wMn+vrKHqY6ZXH1+5kqeaX9nAxXKjVRkXpEJep+UMHHGnGZ473E4PGA3bCFKShzV5/OI8ToBuCKlZ8mMNDLTlHC5nuGXGeN0QYozQlywWxK6hTVDB5iJcWUgEiMnaQ5g2SjrNfxlwNS+ioNJnUyWAr5+ySYhzRzq+x53d3fYbLY4n07IMQHI8C6DnJQCXeeE5BnbrsMAaPDFr43ZNqABB6cdTZgqsF8HF2S8wStHEOraSaYw0AdzUibMMQDEiFnAUvBoWtw3C426XxqlAWQBaoUIQIFSG4T6m71o/YPpAJCTQpRm0awcGQAqZ5vpUeg+ttI5I9OtGGqaloKVcs4gV52YOSVpzNA4StosmHYuqZwzfSnwJWZwMl5LQqYM6wwVNNCQ1UiyZhjOu4JVQpBypbzt8eHDWxwOAeM5YDwDDoSND/BEyDFinhcpcQ4A4BCCx+FuK3whyplJ1EnATg01kHLHdL2U8IUDnH+A8xFEoTjHzGldHu4X1s2wSktBUGQLaha3YcSURcZFsGZwaPdRqgE7K21lvDQQG2R2s0upZHOaschQGUlrudm+cs5yZkqXyZptJlxLalTpnZfSoMCgCzUjgHKtsnYSFll+Pp2Qc0YIHbquRz8M+N3vfqdOpoy02+v+rCW/TU5vGSciSjloe8+yFjYvzsExrYw2y2hKKeNyuQKbDvf7Ad99uMfp+WcMbkbkGfN1xmUm8GZAr3h/0c6WamUCZB0cpeJAnEQO8zxiGWdM44TT8Yh5WjRLPiGEgP0yo+ukyc/QDcLTpdQX5lAi5zDPOhdEmEl1zt0eoQtqAKtjmRnESZ2ZRpPADfG1lOBv9wfc79/gfDrh08ePOJ9PpQRsv93g4bDDpheHr1PbqK3kMM42r3bCa05w2e81EFQcLUSAZq31XUAXjD9J9yxLYPLuvkPODksEjidzlLQdVxmZUBwrw6YvsoM3A7xT+3LxyDlinkfEeS7PacayI3UYdl3BWmxkR3o+cm6M+JUeUUcTyxlsHbmFigAk1QTlM6+/zHYxJ32xf7jOoWU2WeKD0buI2VaN+dKkwaGUtFm25O0YqD0w6mhb+cTY3iSOK6NTELzJsFPWnnqlV65Yy96lb8oxISOpw2mBcx67/QP6fquOfY+cGV++PCGnswYPL6KnFsNBhNP5Gc4FzOMZOc4IKWIXGSECyMK/CAKYEiKkOYiUqb+ch5cvEZ6tLVwyrUvAzo4/rfb/ytk0DEqKfpAuiEyI4wSn5dEMaX50jeIoHlypOS0OrRaBFPudGpmb62SvAmnqBDM/BVT+OyjG9cDQaS5YSqIjIQ3AXIZWb/iy1oVHtcFNplMqkXgzr+oHcvRf4GxqJ6SmreusNLKoyJyyiIwbWdWMl7RTgACmWtIkkfOs124jtkWZm03U7qvGCGFVxDVyYw6X6se7HVd7YFeL6qw+st7f7pVTxjguGK8TTs8XHL+c1Nmk189CGkgOGM5RohKZkTQKmxIrUJLII+BALgMuaGYTI4SMcUrCCyVhFwVTqRBnG/iphjduQNRvWNtmGkvZzcqQsMltBVYjuXi9GVdXaw9KO+dlyI3hapvarRfXntCRRaarownqqU5R2vvGmLDEpATz1ZA1kG5RcHmECrQlGwjalSXifBJlHboew7AFGNjttwjBI8UF03wFc0JMM1LWFveapcSWvVfQpD4fJFXRgL+VaQIoXEfTPON8vWCaCH/567/h6WuP49NnfP78Fedxxul0xPUyAZwQPFbdfgoMptriOsYFEo2GAtIs3UL2e6RhQGn1CXFUASQZRqej1GRPE1LK2Gw2mMarkrjqMnmHzosoiUtE9OIkC50vi2w8NBax9AwQ+aK8c8qg3iEoMfB2v0foOongOIcEaSWPlLDve4TNIILby1ngnFfn+taIFEDWFCCZQC8OqMa5wpJxM16jKGFw0exi1CV1zkkWiiPLJDPQhbL2ZuwxZ+Ef0CgEyECDEogDpRxRBiTRLysTYDagYUpnbUy8pl5LVhAq6WF5N6EY3I3YLLwLYAgQWMlyKUNgplrmUpQRQE6/UzWoynqQMu2QTLYNpwCVlYhZK1fnhNuHyFrds2bE2TzcmGLNmKGyv0TpZFILt9fqc3XihAQZSdtRExx5Jf0GYpyxLBNinGEd+qIaxAzCNI/wKUnENc7gvGAhAN7BBYchyJ7yPINy1mYPVS/9WkSuHWlxApg+LvqRbuQ+l70GMPq+R9d1kmXHEP4wFsemI4fNIF1LAhEWzTxbcsaistnks+Y1yAlpbmcZtnVcKO83kE0Q4FXKqkwRqPPTOyB4QpedkNuCAadE30yIWTgaXHPSa4RQ72byV3WiAWnvPch7BAQE8vhbvQpobRwXDcyQOeI6b/YZy/CogIf1IvbPmj3eloWbYSOlRa5katPteWteRfw0A6v4yTAF0Do61p+/NXgqiLcghb5T9ayUm53PEy7nCy7HC87PZzgwBnU2cc7SzIKAYfTwnpASSykOUDKbiCRgKA1dMsh5dMEh9SO6jrFfEjILR8jrk/DKuXtxFuveZp0Uas5jwZnNv1ujjVFl7uoUNRionbvb/dCCNNtDthbczP+r303/qcO4jKroRTkzSWVRVOcJo5bRtaZ1ubaNn8UJIcdfy+uWBSd1QHkn3ccAYL/foeuClqPNsC54OVnHQy+6tw1U6TxUpwGVrC7DO1DHgDhbRxyPR0xXwr/8S4fT0xf82w8/4OvXI67TgvMFuMxAmjdAinDO1SwzQkM8L46OrFlEhoFzFh6dh/t7caRpy3PnCKHvJQM0ZVxOJ6QYMV1HzPOE8XrF5XwGOYdFnU1d6DD0PQiMFCOiF0zhQn1mcz4X4mMjpWIu/H9d16EfBqSccHf/gNB1GHrpcr2kjOPzEWmasN1usN+LAwAl4Fo5jZhrEOY1ebT6UpqTip8EF8QETJMEfXMiEDowGClqZ2LpGQ8wlI9Is7WVR0/WWXTrOI/wziFz0vLLug88SafyTLovdEOa6HfaiCdngLWF+8pwRoP7V79dB9NubRiihji6vZb+w/i2HEOyfSFBt4LLtPIiM4NUVxlvXqFc0P1o8164SJszeOsMXI9fzrLzhE1nGD0jRcFxOVc93j5EG5wlO3tkDjg0i93OIVZ6ygKtyzKLvtdGWzkzYpwEQ6VZcLQGW+d5QWDAzTOck8z/mCPAGdkTMiRw3jvpvHfOi/KDNrzEZXZevlYOOKwx0/oLN9/Xstjwk3Nen1Oyqoa+gyNG3wf0nei9Rfd5ZIcI0/uKSV7bOGX+gZYmZ53cUd9HVOWgyWJC5etN8Oi4k/1A4kNITIhaLdTO1e1eavcaijxQGzc4ePbw/9nOptKWW0t0mBnEGcyVgUL2WPXg2kNUJQxYOZ1NUk6S+i3ZEzPmZRaitKiHDw5dp3xIvrYOL8++Mix0HFk9hBrBBWp5GDd1GNY6U8beGDiFQwVqsDt0vXAJmA1lDqcYE75+PuF4fMLnf/uET//2VzBnqeYyoFG+08q4Iojn3REpyWWApK2KJ59cQPADun7A7n7E/j5jXkiIpX2HCCE0YAVkuQGzdhP7/2viiBrgZJ8rUYsGODloJKytsbWylnaj2r9M2Ddg9DVnU7tvaq2yKKLyBAQFMAyLRHrteOJdJeAGSwbNHKV97LxELDEKeIrq0c9c91+ZkdoCWoC4ZIukLK0jf/jhBxA53N3d4f37Dxj6AR++eYf9YY/L5YLHL18wLwuen77gfBHi+WHodB9yvW+WmnlJJRXBlbSOnjSKASIhc50mPD8/46eff0acJ/xf/8cRiBOYF+Q0YUkZPzxNeL5GnPsOp+ctvHfo+w260CFlSd1nQDscSqR5t9loZhqDOQl55N3v5Gy5AO8ClmXB49NXzPOE4/EZn59/RkoZMSblzsjo+iDgSwX8RknVgw8Yr1eklDD0G4RukPnkWCLu8yI8At1mQEceGVLukZYEdwjYbA8YhoR+6AtgnMYJMUd8+vwEnyLeP9yhf3cPFwJou4FzQq7MuNmPBJQszLL/uMgMU+T2NyLbh9J58fOXjL4HdpuM3cbL3oyjthXNmOeMFAUoDX2AlKtFWVs2Rbvgcjkj+IBw8PBdLwZ+ljTdvgsIjrBEIQWlJLwLrP1UJWPNFc6Vsm9uYVEThStg5yYaVxz/ZJEzkxWuGJLODH9GYc4t+SlF6WZt95w1Y0nPH8oQCnhLqe55l4xcXEA52TVBTV+JmoMiDjbGMHg8PPTwnrAsM2JcME2M5+eMGBlUSoirvraIeeEDVJBUQFQDHrNGyTyRloExeImIAM7xCHJndF2P7W4PALhejjgdz5iWBXGRrLbrdUTM4lDMWZy8kj04ossM3xEGH9CFHm/DgDFFPF9mXJcFYC2dA7AiwPslDAnNELwBSG1AxshcW4eDlIcT9vs99vs9zDAbxxGcBSj13uH9/Qa7IWAZZ5wvV/iUsYkZFBIoM1zM5jOUvURWPU8auBO5X5BBEfSM0jGPaqZLeYvhBmb0jhDIIbgeIfiS6TlzgsuMa5SuKgOJUwxa7iHrq9kAKSOmWAB3hnRM6voeLgQMFNDjb+dsspcjCVy1hkydBBTHsK1bwQ0KposRQKRGlAD6lKS9uMhYdUDpMwffK6eMRUL1vDQosjgcmjGZk6i6M4CWSNSylGy87XeCBAp88NIVa+iK0xjq0E2ZMI4RP/30iMevn/D8+TOePn8CmNEZ7wfpfSBYxDAUKUAgH9RgDgBNIHJSiuQ8ujBjM2T0wwa7t9/j7oOUN7R6XwddeI6KM7CxXco7DZRAs9ullU/RM/J35S/0rpKwltUXZ1dZe9TIsY1DVkFnuJnflTFoRi4TLPMhKSazVzGQkeHg1HihUmrGupb2XgmCZu36lJFU1jKj4Am0Yy0yl0rgwqLtQkw/Y4kLxh8nOHK4v7/Hh/fv0Xc9vvv2O2w2G5zPZ3z98ln05PmCKY0g59EHwVDWCVRmxLLfhRdLjG8tgSwBDsHk87zg8fER//qvf0GKM/76f/3v6FzGOE04X87ieJkSxigye9gIjvBdBxe8licJmnBBMrH70ONueyhkwDlmDH2P3337HfquB7MHsivZrTGKo+3nf/sBKUVMo2AHM4aISBvLMHa7HUizwqdR5F3oOgx+I2ubImKcy3wwGBQZlKSUNmi37M1uh8PDPTa7LYIPmOcZ18sZ18sJ4xzx17/8G3yO+P77b7H70x/gQicNJMz5yCZ3TJfX/eec03I0q0DgYuibLHIZmrWWQAw8fxVKkc3gMAxbyUQaz5hjxDJrdQmAvu/hnBKhJ7EHl0VKsq7TGU9P0pV40w/oQpAAcorgnKQDJW0Ql4gxjuLMEPAAAoSLFB6JYmlNnziqDSu5uOIAoMJnY8+fci7y2M5msYu0OQ8RlPNr9bZyZu2cKzor5y1F7eypATuxYdYOZwBC1cFcSpoMnlk5XrFhVX5VOYzizOo3Dg9vOzhHuJwXjNeEuDCul6wVPlQadVUMBcVQBEGhykOs92cruVrNjWKonLFEKaPLGZj8qLqg0yqSJ1yvZ6liWmYwA9fxCkaGDz2WJHIqjiPSMqIDsAyS7dfB4R4eU4p4ul4lG0qRozzBLevy+lWxols5k24xlG8xlv5sXFR9P2AYNuDMGMcZKY3YBML9Qco8t9uALjjkecZ5vCI4wqaXklJiBctAGanpuKpkVH+q3yLnJitNvZhEottXGd6ZYen/fecQAsEHgosa2E8LppxBCQgxwRHQOcVvsBLCaiCJDUu1VNaJPOz7Dr4L6LJH95+e2dQoFvkuAN6AQy5ehlszCOX9gHrdbha49RoLuWw1+mo64Wvbp3r9yFwd5eZUvhumMKdPHYOCihsP7WuDrwThJiz0uTNjWRKmKWEcF1wuE5Alwma1rKTkf+rNUd4nuW4I3Di8JDonpXwS0U/eIbPHEjNy8ZMJuKZmBloAWryev7AWry0MvfLuMrv2P0YVhC+mzA56tVXLRBGa35hB/DpBGpcPcxlA/WTjSGjEif22kOllSausRMXmbMolomGZF8VzTOLYpGYamCW1M2VG3/WI8yxEpsFhGHqkFNEPA0BiXFa+FB0PCNAaV2YCk5C0OUdFwJeodXEQSImDOGYWTOOIy9dHxPEM5xjBM2JmTNcZy2R10UJEyZmRg4x3MUNDOxYMfY+h6wCPknoNSHvZrusQfI8u9JjnCdfrBZwlYydrtNHqdnOWrB5mp22AJWKZBiH0Fv4ngndBOLecRatYvxu/CNff674miDBnR+gwwOekvGYJvDDmeQEtM5btIKDNiRKsxlh9tRGB1e+ryfTq3rOoQ0rANMmZ6zyQe+VzUHBV9xiBSDLKMl5GmUTAZyRKN/vX/DlirVtr1PrxCmxao+PlmSEFHIB1iaz3tjEbP4PIHXk/aZeyBlygKWkwAk7Us2aGHzOVLKYUG0N1JROoAB2ne43VMGCrqUeVVys5gypnFO+K0tTxyvmhKmPxC2utiLEYp+2cqRK4NfTt5vb7lBKQhA8kJSUQT9LG20rn2gw2InEcCilsFIAIIHuH7MQwDj4ggJV2r804u339qlJ64WyyZ27EyWouvEbLvRdOE2ZI2UiSkiivjoU+BAwhILsojkQn4D3qWhJzI5MF3JUbmjht5l9VZXXsolSolD1fxW7d957EMA/wSEygnMApa9MNcRBmZ3ukKfdaYRUuY2jnonSwo98GlP4zXkVGNWBexH91PthrHUGn9mMFv9g17P0lS7RxMtubyh4pHpSycq9o0nbM7f2bE1SIZH9Zl9cBkgZUqHYZszFr5vE8RUzjgut1weU8A2AELblzTvkymUCZASaQhwB3Irgg8kieU8iCc5bGDjlHOIoAxdLpiRlNRJlXX8xWEtc8T23BVOaEm3m139p+a34j73kFl1aM9Osorc0wawdgK2LyUcaNtUz7hReZs6MZlu2/Fjslw0/cOMRecTZZaTxD+aqISodSsHSCZAaGQfR2DhkhBAyDcAt1GoCx7GyBt4qJleqiPQFVF8q5LxBTZ9LKsxflg1nmK67LBZRmJM6Iyn80TgvmmJCilFk55xD6Hr7rtEmCBj2DkM6jZ6R+C/L1HkSEoe+x2WwABJDy9uUcsTiHC52RtKzV5sPIxYkIaZYM6SUEpGUBgRHjUuwNzsKNxu25NoeCcV0owb6Vqhrf07DZwvsgPITjFTlGCSzME+Zprqk3ZHvidqP88h4qsrpgZdVnhKY5CGOeGdkBXQBIwGetXJEGcbBmMsahm5tzxZD3LovwM5kTssgP3feOqkMaBM18UsdR0f9UnWi66cv7IRlpKBldepZtbordUs9e2yHZ6dcr8AylC6wYfzKGrHJG54nMybQS0ZqVlDWLMqMJnjW3oHb3G36q2pSZpeNYcMJ3tzikyAByyZqva73WCAVDGQ413VMOXdXx+o7yWeO4EnsBTck8a2VAXOmqnLSDGkX4GOFcUxZJBA4O7BxcloyaaM51xQK/tl9XCwKs7P+XGKr+TWRRdUQFbeJliS9Jyf9TSkAI6EKA94TOewTvsDhScm6RJ4kznOp8atYJqGu70rPNniryt51rata/XMpoTQjEcv/gzIFeOSCTZiRmUrIbap10uufphtOp1eekPMP5N038f8DZ1GT6lEfVn430rD5m8xnmUp/YOpWCto922cGT9ixmLkRsSdMhSWscLQILCHeQ95IFZOnARXlTJfQCxNC1cbceeon0emXH14Ukif52vaaccUJOotK9lijJ82r0ZJml5podGAFwPZzfginXyJNmyxBVjiErFSAibcnq9D2dGAVKUC5bQDunMBpeE8CaL3CW+mY4i4U1m9cApQF+vCIMdS11ReuZVUDKLJvR3lVW39Hqs8D64KyEVsFTawBtRku5rhpKRQHamAiy1s6yJaRtq617SnKIc5YuZlZzT3oofK9EjykXklxzatmhofbhWMETAS7o/ogLHj9/RugC0jLjy36Hruux2Wy1dlcid+M44vHpsfC45JxUEalAM/2+Mg5trwpJHo0BOWUEFzDD4fl4xun5EX0XMAySuXQ5XzFNM2YiXE+yr/quR/DKReGljtNI7acQMF+vIvAVZHQhwJF8PxzuMGw6DKHHt913yDnj3YcP+P78e8kwmifJWPr/8/YnXZIkSZog9hEzi4hutri5x5aRe9f0zGBmgL7g4YT/f8YB8zAodNeSnbG6266qsjAz4UBEzCxqHllR702lRnqau5qqCAsvRB9tH2032O33SDHi48dPOB1POL+c8Pr4DOc8trsd+r7Hbn9AXBZ4Y8onAf6mrJdJUmjTkhFIOjEa0Z3JFuccdtsDtsMB8+mEjx8fML6M2PQdbg4D+txLSaN3QE6wJtRUUDSjsEnbGecL0HAhJ2PMGMeEeWaMU4J3QHzXgdAheIdND7gugfiM6TQjJkJOclYtagxmUNdyoKjDaUmIXqJxrGUvnCKYE4gzgidkcmCWdCCGRE8NNjjdL0wSuxGHj3TaORx6dL1bEWiXDnGNfC4GSTmjdh65SgBu5gto5CapHshwTqJJx5eI40tUQOUhTQNyuS8jl/NoxErcojIz/Nhkm6Y4ERc5mRmSXt0Rrq88dvsO05ix3cyY54zTMeF8jsgZSEkzHQ0xwBzKDKMBZkAI47lmjtTtIiDQMmINj6dlwevLi+6RCc4Jt5GnDKYs5K9aEued6Kc+dLi+ukJwDjs/IDgHp7xD8+yQTg68yFiNKBuZ1EkYkTnqXKgspNqco5RE2fq0oAmmz6BltA7BB2w3u9Ih6nyS7JcYZa16D/QB6Byhp4SeHCbKyMoBc5wXJE7YOIe98zKXVgJPkAwPVi6futFg4lzAjbTOjVnKaAM5BOMq0s/WLDp5zuBk/RI7Nf5kbs5zkkhrsHa+hJBFJzjtWJSylFKnLA4qmJ7NBMoAIyvj4d/nVTABCSYwY4d1LiVjscVYlSxUgDqrfccFV9m6WzYJQxuz1LuW85xiQlzOAAAfOniveKPBUCZ7qXHCcZGZ9qfiKZHbzdo3OoeBkvkgxlkA4BBzhksJU0yY5oQ5Moh6eL9BCBt03RYMcX4SqHT5Kk7CAoRZx9DBaUcg5/qC7ZzXzHZXZSbYyuQ1i5olQx9oDGj9IapI7lWx09oQuAwu2PyUS2XFxC1w0++VagGTec3acnO9dljtsra3kc8Kzjay+Doe32SgSTbNYrhQBVxUUt+cGUtMNcPDSV6774yL1UpWbF9wKfmxMdQ9KYPLmgKZloj7jx8RQsA8jthtt8qLtwfzDpvNBvM8Y5pGPD0/q4NG9rTIZOsCatgwm3hsHK0JMS0gjeSHEBCjx+k8YZ5OMMUv2RVnzMuixuNJglehg/OhcNPZfnbOYQkj0lkCjlb6wznj08M9+q7HdrvHdrMHecLNu2sQgN1hi9s7aSwRFyn5oeDhQkBMEQ/jPc6nE5Zpwun1Bd577K/20gJ+u8X1zY10tFMqCMv8ZXApqxv6DbZXWwkc+k4zZhg+dCDnsOMr+NBhPD7jhx+/w/npEXfvbxHzDMeAox7WQbjF+nqAlUfIbDexMYKTroIJqAFcERZYlojzGZhIMmc8AYwOQ98hZ8C5HiEQcppwPk6S6U89xNYRmeiotpQnEOIUwZ6xhAhHHlG5bjlnrY8TEnfyWhqUhEC8anw71NkMJxBYuXjFibDbDggdISXRUczWZEjPZrnMhZ1D1XZCMx9oZIN9w1tGOYSrkTnjeIw4HaUE36uMbIMGcHIOhDTcMi6tokOepQ6J1z+LI0e4Qb0jvLvp0H/YYBojHh4mLHPGeE6YzknKkhNV2ad4U3PeQU4cJ+IIlfJ5zrnyIaocI0hpI+t8JI6ICYA6DTkndF7oBBbSBh5xwTRm+BC1ekeCXv3tFTrvsR0GdN5jGSPmU8SyiBNK7DwnMooBFo4alR2xyMGC+y902Po9WzZrdiO6sh8GWJMLR4S4RC0PZqQlqbOV4Ek6D3eU0RGKXRoBnBfR751z2FjjHDZdLrpJ9HAju9WuSCzOochS5pxU9gbSbPJ22fXvTp2cnZNmTEnnJBIhccZpinDEGALQeYYjhjedqmcw54w5CYZKAOC9RBSyzHPKDPqbAdP6+ndmNrUWOSpIR039Vk26XkzXKNOUm49pLX9xrwroqsSxgGcBQplrV5Wu6xE6hnMePZGEuJqXs7Apy/VEO1kmi92XShTAbFBSZ1MIQZXWLBkoDHgSkkDLFogpYZoXzEvSelwPUA9yGxgfCwElhFuBmYIX5c8xsCYR506Vm93LIUdJ+S7kwMUNbaBJjDWxFc1gq8KwetV/YU0vfllEpl6ngqwajdYvl7/biAzINfDHRtHK3fL+yuGkLlx6c1FbL1H8FnESgSXCeEkJMUu0alkkitZ1nQDOprwi+6o4U5J9UQnW7LYiNIg1ZK4lBClGvJweQESYTid0fYe79x9w/cc/oe97bDcbZGY8Pj7i8emldmXIQorYd75IMosEryPCuq+WBaBJjFYl/X49nnH/8IzNZoPdbofMjPE0YpkmEQKl5Cpo5lWHfrMVg7R0UHQ4n06rPb6EIGmUXcBmO8AFaVN8e3sL7zssi3A2pBRxHl+xxLk4ZqdxQpwWHJ9figPZOYf9fo9hGHC4voZzhK7v0G0HdH0n5MfqPV/mBWlKQBYB7bwXp3PdnJDudhsM3RZHCvjrwnh5nXC163CezsiOsYVEpLIzj+ZlCi2X873afur/MD+IvVISRVibEIhjfDsEDD1jvyV0XQZ4xDzOUk7mBxhIErCtxiGrIk6pgMNkToksddzy04iZSbPJ5ExnVcoyt7pvCE0WlYy/7x3u7jbY7T1SBDQBB1mRo0U0AECyi6hkATK4OGNkYmpE2faopelaZoJzGaHvFOyPGM9a1wAFSsq7IFk9GcjVwLaI7KrkhllXrbCy6QJJVNfKYkGE3X6Lr77aYBoTQgCmMeGeEuIUVSF7cKZa2wVzpKEa9vqvDBTeFWZNw1Y9YM4mJDFI4xKxjCMYrFl/kM5txHCwbihSFu4oIISEzfWA/X4vnSy3eyGtnWcs04zlzEhe+NXISYctgIDowNaitoBlKvrSDC6LthV52f4dVe9579EPkrW4318hhA6n0wnH07FkLQBAR9Iyt3OMjhgdErzQz4OZcV4ilkzgLmA3iCzjRWWwk3U0o48VgDtnRMiVXiRlA0pAIFKwpO6Doo/IbHx4zV7MzFhyAIOQloxxUScBM7Jn5faROegCIESkUkYXkzyHpMIJuS4lkfVJudH+Hq/qFCxvNOsF7fBYHYmr7ygYtQ+vxBmhZAUISLbuStZrr2Y9GWl4P2zQD5WE1taqOJWMlJbUeKLKC2MZBHZOLGJd3FWOCkmaODRycQKCxNlESRyB0yKNZEAdnB/gwwa+2xYsQIA4kkJQ3WWlkuJQIQCh0xJBJ1mDRKr3yO5pwKWW3MMcpVk4M23crU5uTOgGxDfABFQzA/TaOoMrbNXqnrr2UH7FykUkn62RfguAvnmxlI2tXoY3bc/YWJyV+VXsLtgnrbJllmUWEutcu/iGviv41HeCTYWbSHRJLrrJNfunjscXe0EcGSlGPD4IBpmnCZvNgJubG/zmN79BCAHb7RbLEvH8/IzHpyfVv7nMFWkJJakDQV1YZa6szCilCJdEd/sg++E0zTi9CtekDyIbxvOIaZ7qWSJSR5MQjEtpV80aIucwnc6wIHEIQTrHQpxa78Dohw5d6HB9fYOu63AVr7AsdzI+5VKblxnjNGEcR9yniOl8willbVLkcHU8YLPdYLc/gDhLg6DQw/sg+seJ3o5LRFoiOtdj22+w2WwlyzwqHgwBjiWTdbPZwjHjPM14eH7B8XxCygsyOwTiki1sVmvpUK2Z6Gs7QRzBIoUyUkkTlA8tS1LswsK1BsZmG3BzLaWbznVwDKQ0YTzPYCahKPEkTiCSAyINiUR2xEUycJcuwrugzlGrVMiqzTOct6OakPOieMPkarUzLKzhHSF0DsPg8eH9Ftutx7xkTEsu3dMsOF3ilipE2gYnrZywkrg3jmi0GdoZYOFRzYlxPkUQ2Tlzyk0pTiYoRyWbvcRVlol8VfxSMBvKeKo/Sjo+wzvcXAW8e7fB+bzA+4xpjHi6T0hjEj4fDXjBl9RxOXVsukZxs/5k55R/iss+EdkjGCpq0F30cVZ/X4b3GkiB6mLtRu9TRvA9OGTsrgfsDnt0XcCw3yH4gPh8QkwnLEjqbNJy764HGEgcS7dkK40WqoVq+68dTSi/a1dMgqayJsN2B0dO9Qthnp9xPJ0A5qaxh4OnDE9OnE0AZohDNAGY1DbdBmDolZxbO8ojk8zjhY7xlgnc4KcM6cQHhbjePs2rwRfpKzZwxVAJ0nRjWaw0WQK6jhidE98FtGFE4oyYE2Jmoekh4d6yEkrjn/41r1/tbOJm0YxoVCI2dQG5OHVQFtIirG0mx+q6n3GFGPhhhjph3vIqFPHGKA4L1i/bUpV0UzIQnBuAbo6Rt89pQEaA9OedNQYwzIgibelroMayuRpccqmLy2ftequSjgLo3KrrmlmY9sRmpq1BUAtwahZP+UbzuzK49dfr98q1GOyUzK4BU3bNt/NZL1Zw1+cmEus9USN+2k3CoTy7/VeuacJBp7FGeNfll+0f26cWMa7lkUDJA85Neq3OHdlNCVpK5jBOI56fHtF1PZxFeAHs9wd0fY9pOmOeJxCzOoRE8XGpv+W61npuUspAjBLh2h2QYyqtm4X/yMC7Gp++jSrqfKgTQ9aKpfubagp7VjMCJu+QksfLywucIwzDBl3YwHsh5W27Rtb7iRPv3bt3QsyoZX8goNMoMwDMy1QcDikuheOFAcS4YEkRwXXYdlvpunjZ5Wq1/wR8+K4Hk8McE1xMRbmW46R7r8ieZjfaP21tjZfscm8WmaQXjIkxjkJQS0py2vcdhqFDjIQ5UyHJ/MVNrnNuLYNLV7RCGGmH9Be+X4RaMz/N5vRBUtVzsmwVIeWULVY5Aey74rRV+dGmz1KxxaS0kbiZW5lr5xmgDOcEGHadGPopVj0hU6zyS3llyvo4FIJ8KIDK5oRqBlH3NasRQchJnpGIsds49AGIU0COGXEBXk+EmIQAMZncgt6v3QxlH5jxrzElc5oQw4x7UdjWOa1K3spno3OspFU5JUQA8zxjHM8IXVSOFOUxWWbMcZGMG72OEOcSMpz6HlNJTzbng2vkYMlU+IwxKudUQFHf9+j7Ad55BX3QrEt9irLfyMzC+rzqgMo5Cw9tYixOynhBKmONL4tROpQBjY4oe18xlRqFRfZxs2dMvssCNPhdxmhd9rITJx2TQ+KEmGVPMZljlBvga0gSVtde7iNBhTfT9x/3MuTvXdFTxRGqDiWJ0ta5K8ZRK7tX59+UlD1a/Z5kwam81qzRAqpX12tlpV1Ls64aedM6Ydrvrh9wDdcrMMPqnuWlY7aAGznj3uESNLSs+tXXqK5lGbnKV3JZSEuLUbHmZ7JlMHyYM8oevnyJ49RkdH2k8tsLzGO7uHyi6LCq00j3N5PhpuaKl/JfjcxWJ0pWQW7GtdZXhg3aKW5+vcKSJchnWNZB8AJdfK753irbzpyC5d6tTBIlW/mnaoa3dKuOmMYJL88v8CGU75AGrfq+x7IsiGkBWLARYc1FWL5DFe+ZY7Xre1xfX8M7wuOnTsdoQcqsgZO2a6rxabFkFmfNzAWJUQYgaam0rZWV38UYcTwe4b0vHJZd1ymP2lQy6WzMVkZ4fXMtDVxSwjJLad1mu0HXB3hHmOcZXh0r3gcJQjnVQVrG550TwuLQFT5TBgr/XxsA8D4gdD0YkJbz5BB2kiFhYhKEmkFjQVfb/+C6d5tz3Zb4MNcuvFmJ/ec5YhxnOC+OOXHwTOg6r04ueZ6iDwrmditYZfJBSmsDmFLp5lv3hHJ8mf5ojo/pBjvPrS3kvDpA5qzd0DWzGVV/tQfeAnZvxF7BMS2oZLUdJBPFuQzvJbvKOSB0KPO7wsB6Jl3bVIWUykA/VcsOcwkw2ssXDCX8mTGylqZmBA/sdg5d8EhLACdpunKcgJiqC6/yCqGscVVLVOZEEFTV5faq+Fw57BwDLJgmOy4YKjX0GjElMMQpPQaPlAJ8CMghY14WzMsinLy6UZxmbwMMTrJomaVTJVDtQZND1dFkm95QnTqznROby7kSwACAJUaAJRN0LaoNN+kf+zuqTZoYmBMjOAu4VZlrekDwuGW8tlevpczmAF3pKwG5NuNFx5RfXWCoSDVDLjGEHkF1cSvfmoXHCku1t/6VGOpXO5ssmmGlZ8Cap6k+s4FvU9Rq7EIzRpqRFu6WAuHlZcADELDchQ4xRqnbbZQbAcX4tocmIrDjcggswpshSts7V6JkAIrxZzOYc8ISF3CWLAR4u34FNlw+L0AmGDN9CNKxjl1J+66k1DIrReG7KkQlO0k+Z4fAa/ld8J0QhmvZIUC15jk3zjRc7oFmg9iYVZC3m4Ns4tqLNPu4lsNwEXAVyMq81g4JkkLd7ogKcADrm2mG78oZ0ADgAlwcN6R1CoBcA3ZUMDt4BTKQ7kJs+9SimzJWq7M1kHAJlFCcEKzdtqwUKWv2gThRkrbHfbj/hOeXZ3gfcHN7i91BnEzf/va3ABHu7x/w9PyMeRrx+nyPFJciiKryIhAkkgZymKcJFBM2wwbffvs7PB+u8d2//itOr0cAEh2TZ5Y01aAROACYpglxEWGY5kVAvPcSYSAAy1LAu2V0jecjHBEeHx4Qgsf19S22/4sAvRQXzNNcOkUys2QtHQ4AE+5u75BTFl6p4wtilNTScZzAjvD6/CIAJwjZng8d+u0WIMI4jZimGYfDFW7ufoPNsAXIwxoLWCqycVgBwGa3k+fzjNdxRiTCu2ylJ1iB3yK8bb+X1OYqHIlJbdoqXMtOcASvsmwaE+4fzriOHb795oDtNuD6OuP9+4RxYjw8ZoxLKgbj5cv2lxC3JwWHohiXNKN2mMllDK2MK9LUMsCb8yPqkbHZMHZ7YJ4WHF8nARaLl9bkjbVhZNoS0Ze5qzZ4RZtWIqBTJmBfS5xDYOwPGd4zyDGubhyWBTg+Z8R5fUYDSRlFSgYCy+MU4cCsJQEqA02elM5Vyp3GiTGPjPkc0XXA1190cA54dxVwfL/Becr46WPEOGW8njKO5yjLbg0jTBY1a5PVmJJMMhlc3S+sZ0gdPPB1rFmyR7aDAk5tfc05Y54ngAgpLTgdX5TsfsEwDJjGGeM4YZkXjGnGgoRt12G/3wEgLKNkpkmDuBkM4TdxysNhINwMN1tXJiqp910XsN3tpCnAdovNdou4JLw+n4SMv7QJ1jnRCztICUJHQE/A4Bw2PiBSxjllLFng5zYk9I5w6DpsvC9ZgHwxNtvDlm6dlEdl0SgnKXjPKSE5FONP1pwafSUHtvMe5KXz5OQ65JwwZWnRvgkOG8sIKuDIoK8oBwJJQ47yH/6uziYhBwY67zSqK/Muss4BFKqzqZVfqI7XnHNxQkpmVlKAWoGunZ0u9GqA18YqyyJluy3fiJSTQcbAAna9d0VWZs0gSlBZ5pzyvaEYoQXBkZjn0rVTsY2zEhAB7aWwxZwXXjBU6HuE0IsuZFTC9wuMSSqjiCqpcUq5dM6kTCDv4JUv0wUxVMjVe0sWjJYrK+VHaYTSOGpK44IMqKppOPy5Glwwo8atdACB9F4G9lGsX3suW+fmtmunE7ehY5HdNiWsn7WMM3MMWeDm0vgzPem9F9nHjKz/BljLqlD2nF2XtJyp8qeKk644MNUQqY69sj0gzRkE59hv4rJIh7ZxwtPzM7z3uL65xX63hw8ev/32twCA+/t7PD09I0YhEM8pifFdbqF4WZuguEYeXV9d489//gc8Pz/i4dNPOL4+C5aJYkcE70GDfK/vegCM83nCPC+AlUYTAZ4lyyMl8LLIOlp3RyKctbTm+PqK+/tPuL6+xtX1FYZNj/P5hPv7B4BZvkOEYTNgu9tiRzvc3l4DLHyU59Mo9seySIOaWTLHMzNCMIoEgL3IiGHYousHdN2A3e6A7XaHnEnKFs3mYSgPl6Q7D/s99vMtIhw+PT1jOy8YDtfYbKvskH3sV447oGay5dwEzWxFuToBRbVw0ZUA4/mF4WjBbhfwm99eYbsNeH1hXF3PWJaM8xlqwNdzUakz9HzAqbNMiK69jmk8zSV7htlKzlgzcKx81rBgLs+UmeGzZsQCCCGh64H0MuP5cULKQGYvNq3ZkmR0KE73mQaRLbCNmgluXKdlgmwMmdF1jKtrIARG6Bi7nTRaGaesWEmzVeVvus8bB1nJbjLOX3EUyTm3MlqC871JDcxjRF4YcUlAjhh64KsvO4A73Fx1ON4Jnv34STDUeWKcp0tnGhXHRQkyUfPMXKRa+bxzauOQVAgxAO8qMXlO2pBpWTAr/cg0nkDkEOOE4+kVfddhnmd0fYfxdcbpOEo2uTqNu67DbreVfZJHLExKaC4y3ftQ8WS1bi89OjJ3AILvcHW4kr3mO5Byn72+viIuwjdlz2cTJNiJ9A/QA5i9K02bpgSlxXAYAiM4YOO90GdYwJ41G1PPn+m6rA6uqJUsSf0eWpUNC5xUx7nKXVsT/VwIQZJzMmPUfT1rdh0cYQhScq3btehpC9yo+6xlufjVr39nZhOqNxAmaKphwPreytN1sZ5lbVCV7KXToXXkWET585lReoDLhc2pUkGavdem+bfPVI3T+l6pSzcB84svHacZ72RAtwI+A13NcCWd07yPUIVdwEcV3qa8XaPAK4z+pfGs3U7N064cTvWRG0P7rZ1c5s6uQGWk9T37vk5wc731BXUPrwb/JtIJFOEJo96qLoCi3KpHWn5t/3Zq7Vw6ri7v99n9RO1nbFfJcxHXz4pMylhSwnma4LxHPwzwXQcfAobNAO8DjqczunEqhqk42Wi1iNysM9RgBEc412O77bHMM7q+RwidEBPnWJwAjoSTQoASJK2alLnIIp8kLUKbZmWSSZKz1OSWyNMEQITyssyavZWUyE8JsfUsmODe9Bs4IoznHsEBy7KoMSupl5NGHnICkgNC5pomrCngnLg4zMQZU5VUq6ABqZ3u+h7kIpY0IySLFPJq7VbOQ1sx0p3LZmDVfdJmbtleavdvyox5TliicDMZwfIwSGkgOSl3smhDe83VS4Gad1Dw3pw5NbxtY9TISzMXepfLw6/2H4wLQMr1gLgAKalT2xmIVAXPyosHMahKNNTpk6gRVoQXs6Z2y+/iktUwBUJXy2cbs0bnXBzT1rmufKA5d+b8IhKAdHnGOUlqNzG0TDCjDw7D4NAFgCPEwR8SXo4yhmnJoBGFBFfWBGXtqQyxBibqHEOfrQmN6N+ZSHWCg2uictL9zdqEi1NhWaSkg8FYlgnOQaNyMxZrTw8BlSGIoyF7GXBm42RypZSjDtymUOWRjs3eI5KoXNcJMJeycNbOL8ta56o4MuJPBzMelQeJnMqOXHkDsoWUqlNRQHAua277si6zRuXY0v3bc4EG2TQGDGH1OSIlsDdORhL9Ku3sbU9VPVkGUd4wXKF3uLzf3+Nl9yz6nIvMMTDckpaLzm1UXSOzWqzTCoU2A8UMtlUQh+r6wK5hY4FJMntH1sWWqOjw5nG42Zfles16rp651dvNWM1BbRyXwsckYy+ZcPXyin/bjCeL+kon4ct98wbcsOkW0YfcyPzys7lZFYMXe9eev0yo4YbP7ymGyiRTb6hn0WToZ69dnqX9bDPF+gwOVR7YB9aIEHYM9LiQZiPquQJKE4nPYbMWNxpOoubMXX5DZKs5+1t5oeUlMWGaZzjnMWy2koUZPDabDYioZHWbc0MaTgBWdt3epzawkDkNXYf94YAYF4QQyuZtO3Qan13fCfH0PC1FHtZ1aYJfxu/FjKwlJ0YUnlnKdkMQknCTt9M0yXiURiN0Qe/tsRmkVHGeZIwpJYznUbtLitNMsmcse5rEmeoI3FsJozZ98AERrFmrKPhSHE4iI0Lo0A0DQA7TvMD5UB0iK91S178N4n3OTig2QZkznSt16IC1idII6SzuvCQR9KKjmBNI6prf7h2s9UEr2+Crc3htSzZ4rgofoIyxqvvqjJWz5Zxm1sSknXR1v2qZnug8KZ9PWbLIAZTAuGEEQDKwc643k0wvc0BRyZwiYoRAQKpjLFiUW7m9nvWi6xqZVbKeVrJe9r3GOkoA3XvCMEgQXyCLg/MZwysjM2GOSZ+nnmu29Whgujg8VFesjyUsQ5YgONMC7QJWc5Md3lKoaICZMjArqXXOUvLKXPBT0k6zdvaDUuJIJm8WDNVkydo+vti8VZhS3W3O1SQSVrzBzMJ7GAXvXwo7DWdJVhMgwTtIAI2RsaSMmIUPLBnvlZ0zxaCmXy4709WzbLqV0fz2s0K+2A7NMxf9oPdkcKE4yKUF/cUaNvuthVOSGf7mg7/4+tXOpmEYAADe1awg43klx024pyqeAl24ZpLkUuAni5pSwqKtLlk3BWfN3kHClCXSYILb2iYTRRE4RjCqgMVmY2VAojmojSFYslssxY4JS5yBZAeI1dlFAty9U2Wv2Re64bx3QsQaPHwQ8iwhrNQsL90IBtjEYNVDnk0A1iwGMbxEoLFrPP3NxltvBjvO9flNzpa4oN7cIhMt2K13/gy4aO7rmr9XB5QOpT20+mJ+cwLerIV92Q6GKQuZWyMmVE4wopIyKhFgFVL6nTazhJkRY3qjGG1jXjo5gTXXV7XpVfiQkwLZ5jsyN7L3xpO0uj0fXzGNoxLzdnh3e41l2WA39NIK9+UFp9dXPeSsez6g66REbooJmSP8IN0MQvDogqRIzykizkLs64jglOfg9uZWxk+Ek5PWu/M8q+AVQbkSSjnrfqSSdmv74XQ847//5S94eHhAXATsSLqwdNbabDf4+OlnaSvddRIBk5UDAOwPO+x2O5zHCU+vJ6Sc4Xwtk0AS3o5tv8em32G32Ut5zrxIjTxDsop8UA87CeGnI7z/6gPe3d1gOj5ifPmEORKmSTr2AVBek9UObCJLjezmCrSNKLoQaJvCaT6cEmNKQqL4cpzhgkCP/WEL5xPCQ002/hxAtyFZrXUgkw/KX0AJoIjEsaIglS1OFXGRZyygxpYxJwZnh+lEODkA7HE4bBAX4CUTUlJnuNd9YCKC6TPz1USmFEDYuS5nQQmjp3PG4hi7nbR5nYjx4hYBCkygbFwh9j1TcM0jNq9qDFO1xJqVI0hEbBqB1+cMTsD1FSF4gg+MYcOAI9zcOGw2YhSczxItXKJEe8vKNOksltXFrAw3q7E1YzDDEDIfBOmW1oUA78RJmjTiO6eonEsSfZrAeHp8VGNC3k/K20WQCPtmGABIFlAkBigicw8gN9yCa5BBtl4axdzuxFgLXYf9bgfnPJZlwdOTZB0K55oRZtpVRPc4BwzeofMk3QOTlFZsh4CQGTMkKpfBOE4Rk5MSO3FMZnASDrJOm1uY45MZYlSmXMoGsyIjR0bqHIour6enwtsqpwXwewchm+WMZWbhZcqSop6JsdGsYgBCpgkWngLY1mIYuTQ1d/qPfhmGIl/T5MlBnLrEYOVaYtWJrQGVcs0utaw0258pRSxLLDIsKNefdQYts5ezthVnpOiwzBrM8r5pAKMk6gXHtXKjzpSVm5LqkvKHpUwz5QSCg+cgV6GG+wZY6V4iaYoSOslAcpplY6Wg0GeXc6prRpaNg4Id2RB5Nu6eLBiqumTKH8EKTsoH0DrnLow0Z2Vgdn3Sjnio170A+e2/iaClHLWcRT5VsZq9PhugePNqgxD1qUzGlrXSQZS5MUccQQIJljFuXEuu0TFkGfyikMXBErF+fSZQrPqhGG1lkJXPyc4cSy11sZGICKfjEcu8oO97jOezVgc4vP/wHsuyYLvbIMaI8+mE8/mkBhZBOBIDQmAprU1SWssMdWr05TmtsxmB0PUDfOiw3WxwdXWlRm6WP3rm2BwbppLKVtJgDGqWDzIjx4QXPOGf/us/Ybv7EefziPNZSPklGwro+h7DgxAO90MvWfguoA8SNPTOw/dbpEjou4jkWAKOnTQusgDJpt9hM+wQfIdpEu4jhvLtwPYtkHOUxjOO8MVX3+DduztQnnA8jcg8Y5pnRLWt7GXBn5oNZLbKW2drWf+qYGWFNZNQZAJwOiV4nzCOCV2X4JzH1dUW45QwjmPp5tpi+HVQpG56R8JNmp3D5AJIycVNRVqpnTjCjVyIwBC85zWoI5k1gpNi9JgXD/IDdnuPGBnT6BATCTejq/tchpJBoZbWF/PMEhRIKzOK4ccFe0jDK4aPDO8J+12Hac54PUYskVXnB5RyZshjVCZuWp0xy3AqTujWG614L2eHCMZ5zHh5XSRY10lmTd8B2Iqte7pyCJ1kso8TtJmGYiTSITTyvjADMkr2/eeVKhfxSJRBjuE90Hce2VtQQc5ezMLtJHm78v7zs4MPHmmRZjtC0bGAKcMFQj/04oyaZuHORAari8NriTa4SZTg3Pxd9sJuv8d2u4V3AV2/AZHDOE2Y56NmrkdU2FzxgwNpZY2YiQ4MYqDzhF0f1MEUkbI4nF7mhOASiD04CAhgNhnaBod0v7B2CeVKoSI6S/wMjkqudnMeqYyRG/vGgeEdoR865e1bsCRpeDPHiECETixbMCR7OjEjEZDhSzWIBJLpV2eH/3pnk5bqtOBF/1nIqatXw4CKGkVs6ZWaKgYDNYSYorSKtjpqspIGSbNb8qIta7mALWtbX7gIHElqrSkUG4ZO7i+BSYtIkCpwBsqCSlRXmNcdSaqtKD+5uHnESQ1HcTRpiaGrTjkREtV7IfrRODUAS/sEqjwSMMCls896LeniXyqCqTGQqfmorYlKYSNeb6N3TsdUoqUXE2YpkgWYs6boAk0LYbvZWwD1SxlOdlQvM5DKfACwzlZJeYqSc3B6GystoVJaoFFRBlK2tNoGIbSAuRHKFq1hVgJ3m4RmMqSsqh2jCE5jExtPJ8TXF3gf8Pz8hNB1+Obb3+Lu/TtwBuLVLVJK+P67v+J0HFXQJd0fUi4ZU0KaxGs/dBLhC8EjhA4h9JinEYs6m4bNBj4EbDdb3NzcAEDJQpq0o0vOGRw8qBFCBZCXH425RYTz8Yy//vf/jtCF+h1G6crhO4+uF+Nw2A4yhu0W11fX6HyH68M1Nt0Gzy8nnCfpbOO0XagjkhQnR9hsegxDh9D1Qvy4RN1PBA8P3wclu4zS1c47vP/yAzrv8fP3hJfnJ1CULmXzNMF7mScomK5rW53bMLVtSpKEo6FV2Gj2szllcozSpa6LeD0uIC/9cQ5XW5CP8GECIATW9vWKSbn8W84zgwmlzNa7gEwBJYOgZH3InvTelTUz563F840/FdlhPEO7IAccDgHLDJzODMwsnT2ME4PUYIeDlSzmbHP21gHbCJFicHIGprM4SvYbj92mA3EC0QxGArLT8hOSsmIy8Gdr0s4QVtcu816Pni6dnLRpynh9FiCRkwLHwBhIeKsSO8wz4TxlPD4lUJIuaDmh2eZm8DBAojCZIefbnP8F1KmwYQM9VZ4458RJnIFenU0xJSxJLmA2SEoK9kk6cgXXyfnP0lGtdTblGOXm1CGzGBdWTlT2U0WUoJwLX9h2u8XV9bUQkg9bAKRlKC+wzody4ps9r0/pCei9Q++kYx4yoyPCbghYMmPMjMgJnBNe56ifF+OScoZPWdvnUgmkyCuXkqWcDSDKvJN1pLVOr1UxrHafPasUcklm4Ea7cloXrcjibGKS7nSmExPETM4ALLGuyECsDZj/6Fffi7PJukmxGh/kbMMpZ4lq9TazImvpo2WZ6qQAkM64FogDQ7tlsXBaqO4snSmznPkY9Vw6h0BDU/bYlkE1DgJaG5MlYNeWxqoqSYvqRgpwWvojAQS/IsMu13akui6U8ndmCFkzOTCiOHjMmFQ9b7yCNfNEz6h2cyKbqwq/iswrfE6OCv5ZcR/aA5fsKS3bL8FBvjhD+vdm6gx71owDuxKXDxR9YXjsbzqcGhxW4JY6FYia7NUGT6k+lFL4fDEOKiX2lLMckKInDZvqvuE2FGk3r/uzvlyZO2fyfMVBJt9/M34Ap9MRKb2gCwGn4xGhC/jq66/x/v0dYorYHXaIMeLnn37G6Xxe62rvpawKwJw0C5s8um4QTk3yxWESFyFj3m48hq7HfrvDu+sbMIDxNGEeZ8RCp5ELfUL75FCZWzAzoFnihDhHjNM/lwYvUBtD+fFlPryUePaDcFxeH67w/t0HIUoPW3S+Q4xOnTKMYdios0ky38XZtMV2s0fwPcZpVoNRO1kTqdNWS3SWGd4RvvjqKwTncf/zD/j5h/+OlAnztCDFpegrcVZlcV4VZ1N1NP06p6jaOcZXExPOSxZn0zkXZ9PhagcfFjw9LgAlyXQJbmXvtZNvS+6I4LsOnJ3YWnDS1Af1LBWOoAL2c6PY5UoxMVJk5OSwLB7LIjblbt9LZniUbG7vSLKP0NgMPsu+UoM8m2xpsI35rK0sXxyFch7HKcNFxtWhw24XQC4h8yi8QNSXfUemF4uxjaorVzLakiHM4Vhfws0jnajF2ZSRssP1wYECoe+B4IXy4mpy6HrCOGX4lzr89snKrc0WI7lnnQPUX7ZzoXrPutp5DzjyyNmrzebFIaNZS1JhJM0F5hgBdXD4guAS4FidTR04awdKnwAKKBaOqwEUs91zrkkMMiaH/eEK797dic0WJZs/zq84aidic+QTTA9VGW/j8pCAnYN09932HWJmjDMwIyImxisLhgok5aGOudiSWDmbdN6NjL6x2JxzJanFafME2Z92Gf1kse0tIA4ETyVgN56lU+BC2olU/Rc2L4kzImfhEyWUDoCSvdXI8n/j9e/sRodG2LACjco10j6oRVMsnfoy08iAgxzAxsC4mHCpP7S2vmslDxjxbVbCWY2mlwNY70fNHzTXYeaSMrsaQ8Xz9SC7hrPJznpxljjVJGaYrDBzmRObixIls++Cyr9tkeVA5ALSizfKIDOL0CJ2cDkXw7kF0FVJ5OrMap8d0C5AbRojGqFW52JlpBW7vOGE+aXXZyajClD9wJvPcD0gROg6aWncd52mS66VoL0sXTjn3ESAG6B8cSjaSI2A8fKLZkBUuMPfXFBQmYBWLdGye0/jiNfXFxCc1CqzRLdvbm4QY8Q4jmJAaOcJcwSWcXI1agsHGF86Bbjs88vorJ2EtbOvmQiSPccX+2WapAa+XRqL3vnkkXOC81I260OCI4+5n8GBMfkZjiVLSyKHjND3cEG86ByF88D7AOc7+NCj77fwodOOghkgJ6ngLEbUPE0IwSNvBrBG4X0IcEHOXJmqZo1W+6Ls1ZqZ0oLEN1NTJqP9hWTHTHNGN1p2Zd0mb5sDkU5xO7ctTx1AugZSbnsR0dC9VORZ8zw2LO9QSuBSApaYETrhKnFe6uJdKUU1+Wwy2xxxXErjMiqPEwHFCWMAjdWxwZzBUb67xIQlSlt6cgznoSVbDb+BUyGy2txvX60h1BpWZpwQJJtrScAcgWkBXKDiLJNbSpZO5a/hCjqb9V1J6GIIqeMJ6phYgbkKMqor3PQD1JgWx6Dx3UhHHsk6KnpQ6PIbp1WV4/K5XO7gNNW8RHttHxPJWpA4LYXDwqHvB3ShA4gwz1IuF9XhAHOkruRY4/gzDxu3AEoCEZ6A4Aidd0hgIQ9lYEmMOSZpjW6GJaF8v8C69ryVD5RQA8z5VXSrGbbc4IgWL+h9nO4vR2JmRuXt6SjBsYwtKldU9r4MrHn8eg7/ji9bb8kKqxk5JRO4yPi1vAAqFin6sSLLN3LeOth5ouLobUsPbF+UrBftcgU2h4VB9eaqn8NIujHJQBHpmlPFf23Edi3F6nOZwKu/uURtazBdnpOcBvTkeW2QxVGSDSeur7wCN7jElp95NZCoYDRqr7J2XdrIbQ5lPjWT/PI+raPpF7ZjmSKu+9iA/+pDnxmzcw7DsClYSrIsswao6t5rz2tWh3jFt2/nrJWDcn8uEDWX8XLzHaqfofUqOKJSgpRyAiIwjme8vr7ouCQza7MZcH19haRZSsJzxCjOsWznRWLzpodXmWuXk0yQrGHSvd82D9D9y2WV20dfA0s7S8s8IzrlNzG5Y9W/XvlE1RHjQ8bcR8nsAWFB1Mlz2O2vARCG7QZ930uW0jwCYPTDBl2/Qdf16IetEIgXZ6iWc0O4PM/nswQ1uh7woZTeSfZMkxFzgQXxBh/LP8xpXWVQewLqXqIicAnQrtrLkjHPwu3UOrhNrgMVz5aAvY7JOvpKgFa8d2J0S8COksnB2iyi2jUqH5pVdBnICu5TYiwLI2fNxPdcz1yDufPK+abZpq2NprjK7FoWQV50WWZxtCxLgkuMGF0p13NkHcjE2UZ1qNX2XmEknevGvr50NFW5Rbp2wLIwloUwLzZGqhjKGS2DOccAB8HZGbqHL0WVnnPTy29swkZu2V6qJqAErZxiKJAEWVECCGUDlh/ZZG9zvaTZ1aw2kYEYQt1nAK+oFZzyRPrQlYA1swTXpaKqdvuuj9KgR8UkojdrqSVpvpdDxaLeEYJ3kKClfDImxuIyAomeLtjLrt2I26rqm46wqPLfAlSXgYuCn3SkhiOdkyosI91nZMQkNnBwCeQYMWVElo6tFuSpS6v3+FtMQ83rVzubLOqzRMlOYjCytm40IcSFAFzaX6dc074tGuc0hTwnIzGrigCQbkMM/bd62LyS/s2LkemKwZNZognV4y4TFzqvBHd1MzbZvY3RpkKSnTqc9Fl1AaV1J8ORdHvwvgOck/p+6B+SCK3XlqkgJyAL6g1mlJbOrMKIsoNPmrngArwnVQ5lDWWOckZMUg6VjONjleoqZU7iBBOiNG/lStB7QwR0TLrBG8VRBLlZTPazovC3CkAHWJR1gwXXIPDiVa5X31DRreMskqcArxgTMicMww77wzWCDxiGHl0IOJ9PeHp8kLIA3UeZs3biEiMrxijeZl+7q5jwKdKwGbvVX6/GqyUFEgF17QOUxTIA13VVIadpwY/ff4effvoBm80W7+8+oO8GvH93i29/8w2mccKPP/2E83nE09Mzjo9P6tk30AywMBSi084l49lDMiYywJJB0go456gSVxaYa8ZY61xhFIJBPdcGMlLKeLZMCK7fcuoQ9Z1H6INGo6WM7nCYgAQEHzANM7rQo+v3uHn3BXzosT/cYNjuMJ5f8fjpR6QYFSj12O6ucHv3W3T9gOPpFafTEcxJeQ4STscXHI8v6PsOXefBvAWcx+Zwjc4D5AOEQUc1nIKs0q63AMYWDDbKo5EHl/izzBhJS+SUCA/3CccjY7sN2O4clihRGhfs2jKv3giJ2RXZl1UORnIlRZ88wfUePga4FIBM8E0WjlU5GIecjQckYED+AOOYsSzA/uCx3fYAAV2/oI9JzpgWL8W4aMafOkOg5yxlJBbjA9COMU25D1CzTXNKmKcZnDO6IcJ3M1ICfAdsIOny1r2v64M4JtmU3uU8r6P5dk7NEW7veS87ek6ENBLYO9w/OWwmgoOWyzCQIYa1V2cbMyG3Z1fFTGl6kFuHiN47A6TzVZ++yjzLJrJABwB0wYGoR8oJzlWwssxmwKtTNGXErBxfCtJziljmGQBVjg4kdMED2rK3dc5A5VvKCZvtFu/efxD5E4S3YxxH3N9/UrBkeT16hqkeC4scghk5EjgajOrhvINnRtDmCLvOwzuP8wxM0SEx42WOmBZgFzyGTQ9rOtBmD9pzJuXvkK56xkNVSarL+WsBPYyUvuTRlhXxuk/60IHgkdOM13EBOGP2QE8sGVkxIQHITsbvyNqnr42nv8eL1ZGbU0LUc5azAOTcGhJa+pVzUtLcevYl8ECqr5Yiy5xzUiYYIQSz5NB1PQAqjTFSEvL60iJes4WRIig7sCeE0r1OuSYMtwDrtVL4KsEu1a1absTM5WcBv5q9ZGXBdv4AxRjOg7wHkyvGUgH0uv9bHWYlQ0QkDSigY82G1tU4ynJWnGvLhKqDU5wRehZd7bK2yiRsfspEyBmsDgjZ0wQqDUBs2AAa7GGYzPDn+tVCLzTX4ObvNh+mj9vfV+eNgRqT2Rnb7Q43N7fNsxHG8YyXl0dphAPtUpSylGSyOaIk26RXrkUycrfmPNapEXmqlhzMqeaB4vS3e9cZqE4G4ZkTPsFFue2+//47/PjT99hut3j/4QP6vscXX7zHt7/5BuM44ccfBUO9vr7idBqlfNlGRtCmExHeC4bPcdZW4SK7OUu2phFoCyYXnS1sl3U+i5OQ27WoRkaxS3LCNM2iH1Cxlf0QLphBz8QsmC177IcdQugwugRHAYerO/z+T79H3w84XB2w2W0wno94uv8ZKUX0mwNCv0U/DLi6eQcfPF5fjji+HpFSxDydkdKCp4dPeHz4iM0woPcBbi+k+fvDNYZegn7JMGddSrVZAINSSfmGmHNjh3HJJG82Yp0vJ4axY+UTg8fzi9hyDAaTF0exHZxmPsUZxsUpKoFQIYbeDAM2Qw9yHt0woE8JcXGIcRZ151j8dTCCatQSr3JWCBbMcUQ4nxKWJUtnv96DiOFDhF8SmGr33mKLmUOWGfNSK3C4YIJQ+IjQEJMLdkhYlglgRvCMYZBMmi4QNr0TjqtJMth8p42NsmEocYbC9mOViuXRLrMkDUOBCPPMeH0BUnTY9B59TyAS50LOgim7ntEFRudY8omtBBFc7EqjXCgYihjMvsjFQiJva1q9M0gQ3S7vaPm3NnFIKQNOM5xiFBJ2e0yCNO8yx1YQuZtixDieVOZJlhw5q36pDs0i62F0FITd7oD3H75ECJ1UUsSIaZzx+PSkDZdy8X+UQ1HOicgXMIOz07/LmDwkEaOHZGPvBqHPmWPEaRI8dJ4zUgS2ncewCdoYjMo9bMoySwe7TJrxq1QjXhv+lECPvtrGaeKHySsE5UDonAOTQwyCEzgtOJ4nwVBOSgIXZowlkUWSHjx5dXaJfs2t3fw3Xr/a2dTMbuGJkIOWiqOn2LCoIGOlpCFK0iJClvpcojXNy5SSV86apOVtljViXQ6EMNCEPMHMbDtwrYKWrdXc5wIU1VRfFbzFAKlteesslJHqYWrb6/IKMJWfJpObeZGSOt9El+SaZgxkruVgJSNK/5inHJkFZIEaAluUdalrUcds41iXEFGZE7tAUbRUZ470328jexev8jiNMmoib9UesedBUeatIhOjYkDoxOnSdV0pxzSBR3od6/xSjBSNjpTyuAYs1QNKdS5tODpe57iOydKb9PflUaiSU+asXUwyYzpPWFJEXCKu9ldw5ND3N7i9ucGpP+P55RU5A96fBCSZMQ4q60osDloffCPw6py1oA+2523DrxbF1s8iq1XwlPnTN5dlKVlhFvG0lrpmJJCTVvfkkvBJTTNykCy76BNc2Eq3lGGD3eEa291BOrY8PwAAvHZZDGGDYXNAP2wwLxneR+S0IPKkkcuIaZoAiFPEnDS+k05kpFxr7TTYnm/Pm2zDVtnofLXyAOvP16kzQ4EwTQIYvGf0Q3UQkwN4xXGp+w4o5LNm3NseJW97xwkXmUZUoaDe7DeAC7eUjRtATTuBALLMOh7NujLS8FYWG/G7zVFmSXGPKl9jWuojN4Y5gAqwckaK8hxLBKZZjQZy8AEgykrwSPCaplwn981sX/zd5A3WP3XrZybkSJLZJP4ZzbwRWSS8a6hRK7aIebOOei+GVY5UGefgkCmv5J18utawi2ENULbyW9QyW9IuR0RILiGqkDOzigtYqc9donIgZE4CvopxhhWmdPoPciSOyRCw2+2lRKsR3dM0YZqmOn/l/xtZXM4JK1jKCpTq3BvlRHBScjqXUnUhCmcweqdUmJahe7HczS1QnGaNfl7tD6z3K9iichV82S4xw5A9YU4Oi6BiyfIlITRfci66tzoYUIJL60jxf+yr6peaDV4akegY5feAcaO1jqYa7bcyxTYT0HQywVS5EYQLBUCAcwkpR1C279VMEOPsqdjEMgTWZ/Iz0lL/v9Gpza9W677Kum0Hbj/o8jf1Axcgo+4GoM0yzRffYyjfxSUWbc63PeGbzCZdlM9uj2Y87by0mfRvPn/5PTRYY6U56hldQyZbl4sbXOCqi8uBWThghmGj3G/yXtSubJklo8IKtK3kri3ZlM8wjE/v8nZAs9b6D4FboruEe4YvPt8EMtHsj5wR9d7zPCJlcXrdvrsF0GGzGXDYXyGEMx4enhGjZBpnRjV8wStCPmum4nWvGF6sZ6yWpq5sB5OpXMdp27Hun/WebgPsIl5sX3PBEYRQOHZIcY50oyJkDTCQ8zhc32Cz3eHq6oDtboNT32GZzojLgjDs4LsNhs0Gm+0O3geM5wiQGIwpCtH1NM3CG8XieM05g0Da+dH47f5WfievMHnOlePyrTN2vTFW2doAGA7LInxQzhNcMAWHsq+rfJc3Kil+La0zQnfR89LNOefYfAeaqVY7pRXCoeYASbc7+WeK8nzOMXqyzGjdBKj7pGAo1PlIMUn5WzMX1AoG02VsgQRpssIaIE/aXdyRZL/EJSJFzSrUbrj1fHGVtHwpnxo50ooyxSiAZTYBIRCmSfaj8wTnVUYS4L0FMmVyrEELg8DuosS7eU5SDJZzIyOonpsiAG1PmL3Jht18gxuBnB2IGo5CNkxRZSQ5sXlTmf8Ms/Pa/VfOrjpPHUniiHSyO6DrOhxfj5jnBTFFzNOMZVkQvJGYr+dbAqLqXOT6U+xmmQzBn7JewTnkAKQsOIlZMBQx0HuuOrKgNZO35dF1b1uX0CYj8FLj8FqfFwRlWbEk2egZtRwv5YQlMqDzl0gcjVHPZICVzdXz80t+ns+9frWzaVlmANAORgWp2nMVJaNHHZatxMxSu8+SXSHCVo2uclgFUEkWitTpk5NygK7rhLMmZzjvlJNmKrWWlRS8CnzWcoCVBLOloppdJYuQV5tRALYZBTpk5QdwmopvkZNcNoBTR4O079STrddRIW7oWA9sypVwTsZFJWJpcwoiBK+kmc42FsCaqVCZk9QIKl+0i1xswAugUwGXXoNNiNVrmHFlzqgW830GNr55FUXdKPi6Tk1a7mrMFbARHHLKGMcRXe5wfXON6+srDJsBoeuxxAUvz084nl6FNwYZVhjWlhSaQnFlhzYjbASRIqTPK89Lo8imlI1QUZ2WciN01Kkn2OH4+oJpHME5YTyfAACb7YB+08N3AcNuh2kc8dPPP+E8niWqvYwAJ9y9e4fgHfoAzOcnJX7VTMNlwfPzK4iA8TyWlsIrx0CyVPi65qb8M9v+kVcIPe7urqUW2HVwrisKHSAknhGTOH9IjertdoPQDxpdJyyZ0Q1bfPj6N+iHrUQKphNSWtD3HUJwuLq+w/5wg8PVDb793e8wbHY4nU44n89IccH59IwUJ9zff8T9/U8gSOrv8/MJ0+mM8TSiCw45dRDmLGc0Cqsd2Sol28tOiQILsNH9fRkNutzIGdLlLCZCxoQ5zohRuhKamBHxyEiVoak506wgP2GcRnjnEJzwAQiHgxcd2ZZTojm2F0Yp1EgQ8CIRs+NxVkcQcDpKpM6cSsw1I4ZZZDmzpHML2BGeCpmsjJy9ymSNVpnhSxAeLnaIiXE6Z3jvMAzi4JkmUpCyhp6NCGwAujwdN3KhnH+yP1UmWEOFeQEeHyJCABxlECV0ncPhqkPoPHZ74JtvPKYp4+PHBeOYwPBgJRIltOd3PSLrBFLXzpwiBpr0vDinIAkgJad25EG9jFN8gaT8OUlLFXGRM0XS1vv1qM/pyhhKKVMDWJOWtVzf3GCz2aLvN9huDnDk8fL8iOPxVbpJpvwLzoHq+ASbdmIER9h0AUOovISQKn2AgD44OHZIHLDN0jmS4yIdMomQiBFJeJ4KgSQJOTJDAC4Dyt1mZLnV+WNrb/+ltty0yK0WsGr01Mk4U/CgEJAzYYwRkzk5VWd75YXyoBr7yFyj8n+HVyoBEs1wZq7q2jAUGfWOAE/J2GHbavoSWoE2UGRGs2Tx9sozKcTI5mxKWQyklBNAs2YEu5JG37pfVkHE8lJdSZZZA+U4y2KYeQdzqDK4ZLBZJyDnHcg30XHmeg/d50IOm0BMCN4EuoGW1miQwIeDZC5751SX6WedZZ07zZBYBwvtVWQAPndWKgZYOSX1CwwzQOUN0jKdUjalfyQWYjKtOvHMqVeCiKo7Vrdeoat2vasTtUKVBtWoLjOngJTtn9F1HW5ub7Dd7XA+7RC6gGVZcHp9xTiOIOj+c0DpakVq6Mp2KZlbdj8LzppsV5BfdKpNLDfrs8a5+hw5l3F72zcMeOXieX5+wvl8wjxNOJ1OYAYOhx12uy36ocdmu8U8z7i/v8c4TcKR1Em51fv3d0BOeHn6hADJQiEH5LhgGs94eRHHj2XOiLNIHBs5JQkEtWuI6oi3rqLkPLzv0XmP27udtDCnDkTiGGHVGylOiMsIIiB08pybYZAMDnbY7zfohx1u797jN9/+FsNmi3E84ng8Yp4mCWx0Ha5vbnG4vsNmu8Hd+/cIXcDduzscX89YlhnHlycsy4Tddo/gBzhHWBbC8/OIuMySteE04CL+QG1WUG2h4jQghofyTHoHwMsaF9JwCXi9kaYXhyox4zQumJfKYbXEJNjNyxkW3kLD6kDbETymBMoR4+RwOkv5OJOQrjMnwVCFoy7BOiGCoFlsuayF6XjTd9MSQYuMZxylkcL5HLHMsm+LboqpZNu2DjjO1VFbzoUeE2djsM1Oki3PnBETMI4SqRwGh76TszBpdrhTvdeKQlsjs9LsvBVlopNvMqjIMKBkGfM5gx5nBE9wTsqou0C4uvLoQsD1NYHZY5kZT08Z05Rh/K/iJ2qtTxmHUwzs1LG3Rjr1/6xzOzsvAtKxOrQ0uaA3BzeVRmRJfTni9DKHC2mX4oRpPBd55bwFWxv+SBOxkJK9m9s77PZ7eC/cX9OUcTyNeH15RYoLCELe3gZIitzKxmMnjVSE00uqqoJ3xbFnAWeA0AURkBkefZIOwcjChxThkBggfeayfiZLIYFWtmZmXrvU2ylp5GnZkwVDscovQJx5NffWAVra58HJg51TLquImRXcdsq5a2TkzZgYRgHxb79+tbNpnmcdnwF/fgMa2l8TCdEoO6BTYikDsBZVQVHWYigJMBKjy4cBpOVroRO+l9BJOV1mqdWWTV8jPQVEG9AUN+vaX+AqObdETGpWCpHyG0DrVzV/1BlHjPeiMMgW1epjRVpnlhpHZAZ5M15Ryuik2w7rwRHNbcaufRYQgVycbyGUdMzKv6JzpobAmg7+AiFeACRqf9ovGnxjW6g1vmyM7csA2q99Fc4jBmB8FU3tc+0LQKgUyCJMcso4jyekPGDYDLi9e4cYE65u7rAsC/76l3/FOM3gvIAwi8CCeIBFyOrVDMQ3G4LqhhXhTdD5y+2Xmn2PMtIWEK6jpgLGg4LtnDNen5/BAM7HI54299judvjmd7/DdrvD/uoa7+4WvLy84OnlWZxNacGyAEDGhw93uLm5hkfE8fEnTPOE8bxgiRHLvODp+RkAiqNJeFpkj4ijSQVzUMGkZN3M0FrcCrVD6PH+w1fYbHfouj36/qDOXzHaTqdHHI+flIBTDdGhQxh6EEiiQ4nRbXb46tvfYxi2+PGH/47j/UdwWoQQk3rc3b3H7d3XuLl9hz/88U/Y7PZY5oR5TojLhOPzA5Z5wmH/HbqwwTyPeHj4hHk6YxnPmE8jht4jxT3AXs/iGq+XNy5eRdE1i/hvOZpA4iSYZvnONC9wxwhmqbu2Y5QKKzSXKPulURjjgvMoWRlbdTaSazLX0mXnn+ahuNlrZLxKjEU76LzOE56fJv0cioK1jLSUamZVSqIwLbKWUsS8zBD5kpCytilGr8alXpAAF4I++4LjKWEYgMMVoR8czieC99WQaEWNzIdxRFCRLW10xM6pOVvayGiOGTkRpplxfx/1CuLC2ewCwjBg6wMOVx1ub4HTMeJ0fEKcEzIImYPKZAMtNkkNWwUZx41cmbmqE0B0iKgYKmMnMDJlsHE3sTiagvNi2GCSjFwIoJCpIV1u6VLpnMNmI6T7jrx2FatyOUPWyHuP29t3+PDFlyB4UO6QUsb5NOLnn34CICnixllhF7GzISpS/uIgGQvBO2xCJ04lAqwYxZGCH3Lo4JGJMEH4LUbVdwmEBTYHKNmkRc6ydAVkIlBwWuaojojPmvhc9DwcleYCNSjU7GsvTrWYPRA6cHKY5oQ4C2H80EkZJ2lWQ3GpqMH+9yyjM2eTnKG679qzCgagXdpd43xcGf1sEV/BZPKeaFDhnRBgGEIPyWzqhKMnJ8BBs8SFQJxgEdI26wg6N0DFWK3OFAcWmJERkZUnxStAMQBqjn3npHzOKQi3bJpW3tqjG4YiAB1r1roMQ+7t/MrZZI7EEBS8Gx+dilLjOyzdTX/1S80okxGX20Tx5qpcmwmcmwwdZ7wkVRdYGUKVzRZ5toVE2Z/lse3ZG4si2XkuDSWaD2KtcwApuTyfT8g8YLf/Gl9+9QXO5wmb7Q7zNONH/g7TOOma6dwpviU1VDMYXgR2WYNyX0LznslzDcvqgZVnNG66yzG38p9Kp0FpOx7AzHh+egQAnI5HbDZbbLc7fPXlNxiGDfaHA66ub/D6+oqnpyfEeYHvoQ1WPL748AV2mw3uhwCeXjEvM07nGcsyYxoTUpaM3mlapFFLktI6cSQ4UJZnNooKIQM256jo3uB7+E6yjL7+5ltsd3t4t0HwO9mvivePLx/x9PgdgIy+07JYAHERZ1M3bHC4usXd+y/x29//AX0/4F/+5b/i4eGTlPuRQ+gcbt/d4cuvf4fdbosvvnqPru8xjxHTKGXZz4/3mKYJm+EARwPmacLx5QnH4xngCcwR8Fow7gBkyzSrZaGVcFpsGtPJVpqWU9aOVowFqSkdtP+vDigGEHPG6ayBEJLMmZQlGOaCQ1oilmUBM4qsFvWj+j9FZJayKn8SR+LQD+g3G+ScCuYXR1iqp4ag40xVntjW08yYebIgLcBZkUVqoJfafTk1FBMqB6wJQ0oZS5Sqm7ZSJvg11410AQ3FSXc+RYTgsNsJfUGcE45mNra6tGCoxg43WWCyhGtWkXNU5s6ew0jR5yVjHKWc22km/X7vcXU1oO89bm48dvuE8ylhPJ8xTzKf4uQiSGDfhqU2I2mVMUgd1vW3rd1VsC5XDAvHoJzFCamcsBZ0y8pxlZVUap1HwUhxwZilQ701LnK6TwENdpnMRoZzHe7ef8CXX3+D8Tzj6f6EeV5wfD3j6ekZRIB3XKgkinzi1sEoQRbvpStyF7x093OuPJ85C4kIvXdaWkdCB5Ez4hIRIxBBiAoLMjUcmLrxGISktrHTknNHHs4UneL71ckz6g31DZPyW5I6ik3/dF46zKXskZ1HYiBmseVCR9j4ToODQcjP1dgRPc/4jIv5s69f7WwykixSlrvPpU+tDAPziqlnQ96qHQ4MZ5WTr4vCzrrMNQDo4llKdkIDhGpmUgOOLkCSfvuzz1cjrLT6ZLlew4NjXr3Vd5s/Ftld36vx8jTja6UeFQMYsINbr1sBhKWxttk39ZnLnco19ejL7wpJmz0tY/2Nalwx6hNUA7d5Jr22gAgbdTVuGiii79nnLwA2UIU36sVsPQFoN56IaTzjfDzKE7E4o4bNBofDlfCeGO/MHMEK7rWypkRa169/G4CWGWrBMddMmOooNCHfgvb2kaSMaVkWhGXBqC1xoxIl+uCw3++UZ0Ve0vKa4ZzHMAzo+x7gjJy47MsiALWeHswandQ4cxajzRL+qJxNUvDulENpi81mh3d3X2Kz22Po9xiGKwEJmhaeeMJplI6ATr3+Ejnv4Byh76QzyGa7Q+i60rI9xaVElljTNvteHMkGziUKDTB3pe3obn+Fm9t3mKYJOTPG8YwpBHhIW1GmgKhZtlRS9blMvBkKlhVhy2N71iLx8v1Lpwc1u7FdUOXrKWScFTDbz3pcPiMDAM1yyc04L/dN/ZwBmkuZu3qWZnglescoskrGabG5ah/J58wBVbkYUs6gBBCkg0l2li0INVD1OJOUMXKbnusJXecly4tqWc/6bFyekXZE7Vyuz2eR0cyofgKRoTEC0yQp+ptBAhfOE4bBY7v1mBfCtLRRmOZ+VIG1zZnoBG5+X79WMvL1K618VvpmNXRF3pjxRMjFUDQdIbLb1RLACh3L/mSWYEzf9wihEzLwbhDQOM9NGYYiFph4bmR0M+HmIDPtY9x2Jh9LlLTBuC1ZeJExqrMSS0p4ZEan+7OQraOyhrW6zJmezM1Zhcl9O7NvdXjRS80zCAGnyEIyXkVyZY0uz0i9z8Uv/wNfxlFBZBiiAljbBytdjgaUN86DktlisoAUl4HVcVTxk0V2y30auVQwlPKqrLBT2ZuXMuytLqQiGAznVVRj577FZOsjXWVtyd5usRhRE0uroKRc0wZUxkItpHqDB+2erA4Cx+vPrV+8/qHTV6u2G/xragfN2Vn9SgZe1w/NvuPV35uprdKyArFGbq8x2y9vZFZ+zwVuIUzTiPPphGVJijs8hs0Wu8NBsqbP0DKhKBknKp/qXLpGlzbZ+GjLKLnIfTCUgqAMVPWvnL/PPw+/WQ/7dUoJcYlY/IxxHMEs7wkvU8Buu5MsIc0A4JzR9z2WfkDXdwidZJR0nToFDEOVdTKZQgUviePCFQ6n1OB3Hzp4ctgdbrC7usF2t8eHL7/Gbn9A8Fv03Q4pZRzHM5YlYp47kJdURd/16Dpf8E/oehyubnB9+w6b3a48W9RGKSUwT4BzXrhkQwBpxoJkVwHcMfrNFuQcrq6v8e79HeZphncOyzQhpjPickTXe6TsMC+SaVkdPPKkQq6fi7wqi1f2Yf3/FuraGWhnFSAQi6NUpk/2SF4fhtW+/UV8rsZ+IrqQRfUcF61S7M16XptvlHG0t70MPBqGWr/TyONsAZKaTSh4qlb4FBlv9khDjSC4S/kMtWxLGo40LpoiOtdY5G++Lsy19hkYLU+wXDNGYBpzwSJC4cHoe4fN4BATJKGihWcVIhWcXZ9XV7HgQ30CbuWtfNaBS4MAp/zg3jlk70HIBYOWbLXm+YTU/O0122flnNXu6PXc9AA75CTJNPM8I6W4wkWrCzTTfWknmGPLxmDoDSYDAWW8EgzlNdXN5EgGEJmBDIQMBNfoG9SkHrtgm2RTIMyF3jDb/63OLQ+xsiUkYOQBBhIlGLqyYra3J4LqfX4FhvrVzibhTUFJp5IpSHpTA6mugJzVsyutSopJvJOZwRFAIoB9yWNx3oNIU7Z8KMLcyMSF/DmDyCv5pV7cABqoZCEZuLdX62WuHuDyy0qc2LwvJKYS3Q/OC5hFA9yybErvxMNurXs5a0q13o/YVauELb3cK38VFYXuSqouK4u93NN7L2VNytS/zIsQEKZK3BkKp08R6zAvv2M1gAzXciMhRBLA7Iq/Id7rs+uctWssXs5mvtGU9jWSqZZwoAFnlop8wRHlJFUwmwd4mfHXf/1nPPz8A3aHA969/xJd1+Grr77EN998g9PxiJ9+/BHTNOH5+QnH46vOpQpOqhECU39Gegzmxlv+9uRUctH1q02VLU9OljXEECo8qLMSSiI4Y4kRp/MZzjscrm5wdXODLhD+03/6E5iBl5dXPD4+IcaE8zQiLhHn1xu8u73BPG2wm2fEmDAvC87jpFl4CZwjHDKGzlcHVJrAibBEGeSiAi6EAZv9AV23wW9++2d889s/Ybc/4Otvf4/dfo/t9gq77RXmZcZPH3/E6XTEd98Rno4/ImfGZrMVssvQYRgGhNDh7u4L7PdXeHf3FbabHQCHOC04vhwhkZAFwUu23uFwwGazQcrAvAjHQMrCv7C7ugHA2F1f45vf/Q5xWfD89IJlmvF4/xGffv4BKc6I0wMexxF9yNh2EmnoXIaj2r1SNrXCqCYLsJwCrvt1BUgugQmvnVl2lnKuZQZ/y3h12rGSILKQHSHHDPaSDVlaRdsOZS5RshYlXIIrbk4aGcmEGaQ5V4XRPAzBwJ6U1cSYEOOCSbuYMRg5eeQgKdaeoeUqGtm1iBFL9wqCyDnHhM3Q4d2tR4zAcWTEKOOsrYNVrrOV0ZpjXQZIxXoxEEooGR4mywAktnJIOd/jDPz40wzvCXd3Ae/vpO36F19u8e7dgPv7CT/9NEnmqEaZoXKGmJF03tDICeHcMieJjp/kXGkwWM965TizxNquk65DuSkBT5wR28CNyotLPjYDsExcMlF2ux1ub+/Q9wPe3X6J/fYOT48P+OH7v2Icz5inM7rONU5F2wu0AoXCuZXgSNodO5Ko3LDp0RGAnJBiLgAOALxAUwwE7DogekKKDjmLAfY6R4nGkcxtIIeNF0fBkjOmnJG1zbFzwl8QFNhk6D4gi8ISvOuMjvSNEWqGhpy5DMqSyr4fenF4JYYkCcjfE2fhgKjQTVCLa8rB/g6vKUomEum6ECDODgbIBS1LVnx1ARAryI2IcSmcOnI9yV4CxAAlkutY63UpTVmQOBXuS+cIfd9B9l9QwGyNVZziCV/kYesMAkkTBrm37GOnaydH2OodDMP4imEsym5mKEN0kQ+Cnzr5Q8zlsypdbOZ0MjRrSnWt0So4xX2aOw3rcOR9dahxZiyLZH90LqBrnVxkT2Xih8vfLQNJ6BOagJ+eVTDUWFKycJCS0NplNF8wmyG2NopRsFnzIlv35gzUYTUv66Rr166GkBiRC15fZ/izx1/AuP/4EcN2h+ubO4S+w9e/+RZff/tbnI6v+OmHHzBNI47HE87nE0A1a82VOZKnscBhmyFYs4TNSMr6HI0rStfQRFT7rKQ4mSz9VN+XFveS3XpOZ0zThNPpDO89DlfXOFzfYLff4o9//hNiTHg5HvH08oppGjGdzgjOYzk/4+Vqh2UJGLY9YhKbZJwW5CT4wZHwKbpeA2U5I89Jcz3N0JX164cdrm+/wLDd4Q9//s/4/Z/+M/aHA779/e+x3x+w3eyw2+5wPL7i//2//7/w6dPPWPgJ/EQAPDY319hsdthut7g6XGMzbPGHP/5nvH//FULX43w8I6aIx/t7PN5/1IzFDn3Xw/sO2+0eoeswLcCSkmbiOJDvcXX7DsyMw+0Nfv/nP2CZFzx+ehXy44d7fPr0E3JecJpecZ4mbIITEuOiF4xgX8sEmyCGswCB4ivjnK1ZPsZLV+jai0wwfW9OFflOtQuobrA3L+dcSQpd5gXJJXRaJsts3FxOjHjdf6WbmGI2OWYVCMl+tYCP8ouXM9cAp8Ywl+Oai4MpxohliUhZ+Lfkg6wZbw7edYpxXCnn9d6s51Scpb7r0Pcemy1wOAApAXMCElvntKYLMqA8xYL/MppMcZMqVWDCQEB1pJhbRa5P7DCOwPffT+gCcPOux7u7HpuNw4cvM65vAh4fF9x/GiVT2SmLDymjABOIchmDu8TPrUOfCMhmTys4SShrRgQ4ZlCn3GY5I/ikxNcWZNFguzq1TJUTHLSCss5DFL/DYX/AV7/5Fl03IPgNzseM4/MZ9x9/wjyNyLyg77x8r+F71OVEbYgmvKTOi4Om807/BHgCOArvnHMmOwHPktHXEbAJmj2UhA8rMvCyRARztlGlfGFmRE5YOMJzQOdISx+rw4m1MZZlGLNNMaRhWW6c/YykPM+yx4kFy3beY7vdSIIDE+YszrA5S06m+UFMd5OdR/w6DPXrM5uUEb7wDBBQutyol24dGTOcS7BGQFmLOEvqr7YXJf1AATtOy3Zg4L0KMqshNqJDlDsR6DNjKJ+w96hV3Nx+AOaGZdb0QDJDoHVGXXyVW8eIebGzKsw6L/Z3RWewDDGoIWhRYrltZRZ6G3EU4ZmSbJgaDXXFWG28aOXgV4+yDb2xPuqt37zksK35bP6WMih6xcTYZYkfuPnM+ovrdbGDpJHzFEEJOL48Yzq/IuWEq5sbTT29xm5/hb7vcTye4HzANE0Yx3MRrLL01egq2QKmlPQ5y8zROsvlcy8qe4ma79S5XAN1Ku/FyGCO2nlNnJX7ww6h63F1dYPQ9XDOY5qkVI4JiCFis9lguxnUM05Sv07ANM0yY8YFQpJ9IEawOHCYUZJe5egRyEmHxdANuLq5w5df/x77wwHffPsH7PYH7HZX2O+vMI4jZk5wXcDmcSuEhUQIXVcyLbpuQNf3uLq+xe2t8DEF30lkLGXEZQEhw1EqGWZ932u73rbTicxX1/VwjrB1O3gv8me7vcEyLwi+R1wY83TCQzximkcQMTrP8MRCFq37rHruLxRfswnNHm835KXDCbCtk80tpWQHaHHIm1d7ZtqoizklzKmA9mxx/W7ODViTN9fX/8whtEtYaY2AOCpAWbIv61mzTAnh99LMpphVnuYqc00qNQYHssZruBoSITgMg4PzwHmqKeVVVsljOJt3VPG7Mj6aR27fE7BHyKWEWR44JkY8JThi7HaElDycA7Y7D7DH8bSgkk0SpNZGZRvMCUAmfoqeax3gZQxuzRG2krEaWBC9geKMTJxBOZdABHCRLQCU7qpQh5HtYc4Z3nns9nsMw0bI98MAMOF4fMX5dIRzXKLxSde8TNiFzjPD2dbTOUn1dwRQTs2e0RlW4O0AdJox6UmcUQzGkoRQck4ZnYeWJsg1pLeehhIU3Bu5Jco+rQDYPlMXYc1htsrwU7DkyaFz0tnIOwfyHkBG4ijtrW0ezVK53Md/h5fJa8D0kT5veea6H5oP6KeqFKiGXKuPvYJ+5bykJuiXm8xF/UlExRll+MHuLSB2XVZn9zF808pF4zgjGygUxAJlb7dZVpeanwANYrrC5SUOUjtPeDOW8tzFqJQgZMkI02NszhFq5pN1DlPO6Ej5LD6LGytAL+8Uh5PJ7MYhynV9JMgoLqcG8ijPlF3bNQtriGmVy3AxS2vgZAGSdrytcVmwDcseSCkiEuHl5RnzNOHqJuHq+hbOOWx3e/TDFiF0eHl+AZHTLJxZsHnDGdrcbSVX7N5rFWW6mCEdAjPqzufV3NiYzbFXwCrXvWfzy5wQmTGOIwDBIoIHA25uNnIP53HW4MkwDMgxotfscCKG806DWwvmOQomgu43R1pGyGAlKGe20CFgUf/QA/1mh+3uGncfvsa3v/8zDocDfvuHP2B/OGC/22G/2+Hp6QF/+e6/4fX4iNB7oZkEIQwb9Nsddocr3Ny+x3a7w92HL/Hhi6+wLBHjacY8TxjPI6ZxFAoQeCTPIHIIXQfnvTiZSqK0nLPQSxOVvdsieGCZE7bDEeN5gfM9xiVjmc44vYxYphEYgN6LWiQwoN3JjBqglV2NxwUWuK9ZPq2zKV1gaFnQei3TEy3WpoLXVidABQxpp0kjC2+rPN6e9caJ9eacfO5lHRftni0OrN8jseRXzysOCOueCrgkXJKutROoxYJ6E+UOZO0c7bxkZXed6LOlkANXO8LGRATFE7USpg3ar18NljXVCihOkMSHGBnHY4J3jO1eOlB6T9huA7qOcDotYOuEw74YV8WyMLykhlDR6+3egWEAHavhQbPP29FqRVEuWKH6AwCUAA3KPdTpziaf6lwxZ4QQcHV1g74bME+MZWbMU8R4PmGeRoRO+J7EXlqbr4y6z22/2rjNR+CduF5y+YwNTSSGY4aHcDzp42k3+YqhtnbmSD0sjNJAyjXrXPb5Z2Qo2cXF69JoDy7PYmcXQOGKCiEIRpVaRlgSCTOXAE4LjgkaUPnF81Rf/75udHZTy/IgWVWZV4umpNIEgixNMEnWiJG7yqGpGVKU12DeWkOCWkGWC5mnHAA0As4m+LIMoC5KuzgVT2jXJ6B03yJmdYCRdK5oyvqceig1Jlfv4WpG12pRyyEk/bv8tk0XL1PLXIichR/KyWFezb0dSrmf1RATrDbXyMJkI1h5jzxjMZGx2pq0/ucvLv3ndhOhXLMaSGacff7C4phrngmibDz5yrVUvm/fgZIUS6en4BzysuD5/hPOXY95HHHavSAz4+pqh91+i74P2O33WOYZp+OLcISZQrMzyrUMDs2hap+X6lBXz/DZ59L312m0lbuiBX8GKomA8/mMTz//hBA6HLev2lkDuDpsZQTuFgChJwZPZ0zjWcgi5wnH0wnD8IglLjifz8K50wi6FIX8OeWMUb37Uf8crm7w+z/+Zxyu3+EPf/6f8Ns//Bn9ZovDzR36YYDvemQA4zzi+7/+M3786Xs8P/8shOZ+wBdff4Wrq2sYX1LwHTa7Pbp+kO4GKRWi4uDFkRx8h67vsN1usdvt0PUb+CAZfDIfMtOZWUoFMyMmlBTYriccrq/xRUqY5xF+IJzPr+DlCJ6ekDgiphOAqKtXaCarQVCAkikwlS8tYPrMfmdwxb8MSBSHlPyY7MiXEwCuZUMXFxICaeLqZFMFatxKq8xL22N2GNZvAECTgly/Z9E+Wx9AnBCZWzBiStKBQ0DXWZo+FQ6CqOTWXgrU5X6uPaOSRjyPDE4ywV0v2Zw1YYfBjUevznVNybbnKxmadDGfqIq0+Jn0LJV50Wc9HRM+/jwKafg+SEvhTcDd+y3myHh6zZjmJnoOKucTzSVb3i1bS1b+IcemsKmsF4MhZIWoDkznEALDKT+gNyjdeNrMyUhwZR/EZQFIW0CHgO1uh5ubd+hCj9PpjKfHI15fnoSrQqkqTLaZbCmyhqiMU7rMKFF3ST/HyhAsQGIli2X/m1YaQoBk9mXtZgjEDMxJ5E/WTF0u66V8iVqu165piVTa3OtdM5cqu7IGDAOCLG3LoU0ZlVB40wck1adzjEiZJYMhAiCP7I2XqiXF/o9/VawiD8mQByHdQw6S+ShEt1ZarDqFq3wwH4uVaFZDqCJ15qyZtVCiUDPIbJ+7JgBSUErFYMrZ1Dp6ahCxOjlcs3djXHRfV1lrATjXnJ/2jEGvaNnhBNlPYICtE6zOg/yn2dqmL2C8SlBmWh2Xc4ASxBaBrfNUZAvMgKhY8ZcXr5nnYuwYRqCSbingm9ay2kQM1nNZRJbNpskT1L3eXqbMFtka1ACg7KvLgF37HVsHB2MuW6YZD59+Rug67PYHbLY75JRxe3uNfHXAZjNgu91JA4PTSfGpSWMGIOWqScnkAWgmLS7GIHMlut1K8NybByvylbk4d4xXzZkMbTphlbkHcDqd8PPPP4ltoNl5KTNur/dI+w0Omw5xnnF9COj9gmWecDqfMS8LTqcz+v5FOrfNk/DBssgXMLDEiJgSYs4YZyGOhusACnj34Wv8z//Lf8G7uy/xx3/4B/zxz3/CsNng3d0t+qFHjhnPT0/49Okj/vIv/4R//Zf/hsgz3r1/j2EY8Mc//gPe3b1Xx6R0iIsp4vX4irgkzOcZ8zIXaoUQOhwOe2w2W+x2WwyDNAEg7xpHncmMLBkeGcVp1G06kPe4iTeIOWKZJ7xsA6bxDCyvGOcnOGTkbkHns5AS55opIXPONVhV5E3FLKbXC4bh5oN6HhhSVsxR9n5Szknb+yC6kM68vobKQgClO7mQunPJfrFsu7YM13S8ZUeT6iVwLWvjDM0EoZLU4Fid7AA4ma4nkHI3eu+QWTJSUzMPKSYQhKCfs0NouhAWvcuaw5sJ0xSl4y5n9APBRWCcc0OnYPK5nWu8PRMVWqyOmTlHzLGaCx5G+Qtnj8SM42vGx59HeE8YBqDrPXb7HrfvWLPWgaWhF61Bs3ruTVK0Ms1kIzvDhLnwGjNypTMkUsJw1qoU3WOuVtGQNi6qHQNJuaJkD86z2NTb7QZd12G/36P3HRw5HF8f8fJ8xDSeQJQRAjV7XAJivKpRI5U/ws9Mmcq4CJqRbzim+BpapG1SE+hIApG9l+ZG1UELxKwcrM444sR/QmrjW4ml2dFsgKlZSzatwnbequ4vckJ9H2J3a5sl55HIYdN1yAnISFjSDGRGpIQIBzjWcdc99Wte/y5nkyn0XJxMSiJaUugI4IhMLIBSHzzrgWg90JIOqsa+gXNdLPHiWRlMnbxcviu8BOagEYeBMrMrcM05r5w61djXJyEuBpO0oRQyQEek3BRe2kGWiNu6mwk3gzMSymqAVfBWF7gq01W0TccjWQ4Z5Aid1pRyljbf9vzVuSXjytSm9LoGgMlaZWW3lciiHeKaPVIzlP72brk0vKvnvDqwWgP9M/JrdYjtHwSUNSV25XDIW/X6BkaJCJ336IJDWmbc//QDiAi7wxWG7Rb7wzW+/va36PoNrq9vMJ4XHI8v+O6v/4rxfIK1LKXVCA3Eo7ahboCkHtEVdDMDeP3SiEsBStJ1LKWkqfw16tqCdgA4vbzi5ekRzjlx1ASPu/df4MuvvkbXDzhc3aLvB9zud9gHj3E84/7hE06nI55fnrDZ9tJ95PiKcRrl2molxygOnzkmvJxHxJQxzgnjknB9c4f//D//F3z48jf45nd/wte/+5NkFnoxepCl5OI8nfBP//R/4J//2/8X/TZgu++x2+/wm9//Hl9+8RWmecHpNILIYb+7Rj9s4X0nbXY1Q6YLHbwn9IPUTO/3BxwOB/jQC+eAE+EpWQisxquCFnXYdUGiK8Hf4bC/xrwsGK6ucRrPeH34EU8//gtyHBHjCZwXSEtcM8jMqcEXm1PlhXZSWe+BNydhtW85m4KrRM6m6Kshvf6pO05kIVGTTZRLZLIYT82usy23Mo6bi1pEy9pJE0jW0Ywx+6O8WW1KvHcOCFK23GeN+qekXVUy5jnCeymt4VBBhciyIJFQyhjPC+aRsd0RtjsP5xje63ljlAypItN1UGxLUhShMmM0QKnR4yLPoeTdVdyWmWIGXl4iji8Rm41D95stwj5guw/4cugwTRnTMmKel7V8YioGtt2vgtIaVSRf59TGX52DLK11GyPQgUp0M8NrF1b9ju2JRpcwc8kqIHLoDoOQ4O6vcXf3BZzz+K//+M/4/rsfkPOCmBYojUqZg8uoYQXa6uj0TvSc0JoUI0++0+onQpv251Bb4G5DQPAB8yKAJDOLowkMeEIK1l5XIpNS4u4b53KzuZszg2beW91kAR3TPpzzquooOLlX7DuQ85jmCdMihsyyRIAT4AOy00YfFYLh7/Equg7GPcHIUTaSZwluAYzsAdI18pbxlq2EoHY68hrVFRxkGZA1MySzZBWWEFOZy3U5RjIOjkaeZJURhn/eZv7oWVBHUsoJ8zwLhrLyNs/FkW3vVbVbdSyRknx7LZPKDR50Ksu0DNopQbh3FVeJeBFdYfhCuEY8nLpGJXOgzkUxeBQr1vN9IVMLpuGCQa10xuRTmReTT2jes92lRq2RlK+cTY0cKffG28+1c8/NOO1rFsytTvy1wWEdGa2j0Hw+4+PpFUSE/fU1tvsd9vsrfPXlb9B1Ha6urvDycsTpdMIPP3yPcRwL/2UxTKHcg7q/LDO2+QioabZiesfmupUBNpeG66WEKyqGchiG/mI/1vl6eX3Bw/MTiAjBi3x5d/ceX3zxhZDmu69A5PDzh2tc7zuM44jHp0ecz2e8PL9i6D9JJtF0wrzMIAgWAQSLxJQwzQueX4/SLdHtQH6Lb775Pf7v/4//J77+9vf46puv8OXXX4ndEEQg33+8x6f7j/jx++/wj//H/47/+o//H3zzu9/gD//Dn3B9c4P/7b/83/D1N9/i5ekZH3/+iJwYc1zw+PSEHBPiJGWzMUYQEfq+x+2N8EIJDcEAVcQiqlUviU3D6nCumL/fDhj2BN95bLc7LMuCh/tbnM8Tnj/9FZ/++gzkiDxMSCFKeS/1IEIpeQckm7SsKajck9mc2+oYKPQTq80tHcQ4C/8PqmwUHS/rG1RmSNA2rjC4YTbhIkvKWZhqhpGdJ/1DUGO9JASoJGjEmbPCbWkJrMmVhqHMgQYkmGOAChbxPkA4sxJytmBpxJITmLPoJu+UIqYSrYtTwml2CGPU7nc+EDZbwrIA7qTyIWdNpm+CW+VPlaWtiL6UM+KQptIltnVSiE5yyCy1hM/PEafjjM3W4ZtvN9gOHlfXA4g6THPG8tOEZUnlvnKuoRiKCp4oy95gKClTVBli+ILrLqEGBzt1MDl1pq/8Apa9a5idqg25LAnTNMF7j7u7d7i+vsZ+f42+68EZeH1+wg/f/wCiDOcyut6tGleQoxKMlLmjci/HDO+adbSNVtZBg63mbDLbAxLi6kiakSVtELDEiPMsPog5Z4QEBMUEAk1J9444moLak2V+G9XV6vviN9BBOCdONNNjDhKfEdwnfg5mIPYDgIBpmaRhFWcIGy8AHzQQtDrV/+brVzubLFuDy06uRrm1mSTttuYoo3iaYGughgUa0FMvhdWHL35ZhZz96sLCuPzKZ14GDNYCy/BVY1xye/KogJe1c2Y96FUEuLlRderop1Z2YgMWmuvR5eoVIN44rFDH03qLy0+9XCNHPjs/q+lfI503H/6s57xs4rev6pCqGLY6WfT/mS/ea79d56TW7fPF+sm+iHGBmz2WecKs3GJgqZXuug6bzQYElqyfZVYlmOrlCcqRVTMZLvdkNbesVM7AYf1NmxVjf4RIGiDKqz1UAagqvpyR7Vk4Y55GdZBl7PfXMF6u0PfocsZ2uwUgBsU4jViWWRR0FySqkyQa4n3UEtiIfolwlAAX4DvCfn+Fw9UNDle32Gz36DqNkik/wzInLPOsfyYs84hhu8ew2WDYbKXULQS4JFlHBOHMEI4ONTICsNkM2B/28E4yXrq+hw8ezFnq6eMMWAtUuLKuNu+42OugWg7WdT0GZoyhB8MjM2FZElKcEfoOIXQgolr2UJerLvRqG5Pe97JEof6uEoLTxbGhapdrNuHKiNa9Vr8jsm1dKtfykjRnhZpz1F6RDDo1MqLctwJ6BrTDLGmBPeCcOMyck73smbV1eltCWhWsgSiwZbes7yM2opU6a0TKlWQonTv92wogree3PDW1v6vPvnLaGkDRcdgscpYOaCkC88Lo5qxlpHUu2/vWrI+6PnQ5zat1XMst43sQmV/3T3mi8nnL3mxlDZeNUXaBk45f5ByGXpxN3nss6oBalkkySTg2a1B2aJkrbmSsrICdI8nqlW5zaP4ocbdr9hLWOkLNC3iS0lz7XibZH4mFBFZSwa2vnbzk+q4Y5bba66wZvSO3JrXuZaLaDdYGxhpZVDnuHSE4QnRiVFsKvmRJNZFg67SEv8/LMNTKp6FyKWtaGDnhHSkki/KhZv7XWKh1iNgn64qt9VL7nUu1zdDI7N/AUJ+73wrT1eGiyNXqkRE5Xs28MrYyphXOslKb5nkvBWm7N9Hup9UH159vLbHV75uP1UdrsBuvvmVfqnCY3l7a5gvtLrMdz3hztSJ7uOCnNrC3vnP7VouluN0eRTbae3zxSxbCPaS4iJ7vJizLBDOeuiCNPDabjejRlMApga20leuZNkM91zvbLK0mptFIF9C9TObKUDJnYOX3a3Bjg8nNxkjMyEQFQ4WuQ9jtBT91AaETDLXZbEEknTUP5xnLssAHh26ZxWLWQLaLES6Js6PrPFxy6DZ7hOEaV9e32B+usDtcoR82GpSmkpEYl4jT8SidAJM4f7teHHmHwxW6ThqrgBr+UGfPKU1jQB6bzYC47LHdbqUUsOsAMOIyo3U2QTPGuGAQoASgiMrYyJH8ngjdMIDh8Oo9lpjAKaJzCxwWeA+ErpPrmtOq6PEGJ7U2TLOmpgHfrDOZ+LXz0exvZ/aM0yxBhlGutJaByY5V5mZR7AQDY62T9rPZi5fH0eZKNljdserYZ+m+AwbgsrznHIPh4DRIIKVxWpKnetgcGW+CmUTl+ZPuce+hjlXRz2uTtzqamkus5rC1uaj5ns1BPT/K+NSMoaxZJkQI7ceyMOaFkRJWn633buSwybHLMdUhFLnazr+stVvtpdUS6ZowVwaLKghN19V/eefQdT1CEI7nrhOn6TxNSImxxBmZYylNWz2F3LCOjQzbVblDzgKuVP6Q/oRskfIqOAftr1gcTnZ8DcuzVCBQJiQL0DYTvQ4GtpP0dm+3s0jNf6ZjVHtrBpkEEZkATw7BZUTXrDVjtX/5jbPib79+tbNpHCUKTNrCVm6uwj0vpTvWZoB0pyKG8y0YkGylZO1EGz4R5rRSghLpkhmetBUmiNR7rEKEHMAJSb3ZTrswmJe4pG47wGpwLcPPDmmtK9b7cj0cBCPM1JI2T7pDWBWtjJ0YSkrn4XyA8x3AUZ0ZXDaHwUDb0+sooRzvlhdKeFw0GuzdKsvKh4DgPbLvwKFyLHzutd7cEmluDZMKQuqrCPKCCS43lRrcF6Dq4iMrRFRFtv20gykfNaZ+ayHaOqKYGYklHTJDaOmdc+i1i0dOEefTK+Z5xPn4Ah8Crm/eY394h+3Q4fd/+COYGff3n3D/8AlxWXA+viDGCOeArpe0VooWnZEsE1vtAhMbIGjC3oxUE0TWCpf1p3ACAJQjCFJOFtSgl3RvUmJ5UVoxJaQY8eN3f8UPf/kLtrs9/sf/9f+K9198Jc6y4BA2Pd5vPoDAmOcF3/zm91hixPPTI06nE6ZpxMvLM1KstcjLMiMESaXeHL5Av3+PD1//Hn/+H/4vuH3/DTb7PbzW/w+9OJ0+vr7gpx++x6ePP2A6PYPTiOurL/HHP/0nDJsN+s1WUsxLlMehDz22wxbDMOCwH0BE2A1/wPK7r8o+ISJsdls8H5/0MDxASG4HdH4AeY8wbOGDR+EOMWEO4Hya8fz0BAaw2Wyw2+0wHV+w5A7zTBg/PWI5/ojb2xscfrNTI13ImVvAUU4foXbBIDstLCnkb05UC5tyo6REwzrYmVd+kgvDrDlhEkFIEeMsEYcuqFeGfL1HAQ3mv78862bK6LWdK1+X8mQqSopRS+tSzghRsiWcE4Lw7AO865BZspliSnWOGFhiAo0CyK0+XaJVDtKaVmTisMkgynCesdnImi8LY5qrAdeCIXtWU+iaswTr7mH3ZzVeXdY0ZgN/VE2XAkAjIbPDnBifPi14elrQ9R79JiDGjMypONmKUdkCNLXSyvnnGqWVsmkB8U7LerzLhUsgZ18MH9MTSdc7g5DMEGhS4nNWtZ8TUs7ouwFXV7cIXY+7uy+w219hnif88z/9N8QY8fz0jJROsi9cs5sN5XGNxhWnocp+5z0CCJ4YfSdcZ30f0HcBgYSzgFS2WQe11hHmlVASIHgCyDOWzomRlxnnKAZiQIQHYYoJGeJ4tFbkTkksbb6dgTuIYd/4OVf6AmpE2FxLqW5SB5MclA00c4ozjl0PimIcx6TgjnMp0WhjYv/Rr2WU9uqmzwGAk2agxFmaOziHzU6zCAngoogSxNhLyutlqMEymfJqHxOhcM7kmEtmhMlU02GWxZhzhvcEcoZF2kxtNSJbgK+4wPYHM2tmQMUVktEX4F0oVASg2ja8cm+wBClChxCCtGIujsYLCVw9QKoXqo6ugF8NksyKBb1yQVVeTUcOHtI+WgIs1BjseguGkNiSnAfnRM8FtOW1qKPkFSRCaQDQmsgrQ4rKWpE5CAq2EH0lhl3Nim5UQlmGooPM8Ue1PMbyB5OuVessFG6YHgQgTRNO04T5eMT4eoQPHa6urrE/HND3e+x3f0TKGU8PD3i8f0RKC6b5hJQTOucwDEGwj4+aJaxdzGBGDjSbUJ5Rqhei/s6pbBRHUtYSqMxaxp1sb0ctsQ6FLsN5mcABDj065Cxt2lOM+P67Z/z1L/8Nm+0Wf/6H/wnv7t5jTglJCbQ/fPgC3hPGccZXX45YYsTLywvO41nK7I6vgqHGE+Z5Qj/PMj4Gvv7t/4gP3/wDPnz9Lb767R9w+/4LuNDheFzgA2HYCF/Sp0/3+Md//Ec8PX5C3/X48osv8Mc//hn/6//2X9APGzCAn3/+Ca9Pr3i6fwIxcHc3YLsJCFsnJP4EfHh/jRgjvJeuxN47zNMJP373r2LzeMn6FE6qAc4HdMNWCPNds0fUvpiXES8vDwARrm6vELobvDz+FQ+Pz4jzEfP2iKGbsN9d4+bdFs6Rco1qyWSDZSyoYWeZCAjeVUoA3ZsQk6Y411zhmTVZhtLVDRCs4ohAqcle0Uwh6Tot+CvFiOi9YBkfABAcdQAWOJLgAwHaddOw3UXDn+bgMmVkUfBlXK0hn4NyMKYkfFk5g3xCjFmyTZ0H54zFOSmjI+VtBLDEDFCC98ot2IyNwZgnwT8+eHSd6Lx+gAb6oETqNuQqBxnWzY2b2YRmstSyfQkqEHKT7cZs1S96DkkyS3Mm5OjBI/DzxwXd0wLLMF2UkLrp4SDP0UyXUUuYrgEqhjKZ3K49stBmQB3Ml84NZ39HLaOzQJYxqRIIYPnX/rDH9dUtQggix4YB59OIf/rn/580XBrPCJ7X2A++UXlaEmyBhlJuLrgH5BAc0HeEPhCGPmAYengAObE6HNtKCdf4nwRD9TC+J8biHDITIguG8iSl8ETAwlwqmoRKxuvcm4y93KaqJzUzy4Jx1VZBQ9+RAE7KxxnARBg6B5BouuB7ICcA2p2SzEZunVf/9utXO5uWKMa+4VoDFMxCJrssogi6ICmvYuhUT8Yq20MXwFpectMCXCasdj0BZ6QcYV1anJFTsIB9ywyQQ+PUQ9cSqYnWbQ8BUB0FKdXU65Ua53UmBal7eQV97NAbAaZ1GnAOLZWgfKZAAz2Urce53LU6WPLbNG17LqdeVec84LgSXOJzm665tl7f6ayvvSgFDpWrtJGE9nKsxlL5nD1ZA2TW+4+av7WGQx1r1qu0oKrOX/XAWgttc7oRSdvKGCPmecL59UX34YD9/hqh67G7uoHzHnNc8Ho6Ns8hNTPSEUP2k2nEZmfKyKoN1+xnM44t+07JcHV/J9YE85xVAAqeFV+pK88uaytKi5cFKSUcX17w8viE/dU1fvfHP+P65hYpC4mlCx67zQZd8EgJuLoWxbfZ7HE6HnE8voLIYZ5nOHXcek9IUQi7r29vcXX3G7z/8hvcffgKN3dfAo7AzqIBHZxzSCni9eUZp+MLUpyAvGAYery7e4+ul6ymlLUEVNc/OI/OB/Shw2YI8N5hv7uFnZysR32OEdM8ok21Hvo90GX4rkM3DOKMK3XL9ZVyxDiNYpjtJdLXhR6ZpTXr8TRifHrGdjMI2PCEWMSByYOL+LdaKPV84I3xYBvT8oguf1uOOCrZYbF81HlbTw3rs8iEhBDAmjJbZZGNlct5tv2yejWgwWRDtULaL1rChDpqYB3h5LlkD1u3DX1WNue6KNBF5RpnVhBbnzNl+UxWh5Ejqc7LGUi5AtKq9OqcmsPEuGKAptsGqgEJaPaYgZEiGfRMaqo1OQ9kQsoZx9MMRxmbHQNOItlgXsnIasOu0BJMYq3Sq3VdnEY4wdByItUpNhZdd4m8aokeatJKSxzqCKvIpw9eSHv7AdfXtzgcbnB//xEP958wTZMGbbKOwwibDGAwWn6s1qFn51QMbkbwGcFLdxOvZVsa9G7KEaqxTKgnwEO4LxIBwct8xQxEBlxmTDHDQ1r6WrljCZ6U+ZW5prJfgTVbf6sP6oKJ3FhHik1fBtWHS5SOd9kBgv1ykVVtXK/e6z/2lbTVvDyPwk5zUCbh93Deo08MhBakQ2WI6JHCL4eWN+HtM9h+Zs6lFCkgoJ1dAMW4d47LQZC5bGkD2m9UCWby2xyBToFhgeWFrNyy0lS3mvGherQE0vRPzrk5n3zxc/WA5X2296iW9fiiX2vQAiQOjva9gseo7rJWDLcZV23XX7uv/ObtHNnfJTtjPX7hA6kyusq45krcXJ/rMXiTD2IQtoFf3PwEKjm57XxHpDxZEu2PccEyTRiViHroO9zcXovjot8CcEhLxOnliAWMGTIO76SboARfq/wrvCpKb5FNVjMjI6nelxGZ/jVMZSrTemcYfyAz4L2dd3loazfunEOMAOeEGGe8vj7j+fkB+/0BX3/7O1ylG8ErDBB57PY7bIYOu13GbidlWJvNFqfTGefzUWTIMgNUZUtcegAO7z98wG9/90fcfvgKh+tbbHYH5JQwLwk+O3S9jO90OuHjx484HZ/hvcd+v8e7d+/w9de/gfMe9w+fcDwecTodMZ7OYkNkkclDH7A7bMSeuvJlriyLZ1lmvL6MOgfqRN7vQcwIXa+ZVpbJpHtA5V9KC6bpDB8Chk2H3X4P33mcxxHzeEbgI3I3oe82JTs5WYn0ahPzmy7Odiwtq7QGO5rzYDrImSOVqqNDMYb9jgBQ1q68ZMkBtZTMHOZQXCPq0MO6ZFGzR0wuOfBKpq2yf53TRlifkTckXFKsMkGcpk73unQX6xjI2ZUOlVDnCBl3lnKfGT6QhyUgk/KTKj7wEjAQ3UzCv1V0eyP+gKI/a9agZdHac5PaL1QyD3LOYk8TYKSPVmZn98nssBhpuAdCYPS9072wHkOxFclmGcXOJNJAvgWvnFf5qs5moGQYlc6ezfVkz7vSXdkwiMkTgaHraoShH3Bzcysds/se3nu8vh7x8PAJ8zwr9Y1rnoHKHBrGX1Gu2D2YC92B85pJrfgpeGXEY7FUM5wEh9BgWc66/ySHhcDIJNdBNseikIUTid2YuNr5YtOp48oC6EUBrDYsSoXFxT5nGN7Meo0MUswOAjpPYHgsSRJpctHXFdsWV2x7tP/G699dRmcZNjZiaVEr5RfGXeS1lKZse67ZKo4IUI8vWxZJarzMDFAjcEQpims+K4dMcQaooU8qbEMIDUfA2wk2g6x1egmoqXwCCkOqIHQa/SpgAwV8G7hxRGAnm63zHpJgJZ5x56hGMbM9T83SkLXSlNk33Ahi6GWOmOYTjqdnnM6vWBat4dbsKceWpdV4snVz1JcCSDEdV2trHy3JSs35aj/TnkmdiDoPdg39pAhjLoZaa8SvQJGtSQNEGoRdlcAKdHMB3Tacokh0Ds+nV9x//AGhHzDNo5Cug/H+7j3meULnPeZJUsbn+SwCC9o2kgErGjYGfhmbPFeMabWHTPFAjfdUfmeRXwayEgXqHDtmJdAXQ5tcFWKAZAd2XQfvPeZ5xul0wuvLK56fH5FixDOkuxuRh3M9AEmF946x2/Xw/r0Q5E43iMuMaTzj6ekKMSVsrz9gOFxhu92JcHTc8MjY4jDmacLLywtOpzOGzQY3t7fYbAbkFMHZI7gBIXTwlOHhQQycXl8wHV/hifCTlz0XfM3I64ZBzuowIHSiAIatcDF4cvBO9vT59ASYg9nIxYNkXHWdx83tFZxz2O4HhK4D5wXPj/c4vTzg8f4Tzk/32O23SDlBT2Q9A43npjiZTLkUw/rSJGtOUiNP7KcAj1yVaTEIUA2gplyuZjBmZBLOk5ZM3geJKtg5do2BUU5jOSeyqRyRRAadKviVhLFjJBYLOcDDCTeMk58immWPdypLU0olimXlfkTSWQtghOC1Qw4U6DFyAqZR7hOCdKUz/qe1nEAZFWCcenKNMlqV8Xb27I+MtbjNG+Ch5xEaRLB8C87IkTCeLXIuANQcW1C5XByJzQ9bQ75Yb3tmcpd8KTJ2iRxlGQG5wk0IQIxuvUfOGVHP/m6/BzmH/f4KN7d38E7k1MP0SbIVl6Vmza7mqMUaAhpNUBvYtzGzCvmy15ymTycGO83qtOyhXEFF2W26d0nv7YkwBIfAZkjKHJyjZHMmSFl9GxBpxXwZU7MlPnfyStZa42SyB18Bbyi3lHMYQoAjwhyBRfd4YoZTTsf8K4HS/xkv2x+Om+xEh9Lh12knvUoAul5j22PiSDX8Urkw2zR/mwnbj/b+sizVSDJDAChOHssmsKj7+vv0BkNZ5BZoeHhMxxlXk2YSXfiGynwQana4cDd5cBP0KB/WCaPGWK1za/wZ60AWW7AySiOJl5cHnI4vWOKMmCIcghjFqv+tRKvADr4YNKqMAYD1r1V6KJaqMm6NaQRrcQOqCMXYVg9NXU9xZufisFPjuYh2NTK4lUG54PUyRr7Y5+X5VHIq+WwxTBkStPpJOr1tdleK7R3uPrzHsszoXryW86bCeUrOaQOEXBv/mO4FF9L64ihG1k6XdXSS0cTFGDKZYtl58shKGk4M5qb0O0vHKYDRdV2xCeZ5xul8xuvrCx4fH5BTxHj06DoHsAPD6xmLCB2wcwNCeIecE+bpCnFZMI4THh4ekRnY7q9BQRzZ0zIjTBI4QxbnwzRJJ9TzWbDbsiy4ujrgsO/RhQ7Pj09w3mMZZyAJZ9vghQLh6f4jjs+PUp7s5VwFL52DvZY1Ou8xDBt0XQ8fOsmo8B7BMTjNWHKUBhNO+WbVsBbnkcOm7/Dh/a2WaXcgMKbxjIdPHzGNL8i7Ezb9gtBtYLqiDQS74ohW45yk7OfSQWPGsew1/bc6wGqTKNMKuiebbEn7otlD5nxs7yNNTGK9CkE5JiUY7V1FdHZKV/pDX608sbFfOtlX/1IMQrly8xg/qyMGB612yBnLIl0RheddHmLxDtnkPVmmr9NnAuZZ9G8IhM3WYZwY82IY8qKShVq8V5/W5IH8Xd5ruz6XZy4dRhS/KGG9UeMQxF5PkTBzDUaWzHNAMn9cuzaGO6D6zZXfmdjSzWS7SM486TwUnSd5W5mydgGuqyC6g9QvIPpzv9tL04PdQQj0yeF8OmJZFhxfX8GcNbip6QTGN72ycqtcXb/aUroGQ5EEzHJM6qvIQMZKP9q1LYuVSPmoILyZQ/BILNlvMWVkZEzKxSicTVTKc7nMUz2Ta/y0foMhGW02Fmu4thpbMwdE4ggL3qELQe13za6GkJjDZQRy2qX63379OzKbBKR49mWDloYEevi9l5roruuKFw6qAMTzrCSFzEgcxeOnDp+CvMuGr4aJZJ4wopbgpWwplMJRQ4407bCDkZA6R41AWTuK7LBZBwOnGR0iGJVA0UtZnPddMXZLK2GzbHSO5cB5dN5j6DzYPJxlg4hRlJRHx+YEqAZC5bIQckv7RWbppnM8PePx6WecTkecpzOWeYZPgGfzlmukniWllrk1DmSMmQmgtN6UivoVK/3S3n37MkBl5R8rMCYXsiUlsgpnNerYrZCPRMHaNu3rWxWWf1QQVrzkOk9OpZepg+enezw+fETX9zhc36LrB9x98TW+/fZbLMuCx8MVpnHC/aef8fHnUSK7VEntdReiEm2SeKmZS+mm/bExM4s5bd0orPOXrHcsFpZ09nJFUAm1iT6HOmv7vsew2aALAeP5jOenJzw83OPnn37CMo84vXzEMh2x2exwdXWDEDpsdwcMvZSVbb78IEaJ1hidTid8/PlnzMsCdFdAt8fV9TW63kukUFMqM6lyYuB0OuLjx58xja84HA4YBsZ+v0NOM1IkdP4am2EH7jJyyIjLgvsfv8fx6QnzdMbx5QnMGX0voG+z2+H2/Xv0w4D3X36Fd3fv0Xcb3FxfoQsd0pKRlog5Jry+PGCJGc4F7cbVYXe4QdcN6IcOh6u9RGaDEt3mCR9//A7Pjx9x/91fcXr6Drv9FjEt6DjoOVgbI7ZnDAgXRcKXyLzZi/ZdK3lt/p6UgF72aXWEmkKORlJOleMi5yzdfAB0XYa1UO2GAcwJrACOLPuTUZw+ZUzlWfQZzd+lNaolUozKtyDdK72Uv6UMSqaARVZZFxbpxKNAKWUkja4tM4GDOOG9ZwV4HpkIMWacjhk+ELZ7j9A5xEWcoyIT3pb81lLgms1hJdctYGqBaSF/b5wqzMar4CQ7hBmcpHVpjBHTtKjxosDXGSk4FaOsgFmukI6clh41e4BcGyCozqYKJqRTmshDdWJnNDUuui8AIAvv2c3NDTbbLQ6HG9y9/wIpZfz1X7/D/f2D8qZNyDmprJP5KIGgYmzbPDV7hOq8WXcX5xRMeI3WpoScCcaPYfJNvoPq0IecuRwjKDM6J4Sz4k5kRBIZ+TIv4MzoOmnlbB2TbP5yIXRuMvoa8c/tE9iakI4rWbBBr2f6XXcwAegcYdd3iFmMz7wkEEizCeXMO+LWS/cf+rJosO8I5AKKwmUu7nDvPbouoOu86kQ1tpM2EoBE/JmEg3Ap7YBY71Gd1lR2rxjmrdFjGWvOOfS9OPulnNsXxw+p89UIoGuUvEapi0NVHVUEoDQPKMHHUOVlg8PKQScpKYf36EOHvutABGy2W4QQitMTMCeFPNMaxFspSJvBoI7cOCNzwvPLA7jLOL2+YpxHLHGBY8l8bRpDllK7Mk51vtiJKqUR5d6febHoUkftOeSK/8AN5wUVGdY6mywQmpycE2dlNyTkssUhZnNqKoIb/FyG0+Br+54ad7JmpAEOczYxnh4ecP/pHv3Q4+b2Hbqhx+3tB7z/8ndY5hn3n7aYJsEmj4/3Ii+d1wYKsnd1gGUtkLPs65ibDtD6+2ROACuL0SxxCN6L2pFNnGlJ7ALqikPT5ErXdehCwDJPOHc9nA8YxxHPT0+4//QJP/3wPZZlgssjwBH9sMFufwXvA7b7PYZNjxC2GIY70dOZgAwcT2f8+OM9lpiwe/ceru/ARDhNJ2TvJSsUcnZYz97r6wnPz89wyPjyw3vsth2GfsDPP/6kGfjSGSswYdd1WOYZP//1L3h5eZLxn1/BzNhthZpgu93i9v0dhmHAl19/g7sPHxAccLW/QggdliUjLicsS8Lr8YwlJvhuQOgGdF2P25s7aTaxGfD+3R7MwHkGYmKcXl/w/V//FePpGafDgu2Q0PfCDep9i5tqM6Lq1KjncZ0xpOWO5fxLwoIlCHjfUAbYGVCurBa7gEiMZdQ9Yq+YopQBO0IfKjWFwwC1+PXs5SJ31pnK9VVklP3Onml1hsqHJThNRrwsz+uoBo5zEpk7z7M0s0JGyoTkRUZ6L6WSxpVp2isujPEkXWb7waHfEDJHnE4SYFg3MzBHeeswgJ65WHT42remGMpbNze5njl2xJ5nBAaALJlanLEsGfOo6QrstMmXyq0GP5l8rpxVNn8XGIrqs0iHX5V9NhaykjqWJlK2fjkXzCBDFGkTQsD7Dx9wdbjSsuweMUb8/NMTHh4eBDtBcLbZdzJ7up8tSEd1jtYS3saF4kiVIInoiLhEyVjPaPYv170Fw50yT85wvXMg3yEBOCIh5iRdw2MEg9F3HbrgNUHB7FLfDLWOstjy5d9cflb+O7Nds1INmbtPtJEXlwY6dtgOATFJ1mhKQsWyaNY7aWbXL+rB5vWrnU2fjebr72o3NlccJu2eL1EaXaw6IfWwM+ombX5V7lWmqyyeTIsYWmsQ2z42v8GSNTpXjc+LcdVPlkNcrn/hCLGDSgC64LHZdMrDoL9VbySzlDMxKUgrQKtulnVU0jYJ6yGfMJ6PUj8+TRJZYl+rQFUgF2Gs71XAbrO8FkY6wc2E0+ffLu/pWtBnr/Tm8zL+WpZG+sVqlPH6y+26N+9R85m32U+2L9v68YSUJKK5zBOYhUwxJ3H6hBCQe5Ya92GjhNqxZJ9IO0jNZiAShxBoVe5xuV7NI1/OQBluVkVnabryLDLRBvrs2gbuJU04FkEBEoUclwXRz4hRyHBSnJE0q4+1BpdInKQW6WEGcghgMyY4qUJqzp8ONnMu3WBAVNNO9T/OWcYxL5jHCcs84/X5CS9Pj5imE47Pj2idTdM8grzwCnRdD0eEZbvFphPnGrFGGbNwH3mSrElJJc3gFJHIqWD3YO2qQAzEZcE0njGNwlk1TVPJADRQ20auWsOn6hiq51AVytv9vF731d8b2VKV7cUeeXNBO68VRDVQDZfntuz6Ik/xxliWo0CXb9jtxDFiUJHquOWjlslgT6R3tnGrorNuFiujRs8hszicbC6ds0imZg4VeVuf9K2cXs/RL74aPVSBAL35jFyFiiwSPSA/TfGvRtTgSoVCRedRMzNrHWK3a3SkE+4g1nIZuxc3gKbVLwXIkzlVknQjWuYSbGmme/VvmcP13mzno2532fCiO2vk2TbfJVi5uMHq/racXufG6zNkyoWQ27d6aKWc2zmmN7dcHZXP7g3S/6mBfPExKxMCZcm8TrUDW+V6QDEo/qNfFZ/UHQQlajc047xr1slS3SuGqo7V9srtHmicMCWFvmbEVJ3TGoTU7O3PTLStE7XPAD17jczU9y6fuc3I+Sz8gGZlatbqZtNBHBeq0wkKstGUA1mm5FvcUvY8C94S5yxjns84nz3G6YhlmbDEBR0JFUErIxltBLigUz0fXO5xKZOB+ngluGkj+xtbrJXp9rOVt3buWHUdA5qF3mSslqExVjdjfnvrz+CTIouaz+ScEVOCWwjzPIEhDUyyljSFLoB5QNf36Puh4VnRK/F6T1jww+50qada7FrtAZT9anNSKxKUl0sN0sLjpPe0YJ7t+3wxrylGcJ61/G6R99IMn6RSAZwAUvvCi40TQgeGh5X2M2fhDIoL4EI5I7I/SQI0MUFa20lAhVmMSEcOSFLKNJ3POL++Yp4nvLw84fnpUYKKp1cALM1Z+gHzPII8MAwDhs0AHzw221Ey4fte8BMTOFlZjASqpAttQlpmRCKE0AuGYigFRcI8TYKdxjOmLsJBHCXWXVmmleq5L0vb6LtWxgArabKWf+1m/LziX5+Bt0eovVdG1syNJpD1Zn/Z2dK99Qugw2Rb+X05QxeyzfBe8+xVHJnMs1vY2W5kuZV1r3R6rdpJSbJgfSCtKFrr8TeC581TMNopfPMJqhimKmLBaAX/kclA/cNUZWKDvVoMZfezkrw65jUWafHn5/SGfa5wTpGDEa6sMc2FnW7rkhkpRcQof5I6buz6K+za7q/PYbkyh+Y3qP6DgqFsbZvrtdO+3m5UPkRcm7QA1e4DUW1q8sYwfvuyIGd5oF/zavEryZqVvQsJagR1SOYckVM945moaODPaJk3r1/tbNoMGwBA19UoldeBdl3dtMGHspDmoeaUNKJhGSn6nhpMJriXaO22bR5IhXxAUtDNLGSgwufiEIJGNlTAWwaPu+BzqnXdBCk9sqi8ryYVo0QTHXkBgs7DuyCk514ycizCKtkJGSAHdsD7Dwcctl9hmmb8/OMDzucJzA45Bp2nAO+9Cvd5LQGYi1EPqimHRqT46dN3eHz8DqfzhI+fnhBjwvurd7g9XCN4B3RVqUbNIjOGjQrKdV5bKwpV2F0aKgUg2iFrAT1VNcHmmPnMhluBIf17RjWULXpqc9GIPbSKyIBq8UZbp4nyn8F1EZTeO8lBRsbp9AKQwxIjHh8e0PUDrm/fYbsdEL76Crd3HzBPE37+4XucT0dwWoA0AwQEJx2hUpa23uRY07TluZ2XrAnb15IG2jqSNFKnWS3iwGFJn3UO3otCcSpwrbaXUIFS5oQYIzabDb766mvM04iQJhxZiASRIlJOeH0c8QqtHe46EDl0/QAfOsTImJaInMXBBABLinh5fcLCGT4M8GFA1u4fBCgHwYx5njHPCSlmAAG7jZSwHZ+e8Zwe8fGnH/GXf/4njOMZz/efMGqqKpIQ4oagxHahw7DZw/mAzbBFNwzY73f45jdfY7vd4tvf/hZff/Mths0W799/KQSaWsOcUsbx9Iz5mDC6APgAIgc/DCDn8dPPP+Cn7/8VL0+f8Pp4j/F4xPPzMx4fHxCXBbvtFYZ+u85Ga17k3GpPWgp/NlH6C7K0GAhoneB1/TMYpXVGexFV1Jb5IhH4qONQukO2+1I1EBuwYtcouKlce334CFxLZPX91uaz1O+spXzleRkAR5SQub6fc0ZcRPGsMxoI5CUFfJkZXWTs9oQuSKbnZuvkdwtW5WsAmjVpVbTJpc/N/OdAYi2Fs5lhELIjcIZmjAY5rypz2AAUIHpJdUYsz6xzRA5dcI0RZNlBwv3Srrk9l3OkHAOsYMy4cdAYP8qTptkfcYkYTyOmccbDwxNSznh9fsYSxxK9ZY08su6prH+XMgaT3drx7XNZZERg5bbwziMEkaBZOYUKL2KZTzTrT2o01j3iQFI6Q4SND0hwGDPhiAWRCZSzlIp4dXwr9+IvujfazWlvMVacBc55lHImzrUEyHi+GOhdgAskmaZk+1ocpImlgYOU7P8Cevs/+dX3G9EpndIMEErGAMGB2AisCZyjNstIhSg5pcbRy5XawIxqoM1scmVdfWMQWYZTCQ46h6B7z5EDLEKNDDgHK2OqxocQzHvTbfqZ4lwxYKwp+lKmqR1KnSule+3yOpJSHmSHL7+6wWH7FcZxxg8/POB0mhD8gBC2itc0izRFLEvNdjTbsJSPkYThck5IPIEjY/z5EbjPmMYFTw9H5MT48t0X2N0Ma/OXs5D4CzotMhfMTZZ1sSrlO+W+jdF5aVg0bxFRoxbo7ecuDCe9dPlUex17/nzRotvWQ/5Sv2cBL6CJSqtMY7sPAQ4ene6dl+dnEBGmccLj4wO6rsf1zS22uxtsdlu8u7vDPM34+PPPOJ/PdnPBMbrXktoDxGJHkIPKW5Wduc6JtaHX5lxFR8qwNZNF6n+17NSXLFMY6bLtVe+1ZThht9viw4cPWOYR52fCMh0lO2WZpLRyPgGKH6V8xCF0A7zvsURCyh4gD+SM/z9xf/4kSZKciWKfmvkVR2ZWZdbV1xwYALvAvr2ekBQK//4nJGWFFHlC4ZKLxTWY6enu6jryisvdzUz5g6qamUdmDxqPi3kxU52ZER7udqipfnpTnMDTiPnxEZgjUjeg6QckbuCaFuQcQkyYp4CZA+7vHnE6ely+SOj7ASExPt3f4nQ84dOPP+IP//hbTOOIw/4B03RSZViiuZqmlTPUNOgH6Uw6rFbohgHb7RZffPkVVusNvv7qF/jyi6/QDQNe37xC23WYQ8IcJDLy8e4DQkzoVwOG9QopMu4fjzidZvzwh9/j7vMHnA4PiFPC0DFevLzHfr9THiDGNiyMSSVC36KUssGQWZtxLJl50uKFIi9N1sg/yzZhRo5EEjxshFDoPutISTJk2Dl4vT6FII5lMEiKHWUaMtrMZ4locWbyOSWq5lnpO9VFRKSdrDVKmiHp6BVOWzrUjZ6Rdd2CSVXfdUAIjMM+oWkJ3eDRdqJnty1pdHmBJ2YIycYTMxrYWTYeVa3dOU+x2RGfJ2DlG8qp9FRhimIEsfnGVNY5xvoOikmamteh6GpUl0mwexpWUh1LcUdKKdfFNSznvEOj/HK322GcJqSYhP5Swum4h3dayIHNKEOlbnTm6YbK6zUqeqVdJ6V9WLu2ebSayZRUh7c1qtff5pTXq1p6R0Cn42sdIXgxGsckaxoiw3vRR7yTIuG1Q2PR6MSYeKa7Qr3ZQKbpm9B5QdOSzdDkLNLOE65a0X93B+Co9woEqT3FUp/z50Con21sajRvr6SbqRAh88ae5d4q8ZsF1xhHCZUth7hEHBQLur0M0DMXGxpRqQUgtaIsSkOEk+OkSvXyoBeGYoaUJntjUqyjC0wYq7DPkVuVMSYTo11D2G4GvNhe4XA44P7uDsdTzADIako1jZfNCoSFYZXNIFHyk2UZJRLquHtACAccDhM+fdojRmDle1yuLpDIomJKPQtdvfIAqvYG9dvPMNra6LT8T3mXahFRDpHQ+Nm1tnN6lkkV5fO9LsoxsjnqiSHMAKVfKlG0+JamlMAhpoRpGpESYxpnPNw/YLO9wMXVJbquwWq9hW9XOB4OeLx/wHgawRzNqSVARtszuSTpTiZY6+gsUehZ0mG0MLh52MT7VqLOogrjlKJuC0lUj06elVmYAmUCtW1bXF5eYR57HG/XCMedrLdGmMyTFA62fSDn0A8rNF0HJo+IHoDPTCimiNN4BDuHfiCQa6v0Tjm3MUhXshASYmAQPLqmBwDsjo84HvZ4/90f8N//2/8bp8MBh8cHTKcTvJPuamaxN8XXkRTYtL3ebDf4+M2X2Gw3QArYblZw9ALbdYftxRYxJIQQMY4Tdg9HTIdROnpBjIl+WIN8i8eHezzef8bu4VZqJIwjjqcTDocDvHNYDRtVdp/hC7ZgkDVzcmilEVESej43eNR0yWYEqkR0/YwzKs/7U7/PWt9Ly3ZncMV2g8rQZPtXG5zOtJuMD2qfHAPZMy5vljnUPNbSKOWuRajb91iLXErRa/MyU1ZcYgLmSa5NUTxhzjm0nYOL0j7X0kWerpeNqTbwEYqX7KniVd8ps046+5QsAhaq8CzvDwCSJa/Pj+nsvpSL+uc6bQagyCKWjKdVddxMGYeGLJtuZzSmHvlGNyyFiDkx5hhwmiZN29WIS4YYU6qahSVNT2UFW62cooieLbSexQI6nBpac/oVAViApUppzUtaCJgY2p1F6iR1cAguIbF03vMKQpN117LCzGejI+BJ7ab6GpuNy9+3KoAGkqhsOwENOTROumSd5gZTkAjOEKyBA8MlfnK2/7Ve3mofVI4vr535HDx87kIZcjSBFWlPlVJeA23by/P6RZa+kBtR5PcJ5mST2iJW47JOGyv0WW6q9EQFDzELSuZUZPUicoqxwGqFx+gNoXKbSHARE64uV7hYX+HxcY/3P37ENJ8AeDQNsvFA0lSWhia7Z21ckTOSEKKk0Z2OD5jiAdOYsHsMYHZ4sblEcaKdKYbGSM5Jv3DC8qyFPKFnwXfJmjOsYkbApeKxxF+KMc+J1PS/5VvFBFbjqycCSJ2wTp1b9uXFrEjq+jmPGCPGkxi7p3nCbr/DZnuBF9fXGFYrDKsVwMDxcMT9/YMam8p9LTXc6E9SzbROEjGgaeTJeM9inXRMRlLMWn4jgtmjCQ7QQvkEZP6C/OzShZCI0PcdLrZbzFMDHndAHOX+MYCRMM+S7kQQiElEaIc1mrYHU4/EVxr1xECM4DAjnI6gBBAcqGmFj6uMiSlpfdqAwzEhBId+GMBRsNXD3R0e7u/x3e9/h7/5b/8V43hCilKXz3lC1xqvK//ILctQbC8u8Itf/grb7QUaEK6vrtA2DpfbFdabLY7HEYfjCeM44e7wiNNpxHhaYRxHhJBwd7fD8TTh7vYzDvtHjIcdHDNCBxwOR4zjiLZt0XWrvI9sloQzWVK/pIxEALKRUHmEGZyVVxgvN13JItBy+hSZMl3wSq232LUERkzqxNMSLVDZi4Xhp+CMxfk5u6fRVE2ONXsw3Giy3jmnhiYuBFs9q8hS5PEIfmLVEQAiSY1KAdr9D2qQIXjJNAYAhFDGwfmm1RvOfjH+mGdxpvPVTGSBePJ75s63SZDPkzjDvIIXcwZGeWJZ36rmEFgp2lm0DJQGBO8t+CiL7sGVTLLoeokMIpCCkNPphNM4IswB0ziB2c6y1qas5kp56czxqILD1ihPQ3m2XiI2EHmuVxkqGIoBsvqBhqF+IsKsIkNL6XcENFbWB1LiwbBTUnxOhtlsqLaQ9W4+Ie/lBeW82neN/qBYWWW9F2ySmDHNAdMcq7HIGQ8cC338kde/yNgEFC9CBqpazb5SRdRwErMnI8S0OFR5gY1pWPir93C68eWyOu1BiseWHO0qZW9hjLANLnnvRtz2XBG4qkTpMxe62uL3YlgSD4xZV4vFXC6MIJoQ44jd7gF3dw8gGuCw1ppSHkScvY+mGGTLqT7PQGBM2pKcI1KckdKIxEEjEAzzC1FwJZCWBdRM8zIvUaZQ260F66VMeJVltyaEfBCrP+0jA8D1t6qxGFNMRLlrYKaaDA5RKt/rZ+KJs7xjV/Yhf6cIkfo7kVlzZ11ZBwbmacLtx0847PYY1lus1heIMeLy8hLD0GM87nHa38sez7NE3CWGdZTzhKxE2j0JOm7nBWwA6plOYughhqWIMVsXCDNULA1vdraappFW1Sw3Jy8GS4mWEKXJOUldAbQOFPusgIAERIUpIZFEHJAHXr24xMvXv4BrB3RraY9LtifMQJJaQdv1Gl+8e4fTcY/724jx1KH1A+ZZ6i18/vQZD/d3eLi/RQoziCO6toFHryksMkeXjaEOhFZoVGt9xDjj/u4Wp9MB//B3f4fj4YiLqyvc3T1ge3mJi4srXF5eAXDYbNdYbzbZsz+HiM+3jzgcRzx+/oTT4RHjaS/nCw7TnLDbH0HkcXGRlF9wOTe1ALXitrq25Kx4dh1hhOUePRM1AhWQZCG/+RyxnFE25aJ4X02JS9pOVISO8SbOh4P0X61Q5AhE+1+lOViEz/KEVwDK7ql7BOfAvgE7zs6BRgv2Eqyjl05AawtI5BkrOKhSgPTnHCLcKGfBe+MUqQJXWIwNNnIu95CXq+Z2BpRqHsOAtfgthjnlDQukaKug9zNeAo02O9PAlnyuKD65bpCCOPtefhRDebNX3rV0asBJNInZ0XLhRq1J4HQsORAsZV8iaoCwwDCVTHoCoG2MVA+QUXfFEtqwNMhST6k2aqm1rcxHhC5cAnwSb1fmJzp2JqGDmCKSA1hQK+zM5KHkLToDMLXMyo4szl+UDolF+khxaKlR5AC0XkpcRtJOMQwE9bL/KV7GD33j4JsSEUDO5LMZe2U+MUUExVCCGSwCxHiYyLW63pnUQVlGGtXK2fKfW/ysF0Jq+RiWU68nJ5AWbrVFTqkojwAqhYx1W5VAdf/tzFgHKSnsyyAnWxfTjBiOmKYDHh8fcXf3iPUaADqphcPSjEbqnyhftOLjWdZY6q5DCIwQZ00VD6W4PlOmeSZRbgrmtF8yp8xrmWVB/rzwETYMVwH6QsO8vJ4o/5WquyRK1bV5mcszdG1TMh5VjFbGk+rxKmoq6fskNct8UgxisIiX/LHwKFOgCk7nlDCNJ3z6+AH73Q5dP2DoB8QUcfXiCsNqwHQ6SpR4SrmAc4k6Y6l3B3GrFP9XUnqSWVmEDFk03qJeiYw1pQQEoTM2YwcbLUgkjkTuqWHVt+j6lbIMhzBrncRGVtoaGxEpzgOQ5oAxMFzj4FcNfDvg9atr3Lz9AqAGiTpV0DStnMXw4QBcbLd498UXiGGCoxGECO8aTKN0T767vcPtZ+lI5xqPljsgeXCK8J4gZbSo0GsRmjkaOEwRd59ucdof8ff9f8d4OGJ7eYlPnz9je3GB1eYC680FGMDly0tsGfC+QdO0OB5O+MPdHT5/vMPu863UFoWczSkwxmnC8XjUFMIeXddo3TEZg0WUAZWcMfltzgWVcSnLDMrnIzvw2XAT5X0mFjp3VKVpVcYdwWhpccbMgWtj0INgo1o8v4zB5WUt+MXlc7bQb555EalRM8si5IgZSfG0KJIa01TYIuupxWHCyk0SE+aZ4SaRV76RiJoYtasdKuNqZsJPRpjva3Ouo2LAxalZeEiFMrggyDL8Cj9l7FTjqYKrbM3L91V3S2Jckf2p8KuCnixmDEPZOHVMjqSPHWk3wKz3ZkymgSxs0TvyLNM6BaEj809bQxmN1oRiWtAF5+t5CUUNoy/WvaxHMVIV/LhEbdCoWYBSUvxk/TuVH5LQQ4gJzjGMNYjzfmmwqx0NJhsLMlruq5WtFNbFun2SsSWZXnKtB9B5j5gIUyxBOYHxs0oR/GxjU6tFG513cI1bRDZZWJspRww5CFaMcg4W9gazJOSOJ1mIEeBBudo8a8evZIePaFFo0gCShVUX6GyhkpQLWCpOypVDxTFBwgBz2p4pf8hML//uCOQltz+liISEEENut5m3kAKIjgjhER8+vsd3333C0L3A0N9Iga/WgShhDpL2JOvgQa4BOQkvJohV0xEhTQnTHBDTjJSOSOmAFCNimiRyCxUntpgIlk5LAGC1WUwhKnorPwEZC1Ix4qwY1OLjmlmRspmUpDVnfeEZ8LGnWI2QDEQBWDeExNbBrbySAm9ApkrJlXRMV+5dKypWzExe1kJVmN94POH3v/1HMDNeXt/g+uY1+mGFt1+8w7De4P72Mz7++IN0gfrwAYfTXhiOWscbJ1EcJogY0gKzAD75FzQqSMZlnhtNczCasbU5O6u+8ej6Pht5U4jo2g6r9UZSIZgwzhNab2kpEKOAL2HJDMYUTpjHEYk6BAf4Fvjqyy/wH/7z/wHTHHH7eS/5+nAYIwNOaiOBgJvrl/jrf/tvcDjs8e0/tXh8vEPfr3A6RpyOB/zut7/D+x/+gPH4gDgdQByxGTr41aC0UQNmBljoFExSXypKx7sfvvsDmBN+99vfwrlGPHW/+Q0uLi/x13/9P+Hf/fv/gO3FJX7x6z/H9vJS3D4p4OH+Ed/+7d/jD7/7AR9+9494uPsRp+MezAFAg+MY8OHzA05TwvX1nL1yWcyoFLEIlKwXKZLXDMkcvVPTstXWAZAjFCW6TQWRAxI707OU7gF2cl6URcm5l7sgasdC6DKJJUfTjSsCMWFXAJLQoxk8zLgudXOK0KlPZwU1JB3aOeGx2o1O6FQUmbmNiM5hjkmKiWcjBGmkSJQz3ZT8evGaA8ejFHz3Hug6QgzAHgkpRKnjdBaheC6AM1AynpFTvCreZcKbC8sptRCKEv/kZQyeKRt0EqBKZ0kLzlRcPcuUsBQDJGWp0WiPhAhT3Eh5rNeUa1EmXSz7IlGenNO8UgrZ2OBJISdJKqB0EEuLoYMB6yBY1ySxdchRBdV6ZeZDamBOCcQOVlA6cVI5WXd1dRnsMRtPMyQuKfMA4BKhTUCTIlyK2rJaLAkMKfoeiBAbgL0RsOx73iHDaKZUZD5S9r2uI2Lz5chFcycp2D/HIHWjAKzbBhNFTFGMuoEZIVUu4n/lV9tJ10bXeHiNWCBNo0sxIXJQRaU0MJnmSX4P6hzLwFiVJF+nS3LuwCT0qSBRUwst1cO+axHhpa6NrSUv+Z2pEhZ5XaFqqfkXM08AFHdknF0JTtVBYoyyN/OMcZrgHcG1wn9jHDGO9zgcHvDjjx/www/3ePEiANxJnUXupXh65snamY0segXVnBxCZIzzCTHOSGkCOIAjSWozq2ZDAuQjW+FbFIZiyml17jmZEkXl8wVvLTwrd+KStoMZ79Ty395htvRpW3e7G8PqOtYY41melgdhkf51ZJzwbqkXRAA8Gq98nDk7sSwwPUV1CqDOPmDEOOOwn/H4+AiAcPPqNV6/fouu6/Huyy/QdR1uP3/Ghx9+wDRNeLi/w+l4En6vaTTeWUonITmpHdT4ogBZarBvLH2Ule8w5mnGPE8gkoK8xh+kg6KUtCASg0rXraQrnWvg4NG1PTabSzSuAbPDOAY0rUPvXY40JBSDE6eEw3HEaZzRbxxeXPVYbS7wmz/7Ff7NX/8VDocR3373CcfThOATAgcwEzwnNOTx5tUr/NVf/zXG8YjHux8xjQcQEQ6HEYf9Dt99+wf88P23SDGgbTtpcgRVVSjBkfLYRJCueforGGGSWjTTccR3//QtwMDv/+G3aFvBUL/689/g4uoKf/Xv/wP++j/+J6w3F3j39S+w3mwl8mcO+PzhMz5/+x3+4b/9Az7+/lukMIJ5xhQC5pSwP+xxd3eHGBNWq0u0bYcUpY4mGNqN1lX0qpGXSdJwKTeEMn5d+LnJJkCgjgRjOpBGTUYAzpWsDTM0kkYIEwSzuBjymkRNmSveeMAqyyyc53kM0glO2FTl0CI984hYwoczA4HeytK4Ukq5QHh0DFEvWbv7atAFWxqhRH1bTVbBcVzOLiRK/DgmBBZ9puuc4uaAFCV93JFpr7U8NF5YIltpGRCn1xm7q7GUmaiLrljzpBrVZx7J+jcj0ynMuWZsjwELmtegMxCxONIda4STGO2SFQOvDDUSN+CqJjycfyZOkFLJ2mxK+VbrDftYX3FkP5shHsN+ZqQxc5PVca2NoqxY0XBGHSiy0HYSqxNjyTsLZlka9wmAU3nmU4CPCT5JGqiMXMzXgYExJCQE4Vk+V222DVv8M1rPOFsFiBmKajgIllRsIonytzWLmtHTAqC2xRQTQkqILD8tEOSfe/1sY1PuQGdeMAOBVEL6dQkzWLEJ5Rzxn5KN50yAl+9ncawI+zyM0q54AlbrR9R/qKAu3hyCFUwFGVgo36P8bDZb2QKQOVVMEqfsQZMOBDM8BbQ+IbjSwax+rgDIpF7ggl9y96NamVpQUlEX7d/5q3yneInqr9cGjvMlK3PG8sKzV/7OTximnsNE5m0tHlHbvdp7Xp5bG8MyQ+Dyt12DxTXls0wmOpiUEuZpQkpJi0mf4Lyst3UzbLteusY1bWlDb4penrIAXUapNUAKRtk6PpH8boYHmTsXWv+JNc3eWeW0SQ2GzjdwvlGBRIt1ghnUshKtaxUTEknXM3gRUF3bSB0bTqAURajCChILk3OOMAwDOEUMw4B5WsE3rdpArI6IMnZVKkR4+wyK8nqZxEkWWaHKB5cilClNSNqBYfPxI8ZxxOfPn3B39xkM1nTIiMaRdr30QIhI44Q0TxLWrkZJ8QJIZE0IUR9/DvGrUNlqK+ysFwPHMjrEvkPGq0yQ4o+dB87vZfpXTm/GchN0BR4sx2QtonlR+Ld4LOr5FV5ZnY0nx9iurYGYRgGS5BBayC4bf7K91udnHoWyBuX56luIAiQaKvztfG7l/NacnBZHpN6Pcy9j5uM442vPsa7M16q/udpIKtdk2gU9ey87z9XNF2M1ocJEyt8tlQR570xBLvcXJr3gx3n/K25p5McqvxYi1uTGctBCu0qLJuvqNVlevfiVVGhUHDrPrxYqhKqOBZWClwRzHKSsTJb5Un1XZNqt19p+PrMR59Fc1QdlTHkshYZ+WrL9j39lJ4uB1DMekVd2AQZ5MbfaiFlehacteRw/uaSO0i4y3njFU6fH4qVANYMI/b1WCvLDqhTdJY9VMG9zTNJpjVVeSUfPWYrih1mbPEiEFxGp8cRVa8KIsXifs8wELaJS+elSLKZlq8/nOLVibGcn6ScWiRa/mWOAzz6tZUXxrJ/x/LNRWrTPc/xv+cUC7goPqJQbW7ufugXbLjGswmamVP0sJVa5LQ6jaZoWGQq+aSR9n8XoI9HT1QOM1RJgkWkMrjqOaWRCgkTaVuegGClKCmyWh2frIPcuDgqLdgqN1LTM5Jy/UiLOSAfILKl7dQkQ6SRnxjqWVDEtZ8CcctSJ9w6r9RreE8Zjr01orM4Q55pVYMr1P70+2/AlgCpzAQsRmR0+s0TtzdMJIMYcZlx8vMI4C4Z6uL8DA9JZ1tJ8WjEU8TwjHkfpLnrGg2JKucCyrI9kl1h05bkexnb2lXk/xVCFV+T3qsOwdCydY6AzjGAykSqRzmcYfXF9oZBzurH3FhE/dn2NoaqzZaLPsGWZk35XawdbYIUZMSTtOA94yd8XjEZ2IyXkOk3kqbZZV4tz9ue5fDAWvBCNz2EolHHk389fhb8vGtFkHmrPsii0eoznzyy0RhUdAMv9r2HGczRCKr/OB2skx1TGxdX7NcgoeKpCI0YI1Q3zOOv9rkZaaO7py84AL+ZaUykjh45QcRBRtXkxJVAktMvW6TbinwC99vk5Vi1yovyszlkBXXr2SWo0VfM7+/MnX/8bjE3IAifEoMyuGFHsp3ivlClxsaDZfyVcNuX8f4AWhJcFvz60CA3ZsJJ+ZoRYFzZVonEejrwCTKf4iDGzeI9DMOuwFBwtDE/m27YtmrbNglIINuUUwRjVE6mbFuIRx/CAx4cdpklS3eaQMGonjxi1Q4+mnqSUcDiMCFEFVZQIgfWwQt+1iHpSpcBiB2DAHAJ8k6p1lI4GKTpIJ4qyxgWgSlQZK2HwGS3lOhnV4bEDXQw7y4Nch8xmQE9VRqxVJK6NR5WwzLeqQFG+Thm60cDSkMSIrISbx1huxdW97Hmxil6zC6UzG2MeJ3z+9AHtQ4fj6Zi7063WawyrAW3fY55n7HcPuP38UbrChSAdB6lYjAnQwuBkoXNgbRcqCUbG7BhRl8YUztytiwzUmfQUg8k0TUgM9KsNhmENAqHrVmiaHs4lMEdkIy8BSBCWxayeBI+YgFOIcGnCDz+8x9/+7X9HnBP2d0fEkJCGS8ThEiDCfv+gQlTORtd3uHn1CtvtBtMktZC6tsHbN19iNaxwf/sRP76XjnAcZsxJ01Qq45woqtrxjyE1FyBGiLbt9FzpGjnC3efP2O0eMU8Tfvfb3+LF9TX+0/ff4/Wbt/jqm2/wq9/8BnAdXnZrhG6L75s1Ll0L71ockTBDiryGmTAHCT+Vgv/aktaK2lbCyujaAH322LEv4EvTWpx6UQFI6i+bIhRBbEY/I+iauFHo2mhd6d14p9XFk2LKjcpozjVUkgp4R0I3BKuLlVda5qLCyCXxBhFRLty7OOO6R1aM1UKHTciloRc+Oc9ZItvRlmGxBb7k+zpvkQpCwz63O05oPKQGi5M9gQGFDERtBk8jks4NfzVfWJzxfD0qZU4VGh17QTAV48+ypUyIgJwO8hxAE0Opq8adNYH8iAxkSIpssikVnAAqocqA1DoCExwLP5HGA2qs8FbNS/65TFOyhrlVsymYiTQFj5RexXtKkD3pGo+hIbQeWZ7aTc8VCXuJN7AYwh2Jd5hBaCA8p2s8Ltc95pSAloBG9uF4nDDSDL8h9F3x4mfQowu3gLBmVEgqi5R/g8U4kdNJNMqh7VqlP4IpCiEmhMSVAcwiBP50r7qbkHnpjZxqJ1RUPCBt36sQ/wyWReZFARKL4rwpK7x4ApQLbkLmX3UUDqDFySsFSORSwVpG71E7I1qXVO+BHO2oRO+9105lHZz3WUblMgTq2GBHCF7k5+lwwuPdA3YPO+loCYcYk9TeSIxhJSlLUotRHEbTNEvHL7J1dthsNuj6ATFGeN9qFI3UcYkesMgM6bgmdMPPGI0Nhxg+faJ86MbkaI2sHBS+IvJOo6bM0AtVkGD47DlKNMNcTahFPgFLHvjcWa0pvGC6gquK0ZOenoWMqyqHQvVqmxYAcBpP+PHH92iaFo+7Hdq+R9d2ePHyGpwYq80W0zRhv9/h7v5zMbQoE87RLUofZIKTgeS1CQ+KHEbXVqlPIqMkLaxZGAzEwCwcJoSIaZzgncf28gWatkM3rOHbHq5hjQ4R2oRV7jP8Kw/AnCJu7++xO834x3/6LeCAeU64vx8xhwRsLoC1wzRPOO4OICaEOGG9XqPvGiCNmNcrjKcTDvsDhn6FL774BdarS+weH/D50ydJ+QwjOGl6KXE+d7YXMe+HRPi4xqFDC3Aj60YSo/vhw3vc3n/G4XTEb3/7d3h5/Qr/+f/0f8Hrd1/gzet3+OKLb9C4Dtf9Cl8MKzy0HTpHYEdIGokbk9RqmecA5zz6rteMjiUdAgWLyJoxvFcDGlAV/i4YSroka1HxLOoVQ5/Ts+khNdavatfJe0l1MkbXNmjbDhZKI3FCVJ6h9J2jD6k6j0b8phOBzPe2xHNGf0xwnMBkPN4wkgMbhtJCz9M8a8ElcyggGxxdjaEcwUH0zhDkurZx6DogOkbTRMRGz2+ut1eW67x+1vmrGOd0UVV5Oj/jpNeypeqxrd5TnCUrlRTLSYOKfBPdn5SEdihHRZemFt4zPPtnZbIiw7zmuWag4fVkU2CI47zSBcumLuYO645JatSG1dmF6sqqNyb7hHJ9KXOgeC9ZKE1DWhdKpYWV5TjDUMUhZvOp5Iby5sYxugZgR7h0hACp00Tazfk4jnDk0FCPVafNqlLhDxYQUxtOU9Q1qcoYtW0r5zFYaR4GIHpC07bwjdRq8kntCiGBI2fM9vPimcrrZxubsndKR1+ibooH1RiJFe6yGgOWMlCTqAlYaxmYDR/Vvc4GoELaZWG+sHxSJbQY6u0tAtbgayluyxomnPSeeh+7n3ZoarSThaWFZK+jKh/5O8yI44RwOuJ4PEmtpUSIIWGmAOecFvoyQhbAZIX7UoyIs6b6JAbzSm7cOO3c0wDopFCcmyR9jKDRVBYhVZQEMxAt98cY0jMou+IL9SEAzgCNLfAz4KhEQhmgNmLPZSgBWn6vKFn6d94AysKkhjlSeJEyKDkHWPUciawjoX2/3MeEXAgzxlFCvPeHHXzj8frdF7h8+QLeNxg2WzAD7qPH/cOdhBRyKbDpXTlCKa+BKouxSkvKc3OZ+eXoBkLx/tfzIbkwxKAyjiXiihm+6eB8C4cAIMA6pzkUhayshYSrzyECacbt51t894c/gAMjHoIUQ78EiMToM80TEicMfY/VakDTNLi8vERcr/D4+IBxHNF4jxcvrjEMKwCE2/s7gE6Y0wEpjjpnOx8aAZY03aamHSJ4NfxZBRcGsNs9ggHcfb7FP/zd3+Hl9TV82+KLL7+E61p89Zs/BzmPre8Q2wGXTYe1axDJYxSYJgWKo3mFqPAQR6Uge023Z3/XHlEAleFcDavGV3Q/KVH2zBaPHWdZvqBTGN2LUSlx3SVPaESKD0pIP7QmTu2RLnRTndt6HpUwLYbj6vtmjCJC0kg8aCiyGVsIhK4FkpcOXtZthM2Am3lLxYtRhHFSgJa0cKcYokjqNxFBfDjna1/2JoOhP/Iq/KNWrGQknEf09Poag9QeqtLJrXwvgbJnm8oD8r0kRSVV96jmVM/PCnyznFUYyLHzChI6AmCpfDk1swIkGUxVoFEMTlCHho6Lk2SMOpc7XoqCJ6ksrffoGkLjkJUb1LzIzgKj0LU8MH/uyOX6ZRFSrrdtHNZoEcCITgByioxxFGVg1fc58hEQnv7Mzi72LEXrTiS1VfL89POoaUINazMTEiXBAJjT9As5MwrUjV/+CV5LDKWwOJXxA6qUxCJjqm9jgaDs3OkalVbsReafKwQgS7lUDJXlpwHjgpdKF1+rj6mGCnUshhD0OXF5/qnwT6s72DRNZVCosKJhKJYuVHDAOE447Pc4Hk9a4kBSDOd5FtrWGdsYQgjY7Q6YpinzCnEcOkgl2wTnGkjNtwZMDRyJQsREsPpRRGQZdYtXVlh07TPnyJ59/ROFh2TMWd3rvCOXqS9ZDjzhc9X9OZvI80Y+b2jXtTeN9eyOtTG80E6NOapnLIZbFJjqbrl26zzNOB5HOOewPx7RtC3evH6Lm+tXcM6hG9ZSm8t73D/eaZdqZJyYa844zh4P6W7JGtlkxcWtMYPVCSo1T41OdbUXspVAatiMaIYOw3oLkEPT9SAvJSxA8ey7su6agAVyXoye+z1oDHj//kdVeB1CkJ/et/DdgBSTNDIJCcPQYbUakKIH4gXmroUDYTqN4LbH9cs3WPUX+Og/4OHhAGaHhCCFtQGNsii0UUqW6HAdJHqmbfUaTcfmhPuHOyRmfL79iH/4+7/Bzes3WG0v8Pj4AIcGb9/9Ao4aXDQdrrse26ZBSw6BJBKXSWrhSGSh8tamkfV0pVMcsx63jJtKPUtSnG17VJckWO6Z8YWSJlXLmifkd6YnZoOOdTnvWi1BkbSYfNF5mEsUTaH88wiVwm158TlXZ6PgHGLKdWjlfEIcMEKwaBPgk6V7KY1pelLh2fI0VjltSyNNVsRB5xsCOYZvKqP2ma62dMjVs0Feq+Wa1/r2M8Kw0p/z2mfeUckk2K8ydjrL2xM9dZnSKO+nCm+d86On489F6ivsJWnUFqBAudHLuaEpLwDzYh1E1ZI9Zn1eyrLZ4LfLOpvd23nSruKEnE6XZcDzBr9zuwUg2VH2XelODMAR1o1HBCNAsBUnxhhmEAObvtW5KE5MZ1MloVtGFSWtBghHpclHqtISNfs12z8cS+kHcdgBTkNrlmfluUV++vrZxqaspLjytwms3PLdQA4DYAfzVls7alQHWtLqROhEDaUGikXW+rKYMMngFrLp/qzWxxNlSxc6G05YNyOlqmOAXONq4wsVr5N1witpAFS6gOeF0YPHhYGS1qIy1h8ZCIkxzwHTNOM0jjjsDwgx4ngYxdqtobVOD9s4jmJ51ZoMbXNE4ydMY8yHwurGEGlR8OpwGKBADaaN+Iw/ZGYu/6kttsbg630275flJNcUl31jVELiq3L5+pgzcKOMOCtWXH7PSIRrQxX0/jVQryPryn1sQ50Uysnba8NeCEZnURgBiRN2D4/48F48dX0vqWPeeby8eYUwz9g/PmI6nZBSRND2qnC0YCKsz2ZnqW7ybEunMTqzMZRirQXU25GLIeZIOEfCBIZ+hfV6C0qThqslCDtKqszKHnCICFGKiY/jhEQRd/cP6H78iMY16P0A5zyG1qPvGzABTW+h4wmHwx4pRoynA2KYcTqdsjLUNA36vsf1yxsQWAx3hx3CNCHEGdN4ROKEMM9IIcp72tWGY9DopqTF1xcyPK8HlCbmacaH779DmEZcXV/j3dffwM8SBdD3A1Ztj43vEH2LXRrFKOkc2q5H1/XiWVfBTI40GkmfuVAC66NtqUxPhQPVNM1ZPMHynPOh43IO8z/G4j3O7+ldNFqRtMitRZKcKxi1cdeKxZ6/shio6L02tthHztUGa+OPMjZHEFDrNHedAatBZnn2+R+E7xvHtzMH5afkGF3nQSCEAExzymAVZ2e3rNkff8k6PAeWNIJLZQBXjJAyT1uOMSvf1XqZRPDMcOyyE6UeX332SwSLnmWjs2qPGSitukGV/HQaJcbZdWQ8ii3q6QyDmYFIGYyIaA2lJJ0cp4TkNGWpKgZeUPcy2s3OSUZf2WhaA3wqQNTAGrS6AEm9BAdgJvF0s0ZwpQTMMeI0BzTk0PtGjdHINCjksDx3WbGRrarksIJ0nZYEhhmNK3Ana+5gtSKBQPiXu+f+/3hl0s7ytXbYLfGTzFP2nEC53obdgwhVnUzkwp6OHOAbfU9X5xlwa13ijA6ykmJDrPmEfseMMtkJlBV6II9O94RgdEs54iGvAxf+YisjQFdoUDrluXytGeJjlOgUIul8tn/YIcaE0zghhAjjpUQRD7sdxjmAiKXuDRIcnUA0IcxCpUTGv0jpqRiTi8MOFcEpDZI6vJTnEqqoKKrmqCloJYqnrJM5CYyQM0e2lGa2PVlCqUIARZGg6rlLeqt5od4bVdkLZkhEcRXNVn2vNkTm2tvy5Uwr9T8AiGEGp4Td4wM+/Phe9rKRAt1t43H98hohBBz2e0zTmJ2/hWZs7JCIEadclgGrQ5NAz57bGtMJXca8DjFEBDcDwwpt14E5YrVeY7PZwlGApxmEpI14zAggWC1xwBwTIgKmcARcwMPDA/p+QNN06IcriW7wMkf2Dk7xWooRD4/3SDFgOu4Rw4RxmhCidHVq+w7kHG4AuKYRDHV8RJhPSDFgno9SkH0aEUJAjAHjOMqZCFWXbzNAkc2Y4FwDU4ARGfNxxPs/fIs4zVgPW7x++zXi7gTHwGZYYd106OEQ2SGhkfqCvkXbDmi7Ht43ikkk6tvO6xO6q86yOcnqYAAzOtm1YOX7XKK7a0N6oWIy8A4Auc5Y7ahLXO4jz1D+aXqDYc2M2fTsg1U3WAiWTJf/7DsVhsrQr5zqjAmcc7kAuh2aZbOrEiFd8JPorgRxsjgw2sYjtVKeI8bCFvIeWKRLNYbCm547K8VAa3ziyZSrR5hTdYGNUbYnbxPV8qdEJBXHao2hCqYwnbuICK1dlCPqgBIBp+tY0w1b2S69d4UbVMBVsriGGhWOo2W0Z6HrVOwC1cKYwXWBo1DmbzL2HEOdGwaNljyADmI/MJpNQMafc4yY5gBPhJa9YqhS2zF3lIOW+qGM7jOfqEDp05dBRB2fRV81zqHRrAQ5Tv88Rgf+BcamIhA01BqlSKcpwmwdEyzfmgqILQNahmknBtIcAWiXFu/BnuFz2HGesSiMzDniCChEWxO0ywRUrIvWBSymhDgnVaKkDSsBWjOpEIojB9808s/7Yk2FGcoMkJjlXLog+Fa+A00riAy1NkXsjyMiJ9zf3+PDxw+I2uUsJbErad8f3N3fI3uRlagvt4T1SqzDzFIUuvENGi+F22MsbbsL7Qjjq1MOa8Xazlp9KCzawYxXtYfVDhbruMqKIzP0/LkdDnpqbl1YhmG0pOPNAE4Pe+URte/IkkrEj6QQaptT5B4CGegCtYK8PNDlOoksGccJMUUc9kd8//17dG2Pt198gYuLS6y3W/zmL/4KMSV8/4c/4O72FofDDvvbD0gxous7ad+soyUyL4RE7cRQgXNeGkrPi7U6cmpNhtYwmsCQguNSI6DF5dVLzKcRcd4jnBxSCghpRrLivUmLrZ8ipingOAU87EbMCZjDt/jwaY/N9gJfffNLrDdbbFYtLl+stGiznNcf33/Ejz9+QJhnnI5ibEoxIQbxTgz9gKHv8ebNW/yHi/8MANjtdhhPJxwPB9zdfsY8z3i4u8XxsMfpeMDd3SeEecI0HhCmExJbTaXCIZxzkgqjlf05JZwOB/x//l//K7x32O13iCBsuw2+4WtcXlzh5foSb7oNujnibj5K+GfbYL3dYr29gGs7LTBYaiOUCIDChGsli5MpL64orbnIuJ0vBmtRyux1XNCqdqhZUHFtCJYxpKx8SmoQhQR4J8WEnZPQeft2/m4R1d6eV81pkXasgjNR8R4RTEGlPH+OhafbuJ2Xc9pGQmRNR1aju3XCEkFkEQwFRLDW5xHalrDw7VaiN3e7gNNplBDyxucwcgNKpe5LLbBRrWe11HqeU6k0WhSiqmMqG1/KbiDjYpz5Pkg8u4QCBB2X1FvppKjyRNerllPWtKIoa8gh+KygmqHgCEBwUYzS5vVLauw1+vByg2xAttWlGjQbENMzpMqZpSyBCAiA1FXzVbQKAxqR5bylAflcMxD5OYWCTR54jVghu4gARwxPEvVJTYMEwlGJhVNE5IDAjOMU4PZH9E2DbuXhvEfgWLxsVM5baZsuDTZQgcACVY1QACapUSf76fM+eiQwOQyNR2SHOSVJ8/sTvepIpRJxVWGoHC1YkguNdi2832hWvmvF5JH32PkGja5XrjGTS98DFrVnGIq5GpdFg8uFCyBs45exRokyg6b86rnOXSmpAszWzdIVJSrZuUExpsj4xUHQ9R3adpbpxogUrNlMwn63w3jyeLh/xKcPn+SZrgGRpumpd/t2txO+6AidlyK66yGh7xiMBqCVRqxbOrQYJJhT5mm6YPrDFFbdBgbqqDhTZm1vCMhNcQTfyIXOucU95U1aFJw1Pl67qk2ByoqZKoWubNjyLFTKenlWrdiwphBGOKbM04wM9FsaFWY0p/dNlQKrw/ck/Gs8HMHMOO52eP/dd2i7Du++eIft5QXWqwGvXv8GMUR8/4fvcXd7j3EccTo9ghOj7YqR0RRDoS/h+abIS2HoJdato8lMzojOIjJonkaklLC9vMT6YoNu6HB98wppGpHSCWmWxiLzNGr3QkKMhJgYcxpxmgKmmLAbZyR2CDHh7n6H7cUL/OJXl9gMPbq+x2bVAURI6x7MCe9/+BHff/89UgxAmAFOmMdJoulB2Fxs4X2LL77+BuvVBZgZh909xtMRx8MO9/efMc8T7m5vsdvvMJ6OuL+/xRxmTMcRc5xE/whxsefOOzS9pBOneUYKMw73j/iv/4//gq7vsH88oBkuMSSHnhlvr17gZtjiijv4FBAbRvCMtttgtX2B9eYSbdcL/XoAbTEQZxqvOoTKea5oRFN96+gmwcXKU6pozroA9EKRJQKRh3OyL5KZEnOGSopJeaiUSJlJjJVtI3zPZHUxduu51RIrwkKLnvoveTkikCd9dmVM0HE3XtMTo6Z/VQYH70tZGMMbbEYANhwKEDy6tgWYsR4SGnIYJ8ZhViObFXfOhhzjE6aL24hqY4fVkgWAaGjlybrbd6m6p+13uQ7ZKF1/jZylZ0tEO7N007Mop5Qsks0BmrZtUZP2YkaObM6Yhznrw+QEcyRmwTlJ+CNiUiOLTpILdrC3QIBLxRijsFhy5FDsG4UmivFU6jCWtXZe8bXzC14r81s6jO0965hnnzlHaJy4mjwYiQnHyKAITMwIajc4jBNaL9Hp206CBurzAzQ5+s2r1T46K55OmQ7rDRQxYTjKxigYr3EAvJyRAU0uEF7rJn/s9bONTfm1UHqAwlxqra0YEzLHWdCubEhWwaoJW+oHmeax/GolVAzIn4XDLX6pPqiYTH5ebX3Mx0yHTOVZ9XWZASyWRN8glJQC/V5hoCR5zx4Ypwmn06g1QPTpRNrCHtI5JUa9h4S8d40TgQ4PUJfXMFfJT8+Mqfq9VnxsgQzoZQhFixucHeyyE3k7mc9vKfe15aiMSjY4qi9FvfbPqg/PvkxpTNXYbHzntJJ/Fo5aPacakCmhCsBCGBHagPF0Qt/1WK3XaJoWHpLK1vYDmnkSpmIc64mAEmFnQsyW6ynToeq3skIG7nI7YL2BcxLO3HU9Ak9g70HE2kGA8/mjJB4uWSvIvCJL1Bwd4XyLcZ7gw4xxHjFNJ3jv4LXNfAyzeNRm+RnnWcck4/NeBEPXdbi4uFTG2WDsRzRNhxhZCrGHJLXTXINxHDE34p12Cgg5kSovKUckiUJM2uFQwMh+PAAccXf7GZ8+fUAYRnyxvYRrHRrn0bsGnfOlEK9zsmdNkxWFmi6K4vBUANQCTVEJzukyf8ZieCiemuVePrfTdrezr+T7psQlKi6/X50SLokVdo6zYsK18T1PajG/5Qo8ff5iHjp3cqQ8CEgOWn5kwTnPblSOnJ1RUgUCDvC+RCPIGtJiDvkmxqvqSdZzIX5ypkxmlqGZsd3eovNlz8CQq98zjzpTEM1ATlSlUj9ZguKdO9+rmlss5YxFBJfxL5X+yueY33rGE6mvHHHByh1zW1abxbmHspYDNeg0OX62/ovPbLwySuvy45MWDFdexCyK+BwjPLlFsXCuHlcDMFBxBJ09vBqfEJiQkaVZA+b8Mlo1j18Ew/3Euv2rvmqMt8BQAmifG1Gm14p+6+2oZYt42CnTJpT/A09l4vJZhQ4KvZ5d8RMY6im7KbKfFnOqmdjZfRXLiYGxfMPKMoSI3EximiRCJCVG4wXkm7EpgRFSREgRjXNITsokOJKFd166stap64WXV3ym5pmLn3l19DwbLlrMsuDjaqIMPs/AWz7jOZrmgpHqO1VxaPVCni/t2YsLzdmIshhbfrfmOTbXMtCK8FDglaVZRlV6Oi1T0E89+q5D17aIrhEM1XaIMWbn2hIH6QzJHJIao6OMk6tnPyt78ifyWeIEUuOTbzzACW3bou17pJAQeURKQPQBTpuxSO288rsUy06IyUkpgeaEpj1hmia03YR2PGEaO1GavRgwQ5gwjSfB8zEAnBDCLPNWQ6dvPPq+x/biQvimI/Rdj7ZpMq3Pc0SC4qtpgp/n3EFUOmTr2rNEi0vkoiibTFH07jli9/gAt3e4u/2M+9tbzNSiSwlt06D1Hi0cGkhKEjmAnIf3jUQ1ZedVzUcqWb2Q3YJDLeLS6Okca9WGl4W+geW5OY/Ese0vOqidDr1PNhCUk1INsYwVhpeEWurzVTHbpwcqG2D4J64pZ8n4smEokz+1ESLf41k8ZrK7PEOMdxa1yU+Zic3PIpJ1HZ7IbwK4CrKwUf8UnrAxCv6kxTO54gXP/azn6jT8mrV26rnR6tzRoUwQFl26vF/BgFnOE1UZJPbZuSxDhvXmXLR1lB+csUOhLftOLcBt/OVMnMvDerxP9A3o3hgvNpySvyM1pYzyTfeNUTAUgSpntZ4hKvcrgSZY7lktxxejsZkt6UB0NjNeEcAS3JES8BPTXbz+5cYmGUUlTEuxa/nd+DPlwmXPrXxaTNSESBH82WNcfd/ln1YsvOQM28BM7OtTkGsJFItECWn0lD1u3lIfHENaUSNTDaPUwTDLYUqxWPKVDLzr0PoVmmaWAqVOwNE87UFEOE0H6UoxnnL6iHhh1LOm44xKTCkmhCi1CA67ExxPGIY1rm/eoO8beNeg73okTpjn4pk6f6mtdQGArPCneCQKM0tcGHYRArq2eoPc0j4rSEIPtZU3g4H8VhEi9eHK9KQtes2jL1+vPq++D6gnTZlEnhekpowMzeWwRl8Da2MuXAw42cPQeJB3cJG1kDTh7vYzdo+PeHi4x27/iKZp0fUD3r15i9PlJS4uLjDPM3YPdzge9krKllIJwPaWikDLa6EWwlQx1sSsGTCVAm2GjKrtaz8MWG23mFxAmhsJpSWC41a8cZxE0DQtqE1A4NxFzjlC23pM0xH/8Hd/o/voAJKIohfXL9D3PZxv4V2HGMVjOYfSQcXmRyR1r6ZpKuHAILRti5tXrwBmvHn9Vmg5zDge94gx4nTYYxqPGMcRD/f3mKYJx8NePw84neTnzKMWsEuYZ+k2992338L9l/87ri+v8fLftuhuAE4zXrQroJ2xTj06njB0A1abNVbrtShgYc4MEyCQpbwBBmVLdD6b5way/osIvXI28pnJnxVQJFsqBaHzJwTxthh9a2SDnVFAIxJiAjEwNxHsxGMnRWarEGRSGmOApcJpPt82TgM5xv/MI17OqAG7Mm5HrtTbouLlbxvxLHJihGhFXo13RITA1bwLkGMwpilh9xjgPWG9adG1Dk1LaFoHikVQGz8qSowp4ksZkj1CgHpMJcrUaqqdXV39FEHsVFjaOGVJChAwmMqaUkGgYsSUAWiUQrPgU4Sy/hL5C5Vf0gQD1dpkfsfQmkVOok28OSlY+UDUug0sEUu2tpA5L3l74Wl2HVlLd43US5C9C0wYZ4JLhFXvAZImGYkZhKXX0lK2YyVwHZVdq9xgea3E0yvc0PhWA216MAaEOWJuA1aNz4X1nZeoHKtr4YFSbBOVjNH5OdJDQACs1hY0oktagy5oxhOhtf0l6Vj2p3otlXXFFIahonh7y9yUH2Sae2KyyftMGSXXL8NQFumnd6HaK6sedJUzizrUesecOgcuNetgETpiOLZmADY/Z+M1PEeUuxDKvyg/mbO8S0kjuFyLbhjQdjPIS3raOE2Y46PsXyMOnHkMAHkpy+RL2YKojhmL6ppCwClGgBMe7kYQT9heXOGrr19i6AdpSU5mWDCebJtU0qgz/ihgQ5pvAAABAABJREFUI+NV8ZaX+gpcrZ9pLlmJ1ugv1nOwdLRJ/R17zkIPMOGRMXFV6854uDmlKgxW8wFlZFofxGl0qtBVtFQkQCMskTuRWoRgpbHABlnzHUB4MTkHSlFxYcLnjx/xcH+HzfYCj7sdvG/Q9x2+/OpLHE9HbC8VQ+0fcTodtVahGgcVl0gQhDQRiaaA2H6gNlbo8uhYsw6SEhIiCIzGOzg0gqFWK4QZmHlCSh4JDvBBaj0GhnMJrp3QtAlzCkhxRExitHKesNvd43/9f/7f5LneA96h7Tu8vLlB1/eQtHICYsLpNEoUt+oQRIQYApx3OB0POB6PGuUgE/Ndi+tXr8HMuH79BlEx1GmUUgbH/QHj6YRpGrF/uEeYZxwOOxwPO8QUpXtvjGAiiRpNAWEcwRzx+9/+I/r/8n/Fi2GL/3T1DVb9JdrG4cJ7UNPiNDikjtAPK7RtD+9bqZ02jZkghT/EzKvTGT7JmB5Qo6J9Rz83HFMRejYUgDSNu2ASZpYagNrd1jIXUqJy1rR0cYgJzDMaL9GVTFR00+pc2CkXWfJHlGYqvC+rOVw5SUBPaC/zAypBAa0W9S46c0W7kREQ8iMXjn4GTuOMx8cI68bYrVqEFOCOqYzrDAMWt6Kumw5QVCKN2q4MecylAH39WvylewLlXwucsIj8l9ey9qBdZ7q+7jMzpH6A8O7AAQuwBICfFNWzoAOL+haztHS/FPzkNQKXtAh54eNlbVnAWHkUl/1kAHCpwIisoxJmDnAJmFoJBOmcAfLlmpguR9rUQEFiXvPF0pLV8jObgowhcNJgAlmrFBmncUJKEX3boPMeoEZ2XKNDA0s9RE9Ao6Yec6Xa+TS6sQhSUQV17knnnWhBU45IalmzRJp7x0v6+InXv8jYlJWISpraIHJHGK2cb6kHTyKDqg0o26sWyerzOhQwW/o0tI4yoSJ/y4ROeUyx0haq0WuyYcllplUKWEb7uv6TX/I8NXSzAHoD2g6OGjS+h286rdsEhBhwPMn1u71aoSsQQ3XYpJpZEkvge4hRCCpGHHe3mI47vLh6gYvtNfpWmGjbtdqufvqJDc8TkWeqgaNEJZCmlNhq1R6GM6GuJ7O2yJNo74qpMgrJ97L5nmGqxUsUIFWEVEAtPtf9q70dKbkF0BEhhsrYxFrMjbMuUhucUjSwXmjRe49sH3JC0w8PD4ghYLd7xOGwwzCs8Ks/+3PcXF9jmmesLy4xzVIzYr8/ApzEK6TKj6XwmUFuMWutT8JWYwny07qNLedvklLUkK7rMKxWQDpiOkghVDgHqbeapPggJ8A1oCYCLqihSJSHtvU4nU748bv3OJ1OuLu7x93dPYbVgC+/+QqbzRbvvvgSX375DZgJ8zhimiOs8L8REREwzSOOpyO899isL9D3A7quw3q9liLr3RpdK2HlEq6fcDwcMJ5GHA4HfPigY7j9iPv7zzidjvj86T3G8YQ5BFFKEiMEqYHw8f2P2B12eP3yFf767W9wc3EF5oAL3yO1A4bQoYkNuqbDMAwYhl69/VGV4CYLzIVgZC7dvIzole7OafepMVZ3JuvcxmPM27K8gbMOd4nBGr5sXJC1kCSR8ADpBGD1Wcr6JzCQCjjLBwIm4Iy2ynOzrcB0dlRTU/AgCokYnKgq/tw2opzn4tOUKnpADoeu52/sZ54k/bJtHNbrBr4hNI3V3uOsdBehVtdTWoKfWpaUujMSTi3jqMFNBdjyGmv0XLXXzLnMkQBP4/em0GdebcDMxlH2Ma8mA9ZdMYowzKkdppVnIG71XCz13BtYAVLVut1QkKv5na2SGQsYpQGF0ovJSzAv9olU9ZpnB8+E0BLM2MQVqDHikDRHXd/a6FatM2c2b/W5ZF86kNR40DoExMA8Szv72EUc1x3IMVrXyPyZkLROnZzRZcp23lW21EfdiwqLsu5BjVetVlvjvaYdUE5l/JO9liJS9iyV6J2ieylHMOOQGtLqVzYt1Oc7f1jKHBjALWkapcNc/aUFL6iekbFO5czK6X1eZdzyuBdeYmcTyLI9pmJMlPeRadd5j6br0HQtyDswAVOYEY6Gy8R45shLp87sKCkRvLKmsi7zrKm6MWI+7hBOR7x+3eDrrz26tkej9cIWxKw834y4wjML1lvCE3W2JXqyF6XNb7VfeX85YzDoM0QHqfDsc4R5brGs9sicI7VjLnOl6iwn5emyr5TrAebGPtHSp+W+zjmQd7mIv2FvPp8vtEZXHqbc7+7uFjEGrLc7nMYJ/bDCL37xC1xf3+B0OmFYrTBOI6Y4Y388gsHwJPRT8L4T/p6S8p/ls00HIaIS5c/IsouZDfRJtBuAru/QDYNEh8wtYnKI8GAXwU4M7kQJzvfwTYCbSVLuovBW54DHh0f89u//AfvdDseTdOpdbzb4+te/wvbiAm/evMW7d19IYd/jAdMU6gXDNI0gAk7HI47Hg9TjHDbouh5d12KzvoT3Hl0/oGm7vO4pMQ77PU7HE07HAz59/IDpdMLnzx9xf/cJ03jC/e0tpnFEoBnM0iTmdJoQwoQfvvsOgQmvL1/iz//dFd5uxdi0cQ2S8xjaFlPvpVZT04mxSetvEkm6LqBnWh3vtfFE1rx0cK0dqtWmZQxVyHtZ28l+mhMiJemcVTJcavlvKEqi0IQHOHRiuazGVY4WM7Sy2tnY6mE++9f5vRgmt6vjkLG/zb1pfJbXISDjJ5PN1lWTn9yIMM8Jh4M47DbbAW3n0Uwp1/Mra7hcYsN8WW9zKOm3KhzESKROhRiflETj/J/6OTU/kA9rY9PCkFZ9XqKR9D5WMy4HaZnjpeKDGUOZMNNzgJSN5iZxvKa/sWNEKuVvlvOpdD82zGN6olwjOqbQkKuMjfKZlMcIIMwBaMghNlwW38rC5H1gSdsm0hqsVUR89ZNhFKy6gxqOWgCRgDkKc+OUME4JUwgIMeJi3WsEuSvNU6qGKmwVXrICYDLBMKLSqbN9VWyaAEQudK58uSEv58YwFJ+v8NPXzzc2aS58LSzrnM1MQE4UtlpRAHPu1CUCnCumUgivDp0zy6ntfn2ATAjZX+XgG2FnjW+5mU/WoxC05RiDDMCVInP58KAS7FaArlIEbGxgIIaAOUwYJ+B0krWzdq3ejFtESy9ACirchTBdMoDP6PseniI2mw2uLi+x3W7RtW3OVz7XKC16Q/4sBi0DUHpaMxDJICW3Y67YTQbGhThrz0CJgE41Z6uGcx46WO9XGUOdTlFt9oK/y7VJgZGE+vLZxZk+k9CjdCla7n8pUFhA7wKY6V76xmdrb4wB8zzh8eFewBppvndKWK/XSNfXmnp2UKAvCnYyDRAGJO1vfaIdVpb8XFuvch6EPmKKCNqx0HmHtusQxsakGTLY03vLIx1AHkQ+XxPmGUf1pO33O5xOJ5xORw35Bh7u7jCNJwmtblo41yCmRru7SRcgQHVT0hQ4hqa+ecQYMc8TYgzw3mNsJ7RNV+0REOYZkRPIO6y3G7R9B9cA/brHPI1Yb9eYpxGn0x7H0x5xnnHcPSDME6ghUEPohw3YeczMADn0XYdVHHDhLvFi5bFabUDaic8MbezEOGAemWI0KgUry2l/+jrTFSsec0ZglWEzixDVKETJKMImQyQzbNs4LJISBErCV4tCv3wJzVLmz6K4lOc8kQV2lpQrFKOZzb46o/a70bEiAEIB+U/WqVKibA0SS4RfCAlh1iLzrQg66ZFwBuvOxlS/b6Ampx5l5akISx1JAVx54oRFFxW7IKfj5RIqAFW/g/OlmbfqOY0QPiznspeaGU0H33ZwzqPpVgKWdE1SYqkRp0WPT1o4P4QxA2qwKNjeOVBjNCHzyFnrzFpQHEh538veWfdOAAqYZL62jQklwsZ2kRY0Xe5ZUhMKPysxH0VAn4e/OxKg0ThC653WaRQDY2TGFGa4mYGWcjv1wouV3M6MtfZ0UjRf7wm43qdCCnm0yn9pMdd//ZdFsoLM+GL8R0bnnBVPrb8jg08WnZYxFFTpc0UhNwUCyBiL2danMkrrdZY2UcvnhaIAZCMIZIj1sSrXcc0Xa5qpo96N5jgrpvbPOizKeGR8iYE5BEzzjBgcYpDIQOe5NJpT5hJjQoDI2WiRiOTQaBFj52aAgdVqDdd3uLi8wGazxno1aN2qAsrrEgjyw9WTq34/pxoF5mTAu9BVZmu52xTnPbDFkx8EWGFl4+NFI3tGJBUZZuekRlB5BHo/c2AU/Fr459JIYOfH6sYlgOMTHHd+PXDGlyB7JPVXZDxzCMA04v7hQc5AMnzmsF5vZGwxIk5jxnkcYsbd9XrndYfxCb2GytrYmeckNU2lxXfMTjffeMS5RIYCJKURtIYYiEDew/kW5GM+u+M0Yr/f4aC1KMfTCWGewSkizBMe724xjyNa59BpDddpZsRkBhoZvxXQt6gy6SpJCDFgnhukGOC8RzuOaJoWyFheDKlioG2w3mzRdT3IEYbVgHmWCL4wTTgddjgddpjnCbvHW8zziNXFBfphg6ZbAU2L5D1822LVD0iOsN0O4HWLvh8kXScEyeiIUev5iWyy9Uy6bxm76H4YNyh6GBXSt/fO+M+5MztjCX0v18oxPGXX5fp+hNwl0/a1kAsML+QDTYbL7SmLI4b66+foa+lsrMZe0WT9MkdarSMtMFR1+7IO6pBLQAgy5lTJYt8AiFbPl598n7PRuxqbA1wSgyqI1Mla9KBahov4ZWV55zuKxX4993ou0CRHvZ7rXhBjUT+spN5f26FtWpDzaNq+RCpCdLjTUTIfpnnCeDqBWQIvUoraMVmMd2bkyvwy753tmSsqmc2JRJ6x1s+1TdVVhTlyRZaXf0ZSVpTc5PZzTpuy5fnBBXjmzdBoIiK0hqGSz9GoMTLmEDG5Ga1v4X2Tx7mA7NVeFVCke5/lXfk4F9N/sqFFbyJYPcl/HkX9CyKb5KkWZWCgwVbDey+TIiXMBOQOA5VRyjwNTeOzdTzLJfXqmjedHStjIl1wC9c+M0qhKjoHDaVmK3aqQcNEmvttC2YWbQYSLJ5J8mAdkDhiDgFNCOKFg4EnYbgxBIR5BkBwZjZ0BAtPPp5O2O332D1G3N8FEByGYS0dvLoWXdsBYEyqlIcwY57Fy3FxscHQ9yAKCFpIbT14tG6L1zev8We/+gW22wt432GeJvDC6Ocqj0BdZM2IneD0RCQ2RmeAMOXohIy5TBU2HplY0rPy+ucLi+dLnpbBWwZPZu3VU210xCygJmNsw0gV0uXAGTCllBCdtU02r7cUjVyALk6gVApFCq0tBVlF3TmizNoaOU8Y/JCZzDSdME8j/ukfT/C+wfbiAq/evEPbdnjz5i2++uob7PYPeP/+O0zjCfvHRxyPR1GKyKN+1Qc4Ja1VBMAUzNwWlgCeImKcxfhy3MP7Fk3bYnO5RQo7KbpoZwbigUyAFnJvgQYgH8QYhIT9fofH4xGHwwHf//AdTqejdLyLEfN0xO7xHkTAx/fv8f6H79D3K7x+8w1WqwucJvHegYC2bTV3vEHbtiByOOz3EsbqKNdK8q6Fc+KJblopZNf3HdquQ9N6vPribQZdEmIcMY9S0PN4POF0PGKaTrj7+CPG0wGPuwfcP9xis9qAmx77mEC+xYvNJbquxzfDFn0bcHl5CXCLGCQ0NwNrElopBmPWdCnOe3OGEWqyzL/LKSoRHLazRt9L4I9FZIxnKebHVW06n1xR/hMjUsI0zfBaK8lXN6v1HzarAfTcmYBIWhxxkZohz6q7h4qxSUC5geDM363riGEjEzKagsgpIMVQrVc+vNWcbaAAp4TDYUJKDpGBYeWRovDbMOmaUXmWgbNz0GZ7Z97N0maWq3HIDuVwezOkU1XPp9rr0tigRDkRJe1cWMAd1RGL+pTACXMM6NsBm8uX6PsB16/e4OX1azRdj+3FCzRdJ7IIDiEEPD7sME0z7u9u8enTB0zTiLvPH3E8HoA4IaUDiFhSDaG8T9PLQ5Jwd4CRVP4I2NFioVEUAK9CWWgk6vVqeCWHmBrM5DAzYYbWfnWam88AJZlnSgmBtduiAWOGKD95DasTQgxxPgANSfoc2GM7dOhCkvFPAWOMuD8dcQgOLzeE1TDk++ZkRuPZFQ0YHjOVIb+RKYAX9F4bB6xIe+54gz/Ny2RrymfOIucgNe20AH2OBkgJzBFm3wOWCphvHBqVK9X0YYbzOpLpvNuRyW1T4Mg5Se9JFmMsZ945qb1V721xGBb8UPMkp9enxAhRUlqipXCyFDid54AQgxiHSOdBxockQnd/OOHhcY8UPWJspXZl38I3MvamlfU6jSPmOeSxkCNstmsMgxh65zkCLuH68iUuNz1evnyBL969xWq9EkwbJd3VSyeErBwQmfJfFBP5XfmEKWeGiRe4GNoooKqYi8w+BbBn6zAy6BfTv+2z8iCnm5ttR0t5k+ulLihZMbNGnSVYR1sgIkp3KyKEIGk5iUsKVEwpz8WcFTPmag58RkvIRnpLYxTmKLhb0skAJofD4QA6nrA/HOG8x8X2Aq9ev0bbtnjz9i188yV2jzu8/+EHqe94OmIeR6FD60BdKUxGpxaVRTCDl+2f0zITE2KSAuDzNMkKeYem6xDmBpZiRdRoVGaUPXKAbzs0PeAD5wiZh4cHPDw84LA/4PbzJ5yOJ43ycxgPO/z+Hx4AMG5/fIu7jx/Rdj22VzdouxWmMGOcJKW/bRtJRW0aNG0LctIAxXmpPWkdS33TwfkGzjdoM4aSCHLfdnj97l2+VopwR6mXGSOOhwOO+z3GccTnjx9wOh0xhhGncMJ2WINWW8xth3a1xavLG2xTQPPFFQ5XK2w3a5wm0XPGcYUwaLt15ZvR0pNS0gL7nD8vupwZmJbGoXMDd6ZcsnOScPaRlDvxDim5XFjZeemiTMm6rSbEAE0H03TVVM6EnK/aiMxPmmAU+jo7WpUxyJqoZPjFy7mcO+IEL4leYgEGco0aQLlcV7+cYz2rQNTO0m0fAMdgSuh6SSWcxoQQkPlsHo+tM6oJJtF9rUurc9pYq96EsmRLOV/Jonq/dCkrvHluwK7kd6bThNzNHoREQD+s8OaLr7FarXH14gYvrq7h2xbDeguvMpJZHNZ3dw84nUbc39/i08cfMU8jHu4+4XQ8AByEDTGjbb1ILbaoWizsEsazc6p4AqI554SryF5Rquah40iEKQEzAzMk9b+t0hONtnJpIEbm4FRuVWGVev8Fw7Yq74k9tn2H1kfsxwn7MYAQsDueMAeP7QD0bSd0D0JkhkuANxmRCj3U4wOXCGgbQ3EuV9cZOFe9SftP4+e8/kVpdGyDsHBdJSBnLZKR7Q6lWwTKoSMi9a6QCvNaZTKvG/Q+P/H72cQWTAtlTMzl7wzCyk3yc7PVl/XvxTyLFbS2fpsFuzxXwzC5jE8OvORmhyAwvk1Ja25UUQxclF4R/DpEjX6y1udd16FvGKvVgPV6hfVqQEzWarM+xGVd3EIJprJ+VAjMJrW08taLZeASi89YwYQJe9LP7SlifOKqjQ5A+fDWCkG15mf7aoKp7AwW+1rGpIpjfUjlbR0fL/YUKCG69auGbKQHy/liAIlBPNPzfABYwGSYJnjn0DYNVus1QpzRdZ14bDX/vtzPmPH5jE0wVAPXNaAMakUohRCzskuu0dRS6zaYy/BmYW+eMNIaHUSEEKW7zzie9N+YmV9KYuDglNQY1GC1nnF5dULbDghhFiOrzsdamdp4U0ogNytgs5QNaX3sfIOuSxLm6qAeQwffNmjbBo0CLmbOXdFOxxGn04hpPMEBGI97uKbBnCJW/QquaSUnvmnQ9T2SJ2zWLbZdQtcNwnRT4QcwQL+o0VGd8zNqEDI44zl5l6qzlek0+1KXDIfO77BUHI3elh4jrZ+TLBWcyrefeIuWQr+McUlT59/hepjPAgMuAOMJ7dbXL++dn6/n04RsitDoOAYqwzgIi2eW8ZUbL59R+JVhW1vDenkW76HE4SzGqopSdWl+RunU98yLBLQSM5z38Mxo2g7Dao1htcb24gWuXt6g6wdsr16ibXs5D2ps8s0K4zghMXAcR/jTCYf9Qc44WDvXpFKSiAGLPC21mwQkyvhlvDAjHAqNCUswb38BO/ZXriFzRqeZb+VQ/+VK1DRXcXWlY84dXkGQ2gHOITlRGix9Z44RIOlscnb3fMcMcJd//pFXRfn23eVg81U/Dyr9D3wx5yg+O4OmsNs4mc/OgP6s00yEvVeCRX7JciTzFKLqPBTsUV6yV4wia2rDijSpWwCCCpNydYdyloAzPFbRRo016s/KWAreEGxknaSkmLyU2Sr7a8WoxdCD7OAyh40jB3jCMPTYbjdYr1fo+w5d1yLOUVJXlPfS2Xl/mvqTP6jkNfL+LBWs+gtnr0yYZf/Kc2vsi2d/L888H1i9knWE4lK5t+ia7Fx4Zo7PGQNqWV+KuFP+EqPIAsNwjsxYDoSYAEj6B0M6WsYY4VX2D8OAeQ7wTQsfBevkfbWDcjYmWz/7kVeV6uiypMXLRbG3vXbeZeOopSQTnNZurSJmvM9lPECi6IYQMZ5OmOcZIcxoqYXzHjElTKcjYow4rB6xe1yj61foVls436pjeVJdicHe53ReIkJIMadd2x46P4vDrmnR9qy1sTx8Ix382rZF04jTr207WbMotS5X6yOOqy3GcQRD6kPtT3vg8ICuX4HaFtw0aLoOq2EN4oDVag1erdA2UrMzxKqEAnGu21pnfySuCVKcMpTpdhkgcK7fFbpC/pkjdfL+ys5avZ9a8JvxSIyjlk9tfIS0AHR13rJcZOD8XJUZ5M/ZBnVGd/WUuXzrDN0r/8Y5r+OKbs8+qfhq/Swz7NcRoy63X19isVpnAlD8LSZPVGfK6Mj0RSqyBvZZXv2f4DQ19jz7/sKp/wQoEqBNUYi8NBzqe6y3F1hvtrh68RIvr1/Btx1Wmy18o/pBYulQSi2604jIjMPxCN+0OBz28LPUfEpJjMZmokiccuaHywEKnNOKTbYlqjAM4Yxe6+GbvCjRyqVDKGpyE7mvBtGC4etsI1sk5P203y1T3TsqEbt2BlnKbTjCIjuocOQ/SuZP9/TJhbLzBKOZP3LpH3n9bGNTTucBsoEjexVSApIJ/uUBBJZeaMsnzEvBYmm0+ywZDz37s3j9qugEICv3tVHDHmWFr11VWM7i3ORa89aWWlCOvP5zma8ZoSNDgxKRASfRUk3j8ermCiEEvHcHnI6PYJY6OU0jhoI8PHIaIgg4D62H6MS7mYRwyXu8uOrx8qrD5cUG1Ih3ilwL78TSS7Ewl7Lu5aBYQVzXCeeMScC9Ad8n+daaEVdY9jPAC3LPOkqTYSWcKFtC7SAaRsyjdNKS2Dxqtrf2M+f30lJgkUYe5ZbqMKKvwmMrRinl3OpR632qd82jKBdwAVyV19A7D7AWrgRjnkZ8/PADmqbBbv+AYbWG8x4vX1wDADarLQ4XO5zGEXe3d7mTjnQa1EKqdR5gGUABhKqsmyFnHE9InKRwY9Oi6wY07aDz9GA4MALaABAivE9wMaFpOqwGSeU5Pjxi97jDqNFDRITNao31eg1maRtrwu94PCIl4PHhXgScnY8ETHECQxg1efPAqWFJu6yArP24RUAJaBrHo3jlvMfjYwfvHHzT5Pa4jW8qA5rwjZubN2BOeP3uK/wyBPRti69evcXlagtQA2LGcRpxO99jTCcwS3vQOTrMccgLbJ7/4tl4KtjluopmaqCkH9Y46JxZy3sVhdXXMOTcc9IDz8i8VSnRRmXk15AD5XSELKdQCNXGWZjvQqgpUnBkgIfBGnlSUIh+Q89vBkjZoE1l+Oq5cc6ii2yNiuFMByS8QHlLYmA8AWFmNB3QrexSq0nFUloDrAVEU3XP5d7EaBEcQGm57p7wKUuZq5VoZWx5zguwpHslU+as8FvqXoxSrL7pWgybNZq2xdc3r3D14iVWqy3evv0aw2qNzfYK6+2lpEF0PZz3Nk2kmLC5eIEwB7y4ucb1mzeYxhEfP3zAfrfD48MtPn74AWGecDw+YJ5OsCgzBmvOf6E6S0Ayz7LVJ0rOgarIEwLBtx5N4+Gdw7of0HoPuIDDHNEQJJ3NkXSl1JpUKUrEAykIeiIKdDmtKwqlsi+si+kSMHiSls19hykJb+YUME8J4xhwOJ7EW8a1EZ3y/Q2FLBV6ZFq1OZbx6Xi1ELLXBgYMUXyNhv4UryWGilkJAoqXvPy+lLmiJHMpbF/LXK7SG23ujMrIZOeyIEVOKReCNT5YG7KS1XaEKUJqvDTRmmtI1WO1/Sj4yHufC/jbe8XApJEPmhYuTSodmBoMw4Cb19cYA7B/DHi8DyAQ2qaR1HZXOvCIw0JkDSntJ2acpgmcGKu+h3eEF1cr3NyssFp1YIgTkODQNM2CBxpWBEgLemtRbavrqUAmpqQ19bBYx+wtV9la7yMATcF/qrTZFQWLqHpsrPf8C8Byz1LVVAeGpcrpMcNN5ussNJeSy3Qi+8GZHurUE3uezSUr/cY/AcVzZ6+K5TZqoEp6mMN0wscff4BvGlxsLzCs1iAivHnzBswSQbTf7TBPIx61CLbQkLFvjbh4ZoHE4Vuinqy5zzxLM5OmaTGsNuA5oB/WiDEgwUnXtxAQlNeHjgA0iJGxWW3gXYPPp1s8PDwgTBNc49APPbbbLbbbLWKM2B32CGGGaz3uHx/QTRO6zQUSLPNC5OqouNcMWiCph0TakdGilchNIBIM1Y0TvPMIpyOOXYvGN3i873VO4rQzQ1ptMPCdx81bKTieiCWKxDd4s73Gth3gfvlL9NOIwzxipiNOmJBAmKYZYIlStCZGZvxhjWoCQ7tpC+4vBmo56d7L2AmUI/Vq3a0OEiiPMLqrfmZdxME7KYjskqV7Mkq0kRmgCOwcOLeAL7SbD1U+73buavoqMicTM1lK83NHsgjH2tFjkYOGx4gstUv0rzpr58kdFfQlraGTAuN0DIhR9CcNyASniBhTjow30FnQ4NmYuXJ6QKJKhbXLHLJT1rq8Zvz8lBfYKmWHVs3vMn+qangxI4aIbuhx+eo12q7D9as3uHr5Cuv1Bm/efolhWGM1bDAMGylF0EjkXw7OiBHtaotpnnH18iVevnqFaRzx6f177Hc77B7v8fnjBzHujjuEMGbMTIaDM28tTjHdItRdgR1pOQWVcX3Xous7NI4wOIeWCOCEcYoIRFL2wOSRrok1x/Da9KCsGxX8ZrSmZOny7/KGZ8aqcWgcELjFzHLO5iCRU62f0DZHEBwoWeQpV0KEikyvwFPG90b3TumAocxa/uZqz5nVtvMzMdS/sEC4rPTT0EBkRpHL0+SFNCYgkR55epmp8LODLeHf54pDiQaqf0oEBalys2RWNRMjrkBD9d/6ryyezdjkzJqOTAT5fsSLdpYJ0tXs5uUlCIxpdPj0Sdqqtq2XdvG+PJG0AIH3Dl0joX5SzNgsrmLNfHG5xru3W/T9Gs5LWLR3HTw1kPaRBhyKAn3OFKwYOkHqIcRJ85qrulGFEVVzxFkh1nxJ/TtycZMCpAqDQkWg+dtVdBEBmp5RGRsNIFdFyyirHJTpzYAOanpZ0E1Vu8LWA0u6wuJqIOel5jIblfdEWUKYR3z+JJ0Gd/sH9MMKL15c45tf/wZd12O12uKwP+D+/h53tw8IwcJlI8zwasp9xujVq4SyC53ElDCN0g1ktd6g63u0XY+m7cFMysAICQ7NLGvpfZTc56bBoMYmvr3DYb8Tz4DWzFit17i+vgFQit/dPzzg9u4OISbsdg9IzGiaHm27AjNLPY0oqSGstOFbKfLrvM+gR1IIpXBd10iByfHUSJqBs5oOpCl5opysVxtJOe1XGPoV2rbB5dUrdF2HblihX6/hncembdE5h6Zt0TUe+/GIbz9/h93hAYfDEff395gCqUfVPF0lVcTW/ZwanikRswD2LvMUqcNQW6a4+tNYvP1R1BhJ5yM1NjFpTQkutMwoxiaQExBKQDk11YPyuRdwYHRe6NkebL0usiaZBWg+F2ziT5WmXHG1HKvSDbQu6FkrVgbbyr3NcHU6yTMHMNoBeU+KrCiKkNA/4/l0FONvMT/T++fOtTHuZz6qJpV1cQOYuZOpPVPGFsKEOUS4rkO33WBYrfDLP/8L/PrP/gKbzQXevfsFeo26I98CXBwqMSXplJXEqJtiwvU44niUFtovbz5ivz/gxx++R4jihR7ngDBOOg4zpgOojOjihU3GGYtCaGCbU+bFXdNgWHVovMeqHdA4D0onnOYJnljAkBelwVtkQYpIUWq+1B7QvG5k+yGCg4Gceq0AAQSgdx6tI4xdgwkOIUYcTpJWN04Rx9MJ3nmsmiE7LaA8vt7Zcw+pSW8BaE/5u9G2yTGwGPz+tMYmQGRR9dwqTcsiMO2VQTuj1JyDlheo6F8MoLHMMxsDLO1o6Tk1Y4/hNpP6i6ipVBQs43OFm1QNVTTtu2CF8j0bg9eUIJLbIGMTsugja9ICEKSrzjB0uL65QmDCZ3/AeNiBATSNpNEJDtRuOl4dg86haWRcMSWEOaEhj77r0TUelxcrvHy5Eu84EkIM6HyHxmmxY12PMk6bmGAnn2uM6kdgQBuNnBua5H5LY5PQnhlQzbGwfGXdR59tTrvn5NH5fheDY33D+uDUEQqGF6VGaL4XSpHf5yLt6mc+weYoOO35sapBgiTKkQkI8wmfPu5B5DAej1it1ri8eoGvvvkFmrZDv1qhG1bYPT7g9vYOp3HSbnUaNa21uwof1P9mlq/zNAVXo7q9lyihviekYUbXr6Trrcpdcg5zjAiU0HcEwCOGhPVqDSKHFD9ht3sUh7Bilu3lBW5uboSudj2mecLheMLD7hHdPGN93AHeOvbKuZ8niT4CCR4AaSFk5zRiSZsiadS69x6hkzUYj4ahDBtIqqGMx6EfBik4vlpjWK/Rdi0uL15K8fHVCv1mjYYJlzOjS8DaEV72HXanA757/1t8ePgE5rQwNhXfa1RdUGQZoRSdZtJyFCqjhF+0FR6UW8RoOkGFnbg4d0odzee71plxLsYkNbaQsMz0UAOrExm47K5YKKZcX3WyzTpIod1slKKSdpXKaUX5Ru18K/MqNxKsZPN0lAqG8q46R3mEFc8WjDiNESEkdB1haJwEOnDKKWLZflbdBWfndRFcEFkcHyrzMw+06bmne7V8LZ0Z5VFL/sQcpERElC6GQ9Pi5es3WG+3+LO/+Cv84le/wTCs8OLFK3RtD7ADWO0GGUNFxCSRdquLK4QYMY0jXh+PmMYRV5c32D3u8OHH95gmYDwdEcKMlDspyuJUcE/xizkdlffVxiYHIJVSL13f4uJiBQ9CG6GlFiaM0wRPhIYgnc256vqeg25QUoJrEGVAXPccjFJexVL/AQwNoYXHlBgjS4kQCWRgtM2MbiJ48iLbyCserCWXSumzSPVsfAPlEgNlI6no14rLmKWcw3mt1Z96/QsKhFNRlowh6BvlMJSUwDoK6dzgk6em750Ls6ePXt7r3NtSXWm3Lk+pUFBWuhYqoPo5bVEr0Ocq5mTMw9bfgJlFDREJwBljwKQt2okTGk8YesmhXK3XaLWot+U3J47I+aCacw5tc2het1bTjewgSIcuQpwCYtjDO4dhaBYGuqLw1aCg2gNTLkmNW2as4CX4LsadAjqBKr0hP4fLklbLa0Ye1IytaG/lhyq4dZvmahMXtLD02Jb9AHjxfv5WNbQFw13y3idGgbOPs2GoZqg2Hql3NOJ0OmD3cI+26xFjQtN4rIYBL16+xGq1wum0x+l0zJM2+re89sUCkgE4aTEJFgVVgIVFAjWayx91X2x9JBRcWpZ7eKceZjXs2F403oOdx3q1wuXlBZihxb0j9oeDjCalKvTbo2kUQBCBXbXW9b4YPZMTA2uuVyTPjTEoc6fcBrhtrD2nAAhQggsBzk2IKcH7A6ZpQhci5pjgnUNqPFpyGE4HOEQp1MxR6whp1xJX0jIskiBHKKliTqAFnTEVD8A5uH5qALddM7queFp5a0lc1Zfp/J93cPBnPKcGSkaGfHYmC8ogW8nFtBiAeNOQpDZd5sE6fgfKtYuykkvyWfZiQwAlQwymyZcIIzsp5TcZrHkerU24NFcsUaTeOXgvIcaJ0uI+S35Wzxln1/0UGDrjO/Xbdp65vnfFyExRNwOKI6y3G2xcg9V2i9dffIFhs8b1qzfYXrzAMKzhmzafUQAK4grty6Fe8hBTyru+R0wJm4sLvLi+wem0QkgnSdkNI6ajNB+IKWT6tP0u4Inyuue1M4eI0zo8VgeMVPFTZYJJPO/RAR5cBXzUNKpnQMGykV0t602tzdfpcpL+4SC1DZgMeDvhPSGBPYEblE6x1v9XH5RFmBIuVXSRwRAZRSN/14yHlMdt5+VP8xKeIGPJAM3KC1iKSp5bRY865yU0tOvKehfj0NKzbGu0MMA9OUM/8dK1ErZ+LhFruVzxRQOgCwzl8hoYvcvcEkqxXkkHSFPANEWAEzwxWu/QDx0AwrDq0TQN5hgEYOfoX1FOozkVGCoLRcY1jVecxmCOkjpOAac0ghLB+war1Tp3pK2L4S5/q2iKgXPeXb/O/zacbPfIEeF0vi+wmxcFILOPms9Xo6oU7PNnLoqZq1wjXo7XcCwzL2qjnb/O53muUBf5X6ZCi+8vp0koTooYZkzjKGleuwe0bQekiKHvkMIKL66uMA4D5mlCmOaz9SqycvFQkugMRySGJGbEILzTOw/XeYRWuq0ZTkxgWLMTD+nA6hxnp510MCwRHE0jdZfW6zW22y3mMCOEAHKE0zTliKoQghq6xEhk9CNOeLJDtFhja4LTegfnFOPr4sYYkLQbrfOaFdK1aJ1EqUhmg9RIm6YZMTKcO2AaJ3QhIKSEBgBNCV1k+PGERutUiVMkgqiuH6qGOBJlVk4Ya9daUiO/pSAtN712QBkueYqpnsr22viEjCFMdlrGSVUqwnmU7s5Oy5I4HbcY4shoBSZD7J5O+UPF18pAFnORPUtwSfBSTu91isW4nKmUII71Cksyl0hpKUVRzsdzRlwmAidkwzBLMhFyBBdYo8fEiRAXPKOcj4KhioxYGJZBT/Ygz5/O33oea5nTk2j5NwOqqxDW2x5N22L74gXevP0Cq+0Wl1cvMQxrtJ0UAi9sq8bMCyRd6MiRGmgbdMOAVUzYKoYaT0cQZhy8Q4wT5mkvzgEr1GZYxe6uoNl4WdEtC/5xhJxRQyT8NHcXJkZK4hQyfaPIiirakIEcOY/aTrLcnwW4U3IlxU8NEaJjiaZSrB9CAjxJA6dcjocKmT+zved7KMtAWebkdw2LZNz3nB3m+de/uGaTeeByIcG8WfZ5HmrFMJfpKvIeQ8py2wbUnplzIeie3YilAWsJB2oGBWix7Kx8LccizxDmGWPILQMb36BtOy1mTnBRN4+ctLBk6QRmhZzHfcRpf8TxcEA4HYD5gHXr8OrlJZxrcXX9CsNqjc+fP+H999+LdTcXrU0gSwvRwzX0K1xsL9C2DbpWhGGIAQ/HPVJy+Pj9LT7/eI+Liw1+9atvsNmstdW7plVVjNr+pVwk1sKgHRpuQKQFwtnAulMQzLnVK2sha/vcgIsu4mJN83NpabwCCpNaWNZ1Cwk1mOGSwqOfOQLgpLtaXezUedIILXl4fRh+Fqg2AYhCx8Jg7HAXb0i+m3OSggJgmiecpiPG6YT9fi9Fw99+geubV1ivBty8eoWYEr779lv88P330hHu8IiYgoAVNbTkdlPGjxgF3KSEw2GfowSHYY1uWKPtVmBIUUhOCd43aBrpnNK2CZHFKdD3PaAGAjALQFqt4ZzDu3fv8Gd/9meIMeLu7h7TJNEWYOkycjruZX3XjK4dhG60QK2dNwCAlxQHYXoRRIy27aVTCrQoHYslXtq8llTP1bDGMKwQ4TCFCJcIUzjicDoBAD59EoHQdh26rocjwkDiRXjlgK8cY4wTjuMBp9NOjH2tFRYVZboBaToagZy0WAZzVaivoscaMGdBU4zPNTgy73aqv39G7wDn6D/jj0RJQBK7HOHlPYHbRselxWabFk3bCbh1BpRS8U4Uoq3mwHkihVeyAh3W7nYsxdPNyEwlMiDp/QklejTPKfNVKdQLlFSe4l003ugUuKo3ZDIwC3B0IAd0nYf3DeY5gbW7jaWN2boDRZaYodz25lzxqhV3K7BZri3jB5uHp4oiA2kIMeU1AAmYaZoGX379C7x68xZX1zf45V/+W6w3F9hsL7FeX4DgJNoUpJESSfmQFuBlXVfW4s8sRlVygG89Npcb9Ose/XqFy5cvMY0jfvjuFR7uPuPh7hbf/+FbzNMIng6IcYQQVEQZufxHak0R4BVAkgO3ACdG23h03qFxhI6ky8kpMo6nCE9A15CCFKBT+S5Gag9LV7T9zkHOigxzl1APAFa8ugJzkiMJz4yexJgw+waBJGVldxjRtQ3WvaQku8arrGWEcX6S7r3YS/29yBCCOU8kiieWg8m2N3+6yCYJ0RVeHEPUocR8dMuczLG0BKH2srrSpIpXlp11EXTo/UiboxifNhm5uFJ/O5PLT6MJXDYM5CLkKGDfPguGocAScarp0k6/3zQSje0pITnTsiT677AfsX/YYb8/IE0jGp6xWXWg1ysQSV3Etmlxe3+HHz/8KBFdVh9Ua2SCAO+lOLhrHFbrAX3boGkJjIhpitgfR4TA2N3vsX844PLyCn/5l3+B7XZbKcFn/L0q8K7vZgzF7BHPlLfsiNL0CTAjaMdhcpQdP6qZLoRGERms9U9rUGCplk8V0yc7q4XZi7NAUhXJoSghGl3svaSoIO9/WtCd0MBPPzM7cKgaHyrOTLWxSWiLiATbApjGE06HA8bjDuPhEW3X4ubVG1y/vMaLiw1eX18jxogfvv8BP76XvZ8mcYw13pfIMyo0ZXzHN4LVpenIAV3X4+LiBYZ+DZeA4/0DQpgkYgIJTIROaxWFSEjsELuE1TCAAEm9hDQ6ury4QNd1ePvuLb76+itM44SmbXA4HnGaJoQ4g2fgcNiDwei7FYZBZGPbCA0kEOxEkXN5oUJKcOywWfVYr9ZIKeaI9HnUyHIi6aDnHNa8QeMbJJKi0QDheJxwOElR9I8fPgFgdP2AfrVCA2AzR3SRcdk1uOlbnBAxTtKYZdW16NYr9F2rBhbBjW3bwcFKpHDGxyRoofxPt8KaFdVGphx4qRhdxptyQ5+SZsfZoIxkEdDIJRdy7SIi5YlyjckpIikX4BrR51RSFV0BxufOskIYlXyo9AhXnXHVsyJziUJR+otRuzZb7nHFF/K8dR5ta1gsPnPmTCcTWWwyNkVG2zo4kjy6ricQeelONppMqfBSlSJt2UnFyGS/P9WxQaTdGc1hscRaZc2KDCESByJnGklomlbKf3Qdfvnr3+Ddl19ie/USX/7qNxhWG7TdCm3Xyzll7Vypz6tyZJAgGMrorOwLwbUNLl6+wHq7xfriAi+uJbXu/Xe/x8PtZ+web/Hhx28xzyOYJwDzcm/tJ5X1ECO8z3gTLBGanpMYWFnWNUTGPAW0Dli1Di0L/rDSdpa1gYrurIaT6Q/LvS9zNhpwzHBR8GOLhJUHAhGidwjECJFxPM1oG8am92jbVozkatCMFkmZn6O6TN77ZAhKI7JQDGIpaSH8cq5zh+KfoWL/bGNTrceY4rIwIqmw/GPQ7Rzk8FkLalLr7bkFtXyfs8hdbsq5ydX+w4srCnMrQi9bJml5gABIgeMnkU2UCdFCH0nj8mNKOE0R0xSkLk+KaJzD0HfwTSfGoNUG+90jJGfUjGushh7tRAZk8N40Ldq2yc+KiaVtfAQeHh/x+fNnpBQwz+9KXSw1gFhYeAHotndaBwXIOZjStQPZq2UgCmwdrSoAC7L/n70IZ6XOsvJ9fu0C0AKZfsyafB43nj23C6uzXYs8l7OnPB3hc0DpbC4VrMsGyme/pgycweCQclpMCBFt0+Ll9Y2EfGvRYIDwcHePvrsFgXByXtpLmOGhGkxNuQLitV5MCCrESL0EUijS2maz4wwgiZ0qCB7ORa2NoUJfhYmEXDdYDStst1spejlOICLpNmfGBy10L8Iw5bmLQCIFxLpQGjaa6104YXrKsTKAN/Bue11SY9VgAQUOGqqd5iDK8jih7UY4IkzMaAhYdS2mdYs5BsQwI4ZZzrkqQSb0WFsLZ1rIzIAWjIEKmS/o5qmHzvK/CefV8+z2QlS1llsTnAF0O4ey14CkiZhmY+vtqKTCskUJGapHOb/ZQ00FzBVBKgNzlVLhkhjkuBKwYCdeS0el0yTZ+RABaYCvDnl3DtkIkT05TmqBiBEoAeZ9ZABcin6mBDinNQCp9A+t199AZL0P9jLasjWofy7OPqMYKSrZpkSDEumkMocs+qjB5uIC169e4cXNa7x99xXW2y2aZoD3HTgx4rxsu7xc//Kv8H+ZAjk9c7n4a4tpmnA87ACI8bZtB6TIcG7UNIQc17PgYXVkkdB/QsrRjmK0d2aI0DWIkQGnkU1sHWIqIOqMv+u6ZpBepoG85jh76dlQA4ZDSaXxTpQtia6KWjMGCzlb0/iTOxsorsZhJ9HkRlZ86nH+DID0P/JVw9lFIU+l2bJmMnJmGzcvvlvfMItPk4/VPSw6E0Rny//Ta3l+ZhYv3Y/z0RhHfIKhGGpgqmsvmvHLIRMel7Mwh4jTacY0zkBKcGC0jcMw9GJs0lqF+8N+uQjaXTTLRpdA1BRDitZ5ggL80xgwTQkPD494uH2EI5cjbOtaRMvICpz9fc67l+lnud22AmM79WLkPGtQUq23iCEq+8RPd3/Rbeps7W2/aUkOS8USpjgif9/2JtXnqbplJoLz5y0+l2uIiiyqP19KSCg+kKiPEAPCHCApWglt1+Lly2s1yDishjVSSni4f9Dut4R5nqt5meKkqenV3HJ3a0AwlG/gXYOu65XnNnApCY7hqrg8izxyTmuDWQ2yCkO1alAdVitsNptcsiCq40/2lLXrdEDTxKLQuyp11dbWFQxFimGatkXf9xmDRZX7RrNgTe3PDtfMauVcaCSHGaqmacYcZngG0hzRxYRms8Jlu0HgiJCk4za31tzFLWjA5zOtGAhixBTMZLKvRHCWNPhlNNPyd17Q0cLwYz8Vr9QOqKK/sNJSGRNXJom6U3fWETNIq4UDVX9XPE0Glce9SJOFlTeoMCRVkU15rcqpszPuIbWXzAiQy9SYocfqTOnvjkVtEAeK0AqRdFLnRsYQnQV0OCydcngS1Vgoz34rdbQMI+dI/+ra2ola9Dkdt0WuAvkzOIe2a9H3A65evsTrt++wvXqJV6/foR9WSCxrlSBGNzMwyjqV9bX9zPumtZfJMFTXoWmkA3bjWkzjiONup2nzM3zTSf3JGPJsrBHT+avwdyg21bEondcIlFmwE9VzphIBabpUxk3VM5eBNMtdKX8WIU5JI5s06NtpkXXhowzvOGPKXFO6ktuLuSpdFgxV8W3ZgfJd22Mb8wJz/PHXzzY2HUcJW40hIcFJxIoKCVARXA4VEeo4DDwTUbb+OnaZiM6BIlgPkrVPzhMzYW0MqALbBtiArPPVNUS8o4qvlDQNu4MFcpsQdhAlvPGNMv8EOFHCvHdI0SHpJnkvwu14mvHhwyPm8SAF3ALQ9w1e3wyAa+BdQgoTrl+scLX9BiEEfLq7w/54wu7xiE+fjgAIr19d43J7IYYm9QqSRgicxhk/3v+A0xhw9+kej4+PGIYejW8w9IOkFuWie7Z7hYBLZy4jEoZTxuw1nJcAbV/vEFNEmKV9bAwl5Snn8AIw7z0RCsDNj9bDVL1fH6wMlmSjUH4oQAZrGhRDczywYG4pSTSNgqvFmQKQrQZc7lsOcxEMhfxEEbIILhORwuht/BXgzossXgXTxmOM+PTxA8bTiK7vcXF1JZb9vsWvfv1rTNOIz58/YZxGjMcDxtMB4NJhwGibQWBKeX4xzoixlacTAeQB1wAU5J8yYFMkG+/FeNNY7THA+9JG2OidAQnJdg0uLl5itY44HgOOJzGgpawAQVoHU1HipPB3C+cd2l7CY9u2w2q90Qivt3jx4iXG0wkPD3cCYqRyp3onpVA5a10CGPBPjH7o0Q/axUujE0MImMOcazBwStg93uP9pwOmMOP+4SOO4x6u6eCGNZxr8laVCB+qD0hFb1DhWgRIDYiW8KPsk9XJKZyQi93CmFKlqJjHrqZ/UVasFkkCsctKWGIpiM3OFaCHhGwos/OsByALj8wX69Q0FX7KByT1OZb7oNzTPJa1cFqAJYHEuXaBnMli0C73FbpzREDXwidG4wmcZL2GwaNpCcdDxHTSoruVGcWwoZ5OlTnl1JajWP4utaSKYpd5IzhPNytluheJY/YYt12PpmlxdfkCX3wl7Xi//uWv8frtFxhWG3TdCsReah5wNHGYV8/OKcNkJUQRIimCz2RteIsHkAPns9o0DpcvrtB20gyA2GM8HvDj+29xf/sRKc1ajyzWqATO6I8krUGzCjJQ8pB/rSO0zmFyHs63ADHmBFBI8I1DahSoGP41+mZTIGTxEkyuoAI5mR3KlsG830DnZXARDr5rEECY5oBxmkDOYUwBCEAPMV7WmGYBnBTEy2NrACH7maoaFrVhRrVckPdnfOBf72UYao4MuEYjC63oeinSbGkfcp6EDp0vZ9MUuFxBiE2xWIgz5DpdicS2YTJTNqyc6WoN7eWsJpsrrctdXmfCeUSYcYz8OYRfN61H02ptGb2HeFkTYlDgrPTCDOwOJ3z73R3iPIESYdP2aH0Dr9F2fSsG3zevr3B902CeJ/zw/iMeHvcYTxFhCiDncHN9gcurq8wjYgrg5EHwOB6O+N3vfsDhOIKCB0WPxNrEWZn+gt/lAquKQPM6llk75wr+gNCoFWiO0eXvpSj1Vq1TVwHvZth9qggu+DuyiF+8aiMXQc8mFWzNKI6/GmjbDExx0t4rKlboSa0o423Vf3R97JaWamX4mxdrAkdl3nnslUdfZWyIETwxfvzwI/bHI9q2w2ZzBe8brDcb/PrPfo1pmnD7+RbTOGKexlzPUkr5UOar0GwE1vTxOM9IzqvMFcyWkBA55jFZAWpGQtOI0WSeHRgRiUOWp7IMTqLtnQdci7bzuH79FttpQmSPoIEETdvlNC5LgZOC5xqtPawkerZt4RqPzWaLm+sbdF2H65c3uNhc4DSecH9/jxDMqSayStL1WOQMyW7OcwBRQj/0WA8b2WWl3ZRYun9yQgrSWW/3+TO+//A9xjDjeHcLnk/grlHeJEYnqQnlKspxBWNnumUDTk94gn2U6biiRzK8bxFplG8DE9fJ5A0rb9TPvXeix7DplDYO5ACGpE6UQvMFXZwrzWYcl5pBtXGjOHecM6cgg7NxxB5bkKIZcZnPHUJyt6R8RaZvUSflmZzMiAr4xuVaezGyRDUlUVT6zqPvPMZTQpgKFjlf5wzznnvVhgYzkBDK3p7xRnlruX4MgGNCCJKBsb7Yoh96XL24xle/+DVW6w3effkNbl6/RdcPABxCSLoTMjhnQt9WkaDOU6UhJ2vXeDHUofHg2CAlxpQCIkfBIA2hYY/Lm5foVh36zQrsCKfTEbcf3mN3fwfmgMgnlFCZ8lwmMSobTzNe6ZjhFUs1nlQvcQA1YABzlBIFrdf6TNXGVzANVH9whkOymk1GcUoDTiwUPawdFMG1HoEJMQbRr8hjigEUCK3zQNMoXZaItrpEgi1yHo9hpmR4HjiTipk+nuvs/tzr5xubTnN5iCy3ApiEjCphWJq1kJmCIlfqxOQoG6/bxlLgyr4LO+N6Vo2p2EKLciQV0AkS3WHbV+n9ovg53Riy4tayeOV58hCXZ0XaOF4KEDa+kfobThgqEUuKCzskJ/+ISItSMo7HGe8/PCDOJ9AxgiIwrBusLlZIyWF/TJjnCTfXa3z5xQ3mMONvfwt8+HSLeTpht9sD8PjF1xu8efNWi9GKMUiK4TkcxwO+/f577A5HTLcT5oeAi+1WvCl9r6BtqYAVPvHUyAMYQaMo9KR56N5L8TWS4mOhAiFGqFEjXQptyOcGfHK4Jgp/W3SgqDhUhrL5OWWX1IqpycgC0qWworQeF0UGmXFDuw3Ux8C8leXeQA3sUmW1ddV3CIonnF2Hos9kpc7lcElmiUL4+OEDPrx/j2G1ws3r1xiGFb744mu8+cWXGMcR6+0FjqcjPv74gxibgBy1YgUhmR3gJBUOYDU2BVHuSNNjqAG7BpymvJAWxtp4DfGPmgqq9VoaZ4zdrNqEmCSS7uLyAkQOIUj4+DhOuL+/xThKN4dJC+3NcUZMEcMwoGk2IDTo+wbDasB2e4nXr7/AarXCn/3mz/Duiy9wf3+Hb3//TxjHEa1v0LgG0zTh8fERYZ6x25+wP46aZhLAIKw3K2y2G83FXsM3DR4fH3F3fw/EiBADXIp4fHhAeP8t5jDjPh5xSAHd5gLr1UXmEcJ/AGbKf6PiGaxgqH4R1TRiqgueXgSDXs8ZpGBIKTP8FGO5jpae8RLlmmAHjZOkAUqyb6MRSAQr+J1PWC3AWJUNTrmjhAyFChBkRnK1N80UFBU8hNKVgnnBT+xeGWgoyivKw9Ip4JwT4K9GNecZHGXMq77BaiMK2+6BVBm22itAyMUMCaaY227UkUPG15b19uTKGGMupGxnJM+p2qqUEsYo6Y3deotutcbN23f4d//xf8bl5RVevfkSL65v8plhAIjIXSbJW4rxMs6zGDnFy+5Yzq+tT4xRataw1IIoxqYX2F5eYbu9xHrY4nQ4YJ4mHHdHhHhCjKdKUUUBqbZiBPHqq13FkaSxNQBaIimw7z2cawEkzCkghYTWMSKVor5lIgUoix2qhOUbXRFhaWzSs+WVHHtHaD0jOY++HZCoweNxRNBqyGOSKAcGy9ggnvtiaCqGvHPDIxktVrJ+4YO08+pcbjn+p3iZsUmJRAZqWIRI0xyULzNVNSUA8rrWqmRQHreeERPBBYqVWkYApHlhOacWtg8qkdD1y1JiLJoDEL5l0QX6Rp6OPNpGpJzQ6gpa0wiy1s0e4CQpwiyOFOdFrj7uT/jdH27hkfBm47Hpeoxw8GoMkqYaHq+vX+LV2zcYxxExHjGOO4RJUot80+Ly4hJfvHuH8XTE4/29GC+4B9jjcBjxT7/7PR4e9ri+fIMXmxuwde7J/GxZh44qTFHSHfIpkKL6hjXtZyM8KAQxTqSUEAkga8Wma2iFuoGlYZzy4Vni22ejzvR943de71MMYyhKc948U+9qFaLC4YaXygPKuCn/Rz3nXC5h5I6AJdpoibVAxSiQdQKVNQxo+lrE4f17pB9+wHq9xZs3X2IYVnj95jVubm5wOp4w9L00Ybm7xTyNABheDfWJSbpiJlGKUmVsitoZzTuJmoos0UKkzM1p0W1PCW1jTjUHZmnyYtFXugB6nluQa9E2HjfrrR6KFgyPeZ5xPB6llhNIa1Zak4iIDW2x3m7g2wb90KPpWrx7+xr/9t/8FTbrDa6vX+Hi4hK7/R7v37/HNM85vGUcR9zePmCeZzzuD9gdTkiJMc8BzMB6s8HFxaVGKMl8d7sDHh/34BQQZwbNAY/3n/Hw4TtMKeDgA5JL4DjAjGlWCN1p22wGciT0wmDNDMMuhYYLhbH5yKr3rVZSfZtlpNMS01j0uy1/00g7eLBEWafIqAOEwKKPBm2I01R35bOfSp7VadAzD4IZ1uw60QcV8+TnCWGTnl06p/3ljKqfbBp+1otsiVhxj3de7F+6Ps4ROIre2g+EpiUQIg77KsU936PoN0/Go7Kh3qo6eyd/H+rgP79vHqximZQwhQjfNLjZbPHi+iW++PoX+Pf/+f+IzfYSq/Ul+mEt9aVSQpij8E8nRvhcW6teBeW7uZu7Yl92ALEHUouoTT+k1Ig4acg1eHFzjXT9EuvLSzTtgOPhgDgyxt2MmEakNFV6LCpjI1cNGgo9OgiG8kRohPVj9g5ACwZjjlmSo2+e7r1Ca+OgqLGrPd/OgmAsZL5qgQ+OCL0DInm0TY9IHsdxxP44AgRMMSDNCalpNKCECj+uBlE7KUr8GMGqDBiGyioEVcFF7l/B2FS/DMTaAXZVKhxq4VbGlo1NxlDqSKUMiIAi7GvK53KjEj1Qg8wzzqV3cLDr/zdMTg0vlteeJ7IQthXjsbFpgbrTcUKcjkjk4btelPZTwjQTUvLo2gbOSV0oKzzYdR2kqF1JXRpHMSDs9wK29vsjjscTTscRxKReQ0mhiinJoUglmuBpuHMJ6zsPwT4Pg89pklmZq7rQWGRTSqXo8jMrLVERdnjkmfbeYlx5vPU4noKq+iNODHYSEWMWfFOQz70IyM+slEtlJk/IZzGuMna70Pa79uLVjDmDPqXDlBLmaQRB8vZ3O+lM55zUK1itVtheXEp49DzluiY2ptpLyrneSyrGukrGZwMvOcBJfn3yasRSQebMe+YbDKsLNG2Hl9ev8OLljaZtDpqfL4BrmiZcXF7l+gizdtU7nPYSit1omLVzSDFgmkY4B1xdbbBeb9A0HiHMCGHGNM8S+s6AawhN43H94goMxnoz4niaMM8B+/0JMUQQMw77nbQ9JZ87JzZNI9VqRklf5HlGmmaEGBCdA/lGoyldxQOqRa1eWRkuC57fKeTzlGb/+ddSevNyUxdgI6tpmb2cGypqIzFD6oRQFloWsrsYt9KlhHE/VaqpOpt1XTzKh4meXnt2l6LMcAaC1eN1CfjJmTawmRKDokZcqkHJOcD5yjDI9cmr7kUWZ3Om9eJ5vlcbnliFO9XfMg+Wc+iaFr5pcfXiJS4ur/Di+gbrzQWG1QZN28r6V99dpAMYD8JTnliPg1mMBo4hYc9A5uWSKmdpAlaDwsE3EinS9QOGYYVpZoTQiNFCI4ElHZoqGaXrmMeAfCYyeCJJqVUbDTgyZjVwJoIUyq2kbTYqQZ5l3C7zRnpOKS7yxiIBLcqKiNE4oPFVFIgC0RjF8GyRUWzAD4vjtdyPClPUFLnUdwu4/d/jVUQri2Im70KiG+2cn81Sr+dKfj99ZV89snah59MBKgs5n6vlmGwP83+Wz178yoXE6IzGQLC0FTH6PnMjm7t9wwr9kkdKCYfjhHkUg2T0LUAJnkZNOSG0zYCURAGWBhgSYet9C0sxmueA02kCc8R+79G3wP5w0jSiCAKhVQxlhZwtshRANhzV5QAK1nhmjfJ5U3yCtOSJtQLHFVah8rn9XPKwSkoQFePu2eucz51/hmosT6LLibJMOZ+RKc71mzl1PuPDQgMLyiRazI9RFHEm/Z2sSQoB52Nnw8IjAMLxcMBhNSDMUu9yWA2YphWmaaOYdYbV7cly1TmpIEel+HWJ+pLo3lwLTcfvtJOZcxHeibFUjAoxF5Qf1htc37zGerPFzavXeHn9SiKAGusySXDUYA4zDocDwjxjnCYcT0ekJN2Fo5Y3MJlkP9u2wdXlFpv1Bs4RxnHENI2CcWKAJzGi9UOP169eIqWEzf6Ax/0R8xzw+HiUDsgxYr97hPcNhtU6p/Y558GUJGVunpHmgDQHzBzBjcgar/VCDQc7Oj/LmQtkyCDkUEm+8y/QUxR2zsoKbS6dYJUqiDNylpGQPDvfVGXF4p5ANgxnHmS0j6ckuNSZRFY9PffPjIcUxy3OF1cXlXvkc3i2DvnUZytueZZTJ2DMDngLm7DyFUbT9Rj0hs+cMVYpW3BkNb7ncHO2XJXB2hx802A9rNC2HV68vMb1zStcXr1E16/QtL0ETxh4NblcmETRu56shvww/6c1mvBeSjqACD743L3Va3mYqB5cc4C0rWQNdX2PEBIii7eDtTkXIPyNlFj5zMhItJh2OR9O3M2RI+bIaBxlA6fD+XzO9rqis3p78srr3mW6pbIWErtTutcTqWMqifEtOqkv5eErXebnazRGG09K1SiGenKAn3n9bGOTWPVLAVBmRkgqmFksvKgMFALkZDVcNfnEViDUZbCVCdlC9rgqFk7Q8GQFLdAi0d6sa3W+M9dyT73oyvS1VWK5tvzKXA6JjcU5QtdJnnRjdW5QgLoBYmM8xEDb9lhvtniYZ/z+u8+4//QJ1zeXeP12BIOw2yVMM+PFxddYD6+Rknh1G7/Ces14/UriPdu2wTzP2O/2+PDhE0II+LwChg543O/x/oePmOeAm+0NXl6/wPZiixACjoeDpjNodwhn7YCbXNBQ0v58EbRnQMjemzW8N9meoigkyHsrxcmcCu6kymJ9CL1vMth4Et2GwlzLllFmoonjM+OztU9Sl8cRuJX3iZAL+1IqgsWYtRXpJaBEa6A+t0tBaswjg0NljFnZIfFoMoAGUuy0Bm9ZWQTj4e4ORIT9boc//OH3WK3WePPuC1xcrLFafYW3b9/hdDzi+z98i/1ujxRnpCDF65pWivNGlrpJMUxIYQbHGUhaYJYqD4F2MZQxeLQpgeMMzwE+zRi6FhcXl9hevcSv//Lf4+LqBX75y1/jl7/8lXZKEWU6BKkxkBJjGmeEkPD999/it//0Dzge9/jh/bd43N2jbVp0fQ8wsNs/Yr6b8fbNNf76r36FzfYCt3c7/PDDt7i/f8D79z9gmiZshgFD3+PVzTX+4//017i42CKoV+LxcY+/+/vf4eFhj2+//QP+8b//A5qmxas3bzGs1miGNTabK8zTiM+fb3F8fAA/7MC7IxiM8XKLpu/Q9AMa36Jx0pWEELPwkI2vFLk/wiuL5f+pwemnogWtiQKdXWv3s/1JSWop1ApCbQi2sVnRTLAH+k5p3WVAlZK17TXjd6UoJRIn6DPKRU2ny4jDsk7WpUg+M3zGeqbqmnDlvl6VCmbWouipAhZa6DJJuLfzwDSypG2lgK5L8J4xjmo3R42NjN+bgsYqF5DH91P7l2uoqCJqNRdIAUtgKZ44bLa4vn6F1XqDv/p3/xFff/0rrNdbvLx5jaaVegDTNANaD42gkSAWyqOC4jmg5JwDex2kijgfE5qmQWSJpppjhPcTwEAIAdM4Y54mJI7wrUPLUssEkbHf3yGmE+bpBOYA5rCo25Vqg7SOKdcjcRaHl+C91BaMKeI4zgiBAQ5wzGicw6Zt0S+8jYsFzvzUaZ1DALkzGFUbWGgc+mxGA4n8GDyQ+gaJGVOaEELCyBMQIxpy2LQ9nGv0Vl7pD5XcUeltMtkENteFnMuwS4fMP82rFEy1M6MNVtToSDqfmITn1rInK6Jsnd7Uu69dSotWYoqWnWMGISoQFWcYgaq6HUW5qM+wKClcHG0QRbuOVNbHyKPZavCZAdtat3fotEipYaa6wUxUD7QnDweHrh2wWm9w2O/w97//Hsf9DpuLNbaXW1HicYCjBpvNK7T+Amga9N0Kfb8BOIJYWtNLo4s77B53+PH9B8QQsH9ocbFucPfwiN3jSYq5dh2uXlxitR4wjiN2O6unJbzBCjj7CkNJGrMxwrI2rEpcsmL5KVS8smCvsqKmvJI0YQEW56QYm5fGo3qfnsNv544v+1lHm9s+RsVu523p62fJPhuN5P9UnV3LGJzSlA0r40ZXaKy44YQ7GO+QMl5VMqzhTQXpt7efQOTwuLvH+x+/xzCs8Ob1a1y9uMT2YouXN68wjid8eP8DDsd9MVYQoWtLRzIzWkl9LwYnIERCCDIXc6s0bQOvczXlPkwnzPMJ24stvvzmG9zcvMV//J//z3h5/Qpv373D27dvNSpKZEGYpYtvDBGHwwHzPOEff/uP+P/+zX/FeDrh8eER0ziKoy5FcGT44ABK2K57/OVvfon1ao2//fvf4be//Z3oBYcdEjM2a2kGdPPyEn/1F7/CZr3C4/6Ix8OIh/tH/M3f/Bb394/47vsf8N/+/m/R9T2++vprbLZbJG7QdwMCEx5OI8bdA+LhgDjOEinSX2G7GbAaBjROmkk02tEYCwyFzGtSfSB0byv7wIJpZFa1+GWJpRaRyPmcFYxhuIQ5ZWMCIFEfiJrajbS43zwDjfPoh050WnWWC12y2Z1KCZYzA4E8/2nDlFInN+UxEwQHJTBgXe7YMErh42L8LEbpHEyhp8QcD0CCVCWQ7ATo/E/HAO+BtmvQtgyipA2CAERCisVAUZZ7CZTIuZIFQrXDx/jSkr/Ue2Hvsc2fE15evcSX3/wS680Wf/5v/grvvvgKbb/CanMF5xswnBj7qTjSzcpnTiUT37AiN2Ypc4W/GPb0PqFpRH8gcpibmPc3xoBpmjCNIxJHdH0LAuPy6gppmnEaH4H7URsEBEm55kKPqByeyTkdipT7qK0QjXPouhacEk6zRCzOiZFIjE6D97m5z7n8NA1UlqA04kgxoSyEygGVP/Y/AqPhAAeH3gGpEwwV4izdfZskaX/kMHiHRuv7mjUk8dLxujDyUWWfQXE45neoRNH+c6+fbWwyA0spyF4pLpxPUCbQksJQ36VYqpeW3JpzPSXk8pkNxuWQbbnWmBUtr0M5GLkUKxvQpQIWqDp7XASid149Gu4JyC7X6xz00JjXe7cfcXu3Q9M1WG9XAAj7w4x5ZszTCE8E8pa25tE2EuHCCthTipjmGfu9CKgwMY4tY3884rg/IcQI2hKGYUDXdhI9E4N2jLNC4Zz3oTY2nTPK59a7BiQ1YUHBgSkULrG0eEwMRomoAosVmZyyTlXCnkRWETKh2zOykKq3fDEOZEWXE8G8WMsd0h2z/c2MW6sPsVvcVUCRMpaKbkoUBQpIMsuyMQgog6CnRgdA0mvmaQQzY5om0OMjLq6u8ObtW7StR9/3cK7Fodvj44ePcH7Ucc4i+LTeRYrahcGMvNmwK4vCrEoCITMAj/I3gUGc0DTSYn2zvcCbd1/i6voV3n35Nd68+1LaAbsmG3fFyEwIsygJTdfiYXeP3a7D/eMnTPNRu981YjwIM06nI4iAly8vcXFxgbv7B+z3OxwOOwVcs4wLEsXy+tU1bm6u8/7e3j7g7vYBjoDvvmXs7u/RtC3W6zXACeumQ9MKUw8xYZxmxFnaDYMIzjVw7QCnKbBFcJknvqaVcvjrWLi87c/oouf7uwT/xmee0kHmLbVhCbZ3pUbBkobLM1KMIuzqMRJpjO1SiInAdvnM1QChPvu1J9w6u5S7AdaJopqCDWhhaKrT8ArAXBqpDLTnlWZJCWJILcAYZHzOG6A8u6EKY1PQ5H7FkJ2P5jOKWD3XOiogi1iN/EpguKbBar3B9uISr9+8w5df/wJN06Ef1mqw0I5rWrewdCg0wLSUQufrXS9k7R2kRAiN1MhIIS2cArnjjhY87oYB680WIY5ofIPovCq8DkgSjcTnPArQ2nkK5jLByH0b9a4nJoQEzIEx+YjkGCvfSPMBg0ZU7mnGrTz/QiKwTamoVr2EyHzeuh02zqFtnITgJ0sZiwjMYOeRmgJ6jAXb2SPwsu5+xduzTEEZXqGhP+0rg0w1LJXtL86R3OHJDJgo82Su6Bs1hio3N1hTrpP7yyWUFQPKIfPLl4jlWs6V9/PvZ3NZ3sfW2oyaviKLp0qlPE+oyXmPpu0AcrjfHfFw94iZGa6VCHBPDAePeb4UkE+UZVbTevR9MWSP44jjacR+f0IIM4hHzKPDTiM/YpJ29n3fi7E3CuaSfUiZx/jK6Jf5jvyR16Veb1uJHBleYYmyDkW5KI7O8nrOcFR/9s/xuOdoOxfar+7xBK9Q4bEL3q3HabHXFX5DvuQcgz+NJuTqhpmLkEbBq0E205eegRgTxtMpK1Gn0xGXl5Iq2Q89nG/QdgMOhz0+f/oEWG0/pUXrGA2SJgRNds4YLpS0O2cPrtbdRZdxhJzNiK7rcOF7vLy+xpdffYNXr9/i1evXeP36tXYaFJng1DAQY8J+v8c0TRjnCd9+9zs03iPMQWQSl+7erHi27Rq8uNpitVojxoj7+3vEGDDOUsag7xqAE/q+xZdfvMbLqws87E/YHUZ8/nyHD+8/gWPEH2LA/e1n9MOAm5trdF0L8i7X0p1TxGmeEUNAYAaxQ990aLsVmqbRYsiFFs32UfMvIWFe1C3LOOCcFMmI6imOqt97givKLTMtAdZDRb9rdJpvUsZonbXZjBqVgaPQ6vK8uop+ijNuSeP1mVvIejzVSsrckBfQOm4/1Xk1SsnU/fIfTV2VFKcYtC5hSjI2YjHcsqUSVhvxDL+wJ4mcXPJy61L8bITWc/PS/7V9h6vrl7i4uMLrN+/w5t2XYDhEeEhGSBmLOfyK3Hga2UQ1UQljqGhPVllwWELjI8CEFIPqL67QEms6rOpAw2oF5hneN6JXCQLUvc4SrpKZhlmqselPq+ccwYhJutM1kTFH2ZfWOXjOw1/sc8HG51FNrGRNuUSORBjpuPTbDgxwgicJDKKUEGKJbAouae5fXlA9hpUcqdb7OcXn/J2st/+Pjmx67sE+195wGRhLJEQJQWaWCCgwpK2ouqrNq5DvRnawsDCOZO8cmb1XBXw1EjlD5WibJY4Z6r02huBNqizmYqCYUdptCrB3OTQPLOA3hKgRH5ISZC2mZXwOQz+g63qw9wjkcL8fEb//rMxB7vW7b7/H//K/BDARPt6N2J9mjJOsTWLG7e1n/P+I++9l25IjzRP7RcQSWx15RUogARRKTFV39RRnjA/AVyCNZuRDknwA0mg0Ds1onOke667uklAFZN7MvPKIrZaICP7h4RGx97lAZQ+7iws4ec/ZYokQ7p+rz+8+wDhO+CDtM8dJypemMdLansbC1eU1L16+5GKzYrFc0LZtIlYuzwypjCtlKp2DmNr4qonFT4TJmcFYPM0yNNbalHKo81IWsLYV1/d17aSbgFjSU8vmqYFI9QV1rCDXbDTF10qr8ayrKmVIfa20LYEcffxYmZUqUZPGRDPqUMdZAjHp03pzeVxPopDpig1ddQWYxoHvvn3Fh/fvWa7WrNYbQgjcPr/l8vqSw27HbvuAn2fG4x4/Swlb8BIF8SnDqetanr14wTxOPNw1HHZbiS5MyTufWqwbIm3TEhfw45+84Kt+zdXtM/7kX/05l9fXXF/dcHm9SQCpGM/WWubJsz9sOR4H3t+94dW3X3M47pn8jOtaGtfSNh3GWJbLNcbAZ598xnKxwFnHYX/k/bsPHA4HIAhvR2vpuoaubYTYsE18JQauLpf8/KdfsP/klmXfcnV9yX5/4NvvvufNd/dcz56m6yULZbnAxhtC3xLWC6w19DfPaZZr5nHHeLgjThHLIqWE2wKUy+LI86eTFHkqb3OmyAkQr8pNdc0TC5dZBSJ0lYkBVvbhqUOmuisrjQrkjUIo7oPHBnMChvLiqv5UoKAcIx9zkp3/ffKjeyGobIwCaCDX7Z87nNRwUjtVHbQmGRMZKyB/t41LgTSDn8UA7vtE9Dh6xhCE1yh1pgtJDov+URBcSIxrR/a5QVav6TrLKYQAVhz3prF88umn/NGf/RnrzSXXN88ScbYT3igTkqMmgZus7nUKPg4vPxYNrN7M9+Y0LTyVMQD0fUeMkclZYpBoYNt1NH1H2/W07ZIQpLRInRTidFYhdnpd7aikpSGShi08bkRLYxu8lXTy4zTTWMOqccgWTa2Wz56tZH8+tSwa52galzr1pbWi6eohgvFExPXRWoc1kr1lUmr7lJzrPgSCPe1EVEg9CwA0GRNAyTjROTh1vP6+cqT/WkdGPGm+S/er1AlMHQ+VIwaidKEKvlr/RsquY5ErULiWJNhUnjOqQFPbvjbIft99njkjRGalrqdR+eQqOZgGOoaStW7SXovp2XyQsucplVPP85Qz3w0SKFitNwzDyOgj28OIcUfpzmgtjT1greXXv57Y7R4JEd6+PzAcBB8Nw0yIkf1xD0SmyQvpctMxThN+GpnnyGp1iTWW6+trbm6uWSw6ur6VtvHRp9Jj8lzM3sM0Uu9tkb5awp+6XmkXVZIs0HPkcxVjI2MZAVGCMSsckeei2rtPgmDV8TGj99xZrZ+TbABH13X580VnFbldHEOyforuK3hI9qA2Oqj3kxjvIejaqe5PV191vtohHKtrYsSIa7sWSJwtwXM87Pnm1df0CXN33YJI5NmLF1zfXHPYH9jtdqkE71jZHAE/S6awsYbVasmLly+ZppHhsGcah7RWiz0QvDiF1psNbd9z8/xzrm9fcnN7y5/+6U+5vLxivVmzXneJN032mku66XA4cv/wgfuHR75//T1v3rxhnCYa51hfbLDOJUdrw4vnt2wuNnzx2eeMw8w879hud2x3OyS7cErBAcNy0dF3Lc4IIu1bR1x2mJsL/vxPf8Juu2e1aFkuFwzDyONuy/39HZfXz7l59inWBRYXK6yL2OsN7rMXcu/LBaZtsczYeBTaAyLaFOLUhErrPZTMIJ06604dEzHGnE0XUrVJjNIlLI91WqvzPIsDLuEOIDt+6yBTqLF+rPaCNWCslBhRZfYluR9MkbNqPMj+jKg1E6r9UyTmKa74Z/WInr+WpzE9k4CpwoN0gg9qKxcFOwkvlOcUXS7yiCjVFn1v8T6mH+14TepTEzNO0jGx+Xeh6qgdEfVxEihV/BQlm8s6x+X1FV2/4Isvv+Srn/yM9XrDcr3J3JYqGzUTXKufBDbF6vdTXKX2pvyq78XqXtQWNcnBFGkalzI2YdF32WcRfCqf7nuaxYLGj7hmIUPv5T4KhhRHkThSC+6QElOXnMk2dddVnWtTs4DIHCPD5PHW0DtDtC7ZhFr1cmqPf9ThaApmE5J7j3Y3zVxigVQmZ2mtIxjwsYXoIMI8BaIFbwONZgzpeqrW7oleqeY3RlFR9iw7XObjDyGJcvwvdjZhTAKdsRoIich5r4aIDOg8CZFwvSmNkTIpY5KHneLDNcZIF7ikAENI7bdNFeExUOjUBVifZzipgWSMpj4bEVymENjK/9WwEkNOhaE60ZS0MAYRgOM4Mo4TwzCIxzsqwLWsFiu2/ZLoWiZjef944M27B5rGcn29pl+0/PJXD/ztX/8jxjjWV7d0i7Uo7kYcP+/e37Hf7aR72WKJMZbjOOPnkRigdQsa57i9fsbnn33GYtGxXK5ouwY7zyX1lCIIx3E8cTCVluW1wDwVmsaQx6k2sE2MhQ/LSKqoACrxcPqcFaVKQudDDptSTvMUqnEaqepaE6lj7nPFqaFqHW3Xp7KNity7EurqNCiVlla6VYDwOxIrNv0oJWnZmaDyL0Ag1fyrYHAocjwFV6eGV0zjirU0jQAlTQ0eh4Gvf/dbYoTbZ8959uI5/WLJi08/YbFYcffhPe/evGE4Hnn3/cA0eXHWzvLjp5F5PNJ1LZ98+pnU8KdyhGkc2M/btOcCBI8xSMe4puVHf/Lf8NlP/oSL60u++uOfsd6sIdrc3r6mKDMJKI1vtjzuHnnz9lv+6Xe/YponFqsFTd/TupauWdA2Dc+fPWOz2fCjL3/EarHCWsvuccfr794QE6mmc4a2aej7VgjFO8eyE4cC1rLqG55drogh8vnnn/LTP/5jXn3ziv/L/+n/zKuvf0OIkdV6I51pVmtWyzVwDbzENY7Lyxf0izX3b77m29+8FnBGT+Na6gjNE4UW6whSvf7rvSTrowZFBcgXw0yiJLL+s/NdnSJIx5ysIaujBgEGQ6oCJoaZmNanpAp7GuvKZNU4yJANHww5cnZ+nfPI9kdfC4k7iZhL/ur363E4cWgVq5qTTJrKsSdk9S6Ps58irjEsl+I02e+8rBkVEAkIhRCzgaaEiXXZSG1U6T3K9eyJ/FPgO/kZZxzL9Yp+ueDzH/2If/1v/orlekPTbjCuJwJjKotsm4ZGM5qqMu6yduKTedUjOxcLXko6X/SHTdwimi1ojWWxWGCtYxydGD3W0C06ukVPNyzouhUxGuZZW2GH5JQIJ8tbW4w3jRPiZlPS1Z2BzgkEalzDHCCEgcM40VjD0Da0YtFIWTnl1CYZVSrvTiCyMUJ627cSgQ2TpIZX+gQ/p/uDzjk8htl22GiYxoFpmgkmMHsv/CbWSWawMUKSW7tN8p4yxUGquj450euy0X9JZ9OJ00AzZZICzNmXRGIq59RuXjFGKceZp/R8oiVnbDZszVlJoEGJvw0heOFzrBq5yGf0vjhZJ6rv9Z5VJmmGkhjfyaly8jmZ1xAgBtGp1qaOf5CzN9TRNE0j0zTlbAm555bN5RWH48hxhofDKFl2o+i3tpXyme+//55//x8Czjqubl6wXK2ZZ+lmOAfPbrdjGI607YLl8hLjDMN+YDweaJuWi801fdfx/NlzXrx4TtMY2laCAN4bYM5DFWPEz8KTo7JDHdzO6pYvBqQGVE2STzF5m2SqkzvalGi+dD5LCCl+XFafH3Wm1YnOOHM21d8/X+vqbLJWyg7neX5yHV0PSv8uBg6C/3OjipnMkVQ1clCXksp9DexB4fJMtjYQs5MUYwq01/1sDE2jpToyF/v9xMP2EYDnz1/y4sVL+q7n088+o+863r9/z5vXbxgT15EEXIX6Ys4yx7DarPjUfcY8TXx4947d9oFpmjkcB9H13men6MXVFRHLX/7Vf8ef/cW/YbVa8snLa/qFBhOTk091HAaHIfjI+w9vefXtG75+9Q2vvv0WgM+/+JzLy0u6fsFyuWax6Pn5H/2ET14+Y9kvOR4npunA/cMj9w+PCM9rpGksjTOslz3LXpxNFujbhqZtuFj1fHJ7RfSB589vefb8Bd99/5r/6//t/87X33zDlz+Zubq9xjaW9fWGxWbJcrlgs14BcDyMzLPHH++ZdjtMDBgTEyZXt0FW8gkTkQ3PPG02nuwjCXyPqdxszskJ0p3Pn6xTr/jKe3xam23b0tCURADA+HMMRaqoSCZ95kgrXKc+YeJTJ1D5Pnkv6mu6d57Kxqe4KT79nDqhs5wozqYYyrUqtJn/zdmUxlC6OZHXL0in6exscrBYNsw+cDhIp0FjUkfTWMqm6gYqxdlUGtTUDpAaU9UNJWR+krPJWm5vb7m+veXHP/kJf/Knf0a/WDEHVwizTcoYNe6JzsqmO+qEMWdvVE6SWGEpFD+d3l8ITeLjMwS/oHENjbPMXjqWdssl3Wpk9jNtu0SZwE3GtIHsD4winxTxtU0jGApJFrJIRlGT7s+4BoLBxylhKFi1hugMsZKDp/lRqTxOxzs5TDX5RpJJAnEO+LS+tBRTO/U5a+mcxWOZNeNonBnHmcaAbwLRhuK05OmRM/7SZijUSFDzMiqG+2gA9SPHD3Y21SVVRgcpecZOQM6ZsjsFn+kz6r0Uaz4LKHH4hKSEq0Vkz68BhVyRfJ0nrV0j2SNZH7WQNNVc6/Tnv/PmzuLjIwZaijSalFmTQJkQkPXEEBn9QPLHpJbCqVNHjMxzwMyzEL+aNnlnSyeXvu/FSGVmNrPccxDivn7R0XVSUqTcCiIgSoqhpP/FJwujdvydG4x5GJLQzcK3msE8P+cv6bIoM/30iMUYKxHWWJ8ij3i5UnkGJbnuuh7nHE0jUR4/e8bDUHVLCMmpKTMuHBFJ4Y2SRq/d2YwxdI2VWujK2xxJpTUxEbDX41k/UvXf/HyxxvDlC+pY07bc8zwxDkeMMYzjkIVl1wkP0mK5IobAOB6Z/ZwAkETnbCKXt8bSdV0qyTNSqxw80+iY55EQDf1yRcSw3lxweX3J5uKCRd/Rto0AvoofpxbzwXu220fu7+6kRC6V8iwWC0lhN7J227ZhuVyyXq3oui49oyqjJLxjwEZpWbroe4nKqSPYpHWgCsNC17USde6E9HX2XmqrpyMmtjTtEmcbXCPOR1WY0yA12FLkXkelyIBfn1VeimWOaodJljEly0e45+RZ6n2VwUSSME9lX3Ha6v7P19JVlxaHrQST7JGyLrNj2Gi3xZPVR8ZQ1fXyvtfnjxq1ITtwFAjV93Syds/eOvlUNijOX6qe4xxY1FcIAlZtkqHid0xcH8YQ1DGYQUV96lMpo3+qHPxYNkD9Wjm1SRmTlqYVoKJANculc+dg0i9PS7jyU5/8rsGUrJtOAFPRn+pAU1CowQEN6rRdz2K5YBqW9ItlusJICDaPXW7bnPSptIA22elZyyaBOmIENtbSOieAJWgQSPMXiuqWZ/oI0EjyL0PEFIASUH0+QmVwTTqfRAmlvbZPkbQA+ChZ0o0xuYxe9ZhNz2X0fOmwxqR7LhnP//86Cv9FBTbTvsmHgkx1mJ2AuXNtWmSN8o2EWDqwZjWrmOzk/FQqqZIT52W0eplKM9d3UfZU4TU0Ieeol/2ld6uyKyiuMJXIkbtRzhsF2MIfGIjO0nbSfn2eIyHMgFAOeG09ntaB4ALZw33fCu6aG4yXcywXPV3X03YtrrHYCmMqBhNdpJNUAhFZHyge1L+yvBejRYdbRff5Ciw4hwovfET21t+IsQj4kzVU467q2x8xBNSoNdbS9wtc4/CzT0FCzzSNJ3s1koK0mJQpEVI2w5iwb8CkjM+2UUdwXiBpXZI6KNYOr0gWnNFUK0xfMk8eqKxADQBLRtk8TYxD6pI7TRlT9IseY6Dv+7ROpCpB9LjgXkOppGi7lq6TsjyMTdUY4giJxrIOgLFcXGy42GxYLAQ/NU6CzjrD2enkI1Nq9PP4+Mj9/QfmaWKxWOKc5fLyiquba+HKbDq6vmOx6KXDr2vws2eehMMtD1lyTLSNEwzVpvVNwW6acRGtTdnj0iUvBJ+btfhpgKaRLFpn6Rcdy9WSEAL73Z7heIB5zKTDangWzrlY9kOMORim+g1LzrRVvCF40KfynhLY/70BqwqomZPnrwPjtZ2gsk2TEypMXq19xaZQqGFAjXyyfs64R9+rsJPurxKgruR0vlkqkKnZgic7oOxwQ3mOKgqfeYFPQM/5pkhjknoL5YwbW7pjFgeHDmn1ujk94SmOM4SUufhRDFXZS9ZanOIVl7jLguIw/exH7ELVS7p+zt/O36rl5VPZlvFT9ewxVn+nBJLQhFxG5+eBtlsk+T0Sojh9pMlSmuO0/lIuK8bY9C/5PmTfkbGbcxE0y5eCo9JsZR+KBsA/+khJp0iAxxenZXXdkzklYpMUUlLykPwNnpgyowLiiC32RAzJ71I5mRRkl6SUKlB6slh/2PGDnU3DOMoXbINzkpom7XjTBgIw0l3KppuRDagLWja+q5wi8lBkoysifBFYS9BNYG1qXX42uEaFgSgbzUgyGFxTGNeDTwslAXkFOxhyJzgMmW9HlamxVlrXNlKrkR0VqZRJIjgmP2cxYA1N23J7+xzvI+/fvWW/3xOAzvUs2iX9xYKL9YYQ4DBF9scDi+WKhesxjeHy0rBYrFktl9zcXOOcYTq8ZR7vMLRgNzjX8eLFMzaXG5rcqawy1CE7oHzyPOs4RRKZdIru1OR0ZYDzf07GXLGXNacCXt8HidjFNP4lYqAAlCy0y2arIgKxVDnqLQl/RIJ0wRPmmW4jhNH9ome9XrFY9Dw+PPL1P33NfDxiXMBZTfGc8DGy24/s9gPjOPLu/XuGYczKYtF3/OjzT7nYrKTbU9sI6baCh+AJk0bDNEKextpAnAWQyFp3eaPqBg1JC6iQsdbQdxINm4Yj79+8pmkbjoctXdez2Vzy7NktIUTW6wvGYeTd2+959c1vidFyPI7stjvWF5aLyx7TGW5ublj1ApIwUne83T6yP+wZhpnVzZFoLF/9/Of8+Oc/pW0bFn2LI3m6nckCExMTv1jg4X7L3/zHv+affvNbdscd19eXNG3Lp198wcXlJeMwctgdaZzl5ScvuL265PJiwzBMeB8YR0+YYZ49x2GPc5b1l1/w5Wef8fLZLX3X4axlDsLBJEOX+BJMpLXSrUvX73Dcsr3/nn6x5Nnzz1iuVlzfXPDykxumYeRv//rv+P7V98T5ET/vaJxBen+TZIzPICArC0Uh6VOGeh2qbIrMPmYZEiq5lfd/BVJ03dcZmRGRIWMcqvWfrpnLEkw+rxo2xmr3DiEylfrz9PlYniEiRnmMMTULOI2o5XuuyH5roFcc9k+PEz+UAo1UigVS1harMdTdqx8/zzSSz6SU+SlKgouBHnE29X1LWDt8gNFLunxjjBCYKgCuxq++biF/jnhfc56UtGT5MxKCtMpu0o81el+B6D0Yn8t2TVLgGYCqBFSQZMoclvfMKbBIYOHECaaGcuIWCY10LPXW4mcvYx86fL8UkvJPWm5ub7m/uiTEyPGw490bg78bsdEngvZA8GIw5XUJ9NbSGYn6Kim1icrvZtj0PcsuchhhGyYwMNuWkZRtnKSY0zK9DMoLOC8OpyglUeMksqUK/KiBVMYpYPyMtY7etbTGSeve0BCJHMaJ2U8suo5VI9lV3osx1jiXG3lIJkoiBu46IjDNs5RCAdGEJINLOvu/xKGZI65paVKJZA7KpYCPSY4SddJoZpZkvzTFeYSSMcum9ElYhZAyCa2lUTlqwabxUmNNdVAQq0tkQ8IJklnu8rpUIn1rYiZnVbzgmiY7ZrRseMZg5pQ97dJ1SIGCIF16Zp+wXtKVev/RSHCx6zqePb8lRM9xe2D/uKNrLM+eXbLZLBjHkePqmHAnHMdjynbuAEO/XABSPnF1scEaGLaB6Rhp2iXL9QuadsHl5VqcTUnnRRMxTp5f5kfmzucSYkPivccazWyus1sNxlUhgLTn1SyrExNqraA/JmohXX2cMakURZPWgqU4t2LZjvkbJmVR6FoRPXvZLfjk8y/p+0WW/4+Pj7z65ncM05yNtRBgnAI+wDBOjOPE4XDku++/5XA40Pcd/aJn0fd8/ulL1uslztjUWVIaZcY5lU2lUjbbSCMB6SLYYozJONRQBVvSs4puKiaVtY04pa3YBsNx4PV3r2nbhsN+T9d3rFYrXn7yHO89y9WC4/HI3d0db16/ZpoDx2HgcJSyzKbtcE3D9c0N6/UKzeQLIfD23Tvu7x+IxhJdh2tbvvrqKz55cZmClaDk+FnOJ4fLw+HI/cOO16/f8J/+5j/y61//mtVqzb/6V3/BcrXiJz//I26ePeNhu+Xdu/c0zrLerNmslsxTYLc/MAwTMUDf9MTo8X4iGsvV5oIfffqSi82atm3k2kFKk6NB7lexdupjHqPHh5nh8MjD3fdCMH77nOVyxWaz5ur6iuPhwK//4a/5+rf/xPXlks9fXNL3HT7M7PdbNJulDrjnRUddklVku2ZFCxXJLI4+H1L2PXn9na97kpxyOcU72WBBZVXZF4aaniBk2enDnDCP7LoQDOMYsFbs0SaT15PvlRyIi9m+03UYtWKg+k6975Rg2yjfZUgk5AnP5dBnNqhShmolJwTLlSog+Vf2TMzjWTBPBMYh4CdD01n6ZUfrIose/Ky2WOXYj+myKqtikWVqx2kmuOrT7EhMd6kYKsZI452UjAIG6dg4zxN2ngi+Ae/AmWRPJ8yqtcqapYnqw5gQhgZS8oAJftK1deaU0vvWwFwIPnWxtkzNjI2BJrZCOdNJyfTN7S33H66Y58Bxv2d79x3hccZaj+vKuCh1gzhwJAu8sSaZpSEFeQxdykyPfWRuHNMcmcZkS1rHbBsgYmOQsTKuwsX1uicFYCU7PcyB0QzVu4hD7OQrEYfPDdU61+JwHEfP6AOWyMHPxFm6/nZJdgYl4q8wlFxfAghd3wOkLpgi57RSIdsfP+D4wc6meU4pxMYlnpwKGCfjxVDSe4uTIQmCj3gr62ibqQysECuunGz9Ilqr/j7k7msxEScbY7BRu9DFU2Gg90Wqv7Q2G0s2eTA1qwglt7YmkdGroEk/+Q7S5s02n1xbhPcF2+1jLjG11tG4FptSwX2IHB8OzOOUnleAW9dHnGtYr9dcXl7QOMPUbvFDC6YHt8G5nvV6Sa+dqYyC0rQljcEkzoZQSTg1Jn3iJQBymU32cKsw4NT7mudMDbwTQy85VyqjSzJAyCnRWWhkzFRTMpdoQfXpcmoFuEkpOetYrdYsVysury5YrVdELLb5nmimNAby3NL6MjKOM/vDyOFw4N37B/aHfc68Wa+WPLu9oV8sMC6mVEeSRz8k5ZbqxkmlnsZJrbwKyBgky8GetdNO60YkvLwjZUBpfvzMYTym1uOepm3pU2tzMT46pslzOOwx1gngnT3TOBG8rBXrLItljzNejJnkqbdti2072tETmhGM5frmhpvbqwSIQhnu5EB06R7nGAk+Mh4H3rx+zTff/I62F2HdLxbc3NxwdXPDfrcHHnDWst6suLhY0/Udfg5MsxeHbxTDaRpnopPW8lcXGzarZSrL0QiojmHh7JJaYfLc+3lkPO5wNmJtpO0sm82S589vOewPzMOBu7ff07iRvp3QsseMiSrHZoxi/hNS3EHXpggXMsBIskMjezHvpbKgi6zRlwo4NtXnQoyp/Eczdyj7lpgjukZuK8ua3OUryrTZEHEhnq41yh5RJVm/floKV0cTy947x3wnTqb8FPnRRF5W+7R8T2V/uv8MmoQQVWEFUdr3GkPqPqcOIUvbGaSZVsSkTETxY9Tnq54xXU8wjAjep0DW5Mx64b5KANnKuWQ7hwIw03kle+YUmBaDMg9H9V+Tx+V0yE6knhiMWXamcssUhQNytDA4KX+zIZXlpnm7uLzCNQ2PD+8EvAA4cUam5jUnz++MSRwfJD6nNBZpDXaNI0SYfSN61EDA4pF+jnlUkswoAxLz08X0WgTCXPRL65z64MkRvUrWC1m4oTGGYCUDSwg+Q3IWRZqUzQAUfWyr3L8kR6S8X8DtHITnoAy9klv+nuzb/wqHOnLUqVdHm0XUpHVWcSmWtVt1J9Pvk1VuZeyU8ZQxT2xY6fMxgWb9j46XlnWoYwlbugrmclz1aSR5oKVgUhYvil4wFDKuyv2XygGDZjaoc6ziwKh3sJR8WJarJevNmnn0zH6Ls9C2HYvFKtEbiNwYRphmT9sKX4W1wu9jnWW16Li8WOIMjLZnaltc29OvVzTNgr7rUM6omEr21TF+EsVHOaoyNBLcq0GMNE+aiamHRoLzeSlYuITf9Nnr2He58kfRfHLmyoAV/FzOldYFKmNjfl25s2zTst5csFyu8vd8FCvUh2JYSkaxBGLH0XMcZnb7A2/evOXx8ZHlasV6sxEM9eyWZUwOeVOXq0rQc07coQ4njSCMxaXyzmjO5XStV03eB3nv6PCAZLUfR+G5s9D1HX3fsVqvUGqPtuulNA6Dj/KdeZ6lW3ObcP9iQds6GtfQdT0hRIZxZpojtmlpVhe0bcfV9RWbVU9EMpcUe8stFcA7TTPb/ZH7xy1v3r7mu+9e8dVXP+HFixdsLi/5/MsvuXn+nPbtW7aHA9ZA10kHxzBPTFMq/4sSHBfi4ZmIoe96LjdrVssFNjtjysRHGyvlnYz3ZCvN88B43OJMoHGwXLQslx3r9YIYJo77Bz68+47ePcN9ekXTWGL0jNMocv1jAWpd29XeyaVwyTmi/D4hOZ40u7+sdT1POZ+psEPwykWqCQ6VTVLbKUjDHqXhyNWdSSd75ZeCE6dFxkNBg4q17kzXDUrirt85Wa4nz5EZ01MQ5AQxqvCuMFS9doxy456NqzyPfrec0c/i1LfO5gZBbWNpW3Gw+QJpsvjIPt0CWvP1irNJZL8maZzjL6td2UzCuQmXKEdzDK4II6rgawyk1KETmVmkbK3HjFQoGXHwaBWE6rXyecWIpRt7jLHY+injVSpCWmKQNbpcXxKj47i7K5yUxhEJwouoziYKDrQqm2O+FRyCIwXnBGJ0TKlRTzSSRCPVpudBhYSG4/nfZS1CogRSDEXM5chAShKN2ChBNad+DCO+hmgicwhMwWdqIKN2QAil3DStywiJ71DcRD4EIv5E7pqk2H4IhvrP4mxSR40MAETjs+GgQkVuQJRU4VGSTjlZ8KXJMvasy1usFlZ1zcrlV4CWUdKugCqg8zr2dMq8ZdVQKK2y5X4CSDSg4jZRwFOcZ+FkgZh8/wWwTePEbrfjeBxo25bVas16veHi4lJqqm1DCLBaLbi6vpCa2uk9h3EHxkpWRxTF6ENkmiaO+z1tY9gsLIvLNePkeNhNCWQd2O/3KcMmEb06R+OkBMGEPIpZ+NdtzPMAqREcinGqjjZL6saXjKBsmCVho0Dg5Eh70BoIRuVtDd6KgaLiNztjItUmTAA5SDZK3njAcTjy9s339IsFMXpxSFjLp59/zjhOPN7fsd0+MA+e++2BYRx5/+GBD3ePDMPIw1Y6g7RtS9cvME3Lw3aPD5GubaQ9plECNnG6KBeWs+JwbdqGRS+cB62TSJ6mW+pazgIjahoq1UYtUWhjpBRS04of7t7zCotzDd1iJVwWFxu++ulPAVivL+j6Huscx0G6192/fcv+4QNt17JYSecsiYrNtE3Dzc0t1rUsl6sMfPN6fvKvkXG62/P4sGUYRuZ5ZnN1wfOXL+n6Htd2TF6ipH722NawXiy4ubpkvVpxe3NBCJG/+LOf8ez6ksPxwP39PZjIT3/yI54/v+VisxaFkC5eE9yCpMRvHw8cjyNd37PZXADwcP+Bw2GHsZbV3Yb796/4/tVvGIeBV1//iu3jGzbrlstNT9eJmJvnKT2ZyXKkNnOKxDjdFxqRQhWOSe1s89pXmZFGThBMtSGSIvyoQyfmPSSiRj5XwE5ZQ3pIRxU1gJLwjyGVKZR7z23v62cJZw4m/f0E2Fd3nj9b/eh5gOJEq7KyqOVojSVO34vVBXW0vIfjQSKW0yQGTvCSHl5X+mX5W28oGZ2T1H0o6qM23GOULANjyG2/h+PA7D3393e8f/+G1Tiw3nxCv1jmTkTRlKjOE7mXjgLgzl8zp19JQFnqB+WelMCzcY7YNAQT6No2K3iJLoXMdWGd4+LqkrZv2T5cst9e4v3IPG6JYcYpZ0aMuezTPLntSgoYCcRoOriz0qHO+8CYgKxvU2dTojQ3qYBqPS4xrTs1Nqyx4hRSfPDkZgpwMiFg8DQG+s4RowUTCGldq1PENSI7nXJomWIcaKZeLupSgyUtCI3E/kse9d7TrG8gG2An+MOWDkg2dRsE8i6zTp1xyD6uxJnqFr1mItop3FAmcSJq1lIC5U7xl4LYSnbk81ohIq1Mo7K3YjESssGiTof0GdV5mbwdchODcZzYH6Rb3GK55Orqinnw7BY7uqZJxKyWpu1ZroXD4t37Y+oiJ5cPITJNM8ZbGgvzaMHBaulo10vm0HKcJ8bRME4j4zQmWaBgvjS8qbMPcycuCs7UDJaQ9L2vseoJ5jEnr53i3jOhW5shMec3nJzv5Bs69mnvZX0FqPtKW4BrlnWMkf1+x7fffstiseDy6krIfBcLPv/iS8Zx4OHxkd1uyxTEYTKOM3d393y4f2CaRnwwdP2S1fqCy6tr2q5lfxwJ4T7hRL0Hi+bBq1PGTmLwNM7TNT5hKIdzYsTpMlLSadFncg7NAI4U57+zFtvK2pzniRADd3d3cnXrcFY48K6urjA/+jHWWTabi5S9FDkcj4Tg2T/eMR73tK10h8YYpnmgaRztomd9eSnEwn3PlCaiLtHVLaj/Hg4H3r19z/39I23bcXl9xbOXL/j8qx/R9wuGaeLN27d8eP+B3eMjbeNoG8dmvWK1iFyu1/jZs+hbfvT5C+lQfRDM//mnL9msV3R9m8dBM+5NGpsAzCFwHGZmH7m4uODZs1uctXx4/55dt8UCd6tVzg4dhyOPd+9oLbTOpK51lnn2wFBKtEzhgNU1Vpak2okh24yl9O7MzDbJ2cKpXZj/U+Foos2O+Zh3gS4WMi+aBocLhiqzExHDOcRIDIbo07rCp+uUgFxxUhU2LuJTR1vZb2on65UqkvkKQ+nrxeCRE2gpuHxGM5vU1oXSHVjtpZhf0zvyc+B4GMGIs1MbS3ivuiJ9zaau1bUwSufJjWBiCRTXwX41ZDRBQTCUZbvdMYfA6vKGx8d7Zu/pmsuUFY6MrRcckW2lk7VgTv49GdhalBqy80lfrHmbQxBbuO1arLd0ofAYS+KM2CyBSNM0XF5d0nUt0/4Dw3ZFjJIAEpHOdsSQHDmnw5XvMclf1bradKXmwppmLyVuFlpbsF69krN8r587XSNGcQgVLHOi8DGIvQ3CsOeSb8RZQ9u3chojSQRObQVjsKkDstVmaLq6YglAZaM2vy54w+ax+DgWro8f7GzSZw6hcNfoAIcY8FWLRHUm6SEfTbeUBtEmJve8eCGnBeoCjuk1jTjZFAExKdIrGScl0p1LJ/I6TZvbGJrU80+j3To8MRl2gZA3lgpqa132ItZAUO7RYkufVGKMHI8D9/cPjJMYxpfGMgxHDocDMQqZpfewWq/58sefM82e9w8T99uZiGNK2WPzLKV6wzCye3ygby2fPnN89skV948zj4cD4zhyOOzYbh9FUTepNKvvMJ3UqetmzMaZAtN6bKqFrp1iACkhjCkF31hKG2PNBNBxKOc8QUBpM1giwUjJi3rbdX60jax8Xw3fYqQk9lNRHMGX0iVgv9vz6vhbmraVUqvW0vdLfvJHP8MYx69+9Ut208A0jLy73/K43fHmzTtev3kr3UnGiRAiV1dXbFZrrDG8//DA3Z2QuTfJQVG6j0nar6wh5UhqWa0WNE3DzdUlm/USZ00mOY+hcOHkNZ4iHcYIKS9WUsG1a4efJ+YQeHv8jrfffy+dHX78Ey4ur7m+veLzH30OEQ5HIc7FGHb7PfM08uqb3/Hh9bcsFj2XVxtc09B0K5p2QbdccvXsU9puyeXFRdoNsrNqoGQq+X3YH3j75j3v333geDgwzxOr9YYvvvoJrmkY54lhnhnnmWmeaKzlcrPhk+fP2ayXvHh2jXOOz17cMs2e7W7Pd6/f473n9uaSq8t1Itpzp2mq6jiOkeNx5MPdA7vdkcVyzfXNLbvH97x98wZjYHv/jrZrmKfAMHpi8EzHLWEaaJtnrNY/ztl/wzDgrEQt9SGzUksgpXaG6BGrhV2pNqzR92qImZxZ1ubXcxQsGSRqENcZN3JeUSSa2akArTbkQyygLvjIbNSc8Em2niKHOuIKZDLK+jlPnD9nh2b11feqWSaaOVHGo5B9F8V07tyI+UezMXQeYoR5Dux3AvpmL9eevTihpEKgqsGvnD76fb3POmKqzg0FfXKPlpi4DNpW+MAO+wNz8KzfvuXb775mc3nFl90VFxfPEk+FyKrGCemkGu11BsRphPt0VZx4PGS6ISpxt56gZPsYIDh5Hk0NVyLfeZ6Y/UzTNtw+f8Y0juwe7tg97pnGPXt/xMeAteBIqfBeyglsvieR/tXd53WmIEW6cyVy7jlg24Y58amlqqp85PHAFIMgAdUQYiLkKp9VgPRk7cWICbKeGwvLRUcIgUkdbUTm6KXzSttgW1fcVHkNJP6is250anxItJOSEfAveMSQdMmJQ7RqJKAGXLU/5e9UnpH+Vn1cjIDy/CYLcgkGxhATl1FTBYtK9DqEkLvrAAm0kQ3F4iBJ3FhVC+V6z6nxLW+ZzL8U9RljrPZMKr8j5v11HAYeH7dM08RmvaHveubRs73f0jhL2zW4xrBaL9lcLpkmz+PuLY/bCR9K9F2yPyIuzoxtwLSGyxeO25sLHreG3307Mk2e43BgGFYpWEWKFDcn5LUmP4vK1lNzIxvTKndSeYg2zinfSGN+YmQVOZn/jqevq/GqmXoylsXojNXa1++Ek7ObLDdCTJxLIfL48MCvf/Uruq7jZ3/0R6xThtL17S0xRv7xl7/iYXfkOE/cPe7Y7498880rvnn1iqZpuL66pF9uuLi64fblJ8Tgedg+8H4eiV50MRhM00k3waahbaX7XUoRoDGGLj3X9cWa9bKXBMQoxnWWHZAyUAwmVGsolaHkLAwC4zAQYuBw2PP27Rv6fsEXX3zBxcUlz5fP+PzTzwRXJlU4jCP7w45pHHn3+hse79/R9z0XlxfCpdQtafsFy9WS2+fP6PoF3apjqDCLqMEzgytGHh+2fPP1tzw8PtAvFjx78ZzPf/Qlf/Rnf0oEfvvbr7n7/jXbxwfu379ntejpGsf19RWdsyzbFovhj3/6BT5EDseBD/dbfAg8u77g6mJ1sscEV1bO0CBZf9vDwOQjN7c3GAvv37/l9fffYozh4cNburblsNuxvbvHAJv1gkXX0DnlC3SZ1L9tmtS0QriumqYhhsA0F2fmKX7hLMhV402ZU2kUYrOj11RySPlqiEKMLLIw5OBvrPaLviDr3atAzCJNbTWf7tUSmYzoQos2myiYTfeZYFI9fyj6Rl1QlV2lKQmhkov+DEOJHZ0wVLq37DowUgJfAIzggVgEQi59LnhK5a5hmgJzGIlEpjlVZniY57qMLlXx2OaE71fuLdlksye7aKK+VyqIoDRcabuWSOTD3T3hwx3dasMXH96wmQZurnv6fpkwiFZSJMLy6qgdTX/YdVGyGo0p3A11gNMWkJOcRmQZMacmWhLY93R9y7MXzxiHkePDHfu7B3wYUgfYMjdEsCmoa+q5SHNgo8mfdekXtWciMEyzcA22DX3flOfIQejaZ5LWFaeBXhMDJMdsjX3VX2JjcRQ1WgbnLN1SKl0028xFIfqXrPmWpj3VSFqtRiSV4J5itNLorVz/nzv+F3ajS4ousTt/zEgpMLtscj1O3D1GhzyeJgPkV9Miqjx+tZCqQZOe0qa0tfOWz2Uxp3tLQirX1uq9VWCsNiTqeyt3WD1xjDlCZ6p7MynFRwHw7APjNDPPmkkk76kTTxXs7D3jEDDRMk0N8yyEgZqWLISHmsZdx2jTOfOdfnyG6qepzdQnn46VwV3NZfY31l+qfi8vFYMmD2fCwur1LcmQp1ePefOc3XEynowRUu3j4YAxjugDuJRt56WM63AcORwHhnFK5JbS7ck5UumaKIjJz5gY8LERhZEAe0SBt6nGA+YQmWZxho6TZ5w8jS1ZASdOplg9WSxlmwSINkVYYvIYR53fiHVCfDkMB5yzhLAQwG+FH01TwkEEwDxPTLNlGkdRGjSEaHGdTzxkLkUG6x1a5ugkPyUEcX6lGvtT12SZbucci35B34n3fJ4mxtGxPxwS94Xcb9s0rFcLfAgsFr10FnGnnRlqWREhtS0eGadZnKptK0Z3EIU/jEe8d8xzYJrEEy+pLKYyPDWT4GlnDV1zuu9DNU8mD1BZ1OVeYwGYWQxUhogpmQXledK4V86Y87HMiz5/o/5k+as4imv645jvO0GaM/lcGaX6+0eu//ukRcleqF8z2eGkJ1C5cDI0xCfCJUfsTvSAqRNZOddjBio9UcntJEeKw+lU9v++Q9c8xGyITdPE/rDHtV3KhlMAWg8GpzeWxkedBLXD6VQP1lcmLdMEJhXEVHrDoiApZA6Vuv2ztRbXOGJsaLuevl8AwnsUstGhXAyqE84E9JOjBm02lWCHTBAu5dEVd08sa66ampN9pgAyy/Is+5MOSas37zktyyd1O7VgNMgYUwaJhca4RJGhi+7pnOhFatdWXQbwL33k3f/PrM+PYZfT/UM1p/p22U9PLmhOz3cC7nV+6lR6eLLfC+r5/QDzZA1X1zl/npPobeRk71KtkRrQSlZfEINq8kxTIk1NTmgR/cnpQ2SaYRxGTDRMs2WeDbM3hCClJcXJJ+shfuSZTqX1Rzb+HzhKlsPJ6ORf1Yisy+fMyVL+uJ44n976tyze/8Acyb0F5nnEGBiHo3TvC604D0h4IgTpzHY4poyzKd2jwTWtcGQZmzItPcM4Mo1jwhPCNdZgMaaRn8R7F5M8DShflxjG4xSEi69RXVnGQgLH+vwxc+GJrKw+o/rei+PDWZs6SA/QQuskU1QIgNWJKIPm/cycOiSO40DjPME0OFyh6Uiluafb4tT9oGcMafy0I5hyfGqjF+9n6TAaI13T0DrHPM0c9nvmxsE8o23iSc6YRd8Ro2Tgl5KaavHIQKBE3vPsGScJTlhjEy8LqcNbZBws0c+Mw5FpnjIXnNCkmNSRVoNeJcOlXo+RSkZVi67oQ6NwGlLwQ6uaS6KApXSHLmfX71aF0idr4uM2Wn136B0mW+VsTyUspdvlY1JZ16ucUTFk/elK4f8hsf4HcUnZrwUbnT5JDg1XAL5I5PQJtSv0e4Zq7E+vFSuAWO/Lp5k1nP/y0cN7L3brOHA8HmnaToJc+bs66yqrKulV4Se9n6cj9JG5rtZYcRWUgAzEHMCueaiy/rNSpRJDpO062m6BmYXrU3SpLfLsTPI+LXtOt5TgrpKJaxl20H2Z7tNGDVc/fa6se/Ml0vqv7JKPwILyfhRuSuXA01PlwEjax3lvPjkRZ2shjdkZlsj3+s8cP9jZVNq5a3tlk3lnFFwQlVxNjYQE5RMHhRDEaXqeRoYTCTekaIh47owK2LzJtf7WZKEdM7v/aTJ8BiaJ10bPVboTpIWTuGCiguWIEFpGSSnTSJIhfSiCQVteR7KxlpxMBknB9rPJSmuaZ8ZpTt3BhJvm2+/veNgdiTFy9zACEnk6DkcZh+RoGIeZ7XyksQFLw+7BMc6W/b4lRMc0SUYJOGy/wKWyP2N13Itgrtve1oI6DZiMaeW0q0GXptpHVzyqZx04n56bmCLfKsifppdLhpohxlRbGwp5pc6SSlaTMl1sQM6VQWzk/v17pkSyvn18xLqG779/zfv7Le8+3PPNd99x//BIDJGu72jajqvLK9q25XhMmWchYIJET7quly5rztEtFjRtqvHNaYZJ7EQYfWQKBn+35+HxSN83XG6WNI2VemlnUyTbPwHb1obTja58MUbBnGT8vHn9Le/fv6bvF6xWa7qu58Unn7G5uELiMZZxbFN3vgZC5LjbS0o5BzyWi9uZ1fPPMQjPgEawQy5l0BE3tMbJn35mHA/M0xEQY3cYDrx/95q261iu1vRtx/XtiosvPscZw+F44B9/9WtySYI1XFxsWC2XdF3HxeaCtu25WHWslt2TVOxMIBwhhsjjbs93b97x+LjFNR2bzYXwNbkW7yd2+wPEwHKx5vrqGoPBjwPRe9q2Z78bmKcZs15hezm3zbKgGv8MOCVjso5UWp2gJCeIifdCBa7m1p5gsNptJ3In+JKZl7MoT4DAqcA2xhSy2dpxGYrjT0GSAsiYOMiUn4GqY558V7M3yzqzVjOxdBMXg8UD3lgCGukr2Rf5w2ndOKd7sgITChz0P0YUsKrtOoKp46bmmTgiI8ZG4Q8LkYjIfV278vg1v42vDA4FLTafW7MT6g4tsvbE0ozBsN3u+Pqbr9k8PPD8+Y949uwlctdNVt7ybDw5RJEnElxbSpBF/tWgsDyzJY2vMSXzNwLREUyQbIboiKGha1shDVfHeAiMaVwvr2/wc2T3+IFx/wjeEBlQWC/nQUrUqpKskzUnixuIOGNYtC0hRsbZMAfLHA1H73FKRK1Pk+ckJn1YsvNMchJDzPLGOpcj8IoJxGEVMdFjg5AxOyPlNTZGxlmeZAwepkHK4HrhfKm3j2ZXxRglum3KXBkjHbMwSJn5DwBJ/6WOeo8F70ExlCkBM4n+Vl2dKHtEM5BCMlT1bJnbEiES1TLS80OmJhCxFYaS51cdrxhJ59GHQJh9ta9lb8ckH63Vcr/iGBc+JUfTuJyRp8+smYV536nTPJWuaEAh+sA8TByPB6ZxIMSZMMPd3Y79bsQ6cK0lBNjvI8QGPxuGVC7ho5RSTUfP8XHEOTgeDR8+WGbfcRg2RFrBUJOX8i3nTrB9HSAqBjfUxQMn85swVKznWb+jcywgUV7S76X3ZS7rjDaeYCzN8jHlK/mXUMk8ZcTLhqiRTH0TU+OIJFexnhBH3r79luP+gbZfsLm8AmP5/s1r3t/fc/fhjl/95jdsH7d0fc+Ll5/Q9R3XNzd0Xcd+v+PXv/6VrM15FH28WrPZXOLajqub5ywWK6lmSMT44yRZisHPzPPA7CMfHgcedgNd27BZdsLZZ12uYpg1E0S59TD45CSV7k9l3G2VcevnkdfffcO7N46+X7JeCob65NPPuLi8TEG8mcEmnUMkTCOHR9kT3u4JtuFqmrn85HNoW5rQ1BOQ7QDBMFUJoQ+Mw8Q8zRANFseHdx/427/5T1KiPHtaAquLNZ9dX2INfPfqW15/+53g7FTqdH11yXq9YrlYcnN1Tde1tK1NGbZPHedSOidBug/397x594b9/oAPXsrigOjFLhmiZ7aGrlvw6eefpzJZeSofYb/f004N/aIXInLtEKpVLt5neSD3XOahzjZRmSzNclJwJ+lvmzKbauf0admtlBFLR63Co6p7RjPhEyAoDqx6n8gdicMyyX6j/zORxkpZdYgeH1SaVfxMCRTlLJMsx8i/ix5Ley/Zp3gwvoQDVeZJUkQJTFkjOlps0jq4VTw+iqMsRjKzFctQHl8GPDlZWnGWzJJkmAJ5yYbJmCqUQYrkLLR6/mrskgNdVVdVEBkpwe6Zh8cHvn31is3FlvXqhs3FFWo3ybXVueTSD1n3yXoRwWdt4XR7InOzj+H00HvW8TQGmmRLhRBywLrGsjFGrDNc3twyjYFhf8+H13smD5EJm8dIklNsNdbVCJDpUqJwqjbGsmj7lB0+MkeYguU4S2VLbyNtWj/ZJquynPVZ6my/GCF68VXU+joHNpLtZEhN3UzDwjWEYDhMMM9g8Fgz4qxh0XZ0rvmID0n2SM4gpOztnAEdFC/+88cPdjaVRZX4EqzBUNLXDUYI/vS2ih8jCxGys6d6GFMMHZNz1gxnEqIYxJUxbozFRa0HLwAmf6dKt32yKI0oLPRSGROUEo1iLJjqts3pj05yVQJoTBLEKVXPp7T5EIxE2B4PPDxu5fu2A9OIt3Oa82IBgx9Hpv0Og2fZWuJsiaYjsMFYi58llVSMvJJ+r+Nejd6Jo6PG1wJoxHFiClN64XshkTZnI7DMax4OndVsc1f1zSaLF9SrfSKgK9YMYeQwlHYN6sUv82fzOio3cdjtGA97FssDEalBfXh8ZHcc2e6P3D08cn//wHKxkFaxfc/1zTWLxZK3b99y//Agm9v7xHtjsa7FRWHst02fCCO78iRRuHOmcQQfE4ljYDW10jY9OIxpkjNNlHLmpUoD504qOJJzpnHJELZJwUa22wdC8LRtx26xZLla8ez5C/quJRqHl/4HNE6cYjEE5nEiEjnMkTFEbL9mCjOzQE1qV4E6DABMVIYFA8Hj50m6eRgBefM8st9t6WZtz2vZrFd89vw5MUZef/cd7+7umOeJYThijeHF81uuLjdcX11yc33Bom/o24auORU/GpGvy0KGYeIxpfBb6+j7Reow4YCZcZzwfmLRr1kupQvO5FrC7HHWME0TMQYWvSe00vIzWHlGqbiIp0ozpVbEdD/q3Na1roUfNssEsfqiZnnWU0y9F8WRkQ2sMyV+Og5FtauCy6tEL6BO+7RuTJJZIQqFs6bcFqCkcqrMezFEbOIsqZRZMnRyN1HpklDA43n0EZWdtWA4ywZK96+ZdSVjoZLZEbRcyNqYxFHA2VR2JKYFSuxPclCUJVzAYBnjUOmFwvN0em2DdnIYh5G7uztmHzgeD3g/YU2TygR1jAR01IazjmwIFWBSR6QOurzxZMI1oJEje1bG3ISUvWQjwaWoNEJAGZsGkzp8xehYrFZcXAXhanIdxgwgzCLl2SnRqZOZOlMKUmIg1wkhMhmp2w9EphAJJuKjGPuGxH+V1o3osMoYMCXCqF1RLVDr6hq4xRgFC6BOqaR7DERjmGMkzp7GSvl+zugruybzF6lDMu+oinhdb/Y8W/O/1lGvnUzEnbuenb6nzqYM7jIf5dlcYfL+BxKJd8ifPTny/MR8zmI4qc5JjqEqMBiMJ1s5UU0eXUMFe6VPJOPH5gw8NQTrjm1P76sYls66xF8oATvpxigY63AYGY5SIuejWFDOLjG2K917ojRAiXgmP3KY91gTRDeMBmOXGLdAu435IN2H63vLzr4E4EO1nmvZ+bH5zds9PZOWlMreTtcx1RmyoRfPzgckHjfFUzpG6GuVDCsZreUuqeYnG1XRyDqxEWNk/+y2Dxx3W/rFkmn2GOt43D6yPx553O149/4djw+PvPzkU24vLugTf2LbdTw8PvLu3TtCCKmbp8E1C7Attu1ZrC5Yry8En7qUVXAUR8hsRmkiEj3TMBKDZ9F5WudoGrCt6CZp8iL6zKihr09pTMpSUyeqzdk5Bog+8PhwTwiBRb9kXA8sl0tefvIJXdfig6ftWkKY09qNBD8zJiNrZGTG0C5WjPNMFwMqdXRbnIuQ7I4MIdkBin0t+/2e77/7jrZpuFqvWXQ9q77j5uKC4APffPOKDx8+IG6AgGscn758zs31FbfX19xcXdA2nVA2PNnkafZTQ5xhHNkfD2x3O47DEeXOM+pUCDN+FHm5XK64uL7EGMs0DIRZ7JFxHImExGNqsgzSH8kyL9rkZK2l9Vlz1wSfEg8oldXWNpx07Y2xogWQvVO6EZ7rd90vBXOcyM48RHK+4ow3J9+1NjnwswO8kqEVtij7tGC4jAPSekgqnEjq+Gmqc1TXrHWgcCiZShzYjzynVs2U7ztTusIVfSYncU50njHiZAjKC4pkFIb5jHBdn//sGU+DH2rPn669CLmj6XA8cn9/J4Gq8UhMslp3RkyNQM65TVU/mST0NPuwlrcfQ841/kpiO9nE8qzqjNaEjBiFmkBletM6MJF+tWJ9cYUh4GzHzEhqs5Kwdo1ZYn0DJ6+ZKLaUMxUVQXKW+whTgGAiLTIEpopfPMWvnOnmVNwYNfRpIPrTZSkeJ0A6LramleB4FFk6h8joZ5po6RpZ7/U20WB71C+Y8oy22luxwl//3PGDnU3KSB6DpKfGJKxQxaUAHnOymdIdZaNWJ79xLpe7ZY+wOoaMKW3AY8xlMTKGsfL8xcwDIEMjA6LKJns29dvZElQAAcaIARaDtrpM8Vqbflwht8wALGqnp6oOGamHnFMaYW6PmQWmrqjkcKsY7/NCrQFEBGMdxjVYLCaR9BnbYV2PsW3mX7DG0jQpkpgj9mn8jT7TE314cpxAE2OyoCSNOUayB2bUq6nR1GK41FAru6oi+W/9TXyKRdBqJoOeRInFBTOr4K82HiqjZB3aFEUNMfD4+EgE3r55z/dv7nh43BK88CL1/YLNxQZrLY9bIb98eHjgeNxDhK7tsM7Rdgv65RrXuNw6M2KEwN1oQqU8mnONkN4Gi9SUW/bDhJtn6ZDSyjg5lc0qCEwk+lpBJRCZyvxsLMWHoogl8uNnz3AcePfmDdM40S/XLC9vpAYdA0YcVLP3RMA2HZ1r6Rcrurana9rSRvZszhQQ54mL4qkP3jMcRw77I9e3sFkt6fqeZdfSO8t++8gv7+/w88y7N+/Ybrc5Am+sZIoslwvW6yWv3wgfws3VFZebDYvlgue3t3RdR9s2tI2Qvu72B4Zx4uFhy26353gcCF7IsJ1raLsFEZjnB4bjiLt13N5e0/dLLjaXLPoFw7Bjt7sj4mm7wjvWpL1trUZnKk995azVfhMlCk8CKkX+ypc1Q7J2rogilX2YjA5rxZlnlX+FzDt0osRsJUdjUfZK7Cprxp45O2zODsSEdG82ka1GkW+mpElnMGY0O6EYJcUold8bZwkWIjbLLc2ejBTDWBS5qfZ2rMaksoQUUJzIgDR+UjiFKMkoHYsw9L04NkJsMggLNilvH7IC1lhl6dKSl7bInpSBKiU36bmtFfmeJJEPkWmYGdqJ7faR+/v39N2SzeYW4zRDQeZPoj7pmwpwXGkccQ6SDOW2ilY8BbD5G+k6SqxdR+9tyhixCdBHa+j7nrCO+OnIenOJMYbjMTAMRxSEybrWvX0K2HSd5c9iaIwVUBQDeHDSxD53+PTG5A4taWBRWa6p2ycgpprrOtv29EifSk4n4z0WaDB4Y1OWsIdgmGbPaGfJgDKSseR9lG5JpvBn5DOH/J+cRfYvdZRW0ZoBVuSJDpLuy5JpVOlguesc5WyaRojkVYNGSrZ5bRB4AYUYcXgHU8rHNJocovA7hFDxvaTbUoMxpmCQ7FOZO+8jJpC7TBkk4upsI/jFlvsQfFWisCUaq6UFKUCXdGfJijCY1F1Y8JKjOJAVV6llaJIutQk0N2BarA00TSvNIkxPNE3aQ5I546ylsS7phDrAUMahHJXBWO/veCrTTr+iGDFkzFtIYKhElS2yS9en/vt7HAt6R2IfZOGSvnqalUGSu1lCpc9ZKx0uQ4jc3z/gY+T192/47vs37HZ7uq5nc2FYLJc0rRhP7z+8I8bI/d0HxmHAWku/3NB1Hav1On22k7Lk/T4bLKK3Q85syryYxkrHpAi7YcKl8rOuEUPQpB91RIiUSOaWFZ44UV8xOeklIwaUNkHWyDiOYAzv3r8TnGRKAHH2kXFKzQfSmDfdgqbt6RdrCegZqVAoJb/1RGgJv0n7W3hQx3Fkt93xuH1gsVxwsRCuT2cMcfbcfbjj9XevmaeZ9+/es93tSHAO6yyH45Hv377jYr3mzdv3LPqe2+srrjYblsslz58/o0vt3JtG+F/fvb9nuzvw4e6Rw/GYAm9IRUEjGMpPI+NwIMwTzz5d8OVXX9F1HU3SO8HPhGnAmHjC92YT5ikotay7QipccMATTWNSVk4+nzt1NhGxwSX8UPS7yZ8viQvZoZ2Wf9SJMRpoKNnd6pCRLN9EeYE8i3Mp83Am4wQl/5HMS92aJmNlY/V+TLYNRCIneZf2r3cudSIzhKqDXB6OtHY10aFWlicGvf6j3cQwJ5hNYIiFKHumcYKhjIG51cwmBzhclT0jZOql9u6ky1klhmJa48aIE9yqDYjaiYKzvY8cD0eca9ntdux3W5qmo+tXMtepbDJGUnUOatTJ3mtctl/1sROizCOWcWV1nPgCEwzU9eISB7M2hJnn+aSkzlrHYrnAXwUMM/1qQ4xS3jv5AUPEafKEKPF8v/r8dTasSdioNcIP51PXVmvJ9Dk+1qTeug6e6pCCoYo9oE1G6usJtk/3FYustEGyoZ2JCISU5/I20DU+E/67ZA8Fr9yDqFBF/ThR/zZUg/3PHz/Y2dR3HSDs9pOfZAN5BaU2AexyI9mITgOjm1OBUtt2OY3bp7RKk9IYlfDOGIOZU5pLjJnLI/iQDQ0lqtXIl7EG23XgBKi3OX0kJu9q2Tk55T9E/CzCzNoOaxzWNtJmunFEI1EVn5xN+uOTMykkY272olSkU4fPvAGCtSwgQEkWUwKeWmZWmf157GKDbxdYE7CNwzYW43pct8a6lqbtcMbRWEfXtrRdc2K8qiCMMRKtgtyPTG71mhoNJhmimiobYypJSHwgkaYA0vSvbpbKXCoXiKDebAEN5mRTlQ1DNnxDysxQAyhWeBKkTa8xYBvpOjDOM3fv3jCME7/5zff89pu34vybAm3Ts9lccvv8lmE48v1333I47BmPA8fDkaaRVrdNt2CxWnNxeY1xNo+DPH9JiRdDUHgLio0l0da77QAEFo2lc5a2dVyse1xjE7GftlhOgkuNfQVRKUXSR7lG13bS+tx7xmFiGmZ+O/yaxjluX37Gj/6oTeMFuDbzBBChu7pisb5keXHFcrli2S9pXZNnSN2Qqv+ygz0pZ0LAzzO73Z6Hhy2fRbi5vmLR9ywXC1rX8OrVK/7x7/+R4+HI/cMjh8NwItTVodM0jn4hTqXPXj7n+e0NL1+84K/+zV9yfXXJ5eUFbdsyTjOvX39guz3w+vv3fPjwIJwQXrqUNW3HcrUBLOPg2T4eaJqOz7/4nJubG/7sz/81n3z6Gb/73df89V//R46HPXZ+wPgD1jrapslAVFKti+IPkIGSzUR8ZR9JWnUVLTOUfXaylzJNPJhzgu0iG3W/KiiJSQ7KizGVXyZjLsxibNpcvCRrBpMc0+LMMon5VM4dU+eIBKgTWBeApuSqqTSBSsmlqJM3krEagsVamL3Nzy1rTsbFGilP0pT2EvkoDqec/XkOEE4+FzPllnMR10QaB20rnCzeN/gEQqXcKDAMA+PoM/iKyVEiNmjhb8nZUKaAXGct0ZUadjWEDoeJyJH3b9+wXi24vHrO+uIK13Ti6EOcHtM0o1k8Pnga17BYLlAOiidoKT9zrIBRzJuuZAqLLo2WnAou0bgGYwJN08hzGbCTGK6r9YpFv8RZuLt9SdMt8e8GdrsPGBOls1ACYFFxRD0PMZusQIqyWpfWjThLop+kqxWROUiGYGOh1UbAVXpFyWDLs4zi6BgCc+1MMJVEqsF48KmVr6FDMhrHODGOAW/g0AgRatc0uK7Bklqa+0kMGjUWKOX9mtdpUXfyv8zRdV0G12Ga8x6WtVqVEydHRA04a8dL20r3qbZraVJ0dpq1dFMdTWkPGnEIhRgwURxNJjmb1Mk0zZPw0ej9GEPXtiIfDcRcplc6KmXgqSXvWT5ZWmdwLgXDnD0pBVYeGR/KfgtRWjJrl8VxGJmnUUrbSbjQNSnxsCMihpTNpamlm6mOqDWNWhoQxHHdd0uWiwUBh2eBMaIL2tSFq20S8b/VblgVhi3SHHUsnx/nBkId/dUszNl7KWWylpj4i/LNqwMIGetykWxFyl/m9FoJelBSm4pBcnqfcnZnDSba4igx4JqGru84HEfevX3N4Tjw69/8jt/87pVwMi7XbC6u2Gw2dIue4+HAt6++Zr/f4SefOqYt2Kwvubi4YHVxwcXlFRjDcTiy3e+zk9VQnAuRSEyccsprMfjAcXvAAIvW0reOtrGslo00makNPe3YZQ3YkBwYUqrZuIa2MamMV7oGe+85HA8M48DXv/sdr1+/ZnNxye2Ll4QoHVCPo0iIJvHjrS429JsrVusrmqbPRPqZKDhPQshRKMUUwc9M08DxeOD9uw/c3X3g2c01zy4uaRrHcBzw08S333zL3/39L4SfcpyYvcc1hrZPweikS9qmYbVY0DUNX372kk+e3fLJJy/47/9X/y3XV1esViuaxnEcJn779fe8fX/Pt9+95XG7IwSPNRHjLE27YLG4YDAHCbjut/zpxQX/6q/+ksuLS66vblkuVnz/7bf84u/+gXE40pgBwySOGZOwev2sqVN0CNLgKGdunu2LEkSVIDrGpmzG5DDSz6W1KxmOchrJRhE7Tu2EgjdSRgxI9nqyy7QrHalUVxz1LhP1C0al6EcDMcyp21YyvoNJVAIxb0eT9QvZ2YQpxr7qd4sRjGEjwdZNgzRTUj4vXf5Sgxx3lj2iGEr1QHbwUM6TZbPN+7ptBUO5lFgk/qSOGBvJSHMS2BjHET8mG5gyLiqaRM5rAwSRqy6WgIg1NiVvSFXIPAce7rdMc+T+wwcu1pes1hcsl5vECWeJyLWn4SjNPFKApGkamraRNVFJYJVh+vfT7J9TB5TKcIvJ3fJijLStOJm0o28k5mtdXF2wXK3oesvdu1swLfN2Yh4fBeu4KJ3lQwRN1lIMrz4FnSEjROHOSjfdGIM4l2NgjjM2RmZjcRiaKsPrJOlGn8WcPjeka+Uybf1uPUbptehxXtZMKynlTN5zmISfrWvaHITXrO9IkMxhrWygNBoxRih1Usj7ByOo/+wyOnPy2kc+FzlR0vk4A9sYXcy/3zP2+97JqeaUDaabwJKUUSyOm4+eTfV31tRyU+UpVZJKVot6LBVsxJOzluybGBWQVSUsGQUpV4mpXntqeOVhMqWkz7mGprFE41JadjWUecOfekTN2b8YcjQmZoDzsVE2H/1Vh8pELQMQQWyqsdbxyDI5D20a7GQIfswrXT1QTpUuALK8RzIi9QJ67RDE8DwOo/x7HIiQjWpNlRdnjBBGzn7OzjkZ40S6mEooyxrjRLDJxS1KNm8SIBA7Sb43hwSGrGEOEbwWAVE2z0c20YnxrfsuOwFktU3TJPXR05AiyqoYklOhavdqbAPYnOIa8rqsp/hpBNclEnJpx9vStp3866Qb33A4MkTpavNwf8/xeGS3PTAMo4DXtqu4kESBDpM4ohZtK4Cuabi7vwOgbRuWy6WAi5QhOM8+R0E1SuGso2k6mmZCo2HOWfq+lU58lxfc3Fzz8PjI5uIS5xzz7ogPA3XWn0a1ZF9WSuvJjOhUne4vnccMMiJVVnBlOFRzLcaFIppYlAS/X95BvfZ0H5VvVKqV+oT6rFkhptdD9SzGUM51su3lHjVDFCuAS6NuxbirHuBjYiPrjWqE6zX/kciIqb5DnnODys8czbGSiVGn6MdKaet9qhzKUadY7iUkB2+doSpflYEax5HD/sBiOWSuiJjSl8VonlPH1DI/J067+tWT9cGpDKzXgkl6oIr01RHd4iwsZd452utijlp3/YRzLZpNW6LQ+aZQUJTXV36MZBQaMed0HQTZPCJjUF4NU5bkkzlM91+d+mOZH3WafllMlbykRKBNfQ8hMgePC0m2p72Ys0YquanDXEqkZIX8cLj0/+uRZM+5Uj2//MfwUz5Def4sj87Gt3w4nbwWQzocipmSQVYDd2uLHk+nr47qKmpN1fsmiwO9L5N0UwZbWXU/PY1mrSfuzkqymZT1ovOew1t5eqt5PFuHxjkxEJxkMxEt0xzRLKATcJ9B/umpTlemyWWaH59Afs9rlOdPhknNkSHyWQONBXPqGD15vI/sI11fxpyvhrRGjMFEk7DNU/QdQkg8loKfxnGk7TrJJm5bMORumOM4MAwDFpuDS03bSIfg5KQmxqTH58TjloLONkrWkYnCH2UqZ2sI+LSmJNvIY0zEB8loq1z4nAPEmFaC7u08bJXuLhhwIgL9csqOz6wr0vzKa+LAJRYnbQxNUXlnOqxeK9ZJx0z9aRo1oiGGwGG/53g48vDwwMPDoxj9QRwSrrUExFkTo8jbxjqmYaRpGlaLjsaI0/nu/j6P4aLvCBk7yY/ywFnNzHWOVsmbk4xvmobVasV6s+bq6pL1asNht2e1WovemTzRl7JsGU4dtWqhni2qPB5G9UTSDSngJRj11LmusCQCJtRcTiafR+8hv6eT/RFMkbFA1nNpgrVsTS+o3iZ0H1GwlNXvlefRtaVPWb5ZZG/GUPmGzzHbxw7Fj2eKNVb2Rnqu/DL1R4tG0EdzVgIZ4jgr2C6eyLyio/IontlyGUPV047qjzJ+Gtwbx5HheKBt+6xrJLjncxlzjBHjSsa4qfb1KTY4fd6PjtzJGMh3aozkzjFUtb6ss5L31TS0XUfTdRLoyKNTMJQu/ydiOM9FzPI8VOsgAl75pkmULGfn+Ki/BUWXFUz7Pfon7wvV6UnvFAdruVXlSTZAdGp3V/tNr3OitD962T94/GBnUwwlIV0jZi5FvCJIaR1Ugl7v5VQQ6WYPPuB5SuYqH0ukVGk2nbPZxiJy0mZT0q1TmmSI4kFuQvZIu+TxVh6QdBtgZDNIdrmj66QeOXib3hfng2uECLBE4mICPWWw9TUfPdM8Ms9jaq8oraabphFy4FBSK3Xy1Et5MtYarcGw6Bc01nB9teDZs47dwfPd+z2zh0Wz5GolAyPNKkx1jtMFIm1h44mjSuybCozWd6DtZuEMsCcS71H5OJLBg7RctfUCVKcbkZofy6SySwG7KT32nG/KSEqfZvwQXR6vSIoQjqL4tM3p8Tjw7v2d8Aw8bhmHgbYTfqambZmmI69efcM0Djw+3DOOg0Tjrq/oup5nt89YLFdY22ZOJp8Jh3VjV+OR1rq1ltV6Q5/awZruCojsH6UErAkBH480Fjarjs2yQ50m2eF6SrggY2EjmECInjkEjIWmEyK3mAzf2c8cjwcwUuaHcYQo5SWRiAsRFw3748i3337HYrGEz1+yWvSq99I8qnI1eU1cXKz54vMXLBYtf/Hnf871zTNevnxO1y44Hg78z//23/Lqm28YhyP7/U6cvZrlE1pM9DmqqGW4kjof+e77N7x7+45X337H2zdvWK/X/NV/+5f867/4c4Q719L1C4x1zJNEwttGHAvL1RqsZbFc8P79ayY/sVyvWC57Vquem6slL27WWL6gaSSN99d/9+9582pMzwnaHSIvbDWYgpa+lvmW6ZYvOm1mUCnVYhCoM0N3kw6wSXvQECuycGJMFT1JnGelXjs/qt0cSxZB3sBIa/s2OsnSMCXaZoxkBlgnijxGUWxPFHXlhCnAXLOuBPDaEIjWogSIeleKvwwQfUjlr4GQSgG13K4eV5J8LX/Xwp2cbeK9GCpta1isGhmmQyRMEQgSpU2krrFpCDF1h4wagJB/leuj1penTiYpXVV+vQbLol3Ruo77Dw/41CXp9vknzGEizJboU2eRxOuxWq5SRpMSIpv8aLoCogFCJOaQWH4n/3aS6WkhRlORLGunUp9L0IwRXjLvPVOYiXiaruHm+TOW6zXHwyOP9/cQJ6w5YEilTmigoOifknlX0KVwuEGTwMfsHN60xBiZYsyOttaW+ynErJXDNTnOZRqKYVdfV78PWnLmMogNmFReDNE55q4nxsg4B8ZpZGqldKqxlr5r6VdLyQSdkjMwLXwBYf+S+UzlCL44+Z2TSGpuVhBjzhJS4yY+2agF9AuvTMBTiNj1Tfnd546q1ko2lMApcXqW1s+RaR6zTDHGYKOlDU0yxCTgUF09/aoyScbVWslmEjCf2jqbwtlUsB4ZyMZk8IlfN+JjSFkMI9M0SVZn4oPRLl4nIqS6K/1NM9gigu9651j3HW1jWK0bFkvH/ui5f3zEB8Pt1XUqoRM+NFe3445lPVprafSxKYZWMfLOHcxnn6kcHSBlK95PZKNSMZQ6SbMTj9ycwab7ycEqo3hS5tnZRozbmBqpnBzl/kIKiIYQmFKnKO9nhsnwuNvx3fev2e0OHA5HKX1pe1arJW3Xst1uefPme+ZpYjgcIAQury65uX1G13VcXl3S9Qt8mLm7e4+WoWjWi0bKnWkKH0sjzo/rm2vWFxu5Py/ZoofdI7v9jsZ7QjjSWMNq0bPsE35RcuTktEIxbRrTiE2yvfCFtV2bPiNzoAE44dZxmNStTmbRMI4z4XAk2C3t6zdSHvjJLZera7LJqCaBtRWWgmc3V/zpH33F43bHsu95eHxktey5v9+x32/5d//T/8g3X3+dDT4gBztDcBBbpPNwR+scJgbhMZtmvnn1LW9ff883r77hw4e3XF5c8N/+5V/yr//iLzgeB7quZ7Va0zQd8yxP0zYO6wSvxmdwPO7Z7R4JMbBar7hcL7nerPn09orryysW1mCjkIR/85u/5/2bPY6IaVM+YeKFyWokpqBGgkcxOT2tJbW6t7hUFWGtw7rmZA+r87s+RLY0QlzeOGKU7Cafsr5zyTBoxRwa7M9UJyRHdrIrtULIKp1CKlFX571NpbkmlRwZpxkq6Rp6w9k2Utkmz2pMynYilUqlDNRZcWZaIzFqIaicMCQdEEIguILF9bPn9qLinHMbUv/0s+wj6yzLhTguD4fIPEj5qmZ3O+do2laeI+jzRHySQ4qlapWk1zXG4PX+kwIzOBrbYWLDh3d3hDnw7PnA5cUNXR85DBPDOOe5tdbStRIsFrqYUw0tJXp64Rqbm7N/xZ4XeFmy7Rokg19teedPMdQ8z8kpFIgEmq7h6tkt/XLJHPbs9484ZqwZU0smk9f52Y2e/CmIX3B1k4xfbzTDMzJBwlDQWsmEyoFDcs5ulvOa1AAoxSha1aXPok4iLR2W70pZ8BzUJHH4dPbjODEOE4uuxRlpNtR2DY3r8anBAcqnna6hTsH/nOOHO5sqh5CmGWsXFKm3V2fUqcPj6Vzoogy5pPbc4SSL3Bdvo3qD0yILMYKXlrdeO9jpBZHJU2JWrSmNWflrJFc+HyNJmLcYA7OcWq7tpCtdBvkxZqWmUbZiJCYepyQEQ/oBTaeOQnCXayxrgH8Kl/LkGEvbNHSNZbVccrFZMPkjh+Mjw+gZxzl/VbMU9Bnrc6vgi5HcOvr8OPUnFXMgG9VGjaLE3aTPpin7xgivSPaQ63xrinQSwIacraMp9SCbTO9bLyVe96S4iy2aDOYyfroOxnFiu9ux3R+kRn2eabqe1WpF3y94+27P3YcPTNPI4bDHzzOr5Sq/v7m4YLFY4b0ApBhLJtCTETNq+ImHfLUxNF1H0zV0a+n4djhODOHAHALBjzQWFn2b+VZqZ5Ny3yhoUUdrREluZYO7BPznOUAAHzzjNGIwGSwFDLPycQTxoo/jxN3dPV134PbmMgMvQ4a7JyAJYLnoub2+xFrLl198QdstWa56GtcyjY/84h9+wX/6j/+RrmtYLSW9fL1e0vcd4gwQEGnaJnGACc9LjIH9dss0DrRtw7u3b1kue25vrvnqR19ibQOmo2mScPZJoTYiD7qulxJXa1islvSHBX3f03Utfd+yWXZcruUzzXLNbrvj3at/4t133yIdAGfyastGk45/4oLQfZknQ8vVEpKonU0qv4z5PY0ZEmBInE1a0lZtkmzGqd9F5aKCmGK4xLKn9OzJ4C+GTwJKxpQ5zZ9VQHDm5NdrUjIF1bBxxhCslNHZJLO9jl3en/HUoRPUMJJ09ZOHqJ47/6uyCtBclhjEAG0aS9uKQTsNEZNLTCKYiHOGGB0+iHOKLI+TIykTE+fZOAG3Iclkn/j/jDG0rsPZlv3uwDiOLFZrDsMe01j8aAizyR2qjDEsl0sx6JM8VIWvYLK+aJH5mhlZrZS03up7VCJL56BtHd4b2rbJ86dcQNMs5W3WOVabC9quZ7HY0LglMVhMHMQBrPMb4dzJfVJ6o4YDZP6SYCyYBmIUnrgonVlCDALAKp2thnNMiidnHtXXeypZnxruUTIcGmSeGmtoTIMPkXEYpLw7GvpmIjrHcrWgX/aSgRECnnCSVab74V/a4VRnwClfpQRqTClPgxNQ9zFdrbs0Y6iQBUaRGYjuVZmVifs92fDS9avlqOXSrgLzBcirsXFeBgsylk3jKESmxdmshoOwDlQAvSg6NNrtEx1BSJ2ytEzAWIcl4kPJajjHl/VaSr58jHH0i56+tXQ9NB0wBPaHA9MstBCWpFvTONV7QM9vjZGSUpUpnO/bc+PoYyNU7lCxg3xXSrm16cT5M+VrRTH8hQ5IdRDlXityYak2q2SeOjXzWAuGy6S1IRDnmePxyP39PdvtnnEMKdu7FU7FrmUcB96/e5vnxgDL5YJnz25p2pZ+ucS5hsPxyH63Q9t85/tFnU1eiI1TSV9DpO171pcXydiOqUPzwOC3+BCxQQjI+7ZLvC8p49XoOKWRimqk61ox1VibLC+B3CE7RMkcIpVsmhjRbhqz9/hhBHdM2UcTz282qF/SV/Moa6lkh1ysV3z+yXN2lxtiNDxs9xySg+f9+3v+9m//lr//u7/l4vKC58+f07Yy1k3bAA5rAjGVeTrl40x8ZvvdA/M0Cnn74x2b9Yrnz57x85/9jGmSku6+UyL86h6tpe+XmAuHaxr65ZLjsKfve5Z9x3rRcb1Z8exyjcUwecN2u+X991+XPUyxf7KXRQFM2i/n+8Ok4JV1KieKs+mkA1cdiJIvS3lPUJuzzm6KeU3pfiFWmOzkRzM5I6gDN5UOJUa4vD/19vO/Nd6DbNzH+ntqH6fP2/TcWFu4cIwE5E514KkzSdRykrXJ8ZCvpthNn/bMfqwFQgSijxCk2UrbyTgNQ+WcSA8pdAIuYy61aevA3flxEpxC9rjYi8Lt6UyLiZbddsc8T7TtgnEcsdZxOBzYHyRDb7kU/jJjxRF8rpk1s+lEF1a68iQjzlT8WRnbR3AOkxqYta10PZ2mJvsPcnmuQTBl41huNrimpb9bC09ysFhmLKWjakbNtf6uZjWPMXVmU8nE0wxOGyFG5cHSvVICrznhIUq5oTpxRbyV+dQx+BiG8lEoD0I0UiLciFycRi3rj/iFOLdd09F1HfM0M49zVTFoVLNXz/nDjh/sbCqdOM608B84CqZIxpopxppizng2UU+V9tnDZPkWT86pWRk2K9x4dh4FH+mOjCrgiNZyUp1DiCNdFm48PWWRs+kZhmHk8XHLNI7stzumaWIYxiSgK3BQfT/fnBqk+TNJiQafUo+DpB4bdSJIdGyaZtquEZCShPTHAWo1eLqA61fVyD4jmExvVlCpgFAVSEQBRAoq6mV4EvlMJI7Ry9IVx9xMjiY4U+QplaCv5GkNNPXHB4/xcByO3N3d87jb470YgF3XiSNqGhmHI8PxIJwjqSwreM88jlhjhCgcmSufTq6tuut5U8VircW1QjrXLnq6ZV86HaX7t1ai+dPk8QT2h4G2kSjJou+TIqm7hqkS1LRyAfdRCsjF2IsSBddyAxMD1jr6FMky0XPcioGqgtd7z363ZxgmDvsjw3GicZa+E2eAnwPjHNJ+FGN+mj2ubVkul3zx+adsNmuO48jhcCCGyOXlJS9fvhQlHiTVfRgmpmnCWIdzQho6LAbatlPLBQA/jWKs+pkDET9N/Paffsu/32y4uLjkxz/5I5bLNVeXa168uEmpuKK0MAU0LpcrNpsLrq6uuH12y83NdeoaSGpmkAyXE/6vk5lMArsy8FVQVHN+UrpC4lWpjLCTHVY7FtJ/n8g3VeJodpA5eT/GWDKUYkRqvi2GkJzWZe8Jp1JI3CoG2zSJT2JGyBzPwF+Wn3UEsZILeu78++mnJHu1PGCsN221VyQaJZkLJsac0lsDMzWM9d8MJIkEL9lNvon4OaQUX4NrxBjRiLlkCYTsvI4x5jbrCi5rQzSe/gd1CilvE1ENdCER9R4O+yNvX79hudyx6NZ07RJrHYtFjzQoaKrnkbnNZSHV3H8si6cAFk4Hm9P1pTrL2sJTYa2lSYDdWYc3XuRR1wCR5XrN+vIaPx2Y9kfCLPKCzAMR8lr8aCZNNc8GsFF60Kq7z8fIHGD0kWCEDFNziAsY5UQv5ec2CI9QRUxazRAnljTk7DiLE5J/YIiJ1Nd4DsPI7Czd0Eo788STk3Wq6leKnvoBMOa/2HEyvtW9nHzmD52gcuRleaXrjbOx1YtwOoe1Io2J8VbJchXgKlmobuZz2y/fC+QyS13bJmGyxpVy9OLkqMv1KoMoxowFDoc9dx/umaeJeRjxs2ea/B8YpY/N4KmzliDkvs4Y2kbIjYWnM2XaJoeD2EmGqITqFW6tL2dOGq78vj1zZmzraJpKvZgkS9MHkliX36tx0r6j4kSRAFKI88m5jTXY0GAShirOgHIfOdAbau4teX2aJmIi8n54eOBxu6dJHV6bpmEYDkzTwHDcM88DhFJmOwxHto8PuMS36JomZ/bL+rSUkkddkwEfoW07FqsVTddK4Gi5lEz11EUWCjefweMMtO6INv/pOsmKEEdTRc4NqRGIy44fLR0KSRxo0IUoXaOsseJwWa0Eo04DSR0gTp6Zw34vTrDDkXGccdakQKlgvGlKTUyM4mnD5mJN23UMk2ezWfPm3Vu22weMNdzePOOLz7/ANcmZ5KWMkSMp20b20GLRC4aSXUeMko0Wwowh8HB/z3g88utf/Zrri0v6fsn66jkvlhc8u5UudvM848PENCZOJStcNhcXFxgTuLq64nJzwWa9oW2KE8jPUwosVHgh7f/sGFf7xajTRN6zKUslP4vaa3U2Uj6lKY4Fyh44tw+1S7Nuv9zZszIcNHtVIJTItxiiNPPJej6FeZN9FWLERYSz13VJps5IXm1l85goBN3n8lT3ue4rGxN2P1XstRMkO8fSw5wEXzTzMwvfWAniWO4nFseUnkndAd5LFo21Iu+zzavUZz7mzD+xJzgNRASf5uIMtwE5q626arSWmOZWGzB4HxmGmd3uwLt371gsl2AaoedoG/q+z/Ql5VmrZ6nWxZP1Vx1PnF81ponqKElJDBV+ss5hnZT9KjWBaxoWi4Vwtq02rFeX4AfMMKVIRsjPr70pz9ep6sN6VqVQx2CxCbd7caQDUxCnd+Mcjfo5KGugBKMqqZ4MjnK99F7+bDbU5fUQUra6wyVew+Aj4+RpnOc4jNLh3gp/tvelgkmf8XTg5Ql/CI76X+BsOnlK6kVxegv6rOr8MdmLXBtyAjRC9dkCkIpXVYnI1JAvnjybHE3S1tBVAkbBgqmuE7MRD6n7QDqldoex1tG6VF/dShv7Isiq+EyNgaNEirbbLa9fv2EcRg7bA/M0i6I1NZI4P+oRTSDSJoEcPCHMBG+wzLTOY40SaUpr0+Mw0rYugXAjyz4TxqUTn9RDfwQc6SyeGzumABf5jGwbU2V1CWiZMzjViEMxVuWkrXUY5D7n2ad6XgEkxlqiMbio3tx0eUsFelWwVlwhRv4d54nJT9w/PPC7333Nw+OO6+efcX3zEoxlmqbUDeSR3eN9GitZb34cOe53zNNE07SM4yF1+uvSXJSWrOeg2bWOxXpN07SsrjasLi4I0eP9RPAhpYg6Zu/ZH4ZU/jJzHI50TcvlZiM8CPJE8pyJxN46lyLFhtCk9t+O3IJ+ngRoxHnGBk/jLJvNBX2/4qEx7B/fMs9TLmmRrK8tYPnk+XO2zw4s+pZFs6BpLIdpZrsXQTOM0iJ3tVqwWS/pFwv+6vqKEAL/+Ivf8O//+m/ws+ezzz+n6zoe7u958/p7ucb2MXW/IgkhKQWVhgCWtmuTh1/mdsQw7CTy8z/+v/8//P3f/C0//elP+D/8Hz/h009v+fLzZ2z3X/HwuOWXv/w1u92OthVjuus6bm5u6buWz7/4gp/+9KdcX16yWq0FhHjPPB6ZpyPBF/CaswDTPRbnrgrmUP7GiIZQR44pJL6nO8mU0+j6rNb/E0NewU5MRVXGCFlmOoeNmiqblE1aI8qPo04CAUoxd4Lq2pa+7WRvTiXzTjmPjCmZKMEn4FQpsrzTIzl1WkdK5akonQroJLRk1MjRHWsgRklbVzJmBV8ZwJw4UtI4pskJPjJPEWcD0xBxjcjGbmmZxsBhmIXPK3F6+RQN16i4lCXE4lI7e84IucQq5h0okSfbtFjXEgL4AHfvH/nl3/0DXd/zxRc/5sWLT1gsVlxcCKm903IAnZt0qK5RWahrr0531uwrIHfg/H2uEO341zRNHr+u67CzdKoM3qdstp62a7h69oxpCgy7B95/s2UcPYQJQipDT5mbHwML4rQr61ay3KAx0pNujDNzgIiH4HEmsjGGxgmS9dGeAp/qOHHE+WRQV8BQMlpjdu6KdTWDD9gGOtfgDTwGGKeI9xPzNNBY0ekmkVVb06SyIynZ0eCHLrqPOXz+ax2ZKy+Do/Sw+rup3yxHXitGDFttxlKD0FNjLJXM6/6KAohNdcmIJ0aPMZambfM1dG0KtwsUTsLSMU4wlpzNGiNEvMTc8dJZR9u2NI1k8ZrGgicZM+I4yMAVucdpHpnGgfcf7vjd714RvGS+WCxT8B9bQn/4qLHk7MEEGtuw6AyNJeGnyDRJwC5z2VgrevoM76lgT6GGaqo+jutMPZfxRAoltVLWnspCk7CV6I/kAKuNVSP6P0bPNM0pmJQyspwER3MZXj57wWNKA+GTIz5U83A4HhmGgXfv3vLNq1dst3s+//HPeHZzyzyPPD7eMU8j24cPjMcdAI1rCcay3T4QkSyobrGiaVrJKm6b5BxvEt+NBSO6Y8ZD9PTdiqvbG7rFgovbG9ZXV8zjyGG3RfCl8GviPcM4YaJE4g+HA23bsNmsaBvtyCgZ4Pq/4BwxZUzEKEHkaLV8k6QPgOBpk2F8cXEp9zccOT4+EIJnNgYfA+MwcJg+0DQNnzy74bAf6RrHxbLFWcP2eOT9/QFxTngMkfVyyScvnxNi5Pb2hmma+Zu/h2+++RpnLT/5yU+4vb7m4eGet6/fME4j2/2WYRhk3URxKiwWXXKsCR+frlVjDQOR7d0HnLWMhyO/+Pt/4KuffMX/9n//v+OLLz/lcbvl/Yct2+2eV9++Yr8/4px0me0WHS8+ecntsyu+/OJLPv/kEy42G/quhwh+nhmOJUiLoWTQVToMUrCYghuMNbi2yaVSLpE0G6MZ/Wqb1fumyL+c7aR4ATF6nWvS60ktpPWszgORT6mJRww5WzHH0WMgzilAHsR+CdHR+0iwhsa2NF0LMTD5IyHMCQKavJeFCz5mp21QOzjGXA5toix5tMytanwRY8z7r8iPiCKQGKu9q+ZWLV/SZ+qMsJIYIbZyjBE/wTQFcXIET7RCx2EbCLPQDiheEuewlN7FkLJMQ3Z1J1lX9GcUr7xgp3STtpUSVWsNbdPimpZp9BwPM4YPuOZXLBYLPvvsS26fvaDrezabi5zZFFJ3GMU/keJkqjN2alwl91L8CLXDqmTAyaHVISYYmrbN32nbFu0Cq9lD7soRZs9xu2c+eKbjlv27AT9FCFPSodLg7LTrZ1nLMs+pCiibGoZoEu1DCEL9EAJNhMbAgiiOZ4oUz7ilxsm6Eqosp5NlEsvaMoAJETPPEALWQdc0zBge58DhKHQDhkDbWFnDk3DiSsM0W2VfnwCY86v+3uMHO5vq4zw9i/NH/UPXrr574sX9Zw4VuuU8uiTNySLMAOnsFjOOPblk7cjQOuPi7LHVebNxcn7LMeZWn/M8524S0zzjvWxy45qTz2eL9GPDAyebS0fKqM1b8EviDEn18B8ZygxAn0ir4ryR9/Mr+cXKx/PEcVT7sjPg1Vdq4VN9R4GvCgXtcuejpEeHlOqphobclwrw8izZSIV8XWHlj0zzzDAIaaX3XkAGGgGKKT2/dD4EchmBsUJ6aSeLa0C7BtrU114cgaeDbK3NoMo5qYWPGin1IfOEkJRS8IFpDqn8UXiVSCn0RjuyoCnKgRASJ1oIBGtLeahYyRKxTR02YlK2TSvKOOPcGLMxO88zYDgcDikDr6VrAm3rOB4njoM4/47HIz54nDP0nWQJSAckS5vK+Kw1bDYb6RAHHA+HNO4zOVItRAHi9GGSUh4SCDHaVQ0iFm8MD/cPDMcjV1eXHA57MR4bw+XFmhACTYqMZfhvjHTJDEsph1yuWC6XEiFJa1Hr9J9kbpwr72qvZRI+85EPf2TfmmpPajr07zs0uqKH3ufHIjX6eXlbnTAloljLtPr5ctluZXCp8jb13lLjRRV6rJ496k5/+iwfF10q/5XYNuaxqCNuteR4aqWdnTl9WBQ64MFYkRPSAjtksBWS0yhUP7m82pRxPpEjtbGuH6wdXsUjmaPZIi+kqYC1lCDHCagpz54jtSfj8AcUZCz3e/6pOhhTg65ieGiJgQR1IpG27egXS8I8CKcODsNcXex09p7cTqwNbvm3plOIUZx0PmWG1IDEnKye+HS662fTa6iuiuW7dTYgUSNz4qTVjDRJ95iJzuD9jFenm6tzbQsArF74gVDpv+xRY6iyDqGQessYnEf/z6HD78tIO8E2agSlZzWm4Iza8alZsEaxVb7QqX6vsUQFE5Lu1rL9Uu5SAog1XKxWRtKNs5+ZxolhGAg+0De9dhmvrsYf3EK6ZU36nJospNu2yRmp91K4SKr19vGd8PGLVs8ToXpWxas1hUMsGCKen0a5W56ctuCuJJO13FBpGowxCQt8DAdWAiXri/jkx88z0zSlwJwQg9cZI/MknZZnP6OdC4MVsu55lvec8xjbEEKkJaaO0gmPR3n2NDpodrC1lqbrEgm5OiEkW92nrOTgPdEnr3+UjOthkrGY5rlMdjqvRZsFiPFoMUhm8OkaPOF6TWMnWaotYZpOxl8xzTRL1ux+t+Ph/oFF1+DigsZZjoeB4zAkPs0JiLTOEZbiuGkai0kZHc4KRcbV5aV00rSW41665MkYpw6nqatw8J55AusioBkZqdNjiogYA3d395gIF5cXzNOINYG+a7jcrCHGzDukGNoYy3K5hNiyWi3puz51oizNcXzqoAh1CWyRHbrLdN9YqxQvpzZUkTfV6jxbr0/k3flWOZEplX3AqW4/lZ/m5LsxNWgxeS9Q/cj4upTVbEItE8n/kf16cltpn2m4rpLrv1fxfeR1xU7/DGZ4YtLV96L/qZ5LMZFRSGSAjKEK719MuElMqpADJMo1erqBKHZYZe9lxCnkvPn68+wZBmnSExI9gnMuBdDsyffzf0/G4Ycd9bidrC9VrQnf2Wzrn6/RKhMPIxiqX2D8xDFxHZX5iKfnf3o3J/dQYyn9ijgthcYBCyHaNA4VgqrGnBon5POagg0S/tLdcDJyMeYqA6O4IMZsjws9jjofvWTRpyD4qU1UP9MPm5sf7GzSOudk1wPFkxjSzZJK0upBqD23YhjLZIbUSvFjt/pxL2V6MCMkcTZ5bkMi/lMhZgyZNFAG7fQ8McZkdOtt6WaOxGhonDLWS3lUkyPWaszUzh2pedwfDozjwMPjI3f3D0Qf6JqOtu90V8senSRlThe8Ij8R+vmj1bNGnIs0LXSdpV+2tP2MdRabBIVE8GfmeWSaaiFcxlIFRO3oEQGjYyKjURZqmT3BKfKadmMKMdWaxqJs1MNbG2yqoGXsAj45TObEt6WOkGhtqkOXLaKC3TlzImRiLFwMfp5Tdk/InuXjcWCYRoZpZLd/xN6/kzlKzz4MhwzcBEghJV/G0Mwzrm2Z5omm7Wm7gDEO13isEX4Am8CQCsi+77i8vKBpJZV7GgSk7R8fmOeZ3f09h+0ukZzKpg0BjmNk8jM+bnHWsewbln2bDVgD0hp8kjazHgfWElwkKvlRSuOchoHH+zuatqPpN9i2BySlexhG/G7L6CFGS2sdIUb+01//B/7n/+l/pO8abm839F3L5c1zLm+eMc8zjw+PTNPEYtGzXPQ0bctms6FtO95/uGe5WLLoej7/9BNcYxkTP8M0jrx+/T2PD488Pj7y5s1rhnHk4eGR/f7APE8cjwdZE8kZZ62hdZLttN/tAHntf/h//g/8+te/4rMvvuJf/dlPeH/3yLu3bwkhMozSSthawyeffkrXWn784x/x8uUL1qvEGWVgDp7DYeBwUF4X2eNPjgoISeaQRFcyPtc9kICpKOmU3VTtF1WyaisWRGCq91OqbtMkJ2FxhIXEsaIgxVTnVQWpnBKS2WkAjzGkrJZAm7IJQLh8AlpKmXicQlHiWvtto83PURpBxKRYyvNJRk1ShGHOACZzVtSSIyr4ryLtlaNEzatzBZ33uymlYjHA8RCwNtIthTA8mplxOjIOnnmWkpiQDBHlEMw8A2eG/flr1QXTONu8JkicOgZL8KIDln3P9dUFTdOL0RVC6tiXFHjdJSuNa5FjBZwXnVQ/P2cW/McPJTQNwWIbcSyp4ystC4wxrDZrjDHse8fhzRV2jsThkehHjLGYBsDlgAmmlGmhxmss9pwFnE/5X8FANMzRMAchs+zaSBdjhmNnEDlxtklbagWYBcSXMTsZN6uE7gFLIIQJPwpXyjQNDNOEZBLMNNZwmCb6ucW5yCKRJtel2KcOuz88zv8lDy21jDntXoxqHeecUJkytHUO8hFLNFv+VOxjTsC6OuCy4y89o0Uj/uIkTTdTNQ3QphWCocR2iqn5SzEytFuYfEP+K06QkDgmNIvdZX5COVfIGKTmmPB+5vHxnt1uy+PjA7v9AYdl3a/pu55xnonzmLqZFbakc+SYA4+YjFGtgaaBNmEo4cMJ6Z6kdGScRqwzmftKdTyVAatPGiMpe7wKoFXvc0ZunM1OLVfN5zTSV80Uc0B1U5YUaXHqnon4hLtCzubQZW2TXtQATz5HVcaomX1+Tpgx0Qv4ENjtDxyPBwk0pRK47eMDb9+8xvuJ/e6R2Y+Mw5h1RJzSqCd50TQNxrW06QbUiBOsldZC0yEd0xY0bcvFxZqLiw1t3zFPEw93d+y3W95+9y3j8ciHd2/ZPdxJiVvCCcM4Mk5Cdj0HT9M4+r5j0XcZ9xsg+Jk5ZbZY41KTjFTShzjYQggcDnse7x+wrmH2Hts0+BjZ7iTj3XRLaBfM3nMYJWv9//Xqn/h/jEeWyyWfvXzJcrFgsb6gX2/w3rPdPTLPM+vViovNWrK+euG1PByOPH/+HIA//7M/oWtbDrsdD/d3DMPA969f8/DwwPZxy5vXbxjHkYfHBwnA+ZnD8VhI3mOQIGAKjr9+/Yb3b98y+5l/92//Le/evqFfXvPf/9Wf8f7DPdvHRyH9nY4chwN91/LVj37E9dWKr370Javlgr5tJVhhYPKe/eHIYT8Qgsgw/bG5HC61QU/rNSRbSdaA7n0pyVGnNsl+O3c21ev+XKYZxBlIlJJx62zmkFK5kpMDznSILNESmInRZXmk15hS6WbT9TRdR4ye2TukDYNiugpDUNR0/ldxH8UvoHLAINlkNmVmzXOyKSs9q58PlRxxrsnOrKK7zrOZyPswx8Qt2bD0Afb7GesgYLGNgUTDMk1axuyzfIhBqVHS05qiq2s0lZ8zj3UpkYwZzIjTWfkJjTH0fcd6vUrOaXHOFll1OnJ61AGMfAc1/j7T6x9bW3IeA7F00IwhZt0stp3g5mDERlxtVsTnzzk8Nhw+vMaPs+AXZrnLgDjj4tlsF9cCpyuBxAmn8y8ldPs44yy0ztLiMEROvSlyHp8y5c59LVkfqo175uSKCZc5BHfM48jsZd1PfobJgJlpGsuib+lohZ8qyZiPB55P5+MPHT/Y2VQ2PrIpYihKUBek2lZ5WLKqJe/BSjAoUCqkuzpWH4/W6dJVJ1AMgTFOUj9uOP3hlIBa7732gIM5WdzZGEwkeq4GSsmAEbBHdhCFGBiGgcNxz36/Z7vdimK8XKQaazJANJPn91oRpjJSq+d1LtI4Q9NZ2s7RtLbwUiVnTvBzAgiSCiztRDkRpCRv9ZPo/xmYlevWwjSbntlxFGJEqysy8aQx2RCvU/+yxzyWSHTpDFLWiRKOyzzoXFTEpggYU2AcvGTOKKGoD55hGpnmmWmeOBz3mO19fpoYI9N4JC1eApJWq45HHwLucMB7T+sjEUn3bULMdfMupuyhtC66tmW1WtG0DbOXzKFxGNhvd8zjyHG3Y9zvM3g1VjqjSPqqZ5x9EopLiXaZZJpbUmmPJxrwJmKcJWCITjqMaUnYPI3sd1uatmfdLHG99D6Y5pRqfzgwebCupes3GOBXv/wFv/jHf6TrGm5vL+gXPX/08z/hpz//Y+Z55v27DwzDKGSVbUvbtlzfPmOxWODnwKLr6fqOr776kpubK4gyZ/M48c03X3P34Y43b97wy1/8kt1ux+++/oY3b99xOAgx5jRNzOOEn6U2uO96KakbB6ZxBCL/4T/8B7777hX/m6srfvrjT7i6WPGfbq55eDzgHzzD40TXtdze3nJ9teaTT15yc31dAU5SrfjEMMi1yoouBr+s4WKsGaMOKS18KAI8qsGUDQhzpgnUWCgxiWw+iM1MiLJnrHVEI+n5+b7iaRSsfD+dIskq0ZWqxWLeU/p7zmyyFhMtxag26flUTpqTi9Q6MeZ0x1Nnk4BELXs+dYoVJ4nel+7nYhaa6sPqZMhXiAoY0gwZk9vUjoPI+KYPGDsTzcQ0D4yTZ57Bz4nscK46nFIuqhHz/JKlvHYO1ozesYIf+V27l3Zdx2azJtFmJy6IkCq3Tx0YdbbZueNcHzqvFFNHjlUPcnLUQLz+iTZmA19JzgEWy4WU+RFZLjf444SfB+Y0I86KcypU91ZakMcc2VQAa2PEpb9NclCEANMs2WZjiMwx4oyMTu0QKMGH+nny45bPQd4LRjxNaZ0lZ17iMRRnk2QRS/nxxGwN4zwz+pkOQ3ABVxNeUzkl/iU9TVQYCm36ECr9mN44d6Fk1Ky6/NQg0f1eZ9TUxpecsZzLJlmndAIhRKZpPnFa5cBXsn7CiQMlnT8kAwyTA3/FSZ6y62wqx3MGJsVBMQeadPK99+z2Ox63j+x2e47HI61rcdbRtR0RmMKcopzZ4jtH4SdzquIrB+wamxoNNClDVrJsNePX+ybPg4yDPJ1XsFcfkWwghryY5YZycK/+eCxyOvNWpf2evcvqgM8yRLUIlUHqcwaTGobpyYkmitFopUFCxrKuyevDSgPslDUkvEjDMDB7zzAchYw7cXYEL/xE93cfJKNnOqSuv1Mep5h4o9TpEHyg7VPpvoV5lnUQA1ibuhKnhjtd17JYLFitlqzWS1zTcDwOHA8HHj584M133zMc9hx2jwyHPW3T0q0cGMc0zcx+wjmLj56msVywlowckzR8cnKRAtzBKe8Igq+i0jh4xuHIbrfDNS0eg0mE2oeDNIdoo6XBSub8bscwjvzD3/0tv/7lL1ivN/zkxz9ls9nw5Y9/xBc//hHTNPP23TuOw8ByuWS5XNF1HdfX1/SLBTHC9dUVi0XPz37yFbe3N8zjyDAcGYeB3/3uGz58+MCbN2/51S9+xW634+tvvuHtu7ccjgced7sk9yZm72msY9kLhno8HBgOB4wx/P3f/T2H/Y6//Df/Hf/Nn/yY12/v+E9/80s+3InjcBgFQ336yUu++OwFn758ybLraJumcPKFwHGYOA4jMYqzRxzITereVhoEZflW2V16Hnk9ENXeShu09uWe2D7GEEKR0yrTbEpL1K6vAXLmuu61c/uxdtSIPg/J4VQ77lMH9Bih7VOZeirL8xVaPLNv63/PREQlE8sz2uQUDMEIHy8RQglsyr4qz1Aym84dLQkn5aDYmeGoJ0y4MfjA8TinjtYO24qzfZ5npkmc7iFVSPjZFxqIfE6RVRk5/x6cg+JKo3Q5RZbpt42RSolF2guzD5m7VDCmYsBTvsv634/5B/T9jCmMjmdZZwbECZ7I5p11BBdO7H2bMKcGXRaLBe7a4ghCcm4OGDvJE0WLsMMocD5XSzEjvLJYYh5Sxak+BobocRGm1IDiYz1zI7pm4+m6rj9Tr6FqSci/yYEVAj5Owonq59QgQmycJljG4JkINJhTigPUoi7Zfj8URf1gZ5MCc81SiYp68iAX8CA3YfK/ZOPEnH6+EhAKDpRDRF+vr5+PWqDESExcJiEK6XOukc3n0NQ4UUDaXUxNSkPR+cIno+mfNimoqrY2L9oyHhIlmgSYJHYSZ5KH1HuCn5JzZ07EfK4qzcoPVSlxAQxNG+k7Q98axmHkw92Ox+0gnmc1TNN4zV6cC84pZ1WJAtYCW4jgqmy0DF6reaHcluDf0yVrTOFVUqABPCk7MiQyNr0HeUowqTSomlslJZWMC7mGczZ3ItRP20COcGq5VJgC4yyROl2WfvbMw5iNWXFQlXWoEd6mEe+2dVKTOs8zmAljpWuC01QjXQXRMnsBLeM4Mhz2zFObO1mNhyPTMArBpY+pxbjJJS46ktaK81DAuBNngTXSmtYKLNQ0z74Rzp3GgTOJJNcoz4mARpO6G8mzOIwRYOZ9wI8jIU48bg/Ms+fx4Y7heCB4x+MjDMOR199/l7g7Srr5PEbCPDFNcs7joSOpBLyfuL+/l3RY5+gaiVC07YL1xSUhGmYfGI4DF1dX3N3dsT/sef/uHeMkBPqHfSpLmiQr57DfcTB7wPLu3XtmP/P27XseHrcM48jt7SWzDzSN4XDY0y86nj+74fmza64uL3DaBjmNsThFxcPvmpa263E2EPHJINeNf2r8k81/PV9ZzxGEsBuTicDVmFCnRN4FRr8b0W5cedWnl1WO1MdHFWk825PlKtnpQySnwhoj+9Go4ykbPGcn5RTcqCyIev+x3I+1qWuksRgrBNSHg+dwqIxaFfex6AF9swAGeZj63DqE+W9Uz5RnwkTsUVoCD0Oqg3eGOEXmuZDenjiaqK5bzVI9kLXhmy3tEwedhUgCZpbD8cB2+0jT9PR9+6SsTB169bWfZjidzaXRtVCnPdfASTNFNaIpPIU+2ESsKZmTufOYKXK/ELK2WNtJP5VQJslAKflVgan3XC+YrPtiKmVLDlTIHGZzhCmNf5uB8slkoOurGPcFwOSJsiVCm+Gayu2o9xvydInalx07+cA4e8DSxxRNL1A365Sy/X8oXPovc8Qz3Xu+3wtXVVoTpsiYPKLx/HzhZI0UfJPOWQFSGfe6DFcdSHVwTjkE9Z6S/sUSqDmNSqp/Nils6Tj15Cg3ke+LKKVJ4siouFdsyoJAnFsxZUTFoEaYwnGT5Ekgtz4PskadsSlgYjgeRz6892y34vnSrnkhjdk0zSfGSoypS1uk7M8YpbtsxmonkqYyOp6Wfug9k+ZXswWoyJKLSVaGy1onkfCUKURUQ0zHyp3gpWzcGRC+pOQMcDbtk5ixiJ2FB8mHwDhNwsuTlI33E9N4JEY1QH3ad3Ju7aarRpoxhjmVfRXnZTJsscmQnSFGpnHAWmnKsnt8xDWOw3FgnCYO+x3TMDBPE0TN7LASpAwQjcU2Ha6xNF0vHXqNY559ohKQ+2kMNIn3s3GJ78yQXG4xZxcQAmEaZazb1Om2aYgmBe6miTlGDocj796/4zgc2e8eiWFmngYeHj4wjkf6pdwTBqZZGovP08Qh7pmmEWMt3fGYZLTD+5kPd3f4EFLzDHF49MsFl/FadHeUxjdXN1fc3d+x3+95/0Ew1G63Z384SFbqlHiLsEQvFYffffeaGOHLH/2MaRZe1dvbSw7H5/R3jojnYrPi9uaaF89vuUhZsJEUqI+aRSF7OmOoxiJBp6Qbja6rSuZk3J9e022Shlw5h2oZhH4+642YMcjpjkj6OWF4kxyK+TyVc8oY1Qvne7AQH2vAhRRcEXqPxC1nQIN82sji5HbyM4sdSqyCjPVGTp91rdB0xGhoGkcM0h1uHCob2dhsw544kvTXSrCrLjgJ3if9qDhI53M8CoZqibTGMs8RlCw8NWNR++lMcKX7+IimzGOtc62k/CW3WZuahBgZjgMYOBz27I+7lHHYYbB5bZDlU5GhH8tee3or9WsVijr7qBFRirOWkDv9Cjl5zp7KgxwLUMhONAkySuZ8yOMs5njBzmBy5l01WyJn0uIXb4GsB5906RyRgB3kbtJP11t13qhzVNbFqQOq4HxjRQYmyryUIGJyJnMIAW+k5HGcPDho2wZjQoXlS6D4fIn/oeM/m7MpprKlkwWugiJKdNMgncc0VTumwnt1VAGYEBSZpwVuNLk8X6tePPWAS8RCO114QEvbUglK8lBrSpwo3UJy5TWrKoENa6QVoCpHZxucbWiSs8Eb7XSRshlyurM80zAd2R/3zPOMMS7XfXdNx+D3zPNBSL2nmdlHrGtw9KmjlUyeZE3JfftpIviZRdNxfbGkay0Pj488PN6x3UeOR0+YTQLbgRA9w1FqxZ1rcK7JoKKCm4CUz2UhlJ6jjPk56KUojTwfNgENec3ZJtd316TIMXmTGq33VBmfl6fRHZPGX9jvnbW5fM6lCJkYTDr3pEiZZZo9xhge957d4cBxHPHpacbjkTiFSkiIcDBRvtt1ks7dNEIET0wOqmlmmjzjOKV2s+D6XoRGkvbBe4wbiZRsAtJzT8PI/nGLnwMmRJoE9oyTUryA/LiuYXW1EnL3YWAYjjTOslq0tE1D66BzQsjbNUJqKhOSoi/BE2wg+olhvyV4ITHsFwvaboF1C4wRB+R8HNnudnz73WsOxyPv339g+3iHNYbd1mGt4f27t/ziF//AZnPBH/3sT7i4uOQ4jYzjABg+vH+HNY6uX7BYrnBNw+F4oF8sWK9XXF9d0zQNq9UFFzfP+fxLw1/85b8BIsfDjmk8ClBKEb/vXr3m3dv3bB93fPO7VxwOBz68f8fd3Qe8n/nbv/slxsKPfvwz/vW/+Su6fsGf/Pwr/vjnP+Fv//YXHA8HVqsFf/5nP+dHX37K1cWaNpWfaAmJD0K+N3to+yWby2uCH5jHx6RgTI52nrd2Fb1SosuKMvLeMaro6yxNmz+ta052XXFcqOUi5UHCB0a0+Vy6jtIvspqjptMmmGxCEp2J9DTanHU4zzPHYUjOCINpGsI8E71wSNhC013+F1V+Vo5+dQhU99M2hraztC1s1tIi9e3bkek4oo5virQQuZsUt632cEKIAu5S5sCpXJLX5lTyO02e3X4kxMBhDjSHRJRuLa61+P3E4ZiIyNM+Udllqp+TsVVlEhV2pvl2p9xHMqeWEGam48g8z7x795blume9vuTTl9IgIBueJqu1fJxHWgtcMNnhWQxcLS+3laNJHkqMSzXkmpz1OXUe6zzTPONmkYB2kgw044wAQNfgmiXOjUDD5L2kRyfDsYSgU/aFOhH0tSD6ziAORwM0MeKJBCOp+ZHIMYCdA72VIIkr1kJ6FpMBqjgQDU5FtLF5z2k5lnBkyc1ZZ7FY+d4sznyDjImPBh/EONyPM5gjqz7Qdy2tibSxwaF6xWSj6imy/q936BpQQtb0YvmA0QztmKO8OUsxdQpSJ2z91RyVT79nrh2oHG1JlqXvhGTMlMyqkIwN7eYo+KppHG3Tyt5KQbjs9IkxlY6qY0N0dtM0uKYVg92a1L2JalNU6wFZ89opNgRfSnVaK00BRk/wRylj9ZHgkwPGOaRzpDxbiFIeBhGTDPjG9qw3C7rG8uH9I9++OjBMluAlg8OYxIczz7ncWkVz5kbKIkOEfi4t4cSkOZlrxUvnEfmaxFfLXGzKAosRaVV+IioMbWvzOTR4kFuXq/wgyXsLztiEu6T0X6+heLxtW3zwHIYjwzwRkAzB3X7HcTgSjeDKadyze/DFyEpzJZjZScTflWz6CBwPR2KM9Ise75fSZc0KB07wgXkepZwmBsbhwDQP+DBjrOM4iLNp2B/YPj7g5xlnLV23IIbIcRgBWKxW9MslTevoNyua1hHnicNxom0cq16aI/SNpW9E9zidE1JGYQzY9BPnkfG4ow0zi8WSbrWm226lxCeODPst0zxy9+GOX/7qF+z3+4SLZo7HR373O8lef/fue7753W9Yrdd88eWPWa3XDIcd96NQNbz/8AHrGrqul4zTpmW/27Poe5brFZdXFzRNy+bqmmcvP0EoBiTLYr/bMQyCod69fcswDLz69nvevnnHdrvlm6+/5bA/8PbtW97bd0yz5d/9u/8oAbmXn/Pf/a//1xgHf/zzH/PZpy/4+tvv+M1vey4v1vzpH/+Mn371OX3XSVeuKNmOkw/McyAaB7alW65YhSuInhjnVFxmsTSiK85KSA0mO0JLlYkhnmTyJAwSUtc3o9UMp/umxk6i4C3OtZjUnTu7yJMRHxK1hjHk7pEGKfWULB6x49RGjDHxYwVxeo/zmPefbRpiyoLL91LsbnmORImghzYf1yoFzYDse8ty7TBG+M6IkQ/vJ8YhgvJo1hnOihWTjkxFK8VRF8klzdrkSpov+WSTCQ/QMAYettKkaHXhWKwtfhZEaKzY1OMYCu41lcPCmOzEVscShmy/qu1no01dqFusbSAFvCV4Hphnz93dPc2+5e37N6yuevpuxeXFM1zTJdtdnUmxkp36zPHEIfRDDmNO/42R1GTBSAODlJnRdh3GSjMpyRTXYIuMn3iuHca2GNsSZpNKlgvYM7HixIKMsgvQKH6SJukRaQ8lBXmHYMFEjj7SzJ7WGhrln9V1BWgrQVlXPvlbCvWDzWXTpHWRfDZJR1ukqYdQ0Mh820bw4pwcrvvjhOHIomvpXINxNjdHyj+YE3qCf+744c6mGjSeobQcbUmLM9v3taAA1OubvdhUp0wkghrZPXE0ZcOtMhr0v5VjI2ZBE/L9KNfUH3626jrpWRVA5deqQdVNrh54JfOT21BDy+T3lV8ndx0yFmN9+qwsMMnOkh8fZoKfIDoaB42DYfBM08gwaBmfpqNycg9Sy/v/Je6/emTZljRB7LMlXERk5pZH3XvOVVVd01XTMwDfBmCDIPhA8JeTQ8zLYLpnONMo0VVXHrFVZkaEuy/FBzNba3lknlunwa6ib+TOzMgIF0uYfaY+y3U82iw1Q1adey31sXuXzg11RjZq4txO8AGobU2bkdrAWB1DGWMFRoCta0YfwahAMy3riL2wVAVg/yScCSXp20IOHjWdVpyaCZHH2HQ3XPS+TM0EaFl7bNhIfzBeSymiZCfTz8+fMpNix8hkmlq2SABiCJU/x0I2fmdMQo1Ya7nb4eCQYqgOEgl4SzTOSKtfdu6pY6CAS6l4T2gpJYNC5cnQzKaSmX8hbBseHx84NXy9sDIigDsSsbJZloUBYdjYmZVaHXeJasxwBoVNCafzmfk0AIwDl43Os/ITeNwcDzCGkG4OyGnD5bJgGkes6wYqFs4OmKcHnB8XDAM7a2OMWLcFp+UBKXArzmVdYZzHy9sJ3o+4u7vBzWHG4Tjh7vYGL+5uME/jzqGg2QNZaqLVARxL42u7FuIdSxM/pwIe+f+JU7Z0zhh1DNVppup3qdH/0vZXO2gnW3cRKrkRKqWS+7bzt8+3jCl1siUUCGcK7TMjiirx7jae3FK9/v4PRBoRIgwDO4Wda460muFA/f09f2ZZzU1ulA4o6r3mNo8pSZBgS0iUBJQq54ly+oAbHsmY7g09Hp8dSKH+2UunuNRQrOIVgDYTIKzbisvlDO/GWmZWz6Hpbt247h1dz9yH3sy11qamT/ZffE7NANFSQ80G2YHFThdrJ6C6ZkQX0NW1S6ffi6oYaKSY6ppk7dUIPQsx8A2lwBWqs4x61xDd2nQTr+3+Hpqub3CDf6hZG6nL7IVOmcI7voco3Qg5iCPZJPouXRd4usb/pY+d47HTtbh6ljZvfKe8pvv9omsJ3e/773108zlw/txnFDux8zmj5C5T8595NsUHOwcvXX2Qrn/UdcilHHyvpt27otmuM1sztKifVblfcbYKkTwhwwopeIwJ5/OKmD2AQaLGbSxyyojEjTGAlv2tnZaajO52y7MOtF2eXocF27OpjKkGgGE+y6wwpcPIVZbV81A1OvX8fB7FTCobVRa0MqeCIh2hhfdGsFHKmTN4UhSMAcEVAdy+yjY9hhaYNcZBieV5DJNkiHcNQrJiWxlnYr4kIkLYNiyXC8gYLOuGECK2ba3E4FayMgs1jF1AIGu5Y6j3MM6iJGkhnnu5wNkjBpxJwLJcnPbolmbhzDnu5EnVgaalQDklhG3Dul5wenzA+XwWXcjO8HXj0kIm1obw3wQerZyRYkABMfUE8XuNNbXF+LZtSCXDDwOGIeNwPMI57rZ7c5xBBByPB86SulwYQy0r2FniMH86MIbyjK22dUPOCasQui9SKmmMxc0Ndwt8PJ9we3uD2xvmlLo5HoRTR3Rx1ioInW/OxrLOsTkThRJEhVTF/21zNMzeyfb+6DwmWWwfDqZo9l+T291mgMpD6vbFbgeqgYaywza9PUqETu8AUltZZWCSNaLPzvycqM/cMNSP649e//X3YCzbNd5whpW1nfYjfmJ9oWKQ/tG659oFCEuHfUsnKyEE3SHLPgdsKOxw07Hozq0ypx8zHetm5eHpdNb3KS1OOz/I1GBAAZh3dV1AxI5KquumZUlpZlrVFKLTngbv9vf59PX+vU1eG+KA5TUlQdNfTf+2XwT11EqFJmtKPyyln/t+HTbdryvZyGIsgnlS4cwmkyFBmqdrrLcp9Eq7J1ecdTVXbXzkngTgkSEgg6laSqsmSMnu/Aj7DFwd25+Gof6LnE28ZgyMUYcQ6kLVB9Jynr33URYLKVcBOuUnVBegGlWu3lOgkgwC7ENXIMqD3UpQqnIuEAO/peKhFOlIxhkACr6VBZ9/VoGqofFOoKGaRjuQux8fVEcJCAhb4OB9ytIWO4HKCuSImJjbh0GDtoBWh1RB3BakuGEdEtZlAjKnW1pycCbDUQJRhjWSOm0Z8ufCBnLPrq8Cuhk8Ml4AlJumFyB1HNVgkbnXWWw/6TA1snadjazP094JdZRwZhHqWqoOStl8JWds4syhpGtO0+nFYAJVhU2ZcDo/4vvvv8fHj5+wLRfEEGAH7vxBLBugm6u6M+XGUnWoNBCZY6kp2cYYLMsC5z2GcazGHQCEbcXj/QOqN5lIiHY5qgDlMiAmRywEuNHDjxP84DBMM7x3zN8UAmLOePfpHqYkfPbqDi+OL+EswRsIIXyLPBuyEiky1XC0xJ7wwQ+YDgchTA5IMSDWrwg/DLhzruluMFH6KpwJy/mMZZzghwHzy5coBdgCd1ckY9hZRIGJeY3B4/0D7j9+grUWx+MtxnHEOA44HA9MpD4oTwZgjMc4OXzzzS/w1Vc/x7Zt+Ou/+bdMDnp/j8eHB1wuZ/zx2z9i2zb8zX/738ENM5wfcZgnTPOIv/jNzzFPDoN3+PmXb3FzmGsGXS6cCRNSxrpFhMhGJwhCqKxCq0W7eBj24lqV3ZNtroK/WSkgdZDkJLIMIOX7EQSxU9LolWM73bNOnyLycadgO8VfshgwAhJTls5ABs6NYBGv8qwZ7IYgBI4CmvVyXRvVpmF0jRRuiwuOPFlHsC7B+YiUgKi0Kij1M1zaTJw1IdkUhdRw7OSRZll2Bm+MiTNCoxoqhPNjQHhY4L3D4SjZjxbwk+kRU5Xx/Xz20ohfLPyVG3EpSVfJii16QAEuMb3/dA8yGWGL+Pyzr+ClyxA70ds8dRi8yzbh+WJA9dz66gFxM6TrnAsQN6YA4BI6P3iYbBGroWeQU5AOUxyFrsagGO1GjVaiq7EBGobhCcoooOtMGJlbvWcrZcghsiFZvMHRGhRLcOAMTV1rYr5UuKIzsstA68ZDMzJUHxUAURyQZJiLhwnH5bO5YN0CG3JS1uOslSyvVqqooPxf81AnoT64QQPE1N4E1XWNK1NKRTo50DBWqZmZyqNSrt533Sr6+tgbamCHBIh5BrPodmo6WufKOVdLEHht94G2Jl0ZhmmHVpGtguVAzZhVkF9KwbYFMegThoHLpLZ1Y2JnMkhx77hJuWU2mcK5dssKLEtEchYAZzRTMtiEX9JacS4IAao68Yg40KPt3Huwe00B3iYXO+xtOwzcB/F2ziZ0OMjI6ixomWNybV2vqqWoM4p0PakU533Igbb+fS0zo6E+5ZA5nU744Ycf8Ph4YudHipI5YioW3n+2fcXKk9fWUQwbziUzNi0Zgx9gnYMfBhiytVxPyxdBhCSOvSyOEeP53jW7cZPW7DMVOM9dgMdxgvMOW07YthUlJXz8dA9ngM9evcDru1ecXZlSxdcozGuXQTBJSmhSBmzG4Bxu5hnnecI0z5wBtpxrAFH35DiOGAbP5UlbqM7Zh4cHGGMRQkDOGcPo4adRDLimH5cLZ0NtywJjDD7dj/j48QOsc7i9uannPxy5u653vgbOjXWYDha//PWv8PNvvsa2bvh3/+5vELaADx8+4tOnTwjbhof7T0g54y/+8q8QMzeIef36BQjA7e2In335GoP3ePPqRV0HOt7LuuGybFjWTWhHruQkAS19B1eGoIqSciWHqDpEdCUBRZrhRKQcJeDM8+6d44y5UqpxzyXGfDlDplZLlOpMVF0tTiKgOk9LSdAge+UlLL084n2Zcsa6buwQssKvWZJgLg3aEJiHjJ/bSHZ6H0Drt4nK6RACzqcNgwem2wJrAecyQGzz7BLsBR8lSTtOYr/snGnQQHkb/pxy5cXVbuUxiI2TCafThvMlwVqHcZy5RNITXJYEhidZ/h2O2k0woKYUY0uIQ9KK/rg6ZJxzSrj/9Anf/tHgxYvXeHH7Gt45KEWHrp1uOuuc1aX2LDanZ39vvMz7v9kCgAq8cxiHAc5argIoBSmGGnDPCYhR8RvVz9frKSWOAShDSmK7x5Y9XwnpC6rjvHc6SUEdli0jx4jZWUzGANa0kVGsRj2GUgz3/GHIaDIU1OnPVDSMF40hOG+4eZtQkcRUcFmZniXkBMqc/cSJIDIOajPnH9WIu+O/rIxOjWpZR+ygAXZPSh1w7F5UYaWcANZoe81mcVjJylDPGoCds4l3FeHJuHaTW9BKN9SJU0BA5nI7BnV8306dTUbb/prmjScFQZ1AVUfTtdzViSdiQJuBEIUXgBLXBAsYKyUihowtsENCyaZr5kHJiNsFOW7YVoNtYyIyZ4h5oAiwJsoYirPJqONNQQyPm7aSrdE0nSBUO6IawdXlVBoxmhpsdbyrdajGc2cMkW4V4RParT+NGIhQkvVhOxBchJwui2NwN7ZqCBJJ2R6nFpI1oEg4n8/48P49Hh4fsW0rYgzwzqOmo+4AnxI885EkhR6gyjPB6YWNZNJai2meYJ1FKRZkEiwR4pYRViXJbEScO8DNoRrOuiLAGwsvQMIP7HRKIQDbiritOD08IG4rbg7yHmthSUnBm8DS+8yFcRREGDtrmdh7OiCmDDrdI6WIGEPN/hqGAcPguykteLi/x7qs2MYV67JgXRZM84wXdy+Qc8HpcuHU6piwbRs7RWW+lGjPSMq79x5+YGeTcw4v7m5xOMyYpwmvX77EOAz47O0NjocDlHsGBFzOFyyXC87nM37729/hfL7g5Zs3sH6CdR7TPOB4GPHLb77E11+97QBJm8+cszjv+CvELM4miSglU22Cqjh0oRWF8k3R7YT4TszxKpKCFpYNMh4AYMlJ5UEH0ju5Ufdjs2GeyJW6LxW0XX2WtJuRlDaQGGZhKyjOooxDt4dQ31P1VaeMqcjmpPb81w8eA0eXrWM5Yy1gbYR1krIdlNSzpYEXiTSnyGnU8hsUqTSjtBkWWhIYxMEZlUsgA5dzwONlwTQzcT08j7MfJCITUYm621hdaQxqM1dDFkUyKjud8GRiBLw+Pj5iC2dY47CFM6bsYcwk6cudLipAz9/UXtfxkfVWVGe2N6qjaX//nUYlAyKWTYNnzrg4MG+HNYQYNiRjkPMmTmJJ6q5BANVv+zXe32s1FEr7XM3i7XQGiI1WlMJGQ0wwGVinIjwzQhauCw8q000HnHcTtB8H0hzD9t4kvCREnGFnS4HTbltpw5YTnLVcag2DrOXY3bPVbm3/mofqM1nvVp5NHWlA40tpZXSQKDSfQOeC/67GmGACycqoTlvsA3+90+P60NElqKOE14lyYfbSUR0ezdnEXJCtBGaPDasRdjXmVaZdRZbVMONPZzin3eECctrqNXRM2UhUXQ7hPCzYNod1jcLpwvdbiGAjO72NlWc1fcS8MyhtK0/QZ8nAkz3dFpbsb1B1Nu31dieXdhizrY1SpCzoGQyvRrHuHyW25TUS63UqOXx+iknq3pNxBzGHyocPH3C5cEfdGDO8v+KM6R9V8WMpz2AoLjHZwiYZWxmb95immUuOTUaSMs28BeTThc9rXXU02IoLeU7YkSjExQRYZ+E8Z//4YUBcVyThkgyXEygnvDjOmIaBqTBiYHoNxVGZnU1kkuwXDvYOzmEeR8zjhGGcECIbXNz9j9eGOpuOxwNnNq3sWDqfzzg9PsJ5jxgjcskYxhnjNKMUYF2DdADkwF4urRxVg5h6bsZQHvPNDOccbm9f4DAfMU8TXr18iWHw+OLFLW5vDnW9lgKcHh9xejxjuVzw7bffYV03fPblV0jZwJHFy5cHTKPHF5+/lLI3wda6JmWvbluQtRCqbbJf6oQnGRcVOjRboufYUUdy6+bd2TzSAbHaHL19UL0p7T6qcza3tdlnA1a9WaQrV9FkAV7OvHdEn6W+9onYsbkxAb2zA3MQSaYboXQyzlSdrWTlHHiU83W8eKr7lNweM3dVHwbAOk4e4PeKcV0dFIwrUTjTTEvKgS7rR/ZoczZJUFD2ZhbSb+XpW87cyXecBng/sh3sCK5wdmUK+YmAu84cqn8tvAx0RLQjbg1uXAvKzM6zx/sHABEoBunrgK6Ov50YTcb0+qoPbOyPpzrt2u5VcVaKBFRyAZxgKGMQh4HHyxiUFBFjQtgSjInQRIdKo1Pltu6IzulT2h6o81ha5hx3eO30H+keLthi4IYYAxCnUkuA+2uoj6UFkZ7KaX0/4zO2mWMEMnLlZyzqbDISABVfBK+1CGctYsowJsNDHMGgWi74XJbZjx0/2dlUOQFqZ5ju8TuFmQU5tw3fup7toohq7BR0rig9dILQZqPsIGj7iehJiUl1NklaMTtrRVgZ4YgwrV6XnSuoBg/QhK/e4z6tud4iVPkYcfpIDIoXLBLcYDAOHilZDItHThklR4TIaZraHSWXzF7UDCYKK0LqtmUQEtxk4J1FSAVWs3xqeZg8K5VKBKkRmD7KeD12DTw2B5oKT1UMROjSaxsBZ6dyqrEEAafohYNEFXoky2L6+m5Q62cB221SOU3Rn3MdG91gMSWs2yqtS4VtpCRRXqwgOCrRAO9OeVbFhLoSa/tvoArrdV2ltbhaBrZmNNUSD/3q16M1mKcDyBKGeebonrOIOaOEyErKOVBOQq63jySSnJ8BvUHtAkYEpFIjHyUn5MwRQ+a94MjbujKADNuGEAITE8IxIBbnLgTk6nMulwumeca2ruxISEpMzg6eUsDEjHvrFCkxyWsuDOysszDUMqdKBgbvEGLEskoGjmeHUQxBOlMQpsMBxnnMhxnD4OE8XzPVCL5tvpHuKLngcr7gdF5xOV+4RDHHjpvkecHI+7o3pVDXX/1bEc3azC2o06l/D8lYPDWqnrt2vy9LfXPnWtKl2RR3tyf0sso9Vbdd6fcMSalnAUG7oXB2TFEvDowQxzYgWIGSbHAlDE0JSLEgRgXeFsYUbEEyLIR0EgXKhwsyBRU39iNY9bXuu6IYEVbSvEHiIjYE64zMPUnWDlDIwg2cgYEipSi5ZU7tnRyinyTbsW5z6pR3Qwz89HWcOWM2pYywcQbZcrlgGAaMg4UdBih4ruSp3byqUdHOd6X1ioKhBoz+3MGyRkgfpXOntRY5S4DDMudOSkzirw7h9kxtHddz8hNUPdeW8P45RDpDG9GrvMwKmsANAgwKvDU1tal/4lxqiOQZ/d+covXadd1XuF1lY40MloJIBSlzRDqmDENshLdt3YGKf0VnUyXfJtQMQs3AbjJe9s/VvOQOHLZDA2qqb6/XU6nXfc651BsQvRRiY6zTY9p1U7LS2QnTyKGdNIfg/dTK23uH6e7qV7dCxBm52k5dZY8Sdztv4PxYrxVDrBiEqEVco5BPs4EWa0ZMCKnyWHhvkYkzlhSw696v90zUsJM6v4h+7PbbeLe7uno+iDzY7+ln97dgKGP2CQbXCPnpfLZ1xPtDMwRQ5Tn/zjKorqVSUDKXGLKTKcocg0vAElMKmMq5VbrnbBi53U8DeRoD145/TAPBGGoAMQ9KkfHSfSzjbaRCInNtB5z3ODgHEGEYxvpsMSUgRJYl1gCwaBQRTY5oyYxiv2wLbDFVhpSs2SDaOIEdWtY67nS8rjWQGWOCcg0CLfMSaMHLdV2wXC6scQ3fU86pYijnHeuqfG3YS2aoOC0KMdZBsYgbZ/YBwOA9SmJuUeUNJRDPYckoxmA6HGCHAeM01GqCktkZUXG9rDcVHwVAihmn0xmfPj7ifFlr8KeUXHHg83KzGcK9sa3ySTObalYHUOdJuSerTCbNaEv1pbbOKyh7uv70uuiQFbGu6DFZX9bZ1rIkUpDoJsUQch5jjdg2EhgrmTOaSIMDvGcqVkR7nIqpknR8S9rdltfPOFqkVLBF9gH2fgz+KAE1+1udGmUHojrEyMhUACElwIEwZIOYgJCkOiQzkb1y0dqBmDQ6SW6G3j+usKxiXM2or3OgGV/XnEqKd6RChZgfd102bOuKbVuwhQHOEIxxdX5k1Jtvoc9Ar3pPn7hbhb1ee0bIVpzV4S0j3Knc6Z6TQ4y1sPrd2S55o40DUEBPulLLLck8lW5N9kkdKpZZjBQOToCz+CDzx/gFHNgxmqnXYbDSxpZx258BjXqtuqZlnEyjDLGafUipUv6wsyk96byqP/9Xdzat6yK3R9xO2xBMsZVrh1tFFpQkFM3UuHxy5pT+xiskUEocQZSFWLdw2p8u7gI2ctW5Vbl8yMCQEk83Xib14imBab8oURJyyUye6BnUTOMgETMFfwRkC7XarOVoA2Xd8fx6Padc3/sBw8DtMsmwIRdjRKaE4/EWr1+/4udPGdacYJYVKTHvyIvbGdM0VmM8poS0GYRM2LaM+4cV45BxGGccDwNAhGmITHpstcsIwdoC6wqc57aSvIHcDiB67hwAAQAASURBVATsDNAOAGo5XQ9WGXBCvJ5C8peokhPXhVdKXeS1K50xteynOvmKcnyw3SG2Xr2ksSwAOf2SFbF65XNOiFFb+vL6yXKDBcCyrLi/f8C6riiS2hDDxmtNoq9KBs/j0TIQtNWzOjJK5raquqbUE70sF+ZnsgY3t7cYpwnOjXCDr+9X7iYZYFbcpWAaJ7z+8nP4cUAmg2IsUkq4LAtyTnCW4OYDYC2sH1FS4vvNBTBFyD1ZGGaj960OuSg8CwkhLljXM3JJOBxmAFxG9+nTR3y6f8DDwz3WbYMxBD9wWrZ2oDNkkGLGtm74+P494rohFybZ5+inQSEDZz2midehrqWQomQ75coHpciayOD9MMI5dhhN8wxnHW5v74SbQLLGrMU0jpjGAdZavPzsLZcETgOmiQ2NWDi1c7AGo9sLfj1iTPj2T9/ju+/eY0sFSyyc1bUFhJAkMqROZAHb6ME71b1SgQvpbGqGBztt1AYmw0TIWUol+UMStazmdL+72tpXYACU1t2uf2e1+vs9rFFy3asG1jlRVK1ELeUCkxKcIZ5noEahjNGIH5CED0O7WNUMGDEulUNJDbdtNTifCDlyN8dXb0Ysa8YSNsSc2LHUG8xC4musGkKiGNXIgz5zaXunMNhPibtF+cLZriEPvE9LxuP9BqKCm9cH3NwOyKlgPQWkmBE2zsRiMSEccepoIsm0EX4nk9nI0czaFk1VZU6dnikIa8ByCZgnLj3ZthWvXxuM44HXYOIoojFlJ0f0u2Ymavljf/Qgs18sakQCexBFhkvIiAq89xVIxXFAiizzjLGI08JZAH7AQuygJ2QGUkR1Laux2567B5n6XfLTcmLDxhpY71jvFg/DSh2nJWIhwM4eo3X1s4BGlFPT1ypP+v1xtQdKbqUwGUb4xwwsGXhjMHsPImBNidchMpZtQ4iEo5/atit5dy//Wse2saGovFrGGCFZFQeHNVW37kBk4ShjCAG9gQXRuWxD10LYKh9653oz+LrOZ/K94iro2tJyW9kfMjc58nWstbXBButBhxQjuPkr7yNrLIySw3aOqybv2mGMwTTPiDnA14xbyZiBwXyY8fLlATEGrJdFMCb4TMbgcJzgB491WXE6nTj4dEkiqwLOpxUpZNzcWsyHEWYruMSIXJg+oc8QYoeWFwyFVvMPXTvM/6M8eP0aqs/VW7nygqlZri274okhRCzLCYRCRUrnOWNLz65zpF2TATVwFe82LFxKqY6RRtCMKuOilIbllLAsCx4eHpiEXfB2CBExXmCNYMo+eGlKXbdPnU3s3CORfTFsCJsEnNaNS8XuXmCeD7x/DctC57zosTZ0iQwyZUzThLtXL2GF3DznjJgzTucFxmxAydzIJRqkheU3MXwSaokWRCBZXzAWVngdQ2BepT7DZlRcvq748OE97h8emKdy2zDPE2f8gaTEjcdtXVecT2e8f/ceKWUcb26whQBjLIyUJTpnMU3sMFOSzij7O+eMsEnHaSIUMeD98FHW5YDDgTPGb29ucTxws5ZhGmGswTSNGCfGdndv38BZvpZ3LCc0QOOdweBa8x5CI8Rf1g2//92f8Ic/fAdyFmYYUbI2zwmsN0iDurpe0Ij6a2BPHeylXqdmdhR1jvJcecdB96RdKXNm/tMk5aB1fZm2F+Qlaw1KceIMU97WpkI00JZTqVkdKYmjoK5n6Q7HfewRYkY2nL1PmeWD90N9FhTAFGI8j4JEQMkkFCLNQdMaMfCHYmTdZKkgbhbOAOPo8PK1RQgZnz5FhMAOBlOxn2YualZYNUZRhUK3+/rsqBA4C9gXAz9zR8eMwOs9E06PK4wJOLyYcLgdkULGWWz4kji42PBAw2tAa7QBAxRpEsANqrgpQI3LCnYlApzggPWyYV0uGPyIh4cPABLm+RXbFoAktbD4tban1lGnpNyLaXpqJ0o7B1g/Mv3PpHaoMfDWIVPGOAxgR5NBTEwTMk7sANqmSw2yNBu4CG9l8xGojEbVEdgf1Q7nbtmpFJAzGEePAuZriom5m07bhi0Bt8OIgYl7paKlZUnVoCOuuAKxdwvpuIrPu2I9Kx1anLXwbgCBsK1MwWAssGzM5Tc4j3HwUN67ei//tcvoalquTKspZjeITz2ZnSFYnovK9Z9VAwTV+Os3bP2caunug31MrgKaDiypwytJ7wRQr6y7bi9oAmoH6sUhtltI9Vc1mIy0gVVlzKAsFwYE3rlKPFg3onhTvbMYBw8Ct0lVQwQg5MwGkzW8oJw3cMFWfow+i0YwK3splRSyc7bp0KljqYcGdQ6ubFyNTGqZElUJ3zZX6c6Fq3O2FxQatrP3kYiayUNoTPqlb8NMtfuKlgwVY2p0OKWEEEIlpCR5X0oRBha5GFDWcdXSzTZ/zfnUAUe5P117nFaYYBJHUF1KMCbt3l8/c/X4xlqM04RxnhDECVAgJGwxwVgn3eqs8JZx4iTvGQaQyimh3E3aFpeJ5vmqHDHh6K5GgUthIKV8TTFGJpDOGUXWbDVACtdTb+uG1a3Y1hVh2+T+pCxMyg5ArVY8F1aOqaDeQxXGRPUZrbVYtwBjLWIuWEOE8w6HEGCtRTpySGcYgBt/4DJC71pqfuKMNUOEoehIN4BPYDl1OS94eHhkXg/D3UdKzjtFXfdx2afodstVf9sBF00dLyhSm00i5Eu9h7oGuhPpVUv7RU/Ie/Tphevfdb/q/y3rT2QsCaAm2oORKjulKwx7jqocVSxDWdZulV37cSjiBNL0d3amF0QLkCMMo0Vi7C7yR4FSOwyp4dzKUGpESa9S2vMyqAAgzdbVKeQ8g/WYgLiGOh7G8eeMZdCnXWqgQKkK7Q6oycz12Q1GU6V306T6jD+TM6ephxCxLguWwTMhLJU6vKUDFNdHEeeQzqHeG+mE9LNff21gr1+z1P2s+qyShosBncWBTmLUgVpWkc6vyt9+bT7REbtnaIYDLBvTheS7zCmXDpcq7/rnV8cSFWAXGFQUhKfqvn623pcCStbzXuREJgKy4ewWaZ+ujlRd1KoD/jUdTqrDAFQg2h+77KRednRj3cDzc+uk6eSds6nsx//6aBiCurWkRqgA+kLIlGsU+5pUNRN14lj2VuewusYIO/0PKYtyrpZP8Z9kbxPBOXZCqfOKMxX4PrzzGP3AhNKVPwpNVqUMlzKIHLznjGJjifuomPbcLaupRc9VkNW1I1gV3b7bzWNVR21M28A0HNbkL3VzQ22s1AOgGKXbF4qX9nsGT/6ur/XyCGAdzTK4GS2akcM+S9UDrG8BwOZcDbN2zSaTroOaVOV9M4oQ+dyaKc7cTADIVsyu2TZ6+wYFhTgTaDpwVviyrhxYLJyJnSVr1loLmKTbQJ5ZMdSVjVK4KxOT7qdqNGmTHhDEQcTcmNu2SfOXKBUIRROCeU3K2GbBP9u2YV1WDkSPAcZmeBjWkbAVQ0EbIxWDKHtOM3pygZCKE2LMMDbAuQ0x8jpPsWBbI6x3GA8csEuFO5B6IljPTlPdE6Uw6S/Ayzprqaw4Qpkvix0il/MF9/cPGOaJM8ogmU2ZHU2A6lQNnqBbcc0+Kt3fFbcwb29BH/TVNZupGa6lZJQE9BmHLfjR1rzKoyy1p/tKmWvJo2ujXacP3Cj/JgfK1XEk1zFd5pXuaWqcO8/J2CYbmvMpJ3Z2sQOYZc0wss1nLfNfGtkP9QmK7jOglO6ZVB7tHrW3+/TuABQDY6nSxxQoFxE/j7WEkiWrksVr1SeQddiM4/at6Q50NrWugval7ytgbJAzNy7athVbWDGMUQetrpWK367GdOdwuzr2gWP91umbiqF0rPrscMVMuem3nd1+Pbd7m+LPHZ2EbJ/TwDEMZxURyb7U7nC8TrXjYNF/V36Rguvr92NGu6kobVHLX1Xnsa+CQEhRaG8oC6URVWojtQd0Wfy47bI/frKzqS18cTahtG4epdVg18h6zhz1FEWmxOAVyHfOBM2S6UFo86Ry5BLUSpV6rh89Y7NT2sLWsoJSCrLLoMTXDiEiELBFbkkapMsDQLiZ32Aa75AiAxLrDEwBNA2gbi60skBnLbx1mAaP4zwghYgSEkou2LYFH6Sd+72QH3OWjgIGK18ORtpZez8hTxxNkibION4e8NlnLzE+LnhYmI/GeykRAxub3NIQoJLlHmXTF4126hirwFVPaGkbUmVoB1hySlWgaoaAUVArlmMBqvOHKqFgJ2DEqqjZKCpB9YK6EaDruHNQqoAAO2hyLkiZ608XIbMkWaOODCtSEjaWwoYhiSHESpG7i6SUMQwDppGjVJCaepSuNTWa8NL1eTlfELaAYZiQE7gjyHzAMAxyTQBEXCI5DBhmdjQN04S0bdiSOBVFkEGcBBkE+BGUC84h4dt3HzEPHp+/fYHBT9KxQ8WKfJGF+tZDjNjWBbkk+GlCAjB6h9ESBksYvYxxClguFzgXhNTPoJQE55nYL8QN62oQwla5CqKAO+12x46JruRIvvnBYhhsXZUV7MpMh7CCIuGhZLkHh8uRWySfzyeM9yMGP+Dh8QTvPXfkk0jsODBB+zQ4TIODsYaJRy1zVQ3W4XK64Ps//Ql/+qffYjgeMb96hYKCGBeEbQFKFPvBdGuwfect3QGEavzpo/Y96vbiXQFRlevq5KjQq1vjsueI2HHKzlC90JWDvT93zhCKLuz4gEQYkzIBQkkAweUDxI7HnDbpGKTcSJ1MKNoyuAj/lGY25SpDAHY0PT4UrAtwfDHgePCAyXj92mDbJPOr3jePVZaIClCQhFukH8OdvSaGq3bDKSUjlYRUMnLh9rPrsmK9LIgxYblssCfO8hxmi3Em0Kk9n8oXVdJExIGAqjNVX3BWg7UOAj2eAZCc7lwsl/P88MMPOJ9PmKcb3N6+5P1YxFnM1i7LTa11753SpQDiSGPdRWLPirTdeezEMOlXnRhnltiots7Byjw6x1H0nAkpsi6IwqOyxYiYI4gKXFbtQdjzIVZkgraiJQtJyr7XDJScufm1NPcgssBgmCD4wq1TLz5hdIYbGJiO90CWQMWC4vAEUCObLRVdCHYzO+tT4bnl9uDcRMGrEW4MBmMQYsEZTDx8WjcYeoQzBtPgxWFRMdO/ylFFJTUMocCau1bxuKtTisuPOp6sok5KRjwcUEndZ1o30woqoRiKdhiKo9DPRX1RMRR/VjPUUR0NMWfkdQUAnJcLQNzy/vGe28XTNy8xTW+Qi35esENp09wWGu9HZx2885jGETfHGTllOOElW5YL3r9n3sHHxzPOlw3WOjglsM4EZAMqlnctWTg3IGdukmANv/flyxt8/sUB9w8bHtcHziBooICNDsog8Bc6HVZNhNIPMGR/NDnXH41zSwSNIqqKgfa4gt9XyTC6r4w+Zk2FsdTuet06rju2dIT+gtFQipTORKwbE0Bf1g05FVg4FOJGIwDTOfCyUudHAUkkvQBwEhxl/DMzN9O2STBLy/t5XIx0wdTMk9PpHtu2tA62hjFFAWe5W8mkmoYRzg9wg4cbPMgaZDAHJpGBcWIDgx0zOQOrlHl/Oi/49t1HjIPDi7sjpsmzXMmcmaYYt0jXyiRt70PkrHhrmYpgcBajI2wWGByvtxwjlguTe7tBsjGKVBPAciBiXTGME2KMoCRclwAsGVipOmgZim09eOeYqgCc2dQwFK/TdbuwDssRl+UE5xzGC2OoyzLj4ZF5Mx8fzuxskkoQK5lP3ETGYho9rDEYJs9UHiEirxHnxzPeffsDPn73PY4vX2A8zqiBrFQAW2AqX28BwI4x8Ut2gb0mt/jWeQ03uhGVY20ZEynvW4/F1FmFihsqPhLMY0SZM+43O52lGt4QB3OLZMVV51fV0dSEs35evXEksqAUxLDUUkfWQ2JfaRl/1m6OmvVR2nfBWjEC9w8Zy1rgxwHzcYAbMhIIYctPnHeMoVp3aMVmexu/KVPFGDEGyWYSCoRcsG3cuTFsEY+PF6ZrWQy2lT8zzsA4GWxLxnrpMop0TorMO2UYI05KZBBZydjtOJu6W3v6AmFdN/zw/fe4nE+gLz2m6QAC4zOAmA5B8Alp5UjFCv3zNydSC8aV3YWLbjHRSxroAhkO4pu8C9J7P4DIICwZJicgE0IMWMOKlFjOgYrAMno6F7KIqfJkilPIEGCF7ysl5BLhjMHoGbu47DGQRc4Bl8C0KN4mOJ9g1G9AxLqCDYEOE6JWVzzJui2cuZhSRipsb2al3iHCQIRRMaqzcDDsEEyRCcOXFY442WBwro53Kyn+88dPdzbthlDKpuR3dig1UmfeBGmX6qWplgI79o4lOYca06WUSo7oHEnWUAPq1hjpukIwkDKFzjBUAKZeSgZznN2kLV5zKYgpIuWMy/mCDx8+ggrhy89HvH554GwMZ2C9ESdVA/o6BupFd8bCVWeTR7BAKAU5JoRtwYePXDb38PAg7R4NCNwdhUicTcSRN0PsbCrwcFYEHBFubg747POXcOMZ7+7PuCxRnE3NC25JyxFTJ9xlZLKWH/DBclFmRCa3B0zqCiMxNgmAJVuVowpkbkkr56yKQ6JDpQPY0NIZ4uv1fCXiCCOgCuMWlZX1ZzibK4m3N+aMNafa1lVNJk8WmQgBQBIElpNmQ3H2BQphQ4AxCaMfMI0jA/ugdfvgkg1wVlI/KiUXLOcLSikYp8Cgy3k4Z5kPAoQswtF4h2GeMMwjO5vGEVtKyHlFRt4JZN6vBPgBAOEcIr579wmHacCrFzegI0eX0RHFQsBIIc79iDFw2+Bi4McRhQjD4NnR5Aij58gFUsB6LkjecRmBdIxx3sFYQowb1q2wsykmADLOMaIgS/SJOOOJDPzgMY0zjJWyCu/A2VjMsxQko0q5tXLJWJcFBQbeO8zrAdZxCqf3A5zzODye4JxnQQh2Go/TLB00HKbRwTmLw+HIRJpuwM044vR4xg/ffotvf/uPuH37Fv5mBhlCjCtCWGEos1G6U375SlHo/t7/XApq+e6PHSS8EOUqk+LpOcV84RAjquejf28tb6UKPooxUD9oi84w4FJHMBREi3GeCzubgIKYNqSQkHKUlsx6/sZzcW2kpKzAhuVASgUPDxnWAuNxwDAOcL6AyCPFUskH+cb4HnOSNV6YkyJX53cHLAuqswCFxFkkTQM0+lwcyG54vAfe/8CE1MuyoZw4Hf144zEMDqVExA2ShSSOt6J8CNxWlp1OpYIQzjx1XAIEw/sN7e86f0YyWWOMePfDD3gYB7x+/Rk+21aQsTB2rJGpIlljrvgr59EzYICAlubzBJ11iwzQTESIDuRnKrBioHrnuTQ2FCTpXBcDR9xDDIglgQpzG5FcV0MXex3XHIcgKYO2BrkQKDDIpgI40bXeezhyOF0KPj1KlDyws8kbwzpVwFFVAWp0Nfujyn51OO2dTcwJlyElYMawswmsB72xKARcSsZjUWcT6+Bp8HCDgSP3PNHzv+CxdzZpdrAYKPKddU9zDETdA1nLY9uez7kKAh00KLl4vSaIu0Za1d2oGMpZ11Q5+mgpZ7iqkacyTb/HnJHWlZ0LYUFMEafHMz788AnWeLx+9Uu8eVNEXorTBQAV1mGKHRWvEUGcTVwyfTzMLCMi85ss6wXnywNijHg8XbCuGwZPMMMAgmH5WYjpHSTYZO0A5x2sG2GNh3UeL18c8dWXL+CHC759twA51SxzzZowRh16GdryRIf4aaZiyw5sJPZNymu3Y51jtmv2DmdA1nNH/Kt4VY2JaqTotQoBJTJw62GULIdcmtNRUXEzu7lkK6WMdQu4LCt3HEulYmkrj711DqqUWIAzfmMnfAhcOu+9xzxNgqE4czpTrraeIXUkcTADOeH8GAAAk5TSOacZzAYgzzLYOUzHGxyONyBLsIOpz8M8IlQNGDWEYwaWBMQEfDwtmN59wGEecbiZMLuJHSGxMs3xShRsiZwQU0CMG3JO1dnkrcFggcFx0A6WkFPE5bIwLiGdZ25gAzIIW8CyrBinrZLWr9vKdlIGkHkXGGcFQw2YpklKSkcp4zQgoxiKCdJjYidWLuyEJWIKk+lwZPl7GjEMjKEebs5MyF64cYe1BvM8cRnfwPaKcxbHO8ZQWANwWnF+POP9tz/gw3c/AMbgxRefMUbMuZVsVgyla7btkZyV+DzX7qco6iNo9pzKurrH5H+tRtmXBneiTta1mtiGOCOkZu5KZtrOiQUAxsIAyJSA2Fd88B4zkmHXa95CSiGh188IISNuAblwSVxvG9bPyThkyZTTwBd39iOEWHD/kOA84dUbg9vjiCFxVlqMuXkM0LABd+blqoGU0r6zJ4CaXEBUK3JS5sz+XFCdTas4m86nBZ8+PCCEKM4m7uw6H3zlVgqhyPX4MRlDqV7IKMVw4FJkoTZ66DNXd90l+hkphG0NePf99zg9jjjevMCrN6/BTj3uopxB3AmXCLaYpwG4uh74/+sqBb1wL7WbH4rtW4iOKqVlgpcCOD8AZOBMgimxOpu2uCKngFIS28ck9iman0Qt6GsMxVCLQNYgSSfkggRjMoaBM9J94YYmlw24Xy5IOWEcEnxKcGQwwu6s9H6N8BM3ud2NFDSzLmXOVlJCECs2lgdhlNMYa+EI2KJ0x8sZl2WFyQneO1jJpMyldcL9546f7Gxqi+faV9iBwgof9opZU9QIVMs9NFuhoGU2GWFjJxBgeQANtYW791rKdZK2YpaUYAFKpbQuCCjcCjYnTiMN4pWOUvu9LAuWywIidkxV3o4OANfIkwD93Rc0WiidQTzgYYXyhLN8QgiyUTrPJJgoLUgHn77UkOQ6RjI7nKaZ25attJsftHuRwdoZj/3BQL5LJXyO4Gz3AVTnUntjA2F13svzJ6Hd7e7vp4LOtnCgPiYtCSro15M6uxpw1lRH5vtq5VsSeqn3qLddQQ84nZOJxXmdqldbN5BeuztDtx5z7cKSEoMsYzhCS8JzoHxRIQSAWvth3gMOxnAaqyEAxcIPI4yxyMsZp4W7vp2WFdNlqLw3Ou5ZQGkuBUZS02MIIMsgomR2yKi3fpQIXEpcokkoTCpOnG0SI5N7bzGgEINgEgA4Goshs1LJUpKqUTdrLad/FuZlSFLuYYi5JphjgdeitUY6MUnZoOGxyyVLq2Umn+WOLENXoc8Klp2BnILrLDtsXYgI6YQ1ZSynE8LpApNVwPN64pTlxIaE7dekrKvntgAB1/tsP//9qtDlW7pXntl3uqbqa+gcPfuf274quyYIXErTyIabk7i7LxIS/ZSQlQS+tH3UnP3d3V7Ji16GlyfPwob/sgQ83F9QCrBtuZUXVEdNkxM58SsMlNQZR/U7PwVBW12og1wjiLlw2YS29bXGwFtJfQ8J2baunsYShsEi5e65Kn9EGyfdR3wTBOVS6j0fT9cFVV6nGBKImNfjspzh7IBhcjWbo8ic/ph8vdZnbU08fS91/9XP9bJU7qsYNmJ0PEssKFE4MAJnthVxJOh91TV0pcep/t85nbq/kXy2ZsxoMMhoK3vumBlyrtBLn6Evs9L716yJGoAo7foFXeaOHJVbqKrqNr+KMyDGiAYpUi7QttX/qs6m7vsOw5RSx6bKlPqcYlAZrmHmKH4j52aOniyglWBskQyihjFqx9duXxORGC5dNmMX7Msik3nt8r4KQTobpSyR/YwQA1KOWKRzlXOMm7x3sM62ddx9V2wjT1/XAQS0e+c4G2NgPBMCk8iqrGThjXrPMSaYjTsHqW2r68sIn52ztmLOvnS3zg21rzovKNUY6WejzzqtcvuZTbtbWqIX1MFaunWKzpHYjMceJ5VdbI4zXwl9KZDuooaVBOd0+kjbx/c3Rob5GpV3suSCoiTQu2fZY7Rcs+pQy/MZOxu44hiH1be35+iGAwTN3uNS1zSk+kzOOVjn4TzzOIGYu6q3AWrJo21Y3TrHRmLh7PfH0wUpZ5yXDcM08t4rqoPVsSfOXCKJ/EtzE2uZS8hxVlClvKAijg0+SxZ9xk48LkcMMcGlBJDBMIzsFPKe91hGdQwCLJuskoiDZJ/J3Ag3Vqzd8FCbpdRSTzKIiTlx/TjCCrfTNHGGU0pMCg7STJeAkhxyitxh2XCjonR/QvrhE/OibRtGb2EMIabIxexVf7blwd2+r6ZXFWtb4f0yfXJw1tRT3pc9FpJVWK/bYQt5b1VnV5/T/WBUWYEdU33ujcqkhqXkszlLyTnV7HG9Zr36lX1Q7xV9MsXTd2jQcLkwhsqlYF1iDY7T1WBpVgrLZw3y82LW3U9VwKoN1QXssnIllionnSEue88FaUtaiyB2J3EAvdInAF2ESKb5ChnSnhew/u1q3kmwFuPGCCLCKuWxhqzwQanO67HPbogFZl75BK4wURU2UPt7f65eH1d7siaqACUXxC3UMtqUouDX0q2pDoETJEH16T7Y7RX57A6/EHNhcZdUpebh4F6U5juDQQtq6xMpjpITUZHmCvXRFfO2YJRiL81s0mwvInbDW9KySCurQpq+WOlCfmU//HPHT89s6mq1i7Lli1BRJ88u8kMN7Ax+qIOhxiNHMoxkGkWeuMplZOCtF6ARuPtI0fTEslNy59NZSP0SYpb3iWDW7helCGG3ePSCksjJ/eXInmrvR3zzs4L5cMAwTZwqaqoKbxNE0i4XVDv8GJIsjWmEAeFmuoGzHlvYsGwLEwcKuWA1aAg4XzhS1wxAjVhySt80jZgnj2maMM8jhtPKY95li+l9WDHeeS2zA+F6V2l5QgU2wJNufjzNTbCTvrHumObIqql83Sj1+qETAailfJKizrK7b2vNh/KeRCEIb/fUDIiSud21NRZ+GDDOMwBCyieElAAn7UoreOu6YFCRYniOrqWUYJ3D4XDEPPkKOHIuNaOndy5q56VSCi7nM6yxGIcB3lqM8xG3t7fwfoCfJrhhAFmD+/t7nhsh0jPEbXsBoOTEXx4YpxkA8OEPv8Of3n3C6Njx8vC44Pb2gFcv72AM1fsLkZ2nRAbL5QJjHKbjLW5vZ+RhxPFwwHyYASr4LL5ECBseTyvOlw1kuHscMnC5POLh/AlkHLac4fyA1ymDxgnjOOL29gUGP7KzSZTXsjJ/QAgb1uWMnBIez4+I0vJY94b1HsY6OOcwH2aOBo4z/DBiXVe8//gBMSUMw4xhnHE8HvHFl1/hcDhwCmrJWJcN3377A86XBaAMogxjLOZphnce2x/+hOVv/xE5bLiUFQcAQwFKYYd2SgEhLBy2vSJ/b76AUuvNnzX26enrpVtfLVNTJHwHjNp32eP7JV8VTZ/RoYpOnWF6cSadZiOzdJwBfEop30oFuQS5Z4NpEFmdS226kPt9XPeofq+7GZql2G/oVJh74LtvH/Cnb9/J+PDfrHEwxgvgb2ShdRxyr6TU+a5twvfjIncjWZMFj+cV5yUgbhEH7zASIaSM+BBgU0F86WF9wTAxj0sMBQ+fIsJWgJSgLeKzjK3yY1jJILXWSZvj6koBruQfB0nY2DufF9jV4N279zgc/4hpPuDNW4thmMSQs209UDtHbzT1Dqf+tRaxJF2AdXCMgKhMLEcLcZMIjvh6TIUdc8v9hniOCI8LlvtPOH98j207SySSATRZCQUJ8aYaT93tXk0IryV2frMhZsXwG6ScNXqPaRhhyCCWhId1xeQc5sHBkmXdqkDSCkCiFpnOAqhJuuxxhh2T1OcCQIwFKw54292pOgicMZiniR1MIWCJETCELTLe4MYk5rkn/Bc9CI0TqdedlVZAHKS8fnhvjMMoYyTlIOKUN8Yip4QYmHxcG1WQYUwAAOu6SRaKXonJyrVL2Pl8lmxDxRUZW1iRJRCzraHOBwc3eM8UgDkGiZiHJADzxPw6Ny9ucTjM0hm3PTjbxsqXI/LM8DwYcFn04XiAJYsXd3cY/ID7h0/4+PE9E4CfF4QQ2fkg93N6PONijBhVLAPZCjG1xOswD6yjnXBvyKgTablbc5I2PxhLnuYIV3yzd9j3e7g3rlS/oDRHbUq50yGCP8Wg7Z1XOyyteqVwcIk/zw6n3ijtDRo9n+pqMSHr3wHGUYMfkFPGOE1M0r4FLIGbfCjpb9MV3HCFZH0ulwVkSDJeOBNonma4I3eb3QRzr+vGtBSGYNy+dDOGgNPjY21W4v2AwRgcDkcM44jpcMBwmBFjwHLmLLoUc81CHfzATk3LJVI5JhgYxBBw+fQe7377J8zTgGEascaMeRxxc5hBxPZDTlz6t8UAWzK2beWs6wIcjgfJnp4xzwOIEt7GW6bd2DLWwE77dWVceTmfcTox/nw4XxBh8NkXHi9fv4UfBhzmA5xTfKmNZ1bEmLBuGy6XC2JKOD1cEGOomaLqVCPDGVC3t3fSzIKN4mXb8PHTA1LOuHnxEi9fvsI8z/ji888wTSO2LWJbOSPq2+++w/l8hnOcxUJEGIyFJYPLP/wTHv+X/wMFBcM3n+PtmxegyeN04VLZFAOMGLBsWkiL9JzQlwMSpPkFUAPsdcV3EQ41gp8EwK6dBegxfMMSzdnU2ZxqhCc9V1dOb9QRAng37NahVoEQ9lndmpUG59gmlUynilu6/VZyv7d73IdatUNA7YS5rXzNx9MnxN9vohfUiWprFr06mIDW1EX9fi3hgce9jmeH6QCuOlE5c37csK0ZSMBx9MiWUCJw+bQhzw63dx7eATh4OGMQY8HpMXHDFbX5ZNzTbq4gVUfPlNHpQMhhVLakgvtPJzhn8eLdBxyPt/DDiJvjS6E0IICYDLQvO2WYzBnqioueOiexs/MVxO3xlEhG6czstJJF+JNiTPgUPuL84RGXjw9Yz49YlxOINkBKjr0VnQwJCqjczaUWYe+eX+encBdGS6yTDLjAwTrR6wUY3IgtWYQEPC4ZoyPMk+UyPFmvuu5bdji1UtacAWPq2KTMCTcZzSmolWKWOHBrwN0LLRFgHIKfkUpGyhGnLSEhY54zjxGo395/9vgvy2wqDGV3HWrk/2cFhdxIbSOrziZxGBjb2nX3jgRjpIMYtUwQVdx9qV2MnMoaArOlc1euLF7fXB08uXMeZCHJK0CboAIgFXC2hZFSHic1vP0otNRNoJFINicEc8dYspjnGaMfsawWRThY6jh0EinGVEnx6r2oE6kuBFtTsqszqTPKmle+U+Rq3HXA5nnD4cfnvGVb9O/tDdPeOOU06QadsUc//XnFQ8sE6pqhQbv3FjFy+653agDuM8oYUDrvEbZQQdmPrf/mZOOsmxAjzLbBC1h0zoES13ArqXyfdaL3yoSEHAEuJovHm8v5Bu/hhwHOexjHUb4QuF7fDaN06mmlDTmxMgARjBC0ZTI4LQHRRTycF3hr4YYBL1TZFNT9wGmtXJ4UA3fycNaiyD7iGn2PeRrhLGHbuGUujxUDpZQjQgwwtrAz1mRkYpJJN4w43Nxing5Sn81Cy5wXbCEACztRSy7SQjnIXmZjyYMFja1Zeg7DOGAcR07xFaOHwCWJfhhwOMw43hyBnJgnAiwsuQSWnQbGGJQMOBtw/uEDHv7xt0BO8K+PcIcBFqp4NaKTxG7oCQz365yNhrZ4n6blPrOgu3P0f+6V396p06/zP3OU/XlVRqrTS02I9ub9ebUNL8s9VEWo99M7v/q76SPretu7+wCPTi7AsgZclgu4BIWEqHWAs2JMxIRrvbAHkyyzjERx1KBqf29yJZeCsCXu1JMzE10WBrwlZZSY655whqQxQ4G1BclkmPy0BfxOb6nS3rlZOgNSH5xYmuaSkSLrm3VdcL6cACO8JMLFVKrO2D//tXPp+p6unVDtoP6OUJeqrA3NuNIueABQQkYOCXHbELeVZRYgCa3tOWsUUI1odCffPQHqcyn/BpHwBtI+u4mjgwlb4kYXGpgiUKPCkHnudVWdkysjRMusCWhk1UQ1Ilv3bUGVsTCG5XNpKeQmE+xVs4z/fx57J4O+iLrW1GmjnUPZ2eQqJxBFBuDMO+YqllJ51hoHNOzE7egDcxCGUHVJKVLunBPWZcVFysY1Gs78NlyqYj13Y5ViZ2RwdskweCmnbqtIf6pZV+p86pz4VigJvHM4Ho6YpgkxbjidBqSUObO7GhwctgohSgBI5QWg/GO1y5zTsdJrlXZf1H3vjVsVstVIeTpf13PXr2F1EukOotKCsk/0z48Y273DCXX++us3A6p/Bbv90mG23aprWeFaMqat7VVvdjdST17lcYqgLFyR2wbvmW+JuUZRCWX54xnlyrFL8nzahS3VigTObNKsJitdylpmB+8D7eioPJLGWm4KMnAZ82MGO31Swumy4rBwV7hDYfmTU6m2gpLvc/Z0RIHyfmU4b+EsB5OnaYC1hFQ27hxdimCYsrtH5pUDjPUY5wOmccTt3QuMw4iYMmLi91l/xrYFwFywboG5SFPGtkVY27q2Wcf2koevGfPGslM5ikyLKQmVwYhpnnA8HjBPE1YX4CwHtJNwR8VIQlZO2MD8hafv3+HTP/0Oxhp89uUrzNOAYA2W6pxPwhfWcLTiN6BhE9YBur8aVtFJpyc/t5117Wi63gu6DXYOle5a18fu/aXp1JoVttuDaQ/RSgtGsROCqrCogbGr/fHjWEpe6/Q508Nyh+XLehYKFc7qYWcMm+dJMZQ8ZRMFbbzZHmq4IWvWo9xyltcYo3N2EwoHZIozCLkgrsxtjAKQATt6BinRN4qL827c6rMqLqJ9ZlMdkKupaZlPBXFj22ldVizLglIIaU6w5do9QXgON/3ZoN2TMzzzUyf3yRA3P4NgqALJbNoQN20QEEEm1woJXcgkMn+3nv8ZfKF+gz4zzxCTuDvJsDKZOTJDyswX2pQVY1a9ttyLYqNep+hUVJ2gOpck2CLl56oaVVJbxVBZZKOUYuZSahDjeRvp6fGTnU2qjY0ocXVu8M+aUtqEkLEGRtocVnAiu4QABCXnjhHLsuy8yfwhfvu2bexEKJnL37pIeZKoSW05TjJRzoGMgx8IR9mwzjEZnhHHhDEGwzRKBxQLZz3GYcLf/Lf/PX7xi1/j9WdvQM4g5iCGQwNFZEiiO5BJUiJI8UKjYF1WlJgRUpBJ74gaxS1NRPADp+nqfuUFyELOUBEenoIPHz7ij38seDitMMZImZGvrelLabW0mbREQrcaNYfeHjLJt72gJDTDFrt3Z6AwuFUnRS9IO1t2t2wgwqkCTFyfd/+Bul81q6wKV82iY+1ljcXggFcvX2ELEfef7nE5r6DLBSGl2nmDuvI+jpIr+M4gIbmMMYKshV8u8G7AMIy7Fs+aHs1ryUEfSxVsjBw58sO2S11XY7k9837sCOKEMQ45Z2zLhUvywsaefxBOa4axEdleQOYjR9tGJq4kIsnEAJIQhI8x1Kj24AeM4wQO+ByQosfgPG6OM2LKuKwRMWWUu5cYhhmH4x1++Zd/g5sXr/GrX/0Gf/EX/wbDMOBwuIF3XvYZr+NNyAe3bcPlwplN63JGChtOj49498MPCGHD6XzC+eEThnFkAlJrcbqc2XufC6yzOA4eP/vZF/jNr3+DYRxwc3cUY4UzHMla3L18AbIOl8sJp9MDG0N5QSBO9bbjCGsIr3/2MxzfvMCZgE+fPiCkhMv5hJwiEhWkxKnD/Xrv5/LPHQ387MFGM3KaEdOvgfZ5tA0mL/SfAzqF1ylBiFxVhQ6ClAOIcaC8srowi2ZPNcBkACYgdA6U+LN7A6fddS1hLRrp07WLSgJJBPg8oRQrazoCyDA0wNqRT+Vy5WXYl33oc/P9qsItAId3du8U8FCYiygXQiqEYjYkWzAIF4zNwHpOiBmg2WE6cETTeYOctdRCHFrEMthCDHOJqvthgHWuDve1PNtNVdGIEnA6nfDd99/ixbbi9eu3cIMF0SQ8eiKfIVT+dUr3WUz6+5MIHbW8tfp/Kbs1xrJEIqcGKN4ChjnmtmVFWDeksCLFDQkZWbJ2o0SqTSkwAravo4NVeeh6lQzjvQEhuKDwlwFh8APIGGyBdfeWgVOICCVjNAaDRr2pnqYDQAbqQNOH1sYQGQBk/Vlj4Y2FLVqoD1UZsCAMxITCiSwiWeRCWLeAHBPLRvevl9lka6txbVbRrfs6/63MS9P5AQ4GKM9ZJ1gAMFffKhhKD3Xa5sLt2Ld1E2dSrntav7aVjWVrDd8jAc5P9fs43TCB6MDkwtY5uIGdTNM8MYGz8xj9hGk64N/+u7/G17/6GvPNjAJ2BmV1EFCu+EnxlGbBWsmiidJRdVkWlMwcm5pBXeWSsI0bQxgHBycltDpGlAFbuDBpWc6gEvDxU8Q4nfH4GDEMHiAP51l25SJd0rRpsRpwsijZSSTsSRUvNbyae0c2cUA2q04B8JTpb28A1DDdlXGtx1MjS7/0bJ1zuPucIRL02paNYmgCJBA14NXrV1jWn+Px4aFiGTYs4u6zzMGn48FBDA40ZTi3gYj3vbGWHZGlcKkxOBOUOSBROVf5mZjbLoYN67rADyNiDDDRwYvuIWMwDhOsTQi0IWwbUISflVC5YnJKWC+nuh+mww2GwSNmi/OaUcqGkh9hDWHULLdammrk2RdYN2GcHIgKBu/gnQXBw9wckXLCNEUcQkIICY+nlTsejp/h5Wdf4O7uJf763/2f8PL1G/zsZz/H1998A++5OsFZznTVTN2wBTa0140zDFPCcrkgbBse7u/x7bd/4qYO24q4sIPLON6DQToMO+/x5vVLDMOA3/zia/z6l7+A8x7jNLFt4xymaYb3HncfXwBkEOOGEFbe/1vkBiXjiLtvfg7rHe5+9hWOX3yGT5cLHu8/ssMlnWHzxtkcrnHAKTUKWSuwnR3izTez1xVFBTQAzRpUniYANcHg6UEVv7e93mvA5mwwyulruEmGOt2rQ0yzPbLyy2oWYnPwEbXyvtbkqoij08DAoiB1xnyp9wE0MvzW5ZCDwuqgsI7HK5exWvmG1CbgpgZss10/J9BDKZYEzYHG2KXTayR7TygzvHfImcmhaTMoUiKZcwZSxnIJyChwlrNUQfy95AIyuZbhl8LOYe7a2JI0qk0q46A6+dlDgFZJBafHE959/z2ON7e4ub0DhgFdHTOPLA8INJCndmobe9SEFnXi1yAUydh190OVxkHHsmWWWUss82NCOPP+MynB5Sw0gYy4uERRMpmeAEdFae0ZegzVpohTcfR/zdoePfM4pxKwpQKihPO2IVkDB8DLWioobOeKviKRmVrerYk2TAwudyTrxUoTNkNNp5AQ8VsAIxGSISxECAWIuWCRZlqjGTBY/yOTuz/+izKbOBop/EsiSPRvu6MUqZ32KOBSJOXpyCJImESOgcT5cqke9xAjG83LVgkHtQROIyBFQAcrddkMcj3nHI5Hbpk+uAHTzJGtm+MthmHEPB9wc3sH5x1ub28wThOGYcRhPmIcRvzqN3+BL778Cna0MI4QEju6iBrfFHUPb0hbTfPvMWdQLliXBckEzmqi5mRS4rySNepmGPjIxmCAnYWwsTBZc4l4/+49nDkjZQNjPKaJiZk55c7UMeFb42uS7d06HXjaTxVQnR/8vtLvyg7T8IZuKZ38Wq7nKfXzeqb9+lGArX/ZORd3NyavWR7n2kGkNAJxCEkvkcGbV28xjDN+mN/h3YePKMYgnk6I28abl+yTZ9d1tIUNFAOMMQgpwlqL25s7jCNzJw2SobQsi3jdS80a6J8pBu7wNo7clUWkYDUU9w6HFrWHeJWtsYghYLucsK0LwrYKOTnhcc0IJWBNGSFsGL3Dl29fYHBcOqgZgiFG5HLBHEI1VLjb3ijklhElR9zesJd8XQPef3jAGiKm6YAXxeL151/hf/i//t/xxVff4PPPv8CXX/28tukVW52zWmWCCUxeuUr3xZI2lBTxhz/8Hv/bf/wPeHh4wP3pAR/vP3ImE7ht77YlxJgwTTNevX2Lw+GAb775Cv/9v/sraLSHOaM8yHnYYcCLxwvcMKK8K3h4eODykRSYuDQm2HHCOA74/Bff4PXXX+J333+Hf/z7v8OyLsB2AmKEoYKUDIp2RhRE9BOd808NcfzYBzsH69VrKGq/q4O2GTBQOat7ToxNlZdsYcnfK4VCkWwvdfwagFShSa1/TChSKmLIsVMaSj78fJaTyhR1NumzGzIgy50zqThY4ujuFi7IOcLQCGcnfm8qKEblhlpybSxrGWPHzXc14rzvc4YpgHdsusVCyHYBFSba95lbHy+niLIlTN7BeibR9YMTom7mCuOoDGdysGOP+TSGYcQwTDDkxTmkt7t3FnauZAatKHh8fMBlOyHEgJ9//Q3GeYS1vsqeInwHpcur7teSGqu7zIpuDHrPkkpYXTsyc3VoiQjkLZJhkvXtsmK7LIjbihRXZJeQxckSRC+ZzATjAGCb2+a52ahRLb1HlrESYS0AcoEFYRw8bLLczSRbUAIeQ4RLwN3oMDiFH1fX6oI3+twM6KRlNAFFMlyctfDGwRaCydQ4cVT8WotUCjbD/EYlA+saEIn3Ag3u6fX/hQ4NUij6rkYPemcTgbRMznB2aM4ZccmNCiBpl1/RYduGy+UkGCpUWoFt3Spu0qYoWi5XhxoGhgYQ2ZoRYZ3FfORGD4Ykxd46vHzxAtM0YpoPuL29g/MeN7e3GKcJ4zjj9uYWwzjiF7/8NT77/EtkZCQoJ2KpTvTmyOmz4GzNxIohIJuEy+UiAZS1OWQFC6jTgwxhnDym0Qv/ImdwmKxZXRmXywkxGLx/f2aHQvYYxyOG0cF7K0YTarYW+vtTWatOoc5O7o/WEEFlmf7cyu4BVEeoHqVz2/bGx1M9I6eX81RZUfbv3Rv2JHuzu2YdxyzOJm7y8ebtWxjv8eH9O3z89BEJGWndkDamYqhVAAB0kylH5rat2NaVM5BihnMON7e3uJuZEiANCYaYEiNs3MXQkgc5Ux3nJWeEbcNqLvDDiBACjHUVpxkyXHovnR5iYAqEKNxizrPDMYWCy+kRl9MjKAPz8RbeOWzZ4nGRMrnLAm8NXr+4wWEaYWCE2Jtx3OVywXyw8AM3UBkGj8E7DI5wHNmIXhN/LcuGQg/YQsSb2zeYb17j8y9+hv/L/+3/ga9+9jWOx1vc3t2KQwsVQxnbpA4VSKdQsXMkg+I//+d/wOn/fcbDwz1O50ecTo/YYmD1bgweT484nc94++YNfvmLr/Hq5Uv8N7/5Bf7qL36NlAvuzxeEmBhDWS4lfPnxAUROugGuzGO7bMghcPbVr38BPw54+fXPcfj8NU5/+iMefveP2LYVkwnwJnMDhjTCCMepOhe0o6DpMEx1c9Y1yE1+1LhQB+m+WU7+kfXf9qXKgus9pJiUq1R0z+4DOsYwjxsRV86UBBRSYvMEdfoDzSnvrGUdDcX9VhzepjqyKs9r7zxWm08DNKKXuHpHggkEGOsYi0l1jjMe3g1iIij9RxuJ3obQxi2M+XUQFEfw91y4G3s2BYMHACaoppWbC1WTJRYs54AtJdzcWEwzy1gvzYVMTkha1i68UVru6f0A7zycddy4qKB1KH9mNvtnQQEe7x+Qc8TLEPDFz37G2UPo/JK93UmlOpxUpvYFuhUuidOkd/hU6qnSzlv9Q8Q40RB3jSwg5JixPS5I5xUmJriSEUtBhFJ0cAUBZbbb1eHauW7QY7giazyjSP8vkdNFi8n5WbwhTJ6TZE5bwhqZMfe8FUQDHLyHd76NkeIH2QSsHxtfozYPSUX8A3JtaySLqrP7qXCgxoEwGsFQ4lxLKeOyBthIcJOD9X++aZIe/8UE4bsUPXQzJod2IjA2wArIuKwrQgwcaZPW8prSF2LEsi7IKVdHE3MryWYyhkuLSqkZPOqwIGNgpcWzHwYMknZ7c3NTs36Y3M/heLjBMIyYphk3t7filDpimAYMfsA8HbgN62HCMDqQ7wB3+ZHN0gEHxtjSVSQXbCUgUQIssdDLpaa4a1tYvT/vXPWusxDhhcotBj284w4Vx+OILRIiCCmTtHDvXDt1gakBTW2sqCOr1Xsu7Jjab8a9U0TfV70LpctIQPf3bhz4rW3sqmLRc3SmTNGX9DNFNyXt3qnlm1Q6OKUbw1AVePM8V8flsiwgSAoyaTmiq+trV6JZSnWExhgRtk288+pU1LTKplDaszceC82AsinC5twims/oTvUsQxwPKTGwXgRkG7IVqGawR5l5AoBlixh8EDJ0Xi8tiiJZDsQGzjCMiLEgR4uMIuUjhOy5G4z1GWY4wgxHvHr7BV6+fIW7Fy8wHw/wg5Pouywx7egn00WQVsXGSpQ8ImYgpYjTiTkMYkqAYcEcpYXytm3YtgA/DLg5Ms/VcZ4xeCblSykjZmpcDN7iMI9AKYjbAWG9ZbAbI0piBy8F7pQA7xEyE3YqIaYpebfmWDmpAwIVpOxXcp2pZ1/9MRVas9m0tPQaOKnuIZLSCtS1T+0k7VxFo8m6x/vbbCCqOR72F9J1wablc8+xf//TDC/af6L7kcQgvpYFpVr7vcJVY2U/Vvr9x7PKWkq0GuBFszCQpR23vDVlFGMEiGpJRgEGAgohxgpR6rORMfK1d8hr9F8wiNwnRO43RwsgQDMm6fi2YlsXODOieCH7pP3I91lN/Tg8/3sHpKvO6edjP+Pq5NbEUC0VIeQaOTUK1cSJczVDPzILpTodWyRRZ5fqWFApkgrOxoeSMxMp2JE25aITzP4i7XmoXy8cdEg5M6Fpd02j11ZFpfOme6poiR87BpkMWJxXRSOf/0pHAbikSMYvsZNRncmlmwVDDTssy8LBhFpupIZQkWwM7qAVQqyUASpXjHXwup6GQfaR8EEZC29nGGMxThNmdTbdHJjku5ZYWdzdchBmmmccb264a+jxiHHkTqs3xxv4YcQ4jbw3C3Y69lqEVHlc11SuzrScSs2YCTFVQ0AbpTjrxAlm5DULNg47468UJnUeBwzeYJ4dDgeHLVisiZBydze9TEPdQlXHle6P1AmEa9neBwqupr2eZ/+RHRLqoBhdv/HJuPHvpcqp7ixyrh/RT/1PMi+axT0MPL85c6lXWUN1KpgqJzUTInSNHiBzx5lQ7ODc6r5Ux6q1jcOujl0BQC0DN6XEZa8x1uyQlvVXJJPC1nPq/gkbZzzFEBC2gME6ODdUJ2/OBbFk7rJXgC1m+MiGIwQ3Z6ECyFloLyDdhv3AHYozgJJhS4FDwTCMuLkpiKng7vVbvHj9Jd589gXu7u5wPB4wzQO8lJOKXwGGK3t3mMNaJgbOKSOuC2LYsK0rzpczB+NzAll2dC3bCiLCFjgryhqDu5sbvHxxV7vNUcrwjoOViqFGb3FzmKQEPcMQOzeC98ghYggJ0xZhvUM2hEWC/ypP95l7VAPtOhe1AZICqt4JdLV+dcX2Of/7pXtdQvd09VcdqeuYFHupboA4gbjyZk9CXoFK57RRDNV0bp+1pM6mhteeyW7X+7iGj4r5nntWY2ANZwnmVLfkk+es50LZX7fDhXXs62dUJzcNzfsQjKut5fWcitC5FO7WKI46a/lmnDMoiRAjNxi6FpjmCkNBteqVwGq45ur+AQmMRCbjlr2MwcHYoTtJd0LR95rVWQRPo2JmPnspbdUB+7Ht7diGy/kXA+XGBIokyxhp5lSHt5RaQWCKYpmGaaFrC3t8db3O+umt+sewvitEsMnAJnaCMYZim7Aoft49kBrGXUBC/lp5GTvnLmOwH89AqxnzNXCiJdIkJXXq0Pvzx08vo5P7SCkhhcgp7TEI2WyuD7EsS9flhG9k3VYR4HlXf6qKV59Poye1I4kxmIehOo7GcYK1BqOQFjPh8BHWCYH2NME6h+PhwGSDg8c4jLDWYBon5oORCLYxpitDIwFVFi9e3mGcHW82VYjdOBa2YQQcSs2ytPiMIWJdNqQYcdouQAb86DHOTAo4zwdYa2sLamsMbqWuOueElNkhF51BihnTOOLu5hbT5PFvfvMKv/nVHT4+LPiH377HsiRYalEAI4Sgzll4bxtS6pZ4FfBFS+56SaAbpM12AxHN5aNdpvp22Lo2mjHZWvIqGbjAZ3mXXqvA9rurjrF4XsHZXYWtBfbyS0Qo5bIjELfW4ng84Ouff43LsuCf/umfcDqdOcp2OIrThXmCti3g3YdPFaAzT0FCLABRxCkDcduY8PJ4YK+9NXhxe2RHSQiIsZEvAyRcSQWXyxmPDx8R4gpyFn4cAQBZ0jVJWoz36y9ImvTlfMIPf/ojHu8/wRkv2VWcRZLJYAkcufXS8efhsuAwjXhxc4QxXE4R5N4ATm89HI94+eYzrJdHfIoLYgC8KXClYBgdDnefA9bj86//Ep9//Rc43Nzi57/4NY43NxLZY1BinalROeEt5GqnAkwO8INBjBl/enjE6f4B3/3hd/hf/+N/wMPjA6bDgPFwQEHBeVuRc8Hp/gGX0wXH4xH/9q/+El988QW+/uoLzAIMB83WI4NChIMnjD97w4Tk22tsy9fs3Lps3MkxBJSFydzff/qA379/h3efPmJbHhDDBm9KTZkvhYECyZ4HUDvX9SCjKUTZJ91WeRY07HZTb8J255RXWuaGKMjStRDtTmRIy3NTM6jlXrWMAUUz/lotXYFGFhmIL9sKQ4TJGcBeOWy7Q+8rZ42Staym5rQCIMYst6i2iBFYVi11ikjFMMAhW5U3J+WWq7ElNKPB9GKgey8/myWAnIOzBdFwJCnFiHQ5ISEgALhsCTlklG0DZQdnLF7cOSADn+4L1rVUMs9cMjtKvZc26QbGYRf12s1vnVyZA2oR0JIyYk64nC549/13WJcL3rwtGMcJyivHFhahZYNSHfM+6ipPrnAZVEmK9/X/giN4DemSIdajxlkkyiipYLswobqlDG9Zlhpwy+IgGYmjYb5BQ+qUkXWZ+8ASr4OYeOySlAoVMTRqi3twCv7RD5IdJg6VkhDygpAzBgCDkTRtaRLBpO2tRI/qoBOAhJAS1hiQLLcENwQ4GDgwYNbOtJUbMRf+QoE3wDw6Jr1eI1AyXOAuZj/q4/yvfOTIgYIYAwffSutklaTRQ8lZjMhcje+c2fGSUqqvtYhucw4TNe4zYy3G+cDZrePIHILO4TDP0nhEMZTH8cCOI3Y28d/n4wzvubPXOA61dN86J1nknNlgna+ZT4MfYI3D8XiQcheq2ZcMm3TvFeiSzoJhUg6Iibs6nk4X1qXntWYAOC8Z6jc33FhDYJm1BjfHifllQsAqMiiLbLw7HPDVm1eYZ49f/XrGV1+N+PBxw3/6+3tcLhlUEhsSRgjnxTmqvFdQ51Fue1LdkwWllfrroYAc2DnQ99plf6iuILVSqy3V5hid7iight+eEeMNWz8NPhBa97aUC1JgniHved5Kzvj511/jcr7gd7/7PR4fz3DW4cVLLtPS4NgWAj58+Ihti/WCJRds6yLOqISwcbbTNDOGMoYrDnLh5j0xRhkvBndBeB+d9zg/3CPFAD+O8BPLUOMcQAbDNIGs6k9+um1dcXp8wHpZ8PDhI5bzGe7FSxzvbjg4AYMtJoSSsRThPjErzluGd4R55EzdLQaEU8YwzhgGbgF/vH2B25efIYUF6/kTcorwBqAMHA4TPv/Zazg/4etf/xW++fW/wTwf8PkXX/JecgbOJubAkcwT0zmedFaNA+zgsK4b/unv/4g//PFb/N0//AP+09/+J1yWC16+foHjiyO2dcP3H75HTomJhcng5jDjr//Nb/CzL7/E8eYAGC7BuTWTrAG2BQ7DhMn/DEG6FofAMmU9L4gh8lrYItaw4fd/+iM+/tNvsSwnDM7CGw8LggXvDT+M3A1WuNl4vaJtdt3zIs+rjAIaJihtjaK0/CTq9GFdx1l5oQrUjjBKUFxYlypOUKeTkYuowyhKJzFQy0RMOUrVDfPRaMl/Czjx95ASlk1IvCW4VdCI+KsNWw38IpyizN0IKRFuwUcSA5PgjIUdbaXBiJH5SLOVjJnq3KDqEKk7W2wndiLZNia9PCh6XwYGBcNg4H1BcgSTIlKIsHSGLREJBZdzQF6Bu1vmeS3ZwiSDOBIeT4R1Y6wqeSMACMZbWO+ER9Aiw3TtKNEB5jaw+lkrVDcxJOR8gXceHz+8R4wBt3cF7m4Q7Ni4Vjlgs2/vQd16qRNUOstUgr9ZFqeiK8VQ9ZsMs4FjDJsz0hpQQoAzGYMHCnGGXikFWypALvDWYlIneF2l3SKqv0pJYynIHS+0ZgQyByXBW4ebo+NeVlbwZsmIiEi5YACQDc+97Zyiids+y9Jo5Ya5FK5oiZEx3sDlrhYEp7ZFbd4jA1EKUJirzRvCNHrOlo8bUAq83eCs+ym+pp/ubKqesZxrhC2sm3R+k8HLmbsxCFjStO8tcK1xTi0FXJUgCY8SkQIXC++4bbWxFn6cagvPm5sbeOdwOBxwOBw5jfvmFk4yWg6HAzug5lmcSgOmeWKgNAwSDWtAQp1b1YYwBuM0wDpCISD2A1ClD54KwlKA0sBhCAlxicipYEKB8Sw8nReFRptkOhEG7zEOHikTYhRhWQCDzJ1ZpJPKq5d3ePv2Bcha/OG7e273mxWQ8OaqhImar4sqpUSgUw2YqRdcI+y7WVYjpm7a0gRY6UWZgp3SW2LohWJ7J9V/bTipfQRtY+ipNUrIkTvavY/rtVMtCWByPU7r9+JU4vJGLlPUmnnmL7Kw9hE15VA3o0SZtVOPU6JTJbb2njdsDGIwNjDJTr8oHFsrAy6N6srY9w+rqbjGWiBwW98QAy7nE84PDzjMN5gOE/9dojUxFyHCJ5yWFblkKSVkwMbZUeqA43nyw4BpPqCUyFldKULRALkBZn4B6yd88bOv8cu//CuM04yXr15jGAewtkhixHA7eajDCUV4NwBPhMkSIoCSNoT1gtPjPd69+x4Pjye89W8xHmcptWKAs6wrLpczSsl4/eoVvvj8c9wej3CStcD8HXwHGUC2FtbOst4PgHSmWs7syE45I5WM5bLgh/MDHj9csGwLUgwoicupqCeXlQdpGSddx7VqWKM7+jXYUxHrtihtDes2ovZ672jarXlZQ9xlKO/+pqBJ17euA+UVaMZHqcZnO0G7X3YQRBhDSMUJ1wCwvyG9572hdF3atfu5EMhqqY+Oq9xPyTy+aA4ZfbAmVnrZs88q6u9HS8wKJCrM6hXJe5bh21Kj0kgyFuJANobgB860OZ93YhwaYa9Ruf76ZSe8gE7+6Nzy39p45FwQQ8TlcoaxhDshWWa+NCag3YFN7DmbdmMLqvenIF5F6tPV12ZdwanhTYtSgBTZEUNgok9LcrZCCNIVKYOgnn+6AnG6UAhUHY6c0I1aFtgbE0CRgJFFFrk8xISYgJCJM5tA0n5hn1e0c0TuFgNzI0TJbBItA3ZhEnPuaNfEIuXkBYAw1lgCvDGIOWPVucoZcRft/pc9ev6PKCUzMTS6gCCZCsuyIkQmKg7SiTd0DqictZsun1ezelsAwwk35cCOo8MN5gMbz3e3t/De43A44Hg8wjmP29u72ip9mjiz6XA4wHkJ0EyTcL1pRoly3FC33rgUieQe2vhDkT6AJg/1qE7swpldjJ+4S1gAd4Gd5gHOM+mzcijWDmjGYBhYTxMKcuIM2ySwaBw9bm4OOB4GvHp5xJs3E1I+w9lHXoEVv5W6nprzm2++ZiuAquGmW5DAhu5zcuu6dB4yDCr/9gPBA1b3fUGVedWY7c+H0mGKBreenLa/J30PsWNYDR520DIuHqcRNze37DwcOKNAHY3TNO32unKL9c+YEjf02MAyj5uBjCDygktNXc9Kyl0sP6M2CtFyO2ONBLQTBxnlupwdNciYpnrd5XLBtizYVuaoQwaTjNuu3EWcncZkLBs3SjiQw0HWLmfVMcesNubx44RxPiAYIK4noEh2OAHDOOHlq7cYDzf4+dff4Ne/+Qs454VIXOlGJMvcShMNyY7oZ8gRwZNBiQXr+REfP7zDhw/v8eHjB6zbipuXN3CDxxo2XJYLYoiYxwnWjxi8w5uXL/H52zcclJV1NLjWfbAA8NZg8K4anmqvMIaKWEPCZY04nc/Y/vh7fLq/R8mBKULIMq8fGm41EtQw2t1Xy+279cD4vFuFnTO2Lt+dEwa7faPnaXJDnKwqe3iF8jVqm/TW1Q3QvcljzzhFz9cCWboP9vKpCTAdKzbgW6Z1dbDhWl2pY42xZn2mKje6vWt4TEqlQ2n4Ts2kXf6Xeur6Qz1S1aZpEIaxVsN1Vh1YpSA55kQtwdRsphyFuy5nOFtQTMY4AI6AZRH/Q7WD5Vn7rCYyO9mk9/JE5snY1pJFyWgNG1OScDLJ1s2r2J7d2Kg845f3GErf0DB5aVOg4niXcAGRwXJfIBRJnNCgkDEF1rQuc6W0boGVbgSoX82kEBtd7qVREWA3ML1T0ZLB4LiEbXAO3nKHOqU0yyBkgqx+ahOuE9SNsd6JZkOjFDgZO+WIKjpu+hGx/Uky+gyxYzSiIAd2ADOG+jGOtf3xk51Nv/3tbwEwM36MiY29GPd1s0WJ1NjA8MMIgDAdjgAaESSRaZ0mnINXfpxxgh8GcShNNQI3aBbTPMFZh3Ec2ZlgLaZp5nOIc0l5aqzhMgtO/yU44RjhTBGqjoy9dhaPqXhN+7advXGnRkn1oKLt6todbR5AhXC4mXG8PQIo2FYmfz6fzoghwIoSP8wzYgoIQQCpAGHvmPxyGr18jRj8KhESU4E1qHX6qmmkT5DHXgA9Fax1BPodorsZTTCjgneCblYRUvoZmLb4NSKvm2h3UAVsJF2NWO2I19oUILMAyZSr0lTiZEMGhXi+Yoq1vAAgAUsjO/OmibuxzTOmea6AOITIGyeTCCXFxZxeHIvwPcQNXs5DxF2unLXcAUQy9tjQIazLgsvpETlFHO9eSOcnNoZUEFnDAt8SB0a3dcGnjx+xns+whtf0IJFo/QzUQDUOhYBlK0glwpgVoz/BWcmAQGbC2HUBiPDyzVscjkcslxNevn6JIBlU6+UCNx4wv/oSfjrgy5//DK9f34lTjuCcRJKEn81YgrlaTzpeBBa4l2XF3//tf8bf/t0/4Ld/+D2yOFitdzDeI8WCuLKwu727xcvbW3z5+ed4fXeLl8cDBu84pR1Nufb2iiVdTnxhQwaYPFKyWLaA9RKxhoAPHx/x3fcfsS0X3vOOIz6quXXbaGYQocvUa0/3jHJs53jyF+pLotghwnulj5y0/XRtiLQ0dHkNzfDQRJr6l9IUw44kU0XRlXOkoEjaq+kcVLoeTcsehCpult/chcTUsdrdK0gMpwztIOQHD7JqhDTQZ0ijbbyGuc0slxI8ITXegbcGkGr2j/zZGIL1DmQJ8A7ZeZiUMabIxMCxIK4JbjJ4+9ZjnkdQDnj8tGELhLgx8CTp/gOTK8nj09hgG15006gjqc9FMMgx4+H+EdsWcDy8wN3dSYyPQ3XS7ld1e3YA0j5ZHTB72Vl2o6inaOtUx0YNZgJQUkbaNqQQWBalBOMAZywIhM0kEdPUuHwUzNeH1Hlo5TAoBWSy8Fb0TkmqDRksmHh8MITkLAIBWx6Awo6n8xLhDWEQHV1BHpVuzXW6pz6vqTpQ6MBErlq5L1nbxNxRBYDXRh62YLMOiXi+L+v27Fz/Sxy//93vAaDrnFuq44izpNUAAuMnP2IYZ55Pce5Yyxlo3AZdsoycYzJgyfr23nMA7nCAtQ7jPGMcJ8ls4u/jOGIUMvxxnGrGkjqthmGAsaaen4hauYzONV0bEEUMgSxfpcGjbi/3Qaf6yZyRS+JruxHFFgwjd249HEYcbzj7+8E+MFlyiDVzZhgmTNMMQwYxihMjscPJWYth8BiHAePoMY4e3uuq0KBMqevnubbdxlCNRRA4Aw94BtP3z3NlENUi2qp80A1eh6HUCAYru5bBhqY+oPqxz3pAHdXefWrQnLcqUww4mGol2xfgdcgdCsUFbAycHzBNM1cNzDOmcRS+QL62ltahfya5UskJKRJQMi7nE2IMcM5jGCcAzIPknEUS+gz2FTB1gVs8lvMZJWestwvGdYV1jik1pHzaeo+SE7Zt4e/riseHe5SUcTgccRg5+NzKSHRvyXhkpiKIiZ23hthxaZw6nVJ1wn3+5VcYvcO2XnD69B4xbDhfVlyWFYebF/jqF3+Jw80tvvjyS9wcRwloi/Eta56Nx2Zz9PNIAEJIWLYFn+4f8Lf/8I/4X/7j/wcf7z/BjwPM4GAHj2K4JHacDhiGjK8+/xyfvXqNX3zzNeZpFDJ4XkPNZu0CuIpL5NqciWqB0SM5gxAXLMuGy3nB48MZ9/ePGDy3WjdkOfqeE7jhhWa3ZBClbnHXC4vcqlJ9pyP6O+ssqPYT7UnDazZKN4bVkaNlPOY5ZKaH7hclGFe52wjC2/tKGzO9q8KlQxrEMQQUa6QL6D7Qwu9v2VwGBjCqw1pgSR1LVruLEsH7QcrcmmneO65J7qXhobbvuAyZn7O5TFCfW7Gcjl/FUIaQg0MO7Ki3URzQuQAlYbCEF28sHHkQNtzfJyaKBklXbCClAmO5gkMztv780Wa9d45xx+GA+/t7xBgwjNy0yFkHQ47LvwhCJ1DQV9FcB+56B39vED+5coOrqAFlhWm5IMfEpX0hSFkvBxAdWeYlJO2yK7qhh04ddtYRIUOVvJsLY1qSiHI96WHks94YjM4jCjdpLhlbBM5rgCXCwVlYcQ5dHwVdF18JrOr1bLUvwVU3RhuziIwg4nWOAq/ruRQEckiGk4cu2/qTMNRPdjb97d/9rSiEUpnwlVBKb56MZYBgHbxnQGMtR8m0HvwwMwA63gg59zjicHsD6xwOhxuME6dvH44znDMYBum6Jg4CI04kaxsA6sFuFe46zEXrjTsBXKVVmw6VekUibMWYtvC6oew/2zoLyGSBCWidtZimA6xxuL27wYtXdyglY13PiJE7dpwfH2GNwWGacHO8QYgr1o25bkqKQAbzDIwD5mnEPE04zCOmkTvCcHSvGSNGeTHUyU8/Ug1deiB/9Sf0rxcdwcrYn4Wkm9OAScYLgBgH+Vp1VL0hwudqLFXVqqBVB56COK4417RHEc6yM4yUbRQQe1hDkJboPJfeDZimA4bB4zBzVFcz4oy1GMYBm3S5KVLeUO9MM/WIcH7kcrlpngFw57RpPsIPA9Z1xWM4cSRM2okaQ1xGt024e/WaM2vIoJBlpYQijib+MgCW8xnvf/geKQRY43CYj/CeSxZAwuchnENkHAqA85aBLSHFAsoJ3hocJodxMAhhw3K5wBiDz774EncvXmJdL/j08R22dcUP332HDz+8w3S4xZuvf4XxcIPXb17h1dtXsp6Z30UJlUnWzY7rpo/mCv/V+XTBf/wP/xv+x//xf8KWI1LJcKOHHTzM6IGSEORZ3rx6jdd3L/DN1z/H569f4s2LG8RSELJyyjSQpqvGNgTF3y2kk2NBesiIDwnLsuH7dx/xuz98j8FGHAeqkTeVoqVwh56UATJartnrHL6G6WR3jUBce6BUe++iKp0zG0CWjnEcKRGZ0YEHXXxaMqflE3rL19FB/T1LRO45BdNklxoxWZSO64x2uYfeySUGvjEt+mdMA09P5EYpKCUBVDBMA1x2XMaShCNKFKgGIwAFBTxOwJ68s3TPqs7zZlRRBVgccXbIxaJsA9Lm4Shh2jjDzWwF2zniMFh89YXH2zcT8kb4/o8RBsAl8DpITIbGzibJHDHSUk0dav3aqZNWRVyDLQSLGDM+vPsI5x1ubl7gxatX7AAYPCwMlK+nd773Y7r/SYHj02Wnn6cnr+ky5c5fJSbEdUNaN+QYUFIAWcBXng3LZeEgxFKk0LET1dX5iDafagSYunBrB6LqMiIxdAFMxsA4j5UMFslIiWnDKWwYrMF84CBU5UhAKzWs+qo2BBGwb227Xi6102KdH6hTlF+wxqIYThlfXQISByi2qJme//LH3//d3/EjqU7TgZL7c5bxzTTN1SE0zbNgo6NwTo6SkeRwc3vENI3cLfTmCGcd5sOBu145h2meOTt8GKsR46ShiJUvqJO7cwbpd7p6rT+aMdUeg4NvvbOp6+LbPav+K925uJyFM5mGgbPRb25vMQwDjjcT7u5m7hhrCJfzWbqNRSnTmnE83sAaQtgWzkCgLLw1DtPAuGmeBsyTxzhY3uMls6FaSuVkZKNGN3jL3iFDnElOAKfk7dfMNeaUBxPesN3ANbhJnUyBRruVz0u0YClPVmfNygUbjKwmO8O+lGr8FNAuOMHzIcWuFnBWCl1Txrpyhksh3kvDMOJwOGKeJ9wcjxjHkfeYOHwHP2BzG9TiLFDScHE2lYyUOIOKjME8H2GkumAYOOtuWVesQlRdEKuj9fzwgBQC5rsThiNXMZAzsHDsOJwOiGFDDAtSzlguZ3z68AHeOrx9+RbzOMlcqk5NMjc8FikXnJcAoGALBjkZOEsYpYoiClWIMRZf/+LX+NWvf4NtWfDpwzuEbcO7dx/w4eMn3L18hX/z1/8dbu9eYD6MmOahm1KZxxoN4BnptbllqwFLWPHx/gE//PAe/+F//d/x//x//U8YjxNu39zCDR5+HFCIYDzLAmMMfvOrX+Mvf/UrfPnZW6YOMYSt9Dx0+7J0tYPaPckaEMLnx/MqjqYLPn58wIf3n3B3N+PF3S2sMUhEyIH3YMlApiK0KLnD8AKc5MKaca9Otd7ZpPdUCG2NyosE4kASAMoExCK2ppyJuFCJAEC6GpOCNqgTqXcg9TKtNPoXdfazAddlW3XjRsKTkwrvDccBzFwSO1+L8N/pnpfrcjBcAnnd67uc9FIEB7HtMI4jct5399KycF1D/KOtuE4zoZR7EWhOPeVb1UoKldFQDDV45GxRgkcJDiUl2MAUMZQzkCKG0eDrLz2O84i4Ffzpj5EbbUgpfsqcbWNSQcmEUszenuqPJ6q2x56QUtwNH969w+lxwDgfcffyJbIf4R0npaB0Y1jtymcwKm+B7rq9ztVLK765SkApBjnyOo8h1o6+TODOnZ29tUhEWI00LYMG7Przd88s59a5AIqQdBfh7eIvKs3ho8WDg3VIw4AtZWzJoKSMJQbEyBhqMAa2ZoDoM3R6SHWOsSBb2F+gzq3COorLyNmZV/WFIamD4Hv0ZLCCsNiEkrJkYC/PzfST4yc7m9TTSlAuDmoeWSGRNMZinOfKjzNNk3DpHLmjg3R9s9bicMPKaxhHzDdHWOcwz8cagZsPY8dy7wQocecMaxopHTqnUA+9ReRU0Fp9vb29WDdwZz10IKgtxqcHC8lmLFQnVc5iiHftNWWytbNBEfenKr2YNKreBKQKCM26MPp79wUI8NgZReIg0lV3Zan0DqUnaavVbu0s3WefXyNvTXUWGcemSmUTd2CpxjIEgLXLtut0KqjaOs2/188Tqve1qqlqePN4OdtFwLVUpnZ/40ywJGCkAjbScowikQcWBikljkaDo4DcJrVUbooi0X4AUi4qJJcpAsYySaPp5q1kBCF6DNuKuEm6uOwnNaTKj0yFCo+YC7bI2YRDIrgk2YVyj70SV6XKKfMD3DBinDjbyw9e0qVR94PAXZ08yVgoVXCrgI6JhfHlsuB8PuPxdAKcgR89jGfeKj8MSCnDOg/kjHnm7kVc+mpbJ6tSngRF6i09XYbVCLZStuO9w+C5bNIiS/eqDGua4dD2RwPgbWz3FxI/0t7Y3y/Dq9c6J5yuZlGI7bpNUvH2pArInkbUfrohrPe6f43qtlAnc3NQUfe4T6/TG5lPDU7Z9ztwxfIYJTOPz5Wseu6Z9j/vX9MyC322/rp6T6RGr2FHe+OKKYhbQooZ1gDOAePAUdoCwFxIHOfcmcZKV6YeGGgmUUMzuF4e3Y2T+mU4rRoR2xawSaOBStzfMCM0g2eX5dadTwHDc8utyPXaLZX+TivAyDkjxySNOTjzUY392l1VnDSc5ffsSujvbv9S9zsRJCmqA8b6j7RjnYEhBtg5A4mU54sz73YcDKRyrkWaC2GnC/c3sBvFq/kq0mGlNFBZnnGe/gse3jN/n3jVKugkQ3CWO8tYazELx80wjpKdZHE43tTOoupsOt4cMI0j/OAxHw/1sxrkmyYuw3Z+gHWeO79VYuW+4x/t5pPktR8Rue09+hPtX+wxBmRN7N4jSp3Asp6dE6V1cZWrWMP70mhno2e/igR7kpQzdM8ha6RfP0+ysuhKtl09dCvNkIdQHVWhhmKpXtaWuoV1/2aV+aqQ9YzVAOVxqKWg1Eb7OgBYsyNVb5BmPV5NxA4U8g23q+0xY3/oFFlDcM5IOVgnzxVTWXE8I6MUlcVX2k1kEEHKR4WrTDPIqIiBY8A4SpZTkkwrJQrvee3qs0iQMWwrsnAaavafcrE+v79FH8tc5FSEhN7ApQxrFKdLlUPm+1L8nnNmYn0/SvbhyNUZzqKmfz/Rr7oeFEPp31kWhRDw8HDCw8MjLsvCXYdpwnw8sBw4HjEdJjgbgMS21/F4g9ubW8zzLPPwzPHMbfSCkeeaZ8xZi3FwGAcn/H22zpviYXVi6DrqsftOKsheUDmyRz0/fuwzxPf32K/x6xVOoix6U04DZ515s7vH59bGdUCtlw087/tM794mYX28B2GaWac26m6fXu1roMdQZfds+ny4vr/+5kVX6qmJuNrEwPzIPoA4y/iaZAwoM+WAJaCkgrAlpCHBOWAaCeNIGD1nhV8CAYlLqrkTvAfAer1O+k86rjEv8zcRBcSwSaMBgzzlq2dn5dKXMff26z6r8ZmDuvMAdS2z2FadxHJGA/7VhS94JquTCi1QzGYASUXC8/Knabk2VKTyQH7u3dLsw5UEBWJnfymEmCHczQXZPJ+Vr/q4quSqf3/CjmQlxZ+TnwmlIwunXSbtnzt+srPpV7/5KwCEwY8YhxHOWRzmGc5ZDMNYySPnw00l4VZn0zSNlQxZI2zDyISs+hoZA2u9gH5mv1dQRMZUgcN71nSlGZpKiWqRNLDUcYIosNg9lYJOUV5EyMYgk6mT0X/4emoUPGRh0N+WFcv5AkMGh+EIawxiCHi8f0TKCY+Pn7Bt3G0spgLKwMf7RyxbBPeYi6y4M2CMA4GQY0SOnIFjRA7VbAFjwZ3rWk0xQLC2442Bes57ILQ3EplsUiJrqWs3KQKrr81XDKTlL6xuuhI3GZO9aC8sLCp5n6RCokVHNSrSQy8yBaRtPdWRlUrnlCsAsQHFYjWCygbKAYPNOAwWzmu00oPA42WIS9W4YVVBWLkdr7OcUsodURrQK4UJWvPDA4y1iDFJmYHlaB+InRqZSSBTSAhlw/nxEQ8fP2CYZhxfjXDegys9EpbLgg/fPSCEgPtPH3F5eIAhwmGY4YaBx6uj8FHHUxVdUqq05YKPl8gCJ2VszmA6bIhbQPAbPn36iGXbsJwf8eG7PzIwKxZ2OGCcj7h98QLz7S3Gycs8yTXVu9M7P2Vq1DHiiG/j0+MjfvvbP+CHd+/xx+++xftP7/Hi7Wt89c3XGOcJNy9eYjoesV4u8JbJXX/5i1/hVz/7Gb54+wbjMO50E6lF+c8ebQ0fJo/x7R1uZ4ff/PJrWHL4+P5P+MPv3iGniBd3BxzmgfdwgewzAQC9RxN141RItQMrpMpExqL7yE6+KPkzuO67dP/+zNPs1pz+3E1DvR81bmr2V6bd33ifyd+zlucCIURQ5rpzJ1FC7S76Y6W1lbS6/n1/f9zdS7OYgGwsLKclCim7Km+JAOUiWZLtS8e477al59cuRupYrGNVpPzROmCYYAx31MkmIiwRp+8XWGTksMHSiNd3Fn/5iwPuHxPuzwEPp4jDYcaLN685QOIOQHIohlBICNlbP8lKxt7mq00MgWVYzgXrwsS3Hz/eY/ruW9zc3OLm5gWGYURB5kw3UN1jZAws2TYWdSJlUDontRoGWZ+fiMsHrkB2ygUpZmzLivPpEcvlhJw2IAcYWHjweA7OgUxByRFbirAgDMVISvbzmDHrWkCBchzUTE0yUpiJ1qkKvA5cASbrYMngEgLWwO85bwEpG4y28X+QPH9Bc5jXHm51rZkmp64OdVLpOiPDuqLyLoAAYqLxf63jv/nr/w4gYJgG+GngBhTzDOcdxmHCPM3Cl9Q4J8dJOsWNI6zzgreYuFgxlbUGzksgTiKWZLidMQkw5T1MrXtNlXnovref6Voeor3l+qivdUqiQHU9aotlMsRZCt37q4M2BATh2olbgHNMfTAME1LKeHy4IMSAx8cFl8uCsG1Yt4RABR8+3GM5LcgpciYxCshYDp4UQlgjNmcE5+yd4L3ThA0XdpwgS0ahjGEuSmCPSiSsawxiYBaRpSlH9bMApL7Fzo3ayQygyZECbQsPHjQoKbLIPJG9BEKRMeXs25axocZyrvIzV2OjNZPgbJSkOKroHuZ97wxQTME0WtwcBvjBVRmuOJx5UEekOSGsK7YoGEpKLnNOgkeLdHJKWC9nDjgZrnYYxxFEhOPhABDT7OXCRMfrugjlxAOGeUKeDxiPB+ZniwFxecRyPuPdH/+Iy/mEnBJu5hneeQye9wl3lgs8B5IBxvtA9FlivRxSxuM5wpiEXAhpSFguK68xa/HpfMK2XLAsZ3x6/x1SDLDDLYbpFsN8AzsOMKNDsoS1z8zuNkg1JnWuZX6MlPp+ePce//P//B/x7v17fHq4h5scXr99jb/6m7/G4XjEfDhgGCeEdcPl/gxLhF//6jf4xTdf43icYb2vRaHSxBzVnNxt4d7B0WQ8ALy6nXEYvsCnTwf87j+/wen+AQUbPn38BKKC4zRjHAZQQS3VM7LI++A6ZKw5q69zdPROoB5ndM6Y6iDuxoiMgel/v5ZC/UDXhNgOq6DtH94L7fI714XYfPyeJPJJAtDKlZcJwYJtiZylDJW65+nOSFq6lnkcKv4ru7eXgmp3GbMPuABiA4OzfVuDlhYQ17peHddSMpIozd7BoIEGFu3qEBfONOdRhhHGJEyBG1dsjxHf/vYB8e2M8a8SXr0ifP7G4udfeDyeE7bvErZImOdbvHnzOaxzMDQwxrTETYWu5qp3hqmQzHVeDaxkzV1OC9aLwacPn3Bz8z3m+Yh5mqWSYUe/XTFv72iq++uqJJrnucjV0AGc0vA7ETfq2gK2lTuEb+sFW1iQS0QGc5d5md/gHAxlUOGmVZaAYixql/CrO1C+tFxtc76+IaGnqR8qyJnL7S0yRqEN2KyFRcYWCEtk+31xESgSdO+7QhKvFa1IK+Ch0+okQwaUFFO3Etvd/hEOYBDbECYXWCn/y0XI4H/C8ZOR1qvXnwEADvNBynwcbm9vuB5+mnA4HLgT3PFWSt9aZtM4Mv8MmcYrZK2QvZJE9yq4aYNPXf/IZ73QpcVp5SM7b3g9X5X+beFfb4Emdan2T+vf8zRqpIBYDKTImSzMxcSlPYbYcZFXbgl7OV+wrNL5QRw8y7ohpgxrC7wVxwoYIALosqU0atQbmVSFRzPc1BCF7OWr5X71Ph5n+bm+3gSC+ZHoUNb3V/dQ6TycbBroTyzAJeOrkJQuyd9KqdfohUWbUE7l46yXbkY6hxZUeCIDJYJKgjXA4DjKZYh5wghCXEdckjmkhM0tbc2Yxg2TcyvZAYCYmIRas6RyTtIVcYK2ElU9ULsLbRvW5SIpixwl5FvPSDHg4dMnrJcLLpcz4rqyU2xkvqmSIeWq6jmQMSs6DLwYYuGOMpaAkQCTDEcjUkKOEcuyYIsZy+kB9x8/IG4b/HwHP02wfsAgPFaurzTbrX3JBOh1qcyTAfeICOuK9+8/4t37D7h/eMB5ueCWCm5e3mE+HnG4ucUwzbDGIV4iCMCrl6/x+Wef4+WL29qaGGj7rBrcT45y9RP/773BYXCwBLx++RKn04b1co9ljYhxw81xqoZ6XToSvdDU7Hpl6q5De1mx2wl1EaOtTZ6qij8UwOiH95HAZ56pPP25Ly27vrDKoIp3ehuyn8XMJag5catnckyYXk3KnYgQ5d+NfyubITHI2vsr8JQSC2vR2tMbgW8ZT+Zz71RD/V6bSEiZoDXafaZTat1NE3HHRhRODTfFYIkZl2XDcrQoOcFQxjxZvHnlYW2EdwxqrPU4HI6SuevQtSGtc9Nn6jydA/mtsxxjYANvuSx4fHyEMdxpphqgnczU7KzdvLcBqs7CQn3ghO8vQ7J8QPtbKzLfwimn7cBLjgCydMQ0sMTZCxmEVDjUAYhTR51e+zvqDOP9SGgJXDVzSscTgJbV5CTQsBRCTPzZkLh00RG18vWrca7PJwu2Rta6Z6/R7VK3t8hkBeQElKyJRdBypCdo8F/o+OyLLwEA03HGfHOoTU84C3zG8ShZ30LmXXkCJXJspcTL2j7LRGSX0eiu7LuyR1OQYVBS9nr0jib9QbFF94fnhug56azvrZqzYhY08Fu/t89oJnBOnIVXDHdTtcYhpQ1r4E6r6xawbhEpZsRUYCjjclmR1gBDjBlJ1rVmKibJfCq9s0n/9Q57vX8x4HqjV9dTqXtrPyKKXUrJUqLT9niRzJ1nPrCTKbkUcUTr2DTDux/dglKdrLqse99hlVyCXyq2Km1P9M5/RYlGnFdKYK2NeqzT0op2H0pn4ZxDCnH3ervnVM+PAsQSEJOWK3LWzDAM3F2OOEqfpctpShGc/b0hCGdTDY6miFQSwrrg9PCA8+OjcHJxd0Vb7Qkxzknvy8iYCg6T8qZcMmJkGTR4xlIxJsb0IeL0eMLp4R7L5RGf3r9DShF3ryaM8wjrBpBzgDPMmCnY20GmXKcZV0tAsbdM9fl8wR/++Ce8f/8By7rCOu4I+dnnn+Pm7hbjdID3A+IacB5OMCC8evUaL1++xDh4bmOvc1BlQAtS6Mq5WoT1JyLuNHUzD/Cm4PbmiMNhxrJEPJ4uICqYtBthv6baGcQx261dlP2iFDvleWFCO9tGHTw97tDzlNKdF23r1h3X6ScNSvH+7bWvbj3dOC2zvMeebfxaUI0DYsJMa6jNcdlbW+2zHU7rx17T+ERXqnOqXruOiz77HpfvvWbynPKVJWCn9pza2JVPs6hsEu1tDAftMvMD5ZKR1og1RRwmC2sL5hk4Hgl3tzzPznHAyvkRh+MtjLHYNq4m0IqubjSese90fppdC8GXYeWugevlgsv5xLZ0ZpnQz/oOm++wZKlraG+zKy6/gnNFaS5QMURKnBWeYkRMzHmpFBZEHGADCNaII1+qSbSSoQG+HkdfT53geLk3xTRg8QXmFuNfnWR/OgmirAWIsg5jyohq32i3x16n5TY+LWlH1paOSVtZ+zHtAhb6Dk72UQn2ZFqfPX6ys+nf/vVfgwCM44RJ6qHnwwTnGAgxObcVoso92aQSCWoKLn/fc5fwoYpAjau2dfdKt4HupyLnySmf/P3HjubVlv86uViBxpXjJWfugHU+nxEDtxRszjM2hNSBYayDs567YUgEN6aCUjiTJpkki4rJvkJg8sQQmfgyxYCUotQZ52r0VU9pShxBs3a3MADhNtoZd3tDbycLGZN379tt6atR65P9nj+KClbdXKVtMFVAFZyq0Lw6Yx+5U5BtihFuKoiw0PvLsKbAOxKHJn957zHNB0ioFRoBvJ7TKvQhwAxtzLhtb6glajq/ZLj6XsGoIYN1YUFJxiBK6/llXbBKBPdyekRYN5ScMXgGSQDVqOn+6NWYPqcI8MIO0hAT1pKwbhvWZeGsQjfAeS7jOZ/PWJcLXATsmkHe1455/78cp9MZv//DH/Hu/QfAGty9foWXb17j9du3mA4zyDiQdjCxBqYQpnHA8cCkozWjrbQn7b/vJcEzI1K9LCKUvcU4euSS8OnhHmFbcXszYD4MsKQRf5EyhTMJi5IK/5nnpPqf/CAdhBTMPPms3ODTdN7u3aUBtwqMrvYp6qeaa/f5u3seTBJI1pZwD+QCk4BsqSrdH9vDKnf76LpmS/SfYAdtQtNywhWgMp1y5S9RPqEGXJsMyCnvsp6yZDZmMQA101WdLfyUam0ZcMjFwBWLITtQMnj3/cLNGNwBr15PMA64OVrME2GePTeZsI4dzFfdap71d+7moD1DtdtlaLZtxcP9PQiEx8cHDrwMM8bxuDsN8y7w+VTuqK5sWV/tOv3y4bGiTvYBHLW0yImzbvMWkEMQQa/ykk9hr+e+SFmbKTClz+vSeebuI7kUFFc6Q7cZC42nA+x0SrpuCsRuhbNGmnZwMwyKBY4ykuF1YUlI/Uubi0J0lYX4zKH6RLOqqieKx4WI4KQ8hFJESD8BJf1XOv7q3/5bgIBhGtlQlVI3xUq1wcnopRTISWc3Ji6uGEofv59IalHJJ4tWjSBqGEdBJp9BF25vIOEZRN7/qcmv+pr838yAsgPWGjTba3cuUV+lDDunDOd8F4BQI8zCWv6b95x1mBJHk3OGNJZQrkGCpwzrDFMUxIAU2YGRU6pNbBg3la48KiHnK/oDiSDVzCbBW1VmqmEjY1I7SVXDtjBviwiIvhHFkyAeofJjdlPXTedeF/Sj/fwcddPTprvKE11LBDBBeNg4MywnIDe+LeXH1G6HfhyqHtCgQK+vFKNZwaGKlfjvGTkB27ahFM3GB8s6SBZwKdIxziCsC8LC/JPb6YQcIlLkhgfbuqLECGeYNN9JUI85u6jqEUA6laLpHL3XAiZ+DjHCoGBdAVMM1nXBum1C1wF477AuhPPlgm1bYYYTyJ/g5pFLgBULoNuabbCvME3DGklajT+ezvj22+/x6eEBx9tbfHMY8dU3X+PN559hPhwkc57LjUPYJCDN92WdFdS7W0pP18MzrzX7Zm8EOGvgncNjCHj37j2AjFk4d1k3sQwtpTQy9c5ZookCTzDbM45dIuqIy9vo1QSEktHjD/mhjnezzRQ7dGWQ+uCK9fuqiKuxqb4fyDh0DqfWgZPxfSKeN1e5a/uweycT6zPspGK9XtugXaBfMeO1HN+JZmrPpXQZpcscV+60am41hzkRJxHUhIFSUMC8sjAF1lvh7MxAJMS14OO7DfO4IEXC27cDhinh5l3A6ZIxDRbTNICMlUwc3n9F6/J3T90d5emP12t0XTbcf7pHSgWvzmehABnhneLZfNXcRzLBKhiDzCjt3lOxFHTMBX9ZznRNKSMF7hLLHTE35BRqpY3QenKyBNjxpM7mTMyb9qQ4Qzw6nFWaZJ00epVecxIMiuEcKlZt3PCCwE4ngODkXkHCdRul4kS65Wm1EOeX5rbHVfY/M97tVsW5ulvL/J8thMHw826py7b7Z46f7Gz69//+3wMAvGNuASKCdbYj5dTImtkB0P3Rfuc23ztNuvdgQ51LTTmwcuvOUyfouWEr7aUrAffkqBsCDSh0Sr83xnogAXBnmcfHR9x/+oRt3dhRZGwTusIvVQA456sjwUZObQsxYysJTFLMbeZHy/XTlthx4BywhYXJEOPa8fEUQARrShGRADIOJl9HNPj/1t6zCSZ+Polc7Ya7bUZtPd7OdDWcP/LLTgbIIBY0hv1mjKPel1pTfVZRw9NKCt6XT/CmNgALgsJNtZ0DxpGjWVbSBsdxxO3trfBkmMqTpZwCVeAQgTSSRmUHIEtKWBfu9LZtHG21hktJdX65Q4fB6eFeuAgytssbIBd8fP8OHz58YNC7rsg5YxxHzOOEPhKr63q/bHugJAMj+yHngiVFJCScLheczieAAD/OsGSQYsTH+084nx5AfgX5M4qziDHC/DPbY3cHO/DE/3/8+An/x//+t/j4cI9iLT7/+Vf44uuf42fffI1xmvF4OmNZNjgbYa2DBeFwOODl3R0O87jLnntuN/dA7YnpU9qqLCLMh8FhngekHPHdDz9gWxe8eDHjeDOx/PJCHJqF58MUmKxA6cfGgq7+poCRwOSjPzpgTbyk/f2qowFlL1euZQy/9vzPeo3dwJC+r+0zztzhtFx14KTcCESfSOorubzPdtIIWTM0CkpVOn3b8JY5IFw9hgTw8Odj5P0RU6p8dklSyrM4NVDA4IeYM0GjKmrIQoGZNSBvAQM4ZMylANHg9/94wsf3K/7yNw6//psBx1uD168sPtwTbm8G3N7ewBiHsDHRf0oJIW4cpbbXNfBPgWqbFx4HDS5czhesYcG2bvjs7WcoJeH29hW8n1pZkzxninxO5TIx8pzsiG1ZjXwHBUa6W5ZqUJUOyBegJMTA5ODxckHeVqAkzv6A8hcRvICmigshBk3h7iNOF70I/ZQzgkT4Sp9hI2ujdh+U1woAygnsCCgYDJCJMDqLxXsAGVvaEFKGJcJomF+NsymudDJ1c11X7bU20iBCn33X/m7IYJBW6Etpa+1f4/gf/v3/GQC4wYnSBNhG/lrDNtVopbrfWmfcXja07CEltC+KiaieBprx1Wes0m4Md7bV3tB5xuH0nENqfzYVQI2DTg3AXOcRUMdTjBHnxzMe7x8RY8I4DHCCMRUDWmNRLDD4CaUQDFkOBOXMGVFCVJylM+YEC18KYkgI24LoElJYkeLI1ATi1GYeoQQiU50U/Fiii4Wng0vkeCiUWqqIo0vHhKCO40YxACjXC+1W67XBez0vbUT3juzrowXpUC3Jpj9JujYpxG3Zb4qjTQEKFeQYENYLZ2CmCMqpZp1rGbNzFuM04nA81nvNmcvxUmHMok9kDMEaxlAxJinZE0MLGZfLGcvCpaAhbpIp5TlDVTLHjDFYTycsfkCJCedxgvUe958+4eH+HoaotgT3znFJsGAdxVA6nloCSZTFCKTaVTCmhGXdQMgwZUPaCOfTGZflDE00GacRj4/Ap4cHXM5nJHNEpAlmGhFjVjuyYoQfwzAyDYw/Cl+75IL3H+/x9//5n3BZVvz6r3+Dt1+9xRc/+xm+/uUv4YcB7999wMP9I2KMWC5LbZ4zimO6AEwMXrq5v1orzy0hIv5ctW3kdW8tpmHAuqz47W9/j1ISXt69wKtXr6ojkYizzGJgon4j+1X5UZu10N+DyrIOn/CKQe9mZXkkURtqwa0iuZm7jCUpD6qlbqXjVe3uoDq7O91Q5RX110XVM6pTubyNdzA7qBOcBdMFoHHwVIcRejnJPJa7WaC2W3q814JOmrl7PV/8GtOoZGTNBiy5ZoTrnmz2M0FLyLOWnws/UwE3R8pkkA13E3ZDAGVCXjOwRYRTwZ9+f8G2FNy9OOCbb5iK4J/+uOHhMeEwexyPMzub0lJtk4bdmiyr38r+pacHY9rT6YxUIpZlq9VV88wNoAAjXUxRgwZE3CWzchPWFoXNOa46tc/8UllgYWHJIqaMsEUp616RwoVpCMDBPwOmeOkDcgFKbwAEZJRiYAG4Oo28ZnMW/l8qsLCNT1j+Vb5emHryEJQrCfDSGXx1Bi7yvlljRqQCooxB2pw7cpW4vq75aoyQwoZWtaKaYmePaCAFdT/wuFqhU4iIHV3Cnzt+srPpcDzwB6yDt9wlyxhTuVV+ysXK1UPxPu7Bo2IXVfhNPVfhUN+qm+harPd//5E/dW+hZv3tb7Q8fanulQ4wKVgKMdbFXtW9AKrKGwEWmiSde7LJlRsAAmgYHLRnqpEj6eLTnEQibJ8xMnsA2T3B/lme/KXdL+G5IWnSoc7Kbmz/3EA/d8gYi5e2peWW/Q12SpyHXbMx9u/B1f1xuYFEgtEQIk9ty5zoDZnew90eSQ0+VLJzfR8biQnFKOEl1RbWTCoeEbcNcdsQtg1ERrrmcQvyPlOvd7TWKGg3zpri2+nFJ/K6QDNXhKBcrqHCNZeCVNjZZ3S891ZC+6XfPj+yuVVIhxBxvlywLNyKej4eMEwjjHWVULGmRIOVKLekdpyK21283827GG8PmuWFOnpXYFxBEz9v4S53KWGNzKWT8wBI5kb/2M3z/3Q8ns+hbEOzu9fqkGvGFrp1txvSDpwoeMLVOnwC2roN+sQRtPuc7uweTDXZkEurLtatt3vqJ06m5w6q89pOQXufgN5PJ8OfOMx0L6KNgQ5D3XPU85ZdSTfdOyQks6qfCmG5RIAKti3i/8vcfz/ZkmR5ftjH3UNdkeKpki2ne/QCCxCLJUEazEgYzPh/wwhKYBfY2eHMdE/3tCrxVKqrQrjgD8fdw+Nmvqrq3p4Bo+xVZt4bwsP9+Dnfo1EObTxNDV2jMNpj7RQ9eWncZzsrz3dYLlwxB/JJmP+KiliYAnaaGMaeoe/pujED4rwvCw/847sHZqV9Xvg8whBmIJvkaQILqbhljOjIzLQgccVcXyQ9Xdpnx9pMBR/K/4/rVILxYqjz72dvI3xZPjFaU5kYCeoKryChMJIUz0RoN9ccSuON7/oUfZ7LsRmoqyx6vlu1gT/OsVoLhtImGZmYnXUUDo0CjWe+EzdUVmopZuZJHs68Ac+sFaokgLPPFtOYNqr6FsX1ScBQUM1CVs+0kGt/Bal1YWOqm1Yp5amIaovMQIwYBhcdegFit9cMJiJx6IXxNRvFfelkS/9CObREbPHHjBnO92f6XEVwElS5EB8Qmumb8pQz2s10ndfkw/dKCkrpBBLMoDKuyQYntVzjcuuSMGZuAy9dSE00eqfvF7s6KrYzUw6ZjyfMRsTo59HLSflxXovDS2tQUq8mwVvvmUtTVKL0heBjBJaVosZ1lRW1JIUTT1SpE1e8l2yh+Ete14RjpDOh91L8OGMo78SZaWbHutCcKtY7TfpyXzwpM0Msh6EkXchZoftxslIQPXiatmVzcUG76nKRc2st4zAyTZLZkIybRmtp1DRrHUuscoZn53WRXx5F152NVVIMHT44xmkS57cxmGZRlWqelzynZ3tAFeNSyzHOwkKd7ZpoICjmMa1XiBwkhFTuYuYlC1xfXFcORi0mImHhpJizwIF53+T2xClCMy97Ma5iW589M23sp7jpMntkxhCRUh+/R5rDzN/i94u5WLxigavSOM8xjMpyJr23RhEcHI+WuplYrR11DU2tqCuoDCgk2EFFo9c5vlvI54RxUWeLUhjNifsDidCaJssUm62M40hdTzEiMmYlhOJ9F/MU3QRxPUMx9wvaONej4w3KhgCie6egkGL8QaRO0RQPKLCMmlc8z3/+j4K+Zt4VKPFMmsyZHnXEuCbquES55kLx3Hy1yvMxP1MVgiKel57xBMtKh4rrQlB5Ds6x4zcd39nYVNdiYjNaSZoA4mn+8GOSYCteW5XfzaAjC4UF4Dkrk1bgpuWH3zI7T5yx3LqhOH0ZJ6UieJ5BCY+I0nvPaeg5pDQ6dNFuFUYrBocUqmhMg6kUVR2jGrQIGA1UKkRvTU1tKqS4vycES/Aj3vYEN5IC40IBooyRUGId07mWU3AugkI0AMx1oNJ0qtjNSePz9+esegm75uec79cl0ynXNhQfhWJrpGKC6d1mEDOPvqAb4hZ1DqYJZR3KKxSaVddSmYC1gdNxwPqB06lF72uOpyPDeGSyPdaOwihROONmpFe8A0jx29RxLnlog/NMDOJl8I5pNKBUrhF1POxwVuqlNE1H03ZY66iVkVjISlqcStSJyQJHBJ7Pit5cUD15eIgtVWWmpPC61OQJKFzw9EOPqTSpg4auKky7xjho15c0qy2riwtJZVnM57zzHq1xSLJIBHw/TDjrudsdubl/4Nj3vPjBJ2xfXLHebjn2I6fRsrvfczweCZNDB4nau1h3PL+6oK6iwUnFwqR56kt4L//PBYLz+MTan85LkY/9MLI7HBldwKzXaK247Qfsu/dsViv8tbQSXdcVbRWLn2ZpXO4UtXhS+i0fYTbdFKavSD8636l4pcLYFPLf2XhZgvbiLRdrgHg+iKkZYuCGnLulCyaVFDsdaSgEXDAEr2Kr+6RwB2lTH0JUNlgYP/Ozs2cj/T0L5AWmjfUxMk8PxI4eLp63BKEhzIbBVGsoe50QD7T1Ei4dlHhik1wMSNiyj/tBOKOEGK+UIRB4+6bHa8/1s4Yf3nVME1xfWL7/iea+f+C3v/o5Stc8e/ac1XoT6yOF4l1D2pTzQj5an5kvJYOKdQ47Onp94v2bt/THI9Z6jKkzn5aizhVV1cz7PCn3PvKAbBGMqYMLWkm0L44gYwzBKaYx4AbHdOoZj3vscEJrSTHVMWUFpCClBpxW2KDxSMHcMUCrFdqIUVY8rcJ3vJKWEJKxHT/3ASm67/EJKJ6BfqXAoDEqsGpqSS/2jn3vcU4zEeidpzaalpRmn6KUQlTwRCldmn9FhnhmwsxdDLNxI6VqKLSX8xtigfBvUrj+iEfy8Aq/yXnqzJSc6PpcXichXUSmFDJRzi7xktwzp81la3L6joKthCVeyFNYbPLMs84uJUPkxTeZ/ZyNqLxGgLWPXccmhlNPfzzhrIstoJXwOKQr2RQxlFKGptYZ5nrv8VqMqWlulIa2qakrTdWo6IV24CzBWkkTA1BaaIqo7Kl5rLkkU67fVmDNQjxkx19KcQxx7KGUCctr0i9zVsCMPZcsJhQrvJzB1NJcx6LeqJQ+kgdW0FL8mQ3yIcqutGs8BAd+kp94lPKs2hrNGucD03Bi6k9ZEp6OB8ZBCrU7a8UQpVKNFOZnApJSLR2uBEKlPe1xbqLvJfKrmsbYiddQVVKC43Tcg3c0/UoiVusaj2LVSRv01HAIpXOUYkhFE1Vsd5l5qlrurzhvk52wzkqBX68wXjFOI6eTRDatV6tYW2pFt70kmJrN9TXbF89YX11gUlMDZvy03CNpTdO8S3MV6zy3N/fs9kd2uwNV27Bua1588jGf/fCHaGN4++49znm+/uJrbt/foX2g8o6urqm1Yl1XcxpOVEITDalClufxnRvAogIQEN0jRR0Nk+PQT4wOaFu8G3l9c8MwjVxcXPDpRx/F0g/iOFSxY6Q4C+bI1kUDh7Q/09ynOcl8Y+ZNAmlMviak9DiX0vYK5X1hYPEL+ko6oorvmgIYdBBsIIYEZiU83yNNT6wXGWu/Qoj07kCnGmsRuxTrW+LXmTumYAP5NPHOEPRcWyhEuZVSwdJ4mJ1HGWkomF0mntR4RVKEl8vsAOW8lCh0MRWYxCZKZ7fCBoXykja4ahvw8Ltf7/nqywMK+Px7K+o6sFlNXG4m7HTH7377K5SuWXVb6rrLpV3k0DPuW/C3xE+XGrnwRoNCoiKnvYWguYlZCsPlEKNQNSHW2KzrhqZpl/QdcWckJpGFCA0VKHzBD1LHVqcCdrCMxxE39PjpBG6kUgqfCq1Ho0uN1KgKCmxc29E7RqDRCmX0nHlDEN0tlYrUcc9FLO1Cknuy5imuVuZPWq/UWqKlfFOjjcI6z2mUuocjMIZAFaBJ75bsJAuZ/ziyqRBNxVGikLn1QAgSsFAraM2ypMaHju9sbNIpZB5FquYevsHjAiVjU099m06alZjz75685+M/SnMR8ZPHzH4psBc26OIrNWO+eKLKOPApTOqDZ5rE6uqci8uRxiUeu2GaAKnFJEXSA8ZImLJXEILDkLp7KWlVrA3aSIe1gCN4S/CxyGuYB1RGHghDnEHR+Sx+wNGSmWIiyFTYLwGDDx9qwSgypg3z9yq2piwHIzK+5DqRnlJXLEpDUx5pFuZqvkL+9l5amTgpzqaCikaMlmGwnPZH/OSZxp5+ODGMPdaNOD9JWpGXGhDB+1zYuJzARepYNLSoKAScjcpV8FirpNV0JXU2plE65ADs7+5o2k7WthbFUqWWXeW/eTGYvQBne0nFSTzf4EqSVRwSrWGnKaYVROZdt+jGUXcr2vWGpusyQH0SHJWfFVtFKxUjmhzDaDn1A4fjkWGa6NZrnr18iTKGYXIEP3E69fTHXoBSkK43bd2wWa2W4cJqfq1wtoe/6VgU4gyByVr6YWQKAd20KO84ThPT3uIIXKw7Qh3E0KRTcLTQYTIwlwanMppC1qiY96dcImezec6lSm99ovMyqm55x7Cs47EYW6SLwLz58gZZ7svcptRHQRfXcH5i4ikfnmdV8OrzJh8hpHdVBaiTPZre85tyuxNYTLVUymlNtQUUEJyELksx//g9smZegYuvUGtNowyjtTzsRgZrubs/cTjsCWjWK8+zK8W+P3Hz7h50w2rd0q2jiM7do8IZLS6lzVPTlbeqD3jrGIeR/e4Ba0e61ZqLy2sJ80ZAetNIJ9c58mAG3zPNzXOUIjTSJOkCvGstrYeDCwTrceOEHXq8HcXYY2K9ujj+5KsXRVCBhyF2s9FByXyq2Wha+uVUNISpSG95nWN3Ul9E68g5ETsERRM7zw3WchhHSWkKHhsjDEIhIxYRb1rHuk1L2pmVa4r1C8s5iv+FuN8kRVATvono/4hHFs0KEscRUXuOYNTZdWfc+YzwvinqcBZi6bOw/JOZfXzwflHpOcegKuGQ8k4h/5Z/Pj27SakTg9M0TYzDFDvxLtN0nbOMEUNpXaFjt10X025t0Gid5JzIk7oxGKMwJqCUeKQJLtcjynXemKMKSiV4Ef2UlJGzWSvfcU4XTgIsZN6X7v1IyOZr5g+jHShimw9ymAUvLv8tHpNwbFY2Zp6caDD/HVz+p2LKa10ZjGoYJ8vQn7DOMdUNY90wDUOsZyIpiQmrlMblc0UuvXZQQSK7SelO0kXZGxdrvNaYGLU2DT3BOZy31G1N3TQ03YamXcVOglWuc+dcCl/yhYG1wMNndJ1KXbicchVwXuG8wjoXoygqVl2HqSqquqFuO2yAdr2m226oY/RRxqJnS1yQS8GLJDvG+sDhcOTu7oFTLApujGZ7dcn1ixec+p77uzuGYeTm/S03b29oK8NV10FlYhF3s3hOkoUBpMg98tysuz1BTTrRYjHUyXmG0cZmIhUBx8PhIF0Cg+fF82foymCU1I1JfDWx3ERZi35cIZHhYzy9UMUiQ0r7KRtQiSnSZ51sSwc1mQajazIw32emBNFL4vnJgZP3h0rGkXSu1IyrYimCEMThgsrl/Clj/pKxcblz53snJ5aKV4l8jM8Maa/Ol8k7uyfg2ez8m/lWOf/lEaP3vCJF0QpNJKdoMlYqfCQgow2VEiPGzfsB6x2ff3+NUhZjAk1j6VrHYTxwv3do01C9jLUHKXh/lhNqpoPlL+UUxXmSebDWxsjHkcN+R8ChjaFu2xjUUQmVKUXTtIv3TfJVbj3TRnZeZSpV6NiVVsUSBgrwkzQIkJpNontLpQ1dPkawUxBDk1aCV200WGqlisL9BY5JYjnLDBVTh1Od0lhiIeFn5jU2cXbbyqCMYrSO02RxyuMQi0Fm72diJz40T/eHkEM+r9wXBQdRGUNBrVWxXz58fGdj0zIEN73B00N9Cqt8+NxZCJYM71umIR/lIhR3/fDJ8ZdZvgcWXc7yGcXmYAYfnO+bMKfRpbBbdJk+ExZFJhWq6BSQiuPpGB4upqoURp5S/CTyNwrW9E8j7fyUmSOpYl7MPB/phSMjibtvCU6Kn8zvljdiEgZPTWcCoB9cqpCfmSWgmudSqXky05QuUgnOHhtCqokAuQhg8NGAV9GtNnz8+RXaGPaHW47HB07HnnEI6GFCBct42jH1PX4awU5oAk1l8niyJZz5xc7pN6XolPMy17VSeCUeBPG0OUmj6U947+kAU+VeJU/ujfK+af5zimb2jsvG97G7FCFgncUHCbfuT1IU2Vkrc6kkqq6qPHXVSPRcVeUw+WXnx8dLOit0KvIgT98PHI8902Sp6wavNXXTUDeNKAORztu6xqzWVErRounqimmyvHn3nsqY2EhA0dQyptI4kucARLlJhJKlefpF6FsiDQcOxxPKGF59+gnD2EMYCcFSNw1Wi4fAKXCx1excRywK7QSQi+ckUPOI3AulK4WPL4ypZ0rZzMPll2WayTz3JfkvYOK5UFaIpeUpZe/s71RYP5eAIfKWGCkV1GzEWDwj/lz+S+8R8u9y3nJflLxu8a4qRXvoxT2T5y8BJ0X06pVKeZC5ViU/AZQxSKSCRIx6YWYEH9jvR778+khdG7qmY/WyZd+PrDtHIAEFybVXed2L+Qvlmpbzw9kxA0sdi/73JzGo7Hd7Hh7uqeua9fqCutKxDlVRu6dwIKR0OBV5cgLmGYuqGSjOcx6YBsvQT0zTmKM3U10fVAEaYuFQjaLWBqc8Q6r9AEzBY1CYEJ0oQXZAgFwQVmsdo1GSuy5Esi/pPkTYIPSaYgG8lnorst9EudFe4XzAaSmg63yY64oQwSF67p6VlJM8+5F+zpflbOdKOq/miRP/WY5SLieD9hK7hCfO/bZ7fcv551js208p8WX5gEdjfHRkXPSEthPgKRyR6FuUigmctLYuSScU1ybDhBRYlVWei+rrOT0xGVgiZIfUQa1CV9LApqqI9TVnuVrSdfm6KQ4IQKX29hoy79Lz/lUhkLyWT75zgcHi5ObpTXMvRYojtSfnbr7V03h1IUYyjko3fWJZwmzsqauaVbeiblsurq7Q2nB78577u1uqYWScxKkavKU/7BhPPSpYKh1Qhih/QBTZ9ICkcs7117LMiW28y7XNxuqiBIDVGqVF6ZSi4mCqhlC30olaS2RKOYFlE4GQV2/+fx5IEHnonY+t5z3TFMAFhmFg7HuaqorFyg3aVJiqwVQBY+qiPmtayzBPslqml5OeHGZ1wwfP8djz8HDAucDF5SXKGIyWcgtj33PcHxnHEQOsu5aurtluVqyaluOp58uvX2OMoWkaSU2ua0xd56LFpZz4tkNSBz39ODE6y4SnXne8+vwTrJtQzko+YtNwtBNuVGjTUuta5jbSgNhLEg4S52+K0EhrlNY74Z+59uMM69I+yd0dCzmfCTpjKKKCnqI2ZnpLEClHtyWaJKU0Rso4k78lTc7YJepsquzuFgixI5ki4adSXyijWlX+XUeHSC6zojKKLMbxNA8pYK/oitHYnlTzlDqb9S8vzp8Fz4l8J/FRFdctxGYyeAvB44PCWs9oPfv9xNv3J0JQbDcVn36sefdgOE0RV+TC8BEDZ57zBAMqgxA+RJ4q4SDP8XiSWllVQ9utqKqartvONZqKKCGKJUh6QcZTmY7SfBV7NNKhi07CoZfMFO8k6AOQ6LBkFCTk++jYqMCFgPViNPJB4WL/ADKNzkZhVNT39dyYIjOIkP+3fKXI30yAKkDQ4hgQPc9Lp3vmzAUbAlN0IIaoSyUMmHF35FnzvMu+UqpcmnlSQ8QwWmmq7wigfm9jU0kdH2ZgIZ+a+c7i2uV9U1TTt7PDP+YxM6+ZOSSGeL4pKM5bHt5Ld7JhGBinkcnZGMo6M4yscCHxmi61940Eqo2m0oramGxsSqGR2oHyYlnXVY2pPKZqqCqN9w3e12hdxVpBCVSpebgJaBQMl2hJ16ZkeomQ5X9KFZuyWOdzxjfP3BMzHB6fufR6hexZL0Nhc2G/MyU8QC7sKUYnh3fSIrlpGl5+9An/6r/8t6w2W37zm1/y5Ze/Yb+7Z7KO42HP8dhzuNsxjCPutCdMI5UKrLtKrNEuSG5uAithVqKFTmM4eAyb9jGvv/SwaBNA6Wy8SO1Sd7s7qroGBXXTSpe8vB4L3ng2h7OhSSzuS2Oh8hCQInnjOOLGE21teHjY4Z0UmPexfkFdb3C+pms3rNoVXdNSVRpjVKaVcnUW61ishQaC9+weHri923E69bSrDhMC3XpNt1oxjRP2NBBCYNutqNdbWlOxbVsqrTmdBv7xF7+mbmo22w1VXXF9seEytv9um3pRIDEJUMqRRU6YRuaDRBI+7Pa8vb1Ftw0/+eu/xHrL7v6G03GP9o7RS4TTSikaLUX86hCjHqJXF+aC4XPb0KcNTskGNtM5SH73rKBJQeYiUkXNF4bi3cq75H2VcVP5VEVK9ZrBGgXdJo+9ADHxwalceFokn/zTuor1xhwhTI/2clK85m5Yy44f2RDiC0AZ97TzLhrbZ5pdGNq1RqkQuxSKGA7RMB2czLUPSKosEExpeE3zHxOolEZVNUoHvJU0Beu1gDnveffuxH/8O8/VZcd/9Z+t+fSjNZPV/PYrx+gqjJYWssnfV053Bm3Fj+WRFknlU7QxVPHv/cMhYoQKUHTrNZ992tK2jRTE1hLlRJjTm0WHUjEKII0j5LXQSi94ARFIWOs4HXv6fc/peGQYjvjQowwxYqConxKHXSlxXFjvOWrhsVMIKC/GpiooeZcwU39qTW90JR3ElI6h/smDt4xkU5DBYIWmigajtW8xtcNPEi1JUEwetA9M3jNZAUo+gUOlspHchNkzn5cl0v4H5VIcjNGaWunFOv9zHlmOqvnv5Z74A+/35He/z50eS5+0P3/vIxqPgi55wfJZ2agQC3o7L1Ek/dBjQoOhRuWC0rPCV2ID531MH5e0bGWEh1VRNs/deoMUclWx1EDTUDcuOkV0NDpJl1RSR1I9y3gdaU6Kg6f6MCnvRmQnpLWY+b285xzvcG4IKo0vScmDxL5T+YLl/J/pUPN8RslQNptYfk+RF8jMxkLAxRpAbdtgzBUvPvqYv/zP/yu61Yq/+9u/4Rc//3tOxyPeeYah57A/8nB3yzhNaDfS6IAzsY5IEJ7rM78Ps6QM895VEOfXLDBUTsk2AaYhy1+SYnM4UtUTuqqp25Wkf3uT7Vzz/ko8uFiTs/lXSuHj3rOTxVoH3nEcRzSW7XrNabenAvz1s9ghsaFuNlhf0dQtTVXTmAqjUxZAoVJEnJZWp/wuraW3ntvbHV99/Y5x8nz08afoylBVFf3pxGG35+7de+wkHfeeX12walqeXVzQ1Ibb+wf+w9/9jK5teXZ9TVM3XF5ecHGxpTIaU1dFcebl8RSvmSbH4TSwP/Qcp5FTmFg9u+Cn3/tLfHDcvb/huNujjOZ27KnsRNVUdGYVDaxyX51pOaV6QvBOil8Xyv7CyJjq0UJsL0/EdmrGSSHqCzEa1ceyGzE5KV4iuyQ3EclGXRWdqqnQOBmPqTSGQJRZc1pQrjWqFE65GbNoI7hFRUOYjoYEab26mOAkr9Lvs1MtkqpzpKyOMsXYx3Tf4Jf3mtcvRH1EDLfOaHQQXUAFnefaZz1GrjVG43MTqVTyJfJ7bVBVI0bF2LzFB8cwePrR8ubdiZ//0z2rVc2r5xd87/OWX/3Wcf/gsDGw0CNlPdL7pcYKhYAudGoey9/i64Q1vXPc3dxKpzgfMJWh7Vas11varokd789sEiHdKxCcz6uejtSMJc1nippLkbaH/YHjw4H+dMLaAdSEqSLg8HGQakbllTG0WmO9Z7QOj0QvjsqjUTRKYQAfYnMCRaYnExuJaaVjeP5iwhbrn96xDkoKmqPpahcj06U2rdOKyYDSgdF5+QxwlcmEl4uSJ3osnqjyPxXpjKyfl7ZUY6KT8Ttghd8/sonCaixf5F9nIafm/6tHp/GYuh6d8KGzFsc50/rQ9ef0vAChi1+ScjaHoT09h8sPc/vcMwI5B2vJ7rN4rJp/WRp1ZK5NpaX2gDGYBIpKNpmJvQwpLd7zWwHpH4a0S+twqRCX44/Dkk0eo28S0c6/J44wG5t44mcJkJKGPodCRgXMGJq2o+tWrDdbLi6vCCGwWq/xkYGok9SnqbQW5kzAq5h6EhypOVE2uxQLNQPBMxCoioiNAhSLsJUid9ZaQMVOKZJap6vZaKG+ZR3KsM803XkcMnGx2GRRTK+usbFwvSi/FcaIcS53Kcjd8zizYj85CGare+rkE7ubaTEWmNRJq+gappWScGuV5sdz6nvcNNK0DUEr6qamqSTKQRSGEFNJdRbU6b3PD6ViQU/rGSfLGCMNVW1Ybdcx1fWE89Jph0noxyuVFXqlK+FswWXjxQzjS8kYsrKQ9x2c7bvymxlApLEm/pL2zdwxSMWtsPTBpns+yU8SGP/gkiXD01Prmx5cGCvUkhLLZ55748ufiphWXe7TBeiax0Fx5Twf6uz+zIw6zO93boDO80DUZ5RGaVk5H+L6IuH80xTYHyxNbVFAXSmaRtM1GuV0rFe3lFuPJ7T4+eicx6gpvV9q8T1NE5OdqO2UFZKnlPq0XosIhW94UooETec7K80LvJPirqkD4ew5UwuqEaUgdZPTKCXgTNrtLusvyS5ICkXhLIrK1VNmhjyncmJGEToC8YrApCR1xiN1uVINigSYKRT6BISSJJyld3qfJyJyz4R+Aln/UkeaH4rnfmj9y2u+7Z5/nONJgv7D71aAnaXn+PFjs+HJe0k1KFhLOT9JwSoNv4muMm0nuRZZj1ZQ15q61oKfUppErOGRjTzFWPKReGFxz6cJZqbL8rOSBmUvPzVRxaUJK33TMcMlkoSS+n3lCQV+Ku5XYrL5Z5Rn8TOjDatuxWq9YbPdsr24RGvDYbcDAsNpgBAxlNEQDFYrlCPXi5mV4+VY8joWr7xc3/n8EFKnLSddU510cEKpyNcshIqgvdQ9SXP9xEQ/wvphqXbODXg83ltUmBinVJB4im3kxVChtcGYikWadeRTc3riN+ykAkMFRC5I0e/YZMYYwWTWSYdF5wmxu7GO6XreO6yFw+nEOJwYuhV13dC2jqquqWrBUCp4qujMLo0d50fCONY5Tv3AqR+kw5QCU1esNi0ez/EoUVZiUACHRJz6KL+NVnlPZUyk5r34yFG9WO8kW0pjVMHRC9VKJUPSI8y1REyLtUhy5xy/lPR3dotQ7I9FREyJu7NhbcYvvniuOntGkpXMl1JSS+CpvfM0T5hl3YyBcpQKy71Q8sxzY3T6TPhnTOlTSBTMGfaYJs/+ILqM0bDqNF0bqCtJ0Uv6XZ7zvCVKw/P5GyzngMWnaW9LswDvkw41dxvM9a0KgJsjxTKfnH9/Gm/NxuGEN7yVAv4pg2Z+maQLFgSjZjyTgwjitz4+1wf53M8sIF76WH480uOfmCEVn5UwlElyNMgzM4aK7xPmC/NUfZPeKeMKLPdEkivz2EqD2zcd39nY9IHRPDG4b73og7f4Q+DOOdNZfPfBSXgK8cTfYrpGCEU61fnPYrAhUHT+EoJM0S9VVWGcw0x2YYhTpLSdVACMrJAoUjtUuLiq+PTTLZfbmlefXnL98pLDJIaRaXRSqyjMER1KUeSfFwQfyC0inZMwuxm4h/xDFBYZZ8prLQ1SC2PWYs4LtJTPU0s6LQ0VSUEIkEItfQixE8nsvSy9CvOGS2a2+DMErB3phwO7+/d89Ztfst5ecHV9xeef/9fc39+yuVjz8HDP6y9+x+svf4u1lsvtJublTwzjxGQdu0PPOE1MVvLV53cBKcDHPK/xVbQxJANTMqqJYUnAV2KKUgh4RGnD5Bx103J5/YyqbjG6yvVnZqGgHm2Gx1FOIgwmK3nF+92e0+EeP450OnDYbPjo0+/x/NWRcbQ0zQptWjHmuMDYT7x//8DxZLm46LjYrooMbiLjjeQRAWmIQiMptHaaJMzcSDHHuq5pm4ZaVXTUeOcZT0dO45HdMPK73Z6QuqkoxWqz5tWnH9F2LZuuY9211MZw0XU0VcWz6ytePHsmnoymiR7Rx4J/tzvw5u177vcHbncPnNzIpr3g+tVzKWTcaFaHDX4amfqjeNqsZ2cnNt2KZ9cvqE3FeDwx9qf4/QmCYy7qmOg4MFPjYzAwfzbTewYDi12jcve0oFh4sNLVIe5TEagpAjHke8o0FCVJQwnW0k+J4xXSUoVRQIyMdWXE2KZULG4dMvhOtMZCeU97dAkSEw9MSvxibtJ7qCdAJkFq/8ToMq31XHCaGZTHl5ci2CGkvOT0sRhQG0nBmezE4ALeK5qmoa4MdvS8ee2YhombuxNXl4a6Uvzge2v6qeJ+qjk5eVetEsj5Bom0QFXzZ6H4UilNYE75leLEUkPG6NhNRIEPc6vxdAdr0ztHY46evUizojTzS62V1FmyjqmfGE8j0zTg3AkY0CkSDiE4RYyGQABmHaOrmioQtJa21nbEh8DJTrigGILDZkOClhqFQUFar4JGEvDMr5SUhMzDxQjdGYPRimAtAxrrA8fBMmnwYzSaAdSijOUIuzTNYd6JaQ+US1Qql0nWBpDaUB8uI/bPfpwbctPxSKk5+/2brim+/SON8g8/AnxgGJETBnJ0k48RMUElniNRSlVVYa2NrawTvxFekQOHQowc8QGXWqN7cYKsVg3f/+E1V9uaF68u6dYr6sZFLBQkisYIj0k1TRYYpxDMOfohY4KZ1mfunvhv+W+5TskQH2YmP+OsEodm/BWfEWZ+pHUkXK0W1y8M1NFoE6kpKxbJthS8RHGqAKfjicNhh6kaXn/xO7YXl7x6+TEff/I593d3/Owf/o7d/T3vX39FW3+Fc47n04Dzjn6cOA4jk3Ps9gPj5KIjyuWtKBAqOWpSmrx8V0aKp7mfpgmQguNVNWHshEdJCQIl0Q113XBxeSVt0JN8DOHMwVpg07xcpUwSg9Y4DlIb7HSPHU9USvH66orT4cj1i5dcTw6Ppl1tUWZCK8M0jPTHgfv7A+Po2awbtusmQrdSsQ4LXkWJoeK/yVr6vkdpxXF3oK4r/DCxbTuccfT9iePxyMM08bvjkRACdV1R14b1esMnn3xC13W0bUvbdDSV4XLV0lQVr14+46OXLzBGx5IFZwUXI+28e3/L3/79L9gdT9wfD5iuot2uuXh+BUjjCF03EoXkRYb1wXNz2LPu1nz04iV1VdPvD/SHE5qAzQbkmT/PtRuLfeTLpkdpKxT8L+6NUhVLim5ZF6fcb9nAE2vwpE7gSUdDCT5QTsWurQnexei8MPNV+dsyO0qScUH2qOh7Bu8kap7o3NFxjNmgkPQEZrmdO2SGgA8u7/u0p59Sb88NdKhodAniWJMImhglFmYHeCL7hKFyRFUylmmDaiRtbXQwjhPBe9pVTdMahj7w6386cH3Z8P2PNrSm4mKtefWiZbQVkzFYr2IaZ8g6cnru/C5Lvrh8t/S9HFobUnF4nOBSrUJRCiJkjDVHeacgkJT6lqLJlsbt1Nwm0ZzxFSFI1OHYjwynATdNiHl12Y0z0WXSBLRSVBGbVFWDR4P3TM5KR8wg9UYnoZBMj7ocE+l9OHvO8slz8I9EaLdGAggG75lCILjAcRQMNU6WKTabQcdOuOdRYCSMVI6j+C7M+y3rgSHR/3cDUX+4sek7GZb+MOPR73XNBwxN6TtZ1OWkLn+Wv0bVxnuphxQPYVQfGGyg6LQUN71iUctCaz2Hhob5O2FkQsA+WiEBnBViMabi2fMVz65arp6t2V6taO9HSfmyXlrYMzMS5+fuUEuPaWRKft5caaJzZEFSJgsmlons7OUfe4xnsRBIDLsU7o+V7hTOIZu88F4Xzyj/lUavvCbxd+cmpmngeNzx/s1X9Mc9n3z6CT/5yZ9yd3/HaRq5v7/FTyP97g7nLG6zJnjPsR84nAbGaZKiuAMwTEyW6FUvx+Ozop42pUoVcgXtEgAXlcQQ11rmcBQhrw9Y7+m6FavNVupvKY2k15CZ/5M7IQLqsuBO8oLZyXI89Rz2B5R3bGqNHSf2+wN932Odoq5bTAUmdo2yk+Nhd2SYPE1tuNquSSnP8yyfxSnEBQ4hphFaoXsdlWZTVVSmioK2xjvHtN8zHk/sdzvefvW1pPsFyYDeXG45Bke3XtFWFU1d0xrD9Ur+ts6xWq1o6pqmrmeBlQRYDBM/nXpev37H/eHA/nRiDJZtpdlebdGVweOpmgo7jfTHCm8t427POE20WtNsL2ibFhc0TJ7AgJ8c+KTonNXwCIk9h8f7YTFZj39PYiLTUZxzXxhisn4eGUouLFncMe3ZOe20eFqhHJVfSoqWikWcEz0rSCHvsZBGEqtKRYBPWX8JQgRFWTyGUHw2v+UHmXkyOOWFFDAgwFFl3qQUUm/Ai1leB535wblSrrSSovsKBqXovXRSa+saHQy7ceJ+b1E49oeRw3HAmJZXLzv6qeL0vuJ4VIRsXPzA4L9B5CyOrEDGrlkxVSDVdNFawpCVSuuS0ophCQ4jDYTwSFFI/F5+n1NRbGwX7OyIDyNgMQs4sXwNHWUWQfL/vVOSwuYFsI5WjO0TXoqj6kS3Mb4oypelPJ4jj2b7wjwGAetSK0oHxRBT/FwIDNZhQ2z64GJXvmRkP2v1HSfsyWWaDQfp5JmfJcXijxcd9PscS4Uo/Z49zOWZ32J0Kq/9w440Ob83+vrg3Qru9cHtMrOmObIp6EQqMb3A6CLdYTb2EGaHXbqRDwEVMVSIxt2mrfjooyuuLxsuLtc0bY2pDSGkVLxZwX2MOdRirCVPXSpNcghPSgaTJe9fRiHHd45jV9HhoOZNshjHYsZCMpCQ+UZSZpV6/B7JKSCGqBgVX2CaNNvDMLDf72nae+7ev8dNlh/+9M/5/Ec/5ub9e/aHE7eb9+AmXL8XXuZWhODZ9QP16cQwWSYHqIlpmo3lM+IO+f29ntOtSp6WnK7JYScF4jXGeVCpXmlNQNN1Hev1Rgo3ey3F2zJAeIrLQfHyswzyqaHKyPF4ZDjt6eqa29tbnHMcTz3WSYxs3axASwMYO06M1cjxMOC9oqtNjO7JrzkvGzl5OZbzKpzM8Z0lakgxnE4MxwZ8oKtbvHb0hwPD6cRht+PN118zTRNN18YyBFumEOhWK7SS1OamMjzbrGjrGghcXWyp65oqyvJS8U8z9bDb88tf/47DqecYLLo21F3L+uICFKz7Qdqre4edBvCecRiwfU/VtLTrDV3bMfYT1h1Q3uPdJDJAK1Kb1uw4KsCUKhT5pEPkgaZRhvmaZDiI4Do6qjOVZYNDGXGU6F+MKrJCSYYkk2ySY8nYW/Iol0sjzPLHI/boqjJUlUQ1BTcR7T9Rd5wdhamxR0SOs96TeMJiv84Gkse8/QncmXQ+DSpI1kaOWA8en0oRaE2QQocLDKWI1ypDQOOA3okTrG2kS+QwOh6+HrBDwI0TtXasWs31ZU0/VdwNmpgJXw7rA2r6B+RNcW4ZieZShFGYa23N+HOW9SnCPqXoAhikmHaa1/yoxCcTX0p6svNM48Q0TNLpdLmjF+8l+10iwpNjVmo3gQ8WG9PivHfoEHAqEM6MXyla75tkeDb2lH8jtdnq2CFvUhKM4gkM1mKRQJTkIJwj11NYwXLCM49OD3hEdkK7SVcPwaPKmnnfcPzBxqZ86+/wEFX+fHS6Wn5/9vv55P9hwPBMAeKpeYyEX4DSvLiFFVE2uUj6xDCysugc0zTivefh4Z5T30sHj0kIXkfrYyDVVYpAnSAWwvgMXYOqoOtqNpua9bpCEehPI9MYrevaoIKO3QXUvAzFpvMRMCULdzZjhHnMcqriHMgRMh+f7+dLz3UJgGdGDws5DmehsMsw1gKosWSqpSqRvsvvdkYTAkrFUn86SuTMu6+/YNW1jHaiq2vU1RX9x58RrKXvT7x/+4a+P2G0oTYaFQybrqE2GqO0tFj1nmlyuOTlSHNHSktaAvTcJlWX8xINgc4SgsbaCT0ZRq3pYy2EtlvNxeHmjVUoq/O7likrCaSlgprpJ0pJbYq2ZbVes91u6QfHoT8xWUdQAaMC4zhwf3tDVVeYMKL8hKkkjN4Y6YxiqiSgycIbJZ7n9brj8nLLxcWG7WaDC0FqoFjPcOo53O+YxpHbd2/Y3d8znE7c39/irEU3DbqqxJtoR/SU6lEhBqHdDh0Cw9Cz3+3Ybjb86Eff5/LiQkJGjcF5z8PuwDhOvH77ni9ev+U4DDgV6DYrmq6VQo4ZwMfVMrGDizaS7680qqowdcPF9TXbzQXTcGT3LjCNPSFIEdUUnrzkQGmz8OjT/HsBcFUGMEX6T6L7ZEwqhFgCaIkNJZ6UFPxEDz7W8wpeimIv1SQW987Pju/jnMfq6C2Kxg8dQuYfipkuFx7zBJJYev0/IKUKrDgrBXkOyt/V8ro8yyEpV3PaJxRhy2FeZyFWTdBS7inpf1ppvIfbu5HXa03Tai5Wa5pa0d5ZCQWnIuhYJDyv7TyO8vVmz1Yx6BBmKlGJf2mUBmstx8MR6VY54uyEqqKiROpEMs8z6d3OaamcoVBEQChF8IFpGBn7AWcts1duMcT4WlHZ9oGgBHIbpai1xuWINsUQAqP30vFPBaktGAtiJlmW4FhKJy9HOg8vS1GJniVANMAZBDSFGCmVVZIYZZxoI69LlJ1ZaVzQzSwTs/c3HrmeByVP/5c5iphREtj/JkxTejAXCKm8JCzPXZ7wTcixPErgX4zt8Qvkc+Y7l7ObDIwzlzvHfUse4jMfUIC1I3awVGONV4GqaaT9dTQ+aG0y9pqBevlq8ryq1hgdWHU1Va3QRvDLOFrslKKnTCzsrc/2WKIZxHgV91RSSjI9hfLF5miVZGw6n7vs8Mtdd8tpVcU9z/d/sSzz3Z5gRkuaT9cmrFJ69BeGBjVjKO8tD/c32GlgvVmjdaAfRi63W5q6QtkRRWDsT9y9f8swnNBa01SShr7pJHK676OC6wOT9TEVjYLMdE4rWe4/FVPV4kJErOWjQUgHzzQNmLFCK+hPR4JLNbjaKKtiXZICQ+a75zkqZe1cKN27VAdU03Ytq9WKVdfRdR2TdVg3MY5TpvHhdOT2/VvquiaMl3h7QVUZ6fRrDJWe68ul4SQMZbTm4mLNi+dXBCx3u5ZAkK7VQTH0Pbu7e6Zp5Pb2PYf9jr7vOex34lDWYCqFd5ZxGlFGGuUY7ZjGwPHhTspEuAk7DWzWG77//c/ZbjeZHqx10g2vH/j6zTt2+wO9nWBV01QtVSORUHPRb7nOVIbgFX6AyUmd07pd0XZrLq4DVdVih4H+/lYiQ4JHLeoZzZhIjhgpvVwt2VVh5jDZoBDC2X6ItJ40h1R/LdN9+XPGDuhYlw1JIcXEkaQ9miMM1YyFMlWFKMcUPkgnQ4LCmCryzmQYKaIKmQ1KPsquRYRSmGdh3hvpX5IdnH1/PglhSfbZmCXz6HwQA0HBN0p5mDABSkvQRQjZGOe84Klp8tzvRt7f9oyTYruB2gb2k8UNI2hNqIouhfnuKuPbYiIfy5lMHyqzOBVTAKZR6imFIIEG0kVTMh6IvCJhqHleilWb4Wf+O3/o53tM48Q4DPIM5ZBJC4kqMy4MhDnKXspVYZREOU1axW7lYlTGOYmkFSKVCF4ttZpZ0HbJoM/mKmMoMv2oELtcKuEBUvvUx1RXjwtz1FuixwyjokyLuyM/q8SIiU7Ss+eqZktZ9U3Hf1oa3ROHOvsJhbDMOss8WU/BrA9Dr6fP/bbXTLD0/MzH14ZERksgkCY5WoiJBZlFt3Gkct7WjhyPe4IXLwFKU5mayjQYo2m6VgpS1hV13TJrj/HZQdLo2spQGc2zZytevVpzta3BO+5vDxz3A2AwVYP2BhU72aWQPGEmfqEkCsCJQjURZ365EJmQyhb9cn7EaR6LchYpYUqZR0phujbkq+fZL2XLfF2c6YIQyoiCzFrzuwQZSwJLMe2mMjVN2xK84/37r9FKMZ52fP2rX3Dx7Bk//PO/YrX9mJfXL/nxj/+M9+/f8T/9v/9H+revqWrPOkz4WtNUYsDYHU4Yo5msZXc4MY4u1g9IzEBHsBtyRwkdU1CUkugQ4StuNtCFOXrM2wk7DhEUt1xdX1NXsZZENdcDyHs85sLnCIfYuUDqdwXsNDKNUqB+tBMBRbu+YH1xxYsXr/j040+5vd/z5v2efhiotaI2ilPf8/bNV3jvuHn2nNfXz1mtVnz0ySes1ms2m5bNdiVRDyZ2forrUlUVz59fs96s2Z1OfPzqI0ZraXUFveX+3Q2/+MXPOB4PvP36Kx5ub8TbbIU2L589Y3N5yTT1HE97bJiw7QpHy2l/5Otf/4b+cGTVtmy6lo8+esX/9b//7/jB977HZr3mYrvBTpbf/PYrbm7u+afffcHf/uznOODys4949vFLNhcbjBHPnvdSvDSg0U0L3hGqE1YpvDGYtqVZr3lx/YLry2sebm/5+d9qDg/3uP4B1+9QKmB04Lya9/JPFZl34uMzI/5mhiwgSFJ/ix0UaWo2FqmiAKecJSlvDu8UQTlwpUeOSJNnj8sgB4bJYn2gqQ1NLMwemEPAkzEhtbJPHqMk1CGBqBCf5/Me13qO3JnD5+fxK6XEziI3iZ8vEUjCAiHAZD0q8jdTRR6kFalauIq1e8WAKMjROlEaAxJF4yfFr35z4P3diZ/+WPFffv+aycGX7wYqN6DoINQyAyGGYQfFHHe0HJvKP0spc6ZAmQqC53QacW/eMZwGTp/t2axXKDRV1Qmoc6lxbaIBRep4BWUKQlrG2QObrnDWcdzvxNg7nFBBgFKsjDUr04XSn4KSQjQ0mcrgvOOkNE4Feu+ZrMUYqIyiUuI8aZtGCoOrSAPBZ6/XzOZnQZFCxiUSN8oiL7a2Rms2dYMLnmEC6xUOiw2yrk2MdNF6hu7iFU50WHoLRXaF4r9khhVeTU7d+t/q+C6GpkffRtzxxNkLbJVPzj8/xHvK74TWynueX7V8dJrZ4llJRiPgVrzkC6w/4xDvY2den9fteNxz2B0hKPRriSCp24ambaXrVtthqloiaJta+EA0FsVAOIxWXF1UrDvDs2cNXWeoG8U0Tex2jlM/goqd6UwFpoqR7HNqustFrmXgLsz0mmpglLOezUeBjIOW+p58tow8j5FGqjRMzbIiFDygjEdUINGReQ3kLB35RHKAngGr/Hu5J4jzXtcVbddip5Evf/tLjNHcvX/N7/7pZ1xdP+dP/uI/Y7294O3HH/P2+z/i7uYdf/M//T859AOVqdh2osQ2VYV1nt3xiDEBax3H48AYLCEWxg0hKaAq8tWowChpeoACrUR5tKn2nA+EcMopUcE57NBLN+Gm4eLikroWXJqMiPNz0l4SWaaNRHA6n+7rcDZ27bQWF9M2r66uePbsGdfPrrl+dsnkJNVtfzjiuobQ1hwPjrdffkEIgecvX/L85Qu61YpXH39Mt1qxWdVs122UwdGoEVeiris+++Qlq3VH1xke9g9Y62lNQxU0727v+bu/+1uOxz33t+85HnZ5u2ptQD+naQ2T7TmcdoxukJpNVc1xf+B3v/gnTocjH714wccvX/LxR6/47//7/wvf/97n1FVFXVUcDif+w3/8GV9+/ZbX72/48u07glE8u/iYzfWWbrPC1HWumSeRPFr0F+85Hg4MdsQpxXp7zeXlNdfPP0ah2N3d8eu/+3vG6YHgevAjEDCpnnBhMArqMX+KuvxcYDptsZCYoDpjbSpHums9pwolY3KhMxfbQTr1eO/xdUApi1OKkLGOpJGpaIxd7PmQ5LFislIj0mhNU7dRvtis0+n4qt6Kc1hw4dyBD2beMutI8eVyt9+5lIdgglk3LWcvbi1SndyE9ZyXvSdjTxhqjsQT+1OYnUXKQNWK0cJJ7dfJKcYpcDg6fvvlgXEaefY88Okna0areL87YfsB6pbKbCIum6O18pFtK4FzKVcags6vUyiOhyNvX79le9nz6qNPYLuBYObGJMHl61TudFzU6SvpibN58pLROY2O037P8WEnDmc1Ca5dWKiIcxvLvRAgpibXWjoWeu9Ex1CKyXmctVRK0yoNGmpj6KoKFfRCT583RpqTAjMnPJ4aKoQgUb5B7tc2jazVNEktW6+ZgkYHTaWkg6ZBpf5AS1+kCvN0RxpMRlFNKuGQym0kHPdHTqP7ThFFC0timpz0swQ0Z4T3gWu/89jK2zw9sEe3LQ2H59d8WCmMmzBajs8NkCFGsHgXsN7iA7R1Cw14lzqXCLCSIoNLI1YoxqlzmJ3c3PmAtR7nhBOV1vo53PJs/EnJpYw8OFOGouV4SeDx/YrZeRTOnd96OZ/ffBRKpIr3foIUzlUtdX792dnJ+BKcx04jAMfDDhMCpq4I3mGUous6lKkYxpFutaZpV1g8yo14JXVtnPciiGsRLJXRWF0UJCzmL3kKHu+NWelJkyNGSumq4LXGKSv1jgLYaZLIJwxViNEE8A37QBVrGukxeohJ10ULg451LySVU4wEOlq5p2nidDriraWqGrSumCbL5uJSSEAHTC0CVCK+VNFWWGoGBGC16ths1tSTpRIXsoSkHw4cDnv2+x273QMKhUHWytpJin86yzSOswFNK/qhZ7ffc9zv6U8Vx9jadLfbczydxIuIRFD0/cD+cGR/OLI7nAhacamk4Lipqmw4mYXybLjLwp3Zs9uuVmwuLrGTpenWDMNEmHpms0qZt61mYZDXpohqmYllsX9KA00iq7Ru59yxpKMP0Vk2QMU1fhw9eH7dcrMm5coHSWNKCsiMyAolJQGRzFuKWy48HMt9cT50mX9V7PXFay3mqVSiJQpH+GNkUxlvll40hYoKR4o4yJ8SApxOjqAc4+iojKSw1doh/RdSqHsp8J+Yw8U8P1bM4+RmfqfQEp4dpFmBtRPOSZh2WqbSOJkVx8XtPsBow/IcN8Xi/d5R0uzZ3ZbrGH9PXvhkbASFA2wcpCGKjdSuN69NIoMoOQpjSaLCZWpSWPBVTUw79hCLeBHis1Uxv+fUPd//KVqf56SM6P3Qef+ch1JP0DpPr+n5m8zUX5xw9u0yd+HJE7/DUT65vPbxfH1o32Y0f7bps1E0pFPCfC5yuvOOaRxEqQpSt6fzUo/SGzEipIg4ZWK9Cy38oDRkCMYSUCwpJEoaWro59Swid5YpBfPYlCrWJvE3ZlrK0Ugl7grpBk/jytnxQH5nmfJ53kvT8fmSzDst6wLxi7NrymX5Rjwd8WPcywTPOPai1NUPGKCpGzHqxKjni8srpnGkXa1pmg7vBpz1wkNrSZmqa0NdVwJDjEI7Nde8JCmF52Ms5EWsRYVKJQlivUqClEFwFqUVdhpRIHgipswoE4p5Wu52lWSlIirfCTeV/4gKlV6kciqlcoqftQprBLsdjwe8dTRtS9U0TJNlvdnifUDTUhvmCAa1xIZt27DddGzWEkE1WScdQ32Q0ggRQx0Pew77XSzNUUtkt7Wxrp5ENklAaIi46MTDbsdht5ci4UBVVxwOUlaBtqWuKpz37A9H7u4eOBxP0lgF2WdVXaOr6EQNycmsov4R8vOsk9pcpqqpa+kMVpkaO07UTYeppe6Nd2HWA895Xsj/e/xx8cfSCEFmqmX0dcIv5zrSkuwLDUPNzTFCNFJqrbMhaabPx0eSXxJwHXLHu3mNVX432eozP/lQRMjMe8jyammASZ+rcsssvpO9E4rvC7kbxDEoWfNxVCEsDH4ZL2kDXhFwef5DkACd08my28P2wtHUsrZGO6QQQr2co/jbIhpLFeOKTPscDwprDBk7hCCR+OM4Mg2j6FPeodRs0ErGn2S4fjS/JKxYoof5N1GnfNznoqfMlhnmhVngwxn3CHaKqdFJvycV1V9GBQk/0pn1ZHz9aNXKvx6/VBqeZu58GKK+I1zzHJ/OfPFDCCFjridBx7ls/8BNiuOPHtk0P3wmrOVGLcHtEpA+eTzaZd98fNPkfZerZ8AxhzWm9CQXPaFSP0QRNPFpAn6sswzDgLWOcbTShaxpCI0UDRTHREBXNVXVorSOzDm269Xi3dmuW7qm5u3bnp//zHGxqfnBn7zk46bDeQkRVlqhg5bc3OjNMQn4hwLEk2oPJeFegp1E2MsimMIYHzPZOXUrefyKmVv8PXurlp/Os5z5TOI1C3QWBUBmho9wK4qoFMW24ZWp8CoWNY7v5f3E/v49//Af/mfqtuXy+Suunr+ia2v+9X/5X9MPA1/85pf85p9+xjgOHHcPuHGkbRsu1QWT9WAM7TgxDBPH0yBA1c2ezWRwwsdCaSpZfeNrCNqdC9VFhOiDpIgZ53i4v2OyoxS8vLqmaVuUntvWpogqHSMOQpBceVRgmoYIrA3dagU4tDE8POwIPvBwf89+98DxsGcYTpKWNvTYYSQEi7cDEnFx4s3rr6iqmt/+5tdUTU23almtW7qu49NPPmG72bLqWrbrtaSyVYaubfns04/53/8bw2kYefPuhof9HjuM9Kcjp+MBO45SVBIIseXq8XjAKzidjkx2xNQ1VSUdF6d+lDkZRlxlsFXF+5v3/M3f/i2v37zhz/70J1xs/0q8pqeR/b5nGB1BV6hK2lu3XUfTNtS1CL3VSupLjOPA8Whxo+O0O7J7f8+F6Wi1ZtM0bFcNF9sWo57xoz/7S47HEzdf/BM3X0BwI356IPgpA3Tifit2yWNd7QMMKfOqQtAmz0FWLs6A0mOAEvdHBJSKaqEkzamv895OhJjTMEOAGK1krSVoJYbaaKzxqTW18088f37FrDvGZylVhJ8rTVVFFSBHQLHgN0pJmC8xMtBUKt7D5Xp0NsRoQUB7hY8dH4MqhH3cK23T4J1jmCacgqDEsEQI3N5PqL3j41c9t/dHtKnYrms+e2k4jp7bg8UHk9vpiqdzOeePZ+BDkkx4VEAil8Zh4nTqubu9QenA1XWgW12CUhJtE0KMCBMfuA9ewrPV3JK9pIWFcyFIzbjxdGI4HHHjGFPzZmN0CWVU9jwWh4teTxSdqbBKY2sXaSagdFikH5XArTRePTlLBe0kg6FLkSBanqmUpgoCcp3zBG3iNpNoGJSWND6FtGpW0ahYVPsuDXbpb2ttlGFhVvL/Nz6eim5KPCGB4nx8E1D6/4N3yUdkBoEQPcHCQ5y1YtQuPLLzNYHgHXYaOfUn2QdWDMt2rLFDA0phRdTGrlstRhvaVhRc4ZtSJ9MPK/pVixpqNmrDZlXxyfeueP5qg1a2MLAkJ8dcE690ziXlOHf0Od9z8X1DUuwyIyzmojjODfClvpU/T4rKGQ0v8FNSQpmxUciaUvqsUN4KQ2T6TPjJHJmdDMfaSGoywTGNB+7ef81//Pf/d9puxfb6JdtnL3jx/Jr//L/6t5xOJ7783a/44le/YJpGpuMR7Se6dsX1VY11HmX29P3INE30pyHOZYywLGSlz0g0OVFiyqtW0bAhBdyttWgt5SpO1ZHRTvjg6Yc+YqjnNE0X6UFu5FWKyTYYUxNCYOh7xnHA2om2lewDN3SEiPNvbm9jSYwdp9OJ00mKdB8PB8YedjrgrWM89QTnOfZHXr/5Gm0q2n/4B0xVcbFdc3mxYdW1fPLxJ2w28vt6vUIpxXq9YrWWaL2mW3HqB778+jV3d/f0w0miY7x0yfPBElyUycFwOOxBBarjkVPfo6sqt1Af+oH+eMRZy/F44Fa2Bn/z//1b3t6840ff/wF//tOfoBT0w8j+cGJ0nqrrME3Nartmvd1Q1San3qxXK4L3jEPPYXcv6UwP0h5+ejbQ1YbtqqFZdVRtR90Yxv7POe1P3L35DbevfwPBosKION31gj+fo5qlg04VhE5eVzJeECOnlAFITvzZ4HOOoXws0pMKNKNU7jKoI1/w3qMCkk5ejKd0J+aIYyepogSNM0aM3HmHhszvEvYp+cg8tNIYPX+noshPNYAD4F1hrI37Phm4dMSPQQWqVBPWSU1fif4hYrnZUJ+MueVhKiMZI84xOYsTLx9VJU7m1+96Hg6Bpm358Q9HKlVxuaroLzU2OEZv8ZglNn50PIFlzz5NlCE1b8XgezxYtDY8PNxT1zXd2rPdtmRjkw+5LlI5n2IImjNHSmyslMyLQ2pejqcT4+mAs0KvUTJkw9AM0s/kdFx5jUQ4dVWF1VrwiRYniDJqmcKtUtDA42la3ntOb1ekmsBCVwqJ6q2RPeuqCqUlnc66RCYzjaUoc61DxlepelmWEYkXB8GmwcVigTFVebYrfPvxRzc2lXM1A6ly+MmAED9LoOqbvC/fYHB6Km/1nFi/CaOVZ5WbPo0f5tBnHzu9pYJusyVSrnExd3qaJvrjIMWTp4rKVtLRZxqka5yuULpBa8NqtaJuaiG8KChwa/yq5ZaR3yjHdt1y+fyKF68MzkVjT+reFHTsUlQoRiHVZCkZW8nQS4NT/DvP41PzLHOztPYvo6mWM720UJeAKhNvuUFz7/flTptpp3hCoYSjlKRgpHa0OEKs3ST1ayaO+4H3798QgB/+6V+y3m5puzV/+hd/TdU0mLri7c1b1PFAfzwCI1VdsakbrPd4paiGEWV6RmvF4BgcqaCIMB8VUzSkbk4apFKp4PHMyF1U3APk+l7eO/rhRNt2NF0bPWkKdMUsqOR5JtrFpV2uAHiFdLFq2xalPEZrDocDwXv2+z3H44HT6cg4Doxjz+7hgcNuh1HQVKK0HQ47SQFFoWIBzKqpqdua7faCv/qrv+LF8xdcXV0QngfquubqYkvT1Hz06gXXL15yPPUM/+t/5P7+ATdNAub6HmenKABIGRb0px4XAr0xjGMfC+slI2HADlbCSiuDMwZF4Oe/+AWv37xhs1nzl3/+Z1jn6PuR42lgnEQpVcZQ1Q11Uy8KYnZdR/JiHvwBP3mGQ8/xbse0vaJRmlVdsW5rNmsxUnmzYRgsYRo43NxipwOT3cl9oiEggfrZ2zErAd+JB5e8qwBJicaf4otPpf7oWJ8IBVpXGdyklKVk7CyPlK6ZUlqcVzgvvhejEm9l5nv+w8am/DrCFOe3D4XBKTZd8PjMR0I8PcabzQpGCBBk3SEKRBTYaIzxHu91TlmdIw1kDBLqX+OUplcVHjGSaDTOO/Z7y+gsN3cDD/sTbdOwbjXVM8P7h8DtzkskRGVkL0ZB/FiaLEFG/igUf0NO/3B2YposYz+y292jjKdpN/jgMehYKDm98wy6ffCPCume/555vHNM/cB46rGxXkbIQOkxPw0hMfKl0cqgaEyFVj7OpSjfitihMaUpxFd9ki7ODSmFcaUMDU9gz8ToCmMMQSmRh1HZzOMPIab0Sh0s+dhnp8pTzyoLqYeSJpNx91/siAYE1GNS4mwOP4SNzgFpOP/gjzXO3/+eUXWMV2eQtEi9zbWaimeltBVrJ4ahxzsnMsAF/GQIU4UPnt1pYLQWUzVUlaTWbdZrmqbJ0anGGJTbMq061NiwCpbtpuHiesOLjyqpd1kYwXNb+YLfSsH+YnyloSmXC1j+zNMG55nWj+cpOxe+YR5Lw9TZlyqfM39/xnLmywv4vRA3xOjPiB90rPtXaR07SDrs1DMOR27ef41Smp/+1b/mxauXrLoLrl9+LImpxvDmzWv86YQeBnCWpmmoWun4a71Cm4H+1DONNhaODnlsWW8LUY1XhbNTS3qgL/a3cxIZ6kOgHwaMtUzTxPF0pG076mYVi+Cm9RXVL9VIAeEX0zTQ9ydQgmeMMUxNI1E4PvBw/wA+cNgfGPpBDDh9T386EcJE8FYMU9NEcJ7RTozTiPOBaZLxXlxsubzYcnFxwV/95cjz5y+4uNzy7LlEhj+7uqDrGrrVmsur5+wPB27v7vi6PzEOQ6FzeEJwBGTutBcHYUAM/4fDAZU7lYpiaHtJATudxGjlg+Mff/lLbu5uWXUdf/bTnwCKYZw49gMWqZFWdw1d19GtOpn/aDhp21bmzjnG08jQ95wOJ06HE9M40daadVvRbDqazTqWtugYTiN+OrF79wbvB3CSTqeisUfW44kNkz9bOrdnnriUh9kZo0qeWeoT8/XBiTzUsdmFIqVXq9i4IynXsnlm+XEuPyO/cCmaJuC9zul8wgUT3/Bn8unxK6cRLr+beZWOlicbPM55cnQlCUOJ/pEd9SbiuIihPHPnT8Ffc020UiaCOLCbRuGmiVFpZCok/TjguLkbUXcTH7/qCc5ijGLbKsYNHEZHf5Kun6YwKj4pV8Sqn7FemtdzfTRF7Ix2ZLADxhgO+wNt20rTgLUTfuZTh7kzvrxQSEvDSzI4pXkQvWoae8ahx7tpcc4jBJjGWvBiHd/LKEVTVWjvsd7hCGgjgRSqcHAInZzj+oSJz7BCKHXM+acKEs1VazHa24ihrElFhAtorkBFs5sERCQMdT4CMo35WNw+KrbfbLN54vjOxqbsKUxwYrYoPRrch69fEtxTXr3zIwvRbzjvKc+gyr8t7vKB68+f+fh+TylZ2cwU5sDnpPS0dQ2m4vpizcvrLT547g87+nHEWhgnUV68t9hJCvNKXQ/HOGhUsLQ6MAxr6gpC0FSmyp1ZliGa5TzMCvDSsCTMNXnoyjdUKnwAHKkMbOQeyZKaoU4EBo/n+BFLCU9D+qysq/PPBMSVFJNQSbbmnikNKCWKWu4Ik5RXef/Tfsf7r7+kXW0AQ9OtaKqKzz77PsfDHm8d2jxgA0xBUflAMGs666h2eyYrXrUQTgQvtZFSiauSVYZizKkzwjzeWHMgeIJzEuIYQiwgHjjsdjhrWa23bOpGwpnbmhT5obQA4WkamEYx4qRQUgHz0jVDrPOGw2HH3e0N+9OQjT7WjgzDiUprjKpBz8J0so7D4R5rHTpGGm22Wzarjoe7O16+eI4dB5q64Xg80rWtFNyuGvphyJ7Cruv4/LPP6PsT99sNh/0DwzCy3+1xzqNNNFwqaXMsoCa+nwsSIu6DhG97z2gMx+MBrRV3d3e8efuWEDTbTcenH79kxPH6/hZMrGVVAnWlqKqKtu2YximDbq00lTbUdc16tWKzXlFVVawRmOZbBLzSFVpVixVOFn9Y8rGQaSKdXtD+cuORgYViFiqlACk8f+X7LNhZFHSqfHb2WujHfKsQVvOQ5J4pVcHrGHr7BN9LtLi86dnPfOcifDcbReaT0vgkrFt+d/Omysa3pXEgj+LJ55acRinpphcC+EmiT50H6xTOK44nz7ubgfXK03YN6xXs+4DWLna2kloM82vmxUJwXSFjSkaZBDvnc62l3gaKvh8xhyN9f8LaMc5DsqeEDAA1sxdp7uTzGKAnp4L3EsXjJhsjgc4iURdA7AkgH/muUUgrXyTiyCSDVLEOAnIKPv7oCGfPCMX+SAk15G2VEl01UosneeoVsl/V4r+nj0d7BRZ76anP/uWOuOejlv2UsywdWZ6Es0gsNe9z+TPtgwTaF3raH3CUkuwPmx+VmFriHyF59UN+j4UBJ0SDU/xPKcW669AoLi46ri83OO+o7+459oMU5Y3ywdsJixfDZDDgNf1JE5yjNWCtik66GLWQeckSkSb8ludtBh25nqWPiqNfLsDZu2eqnz8rlN/EMz5kcJS5KeXMB046u3z5+4yAs0EZJXgtJANCYlVzdBcRTwQCVW2Kh8j67Hd3vPnyt1RNx+rqFaZq6NqOTz/9Pqf+xM3bltPphK4adN3hvKfbHBjGifu7W7wTR1kYRiZrFxh6dpTOfD2kaIyEoQjkWjfe450FJHJ8mia89xwPO2nX3nas1mvhG0XUinOTRH8OA0Pfo42iqnU0iMZuntaJU2CcOB4OPNw/cDwehQ8ZI4604YQCqmh4d84xDNLZ+OF+zzRN7B9WPGw2bLcbNqsVu4d7nj1/xjj2NE1N35/ouhbrYLKKY3/CO4dWisuLLT/84Q8Zx553b1c8PNwyjhOHwwnvfXwXh0qGW61yhJp3HmcnKXaupE7SMA48PNyDCtze3nJ7d8c4Wp4/v+JH0+fcHPa8vrvPvNZoU6SoBuqqhgB9lXCQoq5qVu2Kdduxahq6thHHl5O1k9pCBpQhqFjdNsqMkmKXFJ4MKBFbFXtgVr5nw0uuUZs6pGZ5pxZ3n7d26fCY6W/x/AJHaaUJasZB2bxT7ks17zlRymWfK/U4GjKN7TzKcR7CUpeax5fof8mnSgyVsGEobqy0Rvk58inNRYi/hJDGM+/DxRFlsKkr/GRFzwg+mkY0+6Pj9v5EU1u02XCxNbgDqKM4mIMRiT6vQdrcaWnSy8cx5KHHdUjvnuFxXJOAFMw/7GnaNc5bNEbwuw8Iv/eAXqxB2b05R4/lcYj+4Z3D2ynrTCn6aLEyj3Rv+TDZnQRDKSqlQM/YJdNLgWnF3xc9Z+obJG8IZ5RRjAGhTZ3mSoms0wlDxb/T2MrXOJcj509R8ySRBOdjKv3m4z8hsilJ1G8HI7NuMyOgZAz4rgan3+dYsrDfZzrOjhC3d/bKPQ4ZC2GODAixOKrRmqvNisYYfvzDT/iLn34f6y2/+eprHvY7bu/2vHlzJ6l54wmHeHCrmOO+Gw7sNYThOVfVFcFrgq9p2462cVTRe4dLDLgEzjMxp4kPITY6D0GidUJKWxEGabJlGanJk25wxhR1ThucmZ14t0OeCxDD1SP8rGY6KHlMOfblOsf87sSHEm/VSopKysTjCZhYl6gsZOd8lYFUbSSE8f1Xv+X1F79htd7y+Q//lM32iu2Ll/w3/+1/x26349/9z/+ON1+/ZrSeYRLL/8uqQWnDzc0bTPsbhv7Ezbu3HPxODHfRQ5eCA2IjpTjuGLIavOS1+8RQZZ2sndApfclJUcq+P1JVFR9/+jnbiy11XbHdbKibhnEcGfqBcbIcDzv2u92iE984jhLxpDwoB37iqy9+x2bV4jCMVHgvHfvub9/T1DXm6oKqqsQD6QK73Z6f/cM/cH9/T4qo6FYrfv2Ln3N5ecn3vv8DfvrTP6VtO9bbS5q2ZbPdcPXsGc457u7vGIYjz59f86Mf/7cAvH8j3ejevXvHz372DxyOR47jQD8O4B2TlTpbdS1FK73zDMMg3m2tGbVmmkaq2rDb7/j5Ly7ZbjZcXlzy05/8hOfXz9j8w5r3uwcmH2hi6twstGC9XrNarfHWE7zGO6h0Rde0XK43fPLyJR999ArTrXA+4L1CgFJA6wZTdQQ3kTxx53vkTPubUyCAoPXy9DQoUrOP2Vh9fuJ5+Hc29CT6KnSjfN8gezvRhRgYo8BOFySJWOw/kG5pIV6bwqtzRxbmXHSNXuT4e3yO9ptFbWGADYEQ5vobOZIlpYXFemneexw2yVwBUyoWdVVgvMa7udijQi2ywHJkWOTdWsXGDE3NcR84HXqsC/STYnKa1+8G/uPf33B10fCf/6uOj1+uGJ2jfjvigiag8SnCSvk81sAT/DaB4zNyKDV/rQxN1aEC3N7e87Df0bQXvPzogbpuMbpFq0qiJ4N4rXVlclTpOI4Lkaa1yvVExBjlmSZLf+o5HU/S+VGYbMFfZ2qb32GG94nClZZGFdZ7+mkUHgb4mB4pdS4iqAliRF9Gv50TZywiD3PkASAh5KmygBi5am0wIeBMFfezdGmqUBgMWuKa8ME9aRAt6eEpI1P+7smr/uWOpwxji++zvJ2VmcfnzDstBQf/JyKffNf/FINTWm8fYjcy7+bSgiEpPSHzBh8cAYneaGrDR1fPWLctn3/2ih//8DPGceRn//Qbbu7u2e+P3N7txFnXT1gCpjL4VtIq++MBQkWYXvLp81c0bUOgwlQmF5lPtXuS/hNCEPyT+FOe8VgINYjH3J3TmyJHMpT/z1+rOWV5/i5Q7sM8Y6HASWEZabCUMU+tyWxiCsX+ToavbADT8e/iPaqqpolRPUMvHViNaaWltlcoI+m8X/72l3z561+y3l7xg5/8NduLa55fXfPR/+n/zOnY84//+E/c3T3QrTesL65AwThNOOf47a9+wd/6fy9pXXe3uGPsKFV050uwNcQmF95JYXYfJIVaorAc2lsCHiaFsoppskyTpa5q3Ghp246PPv6Y66utvFvXoauK/tRz2B8Yx5Hdwx3H/Z66qenWq4ihJoZRymEcDwdUCLz+6jXdakM/WrTStE3L/d0N79+9p21qnj27oq4N48PAw/0du92eX/7iF+wfdlLIvq7YrFf89te/5Nn1FZ989hk/+pMf07Qdm8trmnZF26xYrS/ECNaPNMbw4nvf49/8m/8CCPzmV7/mzZs3vL95z8//8eecTifGqWeaBmT3DygUTdNQ1w3OWvr+iLMO52qCr3Bu5Ne/DXRvOy4utrz6+CM2qw1/9Rc/4X/3r/+av/mHf+R/+P/8L3ig0obGVIK3jdCOWRlc5xn7QYwHXrFdbTH1ipfXz3l5dcWLiwtOTnEaA35SBGqpHaNqAjUoFzl3DMNOaiQ5LkeMzSH9FfePaOdR39Axm0FwnuCGdKVQ0qwcK8pczaR35g6qEeMmvJDoMOEXnTrUhaXekwk1/p6a+EBM1yZgjMJoMXxI5FM0zyQHoJrvmR0KBc8t9Xs5LzYpYDaGaaVRVUqtJOobIZY6m+dBaaknlQw26UV9iI1w8fhY4uI8+lhrTdW1aFcxugP9IIWnB6/xQfPl24m//8V7tpuGzz6refWyRb/1fH0z4q1IaipzZmiKs7ywIaiCh31YfimtqUxDCHB7c8PheABVcX39HFPVBJ8itoRWxOgndbSkVMSU1yEZoKtKMJTgF4mUHAYxKHtn0SYioydq42UDXjGvCmkEgFJQVVjvOUZjqyLhJpNxrFYKKhXXxEcnYZqTdPOoJ4RiX0gIW55PjdCVRKjK830w2KaJeFsjrTDmZk/JULmQ+bNQjAZMwaJpnVQsp/P7YIzfK7JJoQoF47EALIlkGTYHofAO/7GOJEgfWzYWZxVjSJ/N5y/B3tN3COVviuy5Wty7uL9Siqau6aqai/WaZ9cXWOe43+/wwTH0E3Ul3loXRFfSSiySEFOtrOSNWgfOCaFLC1XxQGml8KoYnSrnfEkE5WvPWyXMtPWBCSi9x4t7Z8a4LNymFFERW942RAvTEkwvgWy6z1Pgi7OrREYlRB3yplOktJylEq61IniYhp7D8YSbLIeHe1SAixcvubi8BmVYrS9oVgeYHF47UJqm6TCm4ng60jQt3jmMqWIh24CO7cIT45q9BwJckydXxdaZszWbDHBTPQvvnCjyxmDthDGaujI0bUPbSleIYegheOw0MY0jpjKFlzJ5iEV5885Jfv1hD6aBZk0ICmcnxnFAim26rMh6L/fd7/c83N/H0HVPfzqxXrWcTke6bsWL5y9p245hctRtx+ScdCzxXtq5O0dd1zx/9lwi9nygqxuC92wvLkApnALrRVF03maAn4R/qpOGlzxxqxTDOICC/WHPzc0toGjqiqurLRfbNeuuY3AOo5Uw6zgXyQumtYpFw2O0hjaxGHxN17Z0TRvTMGcqzH6AMprvnB5Lei3+L4JJF+fMER45Ei/MHt1HyXFPMaRHDywEQ7k/wuOLHrHJrJgmVBPyOKQ+SdxPxZ7MnrN0XfH5uecmDWYBMiiFZeIdZONF0el2MQ/zvkrPKt/ubFLC/HlQMdc/zrcL4IKK7YoVwxh4eJjk2d5TV4GqkkKXRgVsTO9JAlyp1B0nrq1KRhoxupcyZmF0ivOYwuEhSJFwD+M4ME2jAJ+qjiiFbFDPXs0w135I812u6cz7Qqwh4cjh3d8qfmXW59NiqlrsNKcj4E9FJ8ublhi5BKvn3uJMSWcCIkWzJJZOHnIyaKW/ClnxaPzncuNpQFj+rZ74/J/zCOXPtG0L8P+U462cqvDUh09/8A1P5xvOPcN2T9z3Saj1jfgrLF48Uc9C7yDxfuGASoE2mq5rWK9WXF5seX59xTCOXF5sxHhhHYfqiIgIcQSq2G2QELATMdrF4qPyMStwiZYeU1IZ9RmKgSd8l6K0Hr1iovmzGXxs7EwK3eMOTTN+JPNEKD47Y+xLUpnfKCWh5bGoc0z2xF6IGMqruebJTKAzUx5OR4ZTj7OO0/6Buqpp1hdcXD6jqnvW21uGSbHeXrC9ugalmGKR3ffv3lE3DdU4xqgZaaueupFqZaIReik1waOCiynexZhAnLxKSaORaSR4zzCcRPZ7R1NLOn3d1Oiqiq3MY/2w2KRBm2XkQ1K+UqTTMAycjicm5zOeTFFMslaegME5Jw7Boeew37PbPQj+0ZqxX/HuYss4nKibmqtn1zRtx+igbgdWqwnvtUSmO4dS0tDm5YsXaKM5HU9Z1G+3X8v7nySiKzkZyn2UmsFYK+lNTnKgOZ1OOO/Y7ffcPzwAiu99+hnPnz3j8sutdBMMIaZRntGwUugQitpGmqaqaYw47Zq6oqkMgw+o2AJe9sacrkUo9kCxf87lT4m/Zs0j1pkpaq3N5yY5OZf5WJB7sWWTUSfpLMnZx/K0+T4qRYtGOZxOVKUJt9jHyVCQ3302/ma8Fa8qjUxPRxuHjB2W5yzxUOIXKdK4xINphHm8Z7o5Jc9bGNVmfqljui0Jq3pwTmMD9EPgYT/GsXi6FupK0u3J2GWxUsvnhnJMzL8/IVcCyeGqISjGccIjtVids0j9RpPnSvhsivzyeU+nsUjTrqUsyGVzYsZIwm3n1HHOv2cKTv8PSFy6xBvphJHV+RqzpIuIr0tkOzudvgHnRFpK+mA2KKl5r5QYavEaTxxLh8q59Chl2nc7vntkU5gXurC2xD2n8u/FSJOEzG+2fM3zQYaz384E4ncb4pPHB6HVo4VLdwlR2Ebvu1IxncDgjcYrIQYf8xZ9ZO6V0azaltZUfPT8OZuu4/Jii0I6Uby4uhbwtLnk+uKZeHkleRMfHNaLxfhht+N46llvV3TrjnbVSGFoiF2AYliwNnK9noUBFEwovnlQKhcQSy0Ly9kJBVHntur5X2Fhzx6xxKDjd1oGNoeWF8wV9ZggC+VRqfNVe7xahZ2rAEEpUkIs9qlWgzYyT2g9d04LRjqktB1rJefc3b5mv7/h5CYejkcG65ksdJvnaOtRk8vGk2Ea2B9O3D3sxdIdoGpaGlNhTJ0LvRsTDRerTrrmOAFt4ziyf9hhnc2GJvF2SBQWqQBzCNhTj9KK7brjT//kB3SrNZvtBXXd8MUXX/D29dccjydOpwPDcGJt1mxWK5RWVEYzTRMGT60cTV3FwqlAkJTN4GHojxx2D0xNTVuJwWa3O7DbH9jv9yigaWpW6zXrzQalEGPp/T3v3r3h8mJL2614Nr5itd5yOh54uL8H4DQMktbQ9wzHE01T8+r5cz599YrPPv2Ezz77lGEYeHdzw+3DPcfTkbdv3zKMA8PQMwwj4zAwDiPjONLUBuoqehbkeH9zy9/9/Ge8fP6CH/7ge6xWHau25j/7s59wmia+3u94uN2hPYTtJpZrEEJt2xUvXr5i3F6yUZq+63j16hWb9YqubaQbiQbtAycCU3D0pyO3t3cEd0I7KWypY5HiRO2PjxK+pH1ZAIJUXyEWu/Yh5N/nW8x1Qx49IRo/8reFlpMFiprBzHmEFEnhUmmDiXh0TuBarEgld0reodS5RBE7lMxvn0C4UnoxHyG9U5YBajHG9IU2RbFyiVkpSjKGPMxUvDODici9TAypT0aL7NlP/wux4GXXYJzHa4VxjskGXr939NPEu5sTV5c1dqx4vmkYas37g2I/uFi/oFrsX+FBPhuPEoBIwO+RwSMSgTKGgJc0N+vZPTzw5vUXdN2Kly+/x6Zp8pqH4OmHE6Gf76IU1FUjEU+Jx2WwKF2fXIrEUNJ15jxPesmSZ49ZAaclokE7FIFWG0JVMwXHyXuCV1jvmZwoe2KMikbKM5VbhaRgI8YzIv+LEU05vQo1d4+M3mZNqtUQQEVDKBL/EsVOEtkxfWGGtIs3DGefJk+dXqq1/5zHYl98w1lPf7o0IHzT3Yud/o1XPD6+aSZKYB2WH5+dle3fkc9pFTBGU1Va6MMFlA9YrVBePKQuKgGVqbhYb1i1LS+fPeNys+VivY0RgS2ffvQxl9tLDseej1/tZf/FuZn8xDD1WOfY7yf63rHZrGjamqqpUEYiFSXSonyXpEDOSs+MoeLMpC2m1BzgWLz8HGlJNmQu0vVi+nzGaUFnXSorEgoi2Uc+Mo9FhlM+j+XvS32JyAbnL5/QLmYcFyMoTYU2Hm0qvHKoWLIhBIXRFQpP03YYJZ+/ef0FN7fv2T7suDiccB6mEGjWG0zbgalxzvGw23E6HXl/c8Pt/QPD6YSuai4uLtGmoo71trpuRdM0NE3LZrNFac0wjILBhp7b+3eSbuxl8BLpGbtFhShrlGOaRjTw4vk1/8W//leYuuLYj4zWErzjzdev6Yc+G6/quuJiuwHAjiPeWemwu92wWq2oKmlhnlNrpon+sGd3d4vtOjZtRdPUPNzfcnvzjqHvWa0atLqk7VasYjHw0+nIMJxouoaL6wuatuM0jDTtmrpuuGtuUCimSQxiUoh7L3UxX7zk1fPn/PD73+P73/uMfhi4uXnH/f09x9OJt+/eRwwluInJSRT8MKJUoKolEsnHefvq66/5n/7nf8fLF895fnXFZr3iarvmX/3Zn9BPE3vneP/1a1YXG65eXOcaegFYr9ZcXV8zrVZcasNGaT568UJq0wCdiTTvHG4cGPuR437Pw/0DWjkuVmCqSjITkjOkkBtP4ak5QicW89dzzcBYfQhiXdC8l7M+lyIySn44K++zgcXn71LaVAYeBQ5buvKXXDmAmLwD+DAbtXXesPP5GU+lRygp2L+IDA6xHlTWvcVgpIpOa8kQbVKUC3O6fSDkz4xWqFizMvnfSHpcSHMMFLglG5uUIigd9Zu1lDqYAtZDP3i++HJkdxH49LOe6+sWheayqxi0preaaQzR2WtQKjkzE2aamVYyGTw+1OJ8EzN8h35gHOHh/oH379/Rth3b7TPadkWAOA+OcRyEvWuZp1TLLTeGSGw5BImMyqRQ4OS0fDMhlKSUJcn8M/JWJfWyGqPxtSGogIvlQaz32OBRQWHieqc7pAcuJJEqsEzx06c6iGrG7TootA+YEEsgRGzqfMDpQEh1UFN6YDTOlUEL5SsXrxplpTwr1cH7tuP3TqNLC04R4VSGdaU1WAjvMG8IuWIe3NOGsadh07dBoW/67hyqfSjsvvQipyu1UlSxSLEzcbNE4Z8I1HspzNw1Deum5cXza642W7abVcyR1zy7uuKKwPMrx0cvJF9dVxVaG4ap5zAcGKeRL782qLsH1usV7aqh6RrxvsSJVNqgtBewbMTSPxucZN70Yu5UtvdLCcgPbGeVg1uLz4ghf2TmHgIxzegM6PiiBsd8h/lHydDyN8uohfPrJFqgjAgp1yh6+WNHOq0rJDQRUGIUVKjY1k5RNxpT1Thnub9/i3OWh+OJ97f3qKojdK9oV9do59HWY+1EP7yjH0aOp57dfs84jmiUGJualtV6K53gOilS2nYrrq6uMVUlIczW0/c9N+/fM40jPnbTsnbieNhh7YSapjinnjGmlG3WHT/+0fdYbzZ0KwkF393fcTocOOz39Kcjw9CzXnWsV50Y2pRiMAajArX21JWR8NC0Kt5JIcv+xGH/gG1q1rXG1hW7hz339wcpmAlSAPz6mo8++ohxmvj66y85HPZ0Xct61bFarUFpqb+ARHsopehWnRQTHkfG0wkDPP/sJS+fPycQ8OEvcc7x5ddf8+79e25ub/n7n/8Du/2em5sbbu/upBPEONIfT7BqMAacN5n33N7fcXd/z939Pf/67V/z7Nk1XdPwlz/5EYd+4P5v/543d3tJv8nGSbHzt+2KZ89f4saJDTC0Lc9fvGC9WtE1dX6XoAI6elT7vuf+/gEdBjZtkNSCYo/5sKT57KFmVnzniLY5hxrAKwndlZ5gSx416xchG00WPjiVgE8oLpP9lUKC02fZIZB4dQIuhaGCENuDI10tlI6tVJXKz09KTE43SeNUKTxcOnWm78quU0pJZGxqSZuAmBhvZJ/qHBUzAzHymBPwEV7oSQYJfTY3Tx1SF6/uarSTwv/GeiY78u52Ypjg/V3P8/sK72qu156xNtwdFePkaahRqopdagphH72pZUpdMjjldy4IIqUE+ABuFFB42O149/Yr1usN19cv0eZSsLJPXSsH7DShtRS/11pT1cQ8fPK/FF7vI/hwwQFeiqjHOciRTgl5ZKSUIiJL6euJjUpoIs3joLcC3p2TtGyUota67NcS6eTcjzYjyTSeDDpDwvSzrCLEtDqdIuzEcCmJVnL9Agj5D1HA409DXKh/ycimD4/mj3HPmUeQZfx3fdKS75zfeXmOevzV2b1CmCMUU7SiqTRVbSQCI0itwqQ0ohTOB2w0Nm3Wa7bdiudX11xfXLBdbzAYTFXx8ctXksIRixoDUstSa/bHPTcPNwzjyLv3e3b7E+tNR9NW1HWVa6WlBIJscAoJ5M9vCmeYJDraSm98xrGKHH1XtrY3xe+Kmf/Hm0fFOKmvkV+WfbHPxjDj60LAxJ+Cz8qVWmpHC4UJohMi7XlRXo2u8MbH+kap/o/IXal9omhqDabGOse7t19inWd1OLE5TZi6o1s/o15vME0LpsI5z8N+z/39LTd3d9w/7JjGkYuLLW3XRsPSBVVdc3F5yXq9Yb3Z8OLVx1RVxfF4oj8N7Pf3fPnFr+j7I2M0QE3ThHcPTLnQnRgb3DRiFTx/dsW/+ld/gTYVX715x25/4OHuThql9FKEHqCupFQBwOl4ZBoHuq5jvd6wWnWSnuklysFbi58mhuOB/f09bhy4WDfYRvDZ/d0N3nvatqFtGy4ur7i4vGIaR15/9SWn44Fu1XH1TAxR4+Ro23VUfiWya7UWo9s0DBz3B8JKugE/f/4M5x2j/QustXzx5Ze8ffuWm9s7fvaP/1hgqFsCMIwjfX+iqjXtqkaFWGg9BN68ecPd7T2ffPQR//qv/5rPPvmYi+2Kv/zJD9mfev7DL37Jzbt3PCPw7OUzMQ5FQdOtVlxeXeOmiZd1w1VV8eLZM2kmATQGKiPyzU89Yz9wOhzYPeypq8Cma8VRjhNMGgIpgOFpg9OMVXIjJa2zg0oHLRIhRWKXQgyY5XOBnc5+LtK+4/4s5cPs2pudX4vxFfvYxxqdHhWj9mJ7+yS1wlLvTVenot4JViw7x80YUhxWcymUtP+l7IGODrAk3kPkVSE6A8E4JXwmDYaoMX5AFiZjuVbi5OpWAecCXnu0DQzjwJevT+yPnt1+YLSSZrltLbUyjLZimsTQZOo0p2JAI6a6peeU87EYQDKKkXRSCfIY+1Ei9R523N7esFqtWa0vMJUWfGJdNEoPWGup6ybWcQtZn03zkqYj/VNhxr1KJ0waMfUcfpQpqTQ0+UTBsW6XBppKA4YpOIbgsV5jgxibdMJLocCLzDJm5uYKV85OxomzQTLhKB0kRVJDTrcLeHyY1SKVAb3cLpdBOBfuavmuxP0m4vu7Yag/sGZT2syF4eBsMOrs90VO6lnXMSLInQ2cKi9UOhQffqEF63jCiDQP7ZtAVXG/gvEk4n70tIVF3uPxWGeZhoFJxTQeggCjyaH0TIwS8h2ZmA/ZAJFCq40RC7KpKrQxuZ3nkuTI2L1gmfm7wBzFNAOeeaMuwFWhcJYevbxc0UBU6qWZmalyVktmHVikTuZBFkwzEXo5juIC2fTn6z4LpjKMNBVCM1UVLd8CTudi4WWcBGKU0iIQRhs3nfUoHM753PFkv9ux391xjPUFjNF0TUddG+o6GZuk+HRdt7RtS7vaYIwAa+882tRM1sW0yAlrLVMspI1SjOOYybaO6xSmiX5/AB8YBovShuPpWERxzbWahv6E1gZnJ1TwMsaupYm1XpyTWhkuKKybuwJZazkc9rF73YnT6Yi1Vmo5aWl1u95sqMZRiljGXOe+76Mxw0VDgUQCBqVidzwYegklt9PEbdeBF+OoqUwGA10rtQM+/eQTrk8ntpsNV5eXHPZ7tPMcDofcuaGqKokWC9Ju2DnH/nDg69dfs151PH/2kk8/+Zwu1Ky7lu2qo9aasR8E/K1i21jvGPsTbppoqoru4oLtehXTMCO/UqBCSm+MHs1YfFGbWrwz2fMUzqlzcai4WWahthTqc+h+3jYLhqPOdtasUJYPi8qlSmrGnMqklcYrvygimW4081u5thxHEkioIvc8e1LI+24GiElgJ2CQ9nDIvH/mTsX8qDIEnMwbVAIYxb2yChWF6VNKYfbUZx4z3zfVNwKFNh4TIAQDTuO94nBw3N0PtI1is+qoKkVTeTQWhZ5BCDPPE4N3WteztVdFShmPj1R7wjlPf+rRynDqT6yGE8GL4S8EcjqcAMq52GOI07L0QM2gPHntsuEhznG+sASkeUwlac3zrxVURlMFnTv+eA/j5CRiRM90531KtBOFXoEAszBHUM0LFtfMz+BPFe+jIEc7uaCycuxixJxJUVOZREoerx6tSXl8OxL44x6hiAj/DmeXF8ZPCnlZysW8ZuHRZ8sHfhMo/DbAmJHck4/IK1aAdvX4ksfrEfdUTuO2FjtO2KrO7+u8YxgnlFI45k5Dif8Q5lpgohhoqsrkbqQpCoL59MVbCC5Sy38p7SDykOB9dDCq2AGzWJN0n6ygzrhxYWjKczDvBRV594zayvuV805h3CZPbnpGAQ2foLEnJp1ivlTkX9G4ZKoa7eWnMVVsVGDjPvPZuaJ0lUdvbSAoF2v+Tbg+1j8aBm7ev+P25h2no3SOapqG6+fP2Wy3hcOuYntxQbda0a3WrDZbtKkIGJSuQSmePX/FMPT0pyN938dI6IFAQI9jYmbS2EAFprHn/vYWZYw0STmcOJ1OmY8CEGnudDzGrkxe0sEaiVDvug6QJiaTdVg7Yq1gOO8Ex+13D9RVxel4iOnQirbrqEzFer1is1kzVoamqZkGQwieoZdaS9utFPomEGlMOjIqoO9P7B4eGIdB6mk5Fxni3D1stVpz5TyffvopV6cTm82Gy4sLDvs9uMDxcKRpDXUTI/+V4IBpnLCj5eFhx+vXb3h2dU1dt3QxImTV1HR1jQHGYcT7QFXX6MpIY5vJEiZLt9lytd2yiRgqUZtOcxvLPXiXGlUotBa9RmRL0fAi6XsZA804P8myWf4VneiShEsEnW+S9ls8K5x/rvLny9/nMeRnxojqEDTEOoEJ2xFCNFw/LiBdZo3ALPvKUgKZTaZnkwwOBT9YAMA0/pkHzBiq/EeWr5T3S7oc87nlUToHS71Q+KLKgQ9GgzcS8e68xlrF8WjZPQzYqWa9MlQVPPSO4Kf4DvWZXC4x4lye5bscCWOoqHf0pxOg6PuepmlxNmAnlzFDaoKQdMWZrxbvHI1uc1Rq2S2xiHhLZTUS/gp5QPMiFUYjkAjtWlRSRudQSMfDyVqq2KyIvGY+U065Oj7ebnbzFk7C7ACZqTBKn+z0IaV1hrlQemrwkiLMz41NSV6lNznX07/rev1BxqY5uunDEGUWkcvNpx4ZmuYzypxVcdOoszOWV5avGc4+T0fmGx9+nQ8eKcFMAG+KZopPEIRE8A7rHdZbjscjd7c3uNWa6eOPCesVfT9wo8gWQKXEeqmCbNhx6HHBY/3I5CS0t6lrNpst6/W6CAE3EeCULV3lxYKKXeYIWVkV+C0KtNaSN6qjppTAQo57ULOQSJbRVDwzgabMoOIc5BayeUpmRbVclSQAQvQ8KaUwwRQ3DssbP1q5D6yNknxbua0GY6irQNet8d6zWtd0XS1twMOJ4CUVzDmJxDHNCq3A6Y7DJCHGmhEqpBOJlS4kv/7Vz3n7+ktS6lHbrvj4s0+5uroS4dxtYsRBizHSPrdt26xEJyD9/KNP8bENbd+f6E9HlDacTgfG0eLCDh1gawy1Vvjdni//6VeYuubkA5MP4hkyFeu2o+9WYqi0E2/ffI1WirZrqZuKrtnw6sUzKRZZGfrTCY/CKoP1XmguhmnfvX+Nd45hdAyDk3oC11e0bcvLj17x8SefSIeV8UTTNuA979+/Zb3e8Mmn3xMDTixoF/AMp55RwXA6sXvYYbTmqy+/lOL2bcvF1SV1XXNxccHV5RXPnj3jpz/+EwAOhwPH05G7u3v+7u/+jvv7e+7u77i7u8V5AbLOOo59L0XG+xP/w//4f+M//u3f8G//zb/lhz/8Ie2q5bNXzzEKjtZy9+4WjOblx69Y1zWH05Hb11/ireVPPv6Yzz7/hGeXF7SNsMLs8PGe4TTQH0eGYWKyHlUZ6u6SrtW48YgfDgvFOZwTaCgUaKVzra/5XInOy9E/SY+gAD/x5LwbFCQjfNqvAEGVXefmOmZBBSoMSahbK3UeSqEY4vsGH3LrU+sBB5WGuoqKWsxjf4qZzgobuUV1Nhaljmg6AbNkwJi7Y0gqVuqCIzzOJfdLMiBE/mWMXvJ0Rf4+pVIlA33iZSoaLNsgKWYhwKTlXZwTT90XXx45Hnt+9L0rfvj5FUoZXt9abvQkKVsuxO6TCm1S1zeXlUadAfDjCZq5WYrPkaK8IVRMo+P9uxsOqxPbq9c47/BOYa2s4Xolnm4djcg6Gsy8d3kZxRAacsOAupaUXqVVXG9pw6timH5q4hDs3M5WFcoCiOfQeQtIAc1aaYJRjLE70TR5rO3xbc2qqtBaiic7H4vA6idmIgrtRKk+Fk/1qeNLnEsjM07QITe3yK3PQ6CfRmkrrCoZV+SzKW0zgSJdLdPkEq2lY9FV7J/5KA0T+f9PgpPHY8oGie8MZp4CgX8oEvqWx7CEt0tMFkCFLOLzO0R+J7wHpskyDBPD4UR/v0dZKeQa8PTDEFPQ5zbaLl4XCDjrsgKdygW0bUtQFd1qRVWLcouK0UQFcE6jV0h6hUmOvdLopACnwaWU5xhPGoqozRgtJfxG7pqLkOcnELFZ4nfyXXKDFRozaa1CSM9Jn0XezmwMy23WE0Gdg+QzPOZTqkS8Pmiic66OWFC60q26iq6tpHubl9oobhIDQlAG026lQ6teMQwe7SyOA6Ya6PuB4+HE8bDnb//mf+HN11+xXq15+eoVq9WKH/3JT3n56iNMXVO1K7Q2NF1HVTfCv5oOlGLsB6ZhwlnLy48/i1Hptzzs7iU6O8Bhd884TYS9pGeudGCl4eHta/7mf/33BBSvb27Zn3r60xCduWIoc95x2O+Yxh5jNKtVx8V2w/XVJa9eSW1KDzzsHrDWceoHMaIdD4x9z3g6sL97B8Fz7E8c+xOr9Yrnzz5hs92yvbjk8vKa/nTisHtARcP6zfv3dOs1z55/RFPXOOuYRosncDpM9EpxPO65v71FG8Nvfvtbmq6la1suE4babnn5/BWvXn3ET/70zwDYPTyw3++5v7/n7/7+H7i/f2D3cMfDw03sNjyJc+N45LQ7cNwd+H/8j/8vfv1Pv+Gv/+qv+D/+N/8HfAh89fYt4zDgUTy8v0MZw8WVGANtP9Lf78E7XvzgB/zpj3/Auuuo6xlDBSBYx/Fhx/7+IPVFdSURjs2auqmi/Bkf02zelbL3dCXNk7TSmLrCaBPrSiZ8HXIHxbjFED0pUv1iDzCfE5Vvk7BTcoiEuZamroxEhOGpvBhenfWQ9uQCc0GKTFJIhO4sUWcdV7owhwWOS4amhPsW2s9CuU2RVbMRKDdtUUrKQARifV8p1ZHKdEgKe4iOoxQVXejZ0ZKRnFMqGmYCs7GvquQdXWzkop1nGivGvuZ4gq++PIKdeP58y/c+X+G85v448u5uxJgORZf1YDHap07coJRBpwJu30lOSUaLCoqhH3j79i1t21HVHeM44qxnmsTRenl5ySpmXdR1nXG4c75wAst8GC3lUaqqpopRnj42MNEmGqCiAi3yK5QLmNdFlstL3ScFbWVodY2eLFNcx3F04Hq6pqZdSUF+qbfmIz4+yzVaGIOEElIanfc+ZjiRx6BVoNI6dz2fnGAp5zyjl1qltdIYpfJYfcLuxGyFJLPmQeT5CvFe3+X47gXCF0t8/sk3XLPwmqrii/Nfl4rS45udA4Snx/Y0vHpk9nr6/LPdnewhiQmoOI6cU1v87uOmmYaRqaoJXtzSznvGyUqqV9xkRhmMmg0RzllcsEKUXjZHVUnnFB07pyzHqGb6U/O8EfllYSKP7yGKnKdgaEEq18+pjTMgKi2qjw1Ny4J28rhZe8gKb7nGIW2Mp5bgm5jKEwYnVf5aMNyoXJtYZ8CYCmNEKCmtY6QZ5FpTxoDSBAw2xpRq7yGCXDuNTGPPYb/j4f6WumlpVyuquma13nBxeUVVtbTdOnbGaDCmzmPIHtE0/JXQialqdCyw2HSddKGrKkQ4emqtabXCTyOHhweUMeysY3AeO7lsREjA2E0T49BHQaCoK1nrtm1p2wYdrf5eaZwSxuBjQrJzjuPxiB0HJguTE6Hf1DWrrmPdrVitVrGeQscQw8/7YZC5DS4qEDP9eS91tJyVVDhQcn5VsVqt8CHQtC2r1SqmH7Y8u74Sz+DpRD8MXGy23N/dyTmVkYjBaeJ4PDJN4iFxztEPA2/fvZPueg/30lWirlh3HRfrNfZ4wO5HglaEyQpAcJZp6AnW0laGq4ulV64gWnyMRpMwZoEAumowdUWwoxgekqKuzoo3CmEye49SvSE974ek8C8MtWSaFtBSeM3CWXBrNhg9JaBLQKJzilsZ8UO6shAuefuGIgORwvCVLkqGYmZBVDhAFvO4+F2lPVEAzMRb1DIKc3mbFLF09p4FL0rnlT/TXEKc/6h0aqOl25mV/P0QAoejQ6uJ4ZWlbUAbRVMFqljcXwxn4jgQEBayIphlwtnYF3Rxtn461iLyfsL1UiC8P0mEofcaZ2Wft7GGk4rj1hFQ+iDA8RGYzopyAjziNaRwKgSlcsfEUKxjkhvplmnsOtKvCQngpZpzDpu91Amskw2KhVllXksoaHkpS8tl1SrJJJULXaa19lE5CCZkGk77KHn6UqH1DADTs9Nn5/vpn/kImeTnmZHPZ8wzT8G5T5x8ZZzA5d8UADcZLii+lDOe+Gx57QdGzvkaftvxBAwge4UXo4ipJ6kgs7XYSSJHQkwNcN7hR5F9VUwXl/oxsc5bNNanVAIQY3NVxU6NWi/mpkAjxeBmHJHATrmHlAYVRMlIrE8h6TshYbJilkoem3HVApMReWHINqIQ5yQ7c7OCOmOoNGO5nkzm8WevExXf+WkFTjx/bxREGUFIRvAQO/dJJE7JF5KzUpuaoGuCMniP1OKyYjDpTyf2uwf2ux33tzfc3byneqlZrz9hs9ly/ew5z199hDYVVSM1Lk3dxHQtifgU2jZoJe3Hu66TtVZKZDrQdiuGoZeI9ohzU2TT2J+4efcOD9zcP3DsB1KNcZU7rXrs5HFOGrJ0bUtVGZq6FgzVtfS9pOBYGx1eLmF1h7MTQ7+XKCdncd4SfEvT1qxWnUSHr9coiJ3ipLPmMAwSuRVE2fWJqKIxIiBdzYZ+QCnFsZd3XK/X8t5ty3q1pq5rmrbl4uoCU1VcbLccDwe22y139ztWqzVVpXBW3iH0EKyNtUQn+mPPu3fv0Urzox/8gLapCEqxbhvWTUMfAqd+BKOx6xWhcQQr/1TwtE3D5XZLWyjwmSqDZ5omiYxKtS5TuQtdFd2tovxJ2CCxiUjfc2RTvN6Yud4TcyTrzDtnHJGjqhcyspDTC8g0x5GnazJ2SPuDgC/vlHl3WDw/7+WSi6eNPr9y+fBH+7L8o+QRSQ+V1yhxDhnfzY6b8glCXwmLyjUqP35O93+aN4IYiKRYOLm+lFXSlc45OB4tDw+ei23HqpX3r4yNNRjr/J6JzSYcMwuy5cSc4+r06vN9xPDuraM/9fgQ6PsTbSuRTc56jKmAEHVDM0d8L7D3vH55Dpmxck71LD1oWZyd4/Kl3prksTHivKgiLSf7wBSgjrWGVb424psyPLiQ6aWMSHrE+aLN9BDxagixSyFR5gpfDybRa2HbyHNd4IzzV1yM5duPPzCNTl7m9z1CnMDZoltMbDxj+fP8+u/22Yeu/QaR+/jMBEQTgA3Ju+qzMPCJzQWkwJcxtF1D21RUlY5tL6WIoUJhjICZCZsLstV1RdM0DJMSJTiIl11CAGNHumlimkbJNbcj1lmsc7F7hSbouajXUv8MC8JXaXcsgOC8uXPw3DmvUarYiCX44YzQnkCY6ZsQMmgJsf3jYwp+/NzyJwCe6AUXRgYxesTPxqYUMlmGfiqjUV6jqwqHxqoWrwxWdzjdgtISteE99/e3vH/3lnHoqYzm+fOXbLaXXD9/Qd00XF1d0bVrEZgqGYpiHYjAnKq0EEDyd1U3rNeSJqn4PuMwsF6txBM7jbC/Bzvy7v0Nf/O//Ad0VcF6DXVNSp2w1nF/f8vheMBbi5vGWFcsYPC4dYcKnjL+wxhDHUOkr66u6E89x8OO0/6GCZct4yEYCA6Fp6oMq25FZSqur55hTMXtzQ0Pd/eMZsJOE95NaK1ZdS0gKQ8Z/EcDn3cTeEsfHDfBUlUV/WnPuzdS5+ry8lKMq7HAu3OOzz79jI9efcSPfvAD+qHHWsv+cGCyE3f399zciKdOBSlgXFUttw/7mJontRbq9zc8HA6M1rJ7+47D7Q3BOz65vKI2hk9fvODV82e0dZO9W4nWnHXsHw487KRouTIBU1e0qwvadYMbe4ZJ0gqrWoyHCQSEEgAUaU+JRkpyNgsj12MhmwxOOXVBJJKckwtQhiUECrNSkD7SSrwbSttMR8T7JWVfxcKrMP9UKLRRGCWfJUNlSdOzsH787xwspJhKRYy4CUXERhaQMq5cK04teUF6Led9jm5IpK61iWBKZzC7hMDiNTLa4RVUVaBpKsBzPFnG0fH+duTdzZGmqVm3ms9fKY6D593+hPMVbdei65oQFFp5iVQKSFRFtJKU761UWT/r/Ihgxmvs6Ll5957TaWC7veD62Ssx/K46Vl2HqSqC89EIKBMjdCEFJpWzoCamcRCj1fHIMA5MPsobL3SQJjCH1yfCUvrR6LJJyEv6jApSANZ5ONrA5DyjtfTDSG2kcH4V6V0X1ElItaSeBjPlE0UxF9qronLhQyBMEyo2VJicQwMVGmXkGUqpFJRB3gSRLmZ8GOk1hGhw+8Cy/DMds7KQfg8Rbjx2siUP9vzz8b0Wfxf0tsRV5RUlmP/9MdyjowBVSqlF1FhSbpJRNmOnzB98jrJJR93UqM2abrUSmZyUSpkmnJkj4Hw0DjVNQ1UZbJAImMlK4f/JIr+PE1OtGccx1u5IKVfpFXLc0eMjJAxVvG8qEF4YOFMXrBzNEI2vYhQJuVZmUmDS+5fG0RR9MK9beu4SI5dbNvO+NMxyqGkjhfleSinwwrOEpiT61WiFU8LrvY/FzFOTFZ1azQecCegKvKqweoXXDUp1aC2tyIdTjw+em/fvefP111hrefXqI148f87zF6/4/Hs/oG1XXFw9B13FjqCTjGaYklmO5JRwzuWaNSHSjtaGzeYCYww/+pOf0p+OvP3qGetuA3bEjAemaeKrr75i1/eoqoKmA1PhE7a2lt3+nuPxmE0DVWXYrBrWrSH4CYVgKG00VTCYylA3LdY5rq6v2d1fM/RH7LSPqc4xsjKkKGFPVdVs1huM0lxdXBKcY5hGTqcelTAnUFUGo1dAyGUOvBdllIA4DL3jGDx4R1VVnA4H3r5+Td00bCKGkmg6KZ3wg+9/j88++5Sx/5GM01oOxyPjNHF3c8v7t2/RWnN9dc2qlfm5Pw5UVcXzFy9oVyve3t5x/Oo10+DYW8upMtRK8ec/+B5tXfPZqxdsVp04IEh8TOjNWsv+YcfD7QPWetrVmqYx6LpDVxVhOOKcje8fMVTBC1PJAXEcxw54GUMp0a9CwBuI4GXWZM4wSTok/XDe0irMfDWLQ5+i/+Iej9so1UX1RtY6jQNYNLnIKVYphReFMqBC2nVusae9n/lI6bwq93EB+2Z9LBorCntRNi4sjGWqNHar6KAKUVeZ60gl0WByNP78fjrWTRQ7X5BMECvlYUyladoGrT13Oyk/0q2G6GR2bDp4eQ0Wz2gngg1UlQRUSKmRJCOSwy7pqmdlCNJazCyOnObmwQ4O/MTD7R12HFlvLri8ek5d17RdKwZprXIKauKxwmci//ZiiB3GkUPfc+hPDNMYI6AC3seC2D7RzownFvSQYHQsMaIAXIy6D55OaynUbSd679AoxmbCG+G9Rpts8ErvR5gDW57EUPmd5G8xbgnmq7SJDp1ACOLImYLPdogQo8NRUVItcL7K+zK9m/elEfe7HX+4selMNj8Fls6PxACeMvs87kp2di1nG3Axlm8HTeHs53c5PzGPUnnykXg8olTOYdQSmpgKA9aVKP+jcxIqp6TmhY5t2b3zVMaw6q5ZrVYE5VBDNFZEgeisbNxp0kzTwDD2UuvH2ViHRzzt3iv5XRfzox7Pl9j54twvjK/zFg7p/+VEJaZ1PkdnSuTMnEO+7qnzZ19E+kIsuCXgK5XL8tkznSnm4uEaVKwJFFvX68TklYoMP6CDQQePp8LRYUOF0yu87mRUfiIEy93dO37z658TfGC9WvP8xSuev3jFp5//gKoEeaoDAAEAAElEQVSarfPCnxM40tGQJmk5SdAt3kcpqqqhaTpCWHN5scV7J4Xgu5bxeOD+S8dw2PH23Xt+/avfYuqaq08/od1uqOqGpm2x1nJ3f8vhsI/58yPGGFaNptFgxw0qGR7jOI0xrNcrlDbSScQ6qkrx7rUi4AjB4r3FewPBopAC4+vVCts0XF8/k+4ph55xcGgltTWcHWmajm4lqYODjYZQ5yTcPkYTWe8lUuxwDyjevRUPQ103rDcXVFXN1dUVF5cXbNZrPv/sc5mXtqXrWpxz7A5SQP/du3e8fv01fd/z+vXXHA4Hqqrj9m7HeuN49fyazXoNBF5//TWHaeLmzVv2xwMvrq/48fc/Z7Ne8fmrV3z84kWkq5lxKiUGvd3uwP3dgXEc0CZgakO7vqDbrjnt7hgnAUqmqtHKZIqAMCtdsUtiBk9njFPHCLtHimaU/iIcomEpJGPwXGB7GeAau3El4FKkjCilBTjHGk7z/owRU6XhoaBulESyGK1i2vBcwXbm5/EKP4OG8hDaX7xcmqU86ToW9k/6kkTSIB0FMzicPU0+SHFqHxIPlAKYVWViWPQMsojF2DOfUJ5KW7wOEv3SSF2k/VFaer+7GXn7/sh6XbNpV2xfNby587y+PTFMhrqpo7fMoZQlJUYmeVFGXH6T1yeDR68IXjGNjndv3qPNHZ9+9hmffPKpFKpddXTdikA0WvmQC6WG4GPfPsBZQDNOI8fTkePhSD8OjM5iNFRB5XbUM52U414eMxyWKCaJ/NB0usKpwDEEJucYJulCaY1m3XbSQTIZEAMSvl8oixnAQ/ZO5ydmeo2d6CqDqqtoqELSq1zAulFkbgp/D3FOBAlFWv6AGSEjwXPo+i9zCJ6eZchcqiTMlqj57CcNIYsznqSxcHbW+XePZe1/0pH3W2HxKGgsRS5lZbygvWzsBuq6od0YVqtVNNIGUUZcpIucVSD4K8m11arjNJ6w1jJOE9OkmKximizjZBlHLUWlR4OdRgKeR5bGUgs9n670faadQjkt+aDoYZkm8TIjPs1NUqSyclWsX6LdPJ7zAcy8Ne2h5QMXqzq/SqmNQjYES2S3uKRSXZoQNNrEk5WJHX01RhsIAVOB84qgGpxe4XRLpTuUagjO0R93TNPAzZs3fPGbX1HXNT/90z/nxcuXPHv+ko8//T7GVEze56Lw42gFE8diviScjfD+zC1io5i6rthuGjbrDZeXlzhnudhe0tQt42HP3e9+ydj3fPnFl+x++QvqtuOj7/2I9eUV3nlcjFB62N9zOh6joPQ0VcV4ucavG4IbIXgUXso1KCOd8+oO7wPPrp+xf7jnsNfs7t8wBhdxVMiGphACdVWxWW+pjeAbQuDm7pbbu1tUNMgoFaSTcSURrNM04pzDWgfjJLLOys9xGDjudoDinXmD0ZqqaVhfSJH166trLi8vWW/W/OiHP2S9XkmUVqz5tNvtGMeRt2/f8OWXXzKNE4eDGOeoKu6PPauu5eWrl3xWGcyvfsNvf/sFw/HE7nbEuonPPv6Yv/zLv+ByK+UaNqtVgR/iWilwk/3/cfefTbIkWXom+CgzMycRcW/eJFXV3egBIMAMICtYkd3//ydWZnZlMY1Bk8qqyrwkqLsbUbIfjqqamkfcrCzMdC9mLOVmRLgbUVNy9D3sPTw/PvN4/0iKkX5/wDmDcTuUNSQ0wUt0PK5Da1vnuDjnhZvJGIs1OeKtcdgVnSZZhYoxG1RkkreG7dWg0q73rEAX+ZpyemzM11ajz3q+NZakpbhPvMJyohdmsEKRIwq0AZVWHQRV+6kY4ev1rRHhWndoljHFWFScKrVqnq4irIoytWImleVmNdbHiPexyiEoFYVL1d3GsFcMPkpS9lQIK+G4MXS96LX3jy/c30/c3k6M00iP47gzfP/e8DwG/vQw42PkcNhhrUMR8DqsKXwpotC5IIO87LXTsojb1SApxqLFe8KSePzyhcvpGfNby/FfHei7gb7rsdbKOBeuony9vL88zQcx9l4mMTS9XC6EecnXJKlUVwyKVXa3erba4pos0+UMD0ljEvRaE0g8z5FxXtAopm4mWkNvHdYaiiFMYLn8EguOqj1Roq5W2S9/C9WDRuUoQkeIgtdilP10zmtGI+l3eSPI+1aDCyv2XtdQO2d+7fHfYGxaN1Uhgc6d/GeBdVGKWk/d1hJ9tSe+jZWaCffrQVIzSX/N2UXpKoNc3oHV+FFoV7XSOCvlW/e7HTc3Rw7DwJCJEJNPhOz1skasymKU0JlXBFZPiAgQyRvNiz3JAgw+EJZsZKoDrmq72uManG7hfCPM6nhdKYOtMpkVtnXBN89RqyGu7dzaO8WudXVd7WOVlZ9MuFa9083zrp8lQlTVhVCEZ7Xos86zImhL+Gup4idlhw0Jg0g1UeKWeSIG8Y4aLQKvHwaGfkfX9ejqeWF9fhHmCYoSXZT2rcpQWiubn8qKvNa6VmRxWjPf3KKVwkcFl5moNbNfYJoyKW5OhStVPJA8YqNLmhZoncn2yBUodFbAkdXnnJO0uGHAdZLDLPIlCQdTbmPIBiMfQ928SwSUpLGNnM+nTB7Z1fmqc4lVhc2kl6oS4JcKGylFQkgo5ZmniRAil/NZAG+IPD09siwL+/1uAxqUkpS+u9s7dsOOFCPj8cL79+/o+47OWqwxGKMYesfdzRFnJXKld5b3t7fcHo/sdwOdc3nsroyfWamfxonxfJH5kEnZC4hIdUyzoN/IIlV17V+WULJS3ozgY7v+aM4pm20qSyw1G/MbUq6sjdKiOl+r9rHqXVUGZ9C8KjW5LRpIagPgStSLeF2uInjUuiKrF74ALrKeVL4rLaxfryHAEpm19mhKwvVTPL+yJgUA1lSYr/S4QqIdS2qhTopitE5oZg9PLwsxwt1xYLdTdA6MLl7EWNe/sSbLbNP087bv132xkbdvtEzei7Xfq3LeKpm5N/P30nO5L0PER88yS2rtNF+EoyPLI4lMShuD09udVDyh1PVR519upEpprVyaEt6Llyx21zddFevNmzebfZ1rung2136swJmG46vOUTKvlFReabPmEtvz6vy/wvJvrZd/vmOd/+uazZ+34Od6erSAqC5dtf2qPb25xy/Ln+bEK0Vse7RI9o3bvIUdCgpZRQzFWy0KQqzrRWtN1/dCquzAhMR+6OlzxFJUhecsVR1O/qVM+N8asuSBuvAvFede2c98zFxwvxDN9KqLCh5M63zN8nM1NBUp115bcND2Sa+iFgqeKLKRslbUOkIN1s4TfHPv0szX4/F6zRXloX5Z9pmM06r8rSkc2WGXtCjz2gIme8OlsmaMwu82z3NN6z8cDoKLDwf2+wPOdXUf9z7gK8bwsn94SU1LTR+nKmQEU5BUHucct601Gks/7Li5fcdkLcvzO4zRzC9PsEi6+7wsmGnKjt7MExOj4CSl0KnwdeXxFEFcMadQF6iKowqG8suE6xzeWxKr0yMl4Tf0Qfg/l2wsgqLkCzXAOF44n04416OGdU5qrbEGkpP9QMVAKPip7L0ximz3BUMFzu6E1poYA89PB/yysBsG4hCyoioOp2HY8f7de7z37HY7vF+4vb2p+MkZg7NCSfDN3S27vmOeJavim1spqrIb+qwUb/e5MmtCjMzjxHS5YJ3CdcLZBMW4ss7LkupPSrWSZfmsGku4Oop+kZ9f9qzSnmtc1UazVCFZ51qqMlUWQHFmlysKpthG/LT4qxXTkDFKTNkPrZp2loiYVM/bOn7eELMbAcKm2ERdqnpN6auXZR0jpoQmF4kpWC2umTrbwjXFWVee1zhPWWV5ubfgeoniDF6ybeYl8XJaCEHW6H6vmCIoQpalq8HHaCNVistYX4Gor9kWrrfKunrqmMaMTeN2jJt7rdQScr+weOY5scwT8zyyLKITlkIwthim6l6wYttNW1TboiLJqXZBndZxU3kO+FId09gtHmD7a6sjl+CO8nvlxC76s2rGCzF2aiVRrBU3phwhR5sFcP3U18cv2XveOv4yY1OzmkRxyKw/V0aBX3MT6RK1GaQKCt/YNKvlfHOr9Gpi/u89WhAaKyN8nihKOAOiUoTsDXGu4+72TrwrxvL9zR07Z/nh22847gbGyTNOC6SEIVUeihVFJ5ZlymlyER8SzvSYvaWzNhuaPNN54vR4ZrwEUgA2LctCpRGCLUCsusVbCiRvANLUjFIq3aw23f1qwhfQVTFMbl9NzWgJ++QaLbt4XrAyI7ZGprcUcVU/L0Kops8RMwlxOV82MQE5kagMAYOOhrj0hCSgSSmIwXP/+TOX8wvLMmVOJsu3337P4XBEa0uInrgIGCJJVIp1NrdbiAMr9sxtTWzXRKm9IUq0vM3x5h37w5Flmjgeb5kuZz7+/CeC+72EPk8zz+OItZbOOQC8nzFGPP9OG6zR7HeG3aDoO4XRCa2TeJKskAqrFCAmjoc9ruvpnOb+5/d0Bi6Xics4Ym2H5NrPnE8v3N9/JsTEy+mFaZ6YppElE7f+9Kc/sswXbm/v+Pb7Bes6ht0e13VoZ0VoIiHgIQOvaZ4yAV6oHB2X8xmlFJeXlxyd4vjx9z9ineP29obbuzucE+LyruvZDXs+/NsPUpkv2392w8DxeMRoQ9cJJfa37+74T//h3xF84DJNLPPCMPTc3hyxxjB0Tkrvbia/jNUyzXz+00/8/PMDMV447ge6vs99n4FbKeOgNMIzscq0mvZWDTvb9VGeJF7mNWy8TJ+6OUZ5TsHcCQgFqKVIqLdcw9dXb02RW+W1RPnSKZMv5zUnHCiJqEuItaRD+uBRONLgRHnUQu5fjEsCVKQyYCISYmjW7woQC4/cJr20qKO5zUUuViNTNp4aDEon0BKx6HMlwjJvQghCvG5sVgoEvMQMNKiytvQNNQIKQJuEChEdwIeOiOb5JfGf/9dHbg6O/8d/2vHdB8MYErt+EaMUniUIt95uv0cpVfkBYK0Y8kuHKHSpysRiIDNaePpIiWkaUQqGflc9u5K2q6Svy9hqebd5nIjLzOP9A58+/YH7Tz8znh8Y04JD46IFlUvhpjIwLQCXH0KovlZhqYaRLPdUrsbjFPSZP+N8kVRe5zr6XiSfqu7JcuFaBaqAXiCH0ofcLzn9OUdaFHCuAKeEdDzWKFKJHPYh4pRip8wKgk3eszK+iG+MR5nH//JH3uvq/9/8evNn/bD57q2Wr18rvn7W9UW/hKP+AnzVKEoCgBWJNaqwVtVNkqplU8BHwzAMfPftdxgUO2PZGUdnDe9v9vTOEnwkzMW5IpEv2mh0VlxJkWm6sCwLMcqC6PuBQXf0nSOEhXlOjJee84tnHiXZrcyvSCS+qnrbgOkCPTfGpiJfV5l23VdbBeT1/QtvkBiS4rqeaaIKIPNTsZHppTk660+bujtFW796dKlEJvdO9TkJcTJFY0CFLKebeaOUkIdrg69GGCs8LUmwU0iReZr48kUw1H6/53/6D/8xFxr5LYebW1KCl9MLKSWmJQjJcIgsmeBdrSSB9R0LSFJKZ7JeLZXvsrIqLVW8+/A9N7fvmccLH7/5hsvpmT/94ffM//hfCVEq175cLrkARSmYEXFGsFPvDM4ahk5np0IgRC9cTq6rzzZaotSONwe+/e57ht4xvvzM2SlO44QZR3pniMEzzyMvL098+fIJv3ghuo9RUnReTszzwh9//APLNHM43vD+3Tc4J9yWXdehnGOfMdSSI8ZDCCzTIoamEGT/XRbOLy8orTi9PKONxlnHH3/8Pc46jjc33Nzc4jrBU13XcXO45Yfvf4PWCmfFkDYMA8fDQa43Es38Vz98y83uP+VnyULoe8FQJhumqkGmFg2SdNJ5nnn4+DOf//gzH377gbsPH6QoT1yI8yIFLrIj1FibCepzWaOiJ6HqOm0ndSvVyt6p6lxvjQltVMyqs0gE3TaqR6Z6Jt/XJl+bDY5aoZAiTUYbkimpncWxq7YSNyX84gkp0TnD0HUYLZFspdDUagSPOYiAPC/ZyI3ipIv5vqsEKM+L0l8JlJIiL0UfNGalEtBZdk3znDnIPNM0EWOqlTtRa/W91Xmo8ojKO2qlSRpcxlBGRbwKxKjwS0dImvsn+Lv/7YnDwfLXf/0t33/foz8m/vjxzBI0KXUkBpQxDDvRaUrWUKo4cDsub+93a2qyOBd0HiuRS9PlTIoBI2aW/A4Fg+S0XGOwypJS4vR84uXxzP3HTzw+/Mzj0yc0L2gCFoUtvH2p2CRao0vBOSrLmJwwmYI8N89RU3TqBDafG2Pk5TxijGDTPqclt5QcpR/k3lLwqnX+iwM4Zwhotf6D7BxMWAVJa+aoWJAMgTl5PAqrFH2moSjKhqgvKzfzaxPM9T749ePXE4Q3C6Ao1MWzsio1ry2Qr7z1pJzKRU6d2m7TG9zzNStv247mvF9q+9UVX4FQaT2/vWdaI2rWyCb5TyJTOolkOhyJGHpr2O339J0joSUyOiUsUQZdS5nZBMxxEcLBkrsaxYhhtK2hy0JiKNUq/NISUq6KQiuM23dLr36/mjDFOJS2aVcUoJTa0aHZBLga67R9dhYOxQB/vVmsXbslR12VsDfAWbZAt1+V8dBao+Lb0Velkp8OKUdmSFRTiWxSkCNZpHqKNoq+63GdY78/cDgcCTnkNMYidK94rKqg3PTCZn1sPJoAuVqN63qc3bP0UlbXDTteLiNud0+aJ/xpYp4nrPfEkEm5VarGFufECGqtkISLAUbGr3h4i9cIIs45jOuZxz1DPzD3vbxf8Bk8SMWyxc9M40hIiWWZMzlmyJ65xPl8wlohXT6Ot3Qx0vU9SgkXUTWMlfHRCh8DFOBCzEa6hZQklSlGSYd8OZ3RxnAZR6Z5YRgGXNcB4jG9ubnFOcvNfsiVZdZeL0a8oe/o3DtSSiyLJwThoer7Lis9pQpc4TpbAUMIgfF85vzyQtcFXGergaIK2Ksp2sqG4n28nsUlFW4j96phtKCQVJXp4nJR1TCbBXsR/I1B6XrNvPZyUTfmEqpeFSK1Rr4BG6/XupWorCCtfVAj1oohu5xZrdKbJjRrgeqdU4rGsJ8jUtIqazUKRBRK+efcPolU8FTlLDWpsw3ZJ0jkEtWoJwBWqtppdDa6aGPQEWYfuH+QaiYxRYZB0XcRZyWlAiSiqhRykLUV1rTFVGRYOxpv71Ht3knjMEhJCOoLV0eMOd1Ar7IkplirHUIieFimxDzNjOOJy+WFxU+EzOlUKLmuW9Ia97NmVz8vAGmdtMVQKAZQo3JUqJew+hJ9uY7j+jzFCho3e35bcrf0R3l+c55WEs6/6aPcD+IdlflbFPbScMErr40vqen/f4mjVXggbSNRyndXzWxlRf2rbKy0b1Nkl2LL8PQ20nnduLf+XNvzy1FAqoLClGWKjPF2X5cU3oTYG1NVDIyRtLnD4cDBdexdjzOKobc4owkq4HPJ5gymhODfGRKJxS9ihK7pBbIfGmtljcccZbJkMmi/zs91Dsi/ElnHRklt+6c57891Ynn3dlwB1C/MuWYPkvap13bAdg9J69TJb/X2bcvsUK1DsnlQs3ett8jecsgRRErkj9YQTTYmlkijiA8L0zRyuVy4uTny/v039P3A4XjDMOyY54XLeCGExOw9Pggv0eILd1/pGlXbpbLhTGtIOs+uGNfK0CIo6Icd7njDPE1Mfsbu9jydTnTDT8zLzDSN+DDldDVXsa3WCms0nbPimNM6VxPMBsDMD1oN30oUd+HS2xGWTEa8dCwhsCwmV0kWBXCZZ8ZxXLFTkn1r8VIV+XR6ocu4Zj/siFF0iWIosJ1gKKUV2mu80sLbF3L0VOEX8rLqQgxVHo7nC9ZYLhfhnRyGIb+74uZ4w7u7dzhn2e87wVBlDChRpHDcD+x7t51HKhfaoMCPrUKREON+CIHpcmY8nYjhHbZzKBJxngXrpdXJppXO1c+ys+OVbvNaL2weKdti3SzUm/N8dejJvCvV2VYcX+I/tuulroHre2cMWEV3MYjkD6IAFqLJ1zQ8smXd1gicK0X+SuuqPbzds6pGt8rfvFnULTBj77JllLjz2Bi6Yow5QrSRVS0WJVX8tPajyoZbeRGdVN5jRa+d5sjD44wPkb/RicNBMzwFNF7WdE5TlPVXnNIxB3FAjfxS26CKt/on5ReujqryedZptDcZQ0VWQzsVvxanVAL8LBVRp8uFaTozz2eMWcQAnXKEWO3/t1r2GtO3UXBlVyzu3hKtnVJi8Z6YFCGllla1tq3ev8Fn9ZxrDFUvWMdReFAzhqLuZOIwIKJrbHh5ztfa0LYm8VYfvHX8RZFNdYCbzt4aC94guXzrswJDkqpOmHXyZIlRFa56o7+kqV9pffmZNpP17bOL92RVThJrpbEUFTGCMZa+6+j7nuk8SgWuRfOsFLO1+Y0UqFRLJMYktv+UknhPYpB/QTjErM6TMQamaSEGxeNDx8ddYgwavzhSUEUOCPgIUqWjALgVfPzyUdPY2E6ZN69748O6mJQS8tZEXWjX93zVx3VNJKEMrhhjBRvlR/tdqaTQKpBr89bxTWXsFIAmpsC0RHySSBS0zlESF6bxwnK54McLw37HbtdLVZYYmaYpj5W01miXc7BlkaOoY6uadrcNb0FsPTL3l8/jF2Ok6wa0sXzz7fcitKeR7tNPXM4vpBiklCkJpYQY2znDbnA4Zzjud9zsd+x3nRDUm5JWBwlJw0Qpuv0dbjjil5Hj8UD0E84adp0jRlj8wug94/nE5fyCj5GXpyfGaeZ8fiaEmRjg6fGeeT4zjhemacS5jtt379ntxIh1c7wVI5jrhHslp8AlMglm5h0LXsLDi7cldygpJMbziUcSJ+dY/EzXdXz69JGf/nSLdZbbmyN9NvYe9lLhru+7TDiucTn0qVQp1Loh8s7rp87+lOqcWeaZxy+fefj0M9/+5j3HOwnNj8EzjYEQfPYaKCIyNxIFlOaNL0+BEtv3y+raqjWsgCKDo+w5S0nSl+pmHIviz0pEqRLkCkmZ3qcutm36xrpmhE/ktQwof/uQSTVJJYimTu1SGao9X/pVZEFLAPxKQUsreKoioxjB0gqUxC5Zwq7lUmM0XeekOlWuMmK0zlVPSvWyHLJPGSeqka1UtVI6oZSUNO5cQryXM8/niUjg/vHC54cX/KL57s5w3Cm+nBeeLycYdhxzmmaKEjIuqW++plOswEDTgkR5vxW8ZaIUIaqMicv5wsP9F4bdwG440Pe5ZHCGiyGHhxs0xjgSsFwmLk8T49MLy3gizCdi8iQj3CtBVENcQTJZEU5Xo56aeahQK59exbQCXDprwSQWr7nEREAMdedpwmrDzko1zCgzspmnkMIa6WatIUbxbheCd1G0RbEkc6NpQGWvuzOGoFT27iUCKVPXKJHFZXJfLbpioE25343dAqx//qNM+sbQW/fM8vurK6B+nDa/XZ+3AnD1lbN+oV3N1StIbdr2K+6wTpJ1ryvycK2+SF538p0xEom0G/ZE74WDTymYDZ0Rj7QuEdIqy+kUq3HXLwtL8PjFZ1wk6VYKiD5w8Z4wKx4fLMMA5xlCUNlYkggEdCSnEqia9lLXa/m9iOj88VuQNDW/lK4TZegr6CprHmV9bZSEvIe8eky14haMrJqbNae8OlZZtI6WjFPePbIhVxRyUSYlVU4pJ4VoJs80ByJK+D20YZlHwU855cToHMGfDdGnlxculxEfAvOyyJjFks5Tt4q6XFXZ92RHzZ9Qya+lSnOJTlrXUwwStXV7+479/pBJu2EaL3z+XDCUYC0QBVkBvTMcdn02vPTs9z3D4LBOY2yzp8bAvMyklLDOcnP3DkXg5rBHJ+HN7LoOlGKZLizLjLOWoR9YMs/m+XzhfD6RQiCkxOP9F/w0cnp+5PLyjOsc7+7u2O/2dEPP4XgjBNmuQxuLMYrdsANYK+MlMdilmFjCIgq2UsQQWGLkfBICc+cc8zQJhvr4mZ/+9DPOOW7vjrmwUcd+N0iV4K5gKEVnc9ENVqz/1qQvM2qcAtMceXkeOT8/czk9odXvON4ciGHhZXzGLxOkhLWdOLDyGks5SrzM12J2quvjLR2k2ZdqOxonTrsHS7ptwVBrFUsoKZJKjDK58EhMQuYdUxE9RSfMSlqDS6qozNkVKSXZ53LkEkVlL4bdjJ9i08bWWFCr7VXs1joUCqZa13ZKjQMj60Y6A9BYsFh2yGtjhK6yE8NbLdCTK6WVcS5cTa8caQhXk8gMMUQHlTKG0njv+Xw/Mc5wOknREq0S746B3mkWZsbziOs6hpsd2lhmFkJc5J1DiSjLhV6KHSGtaKW1LagiR5VUWfR+4Xw68/L4SN8PdG7AuYGUCrl709daonpIMF8mzg8npucTKYyQJhKBZGScItKXGlaDzToB18WQ9ULIkWBVv1jniaZgKF3TbUOEyXtGLzxOVone1GZgvGVENdbkVGDBwWXjEEcAKDwpkQMRNCEZbDDEpKrhN+acvqLDFlxeqEJS+5r5TXSh+/kVx1/I2bR6OvIyoEzy65f/FXe6AkZfQ4bbzfbXwZ5rILCCnutPv3a/lAcKJeBD+FrIVREiUeVqOMYKieu0Y+GJeZzwKfEwzTitGYZeiJnFMlEt2GJlTvjo8VE2CO8FiDkr5VuD98zTyKISnz8pTFoIpmfpb0nKUgpQFYLcGGLDabF6kN/oitqXqqIi+a5Yvqu4/zNjWS3nrXEwr3wFYqlmncBr/6b6s1i4S6tU1tIV67uUo5BY1jFKzW0LclcRlJEZptZQ0pBmxiUSSKQMlMI0M04T0+XMfD6xnE8chp7jfo82lhgi42Ws91ZKYzpLCXOvlQ0qsWfT/iyw6xhkT0hZrDFXKfAhsSRZuP2wZ1CKrhu4ffcN43jBdo6nx3umy4nzyyMphgyAAn1nOewHOme5O+65O+7Y7wec01grhialEikG/DwBiuPdB27fvSeGmdubG1SYCbse72emaeanjw+M48z5NHB62eND4OH+C5dx5PTyhPdSNfHL/Yh5VNx3PZ8+/iwEle8/sD8cOR5v+O7D9/Rdz+27dxwOR4w19Ltd5dFISUjw51E8XfOsq1ElZIX9fA6cL2eU1nz+8gmlJFWncz3OOd69e8+uH3j37o7vv/9Wqtvd3TIMA0PfcTwMGKVqpZYqKNMq/NuFUTxd8zRz//NPfP7jH/jmuyN3H74hxcD5+Rk/z4Qwo42soJBEKTashiGz8bLIDChroC373h7XHisgh6Y3YCTGzAMuxNAxu3h1zblPzb3W9y3esxaElTVjEBlSN5SUpLhLNvr4mCAkrF6NQipvSsXDVaOwsoel8AIUjrk2KrQs1a18yoaz1EBMlb3MMW2MViVkeuj7zd4jMkSQooQbF4+eavd+UGCtrF8dyKH9kRglhWKaAg+nyLgkPt6f+PAJlOr5zYcbfNCc/mnip5OXyCZn6fqeEJD0DiAuhZQ0p1aqdgzLe6RVdimRRaRMBBsi55cTnw3sdjvu7t5zvLkBBTpzlZQUCoVFdR0qKebzyMvnZ84PTyznZ/z0QnCeZDVRaXyWQTqBfaWgtrJ5XSMlSqzdKFOeG70zOK25zAvnRQDLuHjUJdE7x2AyJ1ohicqGf6UUuRAhoDDGYYxE/FaPea4uFGMkBSl7r52kGIZk6L3Fxyj/ksSoFp5kUQK+pnBTnQbWmjwP/gWPsgRbq0V7VK3lzUub397SukpUU/3gzau/ctOr+xb58GsRFxQoIaC0eMNXjCAVqxJSY6B4dQVb7XZ7/Ow53T/w/PSMURA7Q6cVQz+w2+3yQ2J9WIm+XJaZeZmF+yfmKMZMhh+95zKPzDpx/1mhVMDj8OxBqcxnJlGDIYixyaAzEXkbqbC+5LVxtu2u0gmihLQ9mlZrypUJSWXNI0PE7HPQ7ZV5+bTXrWlkVw34MyB5VXTXeVjkuCKpXFk3j5kuSrUqkYSBcfIkrVCDFL84zTOPj/fEsBDjUlPbFRJB8fT0iA95PyicfkrnfSQrt+S5q1YHocobUlXMc5R2SbkSZV6MLOTKbVob3r//Fm0Uw3DgcPuey+kF818Mj/efmMeRy+kEMWKVRM0OneXmIByON4cdh8OO3b7DdhrjdJZf4mCaR3E8uuGW3c0Ro6Ok5SPcSLMPTPPCp/sHpnnBakPf9czzwpcvn3l+eWE6XyDI/e4//cyjlmpen3Z7rHN8eP+ew37P4XjDN999h+t6ceIdbrDGMex2ojDGEmUeGEchFVdL0TJlLyElwrJwenlBofn48yeUVjjX03XCK/vN99+w2+95d3fLt99+oOscN8cbWXeDw9zspUBINn5uj7T5NabE5bLw9Dzz+HDm5emR8/MDWkdu3x2Zx5GXz55lumC0cH0WUFEMOmXuv6kVXou+Mn/zlyUTs1XMizJcgvsrCT05UyGvSaOF6qNA+dYoUQ0FeT7qhv6jGEyryMwae6mkGQvZey7gUp3zeZFopUhaNyTha+RRkXN1jepV92nXNJTbl/5I9RlaqU3ki+CnbMRIKxVJdcbmMsDFcSoG/RJxtB7OGNCGECJeibE3OtBKMh9++hTYnyNPz0K/YVB8uFOMc+Lnx4mnF80ewfOu67KjO+aKu5IqajKGbnUpKIa4dYzX8U3M80SMEeue2d33DMOOw+GW/e5YC42UsRRjkyZlfXk+TZw+PTI+PpP8GZUuoCJRq0yfs06/1QxOTndbcZ0MRpFfTYW3Zt/XGnpjsUozzjOXRXSe0XvMPNEZi3GmpokmtlHbqukbbV2dSwUHxxxlLnhT5rLNqYYxJaYcDRwy91skL0Clalq2LM0yucsqKxM+obXNVDJ//vhv4mx6C7Z8LfXpl2+3hUbr8ZcAnDe3/q+c2pyp1i3/7ac10K7RAdtQtRKGV6pb1MiMKDwgS7aEUvMmZbIZYzDOkpBojiV44YGppHllUmUlkZVUMamVWK1OgD/XheUl0+uv6hf1HctJr29aF31ahdralvayBiRtOrD8uXZoysJ3faw0dk1TUvW89lZFKL/OI02bZ7Tfex+YplkiUdxC1JoQPN4vm3/zMjGNY64U5inVwooVV2uHyhZn4UvOQiU3dzXg5Y7Pm1Wr7L61looYKp4HEcCBYdixzBMpeMacflkIwI3RWWkSRayQ7K2gLUflRSqHjdIK4yzOObquo+s6gharNwn6rquK8LJMkqLgF4JfIEWsEeOiKWsoxlx5LjFeLoDkvZ/6Z5ZuxuQqELZzDCpV7o7iqdA5H97asnFHyOC0islsmKqdnCTt7nw64ZcFrcE58SwmYJ4XlqGHFITw0kmkk6QeFmPG9exO+EXW8jxNpOghBYmiGXrCsuR0jLkJyV03nO0GsC4hdfX/dPXM7XH9rXq9FK8e8Fru5itVWVvp+qt8HXXpq2wE2yC13Jy1HK/gwBJs/8qApFR93ut1ubZzK/PTtheKcaO0j+xZzieJJw1QpfJkrM+pEY+l3VlKhZDEI1XKqJdz8+ZcDGZax+rZS0lKxV7GyPNpYegttwcpbOeMlMRWKVdRirLOtTbo2O5pjSyjUfB+8ShAdSWRneeZaZrQRqqUrEpnC8XF2eBnT/AeYlirsuXvUxIHR8sk83oNrOcW+boZszoR5GzDGpoNAgKXELG6pNO9fr31Z4l2KuBb1+8KEK/l3a9uIWk9pSiCyJMiK8ry2B5i/ChTfGvs+ctwy/+e49dhlb+wPVen163nVzyvRjSmMsYtWFhl5LUIKbjraqe/emDu40SdNyLTGwyV088FQy0y570nkphSJJqcqqWK80keYLTGWEmRWxbPsginTdkzykALRgsoskE5RKnGWUI0ucKF5R0bxWbbX2/J8O2LtxFr0vbru3zleW9Ar/Tm6atsraemPL/bVql1bMt1670LriqRFGk7jVKLtVbcuyyeaZ5Bg3VS/bJgqOAX/LIQvWcaR15OLyilmRepINnuWzpHpCqVBHfU9f827mze/PW3dUDS5nOJch4I3tMPO/phRwwRpc6ZwkASR6wxmYagYChVnTdFDtUeS4LTjREDUSmwYq0TnJiN5V0uuqIQsuFlXohhgRTQKuWU/MLhKgb1ZZlJMXK5nCkArNsNdN2UjWuimJOoEaClV2Tv09hkSEhEfmQtJiRzMUpEdlQU/pqYIi/PL1KNLkWMVoKhQmIZZvzSo1V+X2slzbCQ72+QTZ1STOPEy9OJ8XxBayURyNbmCORCKB2F0FqXCPDSyQ2WYpVJW3nWrsACYl478L6mj5bnKV2wRsFYq8wrNn+KYRZFyxP21l1lW27lxrr+RA6te5eMvZKqdirzPqnmPuUOvyjAf/n92lPaM1ejVcxpxqmm+NUXV6tcjLGpJrpu//Ve1eGoo6yfKJX9QlR4r5imwPni8V7Td1b0j6dICgsp+lUGobLxucWEqWK58rxref21jKoQAvO8oLVhmWfmeaJktDTDs45RFMNgWDyxYChKEZaMJzOGMrWvvj5Ar4Jw2MpiEhnLrjhUASFJNoEhgpM1sPr71OthLwamPFdXvWE9MbXLJfej0cUIq4mp8GA2ASP1+usNad3jytb+a0w//w3V6P77On4deLs+rnvmFyYMK/APQZTqECM+BpYYGKeJh4dH7u/veXx45PHpSaI2chig0RqrRUFwWdnd7wZujgdQME4niSiZI8sk3vDUr7nTKUaSynneIaBMEg+hMZImU8Iiywagij9gbb+siTXihrTCxK/1wWqsWb0LbRRDTVVoe7UqQS2gz/erlnquNpQiPOSfeCZTFdzXe9C1AJef27DItvpMIc9MKfH48MQffvwZTEd/A9oNjNPMOI2MlzNPL0+cn5+YlomXl2eU0hjbo7TBOkff9xhjOd54+mGPMQbbSRW2Qqor75PXajJr2YHXvZUBb6KtjONlUFFK47oBrQ3ffv8bbm7v+Pzpp8x5sODUglGB/dDnyCYhxtZGiFhNTlsw1mCtJWUiyUTCGsV+PxDmA+++eY+zEOaJuIwsS6DrB+bFc7lMPN5/wnvPeDqzLAtOBd7f7jdjEULKYNPzZf6EUpp+GPjy+aOEad/esd8d6HcDt+/uJFz9cGC322GMo+8HtLV0XU8ic8AsUyafjsLtkKRaQ4wxE5ImwjIznk+klPhDJol3zvHDD7/h5uaG3X7H7d0tzjpubo/sdjuGvuPu5oA1hq53EsaajxgjD58e+PLxkZ9//xHCzNAljrcH3n/3PZfTMz/909/z/HCPVVMu3arE8IikHBi9GvnqnL1WDFg3qdScsgEE+f9lw9hU1JDdCYGXrHM/ps0eoTJpeYxlQ5a5dj0Pxauc52n2gOkK3rKRO0Z0Z0BZtI7Ccqhj9cDFKJujgIEMctN6/3UzXQF8opEzSNNK5bl1Y1ZVEdKQvY8iI4zRG0Uoa1hSwjiJoT7GyDSL7C78RsKzl8ONE0QjfeOsQutICD3W7oDIH3+aWZaJv/pN5K++v8E5zd1PgaMJOCzTeMGHhFaWfujRi5FUC4pXUsghBdwVSVpG+ArtQPYuylw8n84si+fTx4/4xTPsDty++0ZC3rWQ1mpl5B1CYr6MXJ6emV9OqHnChFm8hCaRFCwpEJXCaoja5D5+wySUipkurW2sf6bKRybGOegU7Dqbq0t5Tn6BBD5lfp6USekbMCNDm7KXvcsVOIOQrCuycqIIi/A4FF2yRJJ21oo3Tim0DaiUmENEp5RJNwXQV8N/fokCQkmZ9+e/DUD8d3+UVfXKGPTWeamaHnh7Xm434RLdDg3oTC24ztIrUZz5RC+VTUNKmZtDCHSXZWa8SMro/ZcvjM8nLi8nSIkXJG3YaC0ebiXkqVpr9kPHzWFPTJGn52fGaSIkCDm8LZXkzRRy5bG1UEXUBmVyynNcW1wcM9Vh0PRRUiWBVaFUKbN+rWs0sowi00v/FdVZvTpf1XNpt4ba/aXYRDHWbdZlOUnJu9fqnhsLQFZCrj3UzZhtjBKxKF9C61D2Yx8C9/eP/OlPXzCu5xA0tttxOj1zPp1YlonT4wPLPPH4/MSffv5JDEhKk3Khlq4fMMay3+/p+h5jLV03oJTGWofYarYOjPU9Y6avCKjQRCReKVXztFBw1X4nRUM+fPdbumHH/eePXM5nUvTsnKXTcNgP7DL3o3M2R1hqSV8zBqUMKCOKaK4qN/Qd79+9x6aFzzd3UnyFLGcXzzAMzMvC5TLz8OmjOKGXC53ydDvDcXeQsY2ZSiAm/DzhmSTlSGv6oefT50+Ssnf7jt3+yDAM3N6+xznH4XBgtxPahc4NKGcZegNqR4ySTlSc4YWAOoScYp9CNg5OPD3eE2Ogc45h6Ok6x/ffZwy1G7i5u5UCLbc37HZShe7u9kYwVGcrUbT0f+Sn3/+R//y//D1PTw/c3O5x3ffcvr/Fug4/TwTvWZYRa5xwSKnsUFTFCLQaoOpKTOtakQc16d+prIhUaQOqrtMcsYnuKYYvr0JzbeboQtqgk8op3mS6jUbnuF5bWhysEkEUr9awBBWkqHGGjMcl5V/2Mw9BoXUC1srPbST31qG//bud++XdSyqV3Atq1UUNVllMygYkvRroU1YWy9pPDbabJtF7tdJoU2SxlagptOhZUdMlMCYyTY5p6liWxJ9+mtA68O52z1/99h1KWR6eJj4tZ9KS8P5DTl1OdJ3Fe0Xwphq2Qgjr3LgSusXQ1AYwKKUxRtJMHx8fOV/OuH7H7GfhkLu5k/FXNmNNRfSR6CPzZWI6nVguF1RYMNGLnh0gKMWiBUMpbciJDW9Q8KUr+Z/pLygGJ8GFhfbGKrBa01kn+6KPvJxnYg/HgbVysmkNqhnLZlofaw1Ka1IIOcMJlBXDXgjCNwxrW63WDH0nOrlR6GjREZYohl2jFMZIQIxSa9+WiVaDbUIkqFL26peP/66NTRvo8oYF8aoL/uyx3bi+drftJxWQp5Uwt5TcjkmMUOM4cTmPjOPIOElKUC11mlPdtFJ0Tqo3+JSwToTsOE55I1dSJnJj/sxiMKVantBQytlr4dJQNP/eFkLy7mTD0a8wQWZryVYd5tW1r9Mn5Rly7ha6pqvzV09esUoX0NP2/zY6Ql2t6qJEt91VBBSpRIWpbJSLjNPE8/ML2vYkN2KjyiUu13/TPOGDRLYorbE2b+ZdT9gHrHV0nXADxSgVWpROYAwqK0K6KMnEdRctHfTW0XxcIi+MLvxgsN8fca7jdHpBWycGIy1KlXNWyC0zCG9JCNfIpixQm2phzllc7xj2O6KfiEYRDXgXQGuWrBzMkyi8fhmJPkf5ZMLIMp7z7HMloMTiZ2JMTOPIPI8YY5mnif1uz26/IyafCTFT9qIl9LDL+eIWpS0xBrQuBNABKJVrRKiJ107W43gZ8dmrvSwLzjlCiNzd3bHf7xmnGeccSwgcZs/xIAan6IR3YTsmivE88fj5mdPTCRUD1ii63jEc9ng/E/zCPJ5RHcJlgBh1FNt+b9OY24iBovwVroz2qJGeW52tzu3VrZQNMEqtpOGxGFy3k6qkIJS1mco8TM3qVE0b6wLKXpdUUsIUKUmFDbIhM+VUpeIo0lGv1TNKU1FViyqGphLJ0hrcCjYsc7Z5g8wplc9TK6FiSd9tI6lC/lmq5YU8L0KuHqdL+B6mtkVFjdZJaJNU4fdyJAIvp5GUFt7dDnQuMQwwWE+nPZrsycfSdxZjbOVqylP1lYxcx+btXUvniAuJIghE4Hw+541fcTjeZK9UDs/OofCkSFg8yzQT5gUVAzqGDcdXoU+OTb+/1Yqi2NaxqXOPzfxQiFHSKLBG5oUPwh+yhJijqNZ5ynqp7A55vEsBg7gkPEGMkwVgaYRLIF9TsnBKxT6DpPJFLyArppQ5JNp112CFzXxZI4n/r3v8mXerxobVtNJGahZrVGrWa12LaR2X7e2aKJn892qUTlWRilHGTDDUyOV8zvvGnIGsVE8lCVjXSkmlUSPVe5x1pBQZx5nLOArvmSkp7mXG5wIGrBgOvYr9Daap8rv8WciBiyzlSn5ut4+3lnqxDalXhqbtRdVA9JXhqqk81dhUmtFuFqkK05iazyipaFXSbh6/OjGo90jNvxgT3gumHceRl9MZ2wXsYSIpzTLPuZryzOVyYZ5GLuPI0/OzKO3GoY2h6wb2+5sNPwwJgglZ0babPt0o2KzKWxnHNbp/HZyEFFZIeXNy1kFK7PZHQhL+ImUMioi1ms4qnHM4Z2uxhxLdWrATJdVPqVrl1FrDbjcwXwb6vmfpevKphE4MT8viWSahP/AhQFwwSsiYrRUMtSyeGGPGUCEr9jL/x3FkmoXUfJ4Xht2J3W5PDFGq1RFzgZgO3ffC0WmspMnk/pEUJ+G8KxEqZYBjlAIUz48PjOMoRTO0FDwKPnK+u2O333MeJ1zn8CFyXKT65zAMJEctmtLO09PTMx//+BPzPNL3DteJ4axGoKaQq4+Kc3TFRM2Yt16zPAOutA8KZ2taP9qc3/68nuclikenRNRiXQ2xLtaM51adqkQ6tohF9jBV1zdK+A3rvpJW3TWGBEj1w1LpVWmpkVZIp2XM4q82Ll1Hrmy6bkNL0gQvqJXDVquUq6U1/GmU6SFzRSrlxVwFOKJNwlD494qRjWxwSpgoRi69GEiGGCIvL54vXzxD59jtdF53HsIEYRDncaasMcZUXqmChYsjVGc6lGuDUx2V1PaXFgqUUbjizpdTLSixOxyzDl36UK36vfeEeSEugqEKB2gRraHul63c3YZ3JFZDaJG4wCY6b40mlSpxJhsIa7ZUDHgb20fU8U6lT5q5oXNVxxhl3wNqSmSKxei1ThathLc0ao0lkaKGkCMfWblYJaoqvu7vph9qEMmfOf67Njb9muOfDSamdUIVD3kBS9fGp5LuUMK5iVmxQTiLQvAkpfBBBMt5nFD6hFKJ4KesXFv6vsuTBlIMlddGKeh7y83NAK4jGcmjj1Wh/YqlO/+/BQ6tzfXV+a0wvvocJLpCp21Z9eunrQtfNeCoKJNbo8umBSmr2jWNriGVVfWU5v7b+V8UxyoEK/cAUK364j1LWrMsMyEqpmVmmSdCECNIPOwx2tRSt1JS3WCdlXKwxuS0rzUEEtYqWTVEVUmJytoEpVhjIUs/vJ69JQJCShIL/0SI4CMM+yO/+au/IfqZOD2SlguHnZA6OmvoXFfbbp3FWfHUWWeJ3lQl3ShJJeut4+72js5ozo9fOM8XFOCsbLR3tweMVoQQuIwjPvg6wimRUz8j8+LpulmqzCySEiqkfpEYFiEZnyfG8cy8TDjnOJ9OPB+PdH3Pze0L1okRz/VDFXbyU9P3UpbUOpc9dR7vZ+Zp4ac//cTL8zM+SPqFtZbT6STVVt6/57fzTNd3TNMkxO99z+PDA85ZDpnXyWnDzjlSSHz83/6Bn/7Lj5ynC999/y13391xd3cnno9FQJIQm2duEKUqcWaJ3il2pGvjqMpGnaLMFw/6ds1tlYeqnKfUVDtMNBfkDaEYoK7mUgUhJWJJIn/EFpot4flZZe4qsdaIUSKJV05riE68TaViUFHMit2qXF+4PtrQ3xUAfcXcnfutwMd6XV5nhehSst8VJboyQaO8ymdCmLoaQMs81dmAa3L0X6nSorV4/2SDlU3fWktKMC2KeIKnl8jD88TBR4YBfvO9YU7wHC74GOmsKCwpxaoMS7tC0/+vx/eNjsg/c7U5HzifJK1Ca4N/v6CN5NxnilyKR9fPnvkyskyScitW9lT0TYKWEu9eKZYk0Rlt4kprCq1HKk6DreKHWq/VSAlfFFU5E/6mmZgCnTJYVbgmWkNPIbLPJKzFmxtXrq+YybYqB2fzTJTCaSOcWwnmIHtmqUpmFHRa+HdUjrCRaCZDiRAM4dcBpf/zHG/v7X/2kua6avTefL1qMwk2VTWvbrR+Wg0j2YCRDUcrfpJxDiHkKCcvZN/Lkte9QRlFKJ9lo6VByszHHIIzLzMhibfWdV2WP6rBT2K83O16bm8PLFheohb+DQWlGlaNvnyl3DWe//rLL3RnNcKpaqAqyn9rzLpO/GlvWxSSoiRvj7qLXI0RrVUmG2a2113LnOtbF0VNU1Jr1vRio41Uc8vYyC8zCSXp9UgE2m7YVYValUj77HXvuoFh6DDWSUSMM5nQVmXDSMjGer1yuOmc5pFxtlIKE8WuqCAr7mWvzKAwFuNBzFWEF0BhbcfN7Tv+6m/+huQXjD+hw8xu1zMMA9ZKZLRgKIkIl3LwhuJgoRibjGHoO5bdnpvbOyRd7sw8XSAlemuwSvHN3Q3OiANtXiZCLJE0Mq7zLBWG58XTT44YIvMSaiRuioGQIqeXZ6ZpYjyfWeYZax2X84mn45Gu67m9vcsYqsd1fV4rQuBsrPRz3TMTXC4jl9OZcRz5449/4Pn5SYxNRiJNL5czN7e3vHv3nh9++1u6rmeZF4bdjv0w8PTwgLOWXdfRdw6jNL21RB94+PEnzj//jBkcP/zuB+yu43BzZBynbEiLGRulyotbKjNXGohmHb2NGBSFh2bFIKrhw1xXRmqiuetays9AlSIkCpUJtFuppjOPU0pgTMoyRSJI6gKquCs7wnLF3lDwSIws3qOjwhmV51NRHtboraKzlDlvcmXot6L86u9FDl910WpUa87P/aNypk3SKWPVhCqpchk7xaZgjyypUj1O45yr7VOVImY1FhZ5azOx/OnsUSpy2C/Ms0ej2PXw4Z1GdRDDzDIbnBskCAOYjKm6tuw96770Oo1u+/5KrGqUyBuA8/kkTgZtuIuBgp5q5kDmPPbLwjJOhHkWPT7FHCkvka0+RSIKmzQhrUa8rx6p7HlbnKUrZ530l1FKMqBiZEkS+RtCYJpnYgzYpGqtuGIYjBlDga4OYSk0Fqo+rFKbKcQGHpg8Xs5YUImYPEFLpKVPgj+1UriyH5ZqoKkQDAr2LLrvnzv+T29s+t9zXO3N62CwbgYSdh9ryfeUJKKpVDWIOS90mmamUf5pBcPQY6xhiiNTLEq6TO4lBF7GCaUUVkuqwWFnud3vKqltDAsx5KpGRrHbd7z/5oCn40ImKlMlaqEBSFUGrUJ3NTZdebBQ25f+St9UY1MT2vnq/I0hKL3xPGrEwnrm1fPydU1uUKO4r++1wrStEC6KLtBE+BRlPApQch0+KeZpIuKZM7lojIF+N9D12cikchRHjlhx1tE5J14prTAqK8G59T5kgKBU5SRKRsLCxdik8/5SDEn52EiqbKAqYTEZNy0hMfvE/uYd77/9IBU9Pv0T48sD+95we3ASJWQkjUuinRyuE04m13XEZcFoMTRYBU4smHz45jvmw5GPfub8+BmlEp3TOKfZ797xw3ff5KiwMUcPeeZFPBHTKCWn52XhMk6EKF7meZHKQJdJDFAv40VCO43BfRGD6vF4w25/oB8G7r55h+s6Dje3HI43OOs47oUMs+8Hhl7IYWOG2KeXF56nmfEy8Q9//1/505/+mNPthLT53d07ht2O3/3udyxeANKw+4zreilZPAwYozkOO3Zdx8F1fHe4wST4p//X/4d//F/+jv79DX/zn/4N/bsjw923xDngp0V4m/xCcpaU7GrkVGqtBAmUYgBFMa9rFIl8K+vj65vVVtEoitP1am0NuFvjK7WkbCERF9lVUtzSZhWVEGsoxuQ1GsBn5a93jtjlShwFLDUyRwjYdbMO13fevmgT8dL0T0V1+T1Xg+NqBCsKUEq5AmCSVCrx2Ar3RYgxpzCMq5EugXWuVik0Rvg5EolSJUvntFZrJT0gRsV5NPgA7+4DHz+fmY6O/X7gfzh03L9EHv/4zLhMHPdHOide9BLhBL6Rnash8A2/wOvRT+INTdHz/PzE5XxCacO3yw9oY7B2TS1LWZFfponL84n5fCH5BRWFn0NHWTcBQCXmqLAqoFG4rLy3jaoqaWosPM2+UeUtAlisUlgtRLo6CNl5THAZRxajoeuxrpc2VMNg5kLIJcLbkH0UkBXLwi1yvUh0BvbaaKJSzMi+mpBogeS9GOCtpUTOqpRQSaGsqgYAqX75f8Xjlw0i12eqr/zWbOvyS16j8n1ex7xlECmXtIbFshZTxU7ey14x58iYaZ6ZJ0kjGnqLNZZlnrlMs0RzG4NFMU5n7h+XHO0k69pqw363Q2ldK3WRjTzGaA7HHR++veM8w+VZ1pdWBk3mD2qigt96j9IVX0FA+bS0+Syxes2LElZ6bntl+UXV+xTc1h5r214jqO1YFQNMaX5an51ahVptzle5qEGRz8X4ZLQlaVVTn5LSzOMEi8cvMyobmw6HA6T9quwohAxSK1w3VPqBYejp+w6lTC7goqqSq7VBirpprE0obDUcKaUIJmJ0VqiMyXufzDGVQGUD+7wsYoiMAdBY1/PNh+/4/vsPRD/z8vGfmE8P7Iaew2FfeZtKOr7gJ5eNAwY/T7naaMBZw2G/g3Dk/Yfv6Pqexy8/MV2eUSmxcxblFLf7Hb/9XpwP43whBM+0LIzznKOYvBRJWbykgsbIZSyO60VwV47gDlH4Xt3nTxhtOd7esN/vGYYd795/Q9d1HI63HA43WOc4HuWn6zq6rgeoVR2Xeebl+Ymnpyf+t7/7Oz7+/BPaaKxTWOv405/+wOFw4De//R0hBPph4NOnz1grGPqw2wmxv+vpjWWwjnfDHhUjP//df+Xpn/6R97/7nr/9N/93br7/wONp5ul0ZjpfsnOdvIdnQ6bSr9Zf0R8KBthunGmzBL6W0VH0kmujbfmtpiIlKRCSVDFsZPSvDa1LJuZ5KN6LlQJEFcNy1t/Ku6UUJRV1kQqBvcuFizb/xNgdKdHaVEPT6/dJr/qoRLW3/VOiTdpI+2IQs8ZgrK0yqRj+awRj5i0VvsilOhFFDhj6vq+yTO4pEcUqUg0c2hhsdk4+Pk88PU/sdx3jZcZquNnDb763TAEe/UTw4JxECWqlsWbKhrpAIUjfZMawlYCtjljwphj5pPjW8/MT0yI8vCH+gE2uEbdJ6AZCxI8z8/mMH0eJDs8YSH4klnx/myJdjLUqXenbN9uX2GApmVc5AixjXKs1vQavFCFXlvQ+cB4vOKPZ2a4WRSgR3OseUuwTiuhXY1PKNAXVoJkNdmTDl1HZOGoMxioWlFR0VZEYhY9UKv9KoZc8swUzJ8HOhWfx1xy/2tj0VsTLL5y8/t4uCtqPi1LW/FDFYPZ1oPTmAmzv98Z5X9+gi5h480mrssgavpxag1QBA+n1ncXau9qti3VYqTUnVjZLSEmqBagihlRaF4JCvO1Gwg9TUhuegbdGZANk3mhbe2Y5p/5OuloybygeX7tban/fehhkLa6peY3euQFyRTFo7/P1jWRdvWLxzrdTbbtzf0Qp7+uURiWFb8INizA1WhMx1cMgyrKkoK0l7cmKUYCo5Wdus76K3EgUy7NEbKU8H1JZ7Vdj1xoOW2BevrPOMewHol+Y+h1hHjFuNXKIt0FhtKRr2lwOvpBimxK1QiLFgFaK3f6Ac47T4Yb98VY8zTE0z82lMWOglIZNCXSMRLemQBZ+pRRKoXkpSy78Ziqnv0hUUtSReZ6yUhpxJ4ddluxxEW4HqyzOZU9m/lwZURxjDMzznFMgRUlpj3mRv8/nM+fzSSJE8j1S9noarVFLwFtLsB39FDAJpsuIRKco9scDu9sbkrXM04xfpLrLavi8VgZaEL8Z2TfnbxnY9dtmzVytpbdvqZoGlI2/iW5SZeMt4KQNCV+NO3WjbLWVPBdrSLiqGS0rCXNVjKif5JZUg2lrbLr2Oa5tLM/LkuFadjfgqvaWWqMg12gB1RjWc78lUVq0FhlaCE5X4/y6rktkk9KlgqUgmBg1i0+cLx5rYL/vGHpF50DjhWQ0c3bUd1ZrfzQj+fr9f+EoV8cQCGTOGb8QghOjIXGVewkBId7nFAXxHpd9qMioEhUWUztPmjnYAKJXczGtpJDXbyaQmbU8NuBLxFIq8VdXvbFqwhWg1/euuCB7M1kB33qDPG6s0W8pOxtKzN6qVKxvVbeYKwXkn/vYPKvFPbR7XLsnb4+636t8r3pJe21+x/z3a/XqbWmUmmvLKttG3qxCT71xxebmG3y03qPOgbQdm+uWUNF9Y6RCQJNwRPgaYaqUwgSDUsW4v+XLk2WoqsHJWoMJCdXwTBQZ9TUpvRr510FLdU01zd68kfROvbYY6V5Pge3vX5H7bwRB12dsrrtuUnPWn9+rivmwMVK1r5YkHqBTioAipCgcumTluDQy1wYvzs8S4aQbWZtSJIaANiVVUdaw8PblxgrZ5poyl1NakoryD+G9KdEOJVJS50bHGHJkhmA0bQzOOvpeE71j6gf81KGtq/jAGMFOEnFlxNjQRDZJRMK6Bowx7A5HUCpHNp2kQFBdJyIZYwyEtKCUROxLJTlxkmhV1nSm54jr/b3PUSiZ24mU0wR1qkbZlJJEHi0LhT/SZQOsC4GEpBYrrQRDoWrq6jSNUgE1hpz6LxFQ8yzO8Mv5zHi51DkRU0+K4vbTShP0zKQNs7HofkanRPCernN0Q0+/39Hvd6jLwjJL2jkUrLtGOa4z8HqO0kKLV3O7VP+9ntWtI63dA762/gp+KlFVZb9Yt8gVO0m6UgYuWZ/bhN6+cQhuunYW5sVQn1X2gbeiK6FGqGzetH0DtpCwbXuzj15f89a+3P4DJB1Wl4jwNgJ0FYPl99JHxkiFveglO2NZEpfRY43oLLtBkxZg9kJQneKmn9/CUBud77rLa5coNl2XqI6NytsXPeAqFqgOkBhykEfIaziJMamR92UMU4Ko1qp0Zca9jZFUxTJFGG++T6k678pbpyRBDIpEbMgly7Pl94IX2r367f2k/L3RP1Nao9OKbqCad7xeJQLS30Bzf/74CyKbXr3G64n6lpGJa0BXOlmvA1RxzNUAXB0VUrUW6q8Ys7bN+rrB4no0NoOUMs1rU5IyiwJSpJZRJANdbTW2twIqgmwaOiY6bYkpMs9CsmaNxdoOhWLx8sTBzKR5BmuwvcNYySsfZ7JXyLDfd0zecJ4SQvC0Kk2t4avB0o1Qzv8rQLVMmAb9VaChQOelQSkjDNk1zpuCsO3AVgmvc0S1IHhdTK8nrV7vXRZQ6Xu1nlMelFgjrnyMxJSjgZAyu5ILHVAxsg+KH3TPmBIfQ2JMgd4KsW+IgfGS8H6uSo1CctIlfFxnTpfIOL4wTies6+h3O7Qx7HYHXDfUZpd2eR8zCZytynslPjeb7QyFEg+P0viwsMyzvINRWG3ZHQ+8+/YDMXpCnNF9jw4LS7gQU+Km7zn2lsPhyM1uj3UdxnVoa6Hv2B8GAejJM54eGYYDf/u3/w7XdXz//W/58rf/hnmeeH56ZJknzqcT5+dn/DKz+ESIE8KnHUlJQoKFF8fhl44YE+MsaXTz7CXVIUf+FYL9aZFoj+lyYbyIp+H5+Un6cL9n2O/pXMftza140A5HjkfhrLq5eY91PQ9fvvCHH3/kdHphmk4o5Tkeb3j3/gMAz08vXMYL9/ef+Ye//y/s9jv+1d/8DwydJYSFl8sIKXE/zqR5wcbEPy5ibBr6He//6jtuf/sdf/3v/i37b+748fcf+fH3f2A8PZHCgjOlRG7mMooBdISkV3ykyoiyysK0bhRFCSmGzpRSTgvJIKxspvV+K3RdJXGjDmbgo5uNtmxsOm+ZKQrpn4DXSCwKUAzkxO712oL8E5CkAmKIMHnJL5dqOGKwTSnUNa5AvFpNRTmFpOCGsG5fqXkLcl/p8rjcBlPSYhXElIELNAbc7E1MhaMlEYJEopbKnlprDrsBay1d11WvXKlwZ1QiaqmAQoo5uskAFh80PvXElDhd4D///RPHveY//vuO3/xwwMfI3pxE6Yln5mUkhCjRqUZS6kpU2ZU0rmt+Pbb7q6QN5kS5mPBRlIOnx0fmWaoTdX2X51Mn6XHTwnw6EcYLGo/Rwr+m0USFVPZSYojxeQQ61crV9NVWtW0uEaoxlb0RbBTeiU4ropWKQ5fJgyJXgzQSVYSVMYuRsAjQMTqnxShViU3bVIoQPbByZrSqRSE+tQiHWoiK0UsIflS6cixYJK2u7k3S+Joq+i9y1KIabxiYC0a5AtCt0sRGqVHbgaonlV9WZ0q5U31u2n569QBWybKdCSrnxX7NaPz641TJ3UNODRCFlVw5WYnMRKOsQ3cOPZmcIhUJy0jySMoTYkiYLid5TuFfUxCnCT3PkuZ+I+WyUzYoExUqRZw19L1lGAwLEhmjVaoxC+WtSWvFyraPSo/U31vEX76pGkBcP1fynhKwtxYPWfv8ehCL4XW9/4qkr85K28+rotxgiqTW0WofVzFiY0hLiEIc87pYkiLmlKE0zrB4DiHxnXbMKfEQAjOCoYahJ4bI5XyRaph5/kmahuAnpYG4EJPncgpMWtN1Pfv9Hm0MgxswVirhCoe/VCkMKeSomxzFFEV+KaXQqXyWauGCMnOXeWQ8vYBWdPsB4yy7w56buxu8nxnniUlZoaRQiagVu92ew9BL5PWww3WdGKLQ4Gd2w67ymszTBdc7/vV/+L+hFDx+/pnHLz/jl4Xz84v8PL1wfn7C+xm1TEDAaKnKlVLC5pToGBxh3wuGmiZm73ORloEQIvMc8F74c+YlkKI4xsbLiDGGp8cnMXztD+z2e5zruL29w3WOw+EoEePOcTwccdbx5dNP/Pj7v2ccR4xJ3L47st9L36SUeHp65v7hHts5bv50y26/47vvv+em08zLzHk8SZ+fJtJlwQF7NFYpbt6/49/+P/8jx+8+8O777+lvb/A/3fP5559JfgQVcL1FG0TpT4qokWgJXcjB81TNGTu6wVBlgdQVmVNgY6IhYs7IqOg7eVZovaZhrf+Xf5s0vrpII+0aq9G3IFQK+f4xSOXiRsrmZ+kqiRPgo2IOEv1THXEUbFcKMGULhoVWr43Zyb0xAkFD1VHIsqUanLQhO1mJ6EgtABN8jrpOccvrmKRqXgyQKET5hsOhb6g5DK3cEoNpTl2vWMqQetGrpujxPvH0HPkvf3/P8WD5zfd3/PXvDnx5THy+fyRMlrjbE9MtCYluNLpEpJXei+s757FV6Vp+rnJQa0mZRwnNSZpgulw4PT/glx03twrrrBiZFvCTZxkvTJdn/HxBq4Az0qcGyayYlSYpRVAwS2gCVhWdVa3gNa2OlaZhdQ6XiFedN0MdE46EIbHosnNHztMkKYna0Ltunf9lPqRY+S0LJtamJNxJm0rkWoEN8iNBysTrUTB9VBFrFFHLHhny+4U8P8qoJ6iZFiiFvuJt+9rxF0U2lQdth7ekijQGgmJCvjYl5/Pbpb7OGuqnXzFjrPevd2qe96veYf399Rb/1vmlpWn9uxns1bhTQhU1ympUyKXbg/BiWK0J+e/gJbXBqBa+IKFzwaM0GGWxRrEYVaWusZrOGQIaNa0C9ZXRpwGrqenT65e+BjSt0C1/VdiZGrbj3A/XBqc1ymFN5xELamtPV1993trA1VNRwFD7/frM7IVLhdxuzTkWXSKHyaeEChEVI11U3CiLUZEvaUHFhNYO0/eE4FkWKyHXqSykHFFmSmqQtGrxMyEEXPToXF1C7fd0TpTyQlw+Ry/CICaSWKryVM027qS2c1dJRIhWSnhLcglomRMaN3TsjkdijPTHW3yMpOlMOEsYu7WOvuvou57edTjnUNaC1jhj6DtHCOJBWKaR/e7A+2++Y3+8oRt2DDe3TNOF/uNPjOMFbT6zTFLeWJsTWi+AxlnZRI1WJIQEMFpJHXJWCCQnt6C1lnQ7O+O9Z86VHEMIwpW1iMfxfDmjlOJ8PtMPA13XMU8jneuYpwvBT3TdgLMDQ1KcTyeeHh85n08sywxE+r7j/ft3xBg5nc547zlfztzff2Ic9/zw/Q+Qo6+WSQxf48Mz8+mCmhfs8wkL/M2//te8//4Dx/d3vPvuW/bfvOMPf/jC88Mj8/hCCkIarijGoczdlA2gqXhnGqUcqpTM56yzfrOOioWJJrKglVlKbeRwe2zWorr+LgMAHaXssVLZCJEq4Chkm6uekgFPzBsWEJKSEtZaOKKSkndPbFP4tEzYppUJFVcldiP/m8epq/2iGJMql4pGwFK+vqQENJ0sQCuHhMvWIGk2fdcJub8TYlZJJ9yScWotSos1SrZZLSHni3HMy8zHLyPni+Lfe89+UAxdpNMTs1KoNBNy2nMbdl4NzM37bresdV5sXqQ1QuZQcr8sjOMZVMKHmUTI8CS/t/eEaSb6BUVA62yUQ4hAq3EuX9kC3WK7eDXn2ja1g5WfWaqSlmgCCzitWALM3pOAJWSFESMlg/MeIVzNq3It/XY1pFm2r8YP1fwm7Sqrz2pxYCktSktUxUC1AnNp68pH9i8d2bTxe+auzjamde6rbZrV9dR49WGdQs1cUtd7a3P/NxDWFlWpq/Oz7Hklj9a1WA0ZV83e7NGs3v16+1J6XEvZ+OI5J0lp7BATRDEMxRhZ5pxqZS1G96gEMSv/3ntUBGMQQ3pxW+cIX2skPdwuEj1TFNrKm522eOOtbi+GptbDXoBgW3Go9lFCIn7a+6Yi67ayetVT2gioNcrljRHaHLknNx+002W7bsrbUA2wBW+VyqchidGYGMF7WDxdTByVZiTxHEPGtw7XD7KvT3PD4SFPK1Hj4qERyeN9ENtrSgy9QysxvAhGSYzRV74baZvIZUxpE6Qq/0skeK0XCIg8XOYJZTSD3uO6jn63Z3f7Dr/M2P0t+jKikicm4Z9yTvibhq7PxOGOEt1eqBR8nlfBL3R9z4cffkPXD+wPBw7HG+Zp5P7zF6ZxJCnDNI4ibypPi8bmNCmJhk8UfTrGiLWSUjgvAa3FcD5PAb/EzPE0ElJknGcWLwZ9fT6hlGK4nOlPGUPNI851TNMobe16rNakruf08sLDw71EQ2nY7XqON3vev3+H94HHxyculwun0wuPTw8sYebu/R0Q8DEIbYIPzF+e8U9ndIj0PuCM4ebbd3z3N79h9/49u+MRO+wIMXJ+eYG0sLMJa4szQZhZK3dTxiMiE74S3XL1m5yiruZ2u6+W85qZv3EyyDlaBmfFImVuQd2LQXQCkq6Or5QSKbzGZGTMUuVFIlfMFAegQdXVXXeF4lRs8RmrznX9TnWVVaxUIs9Vfec15U1VkVgiAdn0A7InxiYzLxv1Xefoe7euZVY95xpDEVOOIrXoqJmVBRzjlPj45cJl1Pzm+yN3d4ZpTqgwkmZNDEvFSqJTb4Mp2DhP8jvWjaf9fP2+0FqkIE6rZVmYpkt2Fh8paUIxSAZHWDx+noh+RhNJSjCNRmItFhQp06CEPHqpmX/rFlmwbKvNvh45meoyBiYb/gxSPCnEyBxkfS/hikajGcO1gnuq2L72Q8HEm718O+QqOwU0KRtIc/OVVDdt9RWKilLmtJI58mtQ1F/E2SRteLXU5fOMoK83wWvFSDU/S3DfX3Ks4P31vX/9scLPArDX90prZ9dR/XpbShpRSjkMroKc7N2JZVHHPKgCuWKUFKGiSGmlQVuStgQMKRmpUqBdrthwFTWRJ3iF3Klpb/umap3qW+DOerPywuXv7Vuun5V+b4RL+3uee+3DGyXh7U5sr33z8azArhVsm1DPGKvBqRHbaC3kouP5RFg8L/cPvPz8wJgSJ6UYAZM8VkFCynp2rpOysEGAVAieFMRoFEPIgEDAs50n5mXGGMMSIufLRXiGhgGduQiMtayTaY3IaLt1JUVUdXxCCBVI2J1DWfEw+CAeCdf17PY3TDFwWiIeIbIzmZOmVKYr3loo3DRlyCPLsvD0/My8RB7uP/Nw/zMx5+na3R73QXPcHVn8zPPTN7li34VxfCEEz3g54ZdZiImZISRsBtJFzZOqQcKhsXjhvBLiO888y7v4TOiriEI6GgMvgLGGZZ4YL2e6bmBZEn2/49Onn3l8fGBZZiH6Ph443hy5vb0hxsTpdK7jP44jIClISkmkmrMdJNh3PXHx2AR9BKc1f/O3f8Pv/vq39Le3xJg4P194fnri4f4zwV/Az7KWc8RfmdbV25SKB+Hrcm0LZn7pkLksG+MvKcZlzpd18vb6qUZxpVFEiehJKYcwb8+lXV/58xKKrIwmWZeryuWNRuX7I17idV2n7X3L5qsamaC24Kh4ZlRR5JSkacgek5W6bFzeACdyRQ9rSEmMStZorLEN0Wes73fdgyUNK5EBRjZUpQRaJy6XiRTh8dlz/zgxzXBzVDinGeOZl4fPKG0xdoe1VgzYvLG5/+otrxinpa988IyjpDQsy5xDwfNYhijcNyXdM88bxUqqblEEpVCJTG5ZzFUqK8VXj09v/f7GPGzAtNEalxXLOQVRXMlcTYiTpe5ZRdmNsVEc3zjK8/QKzCuOKPsnoNGghaDdxCTAO6X8biU8fOvh+5c+EumVN7ZGdLcG41ZZUg1eujJo/OX451olezNOibKHbtq4mbjFmLuCaNXOixqaeaXgsVWsCk+LGFVzFR2jZasMPitzgp8EQ6VcISiKc07laoZKlKCkpXplZFW6auEGaQSlT2vDc9tijFmBUa/GI7/xivTZXr/2bWtQLJ+uUQxbJ90ahVqeWdSTYvtvDdUF39W7f20SNPuLyu+W8g0qhsp3Su37f8X46v3C89Mj/jLx8vnE6cuJGXixmkkreiLkCB1rNKrvJO0r8wMu88SC3N+H/IaZRGZZxEhvrWWaPH2/k6gGK9wt2hZKA4mOxUdJBTM6c3yuc0qKkqxRG0tY8DFgdFaarTgQYhSTp+s7hsOBNJ45n050GtCGYdjjXF8NglWpgkxAbzJpeWCaJ+6/3GOs5eX+E+eHT6SY6J2jt47OGI7HI35ZeH6+Z55GwTTjhRgFQ0kfBPw85/ls85AKbUaMic5EfIgsS8BYwVDdLFXqJPoz5PkZWJYp7w0pc55NjJcLXdcxjSNd13N//1n2kpQ4HHY457i9veXu7hbvA/cPNyyLxxjL5XKRORKlCp/WBmOc6DbdDr7xYmTKnJh//e/+Db/5278G6zidz4TzyPPjA5fTE1oF7ODBiHFHI8pxu/7XufvLQvrP6X/X+27FZr9wr60OUTTFVWeqKV5aCkClZERGaS10DbKhsaZlZe7LXOhi5XxK1TmSYqjpqPUZqdWNVt20vFdZ/EUNVE2/beRdo6c5m53hoTjnc5BDKsZteS/X2UyaHomESj9QmrBiuvo/SpO0UrI287khSrVHMRp7np4W/BI5nRemeSEm2O8kSyfFF16eviApH8KfFpNERZX9RnDNdg/76qEUunKQyj+/LIyXEZLINYr+6BG+I78Q/EwMEvtddG0lGrhE9+Th8Hk8auzbxnPQ4Og3WnstZ9dotYQ1hk4bSbVdIkWFC6XYS3mWWudrG+1W7/nql3XW1OJFTVdqpTLOjvhgJFADqcBJ3kf1BrusOO7XHH8xZ9Or5a3WX8oGfb0Hqs3P/P8czfQmyH3juAaYf6lH8u3z23faKmqCndPmrPp5ar3Xq1dFIcTLSRXPuWx6KZRNPmJUQhGIcUZyxJ0QdWmNMo5kLHNyEAwh5eoQRqGVrd6P1lItjcppfWVh5BSRMvmLEG29VhtrRzGGZEBUNtYiRNp+Lz/bf6sHPuUFqnI7IaUSgXTd31uFW6nXgLa2uQldrX1evqeEE2aBXoRmbpsPgU8Pj4yXCw8//sTDP/yE15rzfod3FrcchejNaLq+o+uclOLMebvT5cLsF8Zp4nQ6i1Exh6ZqrVBWDDv94yNdN3A4HPnuux/ou57d4cgw7AkhMI5SdbAo+5QNIfdf8XRJNaXE7GfGacRYw2440u8HrOtYcs77sDvSD3vul4WX0WNSICJ8R8ZKqWGtpeJOTLKTWetkQ1TiSZrGkY8fP2HsEw8f/8DDpz/Q9x2/+c1v2e12uO8H3CAey+fTiXlZeH5+4P7+I8s88uXjH7icnhnPF0J8RmnhdSIkojMMuYrcEgQohRAZpyUTji/MsxjULuMFnyuyzOOZBJxennKbLc46nOu4e/eFrh94fHzm/v4erRU3t3tub498++23fPf9d6QoqVTDsOfl5ZkvXz4xTzPLMoFKQqK5u8EYQ9dLn/a9hJx3Xcff/vVv+N1vvmOaA58ez1y+PPLp55/54x//EU3gZkg4kyDpDCz0RuBLGVuudbpXx7WxqY352a6L1ZN+Dcba9UpKVWa9JeuqbC5RTioTQ2ejQyTzEKSSirCCrMKF4UvotbMwdELOGnSBGpV7QjdgrUQYlUZslLhscCrGN5XX9+o5k8o/Skllk4TCZENvCEGKKJQqKjnCxlqLTlJNqOscWivhrzDlnleVM1JW7mhAW147MSX2Q8JZxzzC09OZs4n89Gnm/fsXtLZ8+DCQoubvf3ziy08XuuHI++//Fa7rJHVCFdlfReyfPeoOWg1yMibLIkrfNF/4ZvyGEG5IUYEJBB+Zx4nxdGKZxipLTZbFGvHIBaXwJJY2vakaa3KXfG1vTVQAnQe8GkBSkD3HWYd1Bh0CM7EamRYfsUqRjHjgyn8xFUNUqrK9PCs3pkyddQ6p4sVuvLUoXEqEpHAuSdnezL+QknC0GfXrPHD/XMdqyN18us6Jq/1vq1Sse+91pNyrW371KJB5+1m68hh/7Vj353Uff8vwWG05WRkpMqmRcKvCpjVondOxJazfWkMK4OeYMVTIZagTunCVlWJQWuNcj3UG4wwhG8BDKobUHGGY03OKQ0DR4tSU9w1PimtFzYqJGry5jTra9mwxNK0yLitiqq2Sq6ryUq9slKdUO08+k+eFip/Ks5tZUv94ywFYFezWmJejp2VMSpRhzLQQjVKdnzBOEz/+9DPnp2dOn585f34haMPluCM6yz4sQr2gjVRE0zpjKDEkvbycmeeReQmM40JCooRMJeMWA85+f6Dve/b7I99++wOuk+hsay0+BMZpIkZJ7ZA9QktOplqrd4XgWbwU8pjnicUvJA3a6pwSpzK2i+z2B5SGly+Bh48jToPSHYfDLV3fi/E6z1vJmFcMw0CKEWM0IQbm84mH57NgtqfPTE9fGIaB3/7ur9nvDxj3O3Qn6UTPL0/M88zz0yMP919YppHPn/7E5fTMNF2I6YkYAq5TmGDpXGLoQx6fTOAcIuPoM5H4yDTPOYr7Iil2fhHeSeDl6REA57r8z3F7+57OdXx5eOD55Ymu6/jh5ttsaLrj2+++Y1k8zy9nkfckSd2epGKz6xzGWDo7CJF7P0hxl8Oe73/4Xt79uw98/817Hp5e+J//13/i8emFj3/6I0/3P2MN2NSROo1RwitaMHXdi1VaN6M60VPWJdpFt0aTlLnefLVeXtYuX9vbVj0JqHQG8lXGQ41slsAAeYjItpxqGoULbsVMceMIT0rSubz3YDS6k0qMKQTCBiwWg7B8VmhC1qarRo6U85t9Mcs7UHneCDbrewcKvI/EkKvNLVkuZIOuMTrPcYiSVItSkllTWlgJu0taeFp5ELXJcktLRckYIzH04vgPFz5+XOi6xP2/mjhdJkJM3N1Fhp3iy/kLnz56um7H3d33WOsIcWHdZ1Ydvd0b3xjK0ku5KnLKNB6BaZx4fnpmmRfu3n9DyrxzIRcAWsaRebyQwgTEjGezNE4KhzgyQsVQmoAE8hcp/vV5Vrqr3Tez7hCFjgKlanGnefEsDSXEkjOlCs4u61MI2iMpbg2NZXxSReh5j1Cs+3ijhxqtcUpSp32U0VdRggF0AqPNurCu5uuvOf6bqtFtsdJKelU8dOvafwMQVfAoCg9KidJyDSp5rZBx9d2b5qONwFFf/65pU2PeKK/05rPV1W8qP0Nn8kCTN7xEynwCRnLByXnw0eSJUlIshPTbFE9JQtJEYtngiqIpTyuTgo1ldxWUqwdmlbTFiLPeJ9XFusGN9Y+1Z9rA1BZ8XEc2rT+3StWqY6r6XPl1fXBrvf/aeG+9gaV5afvzK9ellJh9rgCyzFyWmaA1i3dC7hY83i8YDClZSMWAJtEVuqRjFAU3RoxJKJXLpZJT7OaFlKSSxzxNkKDrhwwU10o0q9cm1fFsvZBryfS84eQSos45iSipnwsXizYGtMkl34WILxXNuXZV2hoTK4jNAJ/AMk9MlzMqBQkjtYbkLEIEKd4JlKLvB3a7A8YY9vtjJtEzBC+RX3HxRC+E4j4bA5Ly9T27KFU/BPdK2oz3hfhbKnjEFCXaKUlEUvEUXcazgK3pwpIjypSW0r5ilJJy9a6T8HchKAyEoPHBE8JCjLYKW6mYYbFdh9sNdH2PHXps3zGFiWmcOJ8uTJcLfp4kL70rKWJllWx5yL62B67nl7n5Z05svl4V6nU8VV5oWznYLui3bpaqzNq2pwEvajW85G+yfC/GgbyxNfLkzaeplUfuTeNXs9mV/mjbsH0bVXUqJU1pFLTt22sNJTUnUcgst333Vs9sT5I/NTlSSie8NqSkCRHGKfJyXhh6xX4n5xoViF6AVaoG/fU9175S109ufr/WJIsQXddsCJ7gtfwMAXRAETNHYMwpdy3PRAMIyRi+GPFJVcG87s+vgaXGzFAdRu0UKPPLqNURAQJQg14ND2WxvDmvm7+/dqhm3rSflUqJNQK2aXeN8KhAbftO//86vtrXzfqqu29RXMpcUlC4G1HX17b987V595e9/dtOx7RZq6qcd60MvjrW/a8UuEhaKs4BYDUSdyc2hZiSkC8rJTw62Shkc6q7AilSgRDqR0A1fJulP96CGdUhpta58iZ+vH6XIsevDYW8GoA35Fv7XZEOr3YTUlJvtvmqEZv7KrUS0taxKeDs6s3fulv9NAkOnXMFtWlZmJaFYCLeW6Kilkg3JmX+Dnn+del2qbDkK75eHSMKrQPzLDjAWokYFwOWYGo2/SnjkNSqZLcdFGPAx0xBkMmIyz+yYkdKKKMxzqGMyQpkGXu1mdHt/NFanCtr1dnMKxUj8yQYSpMI80xwHdrYXHhCsGEC+n7HMBww2rDbH+W+xuQIl4Bf5lqUpeCfUBwqSozpOipCtICkvix+QWuJJA1ROJ18dRItFGPj5XzGu0WqMUfBplpLylPBUIAY+ZzLVckmlkWqesUYMkl6HmO7xVBuGDCdZGPEBOPlwunlxDyO4hxSihiNGEB0iTqppvRXc7+ZhnXct7P+6/O4nFT1j6+c0Ooq5Vbbs7dXrvqIIuf206Z8rZGM6/mlvcVpKFG2OQW+faHNH9f7cavbrtjiuvdQvJJdtc2qKYRypVcVzKb1mqoey7PI/bgKhqZd7TPaZ4phTqr/amLUeC/nTFPkMnp8gM5luXj2eD9itESLlec0InZz79eHuvo1XbVZZFDwovMVfa5wVMVQqsyH9fklAijJ76rB3jFjqIS4a3RpWOOYuBqZq73+Gg+2/ZgjiZSWYghJnHI6y55r5FtV61d3fAt7r89pPyj4CQqG0qBKGnNzx6tX+LUI4lcbm7YexzzxM3grRKHt97F4QBtwJOUFC8u0WMm6rmd/PDSkVvnr6wakZvn/8s7bXPL1bmgHpXjx82PW5zUKgzaSaqJ1JvGlLEwtxHo3N7gYcckLP1Dy6BRXBTomFu9zCOXK5+GMxWhNSIqn80WWlotgHISAWha6Tjx/xllMbV5pG7IgMu+KKox6Vbio1YC1sY7nXr7qylXci78/m1OqElE22bcMQLXimlrvFXOfbgDWG3wSRSkp996MVVpTwKqHEcQanDshY25UNlLo3MchJl7GiefzmXs/81kHkooQZ/CBZVRYopTE9DPWWvp+YD/sAeiMpMOArpFNZeMTwltpq/eLRFz4kEkbLd98+Ja7d+/ou57b2zustSxLZPGSn26uyi2HEDifX1iWBWMMx5sDrnMcb28ZDpL37r28s9YGhcINBw7vvoOwMCXDl5eZqDveJfHux1wRLhYmeyXgXcWIVtA5i3EWP595+vxHTlqxPH+icxY37Oh2e5SxmH6HthZtLe/fvQPgu2++yzwaM+PlgvcLD1/uOZ9OjOMLj4+f8MuCvlzQ00TUUVIWU6K3Bh8dIUT2uz6ThwuQFYPShM/yIuR/j48PoDTTNHEZJ7rOobjL5XhdLe+73+2JIXG5nIUbIiYeHu75+PFP7HZHYlRY5+jnmc519LsBFHR9x85pVAw8Pr7wn/+/f8/T0ws//eGf8PMz1ihS2mWQIPOMtFYClGo1bbTFZhaTXku1V0cq0jvfQOf1FuPXFY4COVapVn5/rRlpY9A59DvmCmoqexVLNUWdihcxIFFQ2dARQ+XIuiwjSzIQQ05fiNWo2RqZxHC6VoqSZugst3Sz8aXaxvoWWmNUTonJa73YKYohSKHAFtmTIArgjlpLKV5V2tFEFbLdG0w2LJc9JsVMWqCgM0YicnxH5w6kFPj508ziL/zw3YHffDiyHyzHYWYwMyopzucn9OJJRKzVxKhqedhW+doaVtaRXEe1zAFZ60TFPEnaxPl04vTyiNULne0Jc8SPI2EeicsklaJyeWaC7A3aFz6x7LVKkRmp7NVbizUOUDkq9/UcK8O3pjsVxRZSm+KWCzX0xkmEiY+clgVnIqbXwhtCxDgjVeRyiiNJqsbQ7i1KFadrVU6lMuUa1i+yePVAOpNJPIPI5UTCREmTrjhC0WbB/osctUJjBcAlkiRVBbiNAhav8IqhIKdh5LlUoldd1zEcjjlapcyx9s3WuXQNRv/b3v/1VRmLy7tk0aNyRxfFSGstHvPM61GUGGsMx+MNflkIF0s0IoPcYRDFffEsi8/GClEItLFYm0syG5kvPsGnL/eyt2ZF3xLpUyAFS0Lhuh6zeEiLyCVS4w1OVb4Uq1SV5SmteCOt/dkqksWgWxw6ZQyEeDj3g265/AqmViumbMfsSil4yxDbRkVtlIi8YGtVtIwHymBtWlCqVsYsoUtUV0oQwYfAaZ55mibO0XOyCXTIGMozXiQ6ThtLv9tjrWUYBvb7I8XRNs97np9fOF+m7LAI+f4JHSRCaRrHWiXt5XTCWMu3337Lu3fvMUZwmdIGH6VKkzESSaWFaVqiwr3ncpFIKu0cx/e3wtV02OF6iWzyXmRouacb9pj9EZ0io488vZzYp8Rw2AuGzBgqhZAj8SRK3FqHyQsqhMDzeOLLz7/HGst8uqfvekw/4Po9Shtc36OtQZuOD+/fkYBvv/ueFCPzPHK5nPDLwv39Z87nF6bLiZenLwQv6dNxnjEoht6QoqGzmrjr8SFy2MvPaZ4Zp5kYE9O0NAUzJBL46ekegHnxUhgEwYEmOzWts6AUu2HgcDjw8vLM+XxinifuP3/h482Rrus57CeMsUzjRbg1L2eshn4YCOczp4dnPn76wt/957/j/v6Ry8snFBMKTUo2k2unvE4kw8NaMcwV4v880bdrpfwli2ldP/XzK6MEWe5ANiK8JfFKRJBa94ftTTbPNcaIcTCEHLWkJFUfiFGqB8aUUNqjvZCGh6IH54yCYDVO52IiTbR1MSrFBkfFRne7jl4s+29Z2Fe9VOXORl9KOWVKrxQDIQmflEQmaVKukq5T0QPzhRRDx/p/MTraeobsZ2TOo0TnbM6Aj1zY433gjz/NKH3P3c3A3/z1Hc5aHs8zfryg0sw0vcsOBkmLFxoT2R9/pfpPCYJRKIwyoKUPLpczIXgu5zOX84k4KZaLYbnMhMzXlNJCSZArBOUqabReOX2XJNFqk5Z54LTBKcGSMWMVXQ04LbZbI7WqTNcrNlUpoULEAM50aJVYQuL5csFqw9A5iezUCq2luqQq3G8pUU0sStU+aDpFeuYN/V2TsEoRkcjTpMya5ZMSIQpFRpmXxSj7a7PM/oLIptWCoCgPXBdBWRBiGZRFFUKon1UPQE4DQpmaq7vb78G8etI/+7E1OLHOBbJq2Bh0dPZwyyCt5jylNV3fMww71Dyh5h2GyF5HbDa6FWV/zsYmtTE2SbTTy2Xh6WkkRFDBoCyoENDLjMqpOsbqHNW5Gt4KrkjNRC4Coe3JGrr3tqytwFD+v4KmNRZGVcK+tyZqsQS/EgSrhTBP/tcN+FpEU/F8tN/XqJ/W+EhZWKwYLS+0lGBcFs7TzEv0vOgAaFzy6JgIy4RHSthqBcE6OtvRuS5vLFpy68eJwnVT3qukx5R2xbQwhZmnp6ds7JLG3Bxv+ObDNwx9T0wziw/5/dTGyJZSZJom5mlkfzgwDD2u79ntdvS7XSbYlnxjlRVt2/X0+1tSmFnSxGnyDEuohY/KBidKTaniB8J/kavtWUNYJs4v96gYmZ8/YZTC9gN22GG7juM339INe4637znevcdYR98fMMZlcvWZZVn44x/+wMPDPS/P90x+ZJ4novck78W7l40CzppswADXyfqYlkVCR71Hay0kmfNcIzbGy5zT8QLLEsiOSuFoMRLdBIq+71gWn3lzJH3vfD7x+HiPD5FuOOJ8R/CRxS6EGLC9Y/EdT0OHM5ovnx/4w+9/5PHhicf7L4TlgsaQUgeYqgAmVkWqRJx9XX5dq3rX366GVNKWeLFGavyCYK/bf93X0qvvVSYpTYnsIJD03qJg6Gyc0VEqOZJTcmtUTQyoAHPwRJVqlS9QmValMRo1e0RtQ1XiWH9u+ofX5xZF7wr/ydpZ5UBMEYPwaVXy/aLM12tzHzfKWmvYSAkpKpi9wtZokgJvLcYMhOB5fHridDnRO0Nn4bDTDNbj9EhMlnm+QNQ4K5GrSpXqStRnrwbJawXyShFF1TEjJfwiXBzzNDJezlIZ0c3EORGWmeiFy0l8buSHRohSuEK8YtkbpxJLQNZlNDViL12NxCuR3o5n7rfa2pRQUYCS1ZJqOvuA95Jm4K1BYfKe2uwntHtUEgOmVrXk8AbUqLRGFjQ8BuJjlvtaJUUMCsFlRFIGC19SIl3Ntn/+49U+V9eHGGTL3lZ/hoDP1TsL+bHIPsFQ1rkcSQ3DgY18EMXkVQv+D3iLdPV7qr9Wg1NpQ3nn1KwzdTVnlHA0DcPAbr8npEAIC0YlDqbHKvCLVDQtxqYUxVDgug4gR1pGnseZ59OLGDqHPV3XIbt9xOS0F2MtWmejcrUsfb1nah/WsWrOvrp2E6nU/F0UQtUYncoZLT4qzUnNwL2Ftcrnm3OuG6zW73SZDGV+FMW1KJFlfMSR3dw7Y/oQGb3n4hfOKXDJqbA2LeioWeaRmBCFUytCdPRDT99Ldd4QohgmpoXywFp5NSoxiitJExbDzoXw9Ig2Buek0l3fD+wOR6ECmBai9+JwMAZjrBRTCRIZtCwT0zSy6x3DUSqzua7DWFvXVck+UMZhuw7TDagUhHtznDCd2+g0MYSa0l32e4ncUnQIIX2YJ14ev6CB5fwo2KobsN1OqsN984F+2HG4WTFUtztgrGNZZqbpwjxPuD/+yMPDF84vjyx+Es4rP+MlQByjNCQlBWmSGDK63klq3SROOO8DRttcGXhmmqRvxumMl5xAkmjfVRZrndMTLVK5tes5qxPTNOG95+XlmafHR9F10BhjiYtnsZYYPcPQM48jLIH5MvPx42d++uOfuL9/wKgzWi0oDK1jqqwPow3WlKhz6jypiw8xfnxtDVQt6A259zUMdY2nCmxqzQKlfe1u0abkCtdgyo4vMTQllbLDTq6NRV9JEnDgg4eoWawGo7NjS2UZ0+yvzd+vI4jWfbOVUau5p5GzGTvEulfKZ5WjJxYKCLlQG70aE6o8j6/k2yYYY6PHJNCJlPmSnJXKxd47oCPGwMOjJzEDiv9pbznsHJ0bCf6E1hrvJ9BOjNFaOPyieouF/e1j01K16pIpJpZ5hpSYp0ki/GaNny3LvAjfW/BAANUicgERKqeqyboDlGRhKORzJyXGqQE2iVcTcjPGtZV54uf9UcWISVQjWQgzc/BYE3N/ZnldK+GtekO5t1G63PnNDa4YtwoaqpqLEgesVRqfIkuZP1VuNzf7C0DUrzY2TZcx3zyHmCXWXNRmIheDxgqeyMKFtVweILOHlUC7LDhakPKVN2klSnoNGn+tpa25YjU6NQKwHMVCKABHS8qS98Tg2Q07Pnz4nr4fGHc7xl1PnGfC8z1hngCFVgalwVmNKcamvDh19irFFJiXCR+R85OUpe46yzA4Dscdx9sD8RxQLyM1gK/YDtLWAFiMgmWWFYBTDGVVnteXpNyIN9ZH7iPVdHt6BW7Xz+WGq8CDFpS+uvOVYr1+/vbG0Z7fPr/1BqRmbiokHHE1dZXvpEqdENQqYogEFZimieeXF/EaO0nF6Yee9+/f473ncr4wzzMgBHsoJFAvK+ylydM08vL8BDHyeH9g7AeUttgc0UQGMpIa4/GZs0JbS7cbONzcYDuHdbYSoNpMHikRbArXdexvbsQaP0YxrC2ep9OZfrYYY8WQBrWcvaTPCTiTjcJgrMO5HSSPLWWhjfCLpbgwn18IyywVghbxalm3QxtbQ9RjjCgVGXY9St2C+ishaL95YR5H/LIwXU6iMM0lNDsQlXjgyvgppdgNkS4YOper6MWIm0rU0wzMWZEvG2WUTRwq31bh50kpcno5cf/lnnkKaCUcBn030OUS8ssy4pzDX06cHu95fHzm8+c/8fx8YhpfkM22KYurVkNsmdaK1wplnW+0m0y5Mm1PbMBCNZRcAaXyvlsRly9WzVJTWaq1wEWtbUy0661pc9lvdPZqJSCJibWkCBujJV0lJVQpa02sm+WKI9dcfjaGM9aNVW17MOUNTbFGFcjpmlr2PZX9LlVwKue13j6NTtRoCwnQWjdm2a5WsLQ92vQvkQ3GRJwzaJ2IUTONmtM5cf84kVLCusT333VcvOLj+YVpWtjv91i3L4htO975nVsgq9aPr1pDzg+UvPwYYJk90zSRjMOmmbRAWBaSXzJYokHNud9L5TiScAcm8VR5Smn62LRhBfoyBXLf6lzqNq/TMk/rLiy4FIUYfBRy/xTFuDV74UuR1OCmhHId2mJ4ojA8r3tXAW+Jlcy5kbelvG9V7DOYThnIx+yoUXE1NvxLmpzGyzk3lEyNlol9C6FsKlFMGf6FkuacOyTjqjpGMUmIfUz1+zJeK55Zn1+WzKt3Vqtcyldd/bw6+c3PE6sPTm3/n8G+1pL2rJyFBEv0zNGz2x344Yffcntzy+n+M+d7S/ILahIPdEKhjSXphEWi5qwRJwlA8rFyfy0+V6szUjnVdpbdfsdh13HY79jve86ztDLGlB0WpZzFCtjb9y0ys8qvtH6zlV9ZVrVrrgKtdZ6vIKpctoL8qtzVa0pbWhz3GuMmWCOm1NVVdY0WXA1KCU9fymuhFD2pmH59pbpXrPIzy+ok1wmXVtxE3U2XCy/mqRqFO9ex3+95/+69FDqYZP+POhIIRBWFyqDBZinKmnl8uGcY9hgj3I1JmeqkDT5HvC2LGKtixA0Dyhp2hwO73S4bGIvjEqHtKAOlEt0wsL+9Bb8wxcjD6UQymuPlQh86ihNJ+j1HqmQMo7TFmF5S0bouE4snXGdzFeOESgspJObLM9FPxLDglxFtLK7foXN6XbmvUYn9MGBVwqqEDwvn00mqyi0Ly2UkxiiRgF5I0CMJFYQEOkZbOa1CiDhnxfAaI3Z0UkXOB+YlNPuhREAtWT6X6FUZh0BIkZfnZ+4/f6bvB/y8SASbE1Lw8XIiBo9zjqdhzzDseLh/5PnhM5eXZ/o+0veZvyxHBmkjUeE1JDXPq3U7XudamYllXso0vFay8zkVNpX18HoNF2fS5ii4hLLblPttTyz3keiljOPLQs/rJJHynCPLZnH4GpNTg7WWbJckZeeNaukLFGthhC01SY1+Uc27NTKh9JYYwpr1n6+pBY/bStiKnKWRsgwqhRJYn/FqLF7rYqUNKmPPAtm01pgkqXSus8QI0+J5eo7c3kQulwWjFUMH372zRMDPZ5Zl5RtT6GoUW483Up3Xb+qQlvMqF6gXPc8vC8s8EydFmISgf41q8ii14tdKKpMfoEl12oYUpQqqLgWZtq1JpKYrVS1EsxnHdm4Xqx+FjgCCJweqSKXKmBLOKuEizcOy3S2uNJP2OVVnLnNr5Wkt9kgFOeJRVwyVohIDGyuv2V+Cn361sen5/kEalJW4VbnPj4uvgXtpdFXKGuVCPHWZ56UItw1BaBMS+NryUTfPzeSritjame3xS5bsauhqLikLvHAyYRSdy8r+PKP8grGWf/1v/j3LsnB5/szp8TOX50d+///+nzk9n3K57Q6UwpaBrBEtCR8mQvT4uHAaX/AhSsi/XTDDwOFww+1x4MN37/jht9+iHy7845eJOEViEoGlCk9iyuOgpMR5W+5S51UjimYBM1vh0ULv+lsmE6aApnxdimv/toKm7TeuBMP1768iHq6OEiKu1HpNaURMoJMsbh9zqlgF6oVcWMBQ8ZrUd2fdbGIMaL+IsWKR6gjeP/NyOuGs45sP79ntdhyPt9zc3uGXhR9//APz/X0GV+Ktsy5l8JvLd6fE6fmJy/nEy26HXxaGYeDbb3/gwzffklAsed5fzifOp5MIdWswQ8/h9o5vf/ODhOtm9jnJ+c/gIK+33fGA6XvCMvPw08zTeCZdJtzHzwzO8M37D9zd7EAFdAk1D4E0TdhuQSkJAe76Pf3+DpVmnD6jVU77YSH6hdODEEY+VUOpRplOqrfsDxxv32OsxQ4Hbm+P6Hd3/O6v/haAabrg55nz+cTnn39iniaenz5zfnnC+wV1PhGCRxshSo8pMnQ2l8sWs2qIkZfLyBICz89nHh4S1uYxTcIbMc1iEF/mCb9MUhI7SUTO548fOb08cdgfeX58wTnHrt/RZ3LZYddjjGEYerqu43K58NNPPzFNE31n6J0BJeBI5XS5VzO7VUiab0uJ51gjf9Rmble51Cj4pFQVfCgpbmY17G/W0PpvjZjJGCcrksUJoLTOG1NWHoi5RLyqn6PEsKRr5R5EodAOl4Rkflmyd7hX9DmEuoDyWBwIpLqxbtpVZclVW3M/hWxIMCZXIlKqphPWcPJMDEsWT1qpXEFWQVKZEFsi0FTtozXaMamQdbqtkVt+FQNa6euUEq6D3c7jveL52XI+Gz5/ifzjHx95OjluDgf+x39/4ON95Pf/y0fun0GpH9gdhgymE4XoW95DZcAX82tcy78GNuQ0sxgkRDoROZ9HzNMLg1WY4QxLwo8nwnwmplHG6xpkxEAuHEWncrSPAq8UNkW6FKQ/Gr6EavGhzEO9ejHzeG34TUISsnCt6I0hKsWSDWQ+Rc5MaK3Y6wGrHaTsZypjV26b57g2klYhMl1Qd0xJ6keTyVpZq5nJ/qolksVoYt/JGC6BJcUceRXqfX4tOfb/Ecfjly/yftXJlnLKYtHq837aIMcVpK4pp2W2lGi/FCJ5Q6zTRoDrNnquPKadaTVirNlji9LWXrNe+RrnrYA8XZ1bztZoI4TH2lj6bhBlTYNPUmH0/d17Yoj8/OM/8Kff/1em84mHH3/PfJmEWy+nSCcn699knpkYo/DzxIj3C+N4wcdESBrrE7v+hvffvOf2Zsc3397x/psbxqBQ6p4YJM0j1fY286/gz6yUFfDdVokrhnA5bbuKFc3S234q/xLUZVaMthS5Kc9QqlUItjD4zShXde3CWN+sNXDVlIu8xgQnxcx3VaH8RnHTWhxXOkdGyrqVeVMcdhHPMk2EZSHMC6dn2We//e47DocDfddzc3PDPC/8+Icfub88kFTI1UtzcYfCz5SkTQ9fPnN6fmK/PxB9YBh2HG/fcbh5J1EK08wSI5P3zH5Bac3u9k4Kq+x37G/2gMqcRwGTU+5RuR8UHG5ECvhl5uXjH/n85Z4Py0y/G9j1AzfHPfv9TooNZNzr54mL0rhuoL87orVh2O3p9weMiuwHjdWlX0dShJf7EyVnoPDVGtejjKUf9hxu7sTR2O3Z3d6izXuM+1sSZDLwhcvpxOePP7FME+eXB8bzs3AyKXGyKZ2wVpGSYhdlnoWMg30IXC4jiw88P594eHwWgmqKs25hyiTsQh2RDU2LFHX5+Y9/5Pz8zG4YuLu7xVrLrh/oXSeGp90OnSPNtLFcLiMff/7IPM+8++bI0B8yB6mlc91KPaB1NTgp3Uz0RnatU3p1KDfBNBTZtNVByp5fHPtaIm4ShJDnflrvK4oStfCLYi080q41k9OXVb4upkgIOjumNEUOCL9OzFUYfeX7McZCSsxLRCVP12mMkypgOmlS4egiVPFQdLmCg1o50BqFSGX9SifpQjWg1Mr1Exv5VvYZJclF8ppRIoSVQpksq5LeSBZ59Tf0coXgL430e8aeSoHrEsO+I3jN6Txz/+BxduH+YSSlwO0e/v2/6nk6wf/64xdO4zN37z/Q7/aoGAlhu3M1k+SrRxk2rTTK6kwFIVGy4/nC+fRCmhTxxeDHmWU6EcMZlMfoda9TiKFOZz5lXahbFSwx4FXEREVM2QGSPS+yv2TqE5kRKG1y9FiZrwWf57kWJTpcay3FFoCJxOwDIaaa9qrocuVfVgdIYmPLSLkytNZFFjR8wGrd65XKMqJgKGNwWgufnesEK/nA4nPAUM5WQ2/x8y8dv9rYVDwWMQZh3icbm6StlAiSNp2pbnVVdjQLoxg6cie3qVGqOaPpka8eqQiK5ryt9U69+mxzlDbXazcYPXcogK7g1hiDjkEqM/Q9RhvivMPvBsI0UsIny5vTAP/ST8Uw0k42SS2SKjrCM0I2CBjxlljh70i5oQIWs6Cl4v8GXJS82tKf68RsR+L6k9KurUW7jFk+I62g57W19KpDr+/9xvj88rGFUa9anNqNY+1XAexqTWurb7wC/DYKSkATpMxnI5w/sfICKSVk2c65nMvqN9dLI0QwF7LexRjGUSpE+WUWQxcCCFIGVT4ElFY4LdU+jDXikTOaXN+CbbiqPM8Yg8uKSFIKHyOzT4xTIkUjvEf1bdfImJLuKh9LdJO1jpRiU62m6Z9sFK56EYqkZwrvTtf1QrbpOrS1KCV8CmVlFcWg3wl/wTxfCH7BeEuIIQMlj1ISrq51bmd+dx8jfQhor5icxTkxCEg/S5pdqJFNoYa9l013WRbZUJXhcj7hrZPIAeexVhPCjNGaeZaxnaaJaTyzLAvOdOB0nYY1HUSV6KY/M3/TqsCsYydRhmXttvO4nfHb49rw2n7VTP6y2De3biVrHXaBRY2y096iyKxV2VnlVypKf2rvV5SpdPWc0kOl39amtJ7yCv6KfLlua6pPf+Pz2kV1w72Omrp+txbLbmXQen75uHAcRC0+rRA1y5I4XzzOwc0xsd8Z+nNC4cUQEEN1yJS2lXdT9TlA2r7TV7m9VpFeq9p4JCoSL/Km8HAUL+Xmjcqz0zomRRIWAuYCOouiu3Za0+H1pus+0cp0IHtK174thn4B0WsEhWqU/HXuvp7fdWbVPtjuG0X0bnbcbPzUJIKSCLWV8DO7Vn4dTvo/5Ki8XdLZIvszb1BRXATUlrlZ5mCZONs5Wa4p71PGo40u3h6J9hKaU96KBr+yga2XNIaOzTzZnJfHtlQdRlVCb2MMJaJWxkf4YkhJOHScI+SUaHGmKWp5qmycbTuhYJ5W1BWOnZjTMKyRUtpSkKWsvlXevJrfr607lGj7zfObbtx202t5u/kq5RakrRySR2+jxt+6X/tdXQtNmzcyp7bxjVa2mCmtUvetMa+Ka76gtihfS4OfSL7yjcUQajpM73oUwgliS1pbNrBJutFqbIOUCbITi3XM04hWiuhD1RVSLBkUOXJESXqp6xy2c5lcXPSWWmmvOGG1Ai2pla7r5DkxcpmE92iaPUYvhFKoZ5VCmUMmp9ZpidYx1kolYCJap5yZHlE5Gm+NHssyQCmUXzJnYpJUv+Aw2mG0QRmpxItSUozGSAn5ftihlKQaxejRi834x1KMWCmBidLeQi5ugiGEiNae0YkuIdE3sfJiFn4quV9YeXczN+d0uUCSKF9nLYRAdMIx6jP9gTYmY7yZZR5z9Jmve3qtDqm2Tqi8cb+at+183KoV7Zq4EgBsMctbx1syT/apPMppe94rXaWodS2GytiDcq7WqBg391dKZWoLVvlTbljut9WCt/3E9Xu1GKq+nMyDeo/WuLC9XrBA2rxzwQ9KbY1MbZetkerNmF0PoVodqgVDJSM8lssC85IYJ880SaGs494wLwqiJ/hUebZyL2x0+df47msyV20/TiuGkmhwLY48L5VPhWeu0MLUySl9UmRIKnOl/Eeu3dcGyZTHFfm8/bzVnVe5m1YsmIpDo0w0+Sbk0vNVnqV1jhRE9aoHVDuKzbM2+3/aDLCCyqlZoqhjqyew4qxfc/xqY9Myzfnm6yYmxKqqdohMKF3Z7rd7eO1hgBzRJPeKMWbC4mYyleuuN/3mKMDqGuheG5VehRyvK+6rWHNNR1MrOK/KvgAlbQx48RbM08R4uTBNs5QjjbKpLFEUdaCmClVrdIKYvKSNaMvN7S2LDzydJy6XEe0Xno1GJc+8zOWNkfDKSMpcTkmlGtm0gofsudLr+27Baf1gA1I3CgYFAGSYEsTiKpv8Oq6bRVMWyC+AWJpxaZ95PWnXe6+gdi0pukYdtAR65eca2RRxztF3PdZcEYPlMGrJa1Ai2JRuwskjj08PnC9nhmHgeBDPzDcfPvDu3TtO5xNfvnzKedhLJk9WaFHXMvmekHS/PD1yqRXTItZ1DIc7tBEvm87Gpf3djRgv+47LPAnAK+HGSiqaQNE7lESBRBFz4zLzdHpmVhBfNL01WHeDMnusTjgt61NAxUI3zOJZJ+CGgcPde6IfSbNHqnAqVBKBqnP+dem8BMRsLAvTmafPiwjDjz+RlMa6DjdIml3X9RjriBEOhyP7/YF3797nsfMsy0gInqenJ56fn/DLwilHPfl5ZllmQgwYJWSlThsGJ+G4fp54GSd6a3i+OQKKp+dHLucLl8tZlO8kEWgLgVP0+GXGaEPnOiH5tJqhF8Pe0HV0XVc3FqfBYFApyL88t43RWG02FQYLCK3gI68fibhIKx4qxuEMqNe5nTZCM5FlYzH85aWzXacyHgLcmnXOVhYUQJ9CpMjscugMihIQriJUC0BpPYZiEzBoJWpyjKluOlKdsXluuWiDjdQK1LLlqTjsgpISsCXiohi0mkTndflucGbp45T7NCsTCTIJ06rYlOaorxkK1eY5Iu811mmUNsJn0Q8sIfIPv3/meFDc3ew4Hg13c+K7W4VJCtTE8/OzeKisE6NmjBL9Q8qZ4wpRpL/O9ZUyhJBoL4tSME2e9HRmsWCWAeUT83QipQlYhDv1CmHETGqvkBS3oBQeJXwjKTIHjy57W2lXCkCefwrW9AMZF5XnRlFK1pB6AU0aRWctOy3vPi0TKURmH3DeY5SmUzZ73laFucDtohgmxOhQU5QqNlr3roopUxLlFnDaEPNrhJymnChpmnqzDv65j8JXqXLknXi5zcb4WTCUyoLm68inrEsyp1neB6/x99uXNn8312w+bh1Iv6aTtkC1zBkxbmaOm2RFiS7vpmQMgg+cz2fC4nk5nZgWz7wIf84ShTMoZpeLGFRfe2tB4VzH8eZGIjdOE+PLmcEoTqc7OpuEB0SSRitOaHB9QVe0Ss32KFh3ldMFrcaSCgl5z4QK/VPuwywPC5VBiUCQOZv5517Jdla81HwUGwW2fnZlpASyoa6CsWqggTxfckR4GxW+UX7kJnR9Tz8MnM4XSU9XOqd45PSyknaVU9djiYiMkfvPnzm9vNAPA4fjEaMN33//A+/efcPp/MKX+y859V0iZiFHhSggR9h6P/Nw/1nwj5K0f4l6NVkuGjpjcJ3j5t0d3SCVgH1O916y4aRWy9Ma13cYK5xn4zzjfeDlPPLp/pEUFXf7J/a7ASFQFU5Pm6N0Q0jEOKNtl41bPf3hhv3tNxAXdLyQkq8amwYwEnzY7u9ljSzzmccvc55UFjBY14lzzmiM69HOEmPieHNDOh758OGDjGNO6Qsh8Pz0yPPLsxCt54jxeZqY55EYIlZ1hGCwKtIZmX2X0xOXy4ll/iCcWDHx+PjA09Mzl8s5R1Eogl8YL4llGZnGs9BL5KgmYzSd6zBa03U9rnN5xUi1Ma1SjYYQg7PIfGM0RunK9f3WUaO5i+x/ZTkouKrBKFVGxipvWn2jGCiz5spqWEF0q8IKkFb8s6YWloJFq26qM3deikEie0ky2Fkxe7WuVal4nUSjL/fJxVZMKpxaq37zlrGp7B1AI/tTnVcq48e3ZFrRZ4uTXVVDR6xrUGesViqjr7h11c82UesUvLK2ReX5Y6ym6yzaix6jdc84Jv7hn574cm/413/zgb/+3RHjAvvfj4zjRPQjl8skbYVqHC0p8RWnNXvoW8668olG+ME0ivFy4eFRoxeNPnXEyROWGVXc8wVkbjiKZEIYpemVIgBCJZ6Yc4SlRqKeWg6k3HMrbsn/1bFKKRdNoM6HggxR4JylVwPESIhSjMp7Q7AmF6AoaXlUrFYL/mQnTzuPWzvLtfMWyBHg8rk1lmiSRAyrtAbfJGrFvF9z/MWRTQKGyKkkuqaUFIBUhHGDB9ejmew+JVJW3lLhzdH6lXGpCJE3N/9mU1w/Spufry9J7R91dBq9rPl+2+wCjspmpbUQ9E3TxOVyyUJ9kapzKXt4YiLl8GSf+QSK0Cz2UFRCKcNhf2D2noeTKMo2Jk6uw2nwOTKjLud09a9Z4qunsREMUHN4K3Spp619Vi2c9aLyvaqCu4DctU+ueWSKcPw6SL02NLULoPR56et2XLZRSG0fsPkpZSwFRFlj6dzq5WqfIS+YjU2ZdyCmKFWUYuDl5YTWl1ohzjnH3d0du92O+/t7LpczeprwFyn/q9BNaGFOI4qB8/mEUkqErU70wx7b7egy+BZAYRkOe/qdVH6blkWUXGUxyogh16xgHZXJP2MgRM/iF06XM0uCkCSN5XgzMuwWeqewg1wTgqQc+LBkY1PCdh3D8ZYwG5bwSIwL7Qal1ZqfXYRnqQzk/cR4ehFlcp5ZQsC4jm63w1jH8e4b9ocbrOsZdu8wxrHbH+j7vRgW0kIInk+ff+bLl49M44j7bJinkelyZjwnQhSlLISAM1KRYZ49nz49cjlPnHeDpCIC5/NJeLWmMY9tIgaPR0Llx7Nwp1jjMsGoou8tRit2fc/QdzjnuD0ecc6iiaKtEqsCXDz0lfC1yLtiWCk/GgPHNUhqDThbubQ5ayOT3vbGrVXrNjdJZetvn1U25zUkW8BAzv2mlrLIsE5t5EhtnipbqXhYJCNB5bbo+izNqogAbSGnLVipahsEJelcLYCsvzYyptpS/n/E/VmXLMmRJoh9oqpm5u6x3iUzgQQaqEJXTXX3aTbP6R7O4XDO4RN/Nsk3nhmSM1x62Ft1dxVQhURud4kID3e3RVWFDyKiqubhN5HANGoMiIwb7rao6SLyiajIJ2RKu43hE50NIvEl27ubQVgA5ovufNm5LOWlhSOM0XWyEx7ThG/fnfD4xPinfxmx23pcbxn3V4S8APsUsT8eEUKH7kZSRCxaT/5fyRbLmv49bXFeqkkuSxSujkAYeA+KjBhPYJ7BlCoINVChlo29uyfS1B/5nZixxCTGgvONo2PdphKpJRha7q36e9VUtk0aSDEABMwx4rRMiIkRk3KsOQ+EoM4HlP4wyW8qYLXb21jCprnNIVccjqxrQvnqosuSQpHrfLLIpzOU8ic7shWGIAfoppwvKab1J7jwYj60a9jWdkqip0xHrzYD6HzkypXnpprioOazspZs+bVXnRPsNgC3OQgVXNvYlJSZCqhAJAU4jocj5mnG6SQVyWISR0HKsk6kcqZsNpRiJPajoNqHDrsdYVoiPj4dsT8ccLPtcRpP2G6cphuJHK8ghgs4L+9J7VvYu7WRAdycdo6d5DNC3SAoXgUijWgpU7RcS9Q4cfFSzlNtiKDGC84mGxP7bZtFqojsYY3B3XA0tRjQmlxvqg6VvqR/WIGRKuuVw0NToG2Z5ZTw9PQI5xxu7u6w2e4Qug6v7iXt/sPH93g+PGOeWaI1UywGY3Faq97fPz3BOYft9gZXV7eamrkR3kDn4IJHtxmwu7rGsNtiGk84Hg+wyB0zqkEyZ0LXIXSdVLYLAeQ8TtOCx/0Bnevw8HTAsmRstlv0w4AuePhB1qYY31EdWAGh79Fvdthc3SIvEzBGcNR5qqXkbe/DOdsIYcQYBY/No3BY5Yx5TohRNiT7zRV8CLi+u8Pm6gq+G7Db3cD5DrvdFTbDTt5PCdLfvfseHz+8xzyP2D++xzJPGP0ejhdkT/AUkJODJ0ZwhDlGfHg64DTN8D7g+vYeOWc8Pz/jeb/HMk3F3stxEZ61KeOga7ALEoVvGyreOWy3G2w2G3RdwPX1lWy6GrdcFp4j5z28I3hvtiMUQ5n+rrLesH47v+0wvVZXjvzrRVRgqyvYNq1rKhmV+QYADnB5dY9zZ5PZK1I5T/C7AyMTlBxQNa0DkM1m4tX6hKvzm2GQvjoIfNngtWrSl9c6rMfI8KfRMtR31pmHc61Qo9XbH+trbSKM0669V7XPajMqx9HqKVQDNYLy7ImzscM0R3zz7RH7Z+CXP3+NN693mOOEoXtG5xZwnjBNM7x3GDqjdlDtwvbMqocuHetuIiHOJmCeZ/CB4RePbkzgKSIlcR0RGvu1xVCWRgeg03efIag52oYdETaNH6QcJhO5OppaeW/0GI6N6kJxLBjBe/TkxHk8zhJ52PhNLr2v+StaOh2pat22yzAhFC4q0tK2Ce+lKxiKnepO1Ii1/+KRTcF4OYDVQ8wgsedVkEIl+qIAX24UbXEYyM6KKzGFa0VbXqTiqBfHJyOXLnx38doCrOVBBi7OgVbOjJwXMGSnxXhi9s+PODw/47R/wPHpA+bjEeO0IGaGA4OguysxKSmzpuOp8SCFdzI8Ejr22PQ9dpsNtpsB282AYWM7MI2TpSF0tEoHZUfKKk6B1ylzXI2ulWMHBgjtNKonl3G1vuHm76bXVgbpy9zi86MNh3z53Xn/rwXGGRas8xEmFuu9xcHTgZnRNQ6nIpg1jUF2hWeQS6h59YSMCM6EZZ5wPAgHQReCXJcTrq+vMQwDyBP8KGHKy7wAmTXtRleIKtQYF4m40TnkQycRNdttqS5kfEBVuaEa9GaEmCcblUdFIhK8Oqg8nA+I7DDOEUmKK8A7mY8g3cNIUhLXOUI/DIiIiE528iyaoi6+vFp/VZgJf5LTtUye4ILwpjjK4DhhHkly/xPDuYA4j5j6g4agm9IlbLZbCbF3DilGzOMJ03jCskTsn/eYlwXjOMKdTvB+wW63gEiedXx+AgOYTgdRJEgYNh046xpzVfYIcaFXfheStjoIR4yCIK98MfaZa+dsxe71YFlFBcRAd4RKFGCd9+fgoU2b4OZ+KJ+cr7VzZ25zv/M1xefgyz6uBpQ835zpsi6K8nFOyti2a1xljThmtR2uytF1uLmZZWsevgJziqghjaK0ua2KjM18A4yF2NJvyIAjpRJRa7c9798VoDQHlyk0NABXrxejqUVODRD0DmCHZZH+2j9HvP94wGkEbq5Evi+PGQ+nSdqYttB0/pVOk3Fcj7MZW+dj3jaDGeDEiLzgxEdQzIhx1q3z1lRklMgUIq3YRmUNGIknoG7GnJUXQHknml2rAmCLoW7jWoFo4Tckc/wAUH3nnCvVVcBSpYqYwJ5NCVXCGAVE5hRlQCplNdVA5Zo64NVQqYdjBpOF8BOyE5JLZgE/jggvJsuf6DDd40h388n0gkXMyE/mJOugcTi9MKRU97eRKWTyh2ow/SedQM3Bl068/NHZdZZ68RKjCfYowqXIrJQSGAuYgWWescQZ43jEw8MHnA5HPH18h8f3HxGnEcsShW+GhYCaWbhPWPksvBI9k3LpeSYELzJqMwy42kUxfIceQ98rD1udryscqjKmyPYKhurcPO+cF2Njl53JEwFdZlZUR5PJNTrfqFsbDOfPMNl/aQOhtGOlqy4PZJ1etJqDaK5hCL4YhgEpRXTKk2hIy4x2oXyQ4jnkUmMfEBgZORGmccTzfo8QOuyuMvphgCOHu9tb2SgzEuwk/JlQfsmcawQKM2OeJxwOe3T9IE4w54HggE6Kr+hLwCIHMxNcVmdBK3tz1YvBB9kUCJ1uQvXwfgD5HsvCOJxm9EEK94Sy0eRQN2kYPgT0my2SI+TYS1pNjkBKqGlJ56lYhjccmD1ydqqHs1ApOIajjBwnLCOk4mhKIBeQ5xFzf1AZKUUbHBE2my36rkPXSeny8XSL8XhAjAsOz89Y5hmuGwEXEJaIMWbBjhCeUSEfnwBO8B7YbAZwwZ8y5ub8LdiTKobynhC8kBd7/Wk35VCcPbYeq16xpcaaQQHYOLVzVqVY+2FzbbtO5JD5I/QVua5xXdt1nXK5ly1StrXb/LSV16xhBJQ1JBQQxl1ZdZg4Sew6FHtNfXBF/pszoOCT8/X8AwdZ+5u/z209GwjnGJ5bhzMk/VPbVXFKI9gbIU9lQOWFVo40oNAZ5MRFFtjjLbUZyDiN8rz9YcH+cMKyJNxcOaTU4ZQzxumE7AP6sAGRboQ1/VHHpPbXCjutcAHBqD9yYsQlIc8Z+ZTBsxT9onY/xK5vUrXKRlrWNDNSSMPAQpLKm51EO0l0WKXgKDx51qc6/5sRK5ibdSwZEiUVHIHYITpf5s2Ss0R8WRACr/WHNbqt7G7rpz0YzUc6bpbVattxzgQAUclY8O08+T3Hj3Y2bTYbbYjtepFtHTcP40IsBziwDio5jxJu24COGCN8SsgxIYFAwcOdP7hV/JeOs8X3hziaLl23vt6ElACnnKViXOaMU1wwpYj9/iN++9Wv8fDxIx6+/w4P334LyhldltKFpYQiZ0zLjJQSggvogoScbvoBoQ+gHEFxQQoZr25vMQwbXA8DXt/e4uZqg2EIkEmakXJCTAkpEVKSSZETKYmvX71TjUZpBcfLCamYAzX4TyOu6t3U2ZbPBJgRtLagp+xLtz38Aq/JufTi7/YzPhN0RjjMyCWlzymBbso1ZcmAkPcO19c3GDYRV1dX2AyDAJhmHiZz6swzACc5/KGvi4qAOI84Pj8h+IBlPGF3JRU3fvqTn4KI8OHxAc+HA56f9/ju22+0PDUDEEUeuh7OAafTAfN8wu5qxPXdK5AnDFc3uL66FSLUrhNy48xInJAdw3VZ05wIZKTYqEujYwcOHXrfo/c9htBjGHYILmBMDu/3EwIl7J2Q3t1cD7i+GsAAUhwRF6nsc317j/nksTxvkJdZBCUsLzlJ5SN9JxkW6fcQPKRAFaNLC5KlmzkCkBHHR8ynRwAOzEGu8x3IdeiGHtc39/BdhzAMePXqLXwI2G52wgOwLIjzgtN4wldffYXD8wHPTw94fPiAZZnRdT2macLhdML3336lpcETYs4I3uP+/qqE5Dto1ZVcHSfMohw6L3Or7xyGQSpldUPQqllSldAHMhwrAFsBmOkhZuiuFsCl1L2MFBHgggCzSqB9Pt9VgWqIdzFOyjpZr7M2mqOKySrHrPrnijeoXZGt8wgyXpICyuBUnWbOZQUNuZGJMgdSyliIwY7Ql3BdM0KrQVwdD6vVrs2VTpTucnAkask7iZwt79IAL+V/lj4g5SwihjnkS1+o4gSjhHMr1II5XE0w1XBzaycLOE3WcPkJwWMzBExzxvOhB40Jv/36iPvb77AZBvzs83t4FzD9dcTf/e4Rud8gXl3Bhx6A8hawRF/ayFUneTVXL8lLV9IdxcmQ4ohlOgAxYhyfAa+RG/b6zXxxBUUxkLTKHmRjImdgUr62oGlGnZYeB7TqJpQbReeVK8akOjvkIXBBI7j02c4TghpDQ+glnY0zximiD4xdZ8BLUDfJNNAxcQhavSxHSe8FWAk4m7XDVb8Uo7kx9nvnQIGwMDBCdAV5SSf8hzqGzQBq/icttN+VtymnReawk7RNqFMK5FbrWtKhM4Ia5JRFTxTnTnP/1u9hh63RGsvyhx8Mczs09y842qw1kWk5JSnAkYSE+Pmwx/G4x+PDR/ztf/oPePz4Ec8PH7D/8AEEYBOCROCxcMgwi0M154yu7zH4TqLqQwB5h+AyduSRQkZ8dYftboPP7u9wf3eHm5ttSREyvkKLUMgWSZklKrkF/ww01edQZAm076qhez6PqPS+9TO4ptsZ1mp7sR2hdXo2VvO7PKFxOJ1/bkfhRqO6WSLGMATi6eZCSQvKueIhvdZ7h/u7W2w2Ax4fHmtKhibLpZgQF0kZcy7Img0SBS73kaineZnx/CxFc16//QzX19fohx5/9ss/Q+aM77//Ho+PQlvw/v0JKUa44EG6ARdcQAZj//yEOS7YXV9je72TVK4hIAxb+C6ITs5Jom2GjTiZ8oiEVCK0s86pFGVtDcMWyMB2c4WrzTW22xv021uEvsfzmHEYnzB0He6ut+hCwO3VDte7AZ5CkVv9sMX13RvE+YSRF6QpyHylCYKxE9rZxRCZzBop3XWyKWoR42J0AoSMOO4xn57ALPxNAMH5Tir09QOub+41UmvA61ev4LuA7fUVXAhYxhHzOGE8HfHVV3+Hw+EZx6NGLi0zumGDcRxxPE349nd/j5TFxgAxhsGjv77Rmco6p4RAvDpghAKlU6fS0FcMNfSVK01sVSXUzhadSEr1IVG+baTdmszYqd73jT/I7A0qOKHIm5WDqFbbgsq7WlWsWbkG4oozigsnWFY+q3aNmQPJlpuknDmw8xCuLlshtZhB+dH3AwPRkaZWNxG9tsnCEGqPizJ6jd/atS84gdUZuM5GEaobX3SM9LEDUSr/rs6QNXa0vjen31oGNUWpUDFMZkZOrHpMruu7gLwRm/L9R0bwGV9/c8Bnbz+Cs8eXX/T4/I3D33wV8e6rDwj9gM22R3C9WKiGwbNFoBGcxwsp3A6ttZGcYJq4ZMSYwGMEP0zgecGyHBGCtr4RyQVDQTc4GCClpAheHTDMODEjEKFzFu0mXFRgpTFA1Ts2T+shWAzOg2xjRM/rfEBwDgsI0SeAMiIYzzGi804rlq9tEVI9Q05SGJnR8O7WzbnV/OH6W3CUjjEJKbkLXlL4dG14CJH4jzl+tLOpTY1oS9yumysLwkJV7ZyVxrYzLwgF8Nlyss5i2a0rjzh/4icMqR99nCnyFztFus5FAKZG+Ejq0jiecDwdcHh+llBfANddX6JPWMF7VIFFcPDajyiC1LiuCF0IGBjo+x59F9D1VspU+7fts6K8GE2nN4YuUCDnunPBrX1j+IeqUHppHNYxq/3D9QZnxwvHePsFV094Oxdehsmuc5UvjHRpZHGYmaLQF/RBALvklmu1gEJ4rUSPsJ6UxZVdLk4de2pkRvIR0zRKGc+ulzQr5zH0A5aYME9TUYxihBk/iLTFiKy7fkaKi4ZtQsjHXVPlzOZk6xAgwto5sXr9asaQg/OdlIuGU5LwDKYIT4xt6hUfVVJhp2HleenKfFxHNtnEWlHgQUAUlVBxrzlLbbRGIexmQs4RzKTk4h4pb9D3AwInAYrOIfiAzUYivXJMSJsE33XY7Z6QsqSUTuMJPnjEuCAEjyXFplJmVserKDWnJMGk7xzNCaMGhyMpBe+cOAK8q7tx3lNR2Ja/3iri2jWNwSXYs+T9/9ij3ZRaRTm1z3xxUTsSf4DMa55xviNuysgaVdMxqGkklSca6SlgkUhcXnxloDU+tbbLSqvZRL5eSxUKtuZcu4PW7tZIxPraQFsLsHPHnkVLnX1PddxK+1tHlxoHkgIkoO40JjztJxA7DG8Im8Gj7xYQRyDHwqlDQF3jnzqavrs0oibLmUWOLfMEXiQEnFfEfZ++L7Fob+K6mo1DJjHDZ9aIIwWOF+amnF1lg8nO4gxvztOAe3hyYKeAiy2Vp9ysgQmN8wg44xWis18vUy6b15WWkVbIIUnxaWi5/8EO2wiS/j9XalXOWqSI8DW4Zh5YVEx1qgJmH1UTtlSkYXwSNxUHSLnvD8sObsal7ff1rW2S6KzQeVAir8GyiZIkdUh+RyzLjOPpGYfnPQ7PUpnVO4ew3YGC8NTkpOntSZwE3rgjIZjJKnd6IsA5MWYYGPoOoROuRHM0mNius/dsLpRuqe9ypvJWjqYfcxQ8xgYmDXT9MIY6b1Lp6TPs1D5nLQIb53u55gca2t63XCscK32WQinOuUJOa3M1pagGl8ptB/gsOChruoc4GoEQBCctmq7e9z0AYNAINCnmIUJYdKluXmsvxbgAEyH0ndIAiL1hEcil/WS8OPK78KWWoaiOH5Nb3kk1Ne+koprzHVKcJAoTCfOcABbOJp3kYtSxVj3uB0hEUAf2CxxnUI5AkbWabng2oi1/XDXm6+hzioUaIiYGM8G5GeQkemnQ5zqvGCoEDIqhOt+hCwOcD9jurnWjQtZfWAKWOcI7J5kXWbMvnKylELxgKJ2n5ryJzsY+g7NQq1TM5F78OHOcnTtQbRy4ztX2J2sU449ZI+fL8Vw+loG38wvOqDh/tTYuPKrdwLc13V5j0U3VmKfm8xZn1XMEQ6HMedHvLQhRFP5ibf9wR4gt8LJvCIJlM4RLKwOryCtxTpmT/8VMfYFpa1/Y94YZqFTgax1QIqJlnuTssCxASsBpTDgeZ3jfYTMMQO/RebXPknA1WWNeRtM0ePkTet3UogHQMsdSQlom8LKAtSjX+j4vO1rofsU2NUehRagl1I02yWIm1Je/eDvVMRVrladz/bcj4dk0WcEsgRKOzv0wzfu2bSZ8qmsuXyggrkQ2tdFptk3647SfHD/a2bQ2sOrAluBFXQ15RbHPaoCev/Z6shTS55XBlps3eXm9fXppxa0U8MWBLTP25dg3jie7f9Z3ThrWG1NWXoEFcVmEq2kcMY2jpPiAEBIjKSlq0jLNBvwcMrKXXY55HpF5kYiMGMEsKYtX/YCrocdut8NuO8B5j6y7TlZ9C+ytm0tv50KeVr3IJdKsgKzW4KqdtJazrO8O3QEThejPUkFqNACV1KAXDpELIoBRF/unxs7y7M+uAmApjVqq18jAdXEAMmYpScMlP5hxdX2N129eY5omfPz4ILwQSyz9LnRa9h6uGJW2mK3SyuFwwDLPmGfZZfUhoBs2uL+9RR8kAm2ZZ5zGI+ZpAjOQclIHjPTrsszYP31AXCY4H3C1uwa8B6OTChbG5eFahSFVCYmcAnlCXGZM44jpdMIyzxKBEEhCzEMnBNi+Q84LxnkRUHRcRDC6HsscMfQJXejQ91t4ZPjQAU7CxDsn6ZtZq0LkHJFyFMCRImKUHUTnNQKCJYRYeeRkvpMDfACYwEqkaFntnBcc9h9B5HB4/FBK5w7ba7gQ0HU9Qi/ly/s+4O7uDle7DV6/uUfOLGR5OePxcY/v37/HMs94enzU6n8ZrDtwNsAMiRhrpoqUgldn0mazwWYzIASP7W4jVYyUSNz5HgyJKvFchW0puS5qfKXIABSy5vVOzMvjTPK0i0Kbb+sL5WkvQ52by8nAg0Yfojr1DTjamjPHjfFLtaa+gBNJVcnqLHBWMpyTOBCtwoyTCAwywlxbWGCgRGvls4YycqqvUIAYN47mZi6RKwsCzIyg0VgSaUaFlH0lP/hlv14CTTWEXc6uQNeDu053ZW0tMIZ+g5wTPjwm/PWvD/jJZ8Avfp7QbYH7O+BnnzksDEzziHlmDJsOm21fUtiw4qqzGfVpsFR22Iy0lRnz8YQ8TYjzBM7KOUDAS0DWdIMaoM6KdJDgWyYgspAwu8YhYqWeV6ldtktGsnNGMCecgiZdI8QM6JrpNeV1SgkxifE1LTOYEzpy6GwzQN9VShXLfVISZ4UBL5kWqn8a45gVpRFQuKnMsQZNpZCdZUa8TH3zpz24jmN1oTaYqjG2LL+CPDdnK2qkIkUlUidlUBO9ZmNdp0GLuQy58fmy+ENeo96xQZ4VtpmTqQH2VvkqC2/gssxYlkX+nRbMy4RxnuBJ0h5jDEVPA5JySgS4nGTjDxlxMuJ1CD8KIGTF3YDtdoeu7+A7Sd/MWm0IBcaKzC6OMx2brNxDJXpf+88cfeVkWwsXeqc6ACvRK4ga4+Ach7Vo9BxDXT4unZOz9JM5apiNmLzONVMDphotHQ5mQEGi/4RUX9Pb+x63d3d49fo15mXB/vkZy7xgWaJGchNIo2DbyN3C+5IzQAkxMp6eHjCNJ2x3OyzLJJFQPuCzt2+x2+1ARJjnRTBGkqiphKjFDBhLioAjPD58xDLPuLoT7iTmjBB7iPMpiCOLldIgJ+ULEh1CuhmclgXj8zOm0wgkiYjuug79ZoeuH+BTJw4Yzng+LnC0yIwwntmU0RFh0/e4vrrCHBzicQsGw3c9hs1GscgEzoI3l2VG5owlygZ0SQuFVuw0Z4Fm6bELIvcco1NeaZMYOU04PL0X/evfg3yQlL7tlVbI6+HDAKlkt4HvOtzc3SGlL8CZscwLUsp4fHzE9+/eYVkWHI7PmOdZ3jFFXcu5RlVq6LbNce8IXZB06e12wLAZEHzAdtsj+IBu06HvO3SdpmEySj0I1nm22sTghrSeUfSKRWa0+MqVapXaxrPv62+LKqxz0vizbCOy2CrqtHYWLqP4RmRq3eiv3Gn6jNK+lzLB0jq9cjc6JQ4HVUzoQ4fggJyE+gKc4Zr3WXPpNTJAMVvFnG36+7otpsKddF7h5zE5TRrVHmPFcC18qulzXJSAUyebc7q2mucJ/xSD4RHQwaUsleZYbFPvNwAS3n2Y8df/+QGv7nf4p395g92ux7fvT7jbjYADlumElIQDUuaRRnCxyRx5D3Hu/B7ZaU4gOHDOmMcj0jQhLxOsEnkri2uETdXTNghedbTmewGQwk2RCJ7M4aS8tw5YBSOUKHGjH7jEv1oxlGORNeQIMTPiskj7F4mwdIbBij7jVUReTjWy9jwat+BLBqB19YhJOKQYoKwbWSyBF5kzgv78GB/Wj3Y2oXRuIxDaj/UT81LbYFU12nIqNE1rgFW7O2c3Xe8gXeicF03k9Qnn37cfNmDh/NoirNR4gQKQmMzhJCWnY1yK42GaJ0zTBAdCx0B2HsuyYNadGuPk8aTOImQsMSOzk3SURap8DFcDumGD3TBgu91iMwjfQOYmjcFCTK1XuLY7pVwWYn3NuhRsRH7w4ApEbdS8dxfATWuQtA6oHxiEH3psMwYWcsqreWfzQh0WbFVVzFlUr005S9URL7tbu90O96/ucTgc8fD4hBglHXFZhEMi5fZdZYeoC0GcQE3qwul4xOQI0zxhWSL6vscXX36Jm+trDH2PrpOyr99//x3mSUKoJSy6rom4zDjsHxGnEbvdNfjVBEIHbvvYVePXhJD3XhWJpNXFecYyTZinEXGJSFEMet/1UkrXd3AuIC/AmAicAHcSYsvQz4hLAqeM0HcYNjsgLVLpRastGldbUmJWqWIsRk5UB6nzXrhYADCTinv1ghPgSCsuEUEKqwOJlUQ/Lzg9HwVwLFF31RycEn/ubm5xdXsHHzoMu1tsQgfvbxGUMyF0UkXu8XGPd+/fYxonfPvNV3h+ehKC0GfhIMgxlXQuC2c1pemJMHiJaBqGofB7DBvh0wqhhw99Cb81jpQyD3NW51qtCFfT4Kq8qyloF2c+UEyZlydYFAgAXYcoRoH8t+GygYnLuh6dGh/WB2ZgrFrAYrSeN9DG0aKHGOIoYQZSzFKZpwAyX7hjKGew8xpKXtHl+XpmBXpWZaru8prMb/gA1AFcxQ6BYXOPkRR0LMuCuEJZZxFbZ4dFLK3Fm1X5yAB5sILdLsg8zV2Hvh8QU8Tj/hlPz0cAHokywsC4vSH85A3hMDJ++3HCcZZd2u1Od6acVhEtRubvV9nmGLT8+YSM5XRCHA0oRYDW0aDagxduJpxGgAbhOgmXXlhWSJ990ZGWqiDD7NTgkDlkEQHmHJf+RHHaoTibgI4kdW/W6ABCxhwXMBIo9OjVaW3h4ynVlFLbDACZe6C+U3lOA7htHhOLo6m4XNmczuJs+rGcA/9FjmZKmrOnRGbZ9zpvi5McWFcF19SnlYNEMQFxO5eqjFrxNLS/WivixzQetJqq57OWz/5dIzRtbHJx2AqVwlJ+UlqwxBnzMhVi0uRFP8/zDEm/8PJ5TpKunUkKXeQsKQskmzFhGDB0AzabAV0X4DunMiuh3dgUm1OFqb1e62wi6W9m1HFaYcwGl5x1seEnk85kxu2lTc5yNOvnRxwvI5yqgW5RR20E63qDT967vpPqHl23rOlORIRh2ICZcXNzi/v7Vziejtjvn0XO6oad3DKXuUa6gSORQvbsiJwJz/snHMhhezpKZdy+x+dffI77+3tsN1uAgWme8fD0gP3zInPG3iEl8CLvvX98RFwW+K7DdrcDEZDiAjgSh0sXAEh0e3F4VqsZgBTuGQ9HzOMIzkk3mDqEfoNu2IBTj5wT4jzhcHiScxzBgdENPZAzAiSKLl9dwTvCsd8ipwzvJGqaOSHOHjktyBgxL1ErSkkqj/jY1flVlr2tcSrpsQ5Kywfoxh8jpxnH8QjOGTHLZjg5Bxd6kPPY3bzC7uY1fOiwvbrCLmi0Xx90A1l+Pz484Pvvv8M0jXj37jscDs+YxxNOz3vN5ogVP+jGneFT75ysTefQD+JY8l74Z733CEOH0HcIwShVGgcJUFLmTNfYlDSkYJ8JBkorjETs1Lm6/qnrojq6LVIPK+JknfCplWW6ge4dKMuGpNPc7hijzMEzDEWE9fNXC7xxxpASWsNoDqI4OGytKIepyCoqGFMWpWvuzSiOclJH+rlcOJP5xZjQ9jptC8MhaJ+Lj0uwlG2kNtKyzsnmjsYn+yL9FxopBYdAACMjOYcuaipzlk3cnBM+PEyY5yNiBP7lv3B48yrg/pZxu50wJ2CcT0gzQLsNhqED8zoiC1ZVvOEs/KGj9FHOmKcT0jiC4gxwWstfQs2uatYmINjCOK7KhgJQsEVwXPW2Iw3coDJXwEDiVKIR14NVZbFhKMqMoI6imDOWJQKZscQIIqBzQatH1qPY0C20L4qb1s/Udyvyh80ZKXJHXbpIYEQwOpZMkR+Dof6IyCaYJaM92CpeqAA3JnaHtTKsL1ZC66gxQJpnlB23Viu3L8SfDuP6lMPphb+K0PT+2WvYpVx3/S89i9QJ45WvxELNzFPpfJCUuUbQkJ3rNEdZuQxK+lJh+a8VXM4dOGXOWF81n9W+rd1W/HXnHdC81wp3Nv3ejuE5uClpE58ArZfGgj/1/Sc+b5VP23QReQSQ8LVIgY/q1BQASoVg0nsp4bvEqFE/QXcBNdd8Myg/gO5+QaM9LM2uKLAMZkJOSaoEAjgdj+i6vuy8eO+x2+2Kw2xZBDDlJEDbOQHRBMKyTIjzDMdACB1ISX5LWC3VecUMjYqQXSTOCePpiPF4AmdG8Epw6bwS06nHn2TXRIz/hHlhTHPGOE4Y+h6h3wpZvRdycIZyhGjfSxUayR13mkrnXAA5BpFHw5IDVqVs1UnNWVu9IzrvtSqQyTxXhLEoYjCQlhHTUdICpfJLp2Se4mQaNlupJAPGdtggOI/Xr95gM0g1msN2JxUcTlLtRar2TTBHLQAER+i1OkofAnor5Rs8nBcOr9B1YHLCF1YACp2LpLoKW5tvNX/5ksjBp6QZaefI484FWL3axGUZhNKI9b2YmlgKGxZ9/nmkIZXrKjC0Q1J+WQjwE5WT1/hKCbsbQ07NkBL10j6riCeqH5rxU4xuqmrg/PrSVjtxdWNrx9rQWJ1KtalVnhm5pYWlq1xW0mvvHMAeiT1ycphm4Gk/YTMIAL679UKW/xDBiZHzUPgLqkOQChBYO9kuH8ysBNJV/ZZEAGZ1qOi9GnDEtL4noRoupcwxFEyoUVayJ3VwCtDl8zvVtjFrmLWG4BPlIktl9HWTRHkcU86gxMg+V6DYjNX5jKwowtzajS6wNoDLbqDdi3VnzjnZrWOCVnO7rIP+ZIcBP20zN9yI0l/qTC34qaajrY/61rJ+MwrZFbdO65UwKt+X0S5zvTq9Lunccp4JbG5IeS+JL2o/rI6M2nJo2WateOMbDGVRxd7Bs4fXaqRUolJao1SdQ26NmZzhKXNQl1bUfmllpq17BuCI22ldxqZcfb5Euc7Hy8cn5DYamQVc1g3Nh+2I2ncFNq9+NxiibUWL31Q2m4gWk1B33HV8ZZNMioAwAz4EbLYbJE2p886Bg0eAzNtuGGoRFvsP140SKF6zyqE5RSzzBDALhvJB8ZlUqLzaXYFInIuLRpIzV96geZ7gvMMyT8hxQXIkO/nJNpfk3cSQI+Eiyqlg+8ySlj8exdnkyGO7vULfb+CcRZGrDHEergvgRFhyxnGcsB1nTJP8ZJbnRG17BuDhxJHPBIQe2TmExPAhAZTgfIKTsLPV+BlWlyA81s1OGStvjhc2WafyUqNUnGMdVwY4I84TpuMeLnQAJ4me6QKWvoNzHv1g7wpsthuEEJBSwna7kw27YYsUI6bphLhIJawYl7KOiCyyKSiG8uiDRPB0+jsohhLHluJYt3a+thOc7cY6Z2252bjJOVyM9lrx9+W6Eb1OQCa0JBBlDaheQol8alOXG11EVeaZQ7XOa3Py1oCLT2mVNiKLWfBTsvEWqYjK3nRB+xlkYMOg1j+2MdbgUsNtJHPQZH7b2dY/Fm1TnOw2BFyfbvZIe5TzUJomzywpeNy8CsGiU0vqqlbYzclhnIDTyDgeZxy3HsEx7m47jIvH9BwR44yUxG5T2PQJqPRpnb7StaUzUQPudWaXSp5AcTRJFzTOGNHg4oghKhFeEpVt6WZcxqg8uPH62FxirvNZZBOXU8lVfS1yWjfPFLQaPYgvzq3VFtYFvfLSKVhdOTZYNpfrqiFWnjPTCUDhX/t9xx+XRif/OPtegY+GewK2IBuAU15EFJNXBvWcM8hIm2HASZVl4WsiwIjJP+H4ednW+lnOVV4YlvvBe1DzHDZHhgkUA3kS6j30PbabAX3XwQUPD4euG9CHABcSfO6a/gB818H3PQDGFCfJnfYdhjBIRIlTEmXyCKFH6HoV0EbQy+sfBmy/hkhINUG0clKtjI+VyFk70qoCqSVJ1wb12igt4JDq9+tzK4FbPYdW537qtwmi8127cn/9rxniLL2mqZzAEpMqXtkV6voet/d3cCFgd/1RIh/ciJgYXd/hs8+/wHa3w/F4wvPzsziKlqiRYhLSDAgvDGcCLTNGBmYnVeg+fviIzXaD2/t7hBDwxec/wZdfBhyPR3zzzTeYphFjkio7OTMc7TGFDtf7RxyeH9D1G2y7Ds57AEoMqzxCJX1OgUjQdLNlnvHu268xnU5AzrjeXWO72aHrJIzZ0hZADsPuBmDGcjrg6XACuRnv3j1gHmd0wxVeD1sBfr5Hph6ZCFmjGYLrZManALgASgldEu4ls+m4Gbucs3AjQTmbslWoaaJWSARn0JSgTAB7m5sJ4IRpP+Lw8E7mcy87dT70CJomeH33Gv2wRdcPeH3/CkQOP/nJlwARxnHE/nmPZV7w/vvvNNrpiOf9R+QUAUhovHeErZLRDsOAoevhPaEfxNkU+i18t0GCw5g8EjcOY6iEU+WTywSlwlFQ531W3h6VH7amcX6YVkOtZOFeGg6mDNpLzGiqMtfkrX6qEUnISdehtll3Ki0svKYpNQaKVe8hwAdSgEzISfmLWECT8fMU+QIuoAjMIKvSUhSxtKspdlGbTiaTePWZdmi5j+F5cZByMTRFgTch5TY2ZQwawCX+VSDXMrR2SFQCQNlVR5P3GPoOKTkcTx3GscPDY8Z//vVHPDw+47PXt/iv/uIO7z9k/N3XBzxMGXHymKYrXde1n2zWcwOG2/Gz912jcY1wYZ1/6sBlhlbvsvMaDqUCCqUHgp7CBGQnYNw4zSISMpmzrel6bp+v46qcbZwkGkKwm805TetRUJbB8I4QvDx9ShFTZoTgsXOdDjqBtARwdeCSVjhDcZJao2SDR7kmbF1khpS6h4QLJGlV6ALIS9nxU7SQ+X/Iw4xtmXQ2B8rc1LRvcQ5eIt+0uZthxTGQo3JhUQGNRotrmxRAvZ+NI4Mrr1PTD6vKSaXNzWl0fsVLzE+29tGuYUP1DOeA4B264NEPAcPQIfRBK5l69IqpfIxwnbTbKf4XUnCvoDwjpUXSNboA54JG03iJUglS6AFkkT6pgU9UZGYxEFvDSYW74dK6/Hj18usIrvOhqgZaxS/cyB4FZ+cQ2+5rzklSXGrze3UeYNWvmgWqjrezNhp+M6EHeUdidQhnlDToZYmaPiRzbrvd4e3bzzAMe3z48F44EzMjZOGdfP3mDYbtBofnZzw9PCoZMgBLYSuyWwDDMjOenxKc84jzjIfhIzbbHe5ev0IIHW5vb5HBOBwP+N3Xv8M4jYInloQZwPPjR0ynIzZDj9vrK4Q0gIYegRih60TfOI9hI06UOS6YZklhi3FBXiKO+z2+//prpCViN2xw/fk1trsb+H4A+VC60wWgv7oG54Tj6YCn5wMWOPz0wwNSzthdX2F3daXCySFlRh+C8HESg7tB5r0/Aa5DjBGZPYhmGHcomJGthnVmpCj9l5JEMXlH6LxXEnTbVCChPgDgQobPyaYYmBnT4RHHp48AOfh+I5HooUPoe/jQ4fr2Hv2wQdf3eP3mNYgcvvzy5yByOB1P2D8+Yl5mfHj3LZ73j5iXEYfjXjCdbhgGRxiCbNpu+g5DL+tvUOdj2O7gN9cgCoDrYPZNFywn0JxFSt1h2MfVzWzWiV6cGbCNjQQkc6QYGXaDoWwBkOhJuZfoR8qGAVgr7NmDXIOjPEAZRgNgfFaGEeR5NQ3Vlmxr7BMqWb+lTXknFZ8X3YQGOzCCjD8llBxKRNhGozktTF7JS6kTUknBDUcAMI+kiqEqb1jiBBVrCbYBkbymE1kkznvVL2bLFxwn7wwTI2h+Q+ZmTnGFA0TmUam06kjsmE0/IOWEeYk4nBy2m4Svv3nEspzQ9wP+6i+u8PGJ8P7fn3A6jAiBMGx31Y6wya4zY81gdK6V2msMYJLwCGSqGIuNw/LsMN1QHAhS0c/4FZmEJiRmxoKMkD2y7egxK3+htoGN8wmr/rQKnKYpBfdUp5TnBMdCRB5cAIEwx4SYkxQd870001wFL3wwXMZd/mu/M2jFxiQ4RbLwCJQlhyCQFDOg7JBSwnGZL/by+fFHpNFZc4EKQHSQqb5USXtodlKqsWQ79XR2v0ZIwBRsq1TLCK+cGr+nqWsBYEq9OF6aE5v20KrNXBwk7fe2CAu3j/3Aduk8PKFsNtqjnO7isXovY87FKVJLMavHv+HvWUO79TLjFgECpX/LLoKto7NpYUL88p0LMlg5rX7oWEc+tf2+nivn93kZ+nppDq2GSMdIPrOKC7JJZM+WH4leAkgXSdd1Eq0ShNzbSKm32y2urq6Qc8bpdAKgpG+6a+qs+hGrYc4kVTlyxjSeJJScgGs12Pt+wGa7BTPQdT1ijHWHNQvvFzNLKtwsZI9teiSaMWydFu3755QwjyPmcQRYIqOCD8XYFgIvCbc1XqUZDjEBS8wYRynpm1KWyCbnAfKwqCa2/rfoKvYgJzm6kmoXJNXFADCq87JU/FPeMkm3sfeSiefMyEcNtzUhJ1Fli6YiQkJcnYPvBoQYhfxy2AHkEHyHznvlz9pK2t0wwYUO8zxjPI1IUdqwzCekuIDUoWWRTU5357rgpYKW9/BeHJ6hC6Asc0AqkDQWSTuPC0Qxxdx+V39Tc64pnReDu5roaOaePonXp76UEO16UQ4kscxRXBrt4ufzawmfkrMVe9T5aQCoRk9pW8s6tneXvtHZ0qzrVn/8wEutDpMVADTaB9z0SXGa0ZkAqSr25cho261/rd1c2y9gibRwAwAI2WVcgOfnGV1IePvqGjdXDqeR4V0CsZDxJ035MdJU8NmTV+18KZmp+WNdd6O+x1pWNleVd7JQfmu9gUWNbODcwA6u176YI+u/y2ZEq1lZDWuT6wx1DjlkZKTMAGUktqtscq2eVObNi/nA9Yz1lw12UH1kciYDNbLpH+rg1a/yr3UUr62POkOtI9bR4ShOQLmT9m+1ypqnNIAHZ9FIl3BQed6FV1iDidUVRVdceumyKGvqvzkIJbrJMFPFUkIu7CEbacb8qXrD0lG0TSVFxuRRg0Mt4kmmzsuNSm67pwqORm7ViL5L25y/D4uWPrIl2KzN1RrVuX0ePd5O4zpn2oavWvPimevIqRZbUbmCSmN4JQfMaWsBgk4dCNMkPEveO5u06Loe290W291OIr6dUy4cSeVzLAKrctaL8y8uC4gSRndCilK915z5XejhgkQ2+eDhFocMTYXMSbmihJYgxQXknaQ4N+m3RBJp7oNkGTgfJeOGWaPTJfI5xwS32WHYCD+Vs90HnQukmQpMsqkyzsKDaZFNm91OnuG96lgdA92UcsrJ5EOUKHNI2lTykqIGS4MqDnOldmBGzMpBylpkQcGvOC5Iopp0MEsMX8r6e8EyzQARYkqyYdd18HFB6Dr0wwAiIQPvgjhqh36HEDqpygzCMk0YTwfEuIA8IWaprE3K3eQdpBodCYYKyk0UlCA8KIZieGSjWjDHBQzXGNUHi3A2Xi1dd/SJZWa2xkudgWqnoYot+13X7XlkRiuoLVKlooUCfhrpaz9lWZ61weR54Zwqmzh148t+WgmJRhassExpR7k5QCiRicA5Nw+3VzbtrjqTiEoks9nKLX609yboefKfC/eU3z+UDWQYijSqFQCm7LAshGlmHE8zjkfGbtdhtw2YI8PRjJxEZpRIVjTYubHXbezaxjVScN13LO9CzaLls/6pMhJVlem/W/p6jS0Tu4e5RDYV3bXqo7M+Y5s/te9auV82a8vfgDkDk2XbnOvlF5jDGn4+l9bfrtBDc0+jL5ANV0ZGevHMTx1/mLOpPbgusTW+qMqwdXCYoi9KzM5mJYcDCk+DOYcAXoWyAS+dFC/bVUT8J762tDiAPiW90EwzVeimtK30NJIRU+eyWzYMHe7vb0EgDK5DcBICHtBGC1iFh044C04Jx3lEzoCnDt4FdJ0I25SBGBNSFELmCqRquh1rCpjXkFTvasQYaWisVd0qb6YrpVmjZ71FaL3DZSxWFmDtz9pHa5BUx6o6vOzzS9FMl0BbC5QugSYAq5QcUS6u4Rtal1MlVdabrkfsew3Jydhstri/v8PN7R28F+fLPM94miNSSvDwsC1CA+qya5ckzDoSHGeMR+Dj+3cIocM0TsLHxIy3bz5DzhkPDx/x+PSIFCPG8YBpmvHw+IBuGLDdXaPbXgtfVPDwVCug6QSC6yTkdDwdkGLC8+MDTnshLN/2W/SbK6mEAioRBtJcLk6s0PUYdgA7h+8/7vF0OOH+8y91R8mVyCHiiBRnMBFcoEI66DR6xLijgErw2Pa1KdaUJKTUFc1PIM4A8Xr3wBQE6rNC57BxsmsH47MiAiGBEhCPT+DlBB4PSKe9ONickKxLKqBUobnabZW/4Q3AP5ceyeJsyjFiGY9CJh4jOEWVUgmJISXg+x6OCckRPKtSN+canb+DdEt1VOcKH9wlhaYRCWcYgqDOCMju2woctf2mgKL1f1VFReWeFkVqStlp1KCRK2dm4RyuwyROVmjECFtaBakDV9a8D0reqQoWaEk7zYAxcKlrlR0sPNewIrcI3d5LDbD1LtNaJpA9iqHvQupA9qv7Gf/B+qg9xQrsK/hoMIsVsWAu3GkAIXQZLhP6vkOMQsL63fczjgfg7asZTBl9D3z+2sMx4cgJx+MRzntc7WrKSW3nGgCujtXH9tJN1UgWHUo6bgSUolcXuk76TcfbMaNLwosyK0HtEhMO04TgHDYU0Gl6vKUrC9eERRtrxIwjEFk0qoy1OQ/Ayq8HRuckkjEx4ZSEjHhZEsY5wpFD54I6n9vOqXO5ARB1yWm5YC/l5hRz6K6vh5RGzhmz6v6UEpYLZJx/qmPlPDgb7xZDrSF6CWC/dMNyX86aSs7tuQZy1wLK9L3psQJrGwfnS13ML9q8bnF1MJfv1mi5GhjkSqq4VJfLBVvtdlvkV/dSrKHvEZyHz4TQCZZxKkfEGUXCdRkXnMYRYI+hF1ZAyhlMWr1OnwFoCqU5kky3FrvO7l3Te4wfjrSfzos91g29RtOefd8OV+tDPkeqhl0Mb9k19t2q+1coWu+3GrMatfCptnK91eo6i2o1B4HcO1eD2xxB3YC+30AcMhI9dH//ClfXV+DMOB6OWJYF4/EkJN9A7XvtACm6kkCUhTQ7Cy6gbx1C12F3fYXNdgsC4aef/xQxJTw+PODpUbgYj6cTcDphs9ths92h3+7wargCUUCaE1JM0qfScCGL7z2WecHTx494fnrC6flZcKHzGIYNtrsrhNBrpwvXpogvkbmZhBPTD1tEJnzz7iP2xxP+rB/w5rO3JV1MKuBBosOIEJRr0bmArtvAUcTcR2S4UtwlK09WUgwl/E2EnAWqJoislC7UgcvCoVIjTnStecky6eBAXiNGXai6mAVDpdMz5jghTwcsx73gTOoAcqqfpfrg1fUV+k1fHMMg4cfKKSLFBct4AKcEpAXIQi+RQUAG+hCw2WyQ2WNJAcxObRPjc1RMY1kshj0cKY+kfax4RIs8tEeRPKb/zgIEzO4wHGNrwlkRAHN+serVVow1iyUn02sAs3GBVT60WqjIlpRRo1iaVF6tV5kTpBgqS3QRc8FGL+UJiSNOv2PU57HJMY3MKgxlzLAYo5WTr9wXuj6hxV4YuZDWVy1UdHA5+WwA7L1Y5IRxJLYdKRhKOYrIuHUJXewQ84AYCb/75oTDYcaf/2KDn3wmRSLubxjLnEBuxng6wXmPYQiKLVBtnJUD7Nyybf9dnZ5nr6f4t2o01ClYz7F5qhjKM4QiQWanYKkYcZoXeCL08AjqgC83q9zd5Shk+G1bbbOfnGQGwKFzhKT27ZISYsxYvPLoghCwHuP1oXqKKj6wMZH1EZE5oekG8WdoJPWcJUp14Zfr8FPHH+9sQov3PpXi0ShXA8NnDp524bchw3XxaHhvo5rPgZB5/H6onas1wbbo2/Zdvm41OQ186OsIUXBWT2vCMPS4u78FmCUPuyAFgWJOJ4wN6rIsWDjiNI9gJnRugPcESgAFgqSeJ8TkSpvNaCy7vM52Br06nLzmXxtQEpGfUompa96u4q21QNMXbKE+t9/Z99afAt5X6SoFCDf34fPvGrB8YUw/5Wiyv1thXfksBGR5JxVFUmYsKZfKFg7ibBq6DmkYynLcbne4u7vD3f0rAFIJZRxHPD/uizAM5Gu3EBQMxPKRy8YjMMM5h2VaMF8t2F1d4bMvvhDSySBK/3Q6Yb9/wjSNeHx8ABFwdXPC/ZsvsBm2wNAL0ZsZjWDZBegk+ul0fMZ4OOL58RGn5yNyTLjd3eL65k7XlCk1rqOlxr0PPZzrkdOM7z88gYjxiz8/qfBxAqS6DXg+Ii0J7Eg5oKpQsvQkc9wmrQ6Ymipk5uTMujOadb5SIwQJDOVGLO0kIiEcJ4Lve6V/ljkG6E5pjkDOWI5PiERYnMfoOzCAOcmO4LC9wtXNK/jQ4Wq7Q7i7w2azxfXdLbz3svuZMsbTAQ/vvsMyTzjuHzA978GckNMkxrsP6PoODupsyqJUWCs7nHPhAGYUoQJ1VCUCE1fcSqZm/pb3rfOeGoPnXNYxK1jR80xumQha34eKvLZxNIDgLEWXbbdInUR6Xt0LYJgXg0hz7sl4enKTdoGyXtay04CZOpxYT+RWFjTCufWKnBlPrKDGTmMNbffeI6yIEblUv6nGWu16hl27HgXrT3nvGj0hu9eEDsJv0XcdUp/AvOD770947DJ+9UupDNd3wGevPHrv8LuHhHcfDvC+w3YbQEasv7ImbeDW77s+qPwI/LayRayf2fzjMgbt7WtknnzhGZpmxuJYA2NOEYeZEJxD6AidN2ezRqUZKRtQquqZM9ggF0HC+52mNBqhaqd6Z8mE4wLEDMwxY5yj8Pf0Do4sxcIGrUkpa97Jeqjy8jisMAkRglMDJDn0CSDKmL0DsuWV/gMdZ7rO1udlLMLrf34KrDArD1iNHhZDJa8uXb1mmRbc/GH6vlFyZ7q73vC8z6r8aj8xx4ltMpJWdbJ0gpxSKQzgnMN2u0WnhpnTawN8Gc+gqTqykSHzNMYF4zjBUY9dUn3nWJxNGkmYirPJIsUvdKcZ4VQpCEplIJUtxbjDGqMQGZ5RA+WFjK7OgNJF3HJk2WOojFXBw3aO4ad2PPjC+KDBiY3sr981DqcW3DXfO0ghii543fSsxVrEeezRdT36foAPHXzosNlu8er+Htc3N1jmBY8PD3DOYTydJAoGEK/vav5zSbFflhkpSdGdcZrgfcCrN2/AzBiGAV98/hN47/GVC5jniGmasD88YFkWDJst+mGL7dWC3e0bhLBBGrTSm3c69wi+CwhdwORHTMcTHt69x3w4KZebR99LBcNqKEvVaJR+VGwdeoQ+YVFnU995vP38M03ZrBHzGRDjj4Tj0pP0Xd8NiC4gLBEJDikDiSZxTuWElGtkg+ArKpWhY2ZNR9SVyqb7m/miz5NNpR5dM11E10mUrUsZcdyDZ8IMwhFOeKxyLhhqd6sY6uYKoR+w3V3h1f0bOB8wz8KFOZ4O+PjuWyzThOnwhPm4h9AGzGBAoqU2GzA7YHZICSDIZq3Jd0OEtjYtrR4OYDXKndk+OHNklJVB5R56u/Jd3QDllfM5Z+FXNLtJ0tdodbkjX5V0FoeSI2jqcuNgYqgzQEePqyO93Zgv61vXnqW7yr1SPQ81wpCoZg/VcACuuKWxzYocgTiwBHNS/bbYarb50OBDJ7JO0pAV46JOrSIyLugjNkcoDCeQVF9njUzTtD7nHBAIcGIzkMsIsUOXMpaU8LtvRjw8MH7y+R1urz1yBl5dZyxTxDHOeD6dtADAFSiof6CF0kWeNjL5RWtp/a+z1ynBE23RnNZJpximpdiRKtXmbGIsiTAui1KhuBpCzlBn6EtvUw0qqa/jLMKSLf2aEcDonRCFj0sUwvCQEZcoQSc2ny/oZrtz63AquBay8YdmWsmycCBIsEPvvERxOY/oLweKnB9/hLNprQAFJH0KEDdXFQPmwgRlbhZiNQMkEqNyNrWKsQ0Hrp7TdkJcVsIvn92smfYPbnoaKINWvd8GPric5pxELTEzEFMzxhp6pgBGyMQJzisfj3OlZLfxmRj524ognOpEdOcG3Y8+DKGfryz71U5xfefVSWurqI5JNWLl87bj22fxhe8vz6F1yPenjqY9jf1k1ztHGLoNAMI4nZC0jKuEmWYdtxqy77Xs7WYj1Vd88Kt3orNHagMF+CrPRdac+aglbucpYBxPCLq7NwwbAMDNzQ2GocfV7grDZiME4ylhnieEtFFeFyrEqVKic0RKEYf9Hse9lOsNXiplOeebvq5Ctk7vGnoJR5JzyxLVYKlumSViyYeAHJ1UpjDnka3TVWdT+TEnaFVKtjuja5Q0q8+q8tkOhIbW1x0GI+E2fpH1PFx1f318/VR3jnKasUwn5LgAJFVbCAl9L6WBHep6HDYSNu4JGPoBnCNSHMGcsbnaod/skLIAQYaE8NeKdFS74/LMbNraOstfnCF/G6A6m/YlWqQ1QExRQO/dtOGTfOKo7ZBrLC6Byj1qX7byuXkRA63FgaDyixlcnNw61wwkqQKtUVzNhkQjk1qj7aW8+VR0az2vXGn3s/dru127t8ivBkiVSCGya9etacFjjbLQSErOiEkcGMcxYf88IS4O240A2A9HAmXxrnLWXSG+BHbOhBlobd833EVtdcRLR12zVV+f69rqc2jeV+UCQaJjMzUOJZMlrvTWpaH49EENiCHb1WVE1ZscGCw1n8t8IF0brO20T4G1jjDg1PYj6/sY56GAxDYN8k9/rJ1M2nriMiaf9CXp709pQZUKLw0vRjGyK0Ti9YVU++a8AW20Tj3o7Pd6oNe3uaDjqWIoBmt0cI38ZmfryCJPUWUUKZG47fzmGjVnhqJESVUHNulurPdWBat9D/pkn/6hx0tnz2V8Zd3Cpq9M7xVYthba7WWFrXOlB6rsP2sRijEBG5PLb1tkPvOLMxjidAqaTnU8HjAvcyFGlkhHpYxwwiMZQkCvGApAiWosbTdvmjaMUPUI66YU5QyihGWZMY0jAGBWB5R3DrvdToisc0KMEdvdVugRnKTRxXnW1LSiqMCcEeeMOEtkxHQ8YTqOyDHKtUo+n3NWw79J6wKKg8DWq/MeRFKVl8BaOVP6mZwDeV+4r7QJTcVkjVIw56uTaHwGgXwu8jer8VpwFElUsUAOuZMDI0GdNKhytRl4k54A2nS0RoISSiSQPRvMSGnBPJ3g4wJhZYjwBIzDBt4HjZTOcOSwGXYIPqBzhDgMgpGSVGPeXV1js9kiJWCx8uuci6PEshMIbePP5mnptzp/qmxrMJHdqah8Rl0Pum7YZCYpD1yjR9T2KtcWAUwFp8hzDTMBNd6Kyzi04/5SPbcO3wzmhJwJWfmDyOYQIEV9uG7utiO3fvdWnlX53Mr/9uzW2dXigzIEZHJF+7voCpR3tLVs7bChExgv616ixM32qJuizgGZqRClC5eYrKl5ZhAyxjHiNM6IkbHbOtzdBMRnRh4V0xvn6ap/20CXc1xI7Vk6DlYNOVcsVju59FWVsaZMaxBMxdxNEiTJdUmrVWcl1G6fURxLBS+ftU+xzrk5YE2rpOQyZxNLlFNmVr+CRd2tx6fIqU8oQKIa4VqeZ7KIueLEgoUv36c9/hdFNv1eQIkKWKjM1ypUTMFZCk5KNQKnjXpZ98c6sumSR424glJr54r66YcbjE85q9r8UmYhGE1K6kcEdJ2HpwGcM5ZxRNYSpBb+1tmOBwnBHBHjajOA4xacPZYlITlCl4EOwofTDwM2m15KvJth0wWEwEjRlZK6ZVGgGn/MrWDm+n15sUugphVS636vf0v/VNBji8SjTfeR8a4TvXVCrO5MTdQDsBr7tWF9KarNFoa8Yebatpwy+s0Gr95+jtD3eP/9d3g3jQCECyinSZxRfYd+6NH3Pfqhx/XNNcg5HI9HfHj3HsfDQQ2umqJiIKm8kYY+E0vEAzIwnY7ISarFnaYRvgu4ubnB559/jpwT3r59g6xVXULXgchjHics83v4ocd9eKs59T1cCJhOI/YfP2IaR3z169/g6f0HhNBht7uC97IrV0SqrTeb+AaUdAfHh04UHAtvyRITpnlGTBndsMEmRcx5RpykP63kbFG0ok0AOOVuYmTHoJxkDuRcKqkkViWaINVgABg5OBHgpTvF4WcV9CQZQtaODa5FarEY7kQSNeG1eqDzMtcCGC5l5PmA/XgAILuW5Bz6zRaH23v40OPq+g6braQdvnnzRXU6BoecIqbxKFGLYhZhnhfkhyfhaMgjZl50Najqt2ifRumTCvuiaLXi3rnDqSjpc1sOdS2Y4c1lh9kAKwrKdHqTImtbkPEJjVCcfOzqLk1OxZmeDRwCJY3Yot4z2840hEyehOuKnAdBCytkC8U+B4iuiNqVS9vSHopSr20v8/CC4cRcQauU3FYC4WzRdvWWFt2Q1cDh5hmWpgxIFJ3V4nDQee8ITiuqJE7IBAxDD+8d5tljv5/AecHvvpnw7//je1zvBvzs88+xGQYclxF/+9UBHDvEZSv8GU6ihy4fLcCpk4MZQJb+iDEW/jdDgW1/FXmq35VSuFhPM+MesEonGRkTL4jkMJNHYNlQ8Rph5IOH16iTUq/bwHAZ13O9a89leJJChs6LTowp4zmO6LxH33lJe7MKOmzAUipmwV12FJTIM6fpDTaT1EmcEwNZNnV670HufxkE+mOO1omzds58Avl96miAsPDmUSGJLoYxzoFyeXS5luvuDFpwfo61gEt2YDPQF15j9bE6JjQDFZwZ8zILlyFkzEJHgPNawXUU2eLqRl3fCU+QlGKXktGbzRYxMrwLmOcFzjFCp8TEocOw2WDYSCl2KzLXAvSLBxvY56pMmz7gpv/a3z/6aCO+c1bngaSWfrpBtfpVeV6jNwRDycbXS7Jww2/GP2XrsG5Q8NnLmQOoHwa8efsFutDhq6++wsPjo3AlsVRGC96jDz2GrsdmGLDZbHB7e4t5nnE6HrF/fMIRB9VflnZrr8X6zvIZUxZU4SQN5Xm/xziO6IcB42lG6CSC6mc/+0dgliq/zBldkKhx5zyW0xFpntENHfDqHshZKj7HiMP+GQ8fPmI8nfDdb7/Gx/fvcbXb4tXdXamuN8+jYCRvlfjMuSCGI2eG8w7d0IMVJ0QC5nmR7xkI3YBu2ILjDF4mZLBG1wkeAFl1xQCXGa7LCMMWLmdgCXApISqfFKsTI8GixM1hXg3boAVEgpcoTgYpdyIVnWDp8uK6UpJ+SPqx9071Xk2BJiSk+YjH8Rkg4QP13mMYdnj+8Aoh9NjurjFsdnA+4M2bz4W+QrmaOCfE+QTmhND1CF2HaY5IvMc0LYiLZAaAs2YmSMQLMeteir2f4iY065Zls1SVfmODNOtFnSQWAVlxgP4bXA1qqtcbdYEKz/Zu1hqAnBQ1sWwBvY3juikb47x6pqw7KlG+KUX9nZBTLCm7zjv03qEPHZgzHGVk7+praTsYpHyna/DY/nclz802yozEFineBnk06xIovGngWnGs6FQSzCJpvxkpmZypGM+c2CklUJaRzE4iVpNSaAQiZA4glzGwZJDkOOHpESAkfPPtCb/9+iO8D/jyix1+8pnHv//biK+/fwL5DvFqC991JbPF3pZMJ6126Oq3hikzS/TjskSkGOGZNXZn7YMov0kwSS52tuBCgOBY1rY3bAOR7fMckZzDQN5i0OG14qEFOIAvbRgSSkR/CxRKdBghkFocGmm/5IT9aRHqD+8KriziVvGgRe1eDhBh5RP1MFc3FOdLYSEuVek6H8D+x2GoP7waXf2grMXL0SxyWESQnffiNnavdkGew9OiNGn13aV/FQ8+X/oW+JSRAjSDeQYs2nsXgxEQIZbLfpNEKwWPnICoObUCAjQaycr7QgbKOVLB7JHgsEQBwmzrRBe78xbeKc13thtCZ4C7HYcL71LADTd/XxRQ5z33aQ/o+rzGoVSAa+09FOj/8ijC6cUCb1/l8tWCVai8DuvEFIPcYbvdod9ssH98qFFiYFFysF25WnpZIpsG5JQ0JJqKkjZ5uvL6sr27Kq/MYCcE4ICU4k2QssFXV1cYhgEAsNkMuti1mldmTEtE5oiUYhEIxjORU8R4PGI8HnF4fMTTwwOur29wfXWF4AVogVsAWUEmt+1vgLat4ayRTZyz7jAEkCsJbLo2qenw9QjUHQvl41DgKHPZwoGhXCoV7DriojCdngutxlJKgIPOl359LpryuSTv6jIAJxVc4rQ0wJyQ4wJHDqHr0YUOXeik8lE/IIQew3ZAP/RICiJTSohxxhJnEM0IYUSMmiqmhov9ftk5pnhra8u7QPthdZyvGZtXZZKVeXZ+bnE4tX+vUljPjBScg7N1+4vzx+Ryc2PiSoK4jnriWkClAF2G81RKE7dOtnaWNr2lTaigYCXpuZLVfvIwZarz+xIILeTcmSS9s9EvtLqG1kCmzHOJxHEkoF42IYLwbmSHGB2Ox4SHxxEODpuBcHfbYbeZ4JEk1143VwgOkjO0lt+lG9r2nL2KRRwaF1fdKGmNzfrf4oRoZanpADYIK6Hh2UCmq5FNIAfHXNYaEdXy3KZ/rHlNW9t5wmV2icPOGfCJ4vQmrB1itV/0HUgxZDMWpd+ad7K1uYoEaQxtRw7BnS2cP/HxY50SF4ZH++2srY1uXP1gLS5X6/7sO5HV9d/1vhfaekFEWRpP+ao5R2BA60ynsmaKobXiT3FSUZYSUnJgZI0Cd8WBLIYx6TzhAtgJUgGs1D8iKhEj5tBsO6H8aYDrrL9o9RIXuuJHjmX7TPvVXroeizO5Xi74xHMbgFSiEM6EhCybZoA/haOa57RneOex2+3Q9wO6ri9LSJ6kSbyF1F2jw/sem80WOWeNHqwzsrS/ilzFKMILJZFp8pBlWRBTQs6M4E8IXcRmu8Nut9N75BUuY5aI8hQT0rLo2GYlDZdiKoenPcbjCePxiPk0YjcM6PoeXSdpZylZpS6LcKobzPZjKSeWpsmQlM2s6W+kaSzJNk5MVucyqqh8MVSKrYAyXNaVzgDIKlBLbzOzbmoWRAVHQAJLFINmPBQ8v5rz60VOzSmkFVaF66fqz5gS5vkkz/XCj5NjBMGJc4+kuI5zTjBU12Oz2WAYJDo8TifhISKI3eQEQy1LRtkIb3SCGbe16qi+DaH8hjmbmjepr9nEmpjcx5m+0+ddWgrUrJ9iJvBZwIPNWT2pfKfYn4zEp7mq1bl238S2KZuL88uzl/R0LdbDTGCvTsBs79IMHFt0+nkDLzS4+e58w6OdFyWFUDcHzClXw0Tkv6VIQ3aC9ZsRaFPBcsHmascQ4DLpEHHhBfXeIzBjSQ6zMBDgeIo4HCcMA3B3I4WANkMEa3pmVs4gh+atVf/VQAsTvGvZWueA0eFIZblW6F4SleZ8Occn8q/qAHaKX81RlxSnkclDxcgOhKxVHf8QjUJsqabVL5E4A5qybDZfGRdu+ka/L7ZweTf9D6n91URmQikvmGugAJEl1v1+DPWHb+s1DS5zszT6wuk62GbwVoVzfk+sgOAn1Pv6z9bgL7+5WQ5NG2uDBBRzvUVdd8aO205KM7RtEVl0YEJcZvkZR6TThKBpqMwE8gFZF5ClYoUgVcJyzsgxC7FfYqSk6UVO0ocyMqIqMUsXbaeDVeJgixjhrKWKs+6+y84tnEzo0r2X+vWT4FLObsH8ufBctercgCn3WI+9jY0JpE8d544nUgGwvkQFZwEsooQdJKJCKmN0uLm5K2G8n//0Z/j44R2OpwOYCKfThPE0IiydeG71WRIS7otjUVan7GI4vJx39q4CBhIoaelKLfm7pAjnPR7eO6RlRvABw2ZbiIYJEiUyLQsSM477Jzw/Pmg1HpkDh/0ejx8+IsYITw73d/dCitlvCthuen2FHiXCJpd3YdOWTtKclijExcRJKrlttoinDmi830RagncSAyHFReehCk4z/liiDzxL6GghxIOBtToLEqNEM+YABEjFOuuXKsfqDBZg28la9PUcW9YG4JzzCJ2sXct5Dt6D04LEGc+P7zEe9vChw9P774RXYDtIud4Q0G+uZKeu6yQEfJvRD1dYloTvv/8W8xRFeaDuElX7RVOArcOpnSt1l9murYC5SjKgOtBQHNxWra9R6PbejZyoDiDr9wrDSivOjHTSPgMLQOBMtQSrkc0XRa5rNBlAFSJ4ThmLy4ghy/rzalwmKzteny8GJwroKAwzbTPb5Vd0BwvYJDozxLiRMxbOToXI0gyBihS106gCd5nLrATGAGWNEHXiRHXMRd54JSGXUGbtsy5g6AZ4cjgcM776+oRlJvzVryYQBdzsEr58A4yR8RRHPB8ytpsBIQy6XE33ZIA1BbHlKirNt53GhMQRCQkWtmFLpurBCkiruVEVoIFmkHLaaSW6DGUUYGDiDMcZPROC7uquYzvrPGK9v8mbDAZ0N3fVzxAVJannDokZMSdkcojMWLKU1A4aBWA7xoQaOr5qwzl2IGqeV7/3hTyWUEq//4MflxBONWpXZ54B4PKb1+ewkf/LB2sHU2OQtPMAQOMUvAAay/pqerrhGmrxlZ1aDEeGGF4MwBnhLsNS2FNaMM8TlnlCnGekeRGHkiQ4A94LGXPwCMHDOSEpdY4wJyGTz0sEx1ygG0iim41QOSclIY+sUc+2t9y+gLTYnAHs1vN6JWLW2PwPOBpTTefl6p6r59URaufy+lRSzIOie9v2NRC33NkM6SL3yzm8xplqyEt5dodhGPDq1RtcXd0A5HF1c4ePHz7geJAiJQRCnCakEIAMaD3mwtVWx51tUjSKquI3k12ZJX0L2SJ3qeAM7wOYE+bphBCE0NtrJFxOWXSKVpE7Pj9h//E9yDm8//4bMDNOxxGHp2ekmLHZDOg+/wzbzQY+BBghNhSTMCd1ODWcO2e8XcwQxxZnTLMQ1UvFtgDfDyBOSNEVIxTMiGlGXATfW2RfTg1HipMICA9Cx6KDc5YiKzLuuUHnstmQ1EkvYs10khQQUmksMsFwh/fqLABM7kiqFhdsLpkcAUMYwGAlPRenYoozOEfsH99hPDzBh4CnD9/Bh4DNdodh2CB0Pa6urjU6f4vNZothk8C8wTQt+PjxHd6/G2Vcy5qrMmgVgWdyupnnpv+pke31dy5rznrKNjbEdyibhc7mqGiVsq4K/505rBp52m5eCnVFdQI5R3B90HnOcImQU8ISs9Z10cnjAMcO8BKJSFmeu8wRkYRXNneSukoIYseRcJUyoBs7VFLVcN62F0fV/C++seVYZHm1g8kwRXmE6nWSpEGCFAsyDJWLgy9XOav3cI6EvoIZ2UE36wBwRibZbPYEuNxhCj1SAh6fI37922fc30a8vr/BzQ1we824v2ZEzkjLjBN7dMFj6LpqKxS8SzDO5HVPsBCxK7ctQwpsZGqYIc8UZXXmwwBPPa3gLirzzDILEkQXLUkcwj0xOuMENJR2dj9WTAxzXhNDmeMLfCWIU9ZBMRQccmLEJN8vzAiKl0SOqrNbMbzxvJbGA2f8XypLM5drbfZYIH7iVRf94PGHOZu4+smqA6YaLZ++rFXZDRm43rP8th970YvOCxSAzC+/af5dB6XdYmV7FtVJUw0xbV9pryjmnBnOjA8HOCbldJkQ5xHxNGI5nYQAugsiHlwAk0foPPo+FC+xI8I8R4w5AgqChKZCBYcz0B3F4cTaYzYZWb2w5Ydkd17DFEXZUiGuawVRuU3TV9R+Yf8w70DTTy+jA1qufDmsqkx7tH+2Y2ZRYuf3/lSU3EuHk51XlQ4gYa2WN+0coe963N+9ws3dKwy7DfrtBl9//RX+7re/wTjPmOMHzE8TwhyQU4SR2kpZX1+InqtzjVcGyosZyrkQXqecsOg7EYnDMc0j9o8PGIYNXr/+XFPfVDxnxrRMyJzx/HiN/cePAIDxdEJcFhz2z3j8+BGOHF69/gy3r14jdD36zRYEp5FJ636sovPcucfilPSirOa44PB8QPCkET8B06EHOwfiDKV5QowR0/Ek/Cq6q1CikAB1VqiiFQtRHJ+KZrlZX4yaBiTzWnZIsid0XXUmWJlf+clCsO97VYZSvcZwgoAKAVHe15BrK6cMABwXRJ5xOuwRkxC8O52Pm+0Gm2HA9uoWn/3sz7DZXWO73eH69h4gj1ckJOQpEd5//xHAAmBGux5ItTfbNCUz9qjIJNtlJ01YEr1SQaHdhzStUIq7GU9AdTbpE5v5p7L5bO0YN1DbRrt+Tfyq45hJHAApFd4eS99DXW5aXcgjZ8YSF/ntM+aYdS55iWzKtSJUo+4FtDCQaV1CtbyZLTtFO+sIDQOHrU6q31slR2LlDkAuaSjVMVMBtnUQGciCRe84cWC7M8BJ0kfsCD4T2Mnc3vQDFnJ4fj7gNJ6QImGeRxACbncRv/ic8HRiPHwz4uko3AO7Xa+DpT2zIvPESofJeUbmnhD1f0SyTm05tGNdLtPOLeCL6jn2mddqdBFQ/cOYcgYog7zD1jWOPr2rgW2beeIYMmdTNa3PdyCJgC6IXpw4Y0kemQgLM1zOIPLovO6d5ajznktVK2tzmePyMmh37AhadFSXlndOyafPHQ//axxVI37qm/PPSopA82GZ+0Xfm7ytt355P+ujZj2eGSUiTwnnGKosMz6/QtpmnES2y++AUsZcTsiIccE0j5inEXGakaZJ06FkY8D7ADiHrg+KoQAPc2QtOM4L0hKRYwYn1WfqSBRHk1ZCjRmx6EaZgfJe0k+29k1Eli7U7mGzVFUPnUPX0ps/AIPLuFWrpBn6Ro5zjfF4EcWmh6NmFZmMa4eObMwujDi1a73ufBOqBhODSykbnMdms8Xbt5/j7v41bl+9wZe/+HN8/dVX+M3f/C0O+wPivGAZZ8TQAZnF0UT2Y5w45mhu5y6V6dC+KnMGx6U0mAAsM2EaTwA5TOMBz08P4gS7fyNk2zFiiREgggsB5B0OTx36QXiFHh4fMU0jOBM4SUrY6zefYXd93cgLlMpnkoqoFfTUwSktNoWu7WepGM05YZwmHMaTcI25gNAPyGlRjCXpd5mBZV5wOgmGmlMs1efs/k5LZwbnVbdmxJgRo8lWxQzWX5kLnQccaWo2hGifPIQuobVrUHhjDUqXOW33deJ8CQ1Od+psYpYUMTDj9PyokU411XXYXWtxllv87Jd/iV0QZ9Pt7RukzNgMd1iWiLgs+P6774Vs29VI2ToPzAax7qZGnhGsIhsAKSLFNT1OHCZGMiJj5oqVTiBN//aF5kTtpyIs1cGkqyKzFJOxx5d1pPNColckaiUodyo5QowOKUbEHMV52Ux3w96OHLIGIcR5AYPR+YC8UYxDAeaWYNbK7RqRy7bOWaOkmk0lKp3FRT5wWXDtodKgvHqDZZ30BTlWPuGsc4/AGgUn7131T3XxWcSq/dQKf1kxhvGzsXMIJAV4XGac1NH28LTgP/9mxE8+T/jn/yTh7gZ4dct4c5txWhIe5gnzDGw3A4Yu6JrUNYyso09lDq0kqnCIAFk310hnTZGdXOdXEbBUus8wWtubTlWlnZ0ALFk+n3MGZdmERdANs7LuUHEsauaAlWFmEgcftTKdIRv7JPYqHDDPCYsylZizyRPQWQQ3p2LWlzms/5bZXgzIYscUjhpiTbnXNDuIneD45Yy6dPz4NLofe+KPuVcBHFwU7er+FxfEhfYwrzD4Ra9uW+ZHVyGhdWSRAuXmWjqblHZvqv/OnDXXVlPpsu4sWrUDzcfNlBGRi4IndTbN44w5SpnClCT6xVkOLDJyXpDSIgTTswoznfAvgiZp/cfKqdAgI25/g2o5X+uhBjV+CjjViKMWLbWL8VPXtZiCms/X16zHsDEYXjSoRsisu4OKMSKOwoTD8zOIPECM0AuJ5P39K3HipIz98zN8FxCXBdNRAA2RLxCcz9rQGurr9hpAvBR+mQGWEO24SCrXNI5qgBtwlF/OOXBKWKYJIEKOwp/jyKHvBjhykv6lHGC1V9uIsTYKzNJXtT9bTzZkiszzjMPhGX0X4Hc9gld4qEo3awWUElHDFloLTXugMyukeSHtmTakUz6sUXeA7miaF50zEosgIxOUavRY2qFFpZi4MIdKgWHmrCEqO1gMyDolKq2Se+s1WUBmSguWeZJKdOMJoes11H0Ag5BzLELa8PPl2X9mMqzFzOqDdi6dzysD3TA4dMFRW8ym87lXMP7ZDo+ByIbsuswb+3fjgLoUwWqVpYhMsWtVwpQU3lmEmoxFkR3a5WyPWpVj46IaGgmDaj/VOVxAqM3L83a+cEC0ndK8R/mOm4H81DlyOMicysgaHk6aVuBVR3jEhTDPjMMp4nCcATBurj0SAcEpV4U64swZSg3h/KcPBSKcV4bci3lIZ/+4oCPX17Qrsso6IZ7MiI51B3wdNXRuNZLq2ap6LR2ijlFpVeMIraBYOE6ya2SprbfzV2s/aMFb+5W+hyN12BKVEtP/ax91I2X9GWB6uY5dqz8LjFIs1TqZud7osjK368jO0c9aQEUMi3IpQs70W3vK+b0bNVMfb9KhRglI6kJWnhsN18+5RBjnHMGc4ZCxaCpO0sk2TxPmeca8CLdNUlJn74zkOSHGCTF2WOKCuLgyb2t/QufUy/4p+h11jl6Sz1W80Ce7Wr6vfXPJD1Tl1TlCWt+g3MYE5wvYtV67ZRZ9omErbU3NfGvmX4wRz/s9iKRSmQPQ9x1evX6NaRqxf3zCY3wAA5gXqeK7LEt9RhUQZR1WPPKyPRYRYGfYqawpSkkLrxARRuVGTSpDyTm4Tjb2OGfEZSnRFo4cyAvHpA8BPviGK7TlrmrxbYvnqo6weSRySjh3pmnCQfk9AeHGzATdpKlk2NystyKXQJKKRFJ1jtBGLpv+pLI+a9KZ4TRprXFwUpYKldVWaCZeua/xAKmjvpWfZVOG4IxfSrFA5lwKGdn0k+lliz4jp4gcI+I8Y+kmzNOEcZSKx8KPo5tPZQrXTeQXm2hnw2F/ltHg2q85mx4UbFixUp1/hiFqNGAzDxt9ZViqiYduZgmKPgNYeUVbx5U8yzkH1iIFBC0elNcv1GKspBFuEt0nMs/bWOWWILzKA+N7K46n5lVo9c6tTVD7w/q6zKiCp1C+s2sNY9ktrHiXOdLJMsTQHFzOWMlJa9u5XeVIycIVi48TY5oypkmiWZ0Dbq493OSwXxJyXMA5rDZAXuCg9rB+UuwFFpvDLJTM622Xtp/qM/jT8r7xFdTtMKnYHZPwMrcoi9o/2meCzmAxr75bRcc2GMocQazUKFKNc3XjgvWtO16+A872N00GyQXGsQZYavDvx1F/NDtm2Tn8o7Bavc4AkivKnPGJvm8GvC7+9rwXYY5A3SFuHBN8cWRt8QHtNJM5WUMqmSQSYNbdiXEckTQMNiEjZkktWpZJyJCNoJW5bEbPS8JpTog54+k04bREDIPHbuhFmOcJ03TCgWa8fxcxnwZM042UMjWvOSx6x9UFSsZFokKp7WPz9rbv0gClVldg3QVFKb10tpjSQvm39Vl7nAP6S+DuUhqec59eEHa+zfkifHVHxgePvguYxiP+w7/513DO48uf/xxf/uznYAL+5b/832NJEf/6f/5/IxIjx4THhwc8Pzzh+vYe96/eCDdNkmontaKNlXo3kr+XpSvX6Quo/Q1GXBZJNVoWzHOsnBLOo+97vHr9BsNmgxwTHr5/pyVjt0LAebvB/e1n0oZOHU0iVcSUIyNavwyeXTNmdoqkw0V8//33wDLh5nqHX/35L3BzvZMolUVI4cglJAVOwXuw19KXJGXLOauC5KS7FmiIl6tcN8Li1hdgkCjmDF5kp895gvcJfRfQBYkWJOdB5IW/IwQAjMgM5gRODMTYzAXhgfGdVZxrUli1IIFUoPHKneYKAb8jIC4zHj5+D7d/xNPjR/TDBs4FdL2QOu8fPgBQMvQCUOrvS7vS59Xh2P7TGF7teLV3K5/bd2eajs/Xej27yDD7yOaJzedViDgMPHkhZyYH6uWcJS5SLcyMWwhPHXungF/id1NKOJ1GhM5j6IVjBeQkBQJcq3g2csejyqccWVtSwaDtThqoXYUgN/1QSVCh8po0RxkFLJ1rgNbpZn3JhRCTrNNWRQyAJiIsO0ljAyEEYLvboI8Jx+OC4zhj/0T4m18/Yf98wuu7G/zFr+7w8SnjN98dsX+KcClgmrZwTqJ4vDNAVo2LFR4myFxPCUgLAkcACRKXaeP+IxVzM29A4qhNrMUOnFeSUmCcE04pgreM7RAQIG5EIYCvspiMTLdBK6uqra3RzNBNmqhOhAwfACLd8VdOveBDiUEyp/GqQxRsC/Gqkb7bHJLnGgkuQ3bjMgNLiohL/HH99Cc4zp0XK/xiEIlQ53M9u15ja9Ec6I0weqF3m//KdbniIQLAQvYqpzGsSqhFZNpdXgBlvNTprYji9lpG4Spbloh5mrEsS+FuWvIELBM4J6R5RFb+iSonE8AZpzniMM2IOeMwJUwxY7Pp0HUdnHNYlgOm6RG9n/D42IPzBkvcNtxNqodQI87rLm+LZXK1SYqzoB2z9p0JZ10un7t23rcyq8Eshtd809f2nCIGGzlXZKKdqpENbQMJWnDDxr3FZ5qKRU0atx4l1Ujn1ePHj/jX/9P/iOA7fP7Tn+Dzn/wU277H/+6/+z9gnGf8m//vv8b/53/6H5GJ8O79O+yf96VqoEWb5JThPRBCWMm1NuK1OqUI6+lERd8wC6l8ygnTKBQIzkkF4a4T7qXN1Q7DZgByxuFpD+cddsMWfneDEHr0/QZEDq7rhASXZZwLD5yORXHg5CbSVTofnn0h2B3HEcs84dtvv8XVrsd2s8HbN/cYhh7xCIzTCM65jBdz1pQ0BrGXqIrMiBrtQTkjZUaiXDieiswjTW2xta89lnVtLYnBS0JKAGGBdxld5xE6M/VEw1sFRzArHYJFraw0o+Bedd7B28ZDBkdJ2/bUg7qu8Kk5w7OUwXHC8+N7zKcDxudnPH54D8AhI4CZcDodBBuwRaHLK7ak3evxbw3zIngKppOiAhIZRE4ZIkjJu8k2+/VK4xZvHE5VXpVYR5hTvNVhxqMq2N3sS+m/siYZmhmhjia1G+MyI1rUnkb7kxLTp5TKT4wRx9MJwTvstj1CcDoHU7EnLW7LWcRoo4urw8PkRNbcJ5H79u5+xVkoetuhoTAxRaSRY0V+2Y8+1ym/a+k7W9eNsjBUosNRZBh7J+3WQgk+OGw3G8QuYIkZp48LOpfx26+fseQIH3r81V/e4HHPePw3I55OR0TPWLYbyWBop87ZfG5/U0qgeYGLMzxmsJsBEhwlDJwXsNf572bO2Ptnqi/siDTSjTEuM8YpgzcbXPW99IFmfuRWxxOVokjmZqmGbuMEbBrBMUq8GWcEJxGlyxLBKYM7oYUh8w1wdWSfH1X2MdhwuJqL3vtKq8JK8TPPWKZ41s+Xjz/C2UQFAL1UCp8+LkXDtJ8ZcFpHGK2V64W7VlC2uidWi4UuRcBcmIPnjqYX7Tfgxyx5uIsQOWeLaAIKWWtcZvkuJSSNTOEkhtYcM05LRswsO3OZ0XW55kPzjMwL4gKMo0fnNVKA1qTgJjyLt/Hsp7S7vOvlyAeycWht2MZwaPu/eqbr39WIW/fdDzmZVhEZFxxN63Nr+9v7VrBX55WsFSqkovO8YP/4iJQzdtst7m9vMex2+PzznyAMA7757mtc3dxgOo2Yng5IU0TXbcB30m82nkXBnPXv+bE2quruj+0YZK1mAiJx5JB68bWMLIEQfJB5cjwJf1K/0Uo9A4ZhB0AIl+sOsYZQK8njJcBbIwtU0DfAJ+eM0/GEjyzh4ClFmH2RNGovm5BjlJKsJkyZRDhzrsqwnXZte0qqS/OLm7mXdLcrachyDnVuWhguaWU5BgPJdvYE0IpMoqLRjFzfaTSUtFNTOzSU3DmSSpENxmFOGMcTyM1Y5hnj6QjvA/rNDs4FzNMJQAPOdOGYRIO+11q9NWutTphqXDZz52IUERlUPFs/dp+mX2u/8+rDdv62zpN2x49LZI0AHA9pm0QPmKNIgQTZLkeNkGJmSU+kRomqohMHUG56oBpcjp2OYQXR1LSvvgfVuYz1WnSAkHg3DidQjcYsYHPVr60sqzxVK1Vk550hDwmBz6s+7ZSbjyggRYd5Jjw8TXA+4u7mCvd3HRgJm8AIiCCOWpEVq6p0RRbD9M/ZvNHqIA4S/SE9VPe72tlzCQpwO2FK96pM0d73WnZ5zoumqgRENcxc43h4oVNgBO0su58XGlD2UpMyRFmxAFI5oVEvWQly2xLVtdFn96N2LVWdIAS4zWrQ9qyJyP+0xw89ZaUD2eCVvgtVY2uNodRhUgwxbu7TrPkL/3qpS5vP7IOVwVEm4uo+n1pLFYSv9U29tUZAZiFuLkS5nBFVD8V5Qo5R+N4SA5yRcpR08xRxWsRJOUeSbAhmIQ8nQowLlmXEsvSY5wnT7GqafxEC6wVeHU0vx6Zt+/lnq+9o3csrvEamx9ZRUGsHlN2Mig42/NCeQ2crocyZ1dqnatCtXrdxU3D9y64zXh97z3ka8fxxDwZhsxnw+vVrhL7DF19+CXYOv/v6dwhDjxQjThrVNAw9tttN0W9iqDakwtpe2VxdUzKcO6bbXgCksIJgpYh5XkBE2Gy2AFoiedE1cZ7hQ8B2d4Vh2KDrBmw2VzJHsnBGShq7jQFQIvAa4+Jl39YvYoxYlgXHwxGPD49I1xFvXt8p76TwKZkjwt7ddCXUsE0kRiqpE0H4bBqjkMyJLzjb1mSRvzrGFhEjUfTy24daXdUQhEWHs+r7bFGeXDGU2RVlU0oEMFwGSnqsbjo6Uk5aZxvTAHLCMp3AKSEl4bQS7LYByEmEv5NUdFuWVBcL2gWwkidgFABq+iq3UZJckqMdObAkNaCZ1rBqxufHal2rnLLUyjLqRNUWM9oBVtxUgC/DiuVIu4O2MYGy4XVtYxPZZHNeUicjANlQFs5Ir+Mo42QBB0WuNBHRa/lUgwPMXqr9Xb+T60jmIVXnkmwqynfMTQW/evcXdmIqmNbOafCc/seqxhtpeBvZFIK89zQ7TCNwOmXsDwu2e4eb6w6vX3UglxHcCRwXcIolqq3aoy8Gd42hchaHU04gEn62bE54e7cL9/kUXpDr1PZpnNOeZHMrJhnTbWcVrmklH+0eRYesns0Fb5+DLbleoieJ0ETR6cahl7dyyu9U7LfVI0y2mWwBNMTShCKkWqVuTjf8Y7Z5//uOPyqyyUBtATufMI5eHhWomF9ejF0FSrnp8PMrL92f6wDbOe1vaWvtvEvRBp9oXvOmukANwJK8c0oSETLPC47HE/aHA1xO8FmJ6Vi8fXKeQncWn+ucGGOMApBIvJgMqfzQO8JPPrvG3U3AEDrcbjbYbntstx7TNMtOLKmyclUJrYGHrfA1zGwS5j59UPtb3v9lRBO0X16G/9tjZV3Tan784GN/zzlVWLbRHy/XXnF0ZCVRzwk5z0gp4eHDN/gtZvSbLR4fP6IbNtiGDv/1v/xvcDwe8fd/+3fYPz1hmRf8zd/8Z0zzhOfnZ11QGZEiiBxCcIUgTQAFisA4n4PUOCC4HRdmgKyEOwGUwYgY5xPIEfphg367Q/BBd+wGeN+XyDYkbp55NnQrrVrXDhdBLJX3QIQYE+Z5xnOaEU8SqbDEDNYyuN51ABKcE/BT6wAp8Z0qvsSppMHVssuo78fVfinglls5gNI2QIAgI8OlDBez5CVDhGXKjBy1wknYIjjCZhhwtbsCQLpLLoTUKUXhNIiLGpb2zDZtTOeWOqWc8h6Ql51P7wOCkvxndSDnvIDVyVfmZDEIUaqWrcZl3SMAbHOr8s28cFbC3EsCLle4u7lfpShv11CDkBrZRqhruY1sYohRZ9ESFVQLOLFoqPVutDk9c3UYZQGXKZMAcSUJ97rDU9aCgRFVZA4MdqyV/n6f8mK0fDvnYKddG7mUVob2p+5W4rJsMidINZJX5sWq40nlNzUxx+J0Es6Zrtsgc8Z37yXK6fX9hJQXOAe8vfOYpx6HCDyeRpALCM4j+IAVu1EVIIDtaueskU0KljjJ+JG6gNpdap2LrUxup0hryBpWNlDvYIkacsSccJpnLM7hKnTovSvzyeaWNbm6RwysrIZP16M4iTNn+N6h67QCphKmApCddCIE49uhF6Z2Gdt2Lq9wVLFWii1Qojp/P0z60xzt2qMXS5vLkgdzqfTXnmUbIQyAU0Krf9CcDW5msOkGwzNA6S/Rr5YHwaunAbZpR+Xc8h5odAzXTY0KjiuULQay6tRlkfSjp/0e4/4ZjhmeNVQ2SVl0I/pmoBDjTpkwRmWYcEIpbgZ8CB4//9lr3Fx7XG02eHN3he22Q98DS1xKBGY1qGtnWdtWzqB2zeh71c+sv1/Ox/NIqfZRK9xytsxXz2me0Izoy4N4dU2rd2FyzF6okCdTIfovc4eg0YZcohOyVmTlnPHu26+QlyO6zQZXr9/C9wNe3dzgv/1v/zucTkd8/dVXeH5+xvPhgO+++wbzNOF0OonuZMY8z+pwshQ2cVKYw2Dt2GsxlBrzjUwR+S2OIilhvmCJTiKJSDDUZjvAhw6d7xFcByKvFQtblkWpB2X9REQlQhawX40u1W7NLAUN5mXBOE/YPz/jw/sPghHyT7UKH8l8Y0YXurrBo7I2Ke9lRpboBOYVv1ydz6QgcQABAABJREFUoCabCaWQAEzmCTcTkCsohvCVIYuxmUIuhjzICIuFvmPY3UgEvTkIIbxSMdnm4wzmjCUtyDkV3dlOVbs3EeBDB+cDQugRQq9/S0S6vEdUx4U6XSDk/VYNVReY9JVWgiZbMGUYKk5JTRplWZMiLMo5JveEAwnCwcsAlBy8HdzVCmueV7CQvbfiRXkn5VJilg0zrvpHZIngSu88sg+a4rSo4V43jttNQAkwgG64SAtckBT9kLXCb+OUM6dN02ysUGfRm6YnqkSy/xJBbQzTo9B7143zZD3S2jvKBmIBEI4c2KpSo8r8VcSUdU6d4fJvR/DBA0TwvofzGyyJ8M13I8Z5wS9/3uHzz4CrHeHuxuH54JFDxjhKlON26IX3rPS/2amtLQbBT3EG0gJi2fQDQTGUTD1X+rJqPQKt+EVfYNUih2Uee5JyLjML3p8VQ0Xv0LPwosk1BKJ2ZRkAWN+6zisu3JjMYo0F7+G7UFQ4q76VlFVGoYdpbPkVVsIan9d3rA+2eS5BCLWS4u87/ug0utqCl539w06nBuCw8XtkUBYjZbX79OJxLx1ObJUZLgCts0eu29iCg4t44UzIczPpsuxWLPOCaRQl8/D0hDQtyLPkkg99gPOEpDYBQBIq6hzmyJjiIu12Q+HdiTGh7zx++eU9/vEvbhFCwKbv0HUe11cB42ksOznee7Bz4qwyBdkYWsDaALD9rR8amfbVz6OkKmASAZ4vTq41CLU2/BiH0w/Pmfbd2mvsu6KzSsUiUWQRnBekPCHGBe++/Xt8/OY36PoNbl99hmGzwy//6p/iX/wf/0/YPz/jv+//B/zu66/xN//xP+Lf/Nt/IyG56jyUlDKLYHCwnY0QRKjFGC84mtqesV0C66cKVI2ANOUFp9MRKSXcOI/dVUDwHYZhIzt3FAAnucmsnGDrLm0VyosuLEaA9xLqTCABStOMKY54WkYQQYk2ldvAd4Bz8C7BEyvppxfhkmUnjnIUnqOcEVNCLBFGrih9e11z9piTpTpoNDycCBmEqM4K8hnOp+qsIFlTOSY477HZ7tANA169foMvv/wZHBFOJ9ldHccTnvd7xLjgdHjCMp3keWUHxKrlkII1iYSSUH8PCgOIpBKSVyWf4lx+IyfYjoIdGZA+8etxoNU4VUuG0SqMT62p+kuH8sLqa8Q96QXnl3Jd19KfClrN6M0JiRNsF9rab+mX3lJ4KSEpn4qEmEvbpfoQYVm0ek7KmKMo8KHrpLQ01NAyx586Jp2mpTKARI3z7sWL6gdkc91kBxXHj1xaxxm6a7sCDgxYOHntWCpiv+xAExVDv9W/JtPMwWbptCKbZU51XY++z8h5xldfH+H9gp9+PmJJC7x3+OnbDtvQ4TffM775eAQoYDtsgL4NBFejqhgeupRSApYIxAWU5AcQoORIUjHaa+z1DC6bAZWLZQ2wAp0sXQYPwJNU4DPJtaSI/cjovEPvCL3vpb9caz3bfKxysMh3rrq67EinhJwTur7HtuvAIMRFndYQB5cjEsfWBflGTLJTaBigsTdURaxnj8mgLOkKvx8m/Rc+rFEtWG+M29W6Nbyp3g9uTihOXwWdl6JEyr3LH/roBodlNscxYNGa5nhoTZEVUP/Uq53rcdttb8lU1fKIiqFOpxEPHz/i+fEJLjN8FuMgdBLxkDTyAkSa+uQwZeC4SLu7Qcqwk5coPB8If/GPv8Cv/uxeIvBYdN5mIKE3iEsxZku12dX71XEpr0MEizSj86leh6ecW5xMaLCU3aZ01kVo+iMPk4P2q278VbdWu+Gh+hi2QbSOAGAYKS2KLrL0N+GZHJHigq9/+xFf/3rGsLvCZz/7M+yub/DlL3+Ff/Wv/hs8PHzE//X/8n/Gb37zG3z73Tf4T3/9H5BSlBR1J6ky0zSDyKHv+4KhbMMuxqjRHC9tijrvz3GkvEfOUdKTHOF4PCLGLNip66WIShjQ+Q0yCEvSsdX0JhkXjVAR75t836zNlWPWZFjOiFGIwU+nEQ8PD3BKo5FTKu9lleJ87xCCVBazDZWYdZOOI3LWjbRk41CUEarLX1LSrR/E8SPOJrK2k6DNlMQI9N4hLpo50akDTMc1dD3ubl5hd3WNu/s7fPbZZwCA/X6PcZxwOj1j//geMS6YT3ssSgxe1of9qMnmVO91wxbOdwj9AOdCcTgxM3IUHi3Omn5j/QmZe2DB2RyoiaJZY+sazSFUFrFEV9j30AwCSFFX2Hq0zREuEXxVJzTrCi//trNNBwl+FEwqelTwhESycWOXQTYvAfig5yAi8lJkuGEoi/zLOrcAiYjxWTZcvdobUtnX0lTVviAH51gdC+fCxRxt6lrgxm5ElRlkunw176nI70hGVC7ZPSZLbFzMrnBExVNjc7fM1xXu18ECr+ZQ6ALIZ/h5gPOSAfSbr4749l3G/e0WVztp8+t7j3liPIwZ7w8noSPxDp05m0wwFzAg64qZpQjBNALLCMozCItgIOeK7nP2rmU89VZkDvAGFOpCoPooScdTXk8GITIwx4TDPKJzHhR6eBfEOmyaydYtxTqq+qQ6JFRGc9YqhRmhD9j1Qn0wRS6bNCknMAmVgI3zOS5i5lLZsVYfhL1wcTgZtrYNiZRfUslcOn68s+kcsLSfv3AAvVShP+hMUEBVsJbd0gRLc4/1blztpEvOphLVVGcZzOiuntXafJnzddDBjd3GjFIOEyIUTVBEy7XVXGtHQnIvVeLYCOXlfsZno0KudawVwcOyi0MAQpBIGu8tT3gtfG0BNJ3/iT5oP/s0yKn3qoKyPq9BSufDXgcNNpmtKRcdTc2fdZeK1kLocgvLxZccUO09izFoYaopKfnzjHk6gjljGo+I8wROEVfbHe7v7nB7e4frmxtMk5RlTkmUoikaAePiUCkpRwZQzoAoc9tlTWxZATRQYZ0VvIgzcVlmIcF0DjEuSDGCvJA1tu8nz7iwtsiiGZo2V2RVxlZ0pFbaKOHptc/IOVC2kO7cDPrlWXQelgsDtOR0x4LB7EEWEQMG63ZMiRKxjlxJRCqVFlPOWGJCIIe+32Cz3WF3dYOrqxvJow8dliUidB0YTowLqDGWItJ0WisJG8cWzFmYdGMkA60CrrLEPl8phHLRapE0ffei5158UhSOAYT23DKpuJx3fpbco2lDGX4DsPZNBWj1HzUSrr24dTyboKx9+XI+cDaF2G4U2LX1fBtz29mTnZPqgCMDhp94TiuL6KyPjMg+N+O5hgTtdc27QlZ9LeHb9o89l1QWKnhD+50o95wdliRO0nHKOB4XMHv0ncf1FWF4zCAk1SlcdMh5KDthPe5Gikaw9YlSOSQbcIQBo/oK58bai3trFxtezIBWlVLAmSVlL2VWCKX9SXQ2MiojzkQFgQR8meGmXzrILqCoYYLZTgaUstNNDiJU5sK6w73eNeUqR9DiBPtDunDFlfCnPlpnUjMGdee1OfX8D2p+vzihlUvrR5lerpE5JvSbedCMQfloNWaq01HlSWtsFhwDNJ8bvuGCdazvzQ3JWmQlJdukSPCMQi+SsnDCiTEud+VskYlookfVAclrLMgsqZedF04+44WRqb5ew3Q2/Wtn0wqL/iB4KldYm1rthfMHlBuV1Gjw6t7rdXsBQ9H6D+MVAqipZmnfnd/XPjuXZXVcq6xH4Z3KSv4clxnT6QAiYBlPyHEGMeP66gqvX73C/vEB1zfXQhSeY6NTaltYOdlakOScbe5W0MwFMNU5vF4zpCmYSdu2gCCOxWWZAQA5RmSX1JAsDTDJh6LJz/rp0kHlRPneIgzbH9NjVqDE7udcTYW7OCnsto3NwAzlBwqAkzUBtihydbhkuciRVE2l5n8wHNfMp8xAykCAw2a3w/XtLa5vbnF9fVPGqesn2Uxl7VOHEtkclwVQonAJa3GA1GyFbVSWtC+rAmyyt7yU9TEXrqG1BpHzVhjE5oMZ3Kg/55ZOEZeGkQhn9zo72e69mh8XB7/ivGaOrHGfRQVpK+oUX62r8pxz+Y1Wlhn5PQrmeqGsm3UlTtzzTQeVMnat4reCB22urF+zvhkBUHlK531g/UTAix7TOX62ylCjFBuMXfpFnGIWOeacRB7OMwBkjHPGPEfERBh6h6udxzECnKNslKldcb5BZ/+16Dmy1DPFuQVzUR3BMm9Ku8+6Xl+jfGzzuelH612reM0sDkQwkDxjNVJn84lXnzf6wXAS86rPLaWVYZQS0pqUMtgxsvOik9VuFZF/jp2wmq/14BfLrkL/34+i/vDIptYjVB7K57PzwnXrP8v0I0J2VaHnpF5t1B2G80gd+8w6+zwVpU5rLr+LIcamlM8mkAo1zgTSXTTLaZZSullHUnKr57TgNJ1wmk4Y5xnjLOTE5IMAYy1XmVFTTix8Wyo/CFGi80r6TRJRMk7Au3cnDC7g7nbANgT44NAPAbvbAcMkQD8r6ApOCesgoh7MShba5EGXPm/7v8WudeJVQXJh8Iw01AR71R56r5ZA99Pz4UV7SAwNA8IvFEbTLvHMuiKE13OcC1jxwSEkD0aHzW6LEDu4NIOyB2fG4fAefAD4rxOeHt5h2Ozwj37yj/CXf/4r/KMvf4af//KX2D894j/82/8Z33/3jaTkJYlqiVF2xIkIMRkBtUcIVtVrvSgNdMtcW/U6GLITknNGoqT8UB7LPGGeThiGDYCM8eoGw/YKu6s7kJYk9r6TlKUcZYazpAwZ4SmokigDKBGZlhbmnAIHdTQJ7xihHwZsN1schw2GfgCnCI8FTsViQl1vWYV1cKok+g4hMFISbjJmhgsdgg8gcnBBwpatAlHOjLRoODESWLlnjJ/JhSBkmuQAL5F8x3HE09MR19c3+K8+/xl++uWXePXqFT7/4ifqUJLdwmVZJPU0Lnj4+AGH5z1OxwM+fniPZZlxOh4xjSOIM1xOykMT4KhTp57sAuQMINVqScxS2abznURzLRqd6dVZRqbQ6so4m9GoZ1QwdU5ALbt2FUgUJ15j2FU52Aj+Cwq/OIecMGcydDeOqCF4rulmEg4kt8pN852mXXTBI7MDz7Iri9I3UFkq95sX4bTzLgCbuiMo4EQz5BWQlDmrxoRV+jTHLlYyp4KIErFpip00GktTzrI6YFJOoCTrhNjDmB3MxopKMiptUSPBeRBcjWbW+1iKiZHpBudBAUip7ih3wSFveiwROB0GpOTwzXcL/u1fv8du2+OLt2/wxRcDnuYJm78fsaiz+TQt6IJH351DwAYspQReFrgc0bkku39McNIILJkQmdE5QqfzpZSoNeBCqMBKit0ocHCl2qRnIVjdBI9AhDlHHKYJjgibLsB7gieHgULhcLL5bbLHdqvtGxN8wrMDcSI7gnfARk9IQRzAY1pwOC2SojFk9N6j8x22YRBdqjyIjKzlp+ucL69K0HBvAVmZlUMhZylKgH+go4iEiqFa50gT5H/hWlp9xVDuDCWHVa5ZTR82vdhitbo5V+8pn0kEmZ1jHSf/qTQg3IwuoU3lEei2brM5A2x9Zt08y8hSYpokLWeaR8zziGWJWGICuQAfghRiUTnRRn7GaVHZJZErII1G0XefUwRNhG+/e4YD4dXNgF/85BbbTcB2E7DZBPT9UtroQAhkTu46XwqmN1OBauUs61szHADDKM0PyhR88e86GdZYunIl0YvzBUNQ8cu8QFcq48t3jVFCq7uYHjG+nnNdQSUFpgseQx/gHSPHASl45I6Re2nzh/dfgd4TlumI54cP6IcN/tlf/iX+t//8f4Nf/91v8Itf/Rme93v85j//O3x8/728pqaILVEiNxwRcpKOd85pSl1WzkZzNJn8t8GRDrYNWYAlXX6SAiwxLoKhpiPm8YS+3+D124zt7gqh36DfXollmVHSMsm1my9tz1MZ06JHS1cK7hNOoigYEZJO3vUD+s0W3SCRVQRG6AJCCMXRI0uOCn0IOZHRTkFvTigcRMOwQT9sZMPOS5RMwY0pYZ6EVF/GUzCUV4dG3wd0vRZUUf7YmBjLwhh2PX755/8YP//FL7DdbHF9dQ0iwhIX5JQxzxNOpwPisuDDx3c4PD/jeDzg4/t3WJYZ4+GAeRzBTuaZA4HdAPKD2kIBBC9R6kgVr2tfOicb8lG5b7136ILgLkcMMhySLQKpzle2VHhWXkmCjuPagijVxch0Xs3xMPuxYAteG9/F9KG6iUqW3md6FDaxTc/pZjTbZgzBNQDCe1l/NfItNtUbWa9PYE5IGZgXib7tO02xJ9SFZLYEARbZRpmlH0QhSFqs3ZoA4eKssg1AKZBg91q/c5V5DAeXRTcTadn7ZuPYIm0sigxkzmq9xojGkzRN7CJJo5VzPVJOcAuDCei6gN2mR8qE49HhcCR88+2IX//dA7wP+Oz1Nd6+2oJ+PeN33x6R4BHjBkuSquOB2vlCIE09JE5AjqC8wHPC4B0SPBIDC0TnTCnCcUZwhKCFG9jCPy3bHA2FhQoKEQ1coLrXud6HoFkEGU/HCZ4IgTyCOoJD0TW2QBp5VJxBaiewOKliZrHH1P4KRNjYWvCE5ITK4nCaxEm9ZfRB5FCgAICkuJPxkhWMuF6nNvol6pUZSX9ibtfbp48f7WyynXt74bYD2nOARiC33zUCwNLLRXm2ClIdJYU1v713BTDth/a5/dYnNLisuUnjHTQX1IUXVcUOwJ2lf9kvkqpbS1qkok2SynIOpqil5LdViDBBljmXnVlo+KWFEjMgpJiRcDgseHic0HkHTuKhDcGhGwJCpwZpZpMbKmjqHg1nBrn23erb0urT2i3UeKXatJT64i0I5rMf6zoGLox9vWc9fd2OxstPtHrS6jzT+Day6+3XApAJKCSRmV2pUEOWwx4XzONRUijeMcbjAXevPsOv/uKf4Isv/xG6zQZus8XDwwd8/91XeH5+QI4z0pKLcmdOqqSkTb63iAyq7WqmsKUl6B+orlCdvxnI1ApqAelxmbG7voWF7PLmCoQACl1xUmbJEyqGOMMEd2OoFg0CdUa1ZG+mKGWOeO/RaRU47yVlzikpsAHU8iRdG077nr0Bt6QOGgJ5goek7nV9BwsTzqxE+854gBZkjtpMI2AUp5jsOKhTNmUcxwX9JuP6+g5v336Bu7s73L96s3LYSHUScQz2ww7Pz3s8PT1iihnTNGGOAC9ZiZZZiXa9/JCTnXOS98zJ5py9M8FpJRu102DTv4wf25pcg5+VMVMMjJdHC4ScknMS2bwHTKqWiI1LR6uwSB+ojhQDb2KqW961GpXlhmyWTr2PA5w6JKJalGJIvNyhK0TvVu7XkPtKo1X54IgADbe3R7cyvu2vtTwr+8VFnpC+rwEcZo2O01twOU++X4UDl8i2GuW2GhcjbzWwZimJWZ+vn4XgkXNAzgExMfaHhG+/P+DVXcIvfg68fh1wfTUjOAGWKSdwFK6GLrjGYLc3RukUyhmOE7xaKM6p054dIgHEBN+AFgOcpQsbIWuBffYsezdj2eo0RTIuEXNMICLMKWHOwjNoc8tuu4rr4NWj2leoM06djEFv5Z04hcbIWJYo/eHVAW1VOAU0rFPo9CHyjnXyr3ECFcdMOpuvf9Lj0nPaz3iNk847jQohcD3HEWkqA4oOyCvwtwZRfPYRSt81f9tDqV7TrNRy3godkEWbnEXgmF6Abk5UzaFpjAtiisq5wsgOVkZK5gXbCCtHjjmLiaSMvcozG19L5X5+nvAxeGy8APBBjdgQpAKT4c0y16nKDNPJ60N1wdnnrYHWOpkuwaCLUv7F+LdRSOeITZ93Nn5NN69k/Tq26rwhVB7P+gLWJ9YA5wghOABSzYwIyBTALiAuC07PT4gxisM9Zty/eoN//Bd/hc9/8jP0mwHRAY8fP+Dxw9c4HR4k3SehZANwToKRtcCC830hjH7hMG1xpv6HmpdlzSrIBMQoVBZOsc4wTNhd3YiTxjmAtyCWjWCAJH1f8e6Lud4MZIlWKgqca/q3OXr0EhckHd/7IKTlUPoCR+Z3L+8hGILK/HFWiaqk0wGhC3B6r64TDJViKtWSxWmXVnyK3vZLOg/feVlfUZzyMUsVYbiA+9dv8NMvf4YudNgMm9VUiTFinicsy4J+s8N+/4SnxwdMU8Q0jVjmDJ6TkJqXPvOACwAFQLEUGFIxuDH+K1bSzaWcZW3aWtTOIessU3+NrDK8YsUf8hncauWldrMucGpuyc1YNJiqGfc6I84Well/dRO+PjXX++Q6vihzk0qKvo2ZBIFVGWnRn84Rslb1rbOUYLZE06HCR2XvwEAt5tJiKHeGl9rIqJe4TGRflZX2nelTKVKkmzpKhu9MpigrACkmKUTq0KAJyVWzrT+VR1L12DuHrgvAkjHPhJiA/XPEh4cjdtsBb1/fYrvp8dW3C5BncPZSlMvoeGweNOCHSpnsLBvNkM1ysEPlX8+69W3OIqAx6+Q+GpTZiliZY+VlS985FuLuDoR5mTEu4mhfUkbkDA93FqlrD8FaDrYyj43ygMu5wm0r32ddQzHLxjuRw6ZLSN4JL6LNR+mK8gwRY+0cbzux4oX6/Ev68uXxB0U2lX61h9lDViG7P+ImzdG+TwGMWXYHbPZ/6j0a+fPj2l/AqKUlrG/Q+kpkjRp/VBWKFGSQ52XB4XjA6XRCXKSaEKkyIFDhm8hNWUMz5wQfiRfaOCO879F1Pbz3eD7NwEcgpgWDX3BzPeDNz+8wDD26bgKg1SoKUqhjYG29dFjIqgnmimLr+L2IbDoTqu2/qF18lzrxYiNW+kYvqZEJpvSLY2PV9h+4bQFhXMBTe38Dws45IHTYbq+Qc5Jy7BwxjXv89tf/EU8PHxBdwPVmgL97hb/6q3+Gt28/w8OH7/HN736DZZ7h3QnztOiOjI1z1pBtBzHxZOXbu+acmo6rgPnFoXMlxgXzNII5Y79/qHwGjhBCj+3VHbp+AwIjqEPI5tp5LEQZyqaaHgAE73FzdY3gHOYjMB9n5WO0OUsg7wHOyFGMW5sPhEpkGMhh4xxyBqYoVRbdEDBsr0HO4/rmFtvtFXwIGIYB5NTZpLvwcV40fWguO1zTJGSUcR6xTCNSing+naQfMrC7ucHV7R1u7u5we3uLYbtdjbNNNomEC7i6ukIIHsPQo+87xGXB/mmP4/GAOM+YjnsJtedcxirq9qPXinV1blVnJoNlLaeMtQPH+l5LyTagxILcbWTOHRnNpG6UTltRpkyVctfihOFm1VBzH1JYYTIV6shiAzUmZ2n9APuIq+wqABDSD8LHkdFmbteoUQnhtUoxrsgXV8puAxVsnffHeVNQe6QBRy+1ANn4GIBkUvCnO/o5N3ezFlv/1L628VzJNZWxrnmH4nQiKgaT1xDpEDL6YQA5h3GO+O7dgpgcTuOMJc7Y9AlfvPE4TQ5Py4xxJBAGDH0ojssXHZHVScqMQGKfe5J4hUySdsQMhOKwFMLYcxDtVHYwtJKRfKFGj6vGVefgGOiYEYJySTAwxQTyTqKTDSh+4jCgba+Rs6XF1e+9jS0q34Hx4mUWDjDvvFZXaXQP17VjUXxF1hHgNVIxZyBGLjIuph/HN/Bf9OD6W5fgS7DGzS8V4hdmef3SDGfW3Uf7enWTP7SddWzKnDEMUz5TByNXAwdAMdzBKKWWmWq/Z84YpxH7/R6Hw1GjARszqwF3bEUnGlBtkQWiKyOYgd55DKGDcx6P+wnztAA54bPbDuM44OpNj74fEELlBTLsUfEHKt5rDSv7il5uUprRXP44O6j0kvVkvf6Fc66cc470LxzNdUXPN2tp1YDVZTpWl+YEyVwq20maamI72hJN50EdcLXbCu+PA5bpGc974O/+9q/x8OEdxsx4+/oNrrZbHP7JP8ebt5/h8eEjvv/mG4nicIRlUb0ftbhBEr4j6xfbjEbRT6sJvVo/ZQwKBmTEKLyNOWfsnx6lEtSyAHBwIQivUNdVqbXCDk0fN8Z1qaaXpaqw94Tr6x08ZfR9J5U1meGchw8Sped9kHVTdJEMCkEwmYPIuB6dkKhH2ajb7ra4ubuH90Ew1G5XNgLN2ZSSOJymaWr476Tq1el4REwRyzxink+IacH+cMQ8z7i5vsVnn7/B69dvsNtdFfJySwEsmz+OlMOScHt7i67rsN3usNlssMwLnp4ecTgckKM8hzOrE1gLvaQESlo8xBkGqeNl0T2GTwxLSw/pRhVrHGUr76mZ71TXF+lwmZ6TDUt3tp4JFW3Y7aqd12bItAwVxQDXscy58tu1G21l07eRLybTisOpmU/e+7Kpe14ACSTVviIBnfdKxG1RQ9BKr5W3GGV+lQmMkmrVtKe8YMFpa9El41M32cqmsmtxlZwrnFMNljXlo//krBQccofyAKmKxk00fWtbWt84ZPZgDui6HkSE04nx9Tcn3N5kvL6f0XcdrjYZ91cOcyQgR0zjBO46hI04esu7ql1pDifmLDjDORA7eMcgjUyPeo5nQtANqsTVCd5uUgh+0pRahlKeSF95JxG6HUj9fowpCY9bZGDKGR1JQMkl7SH3pxeOEIZsruQSvaP9pt8bRbonseOISCoJR4kU7y/ogaJ3m/vZvLBNvgQp7GGYPuV03rSLxx+cRlcnKxcQzpxLSOp5WcT1xfWfdcJTeTFJnZAKCZ51d+v3vcTqnpef/eIWBRi9VOf1eVyJ0jRqiAJJ6BkB43jCw+MD9vsnzPOMtCQEF4QFnwkpSp9kM+ogSUIMAdBed+/nZcKyRGy3DldXApQ+7Ee8ezziw0fg8IFwdzPgL/75z7DdbtH3StCn4bWXgn9bZVG7WPM4iTS0s3pSqTkPqIIf7Z2pAcTWcY0tCjQeVvDFsViBunIrm/C17W3FDG4W9er8ItSb9p6tx+I4VIArpMgBIQCbYQARMM8zpmnC8XnGv/vX/3cQefz8z/8J/vE/+1dwd6/w2WdvETnjP/6H/x/+H//9hOPhGUN4wnQasSwJp0l2Zad5xhIXeBfQd1sx1JS0MSufQEkBMmHFDX+AdYsq+7jMOKYIPwVkJnT9E66Pz1iWWcOpfSH67pR0MrUOzrRWpyK8LZpOpGMXOrx+dY/leofHdwmP47M6IkWIMREodNJ/M4Njkl26YAR6WmaYHDZaIp3GGdOS0G122N3eox82+LM//xW++OInCKHDdrtVUKNANjOWGPW39OE0L/jw8QHTOOPbb7/Gt7/7HZbTEe8f3+FwPOL27h6v3rzF/Zu3ePPZ53j7+edlnGUXyOmPvHMIHl13X+aMFCJgHJ6POI0jjscD3n3/DaZpxNPDA573TxLafDoi5yTXG1eWriXyso4BVG4GNApY9mwBFq4glFlu89nSXNdRM3YUpxlZqlcljW5s1TLvS8oSZaBUlMIKcBnKK6XUc6krUs6teVXNQioipgJmO0qFOiKp7GXGm76TpTbFlKQqp4JO6YMaCWE7sm0ZYHvD9pltBIKdVXuFy/dO0w3kWuV+IquyApUvrbAQp6GAVUnVBepmQR0DVCcNZXAWR5vIUnkv79TZTAStE43tNiN0HY6nPX799yccjhlP/+SEN688rraMX/0sYH8E/t3fjzjsZxBn7LYbfc+1jJdqUQmcFjhOCOrc6lyCUwfODJHzgYFewbBEE3DhYgNpeDgRFg3lz0Rgr/xqTog2CaSAiZDIoc8CqpbEOEwL0DlcBavM087Qs3nUOM6YxZmbiIXA1VHjMENxpPbOoQudVn6KiCkiOI/Ekiped60r0bWHrwaNpXcEkVVJyw+brFhSXM3nP+nB65X7wsVwZuye2QxrsNJ4FwisYQXSB7bmit5s3q9RvRcecuH+5fcKkqKuPjnhYh8SajnuotOlvHTijOfDAe/ev8N0HLHEBJvpyQw0S3tUomoQ4HzrRJTnzvOMGBN86Avx9Hfv9xjHEYfnA276hNf3W3zxy3tsN1v03SLvkzIQbG03zaSm78q7UJUzLfY5O/eT6PfCF+fDue74S9+9PMzwgYk3u7bcot7PXsd0r51H7ZeoHCJivErUs6UzW4l7wGM7SGrWMi84HT9gPD1i//QAF3r84i/+Gf7qX/zXADm8efsZDscj/uY//Xv8v/6f/zecjgf0vUNcJszzgsNRypbHmJCSOGo6HUdRBWLcmrO8dShVnKqDIhMHYMYyjcgpYwwdMgN9v8X17Qk5M7puwO0rcdywdeQLPXw2FuocISf4njmh7z1e399h3vZSKCUu4JThvUfoOgQlKDddKxFbxZJT7JBlo7rzUjJ+nDEj4ub2Fp9/8VNsNlv87Gc/x9u3b+E00oNIq+7qRk6MsUTd55RxPJ7w1e++xuF4xLff/g7ffPMVpmXCh49POBwPuL17g1/82a/w6tU97m7vhC5B9TCABkN5dJ1D1wG9nlMxVMbj0x7PhxPG8YQP799jniccnvc4Hg7iJJmkimHotPCK46InvHcSMecIbvKQyoKsxTYsWiwrvcFqUqsO1qphymVblkJjW5iuLr+dKwa12dVlHSguNp7C8hnwQi5bUESMhjtMTMrfBesXZ5TJZI1u40oGLg7ETjastQANTHcRNPIzIfgASfwRXCh4I6vDyTb1bFPd+kBXStMGUI3IvnS0GKoUFWjmhaS6mg0GxY6svFIEanmPITY9M8p6Lk4a5wDKtUhJ0z6rVOlD7Yeh38K7Do/7EX/9N3u8fT3jL/7/xP1nky1Zlp6JPXtvF0eEujozq1JUZSk0GmiAY/xCIw0kv5B/l2PzA2i0IcbAwTQaPQ10V3dlqRQ3rwp5lLtvwQ9rKz8RNyur0N3wrFsRcYSLLdZ6l3rXZxesFg0XJ44PHml2g+LdbmC794TVgr5rUUbP9BhBgZOsJpDki940eAV7Z9EqiENFir4xXtFG6hbrUjMcEwPZkLyCo3W4ycUO80YoBiK9CiihAQmSSamtyK8xwHayLJuGxXyJM5PdHEkjFYODzgn9QbQltIqZWMhrJsCkNaZp5XreYkeZg4XvImVFWSslK9LMnGkpeGuMZsTimYSGwDmx3967msrxR5XRlYcuoEmMi7nL4yHg8V2Lu7pI5UAhS41aDzyEafK+pvxMToqH75/y+/tGqfpgzkoIJXKbJjoRXCZiVxfJE4LzkUsii5wcL3LKo33q2BSjE/FvVKqHBOsC4xQYJy+KNtWLqu8UFTNwl3e9QjzI6oGFe/T7Q4cI7jJeM4AyA6JH30tAKP9NzvaZO4zSWWvjhFlL8XzGP9o4iAoBspGvowDT0bnlQ2AaB0JQjMOeadjTBE/bSdvck/UJ5xePaJsWJo9wZU9MNgrhDFKre4z8VmTizvpnGYNjZ0NR6B6lEmm4Fh6n8QDANB6Yxp6mbaX7VZVZkIRDHkZ1BNC9lE0lh5TIyrRKoyMzZjElosf6OM5+S2MIiqZp8cqwWCxYn5ywWCw5OTnh5OSEpmno+2UsN/Q5GmRj945pGpmsRes9St0Jt4GVbIZxsgyTZYzpoMvlkuVyQdu1mbTyu9bFnA+piaAmZiUBq/UJpmmYplgWGzsROmsxVX1++i9tpDpjKBsj1TzONg1lDyWSvjSG5fWqHIWyL+ZL5Dh6lW5HRa0TDcAsAkpELwGNnP8UZUKohWje1/lq1WM9INvr9RW/X9ZfyOBMytRKJ8f03fphvs/eLtchj/n8OevfQ/U98msqjmmK+hUjpjxnKrcKYb5vk6gqt/oeSRrvITnkQgjYSTNNMIyBw2DZHyYIhvXS4AM02kOwhFA6swZdr63qXwRp6X4S0PBJ9lPKl+Zz+PCRRW2tP+LalpR/idIZbSJQi6V/IfUwS1+vxl3Jmrwn4xIArp5HVaMnIkleM3Fv2VCihyH43D2r+kY1PnHEQlE+dVZfHYX+Y7XJn3rUGKTaXAW0V58p3ykyZt4GOQZ0VPlO2s+1TrkXIJqdfCat8sfI32UGklRIkq/O1Cy/H9971nih3Fc92slITtwz8i921AvgfQTCwRMbSwlGqryRIld8xlDBB+HVDGK7uNhFdpy88HvV6yWt8/RK0uGoo9eTTK6G8Z5j4mhoQ13ecv/9gnfyF95zovQjoI5fjv+X7q2W/d991BjrD312fpRASWxiQMCpuAqCE3wyTYzDjmk8oE1L23asVoqTk1POzy9om4at8gwHmQ9jRsAjVBCiG2U8pNNarSPTqqqXNYQcEK6HMTlFlFNCcK0SF+YAAew4YJtGov6NIpcWJU7BI1lehlwMaGcnvLMZT4bEHxcS5k1GtYnfTQFHlTdHWktJf5kQpEzONCyXS9brE5bLJSfrNevVSoz92NU1ZQyH4CsMNWEnx2SllGicbPlnLVPsFmxMw2q9YrVa5cyl75pzIGchySFByNHKHGmjGYaBdmzzXnbWQsxeT07iPIZECZYcHwUukDJ0fKJ3AHHQqXD02TyA6U4pxk49thX+EaMiY5J6bklwbTbz5Xr3At4JRT1k76qjtRjvN/G51rebMILgw8TLVgfY49VCKpHMeVzVc9XHfTvjnvJX5Szz+65xUsouDPnz88C/nDffzfFYR/1SMFSYjXl6htmdHw1Oul6NobxT7A+e/UHW9zSJg2i1lADa1c5LlULsUOizfIxjFvVQoYsI+ZkThgpJ3cZn8A/hw4dGvpqOjIujPjGI7DSxaVWIhbwulOqn+fzdm53ZtUMoOajVgp9h4mS6SKMNObVPmDAca5V6HirVECAcrZ80p+HeO+8//mhnU3ysylEQEWCSnIm/4fufOK/I1NUBpShxfEjK5f7mS4Lp6JQJ/DxAXBWqX+rzz96IT5kMeBdrygkxzV8pvPNM08Q4TuwPI9v9gdF6xkmix9Nk8c6jTRPbnSZnU0RBMfVMQFJACOM6mqZldbpitehZN9AvNG3fMg2ezdWGw3aQiHPX4ked67919Jjn8sNKCKfUOsln8jFyVYzmmdBJY1rZ5tWaqxT/XHEoqBxD98+Xt081zsGHzFEUQgEVs+smPZCIXCvAqqPy886XtRj/pZroVDes4uebJp7DSwq31pp+0UMA1wpIvbl6xf/+l/8zXbfg6Qcfszq94PHJBf/Xf/f/5HA48Mu//d/59puv2Nzd8uaVpIW3jcLaNhP6+WCFayiWoSTuAx9r+2tHWxrPe0aCAh8czg4QHLutpEk3bcc0TiyWa9YnJzx68kRay7Y9yrSSbdQ2ZZ4ymJHROex2DPu9kBHvbrFu5LDf4NyAt4M4soYBpQzL1SluPHAYNsKFEKNdSpHrywXYB9Cai8dPaPol5xeP+fCHn9IvFpyenrJcriRjMWZKpGglhBgpDbRtI2R22z2/+eL3vH79jneXr3nz9jXjNHK7uWWyEx+vVvzoR5/x6OIRq+VyvmZmjo75Mc+Eg77vaBrDYtGxWi1wzrLf7zkcDgzDwPXlO8ZxZLvdsttt8c4yDnu8sxnoe2IJk06EllH25DTdxO0zNzAkApWAh643RrX+74MJTyh7Ib1fKW7p7iNfyW2c02TNgFklwxOYCIl8MMnQyJXiJCczkUjW61cpRRMzm0LT5FR85wqRIMA0Oe62O4zRrBY9bRNbAWtD0DorP6VUjq5EbJDFWZI/aTyLqJMOGwmUpGihpHuHTDYrZfmp1l2hvJRmpUyXpC6y4x9K59Dg8xSlqGe5waR8o4GTPyPR1EYrVqrD+YbNZmS7W3K71fzqdzvutiNPL8757AdnbHaB37y85e3VAXzDfjhImW/b0BmDlGQGpAuQBWdR3uUI3cKIY/igvZSz6oDzlr2XkrPWaEwCTymKmFvSx26NClQKjWklRgIqZ0L1jeGk63HBM04Do7N0LkhmipF09FQuURZyKodJKypyHnqL10GMiKxk4l6JpPCdgpUx2BDYOo/zisnBYZwwWtPpFhONOeXmjBkSzZU78d7jtcY6j3VWsqpS+cG9nfdPcxSgnXThkdPrSD7VDij1B5wIyZmYMFQ2YFRZnCFQ/FURc6WxStdLxlN2/fkyQmn/FedrCm+8756QCHK2PUJGH0qJDLSjZxoth8PIdJgY9YiJXBiJn6kxLU3TAqIPhQzeFV0aKTjMfs/d5o6maVksetYnK9anHY6WyWqGwXPYizHeNIYuBWqOh1UlsanqlwqoL09XnjWUAAGzeS6Zm8nBnS5YO+Tvw/nZyeX9+kZD/VbExzqZGvVaeUDep2tX91K6IJevFMeSlgYPQdNoT6slq8c5cYprY1iu1gRin5EA7159yV/++w1tt+Dxi49ZnZ7z4YsPufi//z847Hf88m//mm9ffsVuuyWgsHZiGp2UhnkJPIUAOlULoOM+T3yPfvY8tVGZxtUHD34CPOO4w3sbHTOWpmnZH7YsFksWqxNOzh9jTItq28wFlsnDkwUewI4jIXg2d1fst7fYaeSw2Ui3YDeBn7DjiHcT3gsGbBYrabM+7fHekh1rqnAMKSWuLt20PHn2iOVqzdnZOR988BFd17NarejatjhDEQ4Y6d6pRQcHyTI7DCPvLq/4T3/917x6/Yrdbsduv8NZyzA4UA1n5xd89ukngs1WyzThOSh33KwkjXFeUVEHrxY9Xdtwsl5xfnKC804w1CBOveura8ZxZL/fst9vJcM2Osa8KBtSoBMitUIsbRZnQeRx0kp0Q03iH3Vyyiqu92RySoldFHF4yg4PgtxEytVZiSJDM5eSIgcja1xe/hWuoly+F/Vo2tPeR6sv4qGETzNeQOySFnBeRxqHiIF8ulfZl9Nk2e13YrN0XXT+6dgjImBCQEUygxASbUeR1Q8eR2JCso+aKvs8OptiGbPods09nZUszBjMz9y2+eSCoZLuSNUAITsT53pQRQ0k9yEVIsulZPPt9pbbG8lq/t3XG6y36LDgpz9as9nD9fbA1Y3FtoFhXGAaIVZPxNpBAJA4it2EChaFQytP3yqCNgxWMXmHVbImp6jHjC7rYLI2wiSd5bwyiRQ9VhIBpuL/DAiGWvaNYF43MUyeBoVrvdhXSpVMPpWmUdZ3dneEgAueKWX+BWnQkgI7Kq1nFWgNLJR0Qx6t/LQeJu9jJrlkpRfPAPFacc7S60GCQVMs37U+st6Z76ZPSMcf343ugSNQ111+Nyh6+AShlHYcectqg7wolvJ3eM9Tlojed913AX1lY1bvep0fJYQw6+zlY8cMa12OHEiXCVF6wjnjaduWDrlQIuEN1uKGIZ9LoZj0GOuuA6f6hMWio280bScpcNbCYTcwDRYdy/BQOooWlRf4PPWbIkSiMC6ypX7WB+YrCoX0qez8D+X3/M3kjVf1Fcq4pUmaDfGRcJkbKHLt5I2eR8Gra6vqaUIdW5dDjOPqby2ptyHEKKd3qNhVDBCOlRDY7e548/oVXb+gbXsMmvOnz3jxyY8Yx4G721uGURwvd9eX0m5WgWsMw2gZIgdRwEsdsDFonaJHJVW55qlJz1NAq6xJ8eRPKDzjIeBsEAPUw2G/I3jLer2i7WIZp5aubybVzWdFKuMagsdNE4fdDmtHDvst1k1M0xAdcBY3lfbBwgtFbGNbogwQIwBi4TAFIchfrU9Ynp7z9NlzfvDDH9L3i/c4gMrfKWCWohcEePP6kq+/esnV7SWXN5c4ZxmmAwFP23U8e/aU87Nzuq67Z6Q9NKbHckQpRdOYyAfTsVqtABgjN9Z+v6fpeg77PZhLBusIdsIPIy5ImncU/6S0ZZWWLkdy6T33l5wTAj4f2IMVcM77yhfwIe8fl+FFhxPR2aQzipBzKDWTnwkUyX3XUcbICZAMuqPdV0BBAWQmpqvLfmQGUpz3HIYRYzRdY2gioE+toCXb7cgJWxlt6ccsihZtgATAdYwYZa6hbNSlOS8RHuWLfHGZtyeCu0Dm3MuzHCB5o+aSU+U7S98NkA1DASOGrpN72O06rOs4DIHXbwcmO3K6OuXpo55F71n1nlZPECbhJwriJPJalW5vQYIVKqRUcLlOo2XuQ4jNEfAED1MINECnjMipOgvQhRzFS5xuctPkdufC0yIfb7Rm0Sis94x2wgWFDWQ+rkaXSF5eK3mMyvi5ELCh1PqLA7E2FuSTRik6pWKLbS061gVxEGpN1wowToZhvkZIYD/dQ5R9LmbCBH8UTfynP8LRL6F+jeJsLc6c73/eknlTSsYTKK31b0hKOC7Ugtpq+Vh9Zn7n9/DW8Z2q4zd13EcRmIa6O1As93ZWGjlM04RF+D0EzMu+67rAQkm5k/VWdJSzua291tKtdJwmhsOAbz2r1ZLVesViIV0nrVdMVhxbUqqlMY0ptA95G88Ns1m2ZhyX5L+7PxH3B0dKXBQ5NasKDNy7znvWY341n78YPNl4OlouNU4rt3WEn473aSgLos5iULGVvQ4SWEllQNZGUmfT0jSd6EIrtAKb20tef/st/WJNvzxluVxzfnbOJ09+zGHYc319yXa3BaXYbe6YJoVWFmc04zgxHqS0jkbGKZX0JGykfDUG+WcZiBQcTh2LnRX6iVSuZ0xLwDMulngfWK5OxWA0TUUrU3C1TLpk63jvOOy23N1eS4bTMBKcQ3mLChZvbeTT86AVpmklADEd4rwU+gsFpQQbCZJcXFxw8egxZ2fnvHj+Igbj7h95/iobJaCYJstmu+X3X33J77/8sqyBkLIdDMvliqdPn7Ber2nbrqwq/RBvzJEdBpmHrW1b2lbwMydrAIZpYooYSjcth8OBcK04TAPBefxUZ+gkh3haf6lkM2U2RQ2sqq2ZFDfRKZ5sAxVHRVVh9LhudCqND2XdpH1Vwu2KTOoMef3XeyQFw+brLo1R+p44XrSWZxRqxeOgQsh2TQqOoVK37ZDPl7Eeksk2jIOUaMbmPSJPIiuoTtirVA2UvfCAQ6CYT7M5r6kM8tIPhW1U6xQQnF9DftPxdZWbw6RAZ3LIpOdTETDXY5gXWCDLyoT1ulbhTcN217DdCSfmu+uBrvc8u2j56FnLahvoGkuwB7ztsE5KvHSFk0OQ9Uuq4IiUFyo6ZjDSfViPOnIHO2yQRBOjieX4giPyEM7AaDWgET9lXIzgtK4xgqGczKvVCY9UwryalLIqk8yPJfPBo0JKzonrOC7E2DoErckdV0erqqxfDxo00barEFjGABR6Ank9VmNFInjxdL1PIc6PPz6zKY/jMTCcv1Z/JyuIo0/N/o4gSUp49ExbHi/G5GRKIKu+bHqtNtbfdxRoSuY8yO8pxfEzZmFCMYy1MZSOASYLsOQ8aZtG+IG0RrdS7jTs9+ydkLtqLYCn7TppjRprmxvTYoxCNwYdOXl8avUZF7CPC7he27PsmPn/kTKMarArz/o+cBvu/1p9NinKPDD55EdgKJ+jCPfKk5TstNm9z2dIfpYEwVDmp36gdM3ZvEW+kRCiwNHMN0YgtVZP49o2hkXfYRrN7u6K4CyTHcRRpRQX5+d8/pOf8+7NOcFZ9vsdN1dX7LYbUOBDH1P7fSyr9Dg3iSGYn5+jZy3Pn9Z0IGTSR3GO9LQdGNPQHCRduWsbdnfXdH3PadvRLcW5Y2KGYSJWtc5h7Yh3ju32ju3mlsmO7Ha3ODcRpkNW8NaOTNOIQur0dfDsY9eVSqcX0lal49rtOTu/4PzJM07PzoUY8yEnygNHCIF376559/aKb759xdurd1xvbhjchOlacArlRnnmrufs9IzTWJpXr3e5t/vOrWLE3R/3shIS8beh6zrOTk9Z9j1N07BcLbHjJESj08g4HJiGPZO1jIOlpMiXqMxxtO34qFO7Q1Su+fXaWqCSeSFwLNJqGZfmpgAtlTuwHechyJgoUhFUUuz5THVO8JGISEDMZ4VNdkSmqOXcKCtAS8qHPRiJyKaMqvS+i7KxnphZOvc9w6qAsyx7vMcmh4MrrXkT6E5GedqnPltsiuBja2ooTowQI+XH0xnP5yKvQk5PDslZFYpOChIdEwen5/ZuwlrPR08HDuOIC3BxZvjoWcd2UlwfRrxy+MYQGlNkZNVNBUqKuI5yxSjoogPXB4Wbdd5RGcTFSUMppB19lDlypvSffCf5CBRgIolGoxXGyPdt8CgHjdFiH5bJSYPE8VH0TwkKJG6enOGEpJ8HJY6uJhofwrWkcY2nSXdtxNGm4h6UBGIXl64BrfL6S5lr0c75736kvQ3vl08PL775X3ntxXKyWhfX67F2QtUcPUmdztBarWOzSKtkw+y3Y/0eMnbKp9AqZhzo3CEslYhIRjIC0mMWopASL0GBCy0hCCFyIkJvjLS57rqWtmtoW8mEapo2YrQGbVqgMhRrwyDu7wSwQyzfSmOSfqZSihmmzLi4CswdT4o6fnF+ZDmZB4pyTxV2e+jIMgHEIIwn0vr9F6wdaOUkZKxWi7mEiVJWgDibfJbv6QS+0gFGGxoj2MTowO3la+w0cXbxSIIXBJ4+eUbbNrx78wYVFIf9nrvbGw67nch6r2KHwkS66yRzKJa4lUBC3RIqOd7SfHoIDucUzoFSE23rCKjoMDJSJm8aht0G3/d0XUvXLgRvxzl1ToKTzk2MhwPOTux2Ow77Pc5axv2e4B19o+kbybiwVpynBGjaDkeQMuDIKdlEgzZEDGWajr5fCI47OeXs7JzVcnVP1+X5qv5IJpBznlev3/Dr3/yeV29esx9GieQFsixtlMjtvo/X6/pY0pNX3XvXzHFm00MrMhB5fYyh7zrOzk5ZLha0rWG9XGCtZbfZxS53I+M4oEfNTkvwXHSz3IVOdqOaP7RKICfp63zl4hxKBr6Kjo6QFzmxiU7+RvXtkLFGwuc5O5S5fM4ZYCHh4jKCZc5K57gsm8sAxs7l5AxNceSYfJ7EvxR8KZYSH0nItC0JrxY7RsqPa7spPhQpo6oO/mY7Oc1fxi8lczAFapLsS/fgXMFO8jMlW8SM8NrBlRRAKH/KdIf8/DZ2kSv3kO9wdk9Kacl0DXB1ZVHBs2ws5gX0PZydah6dG7wJ2HHCmZBJ2OXmQ+zAHXJWeD1jJohjpNU6ekgiXqzxb1yfaT0kbO1DiP7MuP7S6so6VMXGJ4LPnZZAIkpl55U2Kgdw0/zUlkRZbirPq1aJRD/EdZPfRgdFE9elUQoX98NkLV4JB6+OLOrmKKNRkh1SFiCgTLYThfsvqtHvUnDx+P7OpuqXxCE7V6plUWRjqbrh5Pk8vqXaIRFi6h1HD5w+Vyv+DJ780b1BBiH5/NVPoBh16X7C7HaRhRJr0lOL6/hMWWibRhxETZO5l4xxhCBDmlJcl7GMqGkMi/WSpm25ubrCjUKc18UOdF3Xs1h0kgnV9bRtL616e0PTN6AlhTAEX0h5c/T+/kSH9FBKjKRUepPHo/5kqAVkWjzx95kWisK2cgpluU8NKItEyQJ2dm9p81SWY7WujtdJGvP0R8E41WJXaRPWgko2rWkaUBpjYkttCgCW+3MxutBKum3f0TYG5z2Xr79kmiyn50+4vXzDYn3KZ7/4l/zFBz/g62++ZLFec3d7ze9+9UtevxzpfcNiIY6gzXbPbn8gBIWdHAS5hjaxA4ouwjvkIYvp1dGIT2U+3nvabsFiIeDIWU/T7ghuoFGWxXLJyemaVXsWJaH4ukdvhfx3HLm7u2GaRq4v33J3c8U0jWy3tzg7sWgVi1bhrWXY7zjsNixXa1arE0atuFWlZDMrqtiNwLQtbb9isVzxwUcf88EPPxaHWNNmkFJ3+KizjWqnxW9/8yV//Z//jrdXl3zx+99xdXvDcr1gebLC2YnDeADvWK9XfPjiOevVmkXf53sq8OPh471OpmqNmri32qZh2fdRCUrZxjiMXF1dMRwOXF9dcvXuDYfDgd3uwDBOopRdbFsf02FlH/rZTcl6ndNbp58lmhzLvRLxbwTdMxBxpIyBbMQpJSVcKZMnAdIaMKWUZxkDj1K6EI17Sc/XdSZCKNs1gS0paQjRENHVZwto8XlfivFgnUNPCqVayZhDFJHWBhe7Ec4BHCSnSDGUyj2l64E4P0BlLjx5ap/HCVQERwLWJutk7iqQK9HSFN7WszUc4kXzTyfp6s5LVyCJk8n7LnMsUK13Td93eD/x7asNIYw8f7TjbrdFa8MPXrScrRt+923gzRc7rDcs+46u78DHiLhPGU0pIicWepOMDhVYGHEKHYBJKSGmdCWrbR61B+HFEUNMJ6AdQZQKRQ+YAK0WP0bXaryS9O3RWpwSR31AwG+uS8zzGPKPALlUwajkmAxCMq8UqJhOrgKdVugAi6Zk2w2jxWpF17SYJpKdN4ZkZIaY/WUnKZHULZhGRaPRY11MAdc1jPvnOo61m+zrtEbqrLx01HsvvjJ/M+l1H6RkQ4OUptfOzyKHZ7gr/6xx0gOYIoRqF1V6O326cgDkzENPBN+xBFSX0pamaWjaRspdI39T20gGggSJZC8ul0vOL84jRYDs5bvNHc7L3PZdT2PawuPXiiHdtgvaTkei5hiw84UL7XicE09hUEo651XGRN1SnurZ3zdBNV6ZTXUyPkMyotXs7YdwawhzGS+jInundrQLF6Oq4PP9OZwbmjWuLnvV53VQDOJUKm2UjTqh1lPibJcxjSVLnWAt5z0vv/yCyXqePP2AYSO44vMf/ZSLp0/53e9+g2l77m5vePnVb7l6+wrvAl0n9BKb7Z79/gCoWF4lmULGtJGT0Ef7MZU+h0hQLJ93boo6XIJpi8WSdfBoLfxNRjd4Z1n0PYvlkrOzE1ZLIdN1QXTubrKMg1Qe3N1cM40jm9tLdptrpmliv73DO8ej8xP6sxMCnnEcGPaSydQvlkxKcQhSCtU2DSpSByQn62LZcHZxwWK54tmzFzx99kL2T+R2Eef7kUygrBHnA+M48Xf/8AX/7//Pv2c/7LnZbqExSL87sUcWjaI1mvV6zenJKYvFYobt37du0tp531EkQwwKaE3XNKwWizj+NjuYLq+uOBwGbm9uuI6/391tYEhEw4mMusrayUZaadSS7jMFkQTDlzJ6FZ1oPnEvIuTsRxIsr/toLoEiy4Z0Hl85QZJDSCmX8Z0EtFLQmrh3pDOsZGqmEa7wl5E1gI1NEbTCxHIvpSq6DVIgiNgESDApShy6qcRYoQheOEd9ymyKJYoKL94dQi6Ry46X6EhJAXzRn1pKW6fpAUwqemSMXditD1ibaE6i08UrvNdZ5+TVkXCqLhmsLjbpcDGwLt+PKyHK3UCyiSL1Sbcg4Pjq6x2vXllOliv+9b8QbrAXTw3OtVxt4dvrPYGGtmno2tjsyPtIP+DIGCqt3biqvNIsWoP2GgtMeeoyisRkx2bs2BufgUAu/Zw5/YPsYx2k8YkP4IwWvKRgtA6vPI3SaJPGumQVpTPNMKjSoAVDmbiPnXOC4RpdHFvIcwwmNirzQSoNtMYoQxOpURKGSuvd+8hfGwKqE93tnZQVTtEJmhp6/aHjjyijmxsd6emTRy95ZmcfqBRwjr7kQatStvJ5K2AUN37tZDr+TPruPSwb5oK4/vmdT3dMRq2q+ygnlrcSWNFFeZM9mSJoEgGeRgCYifxNbdvQdi0hltkZndIik6Eo46qUOEsS788fAsXZqRfnIhyPcDY053bc7JFrozhO1kOvfcdd1Jc6wmNHWVeU9ZA3UDWvtWOijqzML1WE9/HaSO7dPJbpGUigK91XeUP8NAqpS/b4WGI2HHbst3dETxBN07Doek5PziAEIXJcraUufjzgnI/s/QrhOawjy2E2MMfzkZ4hcRO46PHXzuaSH+smUGCnCTeN+Kah1YpF16J0g2p6WX9R6Dk34ZzFTiN2GpnGAWsnSQt3DtU2QvyrBZAnHhsds/dQqoDQ2kgJqSRNiEC7vqfvFyQw+uAKqec5/m6tY7fbc3V9ze3dnXjdqVp4qyS8NY0RxdG17czB8b7rPfT6e+VBclopJRmFQNOK3WxMwzAMGG0YhwOH3QqUou8XkehWWosmYyDt2ZrKTLIICw9Akl/fgePi2ghHe7bI1dkzqeNPxPVFvcjme+bBMar2S20G1Xv43lEt5JxWfSy2QshgJf2cZ1wVWVocTtV+SYMVQiZAT3KjGE0lgwUS3019D0VvpH8J3BS5lUBFihzPnU1pLPJ+CKWLU3oMFSq5FO+stA7WTBacDRwGx/4w0baBvjWoE8Oyk5IMPOJ09lWBcpJ7swVRDGDhCQhSBa5VKTmhZLHMnHayQPI9ZplJkZ9pcMQFKapSunuKM8pF3ZhjsNW8yTqYy7x0PwncK6UktT3L7hxLE5lMbCWsYmQuiAPWJfCoNKkddPUg9y9IIhiPH1L3zI5/pmPuhUgt3sveOp7b4/3PA5/j4b1AFfSpf9brmLQX3o8xirP76OqBsvejwZI/pshcjiGE+HsxXurOiDlwlpw81J+NHIyNdANO5TshBNqmFcdVY3Ljj2IgJUylSXLh4QVSZGOWyenve0NyLLMeOGpf09HymsvQI4yW3meOoeq5SpUCVO/PMdT8gjW+mMn779onGUIp8rSkkyVcpcq41g+e9acW7OPsyDRMDPsd++0m82h2XcdyseL09JwQYLVas18usdYBUwzg6nmJNUXe3h/w+Rgm/rIQJDpfmvqkrqmKoD3OTgQ3ge/ojGHVd1L5qBQupAwOhx3B2YlpGrHTJPgpB0cip0t0dkh5aCzh0SZWPUjwaD6f5M90nXRTTEHshBbvb/FQHhnRXdNkGYaJ7XbH9c0tk5tERjcGnHwmZcG0rRjfQu+gs3wo2WL1mL7/+F4YKpXYN9JxzRjD4nBAac04jiz2BwiKvuuxkxMM5ZMToM47et+Rdykp8FICKbEkLcu3uQ2ROmWm/fa+c8MxVkr7KSG8uEHS/VbPX/7N1XW0Drm3d1R5LWOoI/yVsE3BULM7Lfei0hzNzzk7Knur1h3lGrFMK2XaVDgsQLYJRKeWe8h4KJD3bcKx6fua6CQ+ttsCs/GaJa8oolNOspTGEezkGQfpjBaCpu80J2vDbozYKRQqiIwxoh6oc77TtXXEUIJvwOUGQelroZqrOOsVzsujcG+smWEoFFUGngRB53lWYfZjJuPr6abox9yM4569G59LSTAx4XAQ2eXx6Lx+47WScKpuJ/lmQiDj4e9yQtfHfyNnk5qByAAxfbv8TbWRa7Wa7s9TdkoGRSERhRfPppyqbLhU83uMf5Igz86m+Lpz7t5iMNFZVMpFogBIoDQCfB+NFR3L+xSiHJq2o+16lqsV0zChjS5paDEl1FvLbruh6Vr6RUdjGsnI+OEP82TK5Ekmi45pldM00pkWrXrh4YnEq2L8+BjJiSmTSpR6qqVPHmryJq8jkvX4FwFU3GRpZkPGFSX6TVZ+ybRS9UnruQjpOgVopvXg8+mKEZYFfqAs+vooaGn2bHL56HVXKZWR2aZVKHQqrwjyd9s0YCTSndaSDrL5ondIMtNWC9q+QeG4vX7NbnvNL/8zfPPbL+iWKz7+8AeEDz7ibHXKDz/+nOurt/z2N3/HYb8DoG8arPXsDjZG1B3jKCV1QnwZAXF2wsVInfeM0aOcotHOS822RFY0znlWXYuxE0sCnz55zM9+9Cntasny4hEYzc3dlu1uz8uX3/L21dds727Yb2457O5QwLJr0brj4mzN+emK87NTrB3Ybq5ZrFY0/RLnPRMNB68INqCGSe4nCvFV1/P46XMWqzX9YlkB2TI/cyxYgM00We7udhz2B37/1Tf8wxe/ZgqW1emKxdmScZrY7g8o71l0HabvOFktWfTL2OY6lVf96SZjLSzfdw6toGsazs/OcGvHycmKZ8+eMgwDT589Z7fbcXUpPBXeSlkiborPXgH8ek9Vsiaqr3qIMj9NUtwJ4EDgnh4rKCBCC5ETEmmq/h2BAtHjqdmvygOQpEHpAhI7CAZ/dL1y/0kLzQBLKGIhgSshCCV371QqRTGjnKgeLjlzCmm4z1k2mY4qpLELeBcgcrL5mJacxFdhF43kxB58MEALSqJqqTQ0BBeXcNEbVXyuApRpGhWRMT/v5ZjfQ+oWJNmJDcsQmKxiGBd4p3hzNfE3v3zN6brn84+f8/jFit1ux2m/Yz9avBvZD61ky8VOcDplN2X+sBiR9KCCpzMCLmzQWDTKBSwWFwIG4XCqcKnokKgHdXIIBJWDC3W2uY7X65QGI+Ubk3cSOXMTxqV09OJwnS2UII5rG4QHsVOaRpdmDvXHBZgJFugajTKawxQYrMMFOEwTPnha07BsF6ToKx40mq4RPhKTAjYBrPNMVkoe/2Sh8d901OC/kMnC/X31Rx2hImYNAe2i4Zujw8VxWhvsCTTWQLoemKTzU5moIjkgSnaQiGA1A8IK0F6hVEDFkhARhwqCkE43bUfX9SyXy8KJlM8ggTdrJ27vbmmalrPzUylxPlOxsUeULPH6zlkCIbYL93iMtJVvmixjIBpqmfPMRUdBfefp4dMaKfMyy4bKX1H3dFC6lsi3yhGaRrUW9hQgn3FW9V6eB9K8qert+I6X+7jXwDff6/vXmIqyXjIiYtOaKFdVSJmdHpOex6hYrijfkc62MbAaygoyRrNaLej6juAHvv36t7RdzzANfPP732O6jp9+/jOcdzx+/Ig3b7/l9vqSr377G4b9nsCSrm2wznEYBnHieIsdHSmTKpUrmZQNEMdWsJaNc6BjhorjMOzRStO2gq2xEys8543mpz94wY9/8jOavqU7WeIJvPz2Le8ub3j16jXvXr3ksNtw2G857KThxfn5CcYYHp+f8uj8lPV6xTQe2Nzd0bQ9Xb8SmUfD6BU40Im3E0VQhm654tGTZyyWS7quf2B+7s9lMlL3+4Evv3rF3d2Wb755zfXNHbrVnDw9xXSG63fX3Ly5ZNn3fPTsIy5OTzg5WRdsHnWe6MhsITy8iN5zHIemHnrfRIfao/MLnHOcn5zy4ukzhmHg0ePH7LY7Lt+9EwzlJrw9RIJ3Bfj33FJlQ6Q7VwkBEbG0FMbWtAAqYakHH7V8znkv3cuqLSMVWAnjxPNpBUGyQ0yVtZ4cRnXA1tuYBZifrDhmvE+yucjjsu/T9QPjFFvPW+mGrlRykCQngo62eQ5vF2dPIDYaCdmET/aaZBq5qEckEF0HAkIsPxE8KJljLkgWdwghckXN9ZBL2e8VbtVVkoZMhZJqDKVyET8k/MeswmPRyVw6N7HfH3DW8+bdyK9/e8mib3lyccKzxyua3418+XKPsxo7rRhth/Ge1jlwDuW9YJloe6ogewEv+GipFW1QBGOYgpQzTqM0MDAEmkABl0qWl0+Tet+ALXNKoImUOK1WBAwqBAbvmRQ03tEEk0V/DdPSPCa70MV7N0r4MnPoPV9MZbymFPSNRhuYrOMwevBwsCMBT2sMCyPVKD6tE6XpmlbmLjUPCiE2Wkm0PsfP+vDxRzubsm5NSrjWW9lrWBlN79nP0Sc2U4zJWyabOzlT6vTlepOHvBBnwKjaXPU91+l49VEEA6SbUdRzFSKQSguRDLJ0Y2jalr7v6fuiIPLThyAp/4cD3kunDUJgsViwWJwDEpFwTpxLw34PiLNJIiZSx6xUidjJeCZDLqWFihBIizCBEUm/PZo70ShlxB5yNFUYXJEyfQroTBtHpSGLBkSS9iFf7X4+VkjjcjQPMm9/wGFQeRaz4GRuxKcxKA9bxejj1xXCLUIQ0nZXn88Xzh0UdH1LGxqGYWS7uQYUw/5A0yz4wac/5tPPPqdbLOn6FY+efsjLr3/L61dfSqcDH+i0Zhwt1oFVDutG6eqmNI3qq5TcmiMicSfZMgnRaJjshNaRHyyAnyaMc3QEXpyd8qMXz1icn3H20QtUY3h7dcPN7QZvB+l8sN8xHnZMh51kZ63XtG3DyckJFxfnrFY93k4cDlu8d+i2RU0tDs0UQNmAwcm+iA7Hpm05ObtguVrTdr3csKKU0WRjP41zySpzzrPd7Nlstrx9+46vX76kXbQ8+eEz+lXP5dU1t5sNBjjtG/rGsOh7uralbdoCnNMm/ROP7/pmek+As3RuOT09AWCaJlYnp+z3e9q25+5uxzQMUn/uLHmvpQWoqsGoj4iFVNrLiPGQIlffdaP3jYe4/49A0vwkWZLHfXOciZb2lEIrQ8BXRmllANUXSHKZOfgrnxEZIZ3qIiCJJS1tYzI5ZnZOVtdI+yKkDJ9EAqpEnSqItfilO2LKJpw595QYJj4oSUkPGqQpbY6ypShdDZRmEitHToUnSEEkSZT7LoSQ8tngS1ZU0zRpO6O0kNTebiy/++qGJxcL/uzz53z4tOfrbweWrcU58H7CTRaMoW81JqXIh0SgmgRv+btREskejdTrh+CxcY5mWChFTxWxfE3eTQ5/MTYrfYiUQwUCjVJ4NEEFhjhHU3BMXmGUFuLJY0kfkp4XkCr8ksIVIIZq4aBKyyClrLcxi2JyRq4bAqMTvjSAZVsFi4Lce2Oa8rzxvMnp74OULvw3OXj+5CPppSJHi277juzBfMx1YZobyeJwIn7j3po5m0j6MWTgmIzzfAfJgUPJjg4h4CoHXV2OpSNnSNpsKcOy4AgVKwhC3ofi3CildF3X4a2LZW4yn4nU1XnHbrcTJ9P5KU3T0HUt65M1hIBN5RzWMo4DwQWcT/wf5Ozc5NircZKPha+a5DCL41iPc0g442gGVTVmD85X/B4kP3SCT3m+0vWOvpL/SFDmAcTE8Ut5GT+4nss8zrI7SJkg6fc5htKpf3FI67RgrqZpCEFHjj0ytiKErOo0ir5vaQMc9gO31zcoZRhHy+rkLR9+/Ck/+vFPaboO3TUsz0958/Jr3r16KY1RlKJtG6ZxEieTCrjRYa1kMzaNomSziQh2LuQspika9k0jLcd98EzjEDM1FKYJ4C09nrVRfPT4gp98/BH9esnJ03MCcLpa8XL9Bj8N4C3T4SCcjeOA7jtWqzP6vuP09ISTkxMWfY+dJg77HSvT0ra9cNooHRsqBKz3UfZKJ4a26zk9PWOxXBbC7TxHx/M8n99xnHj96h2XV7e8e3fDdrujXy/o1ysW656b61u2+x1aw3K54OLinGXk9ixrqejK70ZD7z++E0PFazWm4WTdVJeV8r+uX7Lb7VFKc311gx011o3zbOH0pdreO/qXFkKyK3NZe73mj72x7xH/AQRTzLlEMq5KZqm8K86dlEmZ3gkKdCzblO84cXILUIh4T86dEwN8OJrjaq/HMZusQ0XepOAihjKRC6y+1+q8WZKEFFq8n9ElziZxXqXKCsWxjkznTl2EFS7p9eikTnxO2XmVZGiM9/mo91Eq8xMlp5ZCYZSpbipRwQA42kbONU2w2TQMo+PmzvLtqw1nJx0/+fE5Tx6teHftMWEiOAlCWCeJBE0M1M3CsFHepcwnDXRKStMGrSF2XHNBniURcsvURASm4ojGnwly1mMrqlGc9iFEDKWFn2uKnEDLKB9irvbsJCm3J2GohFW1kl4Kxdkk/zIMRXRvF8c38QkHApOdUMqjaKDGSzIlNLGDU1EvEiS23kv2vKqrqN5//NHOptmNxLtJmUY57S8tzMqmefBW1Fz55Y1WcXYcK8f8uQyWoiLO16k/r5J9E/8qRm7ipEg3V6fwiTgTIZMcTioteML885BbuqcSOaUUrTaVIhdgZYzGWYvTYK0AtGmSUqZpmiTjRUEXPctzo242AMWhNJe99wY4gYcEbEI4cgCl8csjlDBjnVIXxzF7lmZnyEMt45rOW4Td+6T5g3MbgXHy/M8/F/KzHCuduNvJpYcgGQA6WSxK0i8bhUILdyoehyMER334aLTJekyM/jqm7cfvuYntVngGusUSG6RG/ez0gk8++xm77R1v37zi5uqSYEa6yUUhm/IKxAAMPoAyOXuOauxTGvJqvabt2or7BoKTiO8wDsL3Ygwvv/2WR7/9HadPn+CXC0zXsdvuGQ4j4zCKseBcbEW7Z7FY0HVtdN40MfoPNnI8heAlA2yx4PHTZ3Rdg/YW7SdCEF4C5x1Nt2SxXNEvl5Gs8OiYrc/kvJUXp2ni8vKam9sNu8MAjSZoSSm1znE4HLi7vaVvGx6vH7FaLenabgbua+Ps+6Z0Pvy59+y3P3Cevu9RwOnpGU8ePWM47LgaxKGHDpXAj9KzXrq1nRHXXIkiPbBzojz63vZxyFsjG6UhGfRZ/oXsdKhvbb5z6/EuJw++dI0RonAJFCT5rKA0EYjnSzxPOsg8p+w04ySTIW3ZkBxGoVxT5ECVsaRKiZUnMEUy/RSdg5yzBdqjvJZIXCIND/kmJXsUIPN/xPOHRFIrYEAZE+9TuClKRkeV9UGVHq0CjW/QykeHisc3hkXXyfz4ibs7S6sd293IfhhoGs/zpx2rPbw7BDbDgGlbghHQqkJJCZe/i2ZWlCCKif+8Aqdi9mcQs1EFSDn49ZxS6dDkGqjgfP6wVkoicwGMFt1oPQyTo9UhdxwsFvZ8DabzKSUOLMlsimXks9T1JDOER9EoIjeUrAXrPW1ahzpigLzn8hOhfJlHn6997GT973PIM5aulPP9/V2bPe23xGvhUN7kPZXOnSLLBS8VZ2zqNpNALFCMoGoOkhcwE0Yn4yBhsXifCXRrJaVIopNBRePkmJFTqVTeI1m2OhKIN02bnQIBlXXLNE5SjtqIw1EwlBNemMnmDJZaDlVXy0M6t58qHVLtXRIOOpqODEPKBMa3KgwVM9EjfMqL8YGvvfdQipzJGY5+3jtJOn9I5MJFmt/HWvE9VfBzws7y2JrEqSL2k0KCntA0spZE3Meghk7yPs6uh+DFEZ2CJdpo2q6RdeBHhsOGu5u3fPPVb2i7DjcOnC5PcBdP+fiTz9nttly+e8vt9Q2g6aZR8FxQEPnlIJYYq0Ion8dO69y16+zsjL7vI9Yesxyy08T+sOfy5hofAl9/8w0nZxecPDrjqQooo9lsd+wPA8M4ME2jdE2cpIlK1zZ0bcNy0efOmErJeadxRCvFcrWkbQ1Pnj5lueiR9vQSeLYxS6btFpGrtcuE3Vn25sVztObiMY4jl5dXvH13yTANtIsW02rsNDHs4bDfs99tWUSn7nq9pn8ge6osou93PCg3a5vle51EgtnJ+XV6csrZ6TnjYc/ttGca9igdyLzZeT2ruL8qQ1xFzJQXHFlt5duabdyyB+TMBQ9lh7wW/TXPZqztkLjfVdn594MXUY6okm2UzgMRD0XOp2T73nPuqKQ/kxDwMYs7MMXbJGhc1UFd8JlUaSTbWiRUEHlH7CFBeT6xc8VWSQ4JeSofg0zS0U8CeqXxShoeHeWJVOjE6ylit/qoc1QpN1VKso6p9JWK5ynYAVTQ+EYLZR8SJAjB0HVt1AGKd5cD1sI0ObQOLHvF44uGxQBWO4ZBupd2ihqIzIY5/Uv3kJ7JRMQQtCKE5GRL2KnoxrKuKgyV8WCavwK4TPQVWGCKTRgm7xmsxShFr5ty6ni7OSCaByeZuFWAUJE5NwMJA4ASvxlGC8dlSvKwTgKUggVKw4DaUMlO1uraEjSqP/f+449wNj1gHaVXQtWNoiZdzGNfJiF/O0ZTQmTWDwSCdaKYYmtFfQSY6uuVf2XzJyGTlKeKDgaInXr0EYhI95AMpSBkcsS1E+pUGEA7k8v7kjBKnr+2bTg9PeX07ExK5ZZL2kz2prHOcnV9LW1AfZvvfzgcmCIR23A4oLSi7VY0rY+ROfHNZ6AY5s8PFTfK0XSlzVxvg1KOMx9LeUyVFyxGR44cyhjGjZbu5Rj1JGGvo/s6IOmV79M6edzTeohGkHNWNomqzJy5tijfAUpWVSRri8+u0WKkRIWh24ama0R4BIcmMOkJpaasPAIxrTIKaG8tOBc7komQmQaLtRNvvv2Sq6u3tN2Cz37y5zz/8FNWH37MBz/8jGma+M9/9R/4+1/+De1+h4+tmrtO01sprdvvBpyVatnYexzdChhTWkoyu77no48+4uz8nHGcOAyDOGjeXrLd7rjFocLEzfaO//RXf8Xb12/54JNP+ZeqZbE+YT8OHKxlc7dlGkfsOLHbbLi+uuLi4pyT9VI6hvR97AwmmVvBWYL3LJcdq/WC5eIXeGs5bO/Y3Qox5s3NDYfDgeXZI84eP2axWMbMprIGH5pz4tJRSrHd7vni17/n7bsr3t7coPoGWsPkHH6Am+trvv3ma85O1vzkhx/y9MkTVuuVrIvZPngP+PknOtI1tdacnZ4STk4wqqU3azZ3t+xuLrm5vkQbad+ugFn/3qR0qvMlOVhK7JKyrZ/rKEr3wDPXznZVvZb3bDR4HhLTKTOpSgTPCqto4zLuKUskCmBSq+l0LkXCfCXCZnM5DvlZm8gfobVE6FDFoZJwXQDh3vCx7CVGyYyK3RcJjNZleZH1QK4BS84WpIQuZs5Gj5VE06KhaplEvgeZBhuCZBoGiUY12mC0oo/lObOgSQYpAjAlghUNY62ZtJQU+BPPYtFhhw3ffLNlv1W8ebfhySNN1xn+5c9OudvB//bLideXG9RiybppZUxdKveVyCJx1sRxg5BMEuhUwKqAVYpJa5GvNoHIkl6dV0ECtClLKgIWnbrVZdAKbatpjUEpj0X4TcZxYrCjGDarJgKeosO9CxVQlVYNwjEl85iyWbSOZQcJiCMOi0YpeqPxywUuBIZhz2g9Rjkm7zAhgv4o80sXHXHsp7a9LpL2G/2Ac/y/w5EiwCnAcI9nTD4V91Xa1SUCnXloYsfUELx0stU6dvWSPVAThKdAiq/X7pFcKrw8QbhIlcqEokDOFvZeIuwhQNDxHhSFeNYY2WMaUnlcMqK1MvT9AoNhvVqyXq9omobVak3TNpK15BxustzebtjdbSSwFw2N/X7PZKdICG3RxjCNE7a3pE5HIgpSLD/RL0TcSYIyVZAn4sMcfU+fCQ9wV6X1Fb9boguy/3NWemXYzr5cHeWr9X3ez++o103WRfESznspd09jfw+6319bPnefSuTI6ZMeFbSUIipP04lski5vELzLMkJOKwEr56VEw4eAchaCp2k1q9MlwQcmu2UY7jgcbnj79mv6fslnP/1zPvjoU56cPeXDDz5hGAf+5q/+I7/6+/9KOw6AkwBbM9G2kqlw2A9YFzNHvNASpA6ixhhU17FYLPj000+5uLjg7vaWy8tLwS+3Gw6HA++urgjjxGq1olud8OrbNzz96EN+sv9XdIsF765uuL3byNrbbjnst+x3Ow7bHYuuYb2KGKpr6Izkgg37HVutePr8BU+ePAYCZ6dL7Diy32/ZbG6x1nE4DFjrWJ2csT45pYs4LK6CB+f8WOdvd1u++M0XvPz2NXe7O1ZnK5RWHLYHDrsDN5dXXL57S2c0p6cnPH/+nJOTk2zgFziRN+U/y5GsQdMYLi7ORD9MnmFr2W3u2N1dczdayV4zZT+IylakQrS0R1GSQekAHaR0VzBH/K5P+zwUczo5gSjjKjjD5Wuk7NdoomSsplSq+lA5c5QQbZ58CK5XyqCMWGvJOe9iyb9zEgQOweNtdJLnPaoqWZCeB/kc4FCCVRTSGVaX7pGSlVxK7L0XnOaDgxjYMDo5fVS2t0P8XA5KEMCO0S6WTPAQAjY2WQkh4YhAMFE2Oo+JXJPJseWDNNqBQGPaTDvTNtKRPekhgWPJaVacJdq0UXYo1CQOq/W0pmt79oct//DrOx5djPz8JwNN43h0rvjppx13e/jNm4mbuw2+aVj2XZrIjCvzstcq3q+iQezlVgU65XEaRqMlQ9HGBjQK0dW+6JKkK7z4bbJ89LIUcga+UtAZQ2sUg1KMQfTz3k4M08jCNLQLGZva0eS8F67KEMtDk3MJWY9aS6OfVOKeOOdC9VrXaBaqk6D+ZLGTR+OxjcfELrY5GzddO9Je+BikQiX/wP2Gbg8dfxpn00w4hexsUmU3xreLB692TGSslCa7BjohRbOPARBxYcwVZXjg/AU3h/J7KJ8vQiU5qTzepg4ITSxtCvWJ4mI8VtIq/1BKuj+1bUvbNPRdRxu7cSmlUZOKAsahtMJOqUWqlYVrHc47SVvORvTRcKN46C7yu6o405LamKW4PWC45nENoXilZsps/nuZ0sDcmzv/fFoL9SeSg2B+/nQrIa+XPO/vec5716uWXDpHiuzWl6qznkSmCEhRyomgJMJNn/rVlTGEqPB8AGURHpaRYZpo24HxsMfbiaZfsDw5wzrH+uSM5foEpeCw7UgzIcNnRcCKFI7RP1/WWuXM6HvhtDDGxOkppJnOOcZJImg3t7es+kv6kzNubm6ZXOBgLaOz7PeDkInHriDO2my0FzAsA+m9wzsxWJJC6hdLMU68YxoH0A1Ne8BYT9N0NG1Hc0TY/eA8Hx3OOba7PXebHdNkc1qL857gJPNpGA5Miy5nl9XZU/cy48L9VfP9nVC1kXX/3fedOz2zdJRcMo1SJul9yAK7nCT+EJ2WV1lSVeUSFdh44NrFKfUdR0jrrezCh/eUyo6hfJ0KeFUPm4V32aO1jP1++zYRt6bIlSLglM5yyqkSDasdFfV3094R8sqQnWQuO6eK4E9ZNElsyc9KdufnVfF/Cu1TWU3In8niMY69KPQSUT+W19nZX4MFrXFKSMKbpiEAdtCMk2IYAvuDZXcYCfScnjQoDW0zQZC9l7JR0qymY2YwRLAkHA5gSN1mKKA8niXNeZ45VZ7yoaOW5zF/NIPb4IVDwPoCQstni0Yt8xHvIc23KjpsdsSJS45HrWI0NOqMdM7gfWwiWBwkCTOUuSn/odT3EVH/ZEeNZXLgRc1LFh6MksfnEVVX9kc2gryXTkxp7Vc6tYxHtU+OcVYlpOSzMcBGaj0tJZAAwbmcgegSb0/Xoo5kdMIMfwi7mEayL5qmoes7mqbFWotSU8SGHjtJeXmtA1000lJGT8ZQ/qHx+45DVfgl/j1DObUgqIeqetbZ999/ifj5+nv1tY8uNLuBPyRh03jLZwuS+QPfqu6h/so8QCu8cQQkc0kHvPLFqRV53rIBSxY5xTBXHqZIFRG5WKZ+wA4DKgRa03ByekYfS9QXqxXaKMZxF52rVfMHrXK2wwzDxtvXMbtpsViwWq2Ypomu68pIBsHg++EACq6vr1kt36IWPU9vbunHic12y26/5xADw9ZOeBcdmd4X2QXZSexjd1IQZ4pS0PcLGmNw3tGOA0o7rAuApWlaTMzCOta9eUayalZZ76bx2+32bLdbJmeFu0oRy169OF4nuWejC1H3fEWUv+5jkD8CQ1Wfe+gb78NQTWzGIiTpPWM7ICXAKUgmAzyHJ2ldlgSHyoygyJvyxYxz6lutv5QdcOmbZU88ZGomfakURTdX62/2uVDss5kszPZe+A4JORvFSmwHXMSSKNl7QQtLjyJg0jhU15Ax9TGwIwE1rYm8UTEgEZK2TioijkeITqVQja4qAcX0HclqLXtfqYxkqyEpGTg6B4fSPoISpoprPiiClj1ttCIkDBXAW8VucCx6xzg5rHUYEzhZG4IKGB3L+ZTKGV5JF75vZScJrGNGdSg3RjXN8wURs0nv2+5kbFnoCmIpodboxGkYx987h9MFE9eSOeOd43utxjq/WN1isQbCHENRdawORXfU2dHlujXODWjud8593/H9nU2zHTZ/TBdLc0AiXCbWyDdNkzdxrZuzs4KjVG8nwhutInDU98BUBktpUSfjtjQeyGDWOS+KwXuGQSIIqUTIWcfNzQ37/U5sfBto2pbPfvRjXnzwgSwMHaKcEpBltInp4yFG4cV7bCdp6TmNklrrrcVPFq105hKw1nG3uWMYh6y403OlkTHaoFMb4GnCTY04BawoINOYyBFSQEkdhcszUhk5acE8IOPvAfACSo5AcOKyegAk1c9QFMFc+M/mr1459ThU68P5UtOsSSCngOx8m5USqI0wSHwwhTxP/okRotKX4t9CgJzKZGLr6eT0Q8gcJXosdb5t16Kj48cHAVFvvv0tdzfvWJ2c8/iDj2najo9efMDjR4+4vnrHF3//N2w2t9xeX3F3e0PXOBrV4JznMEzsDxMBcoo3iDBojGGx6KV8rOvo+gXjOLK92zBNExoYXcAPE1+++pbruw2vNndcT45+uWKKht+7y3d8/dVXbDd3DIe9dMlzlpvLS+yw53S9xK+X9F3HqjuDxkiL3+0GrTTjMOKtA29pmh6lGlZnAbNYszo9j62mu7mz6YHjuNxtHCcuL6948+Ytu8MerWX+b+/u8CGw2WyYplE6xhByzfcsGnO0Do+v9U9z3Af9qYuftTZzNklWnURphI9O7t8oPVvD5DUckJbl9XXiR9I+S1kPqgKeXvax9z5mBMb/Mot24gaTz9dGfclG8gRn5bFillFyDisk2qSMvKZ1KvONmU9BHBoheHQlh53P4cRi5keFmkBGyqhEidIbrYtKPmVYRYMXyWwKkUchd6PLYyOKW1Fp3Cq9PQuCEIFRAB80LmralLHgnJLMRh0IXrjdcueeIB0aU1tbXa3BoIpMS4ZMkr0JPBmjaUOD8Z7Qe7rGEOyCQ7PChsBvvr7jYHd8+OIJP/v8CcOo+dWXjstLGZPxMAqxtvU0EWQmh4KMQ1yV8fFbraDVGK8YPeIlCEJyKVkpItNmSXRJbxB5fyh8NkoZaY8LmcjdKy3k5XgmbXBYbIAxEoS2sSwqzVPqupLmRLJlJCM2pdQnJxIhdZQilhyDNtAbjVOBSSmcMhCUkH6rQNtG8OrLPdbAWdLQ4z6MwYd/jmPuzKlRjIpZDoe8flJQTFX3n0BgrVPF+Pal7N6m9uEIhlIxYlxlMc3kVnQg1Pg0BQ89ATfZTMx6GA9YN+Emx3QYsdZye3nNfrujbVv6hZAb//BHn/HsxfMoj8TgTgTwNX9qWruZ8HaaGMaRYRgZx4n9YYhjI7jKWsduu8eOVu47c0lG4KtihqQxeGeFV2eh8X4iBC0Au9GCoaLs1UrLP532btEtlV3xwPyR5+8YW+Xs8Nn3CoYK8+HPslLu6bv15wMwbuYYm+HKANJVu76b96z2bH+Ve00l0in7M3UOTI5c4aEJgp9iynyIZWFiRBl88DQ0KB3pERBem65rpQwy38/EN1/+AzfvXrE8OePxBx9hmpaPP/6Yx08ec319ya9+9bdsN3ds724xdxusc2hjov0h/8T5IutcaC1auraj76RL7slaMhKGw8B+d2CaLFprrPfsx5Hffv0lb2+uefzuDVe7A+1iwWa3ZXcYuHz3jndvXrPbbnF2QKuAnQbevfmW/faGx+dnNOfnNEZLswnnGIeBzWYDBHZ3t9hxFN1nOlodQDd4F+gXK+GtU7I7auPy/oTLXMk+sdzdbrm5ueX65hbXBlwj/GqHw4CzlsP+kG0YHzNcUunssXM/c+scr61/4iPtCWsd4yCUIpKN4RFeK3X0Wcl+lW7gwnslNqSP+CTal8Q9E473abJ2yn6ZYgfmWdBeq2rTxbFJsqNqbW99bXcI5jGp8U+QcdQ6ZqlEeyNYH/VqlPmZjDw1c4gX9iHPXUrE8PGn1jpXc4R4X84H4YyFvI4Cviotjh3IqsY1AZ2fpdhlMmjZ+a0iBoxE0TrEMQ8aHytekg3llASfdGrt1gj3nolBPBOzmXQcI6VUbqiSMyUjZk7VLyko1RgFNBgdCMuAaxt2u5H9fsFmr/n913co7VguV/zkx+fsD/D6esvl5UDjA37U2ADaSXVLaXxT60aRnwrotGbVaiYfmJwX7OkVLhXlRPzlo8IIUHRHiBnLEUFL2ZnODSNCTEdtlaLTBotmcoLPJucZrSXoQIPGxIBsIV8vvFNGqfwvYeq0xlOAFgXKSadHrQyt0ZigsJGywMU94LXCmNid/Eh3FPwWss5q/mkym4rTqL4F7z3TNM3+bgEVvdU5dZujfRsnJgFy4VKQRZAidLV8SMZYPhK4JwqNHHUvxGTOCnnkbrsVIHM4sNvsGIeBl998w/XVlbh0HSwWS54+fsIPfvCDmJMWnznEsr6kDI4cPELwLREPO004JaVIohAGhmHIGSipjX0ixk015cZI/ampo3XO4a2UESik5j1xJSQjL7H6RxvhQeCRxM3DDqci1ETwFfFUnDkPZAgdObGOo2K1knoompE/E59X5c8Vr7kOurRwVHmW750v3Uft0gwZgM+Vaun+o7IgFdDkJcMIKexQlaHrovALMVMlNA3alDXtg+fy7UvGw285f/QcrQ3L9SnPf/gJj59/wOvXL9ltb7m6egc+MB32+EY6KImXfc8wSvcc6VoVMIkHzEgHj77vaTvofWAYRpbLBftdh3cOO41Y53l1+Y63V1e8vbvjejvQdD0e6TK122158+ZbIVC1o6wz59jc3TCNe5Rf02qLCgu8X0HomKaJ/W4PSlKy7WRZdC2rRYcygQUNpncsVtIhSIgtHwYnJdNs/r6U491ydXXNYA/izLCO7fbAZC37/R5rx0i2fWyAxTWU12/4g9f7xzrksvW+EgCQHNoudkPSvvAvpM8VAT6/t1mGyREYyp+JSrA+hUJFEtfo0CKtax0/+8D+q06bMY2XjmyEgMpsP6FcJ5Jry3f0bLylTMeTqtJCSK8VY7D8Xv5lx3Qkf05RHSjlcbmUOMRMhbTX47WU9yRyThV0cbCRgItcTWVZWYNrIuF2KSdSCsnYCD4HMXTQOVskzUMySLOBSgGVUDqgyn3I9YxW0Bi8V0AbAyE9plngguWbNztudxPrkzXPn/Y4b3h6tuN8oRmnwO4wgQ8skkM+LqyZSIxLJChp3auVRP8bJ1lj+IC38X59kfapS2jSLVCyyJKLQLILTVkvwWMQ7qbkNEwtwyeps8HQyFKijHEIoZQbUqKbyVmdKbMD2VFSjAyPVkFWqNJEpi3pcqjFyFSC7UoFUnpICrGmoeoe+89wlLXj70lJ5xzDMGRMkPbvccvph3SpZPTEMijnMmDP41zxgPij9VhnZirKNVJXJBcNZmstd9tbhnHgsNuzudkIhvr911xfXrFarjh/9JjVes3TF8/puk6CZsJKnx1NmUIx37zcv7WOcRI6gdSFdRjGiC0HxnEQkD2F7ARxsYSr7XtM06CMQRvhHvTORwdVG40sJ2V8pgQJy35VFB+ninLiyNCuxj/Js1D9HUdzjr++02PwwLoIxZCdCfhy+XvHPV1Yjysht3evz1Xju7Ku5s9Jesb4fHVmU9pcks2oCVqqJNO8hKjjUklsiHwzoqudqKPWFGPVe4K3vP3297wcLI+ffcBitWR1csqLDz5gdXbBq1ffcH13jek6IOCtOCOMkbnecGAcxVlgo/1gTEMbHU5t18majIb80B24vLyi2e5QSmGDx9mJl29ewZvXnF9dc7cbabqO/TBwmAb2ux0311dM44jRAaPA2Ymbq0v224bewNlqgWsbyUINsgZ3+x3Be+5u75iGga7vWSwXYke0HSFAt+jRSoy7eirqfXJ8TJNlvzuw2+6522zZbLbolUFpLdlOm62UNR8OZf9H22O2atXDdCX/9BiqzpwIGTNMk8VOySFWW40J68n9FKNd1mRp5R6DwJQQeigKhACF4DkdQYiSk52XEgtCmG/hskeRgJOJstOl90PR+1HgFQcWKBUzygJ4VZxHITkrvBMMhQTUcmOHzF9ZZHriu1S67PEkk5InJCA4ygepnKkdK6nSQ6cHi9hH1zZSLIGTxiqq2MBxDIteSY4nn+055wz4EPGYwgSNciqPXcZN6fYrDFUHQtP8J0mYSv+89kCHd55h6Jhcx34IvHyzw3Pgx582/NnPVwyj4uLv9rRYjAc/yhxkCpfs2CtYtwZUjdYslEa7wM5YHJ6gFU4ryfRKOFdFyVf5JJJzSAK/Oq5bEx1mImN98BilaZQB7Zki4brzPmKogNZN5uFM/oPcTVelbO/iD6Ba92Kjyi868SFrTdto6WaXx1q6uAYfs1cTtvXyNBm3h6T3ZL2Y7ykfvrezaZ5WmAyF+xcpijhOYPUg6X05kSojkb2o8fmiUUa4r9AVqb48dg5ykjrtXch8HsNwwFkBb4fDHmstm7s7hnFkGkb2u33kvXnD3d0dGo0OBmcdV1dXvH3zBlSMnlOiO21ruLlZgIKrt5cMuz3TYSSlf2tjYoqxeAhTaRyqCMYQZPOZIOjb5Ci5PHMIATuN4s1eNiwXmvWqYbFoaLsG0+hodHkICTRlmFgAU5mletTLIIZKhFcyPH83pI2eMhcKGCsGVK0sZhByPtfvOd6fiRLL4ChGatG8Sfqr+c/aoH4AOMlXQxaE+cETiKr4Tor0EyMzCcEQTFQixThN2SpNo/FdQ8Cy3Vxh7UC/7FEqMGw3nJ8/om07QiQuHoeBu5trpnGkaQyLRRfLEKYqGytE518AFTBa1gBKYxrJrkpky4RA0Aa0RBAOwx7jbKztJe6DEecmiDXbITicHXEGCEtMJI+LOQ0En2qspZuDc5bddmC/ia1buwXKNPdmulbI75trIR/0jNPEYRw4jAcGOzC5UYherWQfto3h7PSE8/Mznj17xovnL1gu14yTdHozpii/43WkjmTP+47vC6bq8yWBK6/L+9M0sd1u2e52ImvshDYtSjV5j4ZAJutOazaEaFwnA4Va1yWjoAD/RBapqnvgaB9mBROVfU5wOnLW5SMkA0EVmV3JeiiEkFnKh1TSkKKmlSI6+t0HKrAU7zNUhK6pq0WtJ+QjMfMgcsU5R5D6OXRWtCU6lgzFer7SGEb/AxQIWh6/xp2q4qerNKyJctPHTLBZxWicvxrAzsY6zXd1b6mspGkk0KAUjANsg2e7tez2B5RqOT1p+PDFiptbx343xZIhV+Yhz5YiGZk+cciYVMMfMjeS0NMKFFJEAvQ0OPG+TIyYytIoeiRFj1GRPyvyLqnIEaVVLDfWChc8KghBeooQp3UZysCSMhRB+C4kq7UQhSujI3FpniGSF0mILhtU8NjYgcw0GqXF0E4OsHRdnzZOJhv/pzGkHjoKhpqZL9U/itEQqsh2/FzZ6qp6LWSDKM9SNhxjt9rgSyaDfEsI8iOfkXNpXl0McnkOe8FNh+HAYbfHOstmu2EYB8ZhYL/ZMY0T19dXbDe3eOcwTYvznnfv3nH66pVkesZGEyo6m5RR6E5KiW6urmN5jzTyMLljHPG+SlZVAsjB+EhvqNGRA6906pV14QPYaYxR9p6TVcvpSc+iNxij8r4tIjNtyrgeeUgn1IYIFWhKL1X7/mjOi/ER5VAR8+85all+dN2Mf3jvSTJUyvcgr86dUcXYgyR71XvhYj5zxlDpWUzGKuggZM5pDuN/2kvmocJn7KTqKL0CrwLGaEIrmWh31+8Yh71k1zmPHUYePX5K3y/FKAuIA/LmlimMtE2TMVQIgi8aU4d1Ium8aen7BcELX9tMpxPE4aMVzlv2+w1majmMA8M0Mh4OBDdBsILPtXTICs5K4CP46NyXvSddpWOHxVhlMU2CC7axqcv69JSu63Omw3etBo4cP9PkOBxGDsPEME4M04SZAqY1TNZi3YR1I4tlz7OnT3n29CkXFxecn53TmJbDYaAxjqZtKodzwfbxlzw+33X8KRhqJvfiw4/jxO3dht12I8H54DDZ6s1KihTlOV7rNfBM7paCQ+pwdNSccW+IrIj/MjqIr0eOKFTKiIy6CZX3Vrn+3P4KvlwnQOS1S1yLQIi0Fd5nB1Jai8WxFMcrYyp59iwGQuIplOdXLgbNA5lD2cTy14CO1/GxC6wqDvfsEEtnn2PKZKenIdbpmeJHQ3RGBwTrGS0NAnL3v6BpiI09IrZT81MXmyzO5XF2b8LCkPa0YA3TpAYTnu3OcnkdePFsxHvp3H22Njx/1OEGxbiZsv6bYcA0l1nPRke7SXySpdw/RBxVMKXogBTQNJFzV4fqQaNhFILHO5G1yY9BiPgsyikVnagOoQ9oIxaKMdecoZxK4pJ+pbIJtC76MXd6nq1NCUyZOH6EwOg8RgW0c5FyRmX+rIT3Q4WhCmz8w/v/j3Y21YpG62oxJiEi44EnLfgImrKhlIRNNUHxYTTFK5pSwB0hk8nquCK9FWPUTpa7u63wuuwH9nsBQm/fvGK/37Hbbrm7u8Vay3YjkThnJQtJIsoj1k60pmPRrun7nl/98oz9bifpuH4iZxlVpLSBwPXmhtvtHfv9Aa10TiFv2xY7Tex2O4ZhyG19A4FGtWhvpFzAJFAVhY8CEMV02E54F3hyYnj+uOXJkwWPHy04Peu53YziBLAOgomdmGLEUCUPZ179UWhV83j0kzgnaXzTovEIwZ7WiuCTAZeS4CNYCIkbKQqnasEloPG+tfS+xTkTLqpWCmGGs2afq56XrMTKa8LvEted93ixZeT7QaPTxtUgJUzFYE2keU4bjLLlEoQcvfchoFaBtm/wfuDbr/8epTRX716yPr1gffqIH3/2M9puwZfPfsc3L7/k9uaSL/7ub5jcyGLV0S46SX3e7oWwzTlGO6GxJPOwXyxZnTxiOAwslkuats3kqYRA17fozjCFieubtyKsXGwZbB3D4RC97NJZwrvANGzRYUSHJctW0bVglEMFi3cj43AAFNM44CbL1dvXvHn5NaZt+eFnP+bs8ZNsDMwjZN8tgIZxYhhG7jZbLm+ueXdzxeD3DH4vzrhRoton6wWPz37Ihx98yL/51/+GH//4x5wu12zutjRNw8l6Rdd1svb1+6+XFPexI+pPP8o6S5GE7XbHNy9fsbm74eb2lt1+hzYrlFqgdeRwolYWxWEpe1VXp64j6DVQCrmzh5jlySFcH9G4dhIVE+NfFJ3RIm8zkEmeoHhvOjkP031R7I/JWqbJZjmjVCInTkZr6XqSIlxTLHsrKeAgTnLy8ytEyabuMsHF0kAlAMo0hkUvzhg3WfzkapWTHQpF8cYsJxUjS7FjkiSrxk52semChvKKUtEG09DG0lon96wVmRTZWivZptlAUFF/VcZaAgC6Huv0WgKMkrq+XHT40xXOjtzd3HE5Or59vufbN5cslwt++NEZz55e8Osvbnnz1Uum7YhvHaEp3WBkaaTsNo/1Fh8CnWowRtEoASxBSVc6G2UfIaCDF/moZQ5a09Bqgyle0XgNcWSHWBrlE4eU1jTaoBW0jaLRDQTP3lu0Q7pYtgaPx3mYnJRXemJ2rzG0pgFH7ibYGCl3ihn4MgephEBBiC3Nu6ZBNYZhHNkO+0jUOeFsQ2Malu0ShcYFj/VSRehjIMkoYivgf56j1sPicAgEZO8E5Wv1Wn2n4K6Zoza/V+Ra3lWByKEkmR4uuEhaK8BRA+N44HDYYSfL5k748g67PfuIW969fct+t2O/37PZ3uGsY7ffMUbnkLPCWzgeJOtpsVix2UmH06ZreXd5ibOTZPFGbpvUiQgt2PDt5VuGzR5nHY1p0AtN00pE1QfPYdgzDgNt2+R28E5L1oo2QrIfqJy/KuCDRTnFbhwlE/nZko8+XPPsyQkXFz1dr2jaCPRrhKLK8GtVHMkP9jeJe1xFeSEvzfXKfBqTwyg6eBOuCUVPpozKLDzufT8C/PqGjz9V46pYGjn3ERzzN1WmUjJmQinRyc772ExADOSYvQpo1aCUdBUN8bu6LbIi3ZOOcsJ5h1MuG6YAzjusEzxutMI5g7U7fv/r/4JWhosnH3J68ZT+5Ixf/Pwv0G3Hb3/z9/z+91+wvbvFTr8ibBzrtWG1XApdxd2GcZoqJ3sQg0obzKJhsVzTdXu6vo9jH7PkANMZTKOxduDy3bcopSRwNFm5/2mAINaN9w6vLGFSBN2hsbSNwpiAdSPj1DBZycpzzrPf7zjs99ze3nB5dUnfL/jFn/05J6enNLHl+PuPyv6K62W3O3B5dcfl9R1Xdxuu77b0oaVTLdM0sj9ssHbi+dPHvHjyEz588YKf/eRnfPbxJ2ileffmkqZtefToguViUdbA++7gHx1DlSOd6+5uw+9+/zX7/YbD4Y7JDcKfGB0ZRAehytxWUnqffASJk9XHtVocTdX9Q1LZsaQwEWeXRiIpEOisjRyLsi5QhWQ5ZYplSRIxaGOiznchBmvLFA7DyDQOEa+K08pal2W1j1gqpPvPiRSCGdJ+TsHx9PyCfUpCA04umJz4WhuaJmIoZyWwrZJNXWOoWFqeZVFJ+Eh4qfQqk/EPgK/pGpIuSkHIWFaolaKJ2fLWO1zsepcnRD+AZJXO45mCmjoKtqAUjVEEpVn2HafrNSFMvHpzxas3e87PThjsQNe0fPrRgmXT8frljr+/vGIcLF3roImOvzhNKShaawetNUZJQK7RkZeSwBTHx8RHcFpBpFvoTEurG5GdLsntANG5FChYTa6kaLXGAJMxODpQgTEELI5WSXZ48GCDx7pA0MJFZXSg1VKqjg84G7l2m0L7o2JqeV4/IYCbUCg6o0E32Mmy3Qk3ogcWeIxu6JtOLI0Ak/NYJ/IPJY6p9nvu8T8ps0kUZDK2jgRPXjzxe/H/QzlRVnlFbxZQm5wKJEMoLfZsZIFzE9MwME4T+52kiu53+9jmfeDq8pLdbst2u+Hu9hY7TWy3G6ZxjEBJHASpPbZrHSoIcNlsNlxfX+ODdL7wsVuAi0IlGSn76cA4DbhpQqmUdpkiJSqWRNlIDijPK9Fyifw2JqXEhRipT+MUciREK89iYVgtGrpOxxTwmPGTODeqsZ5t04cUQcKic09T3uvziQsxAyPMvnw/W0Qd/YhALiGp9xzvz2qa336KCuTr3n+c6gth/gGKU6q+7zRHIQI/ksMsEeapAgBnxmIqaUjP4D06plDqxtBoGAfHOOwIIWBMS/CethHOgOX6lNPTM053FzhvpfNI20ltcxBA5EYT78yjHTHKkJS8pm1afOslk65SetkLH9N2JyscatZO0eHk8d4WZ7ECcZNLpohC2pWmzCa5ZuJZKNcYh4G721vaTsrsvmuOj+e7zIE4Kax14sCwE+M0MoUJF2yM8kj2Vd8tOV0tOTs95eTkhPXqBIViu9vTxDLDEIJ0toh8Zim68NC6esjRWWfq/bcc1jr2+wP7w0E4SKJ8SeEQJSOe/RGEOsujKP2kfOQj5fd8v+nT4Wi9h1LWJVshAYX5us9ywJc9mo0dRVQsVWZF3B/el45ZiUYhl+/URjEJ3FG25EwcVJBiZoDXe7wYcigVS4gFwFQpLhkgqSi/dOzQJc4eea1SPhke5TWe5BUBHV/1EYR5iN1D4vkSPWCU4wUoSekteeijzCLfWDHecov1klovHVkapMOTEIUfDo7dfkQbHbNbe16vTXQEp8zEpIOpFlUC1eX9nMGkil/eI9dO+S7Zh6Eih5KObYaDmi+xUKJq3ofCp6B18mdKaYGPGTPptuJY+bQ2ZjOd2AziOqp1morp52mfxLfzntUStZW1KJ12rFM0KpUDkI37+Zom+TL/UY2m73eU5ywIJ92Tmj1//ka+97jCQnWeeg1AwU9enFjZIRmKPJgmoRQYx4ntZsM0Tuy2O3abDYfIT7Pbbtnvd2y3wo+z3x+YYolbis77KOOUNrFcB25vb2kXPc5OjIddzubNGXExY3y332aeTqXFEaby84kOkBI4kwlkvU66SgvnTwBcMhQpci+WUmnlWS1aVquOrtWpWve9R9nTZUDz1qp+UeohXVL/nuRhlb2Z5zjdZ33dY50U57egjXJ/92HOex4mnSveZ4W989v3cFu8lkrPWYzQfCehhpdx96pEYFJKralwQ0hNHFJ2pyoD4b0GHeWGCkzjxGG3h6Do+jXatJi2Y7lY0S1XnJyesz49J3hP1/dM40EsQS9yu20iLUJ8pjKLUsKim4bG2go/UeSOSvLdMU2ynsdxkhLdXIIUeTdC/IkYkUnGzh1zPjs+pELCMYwDm7uNOBm8i1xYf1gGHWMo6xzjODGOEkycnMM4jXHSUVUMwsByseDxo0dcnJ/T9z3GNEzDyDAMtE3LcrGIjgqFbmQQdIWhsg574D7qe5OPfvdzHMPF449P1rLdiVPO+Skb42lysj5QSW8f2w33SwIfhKhJToQol0RDZH2ejpR1IvotzMektlFnYCdd4ihgFwrfTnLmJGenBOkq2pga24WZUIqXj2Oi0pXqLN5qtyY9p5V0q1OQa9rz+JcdUjudkn7KSLSIhVxIIhhCZVyBluunpiFSlqiq76areFSp24/4q+b6/e71lCSSZHSFWN4fu3wPkfT/IJmxjdGsFppHZw3b64PgJxcdTQWhZJyahr+ezFzqH38nY6csNvJ4qOgYNce6PKvvQsKegrKkcsZ4HRUz+R1uhqGS/k4rJV1CUWR0wVAhY4o0B7Jm03dSZpTcqyU2ZgpgM9VPsliSczUUXVg9+4PNc4+O7+9sqn5JDqc6Xatt5VQqOldqfot6AmtwVQuvtGETkPGxs4mPM+CcZXfYYu3Et199xcuvvhYC45tbpnFinKwIXefY7fbYacpGrBijDU0vA9ZkkrVI/G0aTNOCUVzdXDI5EXI+uLlgVRI9Q4FDCNacczTaoGKfxPEw4eyE1tC2Bq2JnnMI3sYURphcXeom2lsZ8aCu1w2NVnz4fMVnn5zz9Mkpy2XDMAyMoxC/aa1FwSaZo1S10JMij2+rCmTXq+Te5JaFqsqX0wVmTpuHS3Hi/4Vq0T8gNGpHU/37w5/5/pGUOpOgiWsw88aEQJNKSo4USv3dgqEqg+BIW2UlBnitY5ckEQ5d26JW6+jUcQz7O64v4Yu//UvafkWzXPH86XPOToTnaL/f8ubbl7x++TXWThijcNPEfj8QVKBtBTg5a3Pap1aKrm1ZLpcxwlzmNylb66zsN+9EFUUQBhLpUyrQdw2rZceib1l0DU3kDhOnqRh43k5oY1j0PXQL+sUS3TTopqHtusKXUc3RQ2AkjVsytIdhZLvdsdtJl5dxHPGNF6eCUbSNCMiff/5TfvHTn9E1Hd9+85q3375jc3vHzdUVxhgeP37Earng5PSUx48u6LqeJ08esz5Zs1wuOD07zaDyfevsH8vY3O32vHr1lu3mls1myzAOTLbP1/RR0dR6LDuAgOwKCEVG1oC/WBrpp4/14jX6jyT4leEQQsDaCZTCx7ktESfwdsrEmlJak8Ym2QVy7mlyWCvOnKDDzNlUj2XO3oGYnkvlAKEC4CHzrsz+5UEIkXhWSA1V5NjRDVlh52uWGY3347O+yRwKilh6l8rExCzS0avlgkRvDBpvdGkbXBGyp72U5s072UvSFl5Xd0HlCJsDqFpvgqJpDb1v0DrQdSucDWw28Mu/f8f52YKf/+IJzz7oubpa8IPnK+56QzjsceMYDe/oyIxgQmlNoyXelPazIdAb2fuTSQTv4IwWXaeLRExZYUoRs82I8k2JAyCC85T6Dwi/ooJGKRbKCEF4EE6A0XqG0WKtRMWsTyVwJnNASEo8hTgzeFwVFC5egCjnQnQcpvbDIaAbgwoKp6SNsAoxYKKSc9tGAFWyeI9LcP95jxRll+yuvpNMi+Pyntk3KgMq4yZfRe6VrH0XS3gCIRPBTtPI3e0N0zDy8uuvePnVV9jJstvupKnBaDMx72F/wMbmJiFmPfZ9R9u1IjuSsynu/7btUAY8lqurdxwGyWhydoQgjtwswySigXWWVAqhY/ahd5bxIE4myZQzkqkdU/7xVq7rPC7YNCgV8bh0Knr0eMGyb/n4ozM+eHHC40drmiaw3wupctrHM9Cc1jwVPFJxliosk49jz88c7saPBJIrNT1rXnJZZ89OSlrnBU7NddSRHVRdKxmN6uEP5lMUp9Px6ldKSi6S/NJBx6YTSGlMbpZWHJ5AKb+OY5LWYx0Mq48QHzwEkekq6jSvQLUKtRIdZacDt1dvGMcDDmj7Jabr+PzTz9nvt5yv1+x3W969ec3bV6+xdiIo0Xfj6DgMDpTDexsbdujIyaNpW+HCnKZxxjmb7lkcq3K32sQAQ2z4IZlSQTgslz2LvqNrTR6CZJTqZIgrTdf3QKDve5q2iXytTSSO1scLYT43R/MdQmC/H7i+vmO73RGQYCVKsiXatuWDFy9ojOYXP/kZf/bTn6MC/NV/+mv+43/43zjsduw2W5q24cXzD1iv15yenvDo8QVd3/H06RPWa8FQZ+dnscyu2i//KBgqyTgke8cH7u52vH79hmHYsVjuadpY6tPEDnoq2SIaH9J+jVlP2SxXIi+C/J5LBNM9RjlDSAE0kSPGpD0qjXkCxCBtkMYLsWOYMuL8Tg504ZyzeC+BUilzD+V2ypMWHYToOKVUIeFPe0Sp2AhKxjZRCPiMo6rSOxVjYZXtlx8z34CHmPUkuFBRwk5lfSWYk3R6opFJc0wIsdeNEpqsVKZejbyPuC3jEpW6q1eXys4O+ZJ3sZulBqOKIyyvkiP7rw4YSfKFpu0MS98xWRjHnslbbq4tv/rVa07WCy7OXvDk8SnBen779zfslKJhkkxYIs4JkfvUp7GMFVcxW6nB0+tY0q81Yww6+gy94x4J9d6t5L0oe5kzFzOqEl6NeEVFbNoqcXg763HAqB2j9kzOM4WADSHiWBPxQn0JGV3nUoleXlZ5nkK6HqCVVLoYPCqW23kCk/fiO0CceglD+UjCYBJOpH7e9x9/HEF4MpTiyXPkVCvatpVtHsGiTmVW+bvVg6YXUPkcdXZG5gFR0UurVeQMuGU47PjNr3/F3/313zAOA7uYueS9GAuyqYTXRkXDNTlymqa0FZXHSa18NUoJOL++u+H27oYURUWRCbxVXNxoaLoG0zZ4H6SEwGjwMA0T3ltJp2xjJpJP5LYOgstpyiDrM3kyNcImf7JqWC8Mz58u+fiH5zx5ckK70AzDhBXGTVGI1Tgm4FwM09m0ld+r6ZRzzBFSBjjVKZQqXvNjnfJQRO7YqDr+7EPv3zvP0d3eNwruA5h8r3EDaJNKlxLBuzgLZXOkTVgcaAXkR8M4pq3LOr5/7wZw0dnkg9Qnm0Zn4u/D4cA43DEedtxcX2NMy49+8Rd88NHHBAWPP/wQ6xy//Ju/Yru5ZZoONMbjXAMarJuEjDd4vLUE50hp+F3b0vc9h/2+uq9yj4WcuADapokEdSqg8XSdyc6mrm9znbHRsXuUj84mpegWKxrT0C0W6KZBmQbTdbRdh2kavkvcPGQwTeOUnU3DODCOI9qAjg7BzjS0jeHzH/+I/8v/6f/M5nbLf/hf/n+8evmKb776it/95jdorXn+4inr9Zrnz5/z6SefcLI+4fOf/JinT59w8eiC9cn6Ptg4uq8/BSw9tO53uwNv31yy3d5JG+JR+KcgAXHyfERdQTYNKqdTWndp4rIjNBk3uYY/lNbemXCxOD2kQZCPzkr5nI9RoEzmGqQsOcTOjXYqIC2t+eRwsC7ypxAIOjqdjhyd6uh+c1S8ku8p48s5R5h8vu8yuHGAhOVTMu+ichQAY6IDzVJWfRrbksUBZMJxH0RPeZ2cGo2Acyr5GP12gWT8xlvx5cz1cwpYlRiTRuWA4bGMfegnlLLPphFWCq0VXbfETrDZTnzxxSUXj5b87F94nj7vuH7b88HTJatGcf1mYLt3Ug6cxtqLzNIotBGS7MRpZrSi0x4NHCIRtwRUBDAVziqV/9NaRRqbtBZi5leIUdikPyuuiybWdCsfGILCe5hs4KCl2cXkPC54IRWO3eeSQaZV4tOJZK/Kz8csLv+sl0KQKCVyD8YYfNB4PGOQbNFUZJqMAB/z5VXiqOC/1zGXicYY+tiS3Zh5hPe+/KxfL05XAZGRQ8ur7GxKdfbjNHJ5+YbddsOv/v7v+If/+rfYaRJHv/NR18WobNuWoEPMcmj7LgcRUyZRug/hmZDA2s3NFdfXV1FGiZxoGwlmKK1zQFLH7rrE0j4PBGuxsbTQaFCNBIdCKleJJS/iqJbxyE1SAig8RhueXPQ8uVjz0YtTnj094eJ8xd7vOAxSEgVFrpHkXWWwpSPt85QZBHkZZvmdseLRHEEl17IsLHI1C5yyoh9YJccYJ2ZV+ePXv/vI+EDNXytR8PK86flFRsTouxJZZ1Si0fBSJpNlYizrOVq3yVieZ+VU6E7rHLAjsvPo1tDoFu8D+/2eYXPDdnvD7e0tTdvzkz/7Cz798c+Y7MSTJ48Zhj2/+ru/ZXt3h7UG04D3lru7PcO0A+UJwcbM7kbkoTG0XUvX97Ps3DRvWb+E1Hk6yr+YZdIaaI2i7ztWy56+6+jaRoxs5o4mhTRq6PouyviepmnF2ZQqIv5Ao4KQfxYsetgP3N5u2e2EAFwnQ9F7+r7j+bMnrJdLfvr5T/jX/+ovePv6Df/jv/9/8Zsvfs327o7bm2txSn3wEScnp7x48ZxPPvmEk5M1P/3p5zx99oRHjx5xcnKSHRXHa/S/BUPJIbvJu4C1nu1mx5s3b5mmPY+fKlYSq8IYcTaVyxfdnTKdardHSO+pJB90xiXBe6borEl6ITv5o25MHaoTNUDisgOxK1IgOzmWrB0z5904jlF+mZJdS8LlNpfepaT3+3YSkYdSvlnvmyTrbSTIT84d+V49/rX7R8YlyTeTu3GSZWk1odnOl+BFwZryfnQ0qRKoSaMO5CZeSoXY3EWcUrlJWPEToYgZ8+FIz8/GYi6LswM7E5fLrLex/NqMsNE9eMvtreXXv3nHo/MFH/wPH/DJJ6fsbibOTzqUDbjJkaoccxZS5JgkjlN2/GmFQdNrgw6KUXsiHwIe+Zl1UDUgCkR/Hs1Mynasxz1ZAEYrWhTWeYaYPT5pz6idlLEFjwWamA0q+15lpZQu7110nFHmKsyuF51NwefMcm2UNJVCOiwanfIKS1aeVz4HVzXqXoXV+44/mSB8/iaVzky/hOrT5Tt5zVZLtBbw3nsBiT52wdHiIPLesz/sI4+A/HPTRPAOFSTqnQhjTWNQuonkosnQU1Vns7R5k7LXaCWVlyVCFg9V2l4rRawrpXLoRGPGeRrT0rUaHwyehui8zJxzTUz7TjxLChUJK0UYamNojObp4wUXpx3nZwu8d4yjhREwYG3amMT1VYOXozl53wKIQ1/mVFFNx/c+Zps/1CnflXCrFnqa4/emRlbOr2Rvfte1i/Krr5sUcnqyykCs12ZtaMSMJpWyHRJgJ7sCRLgdgSU5b9rj1XNGgZM6ygUULjh8UOx3t9y8e4VuW8xqRaM1Z2dnfPDRDxkOe64uX3HY7+jGQNsOGG2wk2U4HOj6gXGQltOTnXKUpL6XaoTm40XZv0YrmujMSf/MzPiS9eC9dLoDBQtQukR7lHexc9Ao2VXUY/KHJY/PKeal3KdtGrpFQ9e1PDo7ZdH3NE3Hu3dX3N7c8vbNW95EUv/JCifDdrfH+UDTSIvj5XKJ1oqrqysePbpgu9vQdR2LxYK2lY55y+Uid3bUFch7yHn5fY7kPJ6mid3uEMtNhOMhlckl5e0hC+eM8wtGivcR7yVprejUyI7Q7LwWwI9S5Wc225LhGSrFpghKODdqZZiihakjWAjzdZD+SiBFqVDt6fvGcJ0Zk+ScTwZZpeTks2XsU3DCxAiR0UG6jukStcz3G8iZScfyK/nq7s2mUsUxUxlV2Y5MjmhN7pQUJNZVjgCpS40AKTe7UOXzfe+Rx0ar/NkQAsZrurbF9ZLJtdsH2s6x2w2SrWtHugb6RkWy8sCsdDIPar5SkaGBSBCu4v7XkslFzB5T83Var9Ws1uOJZJkpCNFITATNxGsgvFBaG+moA0yxy2biYEwgWgBniu6VtVaulRx7BVwWvVWu1yhFoyWTSsrpqmwfSiZdDerSXPxzHfeCKxHMy5tknS0fCw9+t8b9ee8VAJWBrPLJKVSMU+8c+92OzeaOw2HHNI2R+zHCSyXOJaU1TWxAkSdWKVQ0xgKxU2y196VswGSFmDp1qshH2ZgmO9GycZhBjGTIBedpWk3XNvgQGEZyZ8p0tKqR6yuViVFN5BpLWKPrDE8erXjxbM3pumUcRnY7jdUWr0tpi9w45T7y+BanCVTbKY7lrJnAH9AZtXFVfotjE/9OmUsPnkrVe6I6i3r42vfWcyhfKO+VOZW/kvFWxqA+XyL4PUYUCUOpfKoii5IDp5azNfYrXSnT881lO0rksDGGpmmkPMdPOKfYb264fvtaMJbSLLoF5+ePeP7BRwzDgZvrtwzDnrazNI04isZxYLfb0nupchjHAVuXuj80dumhZx2a5TdjDG0rnTmN0fk6upKFpK6JdkonQmkjlQ3ThNYmdrGWjtn1lldhjlGPZ1qM9EIFQmwm0y96lqcL1qslT58842S1wjnP119+zbu3b7m+vmazlaxrGzw4x26/J6Ak26ptWC2XaKO4vLrk0aNHbLcRQy2XdF1L20lWvTEmOpnn+P77HPUWCyEwjpZptLF794HJDjjX4IOJ61HGL8u7oz1YZ9ClYFO6F+8DSvn8mUThkLOD0udkUCseSkrWUbZpSjmS4Py0duP8RkdmcsDrWCFQ1lfKQim6qMbOOVNYzURvxHhJ1lc2TaUrUlBc6dg0Awl+m+wsrdaXzqBH7is5rxVVx9/785kcViULtLKqQrIzohNDpxLVEryT64WCoTiSxw9cc379unJCzoVSGMQp7htN0zS0bYf3gc3GYszEYRixdiQES2s0XaMZrHA4FjsyD3aWhcfYRziRBWs0xuCD8E+lSsf8+biWqumaHYJdC19e7SSSpBPwSqoUgiLyA0uwzmd8W8mHjJ/T/deDVuRq0hv5bwRDNUjXdRMztyAl/UhA22d9k5xPZT8odXS99xx/grOpPECKlmQFHbKZIwZ8IhAP9eKdvZTOnoWA9x7rLNpa4bExmkZrJjvx5s0bbm6ueP36FVdX79AhsDSGttF4DB6DMoZufYJpJEqYPLMuxEC5VtXGqzKbkGhba4wMOKLs5KdkegRCJNoMBC3OK28ddtjjrGW9POPifIEPnv2ksN4yHkaGw4BC2psao2mNoW9byeCIHeYSP8aiM/zrP3vMJz84YblccthLZ72VXdJPHYedpJFrRSR11anzZ56nxBMzj6YXYPDerfzgm6r8C+W1tOkfWiP1Z5LhmKJ/BVjVFtr8imk5H7+RBVwGL/Xz3b+HJKOzMVkdKRqaIk+Kkj0VggIfQXW6n7grU8QrRY0F4EplADkTQK7RdS2mMTjvOUwOHyZeffUFb7/9ipOzCz77+Z9zcnbOjz/7nM9+/DNub2/4m//8v/L27Wt08w5vhVhzv9kw7PY4GzBmiXWOu7s7AQ3DIKNVg2OlyBwyEYQIx4ZFqcCi61j2Lcu+Y73oWfQtfdNGpZQ6bQSmYWB7c0O3XLE+eYRuOjyK/TChnefm7g7T95ysV390pNU5l4FWiq6u12sePTvl0aNH/MWf/yvOz855/fIN//5/+V+5vrriP//lX/L2zRvp2IAAgXfvrkArvv32Nb/8+19htOF0vaLvWi4uLvjoow9YrZZ8/PEnPH36lEdPHvHZjz5lsVywXq+lBfEDx72MnayMymcS8HDWYZ3n9nbLq9evpYtNu0HrgclNuAA6xJTsyFuSgHVyUtb2pQ9RCWZQFbIhGULKkJRskhQdyZ0nlACrtF3F+JRsEpQS3oHcoSSSOQZRXFoHiR4y35slel0y/xKjYtqPKR3d+1BeR5oVKAVYISou1nIsP4t7M5XWGa1ZLDqJPkcCQq2R+44ld5rI8ZG5B0L+GXzqciREjiK/deREE4Agke3S9j6pUO1kvxkUWotRa61DuULiGADlpdW3dx4bQua+ynxWpjgwj9dTjpKrMjY+8o01jeH0bE3fdwwHeP32jt1+4qtvLrl43HB7YzntA81ac2dCbG+sk90n6zENfK0Por3eKAEWi7bBaph8wE1Kytpi1m0IQtqbTfzK8aiIkTttUuOb+H9pBKO8DKCUZuh6dIDJTkzDGLPpog6AzHEYYoRWIvwmb7OEOHR8Ll2No4+lCC2KJp4rYLAhsA8jo/NYH5gmh1eReNU7Map1zKTSYgx8H6D0j3HUuilnBqnkGC52RCJOh1rXhfy5tMfq7JEULXeJ0kxJlF1H56DWhsMw8O2rb7i6fMvlu7cM+53gksagGwO6Bd2hTcNitaZpYgOKmEGIUrE75Dz7R5w/klGeMgSkjXsQI7gCpaJZ5KcLQhLvvXTg9c5yfnbB0ycXOOe4ub1jHMeYVWBRGtq2yXulaySgKMESnR2Py0XDv/6zF/z4swuM7nj39orrK8PqomNx2kbSfxlsadaSDMCjuajgfCo5KNjkPqb47qPalEd/1wbnMabKxryar4EEqP+gcX+MAZXszbyu8sfqZypsJBn9JbweiFnvpculUqpI4tTRr8J4iXMt7V+A4Hw09H2+klLRKJUiAUxQ9Muetm9xzotzdBx5+dtfcvnyS07OLvjRL/6c89MLFj/5BT/85DNub2/4r//lP/Hu3Ru8MoyjBMturi/Zbbes1mecnUvZ3N1mw3a7xUe9wtG6TvhfntzF+ZD9tOhb1quevmtYLDv6rqVLVARaRzrMwDSM7LZbyTQ1Ug1hXeD2dkvfWW5v71if3rJomzKX9U9Vr5H6EH07TiPWTYBHG3jy5BEffPwBF2fn/NlPf8Hp+oRf/pe/5X/8//5P3N3d8utf/4rb2xvhuGwMVgXe3Vyjb295+eoVf/vLX2K04SRiqEePHvGDH3zIcrXis08/4emzZzx5+pjPP/8xi+WC1XJFv+jfs/gqh+LM6Tj/lLOem+sNu+3A27eXXF69wfmRs0cXLPxCbDfE6eljdz+lTcw8kb2ZAn4uOo9cVVrsowJMmbgSwJdOZcSAnVJkvtMQFM7JvdqYvZd1oFKgpbxU1oiCoHNWmWRFSZMVVXmlkxNJqyZ+pyqdq3S1tZNw2JEcN5TM8gAhUrvodL8+G92kDKzWaPr1Kia0SsBOZqMQbIsJHHkWgcjbLeewMlapwihhKFH3yUY44vWK1/dxqwQtVTqCl0QvCZRNT6XRKsr+UKhAEoaqKQmOj9RcCzF/UYAzCt2AaTQnpyc0TYd1O3731Q1n146ffX7D86cLpvHASW9Qy47raWAcIMRUxITJUyl/tqnx2QHXxeeyXYMzhsl7dtPE5KQULeFl6Tp4P4Cg4gYwKeASx1BwevxwHFtCQDct3nsOPjAdDvgQmAK5wUK6R+8dLgZmU+OMkrgR/ReKyGmqoj1Rys99fHYbqQ+sdYxeeKMn6zBKVfxpoXTdU1q6g36P449yNimSoimGfjFpkjKaR0fLR4r/NgQx5I8nQgwpT/A6O0xMUk7ecxgO7Pd7DsOBcRwEWBght8spyjES0kRugWKgyT8RBunetRhtlbNJUlt16UiiSllKdpiEMIt2++DwzmJUoO8MHo3XDdoJkLajKPmubTJIWvS9lDb0rZT3eVAusFw0PHm05oPnp4RgJPXfBZpli4lKFyB7K1X8o/qR5qoGN2lBA6hwv3yufPDhl6tp/MNHuq28Y1VeO1SKpwClMP8y3wWi1NHP99zove+EvD6TJzt55lNGTxI2OYskGuEwV5b5MiGfWgQEajZAJhFQKoWyFoLnsN8wjTfSUXA8gDthfXLG8vwxXb9gfXbBdrdn3O3pOulQZ63FTpZxGBiHA9Z5pnFimiSVVu7v4eevjZYEsI2W6HHbGJrGRIBUohXp8DF7yTSxXElrAgrnA956xmmSTi1HmU3f50h7PSlbpRRd17Jarjg7PeXZs+c8vnjMm28vefXmDdeXV7y7vOTq6orVYsF6uRTlPEayf+uY7IQCLo2USD26OGe/27Bar9HK4Kwo22fPnhJCoOs6ur57cG7nN0uO/NYOqLQInA84K6WBiSB8oSxNmzpPlL3j896M84Oq5GK6XFIVZT3VhmXObErWabxHURqSEhuSUleVLA6BECNtKRtItoLKBoFYDUVp1vclIEPn9+NXo4KOwCQRxRLy9i8+icqipoyDqgwp8dUI112jVS7bUMrl8VJKLJ7MJxTKqCXvlVLFQMrPePQvnrAYlOk+SQBAoZSP4LDMmdYpkUzlcayWSpYj9zMh5d2UTSclcCCqXl5r2xaCYhwMhwG0Cex2A9vdjmmExkBnVOzIks6ZLprWZZ45qNcsEjVrtBJOAB/ApfmMQaM8TeWBKzws931vHAMhOPJIBnHYSYQX3CSthomGR0AcX3n80vUqjJGOWtrPtETUZwmSGmJGXFzbgZSiL9k1CQvkh6llPv88xz2dFh+qzhBKn3soAzgZbvVnUpCPyrDzPpTMvOwkEXm+P+zZ7XbSNj4S1SYDAq3BNJimoWlb2raDaZrJMIU4q02yxOP9ixM1YijTZB4Jlb9ZHjrPjQ95skN0njdGs1z2OOfYHw6EWIYHPpYgCV5qG0PXtZLJ1IgDSgONCqyWDY8vVjx9smIc4O5WLIpmrel9W5w1BRHdWwMPjf+Dk0et8ss+mwGpIJg3yZaHzvHgFZLu1vd1+J+ekafurfn5vqrE9OxI+oOI4YqM0/ley1o7xniyr2s9W2c2zeW0nF+upUPKPnZM4wjes9/esr+7FezuPI0xnJycsjbnNF3Han3KZrul7/e0bSOlvNOItQ5tGvrFimmy8TVLcuoUWZbGuBqHjFPk2YwRQuKMn0yd2VSwgXceO1l0gNa0JbNptCilGSfBcdb9KRiK2b1qrVgsF5ydnXJ+fs7F+WNO1ydMw8SXX37Fbrvh7u6Ow3Cg6ztM2xBAeG09wn07DIBkmTdac3Fxzm63Zb1eY7TJ9scHH7wARF+1oat0+QMYOf8ejl6XPeFDkCZP+4HhMDCMe7yfpPNpWXpZZngXMY4Oc/0/k4lxvea1RuTLFZL2lBGmgo8lnMXRJBlOrtiOeX3GVRrm8jrbnqrq4lar/PJDKgiig0rIn33GEMJVrPGpVDWkfZSuU7CTvDCXXHUmYdMIr5R035Vgcyg+ZFI2ilZzbAPiiPKVzi+YpuzrOrupHMmZnQcmY6HU4AElASutECyqfLVf0vAmHX1/3ah4IykxIBUmaBUwSrKlmrahdeCmA9udRyvL/jDGrpCOxijahKEoOoh0SVXL5YiN4t8pT8UYTaOCxFydIpNnpbmvhGgN09I18vglG7HCRsl5LzgrNj8JNjtSs+9BzbPLanyQn6AaR/k1PotKK6c4nIyS9UlQWHzebyHTLVTzgASeCr7/w/roj3I2JXBXA9n0XvxUJZx9lM/VYq4A31w/p9cTD0RMq1aJhE0IqRb9gtVqSd91GVxIbwhJxfMETEgOJZNH2PuAHUfIkXUzM3DkRmVxOC+Eo0IUm5RkJHILhT1euLllE52erCB4zi9OODtbopTixK/wAUnVnSaUUvRtmyPqrUlgTQRm28CyhdWy4cnTJWePF9zdel69HPBB84PVmtNHLcbYauDCkRAgK52HjrLYvg/AlrHxweN8LJtJaX0Z4JbFm7yn+UpJUCSver0RqoUZgp/fTAVOyvIIMRU2RGAspW6+9vh9x2PkNSUaRzKQmli7r2PXgHidDDJnN5DuSM1+TwZtAlI+emLzM0duHRWCtPJWCt1BYxQqDHz7+3/g6vXXnD99wcXTD3E+8Pknn/PxR5/y+puv+frsMYf9jlevXrLd3rHbbxi++RLrHDc37zjsd0JGr4TkztmB8eBIjwlALNM0WtH20gZ9veo4Wfd0bRuJLSV9OjsTlKgoa51k5ekWQoglhtK6XHnPYT+y3+457KW8L3Eh1KVpZbzmGm3Rd5ycrDg9XfPo/AxrJz775FN+/JPPMMbw5uUb3nzzht988QVfffk7Dvs9ptWcXpzRGukoI5kWsq6cs+gpoUORBdtxz6t3b2hvr9nt93zx619zdn7G3/7df2W5XvGjH33KBx99yNnZGZ988gmLRclyOhaeWTQnBRIB92QdN1cb9vuBd++uuLp+x2QPLNYN/WpJ2y9QekFQmtGNjMMYyUVjdEjNenkAxI5dCTikDLUKoGkTb0CXvVdFnpTS0biUSIQOOrdFT4ZLzsZLf1RGkWzvxJESZiA4gSn5TNzTMUKd0tLTXCslPHpaSRZQalFeypdD5k0ijkfXGvq+EaAUfIzERE6YBMCiAEtYIf1QlXxJSjLJ1/SpVCKbyUVz9CTu77R+QsphKN9Pck+emQiaNDnzMa+bslaOHU7SFaZyNsXxV0GiRX3XYrRhHJc07RqlYbN1vH27wW8agm9Byby6LMkFEM1Elk98RXPwhwJDoIvP2UWOJOulRn/u6ImZP3F86qxNAgRdgd9Q3KYB0Z1d5Mc6KCQDLAhBOATavmO17OiNpm+NONAKPitGRHqAypAoEbvy/0ZBh3AZtBqmuK4ma7EoRi/vCZJQsSW6ZBx+D2X4j3OkbKakSxK4rgyl7/x6AqRx7kJeq4kINFTvSQYACrT3qCBz2S8WLFZLmlai70RdkTJSiN3rtDaYxszuzabmAQkIzu4tlasgnA5xXaaouhwlyJj0uiLQNpr+fI1WgYvzFSfrnhB1ZipzCjH7pO3bWL5D5hQLTnDdemV4ct6yXDasT1qCgmEKXN84QlCsHgs/mmSuC6hWihxYFHk8N6jy80V7Ij5Glj0V9D2erfxiCOC8FdkaOfOyyCjQI+M4KAYsKq2XIn9UiFl+qtYL99fK8d2o+HpqAiWZCLVsT7KkWm+UkriQHzhqnWhEGiVlHyEQs1fr8xEbqCSslPSPymMa4l5QPpXI1LJdrqtUoGmayBUngeNp2vL7X/9XXr9cc3L+iJNHT8A5fvL5z/j4k8/49puv+OrkN9Kh+uqGw/7AdnfH9nDAWsdud0fwE2VRK+wUCN6SdIXoKOEta4xm0bfi3Fp1nCw72sbQd4KfTNPEUlOTedKct4zjARM6mn6J1gbrA7thZPKBzXbL3eaOs5MVk7WkTOf3GW85MKIU6/WCJ4/POExbnj97Sr/s+fSHn/KzH/8UNzl+9Xf/wHgY+M2vf81+v2GyI+2iQ7U6cr1E80+HIrSjEE7XP0wjr9++pb25Zn/Y86svfsXFxQV/93d/y3q95qc//ykff/IxJ+s1L168oO/7+d3W+kSlMraUVSH4xk6Wt2+vePvmhrfv3rLd3aB0QOkXdP0SdMNh9GgVcG4keIt2hiYGhVOyQcIkaWMW6B51vSY6qQxa9Rmbq2h8S7e2ZOdIqo/NRONEzUEUdpWiIsydLEmuV1xgZR+WxIWUaZRsSmmKYfHBx70SrxvlVMreqre2UmQMZaKDSfjxmhhEd6jYXEXFrPXcUTE67hKeq4VYdqCll7yXho+qUDooZShaPzkjCmLK81FhtFRaVvMM1pxu2YGV102SN+X+tCoE6uU1DbpBGc+y72i04bBfMI0LrNfcbhxvLvfcbR1eWTDi6PM+IPHX+mxxijMpYDW5UTY1BDoVUDrQai3fD57gSkmdfLYKSEYdnR8vyrEQK2YyHI/j0gC9EQ7dwVnGmFjgYybequ1ZrTpaDX0MIOY1Wg2hXF90rw8hf1+p/K6sH6AFNAGrAzbigsFJdtsUAjYFAaKQTuf+PscfXUYXApSOhTFCPlO4EVD5sgjTIx2nAYfyByViLyn9ydkUnCM4gwqwWCywdi1e+UbLwkUSXJOzSSEp46lzgdLisBrGQc6rBEQTEvRJ9x6dWyGRasnz1J47H2KaJsk2kTSy5dmKRiseXZxwcb6ORnsXjb44CkpIMrXWwmMQU/OGwxBL8BSPzxSrlTibzh8v2O4PvHk3ME3w5INA27U0zZgmJIOVGVhKZSvJyEmjH8FA8WcWYfbeOY9C2ztValLV7AP5SGOUHzb+6qiFbVGU8xMc3Ue490p0Fim09nivc4rn8VGDxORQzGS23hOCi0aUGHVNJMQGcpaQgJt6yyZhrObXCMX5qihRjZAbUxbhItlygVbIVnBu4OXvf4l3nucffsq03bI+u+CnP/83nJw/4fe/+w3r1Rk3t1dsD1v244bd7o6bV6+lW9BBonJiiIswcNOAn8Z6pFGtQTWS2rtaLGgbw+m652S9oGsb+kUnyqlpMo+RqF/NZB0cDmjTSlZgdjYBePb7gbbds98dGMYRrTV9r3LK7QOTk8ev7ztOT1acn57w6NE5Pnh+/NmP+Is//9fcXN/w1//pr7l8d8mvf/Mrvvz9bwgh0HYdp/1ZNqoUQimqAGcNptGxHn/Cec922LPdbyHA73/3e4LzdF3Har1iuVzyP/wf/y0//xc/54c//CHPnj2jXyxm930P8IVi8KXWs9Zarq5uub3Z8fbtO66u3hKC5dmHz1islrT9EmV6glKMU2A/jDRG08cOfvJfqtMvAEZFArraeTGLJKdJjgJfRwMqfV5SyQsfxXHUVCtyC9ekdETBilRw6VnF3Chjks4WlWciGheeAxudOdVnlcpBg5DAEoVYNpezRhLGrmtY9FJijLcQu1IlYv/U0lzVsiMZ2kkfEWVbLtGQ+8gRPmLmV6iLaMuAhlA69dV73Kdi+ewrK+S35RQq+xEgrZdieIqzyRTAEXeb19Gh1inaJjAMS5r2FGUcm63l7dsN7dSzDELEK6NIdrZmbRvtRe8i7K645nSUPSYBJRXoTZwjp5h81GtR2GulaVJZW/YhhlgyG0GgztIvWo4J/EGvpMRtQJxNzntGNxEInJoF69WCTkdnk1aEyRGmEuGfYc44lpLxXIHh+F5DCoYFGiVZcYrA4CwqwBRLA33WY7GULnu0/umPQgg6f7JAvU6YOSnLd0P1M322JjZO/5Kui8aOghAMyqcS1SWL9ZqmbUlrUjie4pyqgA7EMpsm35v3Hjf52VqWez++L+nUm/HVDDNEGVN9W0HWSV2ruThfc3LSodCcnqxn45S4SFJLbe8dwTmG3R47Tjw+7/ns0zXLheHktIvOJsfV9YT3iuc/jM4mY/J5FanUpPDtpO6Is2esMNW99fIgjEpGUnToOI9XCkMhOb4veYrcTw6HAJn7M/kDAwVilVyioyMa9snYU3muCg4vfDTMHF3ZjAspkOtnBrFktym0bnMgyyRHQiRURqmcLau8zwZy7UyTTlKp7JNoVFfymxIw0HGdhGAIQYj+p3HL7371N3gPH338Iz5yP2G1PuFnP/0Fy5NTfvvFP9A3HXd3twzD33PY79lu77i+20gzjGGKTVeSPAE7WZxN4xFlWdOglWDFk1VH2zacrXtOVl3sIil0CcY0YtDHLMGgFdY74Y8KgQWgTHE2NdZzt9lycnfH9uyUabLoXOpNnP+CCWZ4WylO1guePj1ndAeev3jO8mTNjz75Ef/i8z/j25cv+cv/+T/yzdffcHP7lu1uQyDQLXp6vZgRFKd1qBuFNlQ6PbAfD4KhfOC3v/sd3jn6vufs9IT1es2/+7/9O/7t/+Hf8uLFcx49enTkbHoAQ0FeS6m9+zRZ3rx+x9dfv+Ht2zdsd9c0rTQP6BYr0C37QebJ+4kQJgnYexvnLWGfskVzNg1QOCQLPmqbsv9rs6UGVkGEmZTtZaUedVyS5RHzixwpz5icSKmEr2C5ELFHkdeFI8rHLtKhcCVCzhz01T4q4yu6DqQcWjjODK2p8GVw0UFDxMoTLpYS+9hIqBAFFOedUgn7RH0TiB3YZWy1UgStK6yT1H9xbKT/0ge8T/okFH/dbG7qeaiCSxFjKeYBO3yyBXTGkctFoG89wU1sWDJ5uNk4Xl/u2G9jd1bjSYGV1OUvXpJ4ZZFlQMqiB2L5GBg8nRKnTRfHwHlx0CiFlLnptLdUda9z7eGDlwY4edXN5XxvDE0IDEjATHCu7AXTLlmfLGhQdCHQAMF5sMlBn3SXyhmpiStXxipdV34aAh0BS2BUSMMPAkPkkxuDx8Y9ZtR3O8UfOv54Z5OiKk+YuWvqD+cdHAizsq18HioPbV6lebXGz6S35LVEuDwjpMsLEipTqFznyClxPDRiMx4BznpFRM1+L+oYgbcyWoiNIzGZ0YnouxGS8qjpk/CT+LwAc68kNTwo6DvD6VnHcik8KofBMYwB68C6VNJReX6PnicZwDldOynwLOAoDqc4h/kEc/zIbNeVQSBt/mzUqnjhKAVU/X2VhyjOSIpaPQyis6F9fMzmNnVw8LN1kS+b1lzl1MxrI/2ejbN597763lJLzzR+aUzLvVabLD++cMl4Il/WbOxmkDn+f1KOCjuNHHZ3aGPY3l6jlIbgOD07R2l4/OQZAcf19S3D4GNHwoC1ogokcpHmUWUFqlAx1Vu4wfpYgtA0DU3MsMvPMpsW+UO4NGxs6+pmyk7q2l3O3LPWYp2jCYW3hXqNzeA7MQ29Zb1e8+EHL1gsl6yXa6bJcdgPXF1e8fbNW7abrTihlRjppmmi00IMGh95dnwysrJhEC8dc4ITaLbOchgGAoHrmxvevHnDyckpwzgxxTbg+/0BpYQLRGtF13d0XfeA40cA+2635/Z2w24vJM4oJ90rmhaUwToZkGGcOBwG+q6lb9vKYK6UbLpnVZRAcgal6+akAkX1uSPBr8qPJKtnezok2UxFUnx/D9ZbnAqgZnFdnbM4tI+kR7VvoNIfaV0oZv8ykMnoMZT7Vyo1AclAI/ELVMNEBneVLsr3oKr7ihmtx0+eswjig8lp4r3k05Z7mg3CEehM+3we4SzjXVRfNZZaRwNGYSc4HKR7Shgm3JC4JIjYN5BKLkMMwOSbfOAQYCEk3kYFAQ73PqPK+kpZU/mUIc9bLftQ5BJPAU0livf/5+2/uixJkjtP8KeqRi5xGiwjkmcRAI3uRvfukD37NHPOPuyePWe/9+xOzzQB0EChClWVlSwyiEc4u/caUdV9EBVVNXePqsRMA1blGe6XmCkRFfkLX/CZWtwulqt2TMTFsj40kyIZ0tqmPZMinjYbSWIydM0+CAC8M9k/5XT5b3U9GLn0gDysaWUZBSyEUhue7hp/aoBelIQig6yzi+jTjMYU+FfP0p+6iO7dMS3HXk0nY6i7QKNgNK37Za0Uxu86kU1S/NsKfqo2Sz7rsmGAGIhW6p3RGFZ9w/FxT7+yhAi3+5nDECUFoJjo72FAXbcHr0Tf9Vm6y9/uv/DBh6SlqTBUunJMeKVwqUMrL+kdLPGQoSnDuSyo0/di/W61v/m9+vuJ20Y1XsaCt9L3tPRA7gRYGZEwS3kkfymlpefYhJdixJhknDSpW1iK7MjE9JBcUtGQVmEaB3Y3V8QY2N1cJzlhOTt/TNt2PHp0ARjs1RX7acLPMw2G0Gh6dlphxfWmBDS0reCmvmtp2yaXw8g1Lqs1iBjqMx1SbUptriLMxxAiGY9M45ibvYQQCU55WjXfej3Sr13fsd2uOT094aOPnrHd7WiahqurKy7fX3F5ecnl5XsOh0Oak6RXGeekLp9P9FFFixUHk8lKszEmR7HGKLWi9qkL8tXVFRfvLlit1xyGka6buL6WWljOOVYrMch1qXOxypEih03GUNdX1+wPh1QbRiKvmqaDYJkmkSshTIQ4Jn7RJjq0GUNpUL2en0yP6e/S2EQlUxX5XMmiWP1tjFk0dalxj9LNXRo1SzJIZFw52xZ8e8lbs/Oqejs/r3q/RtRZN4R89u6myJWIcOGv4ngxqiilZ+iHTJk7GsgV780rRzM9MMaalhQnZYz7wPrU/LDGvNl4/YAOXuwJ1X2Uz1uDdQ5jIuMU2e08h0NkGAPTVAJH8r1MxSv1vFWy9i6/dhiCIdUXRbWwekLkWcTEV03BRVHnrLxU9VfFUGnOanjMxufFoAvk1OeU2k9LGvkQhlpKxVouC/34oLU8Az6IzUL7j/8RMXfv+snGpjy41FFGBI0rAD9NOjvvMsip2h5SEUcl6LIQq2qRqIIZtagu0HYd/SzMS+/otUWykdDViCH4kHNyfUipcyGk6BJTUFF91v8UOEjfq5W2CDTOcXJ8LMWWNxol0rLZHNE2bWasakUWS6YUvAxIuidEzs5W/OJfPaXrLLf7A19/f8v7N4H9wRKjBP07V4qzZQaaD6SklRktQ2VMLtgJZAWtFHAlF7D7ENRWXqRKhVrrpcuCKnMFEOj+6ucFKMVqtZZGnZrhZqJXgGW0Gn64MyLyfe4psRXoySA5jU1fm2efx25TsWBrK+YYYy4Ir7RpkkDUdptRgXoF6k20ElkXPFif9iCPtjCwNA3rHOvNFohM445XP/yO9s2K68tL+tURj59/yi9/8QumeebRk0dc3Vzxzde/5e//7r8wHAYO+720cE7nI8aIn6ZUh8NkWu/6lrZp6VrHdrvCOcd61dB3jXhBnF2sm256xDJNE4dhBmMZhkEKdIZANI4QPfvdHkKQYuU3O8nzblpMI5FQMZ3bnKde0dN6vRIA0ndsjk/YDwM/vr7gu29+5Ptvv+V/+1//N77//nuaFppWPNrr9Zqma0skzey5vbpmHIfCPxItYaUAdpuiSOZpTgXXA+M4Ms8Tv/nNb3j99hW3+z3/1//+f8Q1Hf/5P/0tf/df/4G+a3ny6JhV3/HJpx/z8Scf03Yt2yMpnKvLNY4z3/zhB7755iXfffcdt/v3NK2laTvW2xOwPdc3Hj/PvHr1nqurNzw6O+HkaEvXtZhg6mVPa1SF1OazXjGoeq8+IEJU4a9EfXorKQ54JCa0Nl4vwYvFkiOVYkydvu58Nlaf14LPsRSWzJ9OBXzVY2RUmBrtcJe8K8aklFNJ5ZTaASYbuTSCK3jP5AeRDylqyhiT2yNbK61qIyVkO5/7at1CiqKtVzIG9fiRvMwWbFo3ozwHtW0sL2Mqlqh8pwKXkRwZFLS7jBq7Kp7WNI7NZoUxgd1u5M0rjxknzN7j58jVYcan7oAxpScGH4mpvYpJSlAGqkZBm0bCCoBeIevhbSULUgpI3h+EJjMxJXTjnMU2CSilaOF5lnoYBjCpQLVDupFhDDakNAFBRSK7gy3rrpEWGnZXGZGWa13hiDRHXVdnLZ2TyMz9OBKCdDua54BrbE5n19bk/1JXnhtFKZVmOrU8LP/W31niJY0ej3nvk/CtDAS2RDblIriGru/pVyts40ReFZiGKhkx7aNJjoRpmrLczvjjj1wlUf8B3pRfNklOGfq24/jomPW6ZdVJvSfnhN+7pq3mlZosJN4SgwUTWfcWGsfjp2u+/OUTXGP43e8uePXdDfPYEuJKok5SN72lRnknTZayHkVhlU+lJc565WJ2D0638FY11mizDmctxqk7oXyxYJp6nSvgsPj9/tKWS9ZLeZ+JSO0yhIdlXqfPy/pJSokjKRdaNkJ5WJAIcSlQLIZLNVZHJGUbk9KUE64i8eaQ6FCcCI5oLTYGfIqIDEajN0zmhybdN481j1OcZZuNRF4edpd887tb2n7F5dV7VpsjHj97wV/91X/HOI08fvacd5cXfP/tN/zm13/POAz4cSTMHh88c2rGoi3upWOnyXXC2rahbRu2m5XUFetaVl0rTqWq6UM+iun3YRyYLi/pNzMnT6IUj7aCFecg3SGvrq64vd2xH0Ywjs46miRgYoq2z+UeVDG1lsePTzk+3vDs46c8++wFu2Hg1//wO/5//8t/4MeXP/B3//W/8ubVKzbbjs1Rj2sbNtstTdcyDCPDIDVsFA9FX3Qta53I88bh6ICI72ZCKta/2+8Yp5Hf/u53BCLX17d8+eUv2Q+B/+//8r/yn//jX3N0tOEXP/uU4+MtL1684MWLF4Khthuatugm4zjy7Tff8g+/+i0/vvyR2c+0pqXrt2w2Z+xuJ66uBryfmecrfNhzenLM6ekxbdOmSBBdl4r+9VwoXFL9DyAWDK/NGu45HWKJctSzbyjdTpcHTna+RFQpZlGnh/IvX5poVfqPTalcMdqsa1Lj2UjmvzruGKPI8cRnsgHYGJrU9CDMqufG/Dibau55fGrOQWnCgBG+lKIMJZow5uLQ2nmxnrvo2cpPVJaRI4NskzrTBuVHYngIpsI9uoqx1B9TzKJOvTqdN6bI8+II0c8X/uyso+9XWBtSKvWe8TqwexPwU2QafbIZkFMX1eBKOmMCax4YnzF0aZ36FLwWjGHMO1qu4rhTDKW2BEl9pI50j1KgPXiPCSFluKYamLYhImVtjBGezuwTT0h0GooelK1QBUJRBNsSb+i62ZTW1ThL6wzT7NkdRonammd8qpHXdU0qbfHHsUB9/ZMjm8ohkYWpq6KXl9U7R176Cj9l4B3r+yjojpJHS/V3vfkS2aSiTUGYUVpLI6xTOzwaIldau1OspJF7BUlF8anA9WL+i0URANd29H1Pm+reOCcFmLu2zYpijFGUdZ9qsgTZ9FQIn75vODtf07SW6/3A9c3E7iBRTblnmlnqmaaed4XvRLlYKo55Zao9yVbye1PT92vzzvL97F3MGm1lka8XMy6/p4aih56nqTlKOwvwV31OXosP70m6MmOK979TGEY1x8pgpYxdKCutcSV0sgcuRIIpqTpKO8mSV5agyBTyRK0oshiYhoHxMDC4PfNsaNoVp+ePOTk+kRQkEzne3zIcdnz/3e85dDsaZ5jGSWrhzELjkzP4ec61qKy19F0nYKlxUpTeabveZVHwilrQv4KXFrHzPGXjrQhZWYd5nhkHKSw5zXNuby7MO6UdpTUxubKoPMW5FPLbtvRbCSG/uR24vfmey8trXr9+w6sff+T07Iiz82M5VykqK4f/JyHoU82OrDioUcFKKkhm4gb8lAoWB7i8uuQw7vn4kwsOh4FxnHj16i3/+I9fs+5bhttHbNY9m82a80fnhBBYr9fQRJTU/ey5vr7h3cUltzc3TPOAcQ3GWZq2h+AYp8g8BXaHgdvdnu1mnUCq7H9uLW20XkVc7IRZHHxTzkp9xYd5VI7aq+jQ6FlIX4xReUQk14hSmG8qBF0J3fIZFmdED/1CH1XhasUSniO6lPZqvpwEubUmG80VjOSnWZtSMxIAScYmjIR1q+DVFLfsGTPlHnnZYlkL7bKksimvl62MAjVrNQU/1HPVJVusVGaWd4R8ZZQr44g5ZQg882TY7yBOnrDzRB8Z51Bn86HGFt1rk/6TedhiNGR56IzUO7Jlccp2G1PupftaCVqNQKsjm7TFtICpmP5NnatSsedq9cnx3boPWfldKurVNwotq4xWmZdgvEQ2GWZDbk08h8DsPXXXmYdl2z/flUFxdb61+OhDhqbFd3lAlvGADKxk3N0fAzk61FbpD8sr8f7EV33CUEAqAv7TzHMftkeVmADlA9KVt6XvepomUZNJtUfaJp1RifqIc0QjjZXXOyc8Yb1uOTldYaxh9nB5NUm9upi649U1JauRZDoqfyUCM4uII5OAVuYN6VYlSvwO4Mk8sbq34hu4c7Y+vH6CO8oDP4x6FjOgaBmqTCjuruRHzdcTb6uNO6JoVjj8HoYyy7OUsLPFEE3CSKnobHZqxZi6I0kKi02YoTi97qswilPrdZBsNTG4Hw4D+/01TddjXEe/vuX88VMePX4ixebHPaujDeN44NWP3zIeGqahIcwz8yzRRyFISpf3Xpr3NDYZm7pcmL7v2lwc3FmbC/xW0rrahcjsPTEM2LYVXlwZCwIwTTNjarLifcjRTaoCKYZKS7i4+r6n7zvW2w2rkxMOw8Rvf/MHfvzxFa9+fM37d++4urzENSdsjntJ0Wsb2la7+005RVIixKsIRuOS01U7SgttBGeJKbo+hMDV9RVv3r7h/NFjdvsDbbfiu+9+5G//9lecnx3Td4bzsxNWqzVnZ+eEEFmnDsD6rHmeub6+4f27d+z2u2zIca6laVZAYBhnMXzPA94f2G6k/lXTNLl+IqixqTYPlKtE/xgl9FTXUM/tPcGdZcUiYEI/VOvE+mGqtPVkdNLUsaJ/lTvpCwuHud7R3M8cqh0TypPqDI17c1X4lh5lEsYRp1sQo3Ylf8u9ZUL5vumMWmNKSlkVrFDkUC23C6+3Vp3xBR9qAERUjBcr/F5lL+VI9jvzz/8q81rsmzjKtJzOMARubgLTLrDbz4Q5or1sCgSpeVuadyaJ5f1tGmcgYShS+nHirRolVXOyisrSXJD113qrMiGC8eVbUTGU8LoQK2wdC/3ku8flQ3IwyoJGy9cL9ipvF2xomJFU4DnzppAMnPdl25+6/unGJgWR6QCa9J564LRAbAgRW1XfzIA4TVoLsAqRiZXSp2Lg0RiMFiELQRQLxArYtK0okI2TZHaPAHZV1PTA54fG5eKbUsi61FCgHHrKgUxv5H9ro4EcpJCKPzvapmHdrzje9ljncBZi9JX3MTJPUyp4Lj/GwNnpmtatOD/f0HROCsJez7x5NTINDc71kp7nnA6MwkzrENAlUT9MBoZSMUHWpWCdJWPLzC/l5IOpioKaXAw0fWpBA9iimGWraTAVw7g7pnqd9bWSTpB40Z3Pl6sG3PUBuGtsUiZbxitt1WtDUzGUyvdcAuULJh8MEY10SoXj/ZyNIDnaItYrWs9PUkv1JbHAd2AsIQ5Ms+f1j1/zq792tP2Kzck5x6stn3z8OQbY7W75w9f/yLuLN/hpYt4f5JldI+fTFEWwbaUdb9M4Vp3UZdIudNZKC2lt/6wpqro28yxe7XE8MI4HhvGA91PC1JH97pYBGIdBio13Ha2ThvTWGmJjk0CXejAAcQ75jGm0kwAag/czw7AHIo+ePCLECduYVPsgcHu7wx4GmkYAE8bS9r0U4pwm/DTVhAKox0IiZKI8DNs1SixSh81LJ7thHNntd1xdX3N15Xn79iXOwDfff8d//ftfsdms+fjFczabNcfrDaebLW8vLvnmH/+Rb//wA+8vLzBNxHWWtu1pmzXTaBnGmWmcmEMyEOQOa6lw4x/j2ZViUpSkmqZqvvSBU1/TtwLK6lAtz4y2CS782WSOUiRZPg+ZISrAsSnVtRaCVIqYAAkTEuBRaZ4m4aeZaRhEsTVyNsQoo3OwSUBD41qCsfh5JkSfphTzuGqgE0lnIiknNgM1coU1Has1ViJx0M54EkERE1+IPlTPKVcGlA/ug8mjUnmXPVBUilbil85Z2q4hRsM8N+x9xA+B8VaMTfMY8F48X+Q6fVE3It8vsgyrXmwJ0Brh603y0GPAx5DPa+MEOS2cTRTyibm0VZLrpG4pBmwyCrTW0EXp+DrMDRGfoo0mjLN4W9LeitxJNJR+QoyZrxY5TwFKRhVPQ0PqmonF4lJYeMhpAxLR6WiM+8lte/9bXLE+P2g0bah+rwD03e9WEYaksxlTZFyM5LoTiqE0kkTPvEb5tm1L33e4phGvbtUiXPnyh6xvH4ogrmcoH0iGx6x4VBwrA1uNfpQxNE6cc33n6DuXzz/R50h1jThMWjg2RJwzPHl0zHbjOD9fM4wCiq9vI9c30LeW41VD27VSF66AljLRClfd37GCcfP2Lb8teDW9kgF8BfNNdR5rZn93n2vDoDbrUFms+3v/imVMaRrxzjjr94gaeXnnAwtcW/HQqDgzKV46/nT+JfJU5YmuSqW+G4lqjCYW5y9KzyEXBSfxRYluLK3sl/pUNdck95THu8axXvcY65iHHcFP/Pjt78Xh1La06zWPz86Jn36Bw7Db7/j+2z9w+f6Cdp5phzE/XyNGmlSfRbvOOSflCJy1qRSB4CWTHOD6GZNqioHHzx4fpYW5RAb4gg1DkDpSbcM0jLROOlU3xmoneqlNG6Xt/ZhqZSYEm9JNU821aNLfEfB0fcOzF09ZbzuMhdkHwjjCzS2uGQCJrm+B0HU4I47KaZzSihYNSOVHLttnLU3bJvwmOHH2c6pZEzkcBq5vbhnHA/z1wGrV8rvff83Tv/5btpsNn376nO1mQ9+09E3Hj6/e8P13X/Pm4iWH8ZZu3dKte1zTSo0rH9nt9szTiDET2vHWOXHsRxlkkgu1znkn9UkNgzVNZWot8jm/bmSuWj8seFGYrLHZ6ZrRWX5MzNFhyjMMgjfyyGIZo/KdEoxS8QdjKpJ/6OxTHf+Y8YRL9Cf0YMC5whRiMoEYwKQOohiarAwqjIgF8qVx6f/q1yBhqDsyQ6PMY8JwBqHNaKMYB00d7Z2Zj7wWJOqp1sP0ngujXb0kBjHaRImQVDkv3X0D4yCZDeMO9vtA8JHWiqGoAXKwVj1nChcv1Rar/QHpMmkgWhhtWgyTokJT/pvL9gb9Xsk6iEFsGOX9yuGGdKUzxtBYR9cY5mAkGp+A95FpnCVS0kHM2SMmy1+9r/K14AuGUv2rPgtaeL1BdKY5Y+UivzSiVTCUpfkQYLhz/WRjkxoSNLo9I80EahbeD2IOC7y7yNlMEsu/SmTeC3O2GEwVim/SYWnahja2uK7Bto30nvHa9a6qD5GeJgewAkCAdtgBNXjpaVUF0FV5vfqWpvdVL6aC0wSJUOnbju16zenJFiApQBNh9kx+lhDd5A2Q4p2GtrU8frTl9Ljj7ElPt3JMc+DqcubldwfaZs2qa+l6KUCY0r0L6MzDKVFPmVllhlHmUn6VNc+AwGqhXAU0xXNojdSgqlSltKcx8yNV8jKNJCZJ1A4KOtwlUWbDD8Ad5fSeN94UetLvxgXN3QfB98BZMjQqwJU0A6ULncuyXoZNXQ1DdV+NmJCuO2IMnSpjU462eEAhLVErMafaNS7RcwgM8wE/R15+9xte/fAHjo7P+av//n/iyflTTo5O+PJnv+Tm9loKwdvAtNszGJmLc2JMkrGrJ9vmIp5tSht0rpHPWkPT2ASUGgnpVG9klIimcTzQjB2Hcc9h3DP7SVI1Cdxe3zBPE+PhwKrrpQC5czhItVGkFeneC1CKAeZZaKRxpK5shraxOAthnjjsd0DgoxfPWB/13Nxec31zzRQC++sbYoxst0ccn0gb4W69oukaxsOBwzwngKscIKUqUZWkdgbnWqEua1LdBM8wjgzjwPXtLe8ur9jdXvHq5beMw571asVqteL4aMsvf/4VZ6fHfPr4GV8++4h376/5x7/7O77+7iXvD28wXaRZOdpuRddtmCbPbpikrXBIXSxNRFq+hpwWRoyl3k66oqmBe+XxSkSV2VEWvIVul0CrBjDwQHZ5vmkpaFm+towBWUa3yDjKc/Vfm/b+3mUkcsEIiWAzn0gd7RCh7ayl73uathGDYExluq0D4xLtekmlSbJI+WJejoQeslHTltbUamwKkIsj6/pqLTNAUm+MkUhYq55+oFqnRaRShBQGRb1sxftNVXw8rVuVZqpd5Bpn6fqG4A3TvuEwBcYD7K5nog+4GLB4bKMTNWi7cAFeid9rs4tKKtbb2xrZh9YabCN7NmuXFiAk+owVwWUlZNGfIejw8zMkHcfQWUtKKGBvHTEY/AzjIMam2Vlck2aRvGY2FyoQp46umzppTAZKCdCnWkTRGJpEAN4YGuNS2k4gmgBWmiW0qa5iY//JlQT+D18PGmZCMWLqZ+rf6xTv9GI+c7Fy7Kn3PKQ0RkhGJmPwIWC80FzXdaz8Stqe59TJJKBTT+qFIekO2H/Ig/6QIVI99JlNZLxXbhm0MnSE1jX0bce6b9msm7Q0UnIgJKcHUfk54MUz3XWOj1+c8eyjDa6LDMPMYfBcXXveX8HJ1nB+nDBUKgyeIxuydlHN745SJw5Jk9e9YiyFv1QzrRWi/DEjhghdIV0vddjpui0cdohHP4SITxj37njrKx0VlDXrbdWFqNjm7h1iVtzi4rU0IFTQiK8gfdOqCpDwV4VqchSzkW6iGCOOYcD7gLFzogGJxvbGZ95PkFRgaW8v576OmKgkXlnL9HvTNnSdKNnD4YbgI98edrx8+R1HJ6f8u//u/86zj15wenzGi08+5+bmmhAjo58J00hs96JjaB0myA4Tl9K6rZXfjRF6lbqsBtPY5LgTAxTWSo3LKN1qx3nGuIZpKhHiMRmFd7c7TIxMw0DfNKzaViLOY8GfIcJhjOznxAeSQ6irDGLWSB0VS8QYz2rd8MlnzzkMZ7x7946LiwuYYZik+vl6vWa73YgxJa4IbcvhcGCe5qQ2LB1KEomVVtsaMd5aaYA0zRKZNYcohqH9wOXlNfN84Ouvf0UIE127outWnB0f86//4hc8OjvlZLXlbH3ExeUVX//+17x88wPBzXSbntV2jes6jG2ZvRRSn6eR9Wqkaz2GmNNt88hMoYoseqt5LKJVvHx26Wirz5MQfeEJUVJA9fwbLRdSeB6UiNB8M9Wj7LIGV33FKrp3ES2SMYP/8Hd1hwLE1DnPWikzgLViULEuO1Xz7GQjRWYmJ5NL9dL8PMl5zG3VUkqZYtBQ8Xgja2FtLbdMcuI36bsSKBGJksJrK70c4bHCE1THjoQgeGa5d2XSoQoUKZFaie8kvNE0DX3bJ54AuzkyHjy7nZy/dWfpWtndLjsMlvc0SZfNSLweRJTz1howNjLYgkt89EzeyFnJ/qylMRMopYMWrxU83Rgx+nTOMNuA9YZpnggB/BwZkrHJ9yYbtXQdKGRVGZt8jk5S3TerDqnwejTQhKSvJd5ijcELo5GsjUYM8K2xtD+xGMH/qQLhi8lUgKM2AmTbhwKk2liR3ogf+DH6exBmogSl4dwxMbvsXn1YDufrobCvqBYTdEL62TJumdWdvytQTSz3kVBtLe5VjDaLZyRasMawWrVsjjqaxjIMnnHyzDPEKO0UTaUgybfToagUSf21ZrAVyqvGXgNHsrGonlttQCoW0ur+xnDnvFT3lLvpQVVFQA1YIsQi1O+zHMNPve57+fQZ8d4+13BFF19pthjBknD54P2X9KMekmA0Lejeh/Mi11ELukZl3+oFVgYnSn/wI9N4YH97ze3VJc2qp9tuaa3j+OSEx4+fsu+uuZrn5PENyjPQZg3O6ZkxWYm2qcaARolIMVYVHHa5aOkMhuCzsNICs+M0MexuubySQtv7/Y6ua1OqhpOaRMZCuwLbpegEWds5iuElpI4I0oJUDAzb7YanT5+wPdpwc3vE8c1RalW8Z55m2q4TIZnSp3zyfGvKbF0At6aXckZNnmJtJI9Rwvub1MLYe884T9jJgjM0g+Pq+poYA8fGcWUtN9e3jPsb5ulAjD6nqbimwbkWooToj9OU6tDJnn+IVRU2UYEgqjMSkSL0i3eX1wI03QFT+fje/Vp1CIuyUY3VlL/re4vSe+dmqpgkQXFHvFLd9d4c1PtS+Eb6dGp+IIuRzVuQa5sUvqhKSOY3FR+u+ae8VjkcFjiv1A25SycPLV9RvO4shS64kWfXn6lWstwnM3Mtki4gLwaTAKUYebK3NaqbJa2TXQJB3Qa9Z6H8mNdMHHIJ2KQ5hxi1rMXdmd6Z93IOUY0W1Q6reVG8m6nOFJE5hASm5Hk21pG6SqtLelPQWTtVdP9quq7npYZFvdVdnPEvdT1obKreqz29kSKj732/NgxUry3mFIuTp56ntTZH69U4QbetxioPcal7srXCefcVpYrSK3yYMaOevju4RMsk5Hp2Ssu6JiE5kB20jaVfNaw3HT5O7PcDh0E7ikkL86WRrCgMJfIqTya1dV5CyRJhU5iE4JeaLy+4dLp7SXWpljWdQ31INfcH1rceg55vXcb6ex++7hvQqrsubhRVQHzgPopra16Zv6P4hsS3YlycXdLcJPpAo3EkDV74lFk+SmVI+SOt2cM4r8asJq1r8DPzeGAauoShrog2RQm0HccnZzx6/JRxf8v+CqKfJQoyanS4zf/mSNgUcafnxxhR5k2KRDMLBS6SuyBXZR0MKWI3BA6HA9HPXLx7xw8/vGSz2eRy123XsFr3YC2T7Yi2LXXtIkyWXKDYWsMcxCG/2W5TjSnDPE+s1ytWfY8PnnGSmnmNS6m0yTk6z7NEYWlH5lhUw8JjFBuk/TbynvchG75ljyWqZPZGIp78BEaiTfdDw9XVJSZ6WA20h4H99Q3zeCCEGdPEpMhqTRjpPC1NaJIRxPwRMv0Tl7BYTQ0tZ+5DcuDBxyRZfn8cJaMm675RWd9D+gSUAo81H9HH1Kbih3BedR4X55hs8IqK7fM8y7PuRQ6WyeVx1ecs2zCU15ehL8dtytrqc/RexYFR/ZvuUvSx5XRrp6lJNKerkvfhAV6j/8oaKYYyec7SXV7SfGMykNfYKUfyUDBUxpgRtEC1NVIsXM+hyt6gc3pgB6Mu84fwh6mMXIntaYsL5XGB1PiEqjZfeUK1QvXeVPNSPSh/tzgV9XmKoZwxUoYE3Tqd230D2oeu/0MFwjXtQEPrQiaSxFxj5YGCQrg6rArAE2NmxCFI1yuTrLTBgPVzyvkONNYRm46u6+lWK2YzMe/3eB+lUKlxOUpHl7sAp7Jxuu0F3CXG+cFZl/HrXMWDK1ZH76VYcdAoK2NSgT0FdDYXPiQETJAUmtXK8fTjI158cszN7Y5vv7nicJjZ7aFpN7RNl7qHuWxw0ns7Kx4Uk9smxjzSUlSYPM/iMSugy0qELt7HnBKpYNMgIYZyIEIh8ryGcmmGnSh0GlWjBB3y/sqNbX6+tYZQpdZp4mzmPzF+cEM+dD6jCvdEb4uaLTKwnGOvIb/W6YRKdMGiKKt+36TiwxQGMTNLGHiqsZJztKV/bKlboIAskriWZoovUaiEnja5yHsIMA57fvur/8R3v/8HHj19zvPPvqRpW/7yz/8Nf/mXf8XL77/j17/6rxx2t1xdvGZ/c4VzlnXfFJpBgLcUXtZCzjaFmEv3H9d0WNeSfGO6XCmfODKPI+Nhj7WG4+NTDJbfX/ya1z/+wDSNXF2+p+vaFKYZOTs75eOPX7DZbvnZL/+M5x9/QowGH5rk8RuZ/Ixzlr5rIMJqfcSnn36KtfDv//2/FQA1D8zTyG635+s/fMP19TVvLy748dVrhsOB9/sLdrtbpmFg2O0wGNabDbZbFq+LURizySCRHIU2eykSGmJgs93y9Okzmtbx+u33DHHEbXva7YrZwLevX9K8sQzf/YG5deynmduLK+I80FjPZrNlszlivT5mvT7i/fuBd+8uGMcBE0aaVJwx+/0zcC+AvT5galgyKK8NUuw8BAnbT17jZaXfmBUavaXctj4L1WOiPotKcCyk/fKg1WAjf6xWlqszWdDWHZBx55bWSJH9GNkfBgGsbUvTyj2yPhMCfk7ANn3H2AbjYhlDJYsKDNH1UP4jZ0E80DHvw8IcE8ldgvIAqPlD4QW5GQUJcqpCkvPxJfVP5ICX97X4thVlS4FZSK81TlLAvLEELDYarHqcRBrhgmWOhafmIrKVYUaZtnViiYrBS6oVUToAR8PKGLZtiw+BwzDJmTAW7dSuil6R88nolUlDvaaVHHLypgvy0yDRlViLjzO7cSI0gXF20hUPg9MdMHVcezKKOVXqhJ8RxYOY0xJnn+tuWQyNifStxTnD4C3MEAn4aWIKgcZFJvehKL//9lesZHDGJgmVh6rYt9ajU8WtXtea5mKKCBFZkZRZn4q+plQKY6RhSjDSvrhvO0LwdF0n0U1zIHrBcBaR4Rab63EseNSfxJQFyObv6riVEVHJVTWkJgw1zyEVlnZJsQ/p0YqhIvPo8SbStYZ1B9tty+NnG568OOLHH9/zze/es9vNDINlszpi1fci9yzJSFBqejm7kBAFrC/WXde+8M4C9snnQVuJWysNDoRebWYbmhFwF0ctlaUokZ6Q11EwZ/JGO+3EpzesFLiHdqNa80JBgudyaq3uj76bFIiCh4uCR14bwQ8xij4QbRmvMwa0y1xVWiMCxqXzTyTElB49GeZU5BbrwIqRUSMlDKkTVly2Z8+XVdwqAzZIrTtRAyIxHBhuPb/+2/+dP/zj3/Po6QtefPYVnWv4t//63/OXf/nvefnDN/z6V3/NYX/LcHPJdNhJJ7WuLXIu8dfW2YSNbY76b9sOay1t06YoDlvMeDFKxEnwxHkmzjONbdhuj9nd3vLdt9+xu7ni1cuX/PbXv6FtWsIcIEQeP3nEVz/7gs3REZ//4hc8e/Ex3geGMZTSDdFLGYS2JcbI8dkj/uIv/5KubXhyfkrXtdxcX3F9fclut+ebb7/l+vqGN2/f8sOrHxkOBylOvruV6OvDIPM6SjpGTSGVoUDnN03S3XecJeLdNYb1dsPJ+RmHQ0PghmmGfrWiW68IJvLN99/w0hiety1T33EzToy374CZrutYn6zZHh3TNitM7JiGwNXVFd6PrFeSXqeGwIInHg44WBgwskFDanPFGGkaKf5uqPRBnXVRDUnElTGVSV6cWscSWs8KzH0nXF7MfLIWmKNAo4KR7hzhxbOAHIhBmrpNUXW7/V543HZN1/XYCoP52aONUUJy0KpzDsDaBmxKuYp1t8aEM1zxQik1hDxekz+vpXJmP6VIJJHMaugpal6RC94nY2Klw9lK5htj8ATwPuFQjUIsa6jGQ2sttrHgE/4KlsSsiMYweWmAYJwjOjUsu9S4gUV9NZ2b6g+yfsJ7WqR4f+8cqzbVi55nRu8lWjyDywf48YeUWQrktIALkSbttXWWaGGKkZthZtVYjtsmNWpI/DCCTeBN+JWuSUsJsBGZoxFx0Uv9NtEdJD2uN4aNc8xJ/k4JO47jSPAuNd34aaUI/kmRTWloCwtabdVSIKRV+DUn/yEFRA92TmfKQlNyuWOqtVIMJTF1QZM8U9c0hDkUgo3V7pjF49LOVQS5nFn658OQU49ypPJw600jaMe8UqBVDS+STuiSEJxtApFWiok1zrA97jg5X7EfB66uBna7mXkC5zpsSouytvLAmeKt1bnqe/Whq/9LBUiWYaXl0IcQsfk+CdwXTpofUju7Tb2mOqbqscUyTwYxNRbNCmT+yF2qun8Qi5X84Z0qQ9U5GtS4qcYmTL2X9XzKd/T3kECOxSzeV2ZWor9qBU8s5bo+WQHO5vGyigsMr5FsMZmjorSZfffmR1lNEzk/f4TdHvP0+RccnZ9jjePVq1e4pmN/c8U+KdJaP0D3wRhDkw0tNhub6h+hWZuZoClbKV1I5gmDoet6mubA/nDg8vJSBIufJdppmJinmafPnrLb7Tg5PeXx06c8e/aUGB0hWkI0jJNnmKZU9E6e45qWk5MTVquej549ZrXqIHqIUoS77zou3r3DWsv795dSA817xmFkGkamccJYyyrznZoyKNETqtgTJW0pxnwO2q5ls92yH3a41mGcxbYO2zcEH7ja3cDkOYozp2FiiDD5iIQOSy2Dtutp246m6YkR9vs90zjQt4HWlbNs6sEVIlzQ2B3qTgK5hMK6fCJjoa+KnkskXTkzpa5BMvaaeOc8xTu/3z3X9eCp7r00ZmXmrMCtBlH13bPSJeHf8+yTMTpkI3h1w/wsBWtYk1I2I+JtqmVSTMJzeRWluI6wTLKjmn4ukKy8Q+9ZrdMiUkZfj8r7YlZU0oPLHqO0UEanhqr8nahd05KxLG1zBGbAR+GbMRVuUp6zkAPpmSozsnkl3ctGMfR01jKlPQsh5no+eXimPLuMl9xsQ/8rQK3wU+36ZpHIJkckBphCwBntMGaz/InZg7HcNWtN2nVT9srEpPSH3H0NY/KaNTmFMi17TEZmJJk03HvKP+OVFjNJ3OrleOdH8JDUM6tHVxa/YK3738+WwOo1xVDOOlrX5OimYKPUvYyI/Mn+U/S4ld/TWB+OEC9yPV8mUUPFE1S5qG8r+IPcXKIYSZ2slnO4GDFGmjwYAs4Z+k6jmlo2Ry3mFVxeHtjdzvh5IzzYNQu5DFR/p5nWPOsD21YrrMoADVG2JxRFyWAxrszBZoNWifg2+ft3MFRdvy+f3yUSyjwjj9XkfcmfTPx0oZTeVXKq34qBPnPY/PddOaSGv/zc/EbBlMSEE23taEuZCRpxHE2SYcq39EfSOASLhHyWF3ICXbPEnCpyBTGGWROJ0UPw+NFz8folIFF9zz76mHbd8Ozpc/rNMRD5/oevwcJ8uGVKOFUipE0OsJISBC43RTDKz6yTzsZWi9CbTPf5PMaYI5ystXRtz2APXF9fcfHmFbc3N7x7+w5rLH6aCT7wyScfE2Lg7OyUR8+e8uyjZ1Kvb/b4IOlrfp4lrSWxk2615smTJxxtN3z1+adstxv2tzfsbq+5vr6h61ouLt4RYuD1xQWjGcVgdBikXuI0p5o/iVfd4e218SYivFuLhWMRg2LX0q9XBCbcriHgcL2jWTUwz1xdXmKmmXXrOG0d+xDx05jOtaXrOzGG2waiJfjAMA74eSTELjlxCrUqR1lwylqIZ8OGvKYyPcSYy2RUVqPyvTuR2UbINmMVfU0/kYuIK+5ZrN1PvSpmUysHdw0Vscy7GKZU9wjS7dwaQlxl/GONTevkM22GrK9XZzxn59zFjUtsoeNQGaRjuKPUSVZEEEmbZfxdDEUtv0i6Yp1CXniHrn+WFXmxyv2yXqZ8BXVBlbH7KOm63laBGFb12Iqa9Bmm3Ld+lk24yJlSTH9mqVfU97qrvH5IpurHhZ/GLJmtMdK5M0bGGHBe5qKOSm39IaxXbmDSQM0diSI6d1WnVRTPvK4OQ5sCDrLWmmUd+Jg6j/4EFPVPimwSYEk+vLIYJg8yoqAmWZltErER9OSUushyWHRfDaRc5WRQSpOVQngCDLWQcdu2dKue6COD0U4BqkSXqA01CMjTlwekzEgnUoSZHjYVZkU5NFhn8uESD5Cku0l6kEG3Ovg5gzz5icyT5DQfbRrOjjs2mwbbwDiPHA4TN9czh70nxpa2s+LZtmYB3O+G+MUMmpTw9VDmBJE8N1gamlQZPOwPHMaZrm1Z9111SDOuWkD/Ap7S60ZTTu6tKou24RkHh8wUM0i6x5FVy6lZfbVduiemHlWZ30MgvAZGJkUdiPJ1Z36meoCOpgJKdWHftKqpXoh47LSwZ55fkA4DAryWjF0EeAF4VoWbcBW5e4oQOOxvefn91/SrNVOcObp8xDQc+PyLLxmGgaPNmvfv3jCPe4bde4KfJa/daFcRVdKSh8KWCDwBFrrkZXw2McfDfod1jdRZqdITAA6HPa9e/4jBMI0jfvbs97fc7m7YbLYcDgPffvMtp2eP+fzLX9L3a4Z5lBQ1a4l+ymuxXklB/Hn2DMNE01japmO9OeKzzz/n6dMnPH3ymM8//YT9bs8fvvmGq6tL3l1c8PLlS+ZpXhTiHJMHSz04Gr4PpW6XDz4JRI+xlrbtcE4isHyKypMC/RbaDmygmcCFWZQgL55I1/Ws+p7VasWq37BabbE4Dvsd43igtQHj1Fic2vA+QPw5GsYUBazW+hSUC55V71pNk2KY1PMrx1wrUNaKBPmskBXgh6BRvPeXUfSvT7wvQzPvINN3vPe+AgVTCUKT1nz2gXGcktfYJSELxhTPqqA/SyoSmEKPxUCcTk9Jpcr/I9O68PA0yMRTi5oX0zovjZe1AS8Xsi2qjjIQOScsi0Pq66DF6xHjirNgLM71GNtkZhTmQJyvIBwI0w5rRkKaXcAwR8OYCpb3uWBqVKRxh9MkOWE06pPMFxsrXiwL3BpLIOBj8mQZiTiyKgjukoQu3+LvEk0rkbERZ2DVNXhgmgLTJPMYfcSamZVraBub9yoROFkXzry9AqV5YU0lspPyEQ0utVF3JHxhpP00MRCsyfvzL3ctAXweeqxaO2v9MmuklTxFvkedZ/11UzovOiveW1V8jVEzpXzONY4mNMko3uGZiYlHQs2blj93Z3AXWha8YO5jqIrPFGeHns1SH61WYgVD+bwu3otByvuInyOrs55nH29YrRum2fP27Q2XVyOHwTJO0hvIOZF52TlXzcCaZeFTY5LSoK/batCkGiRKkylX1fuC7/b7gWmaWa96+k47lcVqnrpOd3DGnd8LNC2rnOulZOWLku2elTFduYKzyt93CKY6MwtjVyx4DgTn1BEICiSNYZGGr9HQ5fwbFpEmNXbVhfDlszbJ1qYFY3zqjqaO5jl53kvzoWqqlS228AljxfljosWYJqkiUq9rd3vFd1//hn614dH+wPb4HBMiP/vZnzMMB9788A1X79/ip4Fxf4MPQWjIafpcMTJZ0uuuwdkGg60aJqQI+5iis7xnv7vFtZdM40jbtDRNKymF88xhv+Niljq1fhZj0+wHxmnP9mjLfjjw8vsf2B6f8uzjz2i6jmkaGacRYx2NTxEJ1rBar3FNy36YiOyJAdp+w5FxfPXVVzx//pxnH33EF198wW6345uvv+by8j2X797z+tVrMWZV3aemecrGDSrZYlJAwTzP0nUvEZCxFmsbjHGyb7IpqfYu2LbDYGmsocMyR6kpF2dP27QcH5+w2R7TuB5ig/eR8XDAh5EYN7nkg56lQEy17wrtLgwiSttJTmlEmhYdrOXUfeaaTmGkinJaHCbk8aVW64K5p99D/VriCXrzgkooNFwPQeGGKemjC+PEHV0opufFANM8i1OXUkbDOJedriJfDSHVUItqPU831miiOm20mM+Vn8d8xhdzrM99Hud9LJkNmPodQ8aDmoWj+onqvcZqZHOqtewc1jUYY+mc1HONEXwwhNlj5ksO8w7vLM4cIDmpPJLhMnlp9iVj0PL8SxqqZi20l1KCdc8aC72TLrgTUtR/jpJRYTGSnnuPfu5fRR4W3dUYwU+ttfRNR0MkzhNxnvEYphAYg7zfVBktWQYsJpFoVp2JFTbV9zRF0ERokOc3SUZCwlBEgrGYn2hG+qen0VFFNaUDpBE9MVkxY5TucGqJi9FkpadoGArOFZsbiE42xbmqxoMALWuQzjEx0vYd/WZD9AkYB/m+tU32MpiUguAqYFqPuUCa5VUfZCFuEVUY8dbk6JvUCcZYl2ppqLAThjBp/nNUIBkZx8A8R1bnHZ98eka/EgF7GA7c7Abev5sZhkDTdvSrLnlNSmSTMlcFSlEPXjqk+rqzjojkwyt9aYrXXXYZQ+TmZsf17Z6j7YZV10FqPewKP1yuUXWX+q5qSCzLnTxBUYxsZBqJSTmtDsK9jYAl0TzwEVPAmBrTNPZK6/cU630sjCoJPqPFHNN7JRgwKb6p4G5UPbSObKhoyhgJ3XbGSUHPpq2Uh5BSf+Y0f+kkQJ55soAr/UjRFNn3DOyE0e9u33P1/jVN23F5+Z6jk0c8/eRT/uJf/RuMtXz37CMuLt5w8foHfv+bv2Y87GldQ2sbjEn6bFqmiBhiXUpNyaHfifvonDWvf3d9JbWHQosx0nFRFYXb2xsu3r4Sg80kuf8i8AxN0/LrX/+aj559xJ/9xb/i//3/OeL80WMG75kSMnOyiDhr2W42gGEcZ6bRs91u6FdrjvoNT58+pnGG6AMEz+Fw4He//4b3l5f87ne/47/89d9we3PDt999y+X7Sw7DgWEYMr0Zk8JME+cNKYx49j51U5mx1tF1K5qmy8VZjbGpqwXYKF0wWyLtPOLx0sRg9jR2Tb9Zs91s2GxO2KxPMcZxe3PNOOzZdh22b3MahzVF4U+ElAW71L1IBVLjkl6s1jShKkZrNV6lCGnlFzrf2iiigt0YUgHasABbBTuYRTh4pp8HDu0dPIUabvSU31N6qnHktureJAwYmSZPjAdxLjSi2DgrtBsx+NRGNxoLthGwEGdIwl0jBdwCuKQ5qbGinlTmDwaJ8pA6YibUYcJlfWTvwkJgG0wKK66BUgLcqHdf5JjXNTeWmMBSvz2nadeiwLQtYfLE8S3G3xKmC5y5lLOFYcYyBThMQTq6GTEapVV5YINK+q5JY1ADR5c07UHPvLHMwOBnCRG3ct5zQdT8H/J61PgskowFSREwQGMt274lWMOtgTlEgokcZk8I0PSqpCwBZqabJAejT13JalpDZXPMUT0GQ4M4uxojzzdE5uDxwMpZiO4+UP7nulTexbQ/SYEQjKTYKSblOmCinvOEu1TIYihathpKFJeIAdNah1PHm8pJY2ibBgj0XUfX98xYxr1PCpeR7n3GYUxKajQRm/AERkHrA8pFGksGdMnYFEkYSD9vxFsaIzhsjnaL0ZSfGkMFn1PKY4jMc8BPge1Rz+c/f0LTGna7a65/uOHN2wO3e8s4mtQh2NI0VtJJKvCtGMrZEvFWnDGi6GRUnXiRqYxiijECEINEYt7e3rLfD5h4zOnxNsnV1CU5q2cFw9VLVmfsmUwfZayNcwRb0r71c4qh6kikiswKTlmQYPm7OCap5lYG4LMmVbiJOHwTLk11f0QJJtW7qtbISpFhdQ6gDj41YKUFcU0ryq91NI2kcoS5EYNrmPK50DOv+gaUYxAq4zZejNtYlxUhlXU3V295//YVbdfz8dUNJ2dPefTsI/7dX/0PRAO/++0/8PrV91y+e823X/8D03CQTomNy3QDJAeedmVqJfUIlwqbVypeKMam66srpjky7A90bU/frmSdp5nDfs84vEnF0aWcyHffRf7mb/4LXdfx9e9+xxeff8FXv/gF//P/8//F6fk5h8OB/ThKg5e2y3J0c7TFGsPt/sD+MLLZrNlujlkfnfD8+Uc4l1JrvaRb/eOvf8PFxQW///3v+Zu/+Vtub2/57rsfuHx/xRwk6inEmM6LyDUn4XvMPjCME/Msid2idFlM04JzhCidq6Mx2LYRGuh6sA1thBURH2fsFIjjTN90nD96zHp9TNuuITb4KbDb7QhhJIRTqUPqVO8RfBRr2WbKj0QcikGi6HGxwr3SQIEYMbFKqTbZHJQPprEPsL7Ey7Wm6QKvZX6fMl/Q1Oj7Dg7BHEV/Ij97qYQpD7N5LGUwNufWlhI1h3EiGmhdy6ZfpU5iopvHJCti0s98hf31adogpaSy6UBqnd4mPblanHTeMKTOw9WCVaiQrEolXGELBl5wyoUMsUlmROYwSg0y22D7HuMaVtsz2m4t0t+0+HEm7L4n7t8TZ0vrbjAEDsEwRmiiONU0s8Tl/ZGxKkYUfbuM0xoxnkYv9NNZWLUw+YRvEGPT5L1EPRmbdZ2HAPTDEcMpAg9oraRm03YEayRIZI74AIP3GAK2a7BNK7pBqGiKBVElfqr7LRtlshxJ0W7JONYZMco1Nmb+PnmJVlvZphST+hPXP83YdG+BPvCETE9KfDELIzW+ZH99Bv0xF6uzBqxazlJFd7UjCMMXJq+5o7E6IKowL8LK9TksGUVWEhY0Xe5V6k7FTB/6fjawVXUYMiuI8l3N340hFURMwrhpHat1S9cbfJg5HALT6FPxssJcPoyBl2/cjX2oP7NMcfjA3bKeZRZ/C0MporMoAbHmf3kUd5nD/dHE++8/pIAuxqYHJlnQs4L9wOf+1O0eAMkaoikAqPbOkQq8m1I8u7qP0nD+RloaEQJa8FK6KmBS0cz6g/XYFzy6MLgKouqDRajNM+Nw4LC/ZTzsmIYB1zS0bct2c8SwPWZ7dErTtFgfIOVB545dilTv3L+sXUar+QzN8wzjhDcaOUFmzDOkSCIx2mgk3+Qjsw9cXV7RuIZ3FxdcXV7Sth00jpi6HOoxc7WhN8j6asizeBsMxji07WeMhvVqjfeB87NzPvroGbfbLeM00rUdt/sdtmnxfmZOeepZeMSYa6352WcvHkY8rVIfowLS6cx774mpIHlu0ZwKZDbG0Pc9Xd+legdaZ2RknkZCbNDQ5KxMk3iUMQuqqFMx9XOFMMv5XNDyPcq6s59JVj7sobt7mYdl4l2SzGO98zFjFjw3GwLy+1RkVvhsfb8Ii3SuWH+55muZYd0fv8m/L9dXafghXrIQzlS8RU9lbnKgC5FApO5XZikVoFqArfSvtRANtu1wqzXWdXTrI9puIwXm2w4/eppuj3Uz1gqIyDp9FIO4jxETikErluqT+fP56bFwluw2MmUJrWHRHS+nMYrglXMfI/righwUyFSrqPuk79skZ1RZM0Zq0qTgwAUUzVHUtXC/v1H3lrU8ttQvcEbSiOW8+fxRTVf+l7gKF79zpXmWP2NegNLJu3ghdW4JD2Z+BuTWxoRACD5FhUsKY4xVEqJNXWbtjH69GMGiWHe0QFithMQPhfyXvS57ppHLBeOR+GgBwUaUHpbnTJ1ExQmTDFTWYFtL2zq6vsG6yDQH9ruJcQzEaCslbbny+byamnLrTVh60u/yo+UuLv8sEVv3pXb9UZP5Bnk9Y5577colY+PlGCs6iWWtyov3x1ecEoUvP7SDOdLhgffuXnexjHKVgl7yw8GIkbeOvMjzo8h87SJlAykFD9nPVOdSo/ce2NrcvU3pU8eziORHjQ8zZrYMhx2H/Q3DcMI8SQp+33UcHZ0wjwe222PGpsEpLed51nOvfqojsJQgMtd5mhjHQerSJieyrYwPakz0qZ6O955plA52l5eXvHn9mrPHj9nd3oqhOBk3TIrQJt1LI0ODDyIfUpSSpCgaJBsjMKcas+vNllMfePT4Mc+ff8TtzY5p8nRtz+6wx7WNRH97LzV8YuIzUXDfIrKJki6Zy0xonZ6ElUKQSCbl91qvjhhonGW9XrNarQCDn3yKtJoIYc73F5aYmQgPpSLpuTXVucpZGHeNSRVdPwCtqnsqXacoQ+4c0QdOz0IG6/lTuqz+d4+1GKqTlDBPhclqnqEB6/fmE2OKzgtLXqGTNAW/ZANSXs+KXxmW6xuXvKrctCxDLdbuOpAyf61Zbead+pklfjLJoFizYuMaHJGmW9Gtt7impd8cJ2NTizEd3k00zTuMucWYZsEX0lTwAayNVd1SXfx0jitskzW5siV57aWQ9hJvRiIBQ2OqL1VkUo+lxs1Z5i5WWINAtPGJpPn6KIatkJes8J/amJf/qf+txpOhdYQavwv8EwxV1iLmMjN3Kng8eP2f6PtbrMfYUJzvNSu2Jg9aI1pC8gT76FNrW8kvjaG05XPO0a1W4p2bG+wotYuavgEiXdOwXa1gnMBEfJCoBO8FOE3DJB6GmApeVWMwCeSWodpMKTFKa/YQSgqcpkMJcAItRuq9FARvwhaCeP/0kIQQGWdhwvpsawyr3uHWhkePV3z06RZM5Ntv3/D+8pabq4g1K9oGJBw3iGCwFTCrDq4xJlXTF0CZmxpURLKUdvKfhQiMgDVstmts27LqulSMvNQOKEBWu+Kl8Pi61bgywWxZXwwmU6+C+qyYpEnJ33cERTL0RFKEUWQpMDKgzeKhmlQlAmoDRgLRwSZvi5WCpOL5QLwuaWwmKUKNLYV7Y4pm05BZ+UpSYBLjlPuaAopSnREciabIZyV7AW1az0RfasYqayJM0DUtm0Y8WOOwY5pGpunA9eV7un7Fsxef8vzxU06Pjnn85BnDcOC73/0jr3/4nugnpvkAMeCaBts4IpbZG0yQ1qXOJsCShExICkuY4Ob2Fg4jptlAI11O2qZls9mAiYzTHu8N0cr9nLB6wHBxecG79xdEAx//r5/w+MkTPvvySz765OOKqSXjCi4BEFmP3X7POE1YZ7m+kbTSVy9/5LtvvsVZy9OnT9luNvz857/kz375c2Y/8/rtBbe3Oy4uLvjm22/Z7/d8+913XFy843Z3y5u3F4yjFB3f72+5vL7hdn9gN4xEY+jWK7rViqZb45o1IVgO+wk/TVxdXuGnka0PPJoDU/BMw0Dwnu2q56PPnrPentK2LfNhZn9zy/uLN0zTnsfnzzCmSyBCAWos4D8DkPqcp5DepLRZk+glFUDNdB5q4a1RAuWsq6IT7hpdFgBZzzcJMN6Ri3eBSoJxH9JOTAK2tcE6n8NE64tUqxoIJqDoA8whiHcozd9Yk9rvykzUcBGDXyQCKp/MkWLp9RAjcU6nNpLnnN+LAV9ZPmyTlBy9uVGFMeJckS3OSYvhOdXvyw4HkzxSGDCBaKQoZbs+wjUdx4+ecfbsY5qmZ705p+nW2KbDtWumw0i4/BX+6iVzM4mCgqR2tNZC9OzS2nTO0lnhW7mzWwaVBbgoYL5LcxYxBq0aS4gNMUamGAgY1k46LEoRyTmTWl7nam9jLLUUQT3QBYDFGGmtoWsbTAyMITITWHmJdhISF1keQmTWkG6/VPOIJV1Aeb5BCwrLeGyir03jcG3LFAK38yg1T6LhMP8ElPTf6sprXYG7RGRZ4UBknzoylMaDF6NcTKlkgkFCorGQ0vZLKodrGtrgsc6lSBQHJkq3p2jpXEPfd+ADB0ipxBPBj4BnHiPROzmfGvHoyeez7h6mr4XkNYkxYueEoaLWjkqAVzRUgBS9bukbUUolVVmVbolimmfBltFLZ9VHZz2r3vL4Sc/myDH7wPuLkR9f7hhHS+tWqQ6YREiGWFBPrDFrUsgFEgSwkioal5NKOyKvFryhPBIpEG0MR8dHrNaedd9Ja28pY5u/r4YYTemT9Qj5vgWz2fLEqJghZL5UlAY1bJfv1oYsHaDJkVmq6JVaKFCMyTkSBErkUHU06vMdUr2OrGwvZAjLiHtAc/4yfcZiRASJwlPl1to76bcGQhA87FNUeDAhy0ybHxIkcy8xBpvHpXsnz2raliZ1yb29fcv+cMXN7QXv372h71c8ffExP//y59w++4inT59xOOz54evf8ubH7zFo9zzEUeAcRMsUUpmCKCkn9Yrp+ngfuL6+wu4HhingWkOzaug3K9YbSQ3T2kfWOWIMNBHalaRw//j6NRcXFwze88XPfs6Tp085ffyYo7MzUXJTGp21MQUVBqZUmD3cRoZxrEfEjy9f8t2339C2LV989hmPnnzE+aPH/Ju//FdM08zr12+5ub3lbcJQu/2e774XDHVzc8ub128Yp4lpHjG3gavrK+Z5JOBpW8dmvcbPA227ksjxKXBzdUuYPePlDXGcOLcN17ZlH2b8NECYOD3e8tXnX+Kanuu3gYurCy7fv2O3uwQ8Icw5HTomfKp0WBNincKlKeNkeV9lhtSXOsSyYSSfxMWelq8ZTXCpdr3g9jq6SvQAdd6mz2pKZpUxYaPNOqbcT/WbpfGynOHqvdxgonx2Dp44ySAbjUhMcjJnbmAwztGkphLKs3WudaQYJPkDSZeX3xUrgur6pcSAvK/GY5POefpd+XOMaNRuCKnhljYbS9jQNU3mUQFwbcv29Jym7zk+e8bp049xTUe7OsU1q2RsWjHe7rn+fuLGjjg70lqHiZbJOuYgZuRbH2gC2CbQoiUZDHkRgGUNr1r+Cb6yGLq0N13j8FECY2YijoBxDa1rkqFW5KMah2uaLbaH9JxKKNkYaWOkDQFvDFPTYExg7wVHORdZJQwVZ5+zEiqIn7BFCUcKyVhtDLneoMhgoRFjJGp+3TpwLXMIHCaJuJpjYAgTd07Sg9c/uUC4AGbFsBluZsGnQjr/16SS36kDhk/1JeYw51op0yQtLcOcjE1NI8LfOXz0WOclTakVq5qzhq5tGRoBUIGQDVcBIdRYbVAh5gjGVu3qlYjIioWAt5IjLsxBgFzM8dwxtQkN+K7VFcjgRZQk8RyotInWsu4dXevYbFuOzjq8D+wPM29f75mnBmN6nDPpOVFAS6zGXjiQgDoUgJR81vuerru/3reWtn2LaRraVL/HZosLFYpYMnEtgMjinkLGkYrAq/Ev4Gksy54IrOxHvqqNqX7Vf3MdmsW1nP9dsSHbkc1DqZ6SRibEUivMAEYCU+VzgYDP38/KjVVaV1oKuQCvpG1ZqTNjVSqlwpcUJdemCQVSUb5YQGPMnxaFtW06YoRpGvHhwDgcuLm8ZLXe8vTxM443R2y3x5w+fsowjlxeXPL6x9dF8Q2pbpCKnATQpM5NOhd3DGwRzzyMRBuwbYMzEubdOEkva6dGABKlxpNJhfxjCFxfXnG43bHdbvnmD79nt7vl/NE5Lz5+noWjTLbJtCH8Avw4Mk0TWK3tYPj2h1f8/a/+kVXfs92ecHx8ypNHJ3zy4gkYeH99w/4w8OrVK87Oz7i+vk4CQcL43168I8bAOI7s9wcOhyEBJykE3bQtrm2xrk3dGwzz5BnHmdvdLdNhYIflgGUOAT9KXYmubTg9P2G1PsZZh5880zCy390wTQdJpawOZITFWalp9T71UhQWq9+rqUM+oWm+hebLuY3166rN1HevHr7wCCsfWGoy+b8f6q1Qj0QAhhbxLuMqioUaJVLBWIqyEELMtbNwKVhcBM5inDFaVd/ys7PCrvdMkw+hNryrkJdxLVIycs0bI50Bqy1RIFavl6BPkWPqUcaAw8m5isJHrDV0bYfrN6yPzzl/+ilNt2K1PqVt15imx3UbxtuBN5s3tM0O59ZJpkpKgxjNYYpSX2mOoqTbZFwq2l7Zc7mixQ0AAQAASURBVFPz0TsEl9PVraF1hjnAqNlqNtXcgGz0qff5XmTpQskrUWA2pvEb6dolxhOpPTVF8dBZYpazWmTz7rNcLlpD1e0UqPc0BkwMWKBrGqnp4D23IUVHYpge6hj0z3ypRzofYUp9sXu0q8pEUvJDkJpFEm3qk8HJM09jrvUEERtacMKXg3UEa8VhZ6VEgTQzaJib0mFVOyWK4w8IVbpHLKdFjQk1P4jG5Jop4u0UkFwwlMwzhgh+xgT5jMEQph5DShenOJK8T13e1NhkDZtNw/G2YbtpaDtLHCP7nef9xYSxLdb2WGcy3tRnZ1hqdG3Jh2FhWKnBwgPXgm8areFjWa06SQVt5OyV26mpXfFN+lHF5S4YQ5Uu/V384mrAXciPO7DwLnzKrLt6s1YalRcu+Tp5/RezqD4SYsRWxqKY14UM1dLDACnvkI1byThQj3Jp/E7PsA5V/p2RtGGpianzkjOvtQuzw1Ug/mJh6sdZa2k6MaQPwy3eew77HbfXO9abIz568TGPHz3h6OiY9WbL/rDj8u0F4eVLSLzERPHt2JTyGZLctRmHL/dBo/eGw4HoPAHhpbYx2fjV+DkXqxZMWVK3Q4xcX18z7A8cn57y48uXxBDo1mtOzs4wxFwPxkT5XSNaVH5q97VpmvAh8PU33/P3f/crttstL158wubohJOjNU/OjogxcvH+it1uz48//sjp2WnCUBCRlNfXr98y+0gIIzFMDMMhGQMlzb9tW9q2xbkGa53UoDqIw+6w3xPGib3rGByM0RP8DHFm1Xc8evQIQ8vV60tub3ccDjum6YAx0iymQJK7dHr/MhnMx4wxVFf6KVehnfoMPPDdBUmrDlH4jKXmsTHRbtFBrS3dQxdADUrUklnScvUJ1OkXta5ZhiOB6KVLpg8zpEYiVnVFfZyxD80qzzab3VWN0blQRIEYhovOmo1eer5Vp4nKhyAE5UdFnpjUPECKuIdsbBIIbzPqNbGhXW1YbY84On/C+bPPcG2Ha0+wTY+hxcQ1Q7ej63+DNSus6XApws9ipZEAgTEEPCm1X3VR/bfaknK+l5sUZWVpECNmYy3JPJHcDjZFE4tGGbxKeCWZ+6uvQQe1nkCMNIkInElOzCgYcI4w6fiT7KXCN/V9xODq8j214VDtXiksXXhL66TcwzgbDrMGDQXm5Bj8U9dPNjYFbeucQrRljDIc7zU6KTBNo4SJGiPFSpUoU1STT8LGaz2bWCKJon5udhCkMKxNgMk1Dd4LKJn2e/CzuL1lNSAGYphFME8RZrME01m5MGh9GlVC6sU1aOrMMrJJPXx6mGXOgalrmFLOslbcFw+DwzkBiH6ONM5wctKx3Tb0Hexu9kxT4HDrGQ5IfiXCBLyCkNrQdMfoI9MuFudsgb7DMpZhectLX2+cGvE0ZNlUoEFILTPtgl6Wz8nMojClReJYerv+agxVy8wEJvLvkWxMirGuclTSoAqAUfZTz225BhiDCcUST9rXaG32MFAxPfU2BP1sta7OutS2WVMlk+CTh6WaFBE8hDr8OwliYsqDzgxX9jcXrk4F1XWxUoBgjp4zBlzjMEEKEMfomacDr374lnmaaFZr+pNTAE5OTvniq19w2N3w7vV3TONAjIFp9kgtogZt0W6dyzRFUkicc7LmiY4aZ1l1HSYE1us1m82GaR7z3DfbrRhrnJO6R5p2Nk2EELi4eEuMgevrS8bDnv0w8Ob1W8Zp5uj4iO32CNe0rDdbASrOSa0Wyplw1tL3HU3bsDvseXf5HtcYtkcb6Yg3RWJ0rDdHfPzxJxyGA23X89nnn3F5eckXX3zOfr/n5csfuLh4yy9+8QuOj49Z9T2b7YbjE8/l9RqQmgTjNIOJzPMkPMIaTLDYYLFB2sc3IXK82fLixQu6/gg3tszTxDxN0hkkzEj9E5vAZCWoElAsXti4+ElEnM5G8s7lg6j30Xo6tQBcGnCXelRRAD8MYuovlg/d/WgRmEvdJS7eq8LHzd37FKVQdAehtzzemCIkAjiXjJgx5Awf7RQZbUypGOnwJK9MVqoo57T2mP004PnHFqj+VKy43nJ9iOC6jrbvaPsVJ08+plsfcXz+Ef36DNd0WLcmmhZDA9GJAW2O0qEoGVUkOkLrh1gCLqXTmeRF06iRSjmOoNFNRaknCz6RzbJyjTWsGid11YLw/NnPjCBRkIt5Jd6avX9J68vITNcaTAxZzqlhKxiJhgzRMMfIMEl9g86ktFrhcIs90CLWIqN9SrMVI7keC/XoqWxsjMFYi4+yPiHRgP+J+/rf4ppnjdYqEdeKjXyq/RNiwM9TSoFL4DRGZj/lMgPeqwdblclA8FUR3xhxviFGSdeRznPSWbOZGiKRaRyzQp5pNgYIU2rSEqRdcpbiLDvr1AaL/G+doqIYKp1tlfUxEr10Q7KmwVjHNAl+muc5N9jQWlHOSfFaj8c5w/FJx/lZj2vg3dsbhsFzOARilCiT+iRnQ1Oiu7q2aAbSiZZMqln2AXiTFayFFlhukutqWo3mr3jvPe5SPeQ+7yn4Sf80iMyhilhYyorlnOurdNytjEOVXFFeWPOoNKXSPDe/WQmKO4rjXQuL0TWlLkeh8zVIuUyNdlBS1DEaohPjQEBox1iDsTHVpfF5YaxWdc8qETlaQjMplOMACX/JHlnXIHX9DH4eGA7ww7dfM44HqZnXrwghcHb+hC9+9mcM+x2X796IYRck+tUi3R1di2uk8L7uPxHp9OkQI03CMa5tsG1PjIFu1dH1naTxGXGwb4+29H2POj7mWWphHg4DwzRxcfEWY+D4/JyTszOGYeDi4h3zPHNycsrR8THONXTrVSo3IpkhgRLR07YNq/WKrmvZ7fdcvH+H92OqYWYY50C0DZujEz797DMOh4F+teaLL77k/ft3fP755xz2e25uLtnvb/jqq5+x2Wxom4btdsv5+RkhTlJPZvREG4g2ptpFSWeJYH3AxcjKOjYGzo6Oef7RR3hv+e53V4zDkHTKGZvqUrpKfum51A7oFbyvZD5/9MpnUIH2n7xqvqI6RdHR7p1oo/SnelrI/FHGlzhw0uFKSPkSJ5V5CANZZHhk/rScghhnNco6JB4ltWp5QG/KkWA67jx2OY+Fp8q/IUoknb2jbxWDzJ2V++D6JoxC2QPVZ5cOQ0O7WtOuN3SrNaePX7A+OmZ78pS2O8a6FuN6jGmJsSFGgw+KE8QpbOQ0isMrZTZFAt5EPMXhpZ2e766r4Ngq+6eSbyGljrfWENpkZPXpHHsvd5SK+SIt/wj2FJ20GL5ilGirGELOwnFWDN3By/3mEBknKUXkYkXbWbapCasw8JypYwwmuoTjE73YEj3aJBqOqQaiwkf/pw5Yun6ysWmapGNU8DMhhUhL2KdYy4UhBIZhL+041bgQYz6QMQZ8Ch/LB7PqmlT+NQx7lwCky4Cp73uMMRyurgijVGLPhw5P8IOEek87eYa1uaJfARlF0au9sZo1UXveo4ah5vEXA1RIB250huFwYFitmHNElRFhZQzRS2cJZwxPn6548mSFbSLvL64YDoGr9zO314bGGdouLVpSojSXOQRT1kyVB7QGlJVpWjUILYk1KkHfIYhqC2ibRsB4kfqY1L1D/m/z3qQbV3xE19KmA2CyR7H+rFFGi4Z5JiL39xBNPgh1t7rs3c51dIrhSEMOl1EG5b51+gZp+UJaV2kCZQtDQ2hOvUzqLS7CQjr6KKMX635h+MLQfbbqS3kQLegntCr1fAojN1bCI2OM2ERzdRFMcp5sUuRIhV6NIfhZCncfJn77q7/lt7/6O04fP+WTn/2Sfr3l2dPnfPnlL7l4+yN//7eRm5srdtfv2d1e0zYNXdfjnEuGnSavD7F0YEsBURAjfdNwvFnTOcvJ8THjsGOYDrLHxnB+/ojj01PapqVfrfBegNJwODD7iW+//Yb3l+/42c+/Ynf7JW/evOU//uf/ws31LU+fPuXRE/Eqfv75l2yOjpJhrdQ0iDHSNI7tVtJQ319fshv3kmbVrmjblqbpcK7l5PQJz559hDHwV38lyvrN9TWvXv3Ibr/nN7/5Nd9+9y3Pnj/n6ZMnApLOADqub64IGMbJE+LMPCevLEaKy0eLDQ4XIq2HLkSenp7x53/+FxjX8/K3t9y8PWSw5FPHPedsZt4VHlrwxFAZRTPZZ8mflI5Y1yjQw1nouzpMi+u+MqZ8uP5EXPydSa8a0DJ60BSgVO5+ZyAVv73Dj2IsIdk2iremZjE+SrcQB7RGItxCMGhem0n8L6YuMxnoqLakZyouDU1lDuEO/6lZZiyrdkcTrSFIvlVcflCHEhIP6ddbNueP6DdHPPvsz9icPKJfnbHZPAaTDLsYommJoYMw46fANE6EWQ2WYogBmI1lMmJAmDEMMdIinVF0v7KyWdcLsxXQjZEwz8zzSDSWVdPRNQ1McEiNHYZJvNKtsaxck5bLVLxdU4tSdGa1Smp0MNGI+y8VDHXJOBSixUfDEOBmnGmNwXUiP42tGjekM2JTt9mQaqiN4yjpTG0jsjufj6SMWnF84SRFoUHSH6R1sOdf6hrHgRhTnZPsnJsI3kvXoHEiBs80DvjZLzBU8JpWoD9k4kqnKgNTwQWiuCqGwojBybU9ETjsdmiFCr1M9Jh5lDWP5NoQGnvr1VhDEkOqJEXyHuvA8jkLOv6QDU+aQuWaHtt0DKuOcRiFxr2kOFkLrolgUhqen2hbx5Nna168OOLqas93f7hgOHhurj3edzgsphHsVs6lRhiabNhT5S4iSoNL9Hwf9z8Eoit+QOEVttG296XkwoPMN2N/szTA1x8wJB6fXrUmda2U2mxqSNF1X8gIKhxL4XmVLlxmUuO0WhboaIzGZZXFiQLGZI9jUfjTF6rvCmaX52s9H5OVNCmoLWPQtBzV2b24/SV1DoNHUofFlR8IwYqxFjSjUZxlaT18VMdFwKR6YFo/SFJGZJaN68FB8J5xuGU83PL3f/MfMbbh/MlHfP6zP2e13vDi4y/44qtf8vbNK/7ub/8TtzfXzOOBeRxoXcu27Wi7jrbpaFJzGJ+6UTtjwIiBxVuJJu+7jtXxMc5Zttst682GaZpSDUzHR8+f8/jRI3wIjH6WlP/9nvfXV+wOe/7w7R+4ur7i6OyU07NT3rx5y3/6T/+Zm5sbPvv0cz75+BM22y0ff/IJ680G2lTgGYjJibparTg5OcE5x+XVJXOYubk9lRQ/19B2gqFOHz/l+ScvMCBz8p7Lqyu+//57drs933/3Da9fv+bFJx9zfnpK33Wcn5/x4uPnBDxTgNvdiHER2yDFlBVjezE2NSZy1HeYJvLiyRN+8fOfcxg8f/u/f83tzTXDYU8IYz6j2jwnRkkvLli5EHiIARP0wN11wVdH0pgqFdNW5+Chs1+fm1JjKy6wRDkHC40mG2Cq+yyiqxM5GzWFhHJuHxxLBUbiEo/pvFSHDYC3XtLRAzgnhdohJCdy0b2xhsa6FL1a5qARs7mGXiyNlwglGKAuSVBA1B2MlMdfeJXqT/JaMi4j3d5MSDqaESPZ5uSMs2cv6NdHPPn456yPzmi6I5ruVDCUkWCAOBtmj/zMHj+PRD/jkgG6NWJS8mZmSjhgihId5DC5oVLmpxkPCs7BkppXaPS9lPKJxrBqO1rrOIwTo5eUs2GaCLM409o79f0evIzq8DqIRDMp6tsi+kQIMKd6z8Mc2cWZxho2jaOxhXcDkjpZ3U+yzTzTPNFQ1cFO9hqD1tYU50FrDCYaGmOJKZ15CuHe0B+6frKxaZ6TsWme8akVphqb5nmSArhBIhikdlJMO1UWR9LdfFo18qYtjE1JCJOEsAlBCujZgE9Kd/B+2UawUITcJ4r1UoViWr0MhDKhVwJU02RjxWxipfjrwbprbNK6NtpqPVupVbonUO2coW0tfW+Z/cywnzkcPPMcxeuWz+hSm1FQ96GrJta7kU35W3lOS9KOFZfJBtB457t3H8LSM/jAB/RTD9xIabxEMpSpVYpQZk4VuM3jv3/fheJ7h6OLTvQA6Ktyf/K6qcKUaKTiLXfWQ5UrDXs1OqsMzo0pBqoPXtHcX0dl0GY5PkwN7GI+K8qOQozM04ifA/1+x2F3mwDbCU3jaLue9fZImMs8Mk0jjRbCTl05cghvWp5s35BFzoLDpOdblwr1p3NpkK58XdeJsanrmL0XA1DbgjEMwwHXOIZxSDWnRqZxZJwG9vs9NzfXEOHm5poYI+2qp/O9CBsraXTWWPpVL8aJ1JnNh8A4z6J6pWLiTWOTEc3QdV3iMYZpmlit9zx58pRxHHl0ds6qX9G1LatVz3YT2W7WnBwdcX10hDEz4PFhZvajGD6NwQPRWLquAxybzYaj7RHRtlj2Eu3opbNU9lzZomRkw02muYo0amNMRZV3r2xYVXq5A04eBioLipPnG6qz+NB5qe63UKRM/m8OOf4j/KrSjArTL5PMvLO+RTZWmJDBzocYlKnvmRXiPEuKXFo89t6Zy/eqQBEs2EZ6vUobjjE/pY6Yyl45Y3FNS9tvaPst3WpL129p2h5jpW2vrww4cs8UkZGK0OuQdL3VuBBjUnNjlGih9LlYzzPqChfwt1jK9L5GXDojERtSu1WUOGdLPaGyRsvLpHUp1ehjLXaLgp7GmZ0BRHysEkgqMLYgzSXp5UHUEiJvpwL/tGYOmZdLlbP/GKn+t76maYQIs1e8IAWAQxBjk58FQ83TWLrtJRoOwSflRFPlWK5FWiEtwC70lmRQCGAC0QZy19EQ7jeRiSL1FttVy9aYokzyuaLIBdG+CrTLL1eKWY7ISuckeAhS+9JnxS0ubhljmlNjaFuDawyuEWXysJ8YDiEZKwqWy9NZ/LHci7tke5esFs6yxf0KL1FcIg6j8tFMe5H7tKrf/QmEdx9jFV5DtbZ371Xw0p3f/8Qjs+GrmnM+gRWfDpUxua6DlVNdWK6vnsc8j3zLwkMWurreweidlJ4NMdrCVyo5UVHp4j7LFJ0kn3LUYxkDCZNO44EQDKvdLcN+jzWW9WZN2/X0/YrN9pgYYbSWEWjaThqKWLdoJFPS1ku9LBMj0SQHCeQCv7YqFm6tFQzV9/jgMbNg0qZJKbExctjv2bUt4zAwzzPTNDKOA8MwsN/dcnN9nR1r3nv6VY8PKxlTOv/OWtarVcZ+IQTmeWaYJpoQJWU6KePOtZL23XWprIRhvz+wWu85HPbEEDk9PRVjm3OsVytOTo64vj7i+OiI/X6HGBwD0c6iS8ZIDKnEhLOs1x2md2w3G9arFTHVBZznOfFCxbzk9bwbpXiX6PSdrLBz96wsD+iSFip6vEOfNV8rQOLu4VqWLVi+o/Iq8qEPFYmo4/kJZ1ghZb7fHaN/KhkSYsVjKZ8XnlWdmTz3xeG8x0t1XLJ8ZQAm3eBDGDRr8AmEZHmiK2DKGRaniTgT265ntd7Srbd0/Ya2W0vanG0QRlwCJTTqKKZahgU8xpRGlzBWNY8Qc4yKjEF1eh1jwlBa06nGT7pWUltUo4JSFkyUDsTG2txUtoariyuvc+KplZ5eYE8pFi68sdSzyqaP+ub3nlNk3JL2zQLwZgdW+oZ2cg0pgj0SH6Tzu9dPNja9/vEbebb3+fBnD1EoaWZhlvpLSs2GVMvWSOnfmGpJqGKilrUQC8g1ViKDJHwsSJHDaPGpgISNga5paV0DxqGNrl2Q/O7WyMQiIXnAgYoxhYWSf9fooR8vFvOc/48E8MqGCvFM3nMYB7phz2EYOAwjEBknAZFdYzheN2y2ju02sO5n3l4MfP/9jmGMDAeka5g1kqp493CroShzhgipYLkWMzAhRVvkGeWZpflqBI5Yi8HkTi+5laMebPkLKZKbiCwZwgLpJNYLZjIeTkK8pMYtlF5d/5i8EVHDnAsT1eyLOjw0A6o8s/xHbumu9687YNgqVSmvh3OJKaqwknTHpmkpaW3JY5JoWwvQyhj0fkZjKgjJ65sjBLK3r2ayxRsdQgq/TnuyUHKrM16maVI4p9DHNEkqV5OMRAakcxURawOhjczTLS+/+TVN2zHcXnN7+Yy26/mLf/VvMdby+vUPXFy8YhoHdlfvmacpFVmWAQRd8IoBET2EgJ/2HA7XjOMkNZ6aFts0NE6K9626nk2/xjlH27RYYzk6Pub80SOmaeLi6pKb/Y5Xr1/z5vVrDsPAkyePOT4+5vr2lt9//TXOOf7whz/QNA2np2ecnp/Rr1Y8efYR6/Wavmv46ssvErEIT2mbnv1hx2Asbn/IoO3qpk0dIFNdqRBw7YaNW/Gzr37Jx88/YbPd8OyjJ3Rdy9nRzDDMPDpZEaZbLi4ueP3mNW/evuF2t+Obl9+x290SdgPv5wOrVccnn/2CzckRf/5v/jVfffIVwxj4nX/N+/fv2e1vCExgPK41tH2DbQw+eCZvEw0rmLbFEKW0nt4uRpPq6CU5ppEl8l1N9S00efcs6pZaIhpsIrLJLM5j/mC+g3IUc+9epHOrMjKfdY1OjDEryRmQW4vVAttJjihAqgHflNKL5Hw2SEP7mFrDC5/XH1IaAKn4JCYSbPIk2KSuRQT86tgq5SMhJJxxaR6anlF4pa5lqM5I5mWRlI5K5kPGGGzbYqzl+Owpjz/+Ge1qy+boI7r+GGubVCcgimfJWkmRDYD3+OHAeHvDPByk5loQo4/VfYwCMDyRISmkK5MAkw4dPdfq7Uy0lOZLAnIim2UsszNs+gYfokSezFIhutMOm2quMEEz6xeCVEGKc43gP9J6ANYZGmuYY5D2wKnL0Zj4obdWvPBR6SK7cKq9iLiuoXMJVJcSiSjwjglw2RhwcaIzcNI5pugYPIz/gjWbfnz5rYxegS8SsVSilVKxWwmjrCajnTrlPlGj0oyAVlUUI4CzKerNQLRJWwgQfKJlSeVr4szKNQTXgJHaCwAN0p65IeKMnuE5gZ5YieC0bkk4mkiKjK7ejxBSUXGNbhc6VSfejJlgnEYO+5F9P9GvZ9ajRIUMhxHvAydHlvPTFZu1w3LgsPNcvT/w+seBcYpMU4trXVEuSGm3KHZK/ABpmW2TJSgnAkR1aJliJKoQBxR+dteIE6Py0GVEX1ZIc2UFubEPkhJYqWOZ/2RtIp1hwZkyLuWH+uNDwqeUMRXjeM3DK0Xpj5B6jTlzm3MMNmmvMTniZjxyVGOqREKu0ZMfn57qE3/VZkBZF614sZYVEfxIwVoxpYeknxhTIxajHWoTxw8paiob902FFy3kSIukiHnPNM1gpHyEdRI92XWtQLHUZXY8XPHN7/+Otut5/uJzHj15jmsa/t3/5X/EAG/fvOT9uzepY9wo+LNSclXBlJIIifa9RDbOB8PBWg77vRh9E1bp+zbhUYux4IzFmAZi5Ohoy9nZGc45fnz9iquba7782c8Y9rdYE/no6RNOjo4Yhj2//oe/xznHb/7hV7jGcf7oEeePH9H3ax4/e8ZqvWa7WvGLn/9CZFOTIkhdw36/w1rLMI4413DjHJdXN1hrxGnoHPM8JwzV88VnPZ989AlHR1seHZ/Rdi2/+Ooznj46581XH3Ny1PLu/TvevH3Lm7dv2e1u+f7bb9nf3uJ95NIH1sdb/uzf/hnbp4/483/9rzk/OsX4W6Zh5PrqRhyUDtrW0rUNfdfinJXmAXiRM9YlhVwjM/J/UoAD+YzoCdaKW8pYi+6xdOwuz0hcYBr9YJ2BVyG3xEpiqZ0Ti75UfyhS7lXuID81ftJUOJPnqY7Lesymej91Npwjh8MsDp6VJYZk0o2VMyZF61gnsmNhcI82zbMYcfChrE7FF9Ug6LS+UhCMZpLepKtfbp6ZRtbRXSNRyiEEgvHYpqHbbnFdx+mTFzz77Je4dkW/eYRp1hjt1EuKYrYWZs84euI444eBedgT/UCua0hMTYyE10VgjjAGme5Ka/miJU4gd0Y2SgeJfJzUbGui1INqkm7iG0ffpSjsMdVYjBFnQir/QBp3io7LMkZubFODqWhFDzSYFPkvwL0xhjlIoMuMBK1MBilIb51EgyYMJVMQx7cGVxgn59qmbJtc1D01a8qG/yilGwyRzsK2bZgbGGNg+mOCpbp+srHp+vIiDaIoMymjKROagA1fDk0iHK0RoUSYmYKRfEpfVb/Ph8WWAyNnThZUnhNonMth4pGiXFjZd13jXCxPgU4GEhVgWgCIRHqoME+HXIWrGhe05d8cfUojnHLtAQCfOku43rHZNmw3jlUXaVvxZl68OTBOEOjEK6IHeLFxuo41y6veU4NTLu5WGdZMZlXZMJZYQTnUecKhmHIxeSz5maZYyMsmaRRZ7UUPGcLlIVb/CvnIuuY0s5hnkj+sI0m2q2pfYmbWi2WomHKZQ/mU/qaeo2K5T9EGiY5ynabshY1VVBtFsYTs4dHIBl2Reg0EJNq01pp2R/pRRaMAJaPm4zvKfPKdpihCDUkndedKXXyQsyU1PQbev71K6acN0UceP/uITz75S1abLaujDf3Rht3NFT+MgwgwfaqJ4AtgzW6dkIxN88g07plUubFSQ8clGm6blq5psc6JQQwJ2d4eHXFzc83t2x17a7m+vubq6gqM5fj4iM0m8P7qitdvXhO8x48CyJ88fcrTZ884OjqibTtiCJyfn/P48WOMNYx+FAA/S8FvWb1JjC/W4vYNxkr0UZPA0rrraVrL0WZLY6HrGrbbHmstxxuho+NNS/T/huvra377u6/57e9WvL+64t3NlXjhJ8+tlfP96NPnPPnoKS8+/ZSn50+53Y3EALvdTlod48EGbGNwrTB4DcEu0SkVv8u0HDN2zV6whZAu/NSlYn8RxQXVPfTwPXCZjH6MOAJitfflgFX309cKulLVbRl7lc5KXNa+E5Kxedw21fXzoRg/ij+PzKskpdzQjp7GSoHtxprMtlS5NClNK49Ai4KaqvCyEfCjjohsnEuCX86BLeAoJq5kCn8u3NHkvzM2S0ZgrUuEMakDZMN6e8Lxo49o2g3d6oSm2ei3iUj3S5Nqs+EFpPppwo8DYRKPsAFtUpqjUwSuwBQlBFydOtUGZcCrEblZsTVqGBMasmnsrTX01jKHyDDCRMBFSXvLNJspIlRAqYwpKs9Nr2hx97x/0dDYWaJ7gRlTajkp74lF8cZANkkasK2VTp8B5rEuRl3RYQaMnsYY1o2jS6Q+h0qu/TNfV5cX5RxGlRIh04rR7pIhqJUhf15kVAqfEe+dRIpjhJaToUrq4NhsHMhAAJ/4ekpXJdBZy6RKCXprk7oSSph+IErL6WRQqrGI4sEsl3X/VUbrW4rB0ne0u6xPBkaJzpgZx5lplM5VMQamSSJD27bn/Kyj7w3GzIzDzH43cHU1Mc3SYcw45ZKVEliDh1jx2cypEm1FjT4pk6u5YMYpGY5VRnx906SfvJLJSZWLmSgmCPkzlgrf5l9sfl79luLiiMlp7eGOoVSgRKz+rpDTnyBx3SOruSNqM8lYqbQxWQwZUXwbVwpaq7GvLj9R40l1amhB7fyTy0foa+qttwtcFWJijSFKt60Ys7zPBrdsQCgOECK5doo6UU1MzslUQiAaqcc6T3suXl9jbcOq39B1G84fP+HLL39Ov1rz3XdH9Js1w2HPu7evmYYxOz9yWLgsTlbOY5Cu234aiEPDNA6Q6ga6ZHCyzuY9ULneNoFVv2Kz2eL9zOXVJfvDntvbG8ZxwACnp8esVj3ffvMtL1/+kMsXAHz04jnPP/6Yo6MjifCOkdOzcx49eUwEDtOB2Yu+Mk4DYHCTzzVCJQVXosnbrsMaaJuO1hhOt8d01tL1LdvVGucsz58+5tnjRzx9ckpjI5dX1/z+66/5/dd/4PLykvfv3svZDp69n+mP17z42Zd89MWnvPj0U7brDfvbCT959rs98zTjrHSjbJqi9/kQwJd0YZXZmQorefTQGZEtEp6xlGflHrB0/i2d4CWoQmlNkcHiqZXszWdG7xjr85o+XGG/MpdlCrU60wtfKM5I9dob9FxLB7kp+uL8MeKUaKxiz7ImOSpPHZ8V3MvHK0Vcl8ACqg+kOVp1+KWznNbo/kpUGCq9plhEj7JtGtrViqZfsTk55+TRc6zrCKzBtGgQRXbwOcNsEIPY7AnzRJgmYkx1nYWrYJAAEh2Dj4apVocpATMSTEDiIyF3TNeastaIUQhTcGlrJdvD+8hIwAdSUfJ77t8si5bLk9KOdRRGjNAYI0E1SWU8GJu6wYqYr8eSZW8Rhml/ZdaukcCFECLzNCeaVsRm8jxTyAONsawayxwhhNRk5SdgqJ9sbCIkb0xUcwsqeYvgJovUJJCTYArpQ0a2V8I5BYhKvqAIDGdUt7VSDC6BADUoKUgpC2UquVIJtLToIcZUZ0C8vjGqB9gUHKJANi2WQgEhLFlET8F+qeuwCLwg959TzYWg3kiStzwEVn3Lo0c9/crgY2S3nzkMnmmCeUZsbmq0M4m0K6MJ1W8mL3MBRQUZVJ5P/U9iHMpI0+JkTieGDmWS1ZUxWkzEmvalLBrVAGR/ct5u+o5SQVrH0lVoechylEN6524aXDbGyIcroFgYn45Wozty2PLde82SvmCtIUaHRlf5kDz5s7Ad77WjYW0RVjBZxhxjAXxqRIuULg1qpNQ6T7kjQZDOE1M6I9nQYMiASZdZjo1atB2ulZg9ZxVcmcX6iCKvdS+kmOYw3HBz3fP2xx/o1xvwnrPjc1ZNjx9nhsOew+0Nh901MYgiQkx0GUpuuvdeUu+sgKO2ben7XrwQukSIINSw8JiAlOTZF2Pe5eUlL1/+QNN2rNcbjLUcbTZ8/Px5SiURYNb1PeM4cn1zwzff/IH+1YrTszMePXpE0zi6VYdrJNS7abqsNBvAxJhTbqX4bMQbg59GYohcvX/L7vqKo6MtLz55zmrV0/fyg204PTtNIeiB9XrFze0tp49OuNnd0lxe0V6+Z7td89Vf/jmPHj/i0fPnUlA9RA77Azc3t+IhtGJU6dqWVbeica3wkKAIWwC7t2qMMZm2NRJH6DkfmurfIqjvGnsUeC8jJeU/NZzKt4r67x2wVZ3LWJhB9ex0z+q8xQx41Ih2v45JPSxRFmKZG4W/CxuWtVElRvRxuYFzAefEcOeMkyiaFEscDXeAngLFxVLV/+T1yHyUiv+asp6isCQPfJW3XozyZF46+4BRx8QwYExL4yx934qnPni0fox1DdLgQ4wx0Utr6JDS0zPfS/xQCqYK7/FR+mb4ANaKwSD79pXXmpo3yr/W2gwG9D1ntLuKGBpigGBTZKYR8J+L/D5QfwJMaW2cDD6RxEY1Eywbx7TejfAzH8XLqA4kGWM1fur9kb8yuE3yXWt5GbMgq1RHBZqoAOiO/PtnukzysGuamioWgmeSKq3Gj4yhFMuAqQyEAF44tbQWT/LKgOQKhkhwKYw/SU2JgqogfZX2o8+VrjRk4RMzhopq+yQiOAiqAuAUWFAwldTAUNyl2z4nmjDpCz6f6VL7xGBoUi3Dzdpyft7jXJSUocGzP3gJ46fGD/ViL/+taVMN2uUc6z2Ko62+0YLdpm3TtVF2KEsYqw+Q8epdnifGkcKzaydZUQhMNmSpB70uRqxK4cMT1s+YhE8iSzxUf2+5BhrdXW5d8fhIKmDvwSVslLpozSntM+QGQIK1IqUrmrAsLVWQsGA0qR6ketWF12vEku6b1F5rstBQxxpzKgKenF5gCi66w46MrmcrzEf4l1nwQ+meJuNoWnEExzCz313Rdo6LN69ZrddYY3j86AnDcMAayzgMHPYDw/4ge2QlKsxGMR7FEHKHKNM00kDFOdquo+97hsMO7QRpkDQ3JZiQGrU0zhGDTw7tyPv37/jhh+8RR6Tc++j4mI8/NdK8aJS03H61Yn/Y44Pn669/T79ac3p6yqPXj+W+q1Y6VbYNbdslvBmrtvQ+lV/wGCONCnbTRPSe/dU1w+6Wk9MTPv/yU1abNU3jsE2DsQ1nj85YrVdYC8dHG25ubjk7Pebm5obtNHI0DRyfnPDZL3/Jk+fPOD49Z/YwTp7DOHIYDvjgabuWrpNaUl23wjnpKKhOYc1MCLZZOEHuXuq/qALeKtlenY10z6UxqBiy69cVOxX9rZywWH8oRh46e8uPSHOEYpSWMd3XaXTUhV9mHmfK3yW11aAdanUec4iEpPO0ztA0Jp/RwgeVqYf8vJh5ygeuPP8s8csCGcUEZRa5gVIIqdh0tb6JXwYvdSs9hnEcGKeBBkvXO1zTirMqGUWcc9jGMRuJAidEyciaRzA+r6PwXqEbh00mKJFPLkR8EBlZg2T9M+9DpW9aF4EmTVPW3aFRTnKW5hhooi1FtZNelI3zClzSM2Ks10+XJMlOxYAh0hgrUWkmpUpimENMTVYyFZEDU4rBIdOJIWY8q9+x9g5OSKNJTfVoEKPXT0mk+8nGJhNSgVuM1mivwn9RTi5eMJKATAqGpheY1IkLxOATjGGePcOQiulZsSg2qcirKqg54iS3lE2LYxU4k4C2GMRC4iAhRsYEwoLJQZMLg1KM+l25c34/xtz1JUVhJ5Alc/FegNY4Bw7TTDdOzN5nAwFe6hGcHjd8+dUWayO3uz1vLyeurmf2B1EI+i5tnMwKhYbZ2r74XyK7jOyMnt+k4NtcOBLI3UCsKTmiiVeWKyYipCZpuUdAPegm85sMdmJhI7r+mmpoUkEx7bIj0Q1QilqCGkjUiq7QKw8rFhCrDIn0r82MuyK/dMD1c2p4onpGZGSapMth4xpAvCNzijCaxikbmubZF/ScDqEWLi4tlSvF9a4Cq+NK+9C2XQZIMSmXWAnrVsaHNamGknoUyppEDI0leXDLzYviQi5q7qwTb68xhDByffWacdgxDwNdv+HTL3/Op59+wexnHj99wTiNfPf1b/n+m98RvMfOMyRPIli0LWbwHteJkmyA9WZNMJb+XY8KCGMLiHOpyF+b6jg1jcMQmf3M9z98h7NwdHzMZ59+znq95unjc778/PNUTG9m9p43b97y+vUbxsv3/OYff8s0TRwdHXN6esp6veaTzz7h+OSY07Nznj59RuNami7S2GRsThFYfp7BWqJPtQmGA//xP/wH/uHv/47nL17wP/zf/gfOzs54/uI5T58+wbmWF598jDXwsy8/J6bw+8vbW8Zp4vryHVfv3tB3HZ9++gnHx8es1xvapiOGGy6vrnn1+i23t7e0raVtpR7B8faYrmmF12gHKq+CXGi17zq6VujzXjQRUfhopi7QNItyfIqhSY9KyGf3YRpVAWoVfeVnViBLUdVdHrKkdki1zAwQrcNGjUxSILH8jsFgbcx8LyvDyQirdfFEcfFMfiImL0wMkb4zdK2AjLbvcYkPBh8yMIwqyKn5J/k5d2ch/1bVnmpQitqvTAZKwdjciSTLxfSMGCLjIB61/W7P/vYGYxxd27DdrhmnmWGYEp8Q422MUuXCRksYR6bDLT4cgABGQaTBGUtnSFG2gckHbITJBgiGNp1DKDy0QEEFsIii1trE52WDA5Zek+WiBDf6GBmieLfaRiK2/OyZk9feugoYL8hITYNJtnnBfdZAbwyNccwxdWI1hjEI4G6JdHmMCQvEWABXtWtiJDGLIvxStygNIin5rZFuKrO553D+Z71cahEsXLHQus7FgIwxebBlnmKMnn2iPmMyGJ2j1I2bZ8+QusvF0NA4S7A2tWiXosMCmktqU0x4TDFCBJGFqetwiFKYPYSQnIESdRYwqfZETN+JKYVS5WAK1E/4wYecrCb3RQqwKtoyRMYwM/mZaZ6S0VY87Z2LGBt4fNby+efHzPPM7357y/t3O66uLSGKA4d8r/qsJuFIJcYzjyzrju7Ih7Byet2m85YNdgsllKzwLl4PkWDIzaXks6n+HMg51sWvRiXPNfl+IZWZKKIgFURQZaNOHUL5fMhYL0bFh26Bie4ru3pmymcUO4kfNZa0saYhdFJwffYeM4ohSpph+PyTEVwyBqgRRYxSAU3/KeuoK+HzGMRx5QR3GIP3TXZ+mVFS0q11pYSCkw672gE7kQfEiHM2Of4Sjs00InNvXZcUVkvbNel5By7e/sBhf00IntVqw6effc4nX/6ScRx59+iCYRj48YeXvHr5UnSZKmFIHZDOHqR5UtNi25YYIpv1huFo5LC7FWdCSldpm6Zgyghd19L3HSHMTMOB8QB/+PprTIys1xuePv2Ivu/56PkzfnHyC7wP7PY75nnmzZs3vH71mmma+NWv/oFp9pwenXB+dsZqvebjzz7l+PSE0/Mznj77SIwOBqwTQ7P3auSOeN+w3++5fHfJYbfn7/7mb/j6H3/LZ198zv/0//ifefT4MadnJxydHNE0HZ9/8RnWwl/MPyPOM+M0cXF5yTCOTPs94/6WVd/z6WefcXx8TIgNh8lws5+5urnl/dUVPo6s12vWm47t9pj19lj4TJAUOalnF8RZ08ietU2To+3uGWUzf6igTnXYizJeMJPog35xzkhnuIJmgpizTlPdNttqlve9bzAu3FI/IwYAS/Y1LMaq/PuOIEtzVJ0oR7Anvdj7KM2FhgMxBtarjrXpsEbwuhqqpaC7GByzXh8Krlo+8yEmWhxDxkiEjpZxVJ7ZWIcYYkr2kUab5xrJeMbbHQwjNzc37HY3rNZwfPqU9XrLNAbGUXSpthMHtHce68HMgTANzNMea0dE9UsRO0gN2Ma6XIxhSBkHYwpccwZsapJlpUhS0k1j4b/6b6PabGpmZKBLZeZCDEzB40xkjkBKi3NJL/HJUO+c6IERFg0t9Mr1naOgKQf01tIkDOqTU2tIGKpJmAcjWDAX18/7p1kBJnfgM0aj1yOLVoNpHztLwgKG4pz+49dPNjblVINELOhCLKBElVhUKeJ1CoZJgicgqRPi1VWPjZz+YKrvp9/VoHHXWGKSwBX9IZai3/VrqEdOLH7F2PSh94snLxtBzDLkV1LTSCHNWuCyNk7Ib21rWK0ckUC4DgyDZ5oDiyJcOhddSVMxkVrXrPdj8aZ++wNXAhAf0DXLDReMLOaX9V9dT3Pn4yVM7/7Y4uL9+8xJQU+Z74cHqeAnR1mk53wQKFbPSVbFPJNMX6F0zPFeAIzUBEgHUGdmbLImazpcKONVOl8uYqXwlx9rbaZNDRU1KNATkGOspT4zEkggdGnzusb8jNyiWJ9rS2rgHKTAop9HDrsdYZYi/gZSh8cV1jWs1hu6fk2YpxQe6XOKpKYfEmMVKWBoXEPbhpzGp/tRhGSx0GdFPQ1yOBy4vr4GDLvdLQCb9VYMzAgjs86JgcoK7U7TyOEwZKVzmiZOrk8SuOg4bPc07Sz8p2kTQ60ARBQDhKZt7PcHbm533O527PcDq/XIOE5Ms6SmrlwrodtthzOijLXrNbP3rPqWtnd0bcfJo8dstxuscRIp5yUySzp4RrqupessXdPSKBCOxai9ECbRZKNtxulpX+XPWlkQsr5L/6qkLKKR0neXniZYuJlU6ar+rg0/+rCHT6iOS3/XiMjleDPiucf7TB5WrXDdXYAF+Aui7Hhv8FY9VfXwKz6Wxq/GcuVL9XqVWSxWaMHv6tfKY+5GApTnZN4QkLQnH6Sja07lsMWIooqVtVLXJhVPzm17kwJjFsuXeEsSHHWqSe0bzWNe7IN8wERyravSkEIoTVKqEnCVhUz3josbKw3nujeL674h/i7Etnmbq1QZYiqAWdZZv1DIthBHViBURmjb4MVqKehNhcLvDvWf8VKZYRFHm76mLoUc7RFKh9MMCJUhGJNj/H2KJtaoIL1fMOmkZ95QQFMtj4F7sEH4kdJwwTsZL2XcI+/7UJyJtbxKJrRseFKiUKmqNcpkr+tU2yLXnJNUM6nVIis0zzE1VlHeUKgmUozrSgdpUku+kF67x4T+2KWP+iNf+WPYZfHY/EeFsjJjMdVni/lpES2ZPyprIOOq+CRlDxdTqLBTwYMVf6fIl+WgqwdXRFE73NQzrxhKjUFyb4najtbkWwmGUpqXJ2fe/uC4y/gVV0Ri6pirfNShkQ3G2tS9LzFLU2jLZXnr87Pzc6w4SrXmpLEwTdJdbp4nhsMeg3SUdCl9sO9WGGPp+xVd16fzOJMj29N8JLVFDLyKqVzTSG1LZ5ESJULAyqt1TLbaO+1Sfdjvubq6wnvP0dExMUa2/jjX3uu6Tp7hSj2zcRwZhpHGSLT5OE2cXF/nmkz74z1t0xJ7aFxTlFJjCM5hUokJxTeH/YHb3Y7dfs9hGBnGiXGamWaPaSTqpGksTWdokChM13VM08zhsGO/v6VvO7Ynp6w3G/YHz7SfGZOzMUQvzuGuZ7XqadomR4+HuTiSci0j72XvU9TdXSy0oKtM33dAVMKrD51nfWl5umL1b3W+9K9Mf3d0ugcuxU8x1iNc0n89g7sRVvK1ehyV7L6DXmJU2eGzDoshFchO3DnLXJNZZn6iCgWj2FJfrpFqngF3o1/u4lodZ+YCUf8texyTEXv2c4oG17MPVtrWVfoKhHkmTNJFMQa/7MhbbaIWokmmNQ2MzyVTyDz27h5UEyEFdhDRchSKNbTcgUqdbNuo7xMformy4FExTpLfGqmpUX2RgvkKBoylLmfeFf39Pq8lYQej4sTUu1Smq2viMLkz8p+6frKx6ep6BwjO0Yn5FBEiP3LYm8aVcPf0XT8LMVtnUxqQhKqphVWML9A6R3SV8MTkDQ6BHCUzpyJ+sT755BKxUmDVmvwTI8xBfCU+ilVxAaIonjr1fxcPtcF1DtckBhfl2T4afCpuOvvA7EXQBh+lKPhpR+sip6cNXQ/jGLi4OHBxsWfYO5qmQ+qJ2MyjSihzOsORZAypu7QshXwMQrTqEVyAFuU5FXcoocrktctETGJoCmDSVYoGK3AshzNWByErpolJ5YNlyrjzIac+uDWrSgfOVAw7HSYl8nywNLm/Ou1iJIKcpwFVJEikSSlf2inMWq15JPuo62OcWLJdMq7YpAhiwMVKRUnrW9qfFsUqBikGZ4wYb1DFMAEi6boRs8FU0u2a7G3W9fUplc/PUzZghGoT66g3vXeuQ+UcsRHDVggT0xT54bvfc331nm614ujRY5q248mTp5ydnbHf7fjh22/Z3d4wDgeG/R5ikPxuLSAcpUDx8fExqyPDxetXsuJeAMTtzTVHR0dsN2dE4PXrNzlqTL2Pl1eXTONA3/W8ff2arm05PT3n+OSMru85PX9E1wm4+Ozjjwkx8sknn+B9YBhGDnvxyPzw7Xd8H79ltVqz2W5pu44nj8X4s9kec3b2hKZt6NYb2lYiiqw1dH3LL/78Fzx+es726IjTR+d0qxX7ceLN2wucs/Sd1FBoXUOTvD3SktWx3pywXq2w1tL1GyINu93EfnfL69dX7PbSrvfs9Jij4z+n6xzPnj5lvdpArIyVMqBK0CRDfFRBVZ0XEp1Q00fMr0OlYOlJjAL2jQkVrRbGUAt3+eeu4LhjPMgfu68gLY0uKfo0SrxtyPUU4oJ3K6BQPkBK2VK6zv8a9baWmhbWOwKBcZoYhknAcSDXdXAutfC1FkKJsn0oFP7OlDNIy+1t0e9pvbYk0FMFZAMpzSEyzXPaY5F7IUoUSjSWcTqw39/g2hYfBiJTAvqdKCxdQ9NYrq8OvHv9npuLd9xcveNwuMLaPZIposbKpMSk02+NSUVlk+csSl03paVcS8oUuaMAUiIkY97HiGRjtUi04rprpV5hShn3GNbBE1I6cg6Fh1IPqkqblXbmqiiavGaRiNX0ZKJEhxnDIfEc46DXDo6QU6+0OHKOCjXi/UQNNEqHVtN38n8SmIq0uDzGf4nr/ZUY1W2SZyFhhxz5nYbYNCaxBDVEl2ga6xzOCe/Q73ovmEhos3gn5TkJdKdULP2ORtQCOa0sGInEURaQwaaRvZ1CZAoJQ6lMSvStegeUyKZIzLWj9DySnDkhyUxiYNLufPrvHGh7w5PzLevecLRpOBwO7A8zl5ee9+8hYGmblpo/lfEi7bLT68WYpZMt2KWA/4eAPhnYa82RSKSObK55oyq12bmS+aH5QARd+rKewwWfVYeDjrAeY8UZ9SybOkrPZjxeuuaW6m61jFDckqOYKlxRXIiGmD3eqdmGsammVqCLLca2qHFUZI6R/dExmGJgkeekBNbEa6l4c47M0vGFhKGqOilN0+Bw2Mam8ZfmMJL+ZrOSGmPMOoifZ6bJJE3B5flpvobVejaNk6LnNnU/RIwv83TgED0/fPM1N+/f0/Y9R6fnNG3LR8+ec37+iP1+z8sfvmO33+HnidnP2YBsTJB6aDbSNobjo2Osabi+vGCepLnQNA6M40DbdqxWq4xZp3GUyCgj83r79g37/Y6u6/j22+9o25azs3NOT8/o+146xHUdXeP46ovP8SFyGCdmHxiHkWE/EGPk22+/gW+gX6/ZpLpOTx8/42h7xPpoy+n5I5q2oU+kYZCo9q5r+ct/92/4/KsvODo5ZrU9wgPXuz2HaaZpLFc3nZRcaFxq6CT0ienpNg2r7RZnLLNx3AwzF++v+fHVe169eo1nZnvcc3yy5snT56zWHWfnjzG2oTRUAGOSzpl4qqZj2ZhSEqvmSeXspFOVSTxKBEd1NhZnAsVWBd9nBGWoOp1R8JA+Q/VZ1YMqA8LdqxiDbSojAyL0tUxIiViUcVcFnysklzuWklJQY0RfkoL0iXemtRnGiSkVhV+tyZ2qrXXpHImGHdJ5XOCnDCfT8xU7JT6o+Gux5nkBYuZ1qruEEPFzOrc+SG1bawhW5PU4DtzeXhMxEg0bA8Yi59UYWtdgjWPcHXj93Q/cvL9gd3OJ93swJbpY+alBCm0HDLORUhvRwKyLnLCRjq/eJ0h8i5jS802u7xQR/LSSDDf61jEnupxmTzCe3rrUCIWqtqXyZVlMA0SvBlWTdFOTcVtinqguL6VII0NM8aGNpWs0NXKpty/lQbE1GHXUKX82OuekpxqxU3RGtfI/ff1kY9Nuf8iLbGxVrDiDao+xhr6XdJkMdIB5nLOxqU33m1NxMR+kdpFMWwSis6oGpZ9EFHMVdVIbPhS0Bon9KKgt/UQkJWGO8lwNj1OIG6K8n71Iaf/0F2ssEnsXUj5kyOl2Pgjwmn0qKu0jtjUcbxs2K8PRtqHrxKB2fT3w5vUeZ9YpxLNGKpXCpn8mgHk/bDuW+SsgDTr3O5phzKsoc1ZjU376UrnU51esMoGYB5hLtVYV7abXEzQzS1AnAyoF49GtqhVoqgEm4GLT2NToFGExHmPK37UxDur0EQozSymPjXP4ts3rrDWY1PvkGvUqKTmZxaFTu1CsCtjrs703GA0DTVFvdTHyttEieOlQpyKRpuqkB5ImEUJgtqaAw1wHoQa2JgtXpwzJlFSDGD3T5Ll4/QNvX71ke3LKZ23L5viE0/NzTs7Pub664vr6ljnIc324wUTpQFCiskS53PQboutYr9cYhAbHYeBw2LFer1mtVogSbPMcdC1vb264vb7GYPjxhx+wxnB0dMr26ISjoyO++PJnHB0f8/zFC54+eSJFDZsWjOHtm7f8+PJH9vs9P/7wipubG5JFkK7r+OzTTzg7O+Pxk2e0zYp+tcK1nQjYpAO31vHp55/y6RefprWT8zhOE9PVdQa01lq6rqdtha9t1iuaxrJdbdmuTjGQU1MOw8zFu1vevb9lGAdCmDk6WnN+/jl913B+dk7f9QJ4/ZD3Tw9CJuekHJa2qfUZNXeUEv3PkuELSEpwyJR0r4cNLNWD68Odf6sBmKoBd8ZhitAylQAqimDxFgpILGkG+RPVZ6uXMw8Qu5FNocypZlmEcfRMw0Dj5gRsG7q+wzaypzHLAVOMtB8yNFHEB2kWwYCN2qlPpYYBqmYZSIhyLtmcPMAh+CQrrBid5olx2DOOK0IYicwY2+aOmF0j3YiCn7h6f8XN+0t2uxvG8ZamGehciuDStUzPzk6gNHCf0tl94j0SIh3zPtn0ubIe1X6nuasqhoG+cfgo7b6HccSiRnB5Tk4nTAb2eu9lLXwB4UaUbwVKhpg7nQi+ikwGZiMFNnNEhFJM9YdRsGRKsVYBxUvayTDOgEk5Da0hr8O/xHW9EwyljosYIsOcIqLTHlhrWK0a2tbm/dUovhAjzgW6BKKUp5a6gxCsJZjk1U//UwOCTylx8nk9f4n3mPITqiWRNSsOuynhnSl1lPUqa8mZSpWsB035LBjKEKYZn+rTSNdbrdnkswfbmYaz0zUnx471OjKMI/v9zO1t4PoGus7Qr0SW5ugwBcWZlyT8EkIK968wVAb1cbHO1ZJAPmflXrH6Tv6UWUZP5Eicau8zVssPqPFO9YtZvlaeszgBQKlPqTza1GzTlMhSrWVSYxe9T4nG11eKIqmROWBy0wKNaCbhcZMcdm3bZOUtQip/USJzIClTVV1NxVMKz+oIPU1DmeeZYLR+piD0xjY5WqcxTdp77UJsabt+Ie9iSPVevGe2RlLrYnEZiCEujcuKsalpUpdia6qwS0PwI6OfePNq5OLVa45Pz1itj+i7FUfnj1htNlxdXfL+8h2HYWBmTvqKSAHFkdZI3c3NZoO1LX3XSxRG8EyzNBpqmpaua/FeDAJ+ThGxiS6urt5zefkuzVvGfXp8yknCUF/+7CuOj4959vwjnn/0EcY5gpUEv7dv3vLyhx857Pe8+uEVu5tbMQpYR9/1fPn5Fzw6f8SjJ0/o+hVd30t6YsKvq1UP9Jw9OqNpNQJKfnaHgZg6Anddm/7tCoZKBrS+lw6TxMgwzoyT5/31ju9fveHi7TsCntWm4dGTE7746jF933K0PsaY1FCpSrU0RioJl07PmrpYHCz3rvpo6dn7CeLAKCtR3TMxiToqM3+WxGvyB6tz9vDdqzml323WeADNrEi8wZSE7FpnK028FF+W+j/GONnLGOVch8g0DfhpFGe3a/EttMbSJkd8zMiGqmZTNYfIHT9lVVuSgksUr2YOVPEMg/ANjDTeigk3iK5miS6Clbp9+/0O61qJ+I6aQilFfpx1Ygw/DLx/85abd2857G8IYcSGUA1RDfrgYmlMElKH6znJTYtgIWvSL3mnVD6oYXzhHsVASmGTdWobSxuSw2X0Imt9ILiipy5kUU2fIRC9OOLUAb2QIKr7QnYYTVEMT53i57L8S4rL+ofSiN5PBEq0GoBiUCSvYqQ1BY/+qesnG5vGycsEjUYLicIeVCglsDPrghgjHsuoef0RZyPGCyjwydhUaokIeM/HM+tgaRETWNKUO90MQ4o2yJ0rNFxPazRpjQEBS/ojiy7PUsMRVKkHsRLJsf5JBiCUuYrRbZ5mgk9FzaNUurcGpmHk6p1lf5iZJyNLbiyLs5cepqRaj2EB3mIZlx5kPba6DxatVRTRPPQSc0QCjrE67rri8lqOKkrvKPggj0dTGrMNNg2rGMBMKiSUAUKk1HuKINZ42TOtvxSqe2TAkRZCax9ofr1NYbKqHKvXMY+7optCQ4UBSN5+C1iavsUlY1PxBurhlBDBEmlUDnTBo7oONuVWK+yuhY7B5GKhZZzmDh1o+mmmPUWPaXIGi7VNfkasen0roBSlutDNAvBS7SMwTxPXl+8ZtSsKokienp7SdT2XXYshinfusGNKNQV0zm3b4voV6/Wa7WbDwRq8n9jd3NC4hrdvXxMxXN9cMwwH5jml7xmbNNkSdWAMzGHmMOzBwpu3r7nd3eD9zDgccG3LarPFOfFyt42FVc+jR+dsthsxxkUBFz54bm9vkIYElrbrODk9Y7XZ0vcd26OtGOQaNcrZpOwLyLSp+KQYtyVSJUZpZiBGKAdBinUaq2H7MPrAYZwYplFoyQaaxtH3LV0nHfvK6VVQUYV659eqTYrx7ibes5PoObz3wZ8kAorHXoXLvXtVv6osWtJzEjeZmJfekszejX5clG1VdPLTkjQ0ULxjKL0tUaAaA6ON+LlhmsTr5YMYYm3wuJTGoS5/Xc56aQq/UKG73B9NC4v14c2D1NvHzC9QQ5uBSPKmI9FqwUTGcWJ3u8O5nsN+z3jYSyFvK4D9+nIghsCP3//IN7//R3aX7xiGK5o+4MydMVBkhvrmlY9oI4sZxKhydyPTyqunUusd5bulYts2inGksZaukWhmjXTxMTKFUOrGGdL37hpI65GmHY9pX0xMIDV5DrPFsaTTzSFmsKc7mUGZ3rMCW4unxvS8VEdQt0jqEGqNyX+Za0zFWJ012FBFNoVyhmM0zCEgQVolQkijPoyRepEYsnMkR4TckelihBTlum7XHVRuUGSGokdVKMq/Yrj0UcDrFEJujBKpjU0FcGoaXTGE1Him7JDsr4xnmiUtp3ZIhCCK+n4fCHj2+4APRbHOLKY6i3f52aLsQ7UXFWxe4ryEbDL/ygT2wL+J6GPF+vLc0vvl3ip7c/xg3q8y3nL/2qGo0dYhYaG0yhLlY7WrXSwRZcnAIvdJyErTK7OBqhgh9dl1pJbwYEOZnMqmZKxOaWYSJSFREDEGXHBimzFaK4b8/WKAK3zMKJI0qTi5lTQU1QkLOzAlBSbdv4iHil/fWbsCDI3wAJsKCseCH4VZJzmjeC/fM0WA1pY8gCgG7XEYuHx3wXA4cHRyInXPppmzs3P6vpeuu9fv8dPEfhyYp4kmuhQJZuhaiQpbr9es1yvmeWIaDly9f8+wOuC9nIHd7pZ5mvB+FmNV1Z7eVIZHP0/sDwlDvXnN7e0Nk584jAdc09Kt11jXMOwP9F2LM/Dk8SOG7TbVlBGH6DSPMm4CnpAx1Hqzoet7/v+8/VmbJEeSJYYeUVUz8yWWjMxEYq1tupvTw54Hkv//iffxfnwZkrc53VVdhQIyAeQeEb6ZmaoKH0REVc0jEoX67lQZEBmLu5vpIipyZN9eXEpdnJxBUQq0B99Ef2tGiXQKTpgxy+9RGrh7H4EcAO4K7GAQ5pQwjiOmaYJzwDAE9H1A33WF3iqSt8wHpYGWfvUtrVQwg6+dwyUt6s9VoMiYrMRLY0h64LAz/nnGCM7uXOnzEVy2wEDltgvuuXxkwSBc1sBeMVz9AC1QYxQgrVXkxcllhecZgqGQMsglOJd0xBU4LVkhL8748qn6vkZ/fAy8Fg5U1jHXn6lGlackkbDjacR+dw8ij9Nxj2G1gaceQbH/3cd7TGPEDy9f4fWP3+F4/xExHdENrhT/r9ihTbGUov5EghsyJNHWWMgSJ5pMawzzBlyb90iksfCuzhG64JA4Iaqst+YY1dFBZT0ZMgi22xaaltFnRukYa7LGO+kwaJdlScSci9Gsrj014+ciK8q+oaUruUotTNtXNmfrX75+sbFpfxr1adK6m5nByQ6hGhkckCnBW3QI6oaAtUkKhJByrha8rGirrLcq7sVbqt4vaZeZNY1O3u+cR3ChGJuyA1i73iUQIsvXmBhTyhLZZMCtUWYKY2r4DUGIRuoyWfe5rOBN7OoxC/EHOMRpBmWG4wxPCR4Zu48zjvsDphk47QmENRxCSckqaVu2+ai5okZhYgSiZn0aZuos5C+BEsF5VeZZ7d3NwRKvZa0XUS8uxGNF3Z1ZzA2sL96Hkm9a2BDXFD2QAR0Bxqxgh8ueiyXYaQV9Rk0nWAAgPbgJoqgBhOBzqR9khG7edFNiDTS4kmyrYyctlBk6DJtriXbxhBBEqDgPcJzFSm7pFTp1K3hfWZSZNC3iQusWcdZIPQ1FpLp2snn63UEKXqrSbQoA5wTO0PoDrtk4gMijCwNKNCFLDSKpjcComcFN2H5j/CqgTygKp9MO3//p9yByuHn+Ak+ffYb1dotf/+o3WG+2+OGHl3j53Z9x2O/w6vs/YX/Yw/sIn2Z0/Qrb7Qqbq6d4/vwpXrx4hv3uHrv7e9x/fI/bjx/w7v17MAgfP95it99L8XFIOp4jD9IUFyg9TPMRp+mEu90t3r9/B+cctpsNttsthmGF5y8+x3q9wc3NU3z22Wfw2zW++OKFGKCmE/bHI+Z5wru3b/HT6w+Ir15iOv03kHO4ef4cFxeXePH5F/jnf/6fsdlusV5v0PsOwXVYDRt477HZrrFaDziNE95++IBpmjHNCZxH6Sh3GrWeg0fXBXTB4+pqi64P2J9m3N7vcL8/IGNC6DJWqxWuri71vT3A0lycIB4ccrVLH5mHgyCeDKJSn8UOP4PASQUZmQffPOtLeFFk/LmAX1LkmdJz9mqRdO2fCOaltbNgEtoUNSJfebudFVNyHINZxGRMDVMzEgXVrmL6okWgkPIH5zzW6x6AFIid5ggmYMoZcc7IJAozEaEjJ4aKXFiGgk0Zd0lVpMZRcZZOuJRour6gUlRS2I7Tcgk1rWXWqIoZ4jG7v9tjTK9xOsz44qt36HyP1foSm22HeU549d1b3H3c4w//+v/D//H/+d8Rjzs86+5weZ2RIyNPKPJChlxgah0ZS3FIQJpuBKpfVuwbgBT3zTNyyvDkpZMfQevGkXZzZxAT1r2Dz2K4uD9JdOiYGRQjPAi9s1oJkmLDnEuavSme+lCANdVOHU+Q7Fw48ui9eKhniCFi5ozTrMYm77UmQq22UgppF7CEIs+FnyoQc23zCP2sRiP/va79GIvsdk7kc07moJG/UZbIH5e0EHrFoHLq1HAkLMJkKmskFzepVBLq7g3Mc2oM6GrgYo3ocB7kJZw/a4c7q20Zc8KUxOB3ihknxV7W5Zcb+VbqZSrvsVoVAGo5AIvigjmWxFl3PB7Rh4A0R3TOSwH3eMJpZNzvI8Y5YY7APHXajeosMhzCZYoKyU1tTkJpLmN4mtDWCVOsoovtnNSLesALy68NPzxTQOResqFWwH6ZQkeA9XM23GkYiwFrolKNg1CDnuIzSx9VLcR5AntJq40plpRMG18xwpI500TJJDJ8aGMUDFHOKglSWEbWWvc26UR7df0EXd9LDbo4A5wQnGCYYrSxcetClPSQBnsXQ703/CspUkCtcwSGyg3WaCOVJzqXElGpUes5N6mBIDACQJpdoWlJWSOOmIFsDEWKv4DJIZMXecUo4X6F3LMIk93uFoff7+Gcx7PPv8Czz7/Ear3C7373DxhWA75/+T3+/N23OOz3uL/9iP3+iL5nwXi+w/biKVy/wbO3z/Hs+TMcD3vc397i4/uP8F1AP6yQGfjw4SOOxz2YE5wWEF6YSnV843TCaTribufw7v0bOHLYXGyxvbjAarXCZy++wEYx1PPnnyEEj1998QW8dziMJ+wOB0zThNdv3uLN+x+RY8Y8J3jv8fmXX+L6yRN89vkX+M//5V+w3myQMxBdRt/32K4HhBCwXg8YVgNO4wmv376XSNhxhiOJdjodpMtfP/QlE2a7HRA6h9M44/bjHXb3O4QOuLgacHGxwlbLIAQXlvMGaSdCgkWPGda3Q1C6onOldy2ZXQyVRCipSMabmLU4v+qnRW5UK2YxDjDVjBpLHa4QvGpQmRp+38htsPDP1rgq+N+K3LM9Ts9zfYLJfKN3q18lr1V0V+5vDUO8x7Bel4CAKWZkchhjgkv23FyxBtQ5oFHE3IyprblY/10av2XVmn1T2VQwlPMlCpK1K5p0ghe9exoTMhj04RaRXuJwtcfN0y8AIqyGS2zXHqfDiH/9b3/ATz+8w09/+j3++N/+v8jzEZ9tRlw86ZAiMI2TRAmhcrZFzSNRvjGxcg4HDA4Nr1rubU6SuUVgNehXwzkADJD6kOveAZ5w5ISjYqspZwQ1IFfsLFH7EoEcqzzxRlea1cIm92XvvZ4FHxRDpSQG8ZxxnJMUEiftOlwM+8KvFwavltBs59nSoKuMl67CuaRI/qXrFxubYjEgZWXgKMDRHu4YJWe2vYq/lFXwKt4o6Vk68BY2t57s1vLWFpJk2Aa1h5uqgYVRopYyS7vexLXzXOVHLdnVq5HZzRh4wbTEoJJLTniFPBlEjDRnTDNjjoScAqoXwtZGgUbLeGxICkBaGljiloqWWMGm3c2Uofb98ntjVzdCVbBjxnmgjokXnzAGq3zZgOxijZp7cLtudWLld1f3cbGu3D6vVZz1/rkywPL+oow30Kh0aVmCRUcS7RL6FbyXGhk5RXAapSAhuSoINDfAwtJbOql3NYGldE4W2URlr3Om4oExxgIysVk9ERblJ8bQgssFILPGL6gRix4YGOq4jHxaoVh+N3yi7XEBYLXf4bASEN91HdabDTbrDdYb8Xj50AHaIUEMXQle0/66rsNqNSDOI3b3Egk1EYH3HgzCOImHjnOWSCDWgn5uaRCJqaY3TuMIZqlTcDoepXZB12EaR6yGATk9RfAefdehHwYxdHMuzDDlhHE84f5+BwJJK9Q4Y7PZYJomCen2k7QdTYzgO3DI4DyUfTPviijOAkxnRyWlxcLGY2Z4FsPzFKNEQoE1Kp3gfZA0wGI8VJDDDW+k5mdUQLLYwwXV2eeMB9hnFqLwAe3XkNlKZ+f0U1+3vzOqa0WIsvKtxacaAFdpvUZLkvKZh7zW1oBtTRpetHwCYB54p1Fp0sFRw705l/TmpFESkoZF7bKczbkFQC0AtLVazA4oc3hkBRRwAjXVzZwHmSWyKeKIEFYYT0dMo/zMLDVrTscR+90R97f3uP3wDmnc48lNhNOCGa1kXY5ejEIOIue0xHQtyGw8CnX/Tdks3wvR1RtbxJQjkoLNZjDU+aRs9WCaz5CAk8qIUJTbxUaaxNZnOrG4SHxz4ecSRQOjI7uL/f5AZqCA/nIm2pfI3sDKU/lxQvsbXDVF26CTjV1f5wroLTLFXnM6+CJTgQXOaeVeOblUaQMwGZvLnhcg2fI71G1jtNhJcJMZmSx6qbAGoGC4Vv5XltHQ2tmpkbpTUTzrbJRa8d40JxyPESk5MNe6P+1VT+bDdVm8Sb/TYx8uF52RBJ29uZkbN3yLmnfwcp5LrKB/K2RYcVOJZmI0zrl2/dDsH4PYYXmG80Ku1Ie1KO4v0zu1k7P5NgsltQoHDKsV0jwhOoCzeO0zVecCqKoDVufvnPvLkeQqL/K5DKl0SYu/NRFoDXg9P86FHkCoWQWqc7CBWWNUaO6n+6bnjtp764blxJjiCICwubzC8XiE914iqDcbbDYbDKs1YowlFVHwRAS0EHlQDDP0A9I8YRoPmKcJMXnMiofmeQJzUlwhZ9WB1LBvQ1LHfIqICRjHEWBgjjNO44jVao2+WyFOM9arNSSaXSKvu64DO3VaOwDIWhB9wmF3gHMOq/UaIGCzvcA8TwhzDwm9IOSUsR56gDN41ZWuVwTlC5zFcJAZQBSMbEo1AytmeAi2muZZouAJCMFJd1HvJSVuccharKNUS+33KkPAVX7Y9lUaWxJLKw9bXe8RFXF5UcVID6BG+7ORajv8VuwSUGo86QcfiqiWS2N5Rmxedtuz8VdoJ51KmSSdjtRhnjODXUbOTo0obbo5N/8+Nv9GDvH5D2WEVQ4zFT7YvuP8e9GzGZhOEw77PVzoBENNJwQ/IOeEmBJ2uz1uP9zi/vYW+90tkE7IawcfqGRStbOouBuldiVDI9abd5V/jdcsFd26WaDFWpjTxZOUCDLDFoNLZC9hGdXdEofRn2VAtHtAtp76MEfQMyX81HBnsuh+J07sEtlq938EAy3O2hntF/Srm/NLINQvNjaVpykoEbmxpBKzYOZCTPK50pLUOWEwQKnrUG4JgkWvtgoTqyfPquVbZNOsFueu67AaVkhzRJqTKhoZM4A5J0w5SeocSyQSt5ZJbjf3kRnr33NK0pZRvagEaPiyvD6OEygD8zQCaQLYi/ehI8wTcByBlAiMyjBt+kJsLJEMCi4SAwkkUVLZjIe5egbb/WiV1XIGGuo4w0lW3wEs3hUQELROarKxACA2YculJoKzQ0BmxhIwIutJsMjkApBghFweX77bQSM9+E5TIY2OFh+QATVbZQzLjBauzJWXZKrGGl1XLbLW9SvcPLnB5uJKvD6XF5jGI3747j+wu79FnmdM8yRpJGp4Wh7/eokHTTyhRjNW0NF7vzzQj1zLcO+6UTklqWvBQIoaVt7Mj4uwrSPLyihJLfON7JOuXRZ5VqRXpaHDYYfECfvDDhQC1tsLdP2AL7/6GuN0Qhg67Pb3ePf6R/z48s/wOeNqPKKbTgjB4emzJ1ivOvSBcdwPmGPGYRQveu8Z6B0ceXgaZLTERTvJGk03x4R51nbK2m6bwRinUbpP/PAKIXR4//4dXr16ia7rcX19g9WwQr9aYb1dwzmHF8+e4vPnzyRl6XhCzhnjHBFTxDge8eb1j/jY9fj4/iPu7+51/yTn+1e/+gZffPUl1psNPvvqK1w+ucThOOF4GMXDEiMiAM5JwJoa/rx3SDFivzvgcDiCiDEMQVLuWM5G4iR5ScyaUodSPNmi8hqcUU6K7VHLUwE5s84tqbL1UFg6qtFl+zNXIvrkZQbPhyhrqTQWXpbVnK3d1RYpM7w8AyYPglQSQk1kbg2QbYcq+aOk2iQxFnar0kVntVoj54QUxxoJG8Ug2pEWtlevUS1CrgqOBd0Uo0kV3ksbRuWpRCoDHGmxYxZFK3EpGGnv5cwYx4g5Abe7O3zc7XF9c4PLpzc4jns8e/4VnBsQ54zxeMA4HhE849mTLeIIBHePOI3SUeWcA5XzvNwX+y9pZK/xCQKV8TFzjWKwLpNo76fgi7VQOKTlbRec8FLOGCMDzksBeBJDNLRhRXEMKS9qFWCvRYah9REYLDXZQqfGJkkBxDziNEd4kmKUTj2MRkMWAQJYgU3AWQdLTWlhlWuUxVHmLfr1cRT/N7uqUU1+JhjVL8G4yJRlWq1zflFgGUBN7SGqHQNb5fxMYTLjoDUzSUkKqg9Dj5QZQaOPJKJJnj6lhNM8C34y73SRQ60B0dbUplGjpUWeRUSLPmmUHdKIhMPhCMeEeT5J7TUvETXMDjkFxOiQs9KwOdW4KgWmaFur6BilXEIgfR2KJa3e5+M7VHbj3PDavt9wBKjuqcn/bP5X5kJfdj+2hjBFEVnuu3yMCiZox/nYeA1H2btEfihaafQgmxs9+LS03ZYPNzgSlb5Kc5eshYkh2NX7Dp999iUur67FcOAY4+mIH19+i/3uTiIHtBhrbQ1ODT6rdFoK3+rZdiROLGYtiL9Q7NA4WJSvsSp1zdraOSrRYcn2tF2BBiNrDrJhDuSM5Lh5O8EK6zMzrJ4qoUZ17O9vkXLG/WYD4oj1dgPyHX7769/idDwikMPd7S1uP77Hu7c/wfkO3cVTdMRYrXo8f/4Up+2Ai+0e8zhinBMO44iUMjaDR+dX6mSp/A+Gu7PImSmJsyvn2vAmM3AaR6nX9lIKib99+xYvX34vEWpXVxiGAf1qwGq7BjmHL774HJ9/8bko9rsDMjOcDwAxDvsdvvvTt/Au4Mcff8L7d+/R9x0uLtYY+h6/+d1v8fU332C1XuPJs+e4vrrAfn/CYX8SnJei8CpP8FF4uoM0t0hTxOFuj+PuCE+E1aqXuqoxYWYgOEunZjhvdbkyUlxGNBnOtXMPagwcsHSgJlrD9ASuBgAhgypfHhi4HxzKosA2vK95lSxiWnlihcDKxltMvnhS88ylfK/3ffgsmw+45mQwSd3IcdRu1L04V/t+KHwtJikJk1yC2ESpFqUmNGtZj8/S0HQ2h6KItXtAsHpTTjvcMqqeW1LDdT1Tzri7GzHOGfP7D4jIuH76FE9unoNzxNXVCJc6jMcZSDOCY2zWHs+ebsHRwbkjTqdJa0cul1WMJqJgMWp6rZiAGAkOkcQYZPaDegNWmYzi6D6jCICl7lNHwlNnsjISQOSMU5ZspN5LQjSSxHO1GMrWXLC7MCtPYk8oqiAA6gKoCxIN6xwoMzjNOKYZAUAgr0ZgLvaLdpu882rfqOU9UrRGcDUIosq+ppzLX7j+CmOTjqYQSkNDepngd41ssAVyzpUJ1G1QAkQT7YGGVBdAqS5+SpJfmnNGCFKAe2IgzgLGYxZlYk4Zc5LOBBHqpbM5mOD5xCK1jGWx6SbYidTdyJjGGUiMOE/gPAEcQL6HCw55IowTISWRaNY63pihAX+pvyB3j6wpIAyELFExIuyXoW41QJIKgBWA1ix+c9XDrII4W2qZg4cW2tTuSmCAmArzAWqBR0mD0zDnku4IUaoVjOSzdSWq4ykGGKhVlywcuu77YtBk724JC7UAZWNAzNZPsMERGTJXzlJszhFwdXWN65vnuHn+DE9fvMB+d4+72w84jiNyzphPCcRAbwUiofTZtKtklnsTS/S10LorwPOxqxTBZJRw7wURKtjJ2cK8gRhVAbcOiwvE1LA+tuXiEhlgi59yrgYcPVNEVDp1HI97HI477Hb3mGPCsNrg17/7B3z9698g5YRuu8FhlLpNf/rT70ExYZxGrOYRITg8eXKNzarD4BPGbYf73RHT21swR3Re1i74gKHvpY5IoX2UMzBNCd4LUHLaVCDGKDWQJsbdbgdmRhekoHIXOjx98gzr1QbPPnuOr775Cuv1Gl9//TWurq8RU8I4z5jmGa9++AEfPn7ENJ7w/t1bMAP/9q//Hd/96c9ipMgTgnf4L//yL/inf/onfPHVV/j6m69wc3UBwgHzLLRzmkbdvwCA4b3shneEFBMO+yOOxxOIgK6XmlBmbMrIQBbPZNDi8ElDWI12QFRJXpU544+VoitYr3yz4ZVtXbvmvfZziZp7hD4f8nTj0QsSrQpZoT0jvnqDxyKYjO7E0EEo6XYsoLBGNQmIXJwPkoKxMdoKsRp3OwwreS3lGZykrgxiArxulV6uKOgisGuWSI3YeThbWxtdtbKWWvAWGunW1s/h+hlmMTaNE+OnH9/gT9+/xJOnT/DVb78GXATB4+ryBVICxvGEeRrhHfDkeoN0YvjjDnGOKDlAD3bOEKsptwx2UucuMSFmC39ueYUaeLTmS1sou+jZ+igHIKi06QhaE8AhzwkpJ0k/9qGcZTMAmbGTGkUWahAJ3qMLUtw3qcfehwDX9Ro6D5XhEWPKCGBET0hqkF0W9pZds/bg3ns478SYMseicGQmnJkT/64XFV2k9cDbCUNjIFDPAqzukTar+ASGsqikYkzVlyqvV+nJ1WFnRbkBqb03MIBpBo+zNG3RczelhFOKSJL1CONJcHbMGyy1GJVdXGVdibdr1kO9sKfTCZSBOI+Squ0kKjYzIWePlDxykwIHk+koyADW+ZFZOvSlDCRHhRcKBtCi/tyMr+G49s0cN4Z1y7uVrlOqxqaKcangq6LoFWynPFHT4+W1tsAxNWNSg3CzUMs9V6XIRs9NCQHD5+3yc/0ZbD9QwX6yD83HlF6W8zZeLApz8AFPn36GZ89fwA8OYfDY39/hw8e32B12mqKqNcqCYZYqxwyz2ZqKnDNFh+C1uojxlMVpb3iL6TmLCCfDoNkiki0Sj1r23UzYzqFhTH0mZ5hLmQiKR1LpMswsDtjeS/rx4bDDbr/HsFqB04z1ZoOvf/Nb/Oo3v8U0TcjMuL29w5wivv3zH0Au4DpNAGUMqw43T68xnXpsVx3iNOJ+f0B8N2LODNd79J0vNbJqeqDiUMWIYZ4xzrOkOU+17EgcJzCPuL+7BxiqN/Xoug43NzdYr1d4/uI5vvrV11iv1/j8i69weXWFaZxw2B0RY8T724/Y7w84Hvf44fuXSDHj//o//0/8xx/+gBAcNpsewzDgf/nf/jf8l3/5r3jx+ef48qsvcX1zDc6E42ESp2dKYAAuOTnXSdbYkysY6nQ8gYikrpR3YkxiSCqRNoxwqminOWl3TTH6lqhjNsM0GtpA4alkxqbG6Gm0VX5ua/oV/tyczUK/P6NMFlpbvl71ILs9tSSJ9gguIqwegQDnBqcSPZOrcd1ejdott+s6rN26ZDMkxdtzitqIC0gOcOzAzpWo7cqqqg5fB/3zS1AjaIXhOOdAWTFUrg4R+xkQGZFywm53xO444W5/i4+7D3j67Dl+9w//gGEIQHJYhWvMUwJyhHcZ61XAzZM18gTk4xHTNC3Bbd0IXVZjlqqTy8JKOR4dL5/NkaAp8fww2nbxHoY0RyMxmBommtVB0rlqjCklZx4Zq+F9w1AW2GB77H2AD0FqLJLThhsRY2REYqy1TMFy/jbOZWAQOSdGR5ixKatNrilrsRAwP3/9cmPTg4VsBTEDXAGUgdWajlI/bsy8UVkKCENRnNCcQC4HxoBsfmQzZIG8thWViANT3HJzcmsxU6pT+BSRnP+90TUav6MU0MwZKUdkjkiZMMeMaSLESODc1N6BGQVyuwK2Mouvtrt4PagogIqzeUEhVkdjAUXREYu+GEVUWKYkAthqRREgHe0JVuidwaBcU+iWQMfWRZU1RSnylppOcS7PjRZEQLty3yWNtGCAysdZV8s8dgpbqtBoQUxRvY2MbBGpHCJmxmF3LzVChh7byyvkmHBxeQ2Asb+7BbJ4sRArsJQbiwfOWGwry1pCOVfaHxM0JS1kYRiyuVVJY1bwGl9V5wlHcNymkVblA7Bw/FxAcPGWNuergGY1hMY4g6YTdncf8fanH0DOIeYID4ft5gLPP/sCgMNqvZEz570yuU660sSA9WrA1eVWohDniKhda4KTKJOUtXYItCYF1CvMkDommcXIyhmZveZ853J2cpZQ8ePpKEbn24B+1WG1kmiX3e5e68uFYmgDEWJKuN/vxYiXM3zfA2lGmmZkMO7u7vDq1SvEnPHtH/+E29s7nMaI0yT1MCTVg7Far+CxRnKE8TTCE+GwP2B3v8NhvxejZjEs13UXpa89J5XHmAG6KhdLlfhTfIoL7DwDJZ+4ClhYAKZmRITmHkW1s4edf+DBWNho+tGx1NNpyvDyxp+6mntCm0WkWICl1wK1jhy4FIO2M6DApTXAPViUOgR+5HUzRRW+Two9SIw1GdUZsNDtdI45JcSoEaIaTTAej9jf3+Ow3+F03IHZw1FG13l03ul9xdGQtAuR12ggFL6Gpg6OAhuyvq5ySfq41VuoksbkoPHgAiAW+2/KnIaCa2QTJcacCMnqCrKVDVl6PWtka723CThW126BLZmR5ohMpB5Ne7iTqEIQIqPUIrIFFmW7Jc2sJVVamqJmY6n5+vtdn/KMm4F1sW4qWwsd2xc3Z1FuWj5bZ0ULuVQUKDNGG3A8Pw/kQN5LRSHKZcm4PLPW8mmd8KxzKxExeGxljUMRrLZbmz9hkVbW2TgnYJ7F4BSTRgQ0cy+KoGKxErxXFD8A7TqV3xQTZu0WCdb0LpGDgom4Lq0KezOIyDgjYswlslHOjtNufNXo3/LINrXFMG+Lp4TdGxGTFn41XNyYSElxHpu1r667GRrbe9vEZTiqsDfn3HB6+RybPGl30NLi6pKmFHH38SMIDturLS78BRx5XF8/hSOH426H/d1txe55qaYt0V072opvoHzIojTKaEw55OXPizu02NLuV/aiPtEwqUWcmAxujbo2fqutWYxS7QPJaiiK8W6eJjgCdre3eP/mjXR/ZMIwrHBxcYWbZy8AchiGFbxzgqOch/cefRfgkZDSgMvLjWJ2SWMV/i7n0JosMQORGJyBwA4ZXo2tGZRtXr7wYovwkuLeESfFUN3HW/SrHsOwAjNht9vJumTNFplnxJyAGDFOk+CuvsPl1ZWcaSc85uPtLV5+/z3GacLzFy9w/fEJ7u+PuN9pR3OvPC1vVM4xDrsD4jhjf7/H6XDAeDoCzNIRuIYeF14meNUVgqx0YETqGhpr954KfbSXYZbF+f3EVZzODf9eGNGVohtIBQLjsVu276nzkDlQ4SMLeFLfz3j4Ai/XY/EzAdAAgsQSxZLUSAeIM4O19mJulHI7Z6Ku5MX9iuw64zeLoRIJFge0rh89eN043rkuJNjJop1ysx6Ci06HAw67e6yHHabxgBgZzgN932FyTpy8yZwMMlcrcm0lUrgMmQu1OJUp9loSqCKlOlCjT8v42y/bB+MfOh1HUkcxOIfee0TNEMpLbgIz6AEota6MZsttDfsVQ1l9f5qjuDHYCufIfopJT1Lr7OSUETKXKNZyX8UJusX4NG76S9hdrr8usqncmstIq1JUJJUQg6eSMla9kG0aWBXoTqM1tGyuYmmdrIV2p4QYZ8RkBpNUvBaAhJn3PcGB4V3SNs+Sg5yYS/FKISQdQcNwWsFyfi2NLVrcGq6Esc8xglPGPJ+Q5gPmqcdu5zBHQooOnPxCMKYsaYAgKvVGcs5gsmiPkqTWAL1KyDllxJiR54Q8SzFXhtOCjLk5BBJSbcpWzBmn4wlzTGXPnCM4ks5sFv3TaktScKwhEwUrVvzMwIrIaPNGNR7kM7pkMDiZJ6tRcHyN0nAKaq2QpaTFpPKZshtMC2ZX/QtsT0LmSpvSgSwgxYiX3/4Rznc4HvZwJPUHfvvbf0LoO/z46jv8+Y+/x3g64u7dO4zjHt6TFPQ2A5erAOiMdZYzUVkVCm1ZZJ4poAVMoZ4lKMg1WSoF8+v6wXZPGYjzToWlRlrpujMz0pw0oom1WHsDbiGdhhwkFanvpeDydNphHvf47rjHj999i9Vmgy9//Ttsr67xxedf4/LyBilnnKaEOTGGYY1uWMu4NhusfMbFdoNnT59oCtGIeZ6RkgCWzLlEHGUAs4bRhpAxz1L83AWxqvvOwc1ibPJRPiv0PyPmGfPHCYDD2w9v8P2rbxFCwOXlJVbDCpfX13j+4gv4rgNp3aTjNOH9D6+QkkQ7Xj5/jnk64bADUpzxpz9/iz/84Q+4ubnBj69+xNX1FS4urrC9vBKvYieg8OmzpwjPPwNPPT6Qw77v8cP3P+K7b/+M0+mAaTxJlx7XACSYYoZSv2GJ6dUA3ETsPThAi8+0oOghyFicO6NVKndZvMZstItCi5UnLsF8a1A5ewoAlMg9FMX24TlYjr9V0JZTNcDBmsprHpZ5lq47IUj9rdWqQ4yEOM/CfUxYQ7p7MYun2rouulbhK+9VDlIAX7MmZPymviRddfSc5ToHKzrLDHAmpMSYxhHjOIM5o1/1IEf48OYtkCMCDbi6vIEPA0JY4/p6jdO7AR2L1zfOGWmcpB13r91jNMrJ0jCFjzh47U0FshSYjFEdCFM2k0E1RjkF/sZPWp7V7psniTUYvMPFqsOcGDurw0GEmTN8dvBOWg/nnKQuCTSKFgK2hIdCowN0XfVvcUqIcQITIfcdoIWPsxf5MyotDpAIKwNKVgRcom0YHFmBGevcUIBz+RRj8fvf42piOUq9SkOOLU8uh4BIG0UoGC9NP+ohWRiZ2p+bLyvWnqJEhEetMZm0FIGdZh88gpPUBuIJmZMa+czLq7jHHgxd76YxQPnbzyprqg46mRNAmOcZjoF5OiHNJ0wISOhFMeUAZMNQSfGAKNOANPwgqjXbZIAaBsVQXFP5H2fGHCdM8wziDk58zsJrbAfYnKAi85NGRaeccTxNiFGKJgdtBY9Oouk41xScsh/UFMhf8FdfxtTyG1uhsoQl7KjSas7aFIQqZbXRrhblZE1SpI24yZ/GQLX4h3BuyBbES7VhjH5uPBzx7//Pv6Lrevz6d7/F7/7xH+FDh3/6p/8KcoRXL/+MP/7h3zFNJ+zv7zBNo9Z41KLbNoKiNAFcbAfURJNXzGNrYjUUAZTSDW10mC0XOaeKoeLDYlCS+znfnKOGPlmFNEMckzGmgtmiLiIRtJA4ytnoOokWAgOH3R0OO8Zhf8BPL39Ev1rh2Vff4PrqKfBrh/XVNVKSsgE5M3qN1KacMFACZYfL7Qo3N5fIzBinCbPqPVGjvqfZolCAWQ1PfiKE6JGS1K+UdHIPP0cxSnXWWIYxJ6lxM7//ACLCu/dv8d1338KHgMurJxhWK1xd3+DzL76EDx6TpsJ6Spii0MiT509xcXWF4+mAD+/fYZ4n/OEP/4Hf//vvcfPkBt9/+x0ur67Q9QNCJwXEtxcX6LoOz549Q+AXmMjh8GEPgPDy25d48+Mrqa+5JayGAaHrweyRmUTn07IF1iQgQrC0cw7sWtnddkNsz4fpHUIP5oRdpH6f8y+zPDRXsYHKIVGdnRfFu8+Jq36GVONvb6rlMjjry8vacfbZ8hrO6+5UAi5/1/w0EzeAFJ1OyheHrkfOAQ7A0PfwzmGOU9G/OKthMyY9n6kUYSvNmFD1QcNpsrpLg68so/xsEJGgdgI16NqBJmVFOUljsDhLnVjmBOeA3gdQZnx48xoeDJ6BzWoLQkDXAVfXW0y3PeZTQhwjaJ5BaVKe3Yutk+q+W5d7Z0YZMh4gRt0TMroMDA2Ptc0VGV15fZ1sg5NJMIsnYNN7XG5WiIlxnGfMMWnHYrm8k4Y2OWfMTWQaJSv7IA+TSFMtBq/PnadZ6g8TIfehFAFPTspVzPAIIAQYi13i8qR6ipUdAEvzG5R9bOpzAhAu+T+4QLgtmBmaFvKxCI4C/+RvC0LjApbKp6hRfs6Akn2kGp1qiCM3DMEsyibQRYlgoVSqYab2DOMNbWRSHc+ngafh8Lbmk+1V1qK0WUPWUnKYZwb5LPXztFOEMQEpLCzzIu/LA1ofz7neVZbEFLhcvS3F7mFrkqs3iBUo5mLoyKWFu65WZVQNk2q7QZWoJAX1VL5sJZQCaJmG8snltD1v799+L/upIC3LHKj5r4Kheo8WJHF5f0Fs5aDmzDge9gAcDrt7nPYHOCKs1htsLy5wf3eLYb0Bs3RsEPhF9b6EhnYqs+cmuq/u1yfW4FN/b8+DreeCgdnrxugtZFbowqGugxmcalRge/Zcc0su50eMYBK9M48TcrrDZrzEs8+/wiYlDF2P7skKMWXw/Q48TvBBDDnJS40iil7DMAPAjM47zHNAjBEnx6XYNiAeFmZNl1CvYU4OIWUkEs9zYI1yQgJZgT9qajtlYJpHHI+SQjOOJ/RdjzklrLaX6PsB/XoN3w+IKeFwklS44Ht0wwoghh87ZM44jTvsbu+QUsIPr15hd3eHm6fPMM8RIXj0fSdd61YDpstLcM44hh7zFHHY77Hf7zFN4ik0r7dRIz+y8fUcmYJDy9ewVA7qN6O7BRWe3bulw+W9H78q/2kNTeU1boH/48+x95rSt/C8nFWCtHubTaN69dp7Gy9sjTnQcHzp4tF1LDXyssoAbZ9tz61G2HqKG06LcwFq71h4w9F4mxpN7OeizWyCIreaUP8g3UinacRxf8DxeMDpdEDfMUI3lELcYAi9W9pzYT5ifKjpVvUSr6QUo5QTJs4Ga47hi+w2DlaN48a7HgPbRm/eiWcOyAVsAlTSjrzyWKqhJg/WxuSmVUUoT8iMHJMUdM++Tk070Fkb30XAUuH3De9vhX4z1/IcXv7pZ+wif5OLK/KXEbWDOfuxYih6ZCWX86Cz7/V59eyId7h6iYvsV1kiab8ZyFQwSPXaW2SN7qz+QA+e+Pi5INg+NbihKB8Vn+SUkBwhRYnMsOKqsLPPdqYqVqmSvkYZcEMb1VMLWOHxbF14zFgJ4xc6ayZtYlEV0eJl1+iKrGmohYehnh1iO6sVC9eVXPL+ZscXq4UFwF9iVWZenJ/6nEo35sjNOh+yd36Kb5k8segzIoPSi7HlnLDb3cGRx373HPM0wTuP7eYS/WrA7e0t+tVacJvbKx09RhGor+jePiJOFr9UudFGizw817bG8tNDHt8qjbQYSs0GKFRruLtaAEvdH7NDkCN4L0WV52kWeo6M8Thhvb3AkxdfwjmHYbXG5fWN1njcYxonOG/RTWqQywGBgE7pOgSHKUoR/RGihDMYIIZjhpTKYzWoOTjKSB3DJTUXq87B5X0JrHWskqZVjRPjcJCuYOMU0ffSCe/y+gm6vhPeCwY7AlIEqZN2tVqDvMP97h4pZ+x2e+zv7xHniCevXmF3f4/19gLrzRZd14O15uJmtcJ0OoHgkCIhJ8Z+t8d4OiHnCGwGeN9ENil9Zs7aHOScTB7lkIWPLjljg28a/vhQ7j2C5ZXnCb21NNi8cUFY9p7ze8vr3H6Om7PQvl/5XzFWmbw+e197zh4azIwvio7oc9UFvXZ6Fdxe+Qa39J9rBP2nkOSnZVSzjiBZt1zXYHm/Ogsba9vYQviaGHimccRxv8fpeMA0HeGoA5GkXhJJVFOKGT5n7axb+a4jlELatu6VVpbcKWWGt5TsMi/Dyks+fsbVyh+NC3kidN4DxKCYRJexlTWZ2tQwtr0rG246MBrMbPIr54KhkD0sSteifxmS7VIj3JtxmvwC4PQs2NaZ3HjsosVNPn39YmNTMTIZgVMbql/Bd5G6reAsOLCOqChiZAX2aqcbar6XwwG5d61FYwUYdSLBI/RiIXV5AnIqnt0i4B8oUFT+/jDEvQWD9e3Lrnl1mgzGacr4cB+xmh1SmNGfxJMbtBiwdQlKSYp0AgBThnPGRJWwk3XgKTfHOE7Y3R+w3x1x2B+wP8wguaGkUTlWp1Sdo3Ncfjar7Wro0fedrq+ETHbqlZOoKL/YTjvYAErrWXmxZYq2t1ZkrT63LqKufzlRZ4xXx6I+XGFAVL10Gtxfid4e1+xfZrP016gF51Dq43DdcmQnDOzu43t898d/x3q7Rc4RF1fXoMz47W//EdM4Yj2scHf7EeNpj8P9LZhz6frUEocVj3QLuqlsp40SkNaWVfk3bygDtRAn1wiJ9jxVWqyRL1aqwSq6WCRgVpebRUDZoElRmHSYqgXr5znqvmUFIRI9mHZ3+NPv/zv6YY3N9hIXV0/gQofN5hIXF1eI4xHvt1fw5HA83UphX4hiChCCh7YTJYQkxXs3wwXW5BETcJgdUgb6JPWpcs4YprmEbk/zJPWSTkcp0B0jfJhljNmixDRizDv41YButUK3WaFbreBCh8M0Ih6PgAsYVluAPHo/IPgeKc7ouw1Sithu9zg9PaLrAiI67E4R49sPeHe3V2IXj/LNkye4eXqDEDqsNxcIocPbt+/x4cMbMCdsV0C3WqHvgraDJ8AiBVjOvwEgOV9VmBqdFoqxf0yukB5zrobvx89UC5S4CKZyDOs7Gxr71FWfVH9vwf35Z6kIqVbB5OZDRGROsgXgWtoJjA+I29vaGOfMmKeIlDK8DwihAwPoQoB3blFjj7UegLOUrXJPNWhrm3NrQw8IX2Vwya1fXCqUpYvWMrS7hVSM6hzJnJA5Yr1e4cWwhg8enIHj4YTd/R0+fniDrlsh+BHerXD74S3ubm8RT3v0yFgNXTEGM1gL1KrnyQSIRmGYw5RQ66FlAJN6EwcHBFT5+8ntbn4wM50DMHgFTJ3DDAdkYMpcu64IWtLUxmr4I7JUk+roEZ7HADVgnwGXM5iAQATuegCMlGZwEuVqAhc54b1XxU6jjr0avPQZxYWhCnrKRkO2d78AKf0PuEr9D0vTKq889tMCQVWjkL1G0OYYy/e3dQzbDxTvaHvPBhdJdKvHynswJ8TTLPK0UdKKg6OR+a0RfAFGG1B+Pq9z7iOiPCNxxnHM+HCX0HUEPySQB7pA6IPcoRY9ZkSNDhe5qzgHYoxMWgQ9l3zLjOPphLu7jN3+gHGcMU0RjiM8YgH45+ehGI4g0T3whPVqJY6dho94L/U4HQgW4V3ovMGXxr/ayRfDdKsQl79XOV95NDdfzRo7wTv1LqaYCObwC1o5d36oXMhWr6jydonidtX4yJZaI86gD+/f4A//9q9Yrzf48le/wfbiEn034B//6b9gHE94+f23uLv9iHk8YTzugJwlop+WqmuJAOYa3d7icHmm4lZrwW3LVQyJVs+pNm6o82xlVnVsKrtCEbqgWt9LZabT6AuTnY5cOWu+NEdgjLPiEk2OSXEC5hlTnBB//9/RrVYIXY9+NYCcw3a1wtX2AtPuFsNqI+OZZnCeYVEfDEZwBHYAeQfuAnIAutUGTB6JHSZ4rW9GyElqpI3jCTEmnMYRp9MojrbjSfBTSvCdGJlYGwXkHJHiDB8CttsLbLYXWG8vQMGDndRTipmx6npcXD2D9x1SFGPAllb4nAZpwvL8gOl0RNd1cMMGYyYcb++RP9yCQAjqTLl+co2bJzeSssgSpfTxwzuM4066+IaV1mzyRXfI6qREAlw0wyrDB1f0MOHnXve57nuhJQYy5SVvbdO0jCaaH5YR5EXVr46Plv8VuWoyJxdcs9QrH/JTKVCN5lpy0cLFbfBODIiFdAuTV2xoWKuVcfpjVnwtTZM6dNQBIPRdj+CDWiWMzzQZM2VqhqHEUCrGCS58AvqzlZNoPl1wVjUmGYZC0e9svay2bfCCOULYYr3dous6xCnj/m6P7cVH3H58A0cdxn1AnBzubt/jcNghz0dse6DvehCoBHqgmY85KCUqXh0vzCU1OoMRwZiz6G6eCEH104o0UJlmy7fOttETMHjR20YPxCSfmVNGAmHwTpwrTrNWeEFO1T5SqND2aUnjTlPwAgh9J2brmBOOMWFwBB+aEuFKpxYxirImWD5H9zQn+TlnPqPXT19/dRpdJbi6AkuAncvPduYY0APVCEjypUaMNKEwxmHdWvT2xjsKgaiHeiFkGKFzWPcDwBlpkq5AUkiuWkPLmsgpXMzr8SiAM2He/GtAuTAsAo5Twu19wnFKSD6iHxyGwWE9NIKVJBQ0RjPrJoh9h8o9zdhEJMIFIEzjjP3uiN3uKJ0dDhMCRNA5lgPgvBnpTDFTcVrWDVgNtbW7RbeY4KZ2f3SzW0NcNgUHwKI+ScOI2Ri+7l3Z7iYsOjes1f5WGFcBR/W5NQy91m2SgS/3zpV7m1cOKOloqLzTOfMQMO5v32N3+wHrzVYKh988xYsvvsJvfvOPmOMMcg7rD+/w4d1r7Pb3YiVvN97o0GoiaRhiy4iXQkbp3NlMpf6BKLptB5Vl/nKNRDLgWefuFUVaU40ElA4ChX2TpfzUjzvn4H0otB5j0l0ReplTFGF0OuL9u3fIMeOzz77Al1/9BuvtBb64eY7Lp88w7nfYbC5BDIx3wQYmXZ8gQoK1k5APQq9hfQHfrzElAh0dYgJyEuNDzox5tlDxCdM0Setg2mGeJ/g0w8cRGRmZZ2SIJzGdRrD3YmzarNCt1wjrFYgcDrd77PZ7rNdXePLkGUIYMHRrdH5AzhnrzQ2YM+LNjBgnxHnCYX+L8TRjuttjmkakGDGedkhpxsV2g8uLCyl6vtoghK4Uie46j4v1FVbDgC5IPStCYxhTpm5CQ1LtDEhx+a+Bw80RYy2dQuW8VcWiXu35eTSl5RMCoqUP3UY08qt9wuJ9OHut8tqKghpqXnwv/F3fdT7cqmzVAWVmTNMM5xy6LqLv5dx1nUTTpVIcVjw9WdPnBEtQqclBrlFcrGgYUJVCrvzFJIJFL9RIB67RpNTsIHPZ75wjmCM2m0tcby7BzBLZdDhhd3+Pjx/eIoQBnZ/gaIWPH97h7u4WPJ0wbMXYJBFKwsTaOk3mYUfjAXZqZDIgmzNLqgWkI4mlajY73+wLPvEzwRFjcGJQ6oKk7eXEmCdZuw6MjgA4gnfSUQrWbQ7GjZZElnVOubE8UpYI5RAcqOtKcd6YMhwzRmbpUOeFz0iUoyh4gZwqaSpP2rMAlMLFnBgPiO1veBk2KvWUqPyzuFozmb2/mopq7Zumd0W5Xe3o29y5HOB2rly+HISGuuCxGnpROmdX0q64PXv27fyMYklPxSv6YG5VEamzVzDP0sH09j4hdIRujnCBsRpILKRA6aiashinAIJDBDkDGk1NpixF4e1Enk4j7u5H7HYjxnHCPCUEipjdXLFHoRX1vvMShwTn0HVVZpaUrDMs0v7croMcW8NQlfctjJ7KM4vhuzQFqaC4TZ+hds+bfafm2Y4I7BoMwZVLc91a4Y8l5bA6fKGddfWolnPEAD58eIO7j++wubiA8x2ePJXGK1//+teYpkkiKvsBu4/vcdrfI+ck0ZEqxyx12boTkyoBLZmZoamOq44X3BQDBzRlstYzsinX6Ba3uIfgNHtQG7Eitd+IalqiRRtYsxwz7sveZqRZxyAbK9hulPT/1+/eImXG02fP8fkXX2K1WuPm6hqbiwvsPl6hX22Ujx3K6XBaDNscdgQCugCGgx8uEfoNEgVMGOQkUwDgkVPE6bRHSjP2+wN2+z3meQbTndRbShE+ibFJDjpjnkcwM3zosLm4xNX1E6y2G5APYHKISJgzY+3F2NR1A07HGdMY0Q2M7dUzWfcUwSlijjP2h3tMMeL+9h73d3dIccZ02iOniPV6jc16rdFckgrbBYe+8xiGDsEDfR/UCW1rnOT8JIbamgECXLAz0xoXz2UaikHaKdCpEY/V6GEK/cL4C0A9pg/4mmEmxtnnGiJtI0mNN5I25ymBnkQik86wEivmKRxzUShWfn8MM9l4uJlrcVZB5O40T3BJikGbLtB3PRgSZZyjrHdOhMa7r6Kr6pHUGFyt8UE1KJmD85G9UJ0p63kpfFX3MDc4znug6xy6fo1u2AAgxDlhN+9xf3GL29s3cAg47QLm0eH+7gOOxz2QJlwMhH7okJPgBOF/DX90mmare+cgYyOIkSlBOsPHbOVfUNLLKsN9CJyrZlwvR0AfAJel2YqqSZiTlDQJziEoNihGvJb9N1tvN2/18vIcLZ8QvAOC1DSN44w5RsA7dE4xRB1u6dbqyC2DQc9ke5awSMHMv/D65ZFNbAKoTlCIrv69PXRFCccSXJEtIlFhIuZQsjaUZK/R2f6hChrbZ6k5ZC0s5YHJGJBz6PoOLjOiCtecpXbNY4wIaMFCPcCPgigDJQwRkBAgdBxnMDnMkeE6RrBCfVSZRi4KTJ2gGEes6Lasa/AOwypg6BxC5+Acw3uUfGUHD2JTmsxjvAR9hQmqVtqeD2r2qcKiBgSeaZO2d5UW6s9286Jm2oOMPzXjsk4JVN62tBDX/VYjYdkqWpza1qhVgJ1aXFoFtWXErfLcDBvMGePpgMMuYH8vqXTM0vns4uIS8zTi4upGOg7OI1g79LWB8UVI2UMX69M+1+bEsBWrtlRefGa5DVXhsM9R+6YCQJefJecUkD28Zwtai7Knc6ohmlS2c55HafGbIvb3H+E6j3ke0fUDYpy0cwTgivee1OPq4AF0nYzbhR4UBgH4aiR1BCCTtOukIIzMeZAL8DFimhPIBVCclNNnwPUAZUxhlvd5h83FBS62G4Sh1/pkWQvpm1DUjkAZ4oFUBUZsPQQiD+cCgh9AcBJCmxggh45X8KmD8z0yk3RtmmbMsXYvSdnjcOhBYPSdB/e9roEYmEWpcSX6goBSQNV4ZzVcLK8HHIvb97S09um0ucf1a1q83pLx2eMaoffzBqdW2NqYAHxiXJWuzUKyDE02/kJSALwZs3W4EeDPhZcIf26EiCkYBSTZ+PUUqxxhaGMFnBfKfWTF2GQJoKG0Bee2RuN2JZwWvLb3pJgwTzPADsiTGE+QEToPZimoX1I4zgDMMrnKxmsDaF+BGqo0qrPh+0tasbk0RGB/1bmRylJPQCCHiIxZH9mOs12pKnNYf6d2xyVS2jmwWfJJx9XIV+h2im+bFzSwHGizP2dyvHWQLJxff4frUa+5jbWVHfQAlhc6FD7JBToUrMv1d2cA9px0W/lv8pLMM80N5lKeTw7OSw2MrPLDokU+ZaRbyCMd+6Pv0UYbAEqaDEMil05jRMcE17PW8silPlPOZsq1OZydb43yI0egDATvsFoFrHqHrhMDpnMkDS08FacPnfEE4wtL/YFwjlLO8alRNC3+Vl+z+9rxNINWwV3tXOx7C4T1mzkoCg2c4eW2oAEVbFBHaJcpdWjwoRXQXcy12e96O/tB1pVzwuGwgw8B3dBhe7lFSgnDsMKT6xtQThgP99INK6Vlpy9YhR0uoqDlc2dDABEWE+HFm/kB1VHzg/FtfkR+mVm8puidSdfFOuh66t9KJ9LFDY2PVlk/TyN2Gum1ubyA7wJSTgjdgNTPmA+EmES5djD6VKcIOcB5MBzCsILrN3AIyGpsYjiAHch5dJzhUo8hS9HwaZpwGhOYAnKO8HGW2Wr9r9AFhC6gCwHrzQar9RreB8xxFnmYBRsBTmpCUdN5sfB4gnMBkvpM6LoViGZ0/QrdMCEEOXecE7rQAS6AiRATgyhCouYimDP2+6OeVY9ODSHWzEgyISR6iV2TDZDONh7t+Wr2mwrKXRhhuOwXN00QjCDr3j501KDoWva3llOUc/+Q89dHgOtZNzozfK5jaNWt5dOVduvNKv9odSJAavzmJT601GK7r429zhdqjBGe1WKodiCGzyqDk7vZZ+siPSI/uM7Xfrd9rdijptExSwQfWBr3zNMMR2KEZJZGKr7zAHmAaoOkZtKLUdSpGParwzTckdQg3mm3zGaSy/1o9b6z34nFGehYIsS9s1p/Mh4xTFoae8UMD3gyGt6u3x056R3RPLfgJ0iBcEvZy7Zn1O7343LdzsW5VOef28+z669Io9MrVysbsiFPZaZLuV+U1VZoei96YvCaH6rA1RGh81KlPXhfjEjVO6SREkxI7OCdFImT9AknFs8ggGgmqVXRrVa4CmskZpzGEXPUzlhxKoLkMcXHQIWloZU14BoF5JwU9gYzMkmnoMM44c2HHdbriLDdgH0AKGoBVBUUsFpEnQBDkq5D5JyEyLIWf2TCZtPjxWcbrAaP62vGsAZWa4/tdgNGAscOOUn9j6B1QASMOj23ckAdObC2ny84AgZI0OSG8gIdVYFe2VnlFwYMqHlVPui8fC3K+TfvoeDL7yaG3YKQlbmQrwCoLe54BgQEHMi+BRcMywGwulYW5dP2aJLvwXsMXQA5xoe3P+Lu/Rvsbu9w++EWw2qNL3/1DT77/EvcPH2Oiyc3OJ2O+PG7P+L2/RuhW10Jaxn5gGCKwakKCxu7/NwywQXrK2fJwlDNK1r0WQZAXuqkQL17am2uir2Ez0v0QFYarp5YC5tMWnzy4SUgZ1j1ADOOhzv86eM7dMOA/bzD5c1TMAVcPLlBv1rh3Q9/wjgloCMMvZ35Do48mBwGJ16y2W2Q3ArJau0koRevm9cVACdpSDFG+OEO0zRhmk8Yxz2cA1brgNA5TPOkBaMDvvjyc1xeXuJ4nPDx7qAeT4bzPbzv4V0HTwHzlDCmqELNgAcASP765iIAYAzjCeOknVS0gKpEo83IKWN3OkmdkRSR0gzvCKfDDkOnXfkutlK4/GqN1bqTQrxdr+lPwv5TAnKe9RkoXoUa0VAgD5rg14bU2jNhRtpfUqepFbIVOLdY54FeaUCj/FqBCbcfIirdNM5BOEEFlRnYVeER+1ADViDxIBYhCO/E8278iaTD4Ol0gncOQxeUp+pdyZVC006BkoF3ixaU+Wn0pIKqrONZQgYq/GqBQuxA6vusJk7OCTFFpBwLoJXz4AHtCJojYxon7Hc7hDCh7zOcHwCacfVkizwH0OmAaZpgkVj6lGZ/lgU77YWqX8p8xpThwBi8q93ejJO3yqiNtSUOwzzMcFmiOwcisPc4ZmDPETkzppgQNM3YF2W3xQUqg7RxA+kSQvdY5LnWuGItUpkFMM1EYO+QkDGBEQB0LCBGuibZOVHFjFEbkrBRXd2uB5G8f/PrwQlooGPrjGmwpZ4bp/LAkchWIsA7lihdSMQFKYbqvNO6X6YY1CcWgxShpJD22vGpCzUKmJwDvMewHhDW0tFzfzhiniI4p5Lubfct3xsjCQzEUsUazFRSOkg7HwEk6Vtg7I4T3rzfYbUa8KzrsHIeNGcAM6jQrDowfJA5OU19UO+8AHYxgGwvOnzx5RbrlcdqPaHvI4aBsVlvAM7wrlPlhbT5wxIfcLZGKK3jqNYuebC3je5RkavRmaZ+atZrqSxNRbUpfJWcL13H7E7qCwHYaqroWJrueSh10AhWccV44bmhuv2JkYsiFzptp525pNWVSGvrPlz+lTIFQ/AAJ/z48s94/eNLvH/3Ge4+fsSwXuGzzz/Hr775NT68f4OLy0ucTge8+eEl7m8/aocm0x1cxa7LQaryVYVRXg5/qaO2+lmhl6qTFN4pJVVFbdR9l4i4mmK7cP4tfkbhm1GLh6ecETkVPCtbTXBdADEwkNQI29+9x9tXf0a/WmFKE26ev8DheMD2yQ3CMOBw+xqH4wlD36ML4qjyzoNCB/IdXL+V78NT0HCNxB4+dcgsLeKtnlNYiyK+uRJsMo4jXPcGx+MBKc6IaQRxhnNZivw64RchBDx99hk22y12+wPef/yAzIyL7RMMqy2IPY77EZNLpZagKL3WNl0wjg+M0K2ROaEfNlhvL0EEdMHDEWEcRxyPR6QUcTrukOYZaZwRpxHeO5xOJ6xWPVarARcXW3RdwM2Ta2w3K4QQMPQDyBFSjDJvrZlbkYiW9WDDvR41Q0DxXvNuM5wW/EwE0gYNLR0YlvnL0kMxA0mAgNyDSrMYAOoLa2o0kjAHi8wEVSfxwvjADJSGUjruopJRxTaUQGa40JpDi1pAqr/FlMDzKE08ulAcDzbDYpQHFyep0/NqChdD+JYniaKxZgP1acbj7Gcun12onkXHq1/SdCGhNHhxXho9JHHWnQ4j7m/v4H0H5DWADqEHLq634BiAdIdx0tRU1SstfbLw2IbXmpNL1lmGmAAcU4LLDO+AdTE2t8vZ6MMPgLPNLyPkLDzBEVLvMc0Zp0lScIOrGMBuJnZmG5vx4Ir1i/PO9AZmzJpt4xzgWWp4RueRPCM6IHJ9jsOSlmtWTg1C0Hr8cv+mwHuVmT9//fVpdO0/tPhrMdIYJjCDm0EnIVD7EiFjgMsKZ3kFIK2hqSxAcw87oFZEeuHN0y/nPLq+g89ZKr7nn1e+Hksr+NTbiRw8aRcwJykEMWUcxxnkg3R8yZIOl1gBADdAu9RWcJVYNBTRkRT9DsFjvemwXnn0Q0QIGSE4hBAQAiGxV+Cha1YYghofCqhuQV+BUWVNbYfK3lIFpe1+21Y2htSyvw3GKvsnFhKgGlxs7eyfFqjSAtAtCV93pNUbFu+oT3eNMiaA0z7LWIaf6lOdK2lo0+kozNh1cK7H5uISX//mN9huL5CZcYoR3XGPt69fSUh60/kPDb22+dGPMZwWtC6FmN2qYcTN/MsewQRejauyVeDcROpw/fD51C1irDDzJClBzRuUDpQmNQdvOh2x290ijB22t+/AlNFvrrG5vgTA2llxGdYr1naSKKVuAJNHxoCEvjCE0lmwEU2AAkEwXIzopwS4TtNjpdbZejOg7z3CPIKCl24nl5e4uLpCTPeY5h1iTAjBa+6/gHiCA+codV4WSlOlIx9CoXPTVX2wwoQnnE4E5hkxMeIshqYUxSjgOGMOHjllBOfRdR1Wmx5d7uq+2Lk3sGYPO1uDpR5DD15uaaf+/EuV6Epj57R6HpV37jVb8MaGOM89vg+tVY+ProR+A4rCdMatMAcWuUME1MgmvXHpRmSDIuWJZH83QFbBAlG7tsqLDEGdTdFWoBgKzlkR4wFYsjVoIyig5y+njDhHkQ9uhmeAkdENAZkS8ijGYJNz5VFcIe+CJCp6bt5LUuCVuCit52TUgumyLs0Eja6I1SsHQiBNX2Yr3q3ghKgYSMr60fk62zo2+2VFOLP54GpKoAl/ZvUyojmb3NyPjL89ePHR65dBpf+BF6PQttFaNcaZLNS3csUs9ndTBEoov9KvpMOpM4EqN21Pi2EzWyPDUJ5tHA2dOgdPHs73cCnDuwkzRbnjzy0plZOhz2l5WiOrFbOAoZ2BROk5jRHkfOk2nLlGh0MdLx7NOWrOFGk3PVHuMrreYb3psFl7hJDhfdaORB1CyCCIfCtFcc+ZGpWj27y25NF0LlwrMEIR5Q1+al87dwgYbzKjYj2BErVZ7FOF/5ixiVFMMHXAlUf97FUYhnzMtfix8vAiVwwb6DOs9iMz43TYSSRw6DCsNtjGC3z99a9wffUEKc64290hdB0+vHvTNPg6X89WYVsOs4qURyUIzgmz4F4VDhYJwKVZ0Xn0eS0E/hg2q2OsPMYUspSTYn2AtQapOVSIAO8Fj8Z5wv3tB/SnAfvdHYbNBjEmdP1QeKd1irQ5CIYSY2roBzjfA8Ma1G9A7BFih8QEpBmMKKxSu+0FHaPzI1broxil0oQQpVakd0l0Di9lDnwIWG+3WK03OJxGSbvLjM0GcBrZFGNCJjsTtFgjiRwPIGJ1jmjdHc5wzmG9WsF7h91uh5gBmmfgdESGdMocpxnOATtHWkIhwXmHPvW4TMmkQjFW56aeVsmEKHRlx3F5xrB8C6ohVmWNylZit9A3Wuxe7lTuXZj2A3DUPt+U+AdXwSyGB21Nm4jc8uwlNmnEHxbYxBGInTpuqJ6HM76QJcwfi8Ju7T3bUOiCpc74pdUQJYC0qEnBhOfjrDdeTKncrd0X5uY+FvBAwj+0gUqKSetPAZ560Vsc0PWCoZCltIh3vu6N4q8W9y2ugq/s7ZLqbeVaauS78pHFR1uqOb8nSrFyR5JKF0nuWXBUzkXe02L1VN6pDmGv1DrH9fnUpLKUU0oCEJgsqd/G2QI1e8zSyLqYho1Gz/8vkTJ/hbGpCkhLbyrgcSGkK1ix6KTOCbP0ntB18l6vXYPArMq5eHy9JwlvVpAiURikUUxiZY4xamiYMTnpVpWiFWwThTDFjON4RMqMcRoxx4iUc/GSG3MCqpFiOV+bC8qcDPZZgUDRI5QxECNxQkYunav6zqPXcRN5gBy8o9Iy13vX1NyQu/uBwOxwc93hiy822KwDNtuI9Tphf/LohxP6mTCzw5yXBNZeleB1Llzfu6QtroRLdV3KkEwBZluVujZtaGIRNo7qepJ7wBSzGlnaYrEtuVqnl/M0lqIA6qYUimvvr7+UrjuqiFoRWmrGY7QsYwH6LugEZxwPH5DSCS//+HvcvX+HMAxYbTboth7ffPM7PHlyg8PuHu/f/oQUZ3BOmqqlUU46lhaMoPnb+T61kUgywPNuG2d7pN2CwDU6aYq1PXOcExhcaguAqNSakFpN0hZ3mqJ6/8XY2Y7MEUlUHgBPYtoahgG4uJDCdXHCtL/HsNpis12jH3o8efoc03EHQgJ4knQXFuaa4BCj7P8xZYw5I2VCztrxT5Xyx9ZIaiFJkeRh6HB5sdX9jABlrNcd1hdbOCet5u/vdtgfDtoZjtF3l+i6FbzrNMyWizG2pU1j6BkstQxQi7fL6gvYCoGwXkstmb7bSGRTlnpPQAblCHDCzA73xwlunHGYTgidw2rocXWxQRc8LjYrrIcepeW0AQtrNGbAvgFQ1jxpAaCIPn3+z9azBfMmZ1tA9sDIVH6vMqC9iJbr2D6nKFaPvQ5VDgt/qUCvOt9YUzItxF0M6syNsGwAZggSGQuNLAIgqWOMym+acbXzLMKc5Ryed5oxbpSs/TUA7+TcIGdw4sVt6/lHAWa1mCZJSqh1VZxHgKVDIoiQ04w4z8jmtYVQXqdyq9SX+ITWb+togCZxxswMRsYxJqzmCO8Ig9NilOf7hvO9R1kbI0ivEU6dA9ZDh8SAz4Rka0nqc83yXJH71WCyXH/bYzubEtEIIlASGvAAsoKbmEUWJGIxOjmG71R+ekmxqA0tDEzKpjmLrNXi7X/3q8jW6pRZrknFHVaHMXipQ+WdRC+JnOFSOsAuwxMWuUQQY79XmvNO24XnDIJEAViaWs5ATl5Lk0i59xgTTse9yopJ0xbU+WDTKdNaggvDcO3pb7e9ROopnZLSl5xbSSPt+wDvgRBQzg/pOniNJpZi01UpJACrjYcPDp89XeGzzzZYr4LIGfY4HCeEboKfBBPZ2TcvcBkoV/ppj0Ex/hUFxYx0Jkf1dVdbr1NzW6PHitvqOWvxaE0vlL+1yoHJA3MGydmxYvzG95flCor9vrmWakKNcmTU5gIlFZgVl7QaZKMrEgH9EOSFNOHu41uMxx3+PPT4+P4tXPC4vnyC7foCnDKunzzFcb/Dh/fvkGOsOLtZhxZDWTOGTzmMz9ewRsKVrdG1VwMj29qjNBeYtSkKs+BQsO4jiaGlGwJaJzGQIGlfFp1m8s5QbVX8vZdGPKvVgIurC4QQkOKIw+4jutUWN8+eI84jdh8/x5wmOAKy1p3NHIBMYNcj0wCmDpw9OEr9sjmKoh3jLHgUXHmb7WdK2K7X6LsOOc1IaQJzwjzvkfOMbuix2q4AIhynCQeNPDI9xdY1a6S5I6DrOnHKKS1CcYhkE2SJALcalXCQ2PUA4oChvwAue+ScsN5cIKWIeTxhNqdvFj0vA7jfT3DHGcfjhD54rFcDrq+26ILHerXCMHRK+xJRw+wKTjI+UeipMSaxgkATa0scohGShbbs8JzJxMX3imNzoQWUlOHWyVWbmNhnmjuROmnJukhT+WqNaYW6RFFTjNSOrkaOWzCGGC+pGFbBFu0tdC2ZRWIQo5jK+ogj3mTSQ37frog5Js/tAg9+JqEb59V4k6lgXsaS/5iOYhjKsgLAWfSvGAXvaA2+HCPmOCHHGT7n0jiFy55m3V+tUaT8rcUKOvFSN3HUNkwr7zB2UkrAF/7eKBQqPwCU6OqWv8l31o6TQPKEvu8KvWVYwxUSHTXbuFkjnGopCRumjbE1loNZ6l9mS7IlZBK3ReQMp/jNKx7xKtctU6eNcCpbRgRvGIoZ9Ash1C82Ni0FrAl+BURueYAAAd1ejU19cOicgw9WXNGEqRlrtLirGpssbcgAmFWKt64EnjNczgvgkjNLFywGACmAGuOIw/4oQClNoiSQk5xi1JS4x+apK7kQbm2dKTGS0FkWhRibrN5GP3ToO4ehM2NTgOVeh+B008xoRYU5Bq2h8PRJh6+/3mKz6eB8BFHC/ugwDHtMk3adiCjKY2WKJqQXE4MpZg8uVw9DNTRVRmmfbf1kdmvXdKizZ5biuyrYW2TFYCBlZGRYm/LyHBPwNo8FMGqQzSN7VYxMVhwym7Epl2LZViycFdiWCCLOIHLoO6n5E9OM4+49TgeP+XRCF1b4/Jtf4T/987+g63tcbLdIyPjpx5fYHQ44HQ/g6YjMsxRs1/nHGGuh0twCtuUczg8yQIu0PBHcsgYlXJKgLWyt8DQwzQlzkhbrcRZFwqLgnJOOBFavwjmPeY4Yx6RGl5aBASCJUnIKtMzYtFqt0HfKaNKEcT/j6uY5Li4k+uvm+QspAjnucdi9lUKUIBlrdjjNhJiBw8w4xQzAWfgS2pTCVhDbOvS9KOJdFzB0HXKO2B9vMc8nrDYD1pcrSIfBW+x3BxwOB0zjUdZze42+W8P5XoxNmZHM8fLgSCizThJimzjXqB6W6KgQevRDBbUEIOWIOUnxzcPhFvN0whQjTvsRnBOm6YgUJ6zXPa4vNxj6Dl++eIqb60uE4DAMoRjCzXApvL8534KAVBgvz0Hr1ZM1rCkW5+fkHDCds4VF9J0pOKYkNUvWfs8P6LhZ2kcMWaKEuXJPKAisKRt1LFRC4dWbyYzILe+Rp3nfoesCJOKsyX1XGjdD8GPqSjU41XO4NB4VdVKAkYJwi7zJreDVZxo9V0OTU0Vd6g44F5CZMU9CI30YAOeQ44w4T0jzJIYA3YdQ7s0lRdFAJCt7l2nUYtSkgGnSosr9nNA7Qu+1S0ljXALQdODjpjsJlXuLoibReyFn9ETYrMSzzlNCmpWHk/Fk8dKLsc8X+HsmaiUqSve+nP/MIORiPPEkSnRkSRiKtiYO8J3yquAVjCr1toDegBIR+Dya829+nXsqSerVGaZo1gIwjKUOu85pZ1uH3huGEgWi0B6k05N3hr0UGDoxNoGl5bIjwlyUey5yMieSyDeWBSXymKcTdrtjSdGWepMSYQE8PEd2PmT89hde8Ki6HHUdXHNwWNPeO8VQUjJBjJXBhyaSW9YuBHFCpCROFueA64sO263Di8/W+OLzC6xWHqejxzQFHA4OXXeAD1lSqVK7DgQzDlX9kgt/Wc7BFLR2StT8vd7LVALXfrahiweUUjAYFR1mSSPqJHNLI4Apyoap20cUpUS3pTpPm82DYahqbMpozqMzKbRcC1FEHVZ9D+8d5nnC3fuf4JzHeNpjGNb44utf4x//+V8k+nh7gdN4wuufXuF2t8ecj2XBCdKFUkdTcVxjbHroHD7fgyWOzRaFTs3rDX+Iem8ps5GLzAAgZ8pL/bLVsC7dL6VeEQE8llQnKlhX8W9T1Nwp5l9t1gBfgoiQ5hP2dxlPVxs8/+wzpJzx8eNrjHlGnkbMxz1Yy2oQPDL1AA0AdcjZI0co3UdtrDIhake8nMTgU9fD4WKzBTkH5iiNANKMu3vGNB2x3m5xcXONlBLevH6N3f0OrM55MicP1Lg1RzjH6PoOIYRCP6zUIel8CdM8Ku1INW9x9nYAOgz9gGGlyr0KqjRNmEfpOry/u5UOhpNE0+cUMR4OiNOEi+0Knz27xqrv8fnnn+Hm+hrOA6EXvpc5g3LF0Q+Ml6qnmk2hMl2dSunuJUYyIwZqDQrl/S1IgDpXAEvfI7KOhZVnLaPmGmczKu2Y/YNJ9MM2ikw+Z/Reh78858aDNDpY32OBHjlnQIv8m77mlLeH4ME5IzlXmx/pDaxcC53Nu71Mb6xDpsKzFhAQVb+3dVhGNlZdTuYjcslXRQ4mM3KcxTjpotSOTTOmeQbHGcip4mfdwqxNSYQ+7JxkSNEjY/6Ns5wZYxbddRU8NklS3laWVbXcBsEYTeMT06XsdYLoVR0Y2RNWQyf1bpM4GAGg01XO2i2RyEnpFkufp6qzGeZPOZefzbDqUi4pm0SiY8wpiwMPALQ7eghWG80XPmt7UsbuUMvVpKwS4i9ff72xSf8xo4QrE5DXpbipRU8IKAjeF0+UI9IcZBWSLFZomcRD4V2eZUCteVblDPKT0xB8Vw5vLkAXzWGmhkG0P9e5tge5AgdHUim+GFK0y4AzjxIpg2mYWBk7ll5MG3jDOgRYO8JqFTD0onxy1pbu4Goo0TWpnvqlwa/9t1XaCrPSObeeH7vnebREHWMLmhbbo8xQ2RupslK4DC0ZUaPQsY6PUA0u59b+1qNgXolimX4wxsdJ/txQWobClfGYkCzPIwY4I8UZxITxeMD+7hbdMMAPAa7z6EKPy8tr9F2P4w6YjlrElOWzD8ZeLAFYgJ7Hxmo/F8+8rb0yYttzRi3amk1p4OqxaBmqMXrz3NU894KUmn09EyQ2XrKaYKbsKjMjSVvdbC5weXWDeeqlhlqaMR6PiNMk9dQSEBOQshazhNMcckKty1BBmqydnRn3kAa5GqdyEoYcNaQ2aScN6xdTxKPV4mlA/GMX6/2XZNUadpfKoxgzPQBGCNKuPZPTsFgPl6ICeI85MWjO2B8nBH9E10utkeDV6Flyr22ANg5W/sSF/s8NmO1m/kXjZn3rguc9fs/Fjc5wVhPv+ICH1HF8+t6PjBPGs1FonprXqVmb6gE3YNTICuXXrfLXDv08kqvKhEcQ1PmfCs8l9RpVOWX8uU0LN69vyly6kppSYK/llMApIsdZ6oLx44ZqW2obbwvSTLa2DE5tNyVUO+Vlvb2fOwvLdRK1Q0+tAFQdSITRJml7+IdLWJ+o8I/bvz3yfq504CBFLsWnyUgsRf4tfezMbLPYo1Z4EkmKy2M8+G91tbCl4Ao0KW8mi7X4hjQCcSVNyTsrGyCftygxhkWHt3hFH6QPPMdPDzAUAHKQqHKWn2HFuNvOs81EKo01c7T5LX6nxXNbQwEDJe27GDs0KnmBoc7uYc9o5b68VwqAr1YB24sOfS9OFSkcW8JF6zRo2ZRmybuwqINSP0ePrCOX95S/lT1uFUnjbSrNzvaBz/axzO7saCwMqM3f2i+Q4b9z5VaeJ0rEwzPHC67w8CroTVPRqmGmeXZzjzhLavnpuMfu7hZd1yNzlk6uwxqXl1fo+x7z6Yg0jQCWTsfHHCQ2r0+d3nZ/WMdqMqryy4o97at2AzajGyE7iQzI2RwKYvjKis2zRkjymXyRMbZjr/tf6gPmjKzNZkLXwTGwvbjE1dVT5HnEPPTIKeK4O2A6jQA7MYiCCi/PiXU8NkaIzsyCUcqTqeG6hpksVU9pJGp0vH0v0RFU8TrKz/b1uOSw9xcndDl7NpAznEAkNX98B8Ch71cgkGSKxAGJHEKnhjfXIUbGSAmHw4jgD+g6jzUFrUPnS7p9HV9e0GmhpyrWyu8EqhD0Z7CQnVCG7b2m87HWWLPXF2fvZy7Wu53LTRJ8rL80wNDAecNjuDz1gb7WDqB9xrnOlXM1lJX6jg2marXB9vzXVaEHJFH4RgukGvzcyuaW5zvnxIlH1uWONRI3a63UVJ35mcFISDkixwjOsdTsNRnG1KbOtXgPy7GpzCzOT9M/UTGUdfttzwfVm55dzTnReTuu3WC9eg05WeAJL8odlNND9W4tNnpw2VTKQQXIK95g4YaSugckruWNzjER2eRaPKEDsU61vwRF/WJjk7PoMn2QI7WQklrsvBk9pPB1cKEUnlx5j0BiZCIFSkFDSgUEq+UPWnDZwFIzAwFXAjXNQ0yuBhb7QFithWGe5hmUIsiNSGkUodFEnFQw8HCZGpxQFlbqvYh3cNX38OSQNawtc8aUxPon3rWEFKNYUrMYomqxcxmtA1DaJqhizSkjzxG+8/jiiyt8/sUliDLu74/Y7RmrVUDXO5xO2sabJNKr7ywdr5mXKRZmjX4AlGwfbZ357LXGeFWEia6VMYAzIhPQmBfKJoNqcbsmsqd4r5mlgC+bF6YqizYuz26xRdaaEUAzhsoMW2BC+h6vbXttDgZwRTiTCm9GSgSwpZxJ9AHzCTFOePf6e9zf36EbBnzxza9w9fQpNqst/ut//V8xxxl/+uN/x08/vUSaRhx3O3CS/GBf8hz0qwyP0CodZj2u+7BUGgwgWpcP+3tMqURQxRgllz6LwQXKXHMWz3DxGlj76JQxalte54TGl2AJGpHQ7DSRcKzMSHMSRh4zOhC6rsevfvNbfPHV10BO4DRjnkb827/9G169fIVxnvBxd8AcGX7o4LutCI5ktOFQizK7R0L+5UqzFPbOOYonL87gU8KcJ+ScsNvd43Q6Ic4zoJ69AnRK2kQLhx9eSy9S/W4+3aztd4EaIcmqQnjf4+LyidBUnBFPJ+ScMMdZC4tHjHHCKWbsX34A8TtcbFf44sUNVkOHmycXuO46oXdtvwpuDKqukSNn57A1ID+GbM49R+dzbgVNKe5dDAJLwNyunp37c6HT0ve5AlE8WToB4491AO00ZMYm9KHygGFG01TqPYhzwSL4xPOSOZdIWwGD7c25GGKY+UGtobNRPbpeRYGDNB0QuRHQdR0yS3pf0mYFp+MJMSbs93tM44xuIKS8AmVCHE/AnDAd7jEePyLHGcwjgKyGFhsfac2KNgXcABzr31jSaaOkdmcFwHMmnIQ9SHRfddy2cEjn2CoUOmctvu0NYBGwCh6JCQdKmLIAOk8Spu2AIgNLJEbm4r174MCgapBglvQPJnH0OCJEIkTyyMjCBzhhCB79YG2y63ktZ9NSYUnSEwREo0Rf/T0vwU5QnGQOGqfjgjq0hI4sErzTiCUHVxxewTtJZ+a6lh4NYCQUWSGy0JX0fWcNWoqSIm2lN1sv5yhmxJwAqlEezlnlUneuqaDcBLKf7cukZyGEAO+cKNXkirNDam5EVWakHfccAyw6x0Hqe1qNKvmbgW9FyjmDOCG4hF4x1FdfXSHOM978eAdwxuaiw7AKooxr2lvwDi50D6CgYvOmY09tKFDmVejUHKYWdSMjcxb6zwxtdbqU7U4LvRZZwyUqwu5fcJIZdaD8Ux09ZkQXOZrqOYU8OpNKrUbpb7erNuvkxVkvd6E6T2YuCniGedCB5FAMIJFmLapOGHqRYWk+Is4n/Pj9jNsPH9EPK3z969/iydNnuLl5ju3lJaZ5xJ/++Hu8/vEVcoqYxwnIufANceaq1FvoBZXK2n2pa0xivHVVeS44y0kjiZiq0UgMLVnXU7gh54zkfan5Ss4hzrHgrjnOQqveg7xFVKqYcgxAioZTozla+miKEVnrDa5WW4TQ4Xe/+8/48vNvAJ6BNGKaRvzf//e/4ds/fw+w1XxksEtgkoimOKdqLEuGFCxkXB+bAZ4ziDKm+Yhx3INZioeDpGD36UNESgmH/R7jOBYMDSZx5lk9ZXUop5Qxz0nX1RUjgU3U5L4seU2BN8eKlAuodEUM+DDAe0Z/MwCccTrtMexXQm+KFdM8YjzuBUN9/w7AW1xervHVFzcYVj2ur1boe4nSsGybZbR8Vf8adChfem7FqICza8nb7OWqpJMGXKhxWw8ta2RJjVBqP91eiqe4/tw6BorBaVHSuZ758zsWfFUtgyhNhs7OgwU1jNMkNdiyRU4CgAcT1fRloLGjctHhz9fn4VUNFcJzXEkxLPY/BoKme3chaPR1gp+iOOnijONBo98OB8RpxHo7KFbOmMYTKE+YDgfMpyOQZiQnkXglMo3ESUba3dBSA8u5JcCZrsDSEEhylhiZgJkZx5TQw2GtkdJlfRd7tnip7JDxU2/bQoQUPBIDx0iYxaYqHYQLD/YoNZ6hOmwjI0FLnOZAGggC5DnK/lEAeS0Wrp8dWWRwFxz6zku0NFedU1LvC0UVeUBEQMp4rK3UY9cvNzYtGDyVCVqkUglpVhATnEcXgkYDeXR2Az3REpbqlVBlN0gnfwY99UA0grqMob7bOcnrzwy4lJE5AZTAbClUBGnbeaYsPXIwyIRauTdpUUmPXkO2s3qmiQkBlvtpkTlZ56M5llSZW+UzjbIj1g8tikrYbjvcPNtgOo24v99VZk1BBSCrQlFzqb3WdjB6Lt6EhlHZw6tRw/5Ei3WoXgaCNBWoDHpBA2fKZQaKccvGQbBuJmdeNzYlNuthNu++fFDwmQNTRmveNYMUQFoAXAFRy2VbJZuqYab8ycYAG4M9j8XqTVWB45SQc8TxkHC/O6DrV7h88gTr7QU2Fxd4+uw5Uk548/YH+A9vJIUtaf5wp93VPnG1DKn1qi6ZtdB43Sf7ncr+GiAtX9m6NwCUdP3A5YzmlIsnzDqpQDt4tWKQCsBt1k5PPkO7aSUByA6iJHWX1wXEeQDTOOK7l2+Q6T0SA+N8wBSBde8RXKdGyLl4EYVj6rPbZVCmC4ZGcEVk1no2LAavyAL+pklCyVOK9XNn18LWUEnlZ676Yv2M/JBL44HKo7quh/OENE/C9HOGU3A6jSdMc0KKjP1xRJxOiDHjYrtBzsDlRWqeUwdqe2LnwRSPxzwRlb4rBHkwPZOqi/k3PMJAfvO2xk/6YH1MaTGWVhiAKTftuJqFLzv9wHPXCE/7t1WEHC3ola02BEnHEWe57c7BCYk38gPLzQfXpT6b4wPPbSOkSrSCPsNlTdels9Q5VUJZFQyLvpuVTtnSRVJCSpDOPPMITjOYEqz+UTsGM4q1ERB1v8qKqfKoXj2I1yxlIJHx7Ee2czHZuhdLgzhgzSwssqkdhymn5l8ta49at+/8UUVaqQxhswISg9h4lNKmFj1Hyoo7NOqSVW41u7ZcOypyoaXJv/Vl9YtsXMZvSwScq8WWvZO0uU4bEgSnBipQMTYahiopIc09z43lLX8qjqRGKQckqil0DtAud+abXxoarf/q46qSvE+f35wbT1pzygf0oZPzksQ5l12uMplq2iW4VsEpEfRoWZbeXzGBYERG8MB20+P6yQa72z0+vhmRUkLonNQU4jpO55ymuNTxs7LYYlwhWfdHPb5lfblZ5/rdUSnrjXMM1jaHkQcTMuUzvqynhZfn3zAVEZfuUqZMVzb+KSO/LB0TrOlpy3If7queFSukYDymGq/0vtrFjaDr6j0YjBjFAbCfI3a7I4ZhjWfPPwfdEFbDGpdPrjHHCT/99AOg9Cx1NjOC8u9WhvysFLL1XJJ/5YnlQ43RiZbRTWa0sZIMiSoGikmcyPM8i7GJc+niWx3yBjsaWUiVN+vTwaRGQx1fCB36foWrqxtcbC5ASHCYcTqd0P/HK0QOyKz8TdPOmMwwZo1hZB9aA6btKcFS3aWhyTSJE8PAc0zmEEuyZynCjKzF2Gkp/Fy/RD9xyjMqhm0V7BqdTg0tQtbAaJvMESBlUIJ3JUV8TpPifjkzx/0O40Fw03g8YZ5GpJzx5MkFQA45VVm1jNbhsldK1IVGqPmBiApPOpe7Zf94SWJlekQa2SRF/auzDlJ7h84jl/T3BleeY8z6/OagtuCq0FUz3oKhVI42B7zl6Yuox1yN1rWmrvIpV+XFggU/4BjN6aRKA+3zqoxC4XVWUD/rsxxT4SPF0Esa9ThHxBQR51lqMacmeilGqWUWpeYlcgKT6OgOouOZld06flYebEvc0A8aDKUkU6LDz+nj7FpOkVuRCDMIeYgByzsqGDgr7GGnLoUGr9DiDDVoteUtdSJ6SLnQuDgthT6JpS58ZEbgiuuMFgwj6OjL4CufrWP5S9dfUSBc29+RGl8cYeg8gqVMEUCOMHRdiQIK2jYykHWKU68oaGE9LuqD5h/KJFyZlC2gc1VAV6YhdQq64NB16uVjwCVG14m3LiXRNFifS1qR3taqCH5oET8t0pzZWv6pF5CBWcN8U85FySStkWCecweZcyCtl0DW4ld5kVqHVRNATmJVvNyuMKwC1psO3hPmmPHh/YiUMkIfsL30CMEKhaoSpXMxMGYgwowyQoyVs5V6SmSRQcYMlwzwTE4DOMNAC+HcKBeyafrBZQ2ZamiqgKcU4VVOXeaBM1BZ5DTXwaAxqBXlpPmM/mtyVz5iHu3KMGLmkrtqJTlzqoxa/wIiRs4nvH/9Csf9Ha6ub5DnGT4EXF48wX/6T/+M/d0tXvsO03hCPJ0wTdU7ZAaiKrDbNW+AQcPw6jooyCIRKJKPa0xF1iA4qX+UQGIEAgPkweSQmRATAGKkKHWsZP7q5chJBLSNFYC3FuKARKi1wlkpJyMhxRnj6SAesdOEaY5wnOE4YZ4mvHn7Hre7A46nBFAHp57QeY4F2J1z7NwIKDZ6S9b18Yh5PgBIyBQBSDpSnFJJpyNQ6UDBDvpZA0dGO1z2oq472bFEKfqqdANl9MWo2yKVRogwS6SeeANTqUHinHjahlWAD9J5Jm2vkOKMvnOYUgeMwOEUsT6e4L0T77CTuUALJhdko49tT3hLTvUsVMFf+Kud1UZIyJytAw5XunNWfJfQPGFBtwusBKPdc8OyUY2tXv25pMQ9JrNaQWaH3GX1ilK5S2ZIzTIWhdMrimdNf7A263Ybe5zNjXTjzZgBoHZ21Lz0AtzKKp2tBlXQZGlQ1vjCJTm/WZGBRGPNiDliThkgKe7vtOC4Q0KGGuGBqgCRCO7zmoOFjzd7w1DDjo5LGlw5JHhElkLbM2m0TUO/58t+vq/2JXyC0XMW/32WrkzGnRwBPXkEbcxQHCfcUFL7IDr7oQFUlqrC6phh5d0pS+H0bApNI3OSrgcr/gAgAJRIowx/qV/u///LZEtwDl2QSKauC03dHautJ7jKOYegEeOBzODiSsRMqa1FgPlla8FoKiYOVk5NkJbNVsfLiuNKUVAnnW47Bhwj9IyOGWEEQpBIbnLVK03OHHdyD1LHF2jZ/MXOv9coLDBjPI0QfCXKNhGKoVB8PAmEjOCATnGVFTAthjHFQGBo8dSM9Sbg+maNYfAIATgdTzgcJux3ETllXF1LPa+SkkgSMRXOIgMFGyhfsQK9VBa6gH1zsgqPqZjUZIQjV9M+uSFMEzB6rq34a2UwAAznFr5pvKfBWtzcD41oIOMNBawt5FVRSBu+bIrkQoFRXCx0RerxrlK5OLmyOF+L5QqCPVOaC+2bsZPzjDgTXv/wPY77PbZXl3j64gXIOTx7+gKr1Rr7+zu8/uGVGBCmkzbdMM9+LQeAZm2KgmRgkqHOCBlUYZVk66BSUzfAnH3Oa0pwYnFYQ/USLQ8yxwQQRNHVSJCyJzkhRxlQcdx5NZZBjKgCoVisHUwAR3DOiPOI4+4eYzjh9t0bHPf3ICQ4SpimCe/f3eFwTLq5ih8RC9YXDFX3FUV+s54rMcCkKEXBx1EimwCWWneOEFMUY5NGEJHiwjlFZK/17dSQz1kgSdQQDOcy4K02rdCLOE4kjcmpTpchzQjgmjS1B3qHrGnKUbqOcoY1BvGh11IFHo4CUk6YxhPmecbQEfanjDmO0sV7I5EgnkJjeMqFrs+Nx7wYg2IAM/6iVjSl5s3telcwYLi9wfflu9FnlXkPMZueFW6NxCj6i/zNntOMqUEjC6eeHtoKF3LJOGkObTnPKUkUtHPqRGoNKuQABJTq+jaGKorqr9VqUceDs6uwxYownRqBWLN3vPfw2rzBaRScpYomzeyIKSLlCHAGJQIiwaWIwBHMYhSOWvMoKS6pjqvFUp7BEcUMiqG8Nudg0uZckBq0bRO/1lj1qBFG+YVgIFbHPKPTgt3IGXOWsz6zyI+OSSOtMnix53ZLXj4AKAEYrLTEIClQqEbupLQxy1LCw3BSs1FsBeqrjAADaZbU36TBGI/i9rPrrzA2aTtN59B58bpteo8ueG1NKyF326FDF5qODYCKWxPOClK8E8I1roWlp6cygiQCQz1WFs1iKWLBEVgNTf0g6VKZGC4x+h7oegefIFEy7EDew3kpbuU8FZDjtXBm33XofFBFXKOi9DDEOeJwOEjkij7fe4/VRlp5ehLRJgBGuvB1GuVVjTRimLKienOckVPGsOnx2YsNVqsOm20H3zlMM+P1T0fEmHB9s0bfB3RdQPAewWew9+Asc1lEeLMVW7XaPZUWDNha7QcAy7o9epkFtW13Xm5fjEU179uUGug+mzeK2T00OJXY1Cqo9eSpIXNZNNyAjd6kTrIwY4jSWRi1fkyxxBJp1NdFkDGQxffYK0NhPfDtWkDBeooTfvr+P5Bixs3zz5HnjPX2Ai+++Qb/6R/+Ge/evgYD0qnu9Y/Y7/fwzmHdd3AkHeCy1fVCDe0+v1om1RYBbT0tJkhkPyVVxzuHmRLmJMo4O6mLlIASFTfPEWmOsupmKE5RnFwQ2lVID0ceDEJOrgSYmfImZYsT5jjieNgDdMKPP73D3d0exBEujYgx4tWrN3j7YY/MHsAA75wUt+epsM2yQwXQLovOMWewejuPpz0Oh3cgxxg2PULwmOcJx9OoyrYaDJiR5hnZZTEeKskkFo8wWxQiTC42aL0cGhMK5lEoIqrKJ/uheX/mJGukBdsBwPse5DpJWey0a4+eiTifcNp/xBgTtocJQ5cw9B26ziOQLwpGGawqp/WRdR5m2K76jSmJdq4r/Sw8XgCsU4+z5SCJ2BHKobOw8qWEaVWb4k1sgMa5MvNAPp0ZvlqFqqiDyj+KMYtI00xII+cSHGV0AeiDLIAVvK2KUktxzeaR7nNjlGrrJSULFS/rr2vPZZlVKSPAScpSCFJM1nuH4AjJGcVzKSg/p4g5RyABPWd4MDglOAVKrJGzGVnHQIDzaNM3y3rpjMp6kRi3mAAXZNxMHpE9HAhjlvn2rgImbvnq2V7LumsEhRpyAhiBszh5skR2EskJJtJuQGa0TtLh0Tt16jBKFGYrx7ixPpq8yVrwXZxAMoYpMXIGgma1umbMVlgYzHDBnEhAilGVmVmA0t/psk72nQcGdRoNQ9A0bzEmOkfYDOJUMo5DUIcdoBqAVz5V4lIKzZKzdK/qRBKng1CGcS+CRaUCne/gHdB1rMamjG7IyJTRj0BnxiYbjWKoFqs5Xw1nUnbAq5dci1ZzLcB8OohjwniRDx6bzaBGIABIIMroHGEoEWuo505pKvggYDlF5JixWQf86lfX6NXYtN8dsbs74f6jpBo9/xwInReDkxM5F5wrxiYzHWflJca/qMEVtsaAyFynDRwyIKl8jUPCgeD0JCYrm1DYBmvTA9ZI45pqJVvrNYpMFavyxUVmLBWZ2pnQFSOYPQlotAegqCtc+DlljVpjBttYUXFHrQ/JpWBu4UusBoSS2kNglrRmWSfhVTllIGfENOPlt39Azg7PP/8SBI/1dosvP/8aF9eXeP36J8wpY7e7x+7DW4yng2RH9H0pVZG17uQiakzlXFmXTMjq022L81b8Wh0rTtNDA4m3n2Kt/SchS7IXU5zBAKJGU5QtJUKKSWlXO1QRABeKUzcVJ1cWYy0LLuGUMJ1O2N19BIPw5z/+Ae/fvIajDEdSEuH16zvc75NEegTWvZvAmBc7XCIWK1UiaA2knDPGkxjvpmmH43gn7eFpBd8FzHHC6TRqHSlJ7cspYTpNcC4gb83YJM5MytIKnlOE8wR0Fn0idJNSlOiSnMBOzpwYm7QotaNS37UiYOVXLO3sGZLOSJAaTF2/Quh6DOsLXFw/AzMwzRNiipiOe9x+eA3iEduLDhcXDt4FDMHS6SptLCMK23MCmC6K5V+a958hl0b2Aq0DuWa1tEe4nWMZi62A4V9ucUvFL/JDxX02xFaDIG54vzUogcn3Wu8IJYWtOuw4Z8wpATkjSGRJfZAQNCRDCFAPqM7B0oR1DI3emBllLu211GlqtJPVuIRG94bgtcYbISUrd0Cafp20lMaEmCaAPNxMcDNAcUaXpdxGzBmRMsAJgSxAwxckb8b+OkxCM3OJ8SXABW0yBYcpySmbmLRcgDrzjJYe8GjU+Sp+JRauGVQ5icqX5pTB5mhRueDUuJVNH3E1iGWhv5M8u7hCTf4C4AQwuxJkYbToIcagjGUWWxsZGyhothNLEwKtj1VTKH/++sXGpk5b4oWgIFoJwavX3ext4tGph8cIiAox6SSae5uVduHFKS8ux7E0G5h3yoqNU32lAf6swMyYoPMWNaUbX6y0KMIcdlDR/F4KV+biRXIa7umDh4eHJ19S24rOumBwFbTJ4VRDQeewWncYBjF0nU4zpjEiJYZ18C4fA58tYPOMBdt5/Hpg0T8DLdzcr41eKhZb1GDNYqha8G1TovUQnCmOdt/CmECN1t7sM5Vzsxz/4icufzFDRfsmYfRUmJ+ldJRjxqR1iVz5W8vEF+tDgtkza42YecLpuAeRRLylOYJAWK+3AIDDbofT8VhCacuRpDJiGPB77FyUt1P1Oi4OAC+FpiMHdoyactrAzPoPllNUcAhbaIbUn6D67Ob1Bek04C2lpN0zdK4xYhqPmOdZ0tpigpmBQE2KjAFELNfksXWoBQEjYpwFKGVfvNDnlx1lKnOnho6rULeIs8Wan+0G1eIWzQPsjXT2x/rjkqL1y/hjCwyjhsezhLPHOWvBwErldWANOPm5y+ZfeM7DqzUAFe/zGV2VM8Mo7ykE9OC2i9E+StAlIu/haB7/wHJKZ+BryQuZWYPAeCGAqT1ki6FVRkGPzufxq/CQAgDr0Nt0DVtHr11IU86IeS5pntYi2ubBqsTZWXPKc2xYNr/FuUV9lvFnovqa8Q2LTqgpu5pSxxb3UmP2fm4bFvywAdbNOwDUSFG2BUMFlQte9skVfvij/Vol6NKxYgan6rGsu3weFfH3vjptF9yFIF3hNDrHETX4qeIW8HKuJWxdabmQXCuvsy6ASTMzNgHKa5YCskY5o+wLMxYPriH8rtCWOUAWBuvGCFL/boVbzWiby9ishpfVAREnmhZFLw4PA+4mKxuiUwXBO4IL0rGv7z26zmGOCXHMmKaoxpoCnsrF9e7ldzmGf4kR0IIPtooj2IZa1z6zOdWgnSuXUm5RS0b/leg9o+/mzJXnLYYj/xQe3rxQ3NsVb9pEF/GoDwR7mzJbZYB8cXn/0nnAzb1Zo4YFY0nqvd1amySkhHk6iaMKwOX1JTiJIXqzuQBAiOMRcToJZyIqXvYyriZi7Fw86wDLC62cL+9tZJ0DQborA/mRUNsyzwdggRbvkeVuHWh1rcoimL7S4BBz2krpj4SYInKaSsq1dZeisq5oou5QeAJxpeqy3UofVlM2au1IMCGoXtNGxRb6bM52kbVUZW91IFs5AcA6e7UdmFs+UX8G8GD/yoBLyh8KvdUv4QMatealwyk5J5/JWSLPYgQ8gQNbiamWHJr9a8ilUHoj25t9bna6vsfWg63u2RmNlvPUfPJcXJYb02J8iwglLD/TiGHdMNXMypKe46l6L3PKNsxIZXLZ3EJfRZ+wCS3uS82vlV/85evMMPyJI0XQUgRUSxHEOZdarTmL86qQqQ7c6NPkZrv2hqEYD4nBpkLl6cuBORWWZLWWoRkymZqlac57cz38vS6faaXWObjsFQhWna9+0J7zGDEvxEGtTVpm0/JxWzPp7Jyy4aj6ngf3Jk3hrcLyF1+/2Nh0c30NkHi5uiBFpAJJDuQ4RcyzGBxKCBwqyDGAS0RFgZI86NrW1LxItv9OgY14THTyel8r8OkdofcBHhmOCXGSxcxJIn4IjBCyBlAFgB18CAh9D2bGaTohpggHLeFHQI4dog9InDGrB5TK4RNLrvdAFySCKwSPzcVavHnUwVOP7WaN4Gvx2nmeJCIsNN4qZcxdJ5bSJzcrfPXNFbx3ePt2j1fff8BhnxBnsySbZ8aiiZJGTYhnlrWFsx3MrMCuFpysBrjWmmtC7jyyyXLvi4X9jK7tx6yFFckRnIbRWtHPnFnAXmL44MUTiYbZUU3TMrjSYIBFod6FwLardKxpmXv5QPnOZBFaEuUjnndbywSrGZbVmmypWLYOzIwQvLZYJgxDB+4DUjrhx1d/ROh6jNOIj2/foV+v8atvfgcQ4cn1M7x/LyHRb358iXE8wQOlvpZ7jCubID67isGp+T07BV/qkcze6jUR/JwA1qLAJRzcOBsBzqFV+TmzpjRoFyn1eEiaJoBsO2R7X/cqayizCx3W6xV86HH3/jXevvoJp9MR97cTTscZ5Ab4bqUCWBUPIpQA5SphGgws/CSxtIef44Tj8YDDcS8e3E4jrBjo+wBmK7pp4kTn2BhPrGCk0U8VOg39sURtWaqD7Y0yhKpbtOeCzCMGoNCzgaLKvnPOmOa5nEcQirePGTgdR9zmCRfbDa6vL0EUtKCgnd9z4mgWzWjkTA48RmrtejygOVfD/z3rTFRIo0SX2AKc3bgRmAVANs+jZv3sVVIwYQrp0gDYeopSoWczwrMWLGYmJOs0ogquc1Ko1nuLjtDP5NoafLFnSg/maGgNvaVrVjNPe19VuhikhZytXpP3HsPQg5zD8eMe7z68wxwTjocDphiR4lY7kgBISYIqOWtRZA8QI+n6RU07KpEupNCbAGrSXm0tZdkYYEuzdeIQoQAHYNLOeASH3rdAvqqihMfDwaVgtKugNAsv9g4a8yj0kmz8dfkridjZK8pdi8hlgtLmF+IF17oGnCXJcGLCnCGFYscZnXPYdAFDkMYPtQyY7AVnBjuJkPo0pPrbXE9vrgEAvXfSLQmAmQ7jbO2OCY47OHVRZHVsCY27anCyPWGLjIlnPGlZZL0tbs1o6z0Clu4ukQ+MlB1yElnpwPCOtZZUB6mnIrWiMjPGccQ8z6IERIkODyFI4fKcSxv2+nBGF8Tw1vcduq6D9x7rVa8NTwb0YYXtegUGY55nSc/zEgXhg9A4Z4lo8o6wvZDz9eTpgIurHiDgx2/v8fbNHpQ9HAeETrEXV8xp3Vsl6kiNI2AwOfnCQwXBxKcZmyy6pXY8rk4ew66skT+CXVtezIoFZUyOHCh0AKTxR0qydtGi+EPQlEf5rIxHI0nsb1zVCeUEVTzYoVILsKgwlc9B52XdoatBsdygRh2kVNbHnEBkXZkhUUwxzXK8ndK181Js1hG0aSvm8R7f//H/Qdf1OB3ucPP8BULf4X/6x/8MBuPlyz/j9esfMR4P+Pj2NeZpQrCUTVR+bPtSeEpzFuo7rIB1u4KK77Pst8tisKZMmEjrwOQsUUmEhp8suyoCFdfqQso8rdQFrDSD8DunekCERtxkibogIqzXAy6vt9jvbvHhwzuM04zDkRAjVCZL5KjRqBlgH1U7GQVrpsw4Hg8YT3vMaYc5HqVRQO/BWntvGHpwzhizRY9x1X0LWGRNCTSDhVOH3xKfpCw1dTIneI0AJKWHnFmiMFUPKsZl28hWzzEd0ARSlijjlKUMQ2KNsMtJoqGyZKDc3k5YrdZY9WuQRtIS+aojtHun/xrOKCmuhUha/AKYQ510cQxnctFHaMEnFvRmN+HyxIeGLSxLkLSjhGLn1mEPiHwkaPpyiTgyXmC0yQXrM7hEbRZDDcygq3LWidNzGDotDE6lKHX5IgLbgW5Qp9XgJapNmh5GZNZz0xonCRqh6cUJkUNG33VgAPf3B7x580b2HbnU/cpZjMQqHQECXPDSSZIgWRwsRe0zWVYTFrpB2xgL2faHir7ahQAXHDgTkOSeY5Lo7JWXkj7FimNrUyf6wHhY8SVAiYHMWrtanpxMRhCQtZSP1QEutAosaLr8yPJZqwPJZDWq5O6ZpMzAGCWyPoBxDJKNNXiPzjm1yVChL0uPJ8XbFsn4S65fbGzarFcA1NjUednMPAOc4KIcqAfemXKUTGm0EC211jGKkYlLRSw9GiWkn8sdQQ2B639e86mJRflgCBDl7CrABADtdWeFvjMYmCSk3nxtIo6E8UuXiVgYrQyb4bwaiYLDoGlt6z4gdAGOenjqMfRdU+smIyWZh3WCESUF2mrYopo8Lq8HEBFevvyId293iDMhpwAfTFnlss4WvmwHelET3tX6RedsrmWzLTM7NzbZG2yPZGUfXtb21cL65Gl6UJK2oE8ZPfpS1X5p+aeyrw2fqvt9bnkuSIGB6jd/7IP2gfoFC38vxKW5v9Ujcc74StFNIoRg3yUtMsaI+/v3IBfQdWukmfH0xQt889vfoV8NAja9w23o8Pr1T4ise06tp1iHYuvyCUOTzcXOFhGpA1vCLMseEcP53DCxZQcOI3RyVOwEDzxPykjQ7qnlrjfH0cYm9RkioDVIQuexvyUcj/c47A8YR0acARcCXCfjN1AoAIVbBG4zhHmZDMCknBBniQoRBQeIsYcLctZNoIkBdin42kFXD2Oz+Aq4KwNXwGEKRPt2fuy+9XsFYWWRYBDE3E4lfc+ZhyeXx87zjBOP6PtQhQlQ9mIx7HYkjaHpscvOWDE/NwaJdl5LwWXCU+7g0K6fMRA073kwqMXaLcBPGVR7XBtFujkcxXeukREGgq1gY6mIo2PJKSNmLme11Mhr6aJFkuVg8IM1MgN6AbxlWGdeW709GQ1QVUpCCMKnU8Jxv8Os3uqUM1hrecjwcmnKYLWfLBVHjA/Ch7Maku18GE8w4FQAbbOv0jXWiSGMxNgck6S7ReayjYvtQ8Eaj2ytrQ3DKo0TGJVkqoG6rmezfrbHRcs4ezIvP6NYUQqHKo9i1gKXmTHFDPaMVecXbJ+VvVi0U6G+BmT+Pa7NegAgYK73opjPaS61XDTvGYZuCqUuzmUT1cgoaRLZFAhj0cVIYGvnCm83BcEwGassADvEOYviaA8vYJLgXJC6OUpHUJwUY1Rl0YzEGT55pJyQ5ukBsA5B0qr6XgxOwXsMfVBjUyelDLoAwDpZqWMKS4MZaxHgfuiw2QasNgH9KiDnjMNhxrt3BwzdgKv1IGl/OEvjZe0uZGmjZr12DXbl8sCGRO1cNbKzwQmlYxRXkZmNb1FL6UsjNazAMonCF5Ok/1nXt3MDh53xShHNzbl5rTkErU1XVNJc6WnBgx9+Z1Dzt7NaL1m71raYUh12yCbfxRBJzZhjHHH7fg/nA4b1FkQBN8+e4fnTzxD6DqdxxGmesfMB79+9RcwZjjyC5JSew4Yid8951oNzTpWXO5b0F+NHxEByubxe9qetqA7AOkqV9zRywJSwtjaQbEM9fzAdCAY5pKZM6DxW6wGHA3AaDzidRszzgJwDCLk4d4XpViNPs4VniKXijzlOGKcRKUvqmWOndSWlvlHw0nVssvVA+4VGNuaytcgMB6nH1BKgpVeK80jOsXNKK45Eb1C6BrOmalapUUp0cJWlZa0zI8ZYzymhdOfiJAXcT6dZO9bmcjRaDPXA6FG+N1kILagpx6vFR60Disu/ZnCyvSjy7+x51KzXQxmIB/d++AYYy6iYP5uBgCv+4srPWj2j7X5pt7NMfenuBjjyxWkGZrSpebYwNWLScBFwzvctjbE9i58yQBFRwUAS/Sqp2UEdGLvdLRhAGHr4YIYslBpmNj9HBHbSsEX7wJdUYLZU/2aM9mWbdc7+vfPFpmApd5EZyISOAGsAeT4Xkzk252blylwFIArtk2LVrHuYqcr1Mjgs17O+1jD5gnMahz45eM5q/BHsEBNjdhmT1rbtnKu1NNo9sXOotz+XHT93/WJjk9cHSLi1LIgrDJUKIkw5IWYDx3YIXHMY9JXcEEXlY4WIORnjqoCzFvETwpOudwLiyWUQJS0S64EchHk7B2JG1GgVSWPQXOAYyyKWTjBBjFEMj9DL8ngL43NAF4Q4+k66qnjvMKyk3gAhgODRBZ1/1qJ5DRyQKQsDDp3D9ZM1Li47rDcd7u+OSDnj7n7Cbp8AdgW8G1FYrajSeaJVJBpFrYBUE2ZggBPyJIQo9QZkfa3t6+LiSrhLG8NDpomGDiwyplqp7T1Lgf9AgIALDYGrwmL786loH2Gm7WtGY/IaQ5QR47Rs+2JEpXSRIUWds6dHDzBRZaJWEyEEB1AHIoc4H7DfvQP5jO+/XaNfrQACri6fwJPD6Ve/wel4wGl3h/FwLxy9MJYKCDMqMzr/XrQm2Fiq0aaM8WyZrLtEtUTXM9YyLnKGCWshTgO9y71GWd9W2ZynEcwE3/fSujb0IN+BQicG1QCQ71CpiMvYOZs3wtJhrR4Uqz2RSqSeME+lD0dlL4jE8w0rlKk0KGBHUu/EC+1gIA3lfvLsheRmqS0gADCANL/b9OO6zEvhWcFDowDo1ycVW9kMEHkwyZjnecI8D6XLxnK/jJLLLwCJ4dQVQoCug45X8Yc+SsmpggH7/kDgNkMsUMqW6GwlHp9YI1ibc3z+qXP+cv55av7U1qciAC3nKnRlBW+BUsiVwLAucRIrqs9jk2n2iAYcFuBBdfz2Jxu0AquclGbpIYCxEPCh73C53WCaZ8SDdFG0FCY5CwksBWPEC+WU7lkqcCRkTeVdrGxdOdv3BvBZZJO5LIJzAiaYwezBnLVOjcw6NOtdnqE01ZJFlecGi5Q2zK6nL2ZI/UPf1EbUom8Pt3qBfEWuaDCT1vdwgHYodeTQh4DsRNU5zQkxAStP6J3O2erxUF0jGen5w/72l42AYPUUNNLFESIB0l2KFaPkSst2aI2ebHdYatiZoUPubvsOSO0dBYiqKdl3770YdFj4jhysBEBqh4GD1CDiJA0dWIoiIyY5W6W+D6siIoqqyEXBZx17KVAFFLzmnHS8c0ToNLJJ9tFr9HdAFwRDmawqRg5C4e2yMBneOVw/WeHm6RreA2/f3GGeM3a7GXOUOmmyJm1Kj8r8lCVs0/iiFXK2DTs/3xp5Rmp4hna/Q2Nsavk8q7ZSjNJAqXOGguugGOahh/gRyFOxDc7luA62iLBW5tS1a6mRgMZ4ZY4fLOZg4yiGB8OTNg/liUlrsaWc4HQBa7fpxVKWMUsUnBS+JXIYD/f4+I6Q0oh+1aEbehAzXjx/ge16jRwnnI5HjIc9puNR1lAVxyqz1EDJrYx8BD8qH2dqOP+ZODPJnRRv42xtqkNviQEKHjE6YNs7B7istbyEDznnkDRjI8UZ5Dy8D1qbaAWiXgdVO2kvAFnDF+qfdHzmMLSZ8IKVKH5qa3xVbGaGnmQ1J5nKz/JZL7QP8Zob1m9lfM6xSXVyUvcpZ4netW5xzhozOY02kchYNjyezaEuZy4Eo6cmIYhMVkvkDRMhxohxSui6Tgy9JfXHtv+xw3W+840eRVWvarS5QjC02JpKH/WB5R887rZfvmeJ6ensTUXoFkzX/LXKiJaeyXhRWYBKTsbjztbB9GKQNNopxeMKHTXrcI7rFlO09VhOd3lGuNnrdh6VZi3dejV0uNyupRscMTSkWucljkHK0uG0ddAY7zUDU2ZWNZcf8FrTsWtQR8WhZoeQDBUApKUbyNIONazBzkLzWT6bt82tPBOsWUJqSKcq0zPZngiGqrVLz2ituZe95om0Pq9ENnnn0LEYeHsfYHH+xzFhdhmBtJYhtzJC94lbYjnf609ff0XNJrmjU6El4fICVLxLJUUhqtAhZ91FCATLt5R6YyK3xAJtMswEuk2G1WVNhOazktLjgwAlIkIfpPByTDNiEmv9OHVa0DLDuwjmjBgnzHOFmSADr6Kkhi4oEKr1FDqNUBrU2+YdYd35UsTaaVSV89qtIhNydujVs2qb4qgVBlwq6PvQ4fnnz/Hl11c4Hke8fXuL05jw7t0BH29ndCFgs+oAvVfOEoqbtB5J8aY5QvBSvCunXAxS9jwxmMrn53lEThldHyRyAowYNRXOqBtAVU3qNwmpUwK2ejJEpcNd0TJyo+Q0BG9Ea4atcyWdUQEMtacQSyFmv7c1bewutTCmMBgLrzWAZLU9CpDQ/G6GE09PROneYVdtHZzBuuc+SDHJgSSNZBpvcdh/wG73Hh9vb9EPG/zun/4nfPPrX2O6eoKL6ycY5xEv//QHvPruT0CKwDxKVJWrYaYAHv3OOSutWnqFqi1GzGfKsk3QWvMuGFxrVGiUEGup3RouLd3Tlc81gNR5kBrrTscjusS4WF1jWG3QDWu4bgUKGaEn9JnACMjkhDE3SoMZnZzBMBUAoFJ+sBRWzyzh295r5xj9EjpEycW2mhBxjnBOivvP06znVZoOMCewJNBK1F2ZnEZrxYicsyg+oVsI7KU/qFl3E2z6LvNwytXUwgKwKMYDESLMch45nbAaeumykVLxqChFNk+tXnpZL4JTvmMRSLkxUlp6ZHu1CvlDL0l7VZ5CjmCacKvolncRFV5RJ/z4ffkTP1cwaXNuhAXqSjqqK7Iwvuq8pjmConYgIXGSDMFSE5UGUQur23lYrEdBQHUOLdAzYF6GTBXEWxt7Zo+L9Qr5yRWO04Qxjcgca71nFoCNGOFykg5ujoHsQQxEZEzKU4WPVeNinXZVqE0JNE8yMcHDoSOHlTbBmCBpt5kYc87wCuocluHfhU+ovGy2FEQ1DZ4cw3kF1DqulKXgJYWArhsQvEecUym4vgBbS6wtkX+6QHaOHBy8gq/opF5HnEfsDic4ZKw8o3cZ3nn0oYek3z80OgiLWfLOv+XllKc5mEffFCtt1kHiU485gaPKTAKsE1MxXOpc2vS5cjIaHGVz9D4oDiMV0YQuBKyGAUROI7E9xmnCNE6SsnfqJcIOEd4TkDJO46TduFTWA2poCgjBoVcMZU1MvCd0nfAtaXYgGKULroTke03d9LoXzgV4FxRDNWnjTlmKOYpYTK9d6PHi8y2++dUTvH59i//4j59wPEZ8+EAYpwDvnOAlcEmbE0OTpAllyUtYyL2YNXUNVZZKBFcCsxofmOG90zpcrNEhVnTXzNhUiRuyOYahDNeafJC91hQHqlFtra7YGpoWshz6d2pSmYqstihuau6on3AkRYNNoWnkVfHGs+GmVGqzFuMTmbMpI8cIzh4x1qhCiebkgklNrjNMdnt0LBHPYOBw/x63H97g9sMFdve3GNYb/Pof/gG/+fVvcTwdsLm4wOl0xKvv/oyfXn4PcIbL2mVRHdCV5+mJL4YPlPkXfkOoDXDODH2tlMo5IUbFUIo1vK/pWOfy81GHnckDeC3moO/1AZREsZ3HES4E+NBh2FyiG/Ygty57KRRVsZ0stNHGGV2AivEFcCaUy72c8vgWQ1k5CagcinFGikkjF6FR5RNIIxxBrbPPwbE55MzZFzFNEzInOAoIXozpOUW0BmQiKlkfzntkL2OwmoZQvk3kkFIudbVwPmeSTuOUCPM84XA4anFpuUfL6h84cvU8LPFJYyzIWftYESx50fSb5dmkB+Kk1YMW+ESprNHUml8s22J57hsoV+9vFEvlbTCnrbzZxrv8BOoSVj7T/NEpjyZItH2EyaSqJ1ga/UJwU3tvKnDe6K8+W342I5OlTdqnWj7mCBIEkhkXmxWe3VxiTgl3pwPmHEFU58g5ASnBaykCwNLBLL1fC17DwaOa/qxeEume5aR1ILO4vp0arxxInWYeYGn+EDkjQgrmWwK63ZfLflZ6bbNrFo4iiAE6dDoGNQNJSQLBsKEL8OTK2WzXsvLsuiWmX5p8YEAKjkOaqswgwGdwnHF3PMCRRDZ1Xuw2oeiDkBTEbA2usMDDf+n6xcamUpgvV9DUUhUVy7hZg7EIOV2ehPbvzWaDgIZoCkNtPmSqHFQoSgcTJyTEDo6dhP0haZc5YQ0hqPUd4sEFqbeNpNp9p93CumBASVKCvJMopq4L0mFO/1aBAoG8ejgggCHoJrWeX0AIIany7oOD1y56Xe9xPDKOx4jTKWKeGaUEgKm2jEU0UwssqY3NLszlsat6LNo6Lefhvyh3MM6M5Xf7ufA324+HT5SD9ZAgz3h6A/zra6Sfb8dWhEPLVLGgLrRGs+WAH47NgJatsd2MlNO3zLWBdeWN5k2T+mNROn2cjgoejpinCZkzuq4HHGFYbbBeb5HjpHUcoozhfP2Z63yboXMzSPOkLiKfHp2p/ZXKmlK7yCaHmzVd1NJqBHuzevbmAvCc1q9w2r0li1oFy5CtUkcEYR12O26uvEM548I7QJXWlttcx1fPSD0vJtAkxCdpnrcU4qwCs6AGNVaJscn7UMZViuOdzaUOgeocztdKxy9ytzC4Mz5nfCKj7YTW3qXeWtfFAAMDbfh2e1V6au9Qz+wSBNTv5x7AT0UYnhucPkmF7Vqdv6X9W8FI1Hxo+d6FMkqtwcVusHyuCdrWUWhG7sfmtPi54TPQYRUw1T6q2Q+7v33OEVRBDYg5aTFkNXdkBrtKN0IZvJjfgg8YbZMa6dtIVFuHhn1zo2QZeKv8S40XQHUAL9adCpku+W5DiY2hiFDPpxlzMkrsU7tY5YZ1Lx/hYVTXsV1XAovCpGOzyKxodVfY0EUDxGyPdJ/OOfrf8rJGGtlqIQCVrho8sbiI6rqfv4Tz3xscAHXYUfNaeQWw+k9Ogah3Dsk7ROfgsjrS1OkSgmKtYDFZlfnaZ0OwbnRmbBJc1hqguq6Dc4LFyDCUlkCwLoJmmPXuDDuVNZSaFsEL6O4HwWpwYtQ8niKOp4iYQoMsW+NbIxuaQ1Jo/lHGhMJqqyxhjQZW0x9bZAcXXiuf+xQWO9u7x7CT/lNp4hxDPfzQQq43eKrwhHO81PAx+ZcWzzN0I/83co1RsFHhq2f8ygxhbPL6E6fNIpKZE3KaMc8TTqcDGIxpHJGidD4a+hUAwmq9wWq9EaPFNEI9y0vDgcq6xdxtrxux/UBaFrz1+L61x/BTePfRs6xr/8iOFd6XcgKylQSQ+kLSfVMNeloY/JFMncdmUv5q9G9Aryq9zaR0d3JD5+V7wceKoXIGk0Q7MWR8RFkLk5MaDsTYlFIsDXVqjUwAWpPOPDbZcUnRXwYdtE5r/b3USTzbmDphST81x7v+RzbpAjx/8TLWl9judI7xGhndYPjlDSr9/ZyC/oCO7ek27PPbNkNuDVimwwhGr7yNsNj4KgdZo19YzmxhDoxmD5o7/MwcFq/zEiPavNqvZfTWYzesRlLvRa6AxDEW1ZBcIoNYa2mxIRtDARXtGV8rvyl/a8Sn0meVDzUzQMbsLSJRhIcah9BA+8p8bP6PyniQoCNb5/aMGqNCE81ehrwkhPM1rm+t8tr+ar+Z4duDEIHShTXpl91DfqgEWGXn43r/Y9cvNjbd748AoC1jBSS7VS+h016KbgO1sLdUj7fWfObRJ50al0LiBGGgTJoKBi/T4HrIzOPCLijYiQCLx6zvJezaR8DNBJ885ilCvJmuhntfrwBkxAxMEQAIXRjgfIfgHfrQCQFZag5JlzkiAUCeakFyVwiBF9Kn6zuE0KPregzDgND1cEFyRhnAcZSCdldXAz57tsV602G1CQBl7PYTvv3zDuMpIkYDZiTdtyKQYyypQClJjiVLKyEws3gGz3gIq+Qg0jRIliKBc0pAdHChYeDQwygu1srQmFHiBqgeRvXlQONhQO1CqGHGe4/VyuufNHda72MU3PCjMvQqzJdCuzXAtNFi/oFHAu0JUSEngo1UOTHPFGdGDhKO77wr+cHWDtk5ArMrEQomUDgxmKrBTsCB7GWa78H5iB+++3fsbt9gtbnA08+/wtAP+PrLX+P5s89x2N/j1Xf/geN+hzgeMJ0Oyjy1TTgvDWuV14uQtQ4FRcljqICHFEbWJfYEsK6PU+t2ZfBcvD5WrJ+c0yg/qcuWs7TAFQOSggsdinWwmmPEYX9AFxkXNwnkHTJ5jCngFAP24wn3+wk+DOiHXtJizO7TEGytQGB8jSTaQ4GW1b4J0ek5rVvNLGfBIkxK+LfVMYkT8nyC87W1I6vnjOSQyxgs3TZFjOMJOWdstlfwTmiY3P9L3H92SZIj2YLgFQCqZuYkePJiXaTZm905c+b//4L9NGfOvune7iJdlVmZGZER4dTMVBWAzAchgJp7ZEbvdtdqVaS7mymBAhCRK3xQEC0GtV44gY1+OpoBwSIrKCQQJeUbrT6ICHuNntM557JgLlk609WKGKryRt3P/SbvcQ81+mkMoXFSO9cMAkZndnr7rBPJBkB9XbgTanYf6u7fiUEDER3oM2GnmkgbKtkT27sYeGM1BFKIUqPM5QJAIYIp6jhbjYfQ0bDc29ZFGkWIJ7yCNRrXkvBd4epYSoNwBhigUXIS0RpCQA0dYFCaJF3iqDS9HRNwvkEaCHf7DQIqBgLm4wGVIkbeYgiSyCbpC61PXAAhcqPBBYzI4nELp2Ml2YeVSNKIdcyRrGaQFHjOHMGVkJlwKIxEwKj1rRpAaruIDER1hxibraWynCfRY4POe0GuGcSMaZlRioYgan8AScmQITeFtvE1qrQ28jJrEU0gMCOCsVRG1nfe14C4SAYXByBSl7rG7HKbQBLFcwLa/ruOu/sjQMAYY0sbG4XXhsAYkqxzpKhGtODRNpZ4B8gcECvwhhrKC6utvEHq4g1XRIEFJBpMtmcFOCFQwNaiuVnqh8XAyJuNhNqHjM2otfAwSppfISlVAIn6Thp1OcSkGEqL4xOQ1BEXoxXMb7jK+IitPQHYDAM240YasGhaHoi8NkzJGVwZn3x6gZ//8ik2G2nm8uaHW7x+c483b46Ypiq1zpQXl1xQglxbSpBaUppinYsouZZO1Buc5L82h4wYgVKh96lgRE8/clHNpN70tXnPOLDRaYs8gjrjAAoihwnkRjm4omD0aLG+yg/RqxD9vfW7YJ/5VTCG3huAQq+MdJhCNo3xtCatAzGGKHu1EFANO2snwRACUjSnMYFUfhtfrVxlz3bvJ0bIARQKDvv3mKZb/PkPwPu3b7A9O8eLTz7H7uIZhl8M+PTV54KhvhYMVZcFyzLBogaC1iErtYmRXg/r4WFVmcostf4sGl4QThVoEEW2GwaU/apYrEv9sfk3RzbQIsuDCjghVzUeKS8qJeN42CMNI8azS2zGDShusJ8r7o4L9lPB8ViRBiAkqR0LbbBiCqnwM1Id14Wn0G6QCP4YCcMYgRxQq12rmNbqvpXS8Bn332dwmcBYUPMCArlC2kdr5JwlW4IrlrKAIfrJqJEwgoMCJKRQ9rg0c1BDtnYXlmLfkgIvkU2MGArAUqupWqdFbZ5gjYy4EmphLEtFzrVLN+qMJN7dsokV6tawGaVM9wA419V5ZDyjozk/WQllrUc1oCZ8z6Ix2j3cCfHIYTh3hY+6L5seBnh3be+0Tj7XCKbHkesDUEzLALIFOrDoNERoYF33FhMhxCTpj7WgZn0OtTk+VcmM31k2DhE0uk72gbEcc6ShTb/IkhCAyDjbjiAGpnnBlI9ALdJRcZ5h9YhE65QSGtDGXs7vOIBJmoItgEY3rXmpTI10965kZT20AUYgDCQR4oWloUZGRa6EiYNEh0cLUtC1sLnzOVwtqmQdlSzp8xp1hECIQSsrVcasJRYmBCSyZhcWEKG2FhKjddvdUB7VHgfYlIhRLrFFpkuUEwE4FsawFKRAGlFFWvW6lwVOOR/cs/3x0cam47zIBYFQg0QD1ZFUkQ2IKTq4NrBuE9AiTWxQsvGtWBxpByHqzrVXkUXWa9xoFYQQIHUCpEZSdOUjpYRaGZtRppeIMYzCoJcCHGcACBiGM8Q4IoUoVeab3PNi5m00BtQjzN8Dm3gtQJdSxHYzIqUBaUhSDDHAi5YtWUK3Q9ziydMtdmcDhjGAqeI4Z7x9d8R0LNjt1EtI0K5u4hngKqHalgpmRdXJpanOrls4TbEjp3QJC5Qw8aS1chpKQccAG0DqQYb97CN9+u9Ovw/JjFfN+9dOaoM+3a6PWYD7MMTT88wAaAx5hcDcO2JjMyHRgBGFzpurgBk2RH2O72WntWYIpSCGIilcOKGWCVdvC26v3+PZ80/w7PknSOMOu6cvkLZb3Fy/x/v3bzGXirzM3iHPDVrdsnTbzYWNv6fJMAMLHaoSUNhqGlm6mW1yZoALK43JP8C8B7pm1bpydAYqBdcizCTFbZ5nMEVP2WIE5Boxl4BpKTjOMwYOGIYqxlcbc/9y/W/GlD1EwWrYNKXFtoEwUrmyVkuX0HomLOCdq3hNCQBrRxIui9AUAdaRIOfs4anH4wG1MsZxROUd+iB4md9TCjDu17+M8DoyYU/B932vuPd72tIFSy3aaaU6PVNPl48dLqCpO7fjV905DjhODlq/gNPtCjednGs86MGoOr7k5qaeCVj3ODxyI30PS9kAsxjzSI2QJhssdYVZtOnuvYQ2G0+T+5J21ApaOk2Vhc6g8WjUQD+LpsxpqtvKKF6bsmZvZnWHRFYNACp2Y5IGEMQos6QnIG7VYwYvrmrArQeTDAmttjXucNmDxanUuXsIDpgKy/gJonDN2r2tdncycPihOQEA80L36dsESY0AEUqW7i+FxdEhxvDQ3BRkfFxll+0RsvsbVRnT0WeYoU3HUUn40szAocjfo9YqE6DUdSDUxSHQwz3733RMiqFY645IcxCVQxQ1glJ5ts1OVxNTty5sY5Eam6p22yEA1o2299g2FNNHoZhPM2AIEWMKKCViyOLwG9IgYwyEYQBAjDDIM5ccMM2iIGyHUYxCJE4ak/vm1DFM5bhKI5cI0PR2lTm69kOK2A6DGINDcLkueAfIs9R7GYeITz65RBoDpmXCze0Bt3czbm4zlrlisxtl3GjOClYcVa17FdjxENAMRjLPXQqNG6+pdbCrBaFSMxjoPH+QpzonNlp65J8+3QxwUXPcmgOwb+SyNmadPtVFC3WfP2pX7RQtm2tzoTvDt9/bxUTa6CRAZCdr2o3yYnPYyhZsxmuPdjIMq+9HBFAUA1XlimW6B4PwtlRcX13jxctP8cknX2K3OcN2ewa8/ARX12/x9t13OM5HcF5QSlaco47a6mJj/cbdRDWZZtE0tXXm7ZRUw07u2OyAsxdZNlmOZih2nM6s3eOMj2mkkF5XtU4jQNiEgDRsQCFhLhVTrpiXIimsIXU4WvcnBa8pJXOLbnxW71J1rSCKcKldAEBjCl3NS3hJy7YHCmpdQAhAlfq4vUPbDC/TvGBZstAWSwmLPG5QyxbEioUslNF2PVfZJ7XC6mdK2RArjMAgslR15fjBZATBm7noe0hkU4tCXC02elneSQBu8KOd1ckdyyzxUZPXhnQMY3vLjXCG2du1be+x6xP9hnwsk4N9Ftr3/Sj78fr+VBnK3XcAhN7QQyyCNYFwOjd+RtHv7Y5ggmCuGBG0K2TVd+/5iHMoh3ZaYsfPa/iMwLI32Paf9WFrzq4QxNk2DhHgESFIZ9cctHREyWCKiCwVzpyeuaphy15rjaEAcoPTalap/ZRudi39ORIhWbCMzlsFYWGZH47+0o5delKibo+Y7CnaGRgwwxFJCQEAlbOUKWAgo6AP/LA5dwdDf2tY9GH3aoah9F/U5Z5hAQTAXBlTrqhRUq1jaCzCOjB2U/lRx0cbm3ycTshS8Z9rRbZucvbqJ8y8VPHYBPXKAmtGZhs/UBOsVgSqsIKDCkx5kcrpWl+oL0xZuSJUyQMfR6nTEKMoFISKYSyIsaIwsNnoAhRr81glJLcbd1DmSfY7oF7iVtuGFPBJa1NyAFVKwJIzgIAQSRVUqc8QiXB2lvDsxRbDEHB3d8Tt3QFX744oRaJo2DsJWPe8gBTFEx+sPo0DUJvPqkaAFn7qhxlkQsAwDOKhsRa6zqyVkZwwN7283UrftHnOyO+/OovQ3c+iI3h9Tr+vlMGdGpn63/u0P2OSInibWu3pnv0zSePpiGRNmLWNJ6PEgFDUeBHWxhh9mAgFjZKjfn+7YJE/DNyJoUY9TFwxTXv88Ppb3N1c4/zpM5w9eYqyLHjx4hOcn1/i+t0GV0ELIs6T5OES6U5r+sIKbNLpIGQOq49X3zsEJGfqzZhLZHW82hY4XRYDYMYqV+lujmg6oBSiR0JJtEPWmiLWUahf8JP76W+rKdXxUMeMayleb4OgVnwrhKv7X0ohmXdVvO2lLJjnAwJNWGgSAVLEgAuSVt5Cv22ezaDFKMh5QqAoIJQCUhoQE0ToWrcTHbx0RFnEE4gmnAOaZ9tkuu33Sp0ZwSQGtTWwPWCCotHmQ24vW559nfkxfqDXOizwcbFLQ9vr/l2TMf3TYE977Fgr8z28a7/3BmPZZ2rY9IpdqqwwAI1o4S4kn40XdoOQ/VdgXVSkPlOrFec7Tflik70nnsV2mqf8OCjrwGlvCLffQ5C0bii/MQBt6XTjMCIXAdd5moFQUYcZHAlV2zpDDW3mGbfQbYakjZF2VAGfVAQzLcuRHXyO3WABMW5XpeGsMnwpBVp9o7EDanVJ/EPLufD37nJf29SJUY+1Eyk1IxnQGZbwcJ/2RsbV/qosEYvoDFxVjNGVxHgwleI1cKC8Pphc7YiJbZ//DQ57B6sDAUg9sVir10IgkOnuOgfysxTpUhj0fdC9u1I6gFZvkAni/QQDVWgj14p5zlrzEd6ZNwSL6BUsBQDjOIiyXCNKlWLAaayIiZELYTsKTrHORxZ63xsuKjRglDpHDbQD0Am99I6crDVdcsnyroL0EUDY7KJgqPOIcUsgYty8PeDm7oCb6wnmQLJ9KmUSpKZU6IqUW52ZvluY1XLsU3kMZ8jcEpLNTYkrxxBg+ER3Nq/lqqNjohUt2u9EjQfbZSYdW9pQZ8xdh2F0e8XkrKaRse5xF0R2Yq/odC4ftve3U9s6WVYC9FbBIl5UJ/AmMf1+7+7XK0Q+cpN1bZpVdmshO64oZcHhcIfvv/0G26sr7C7OsTs7AzHh1Sef4+LiCW7ev8X127dqUMxSQ8oZHzqFv8OhWt7BDCusc12thoWuTdRz2jp1PBC62KbAwXa44d7G891RqEasyibrDUMtAII2TBEjcl6k7iQAjQ5sTsCmNFuIeDPY604AFAcFMKxz5LIsUo+SK1CFt4Ri0f9oEER5uhmRc54xTQePenIswkLPUdesZIkOl0hL+a7WBfNyAFGUmpkhIKYRKSke7aeyCmYsy+QGxBBbJ2tWfXK9jmFVr7btX3jZEMu6cRHwgILg79LLMHYZtJZrdvT8t98HTgD2PaGTZQ0nrPAVNWPshw4Z08kWJHPc2PsZ9mvfy0SJ7H3M7iy4SMes+9ai8mJYR6O297M9ZlH3xlseytSGEbqXRuN97kwjqE7NXqMLMOM7UAojhAprKDEOA8CM6XhAooiRExK3yJ8eBxHI7ZyMjiap4dRHRu50dcqnAXHIMEWgFJRSgSDRYYHoxDBjWSs+y04/ANzohtoPWZ8XAmpseFpMsx0vXWGk05W1Z3TBHrV61kfVAJa29wVbzqVI1Llm2wSIcw+EVdnYDzkhT4//tLGpshQSrVxxOMgGYIKEmcI2CWCAlyEgBzr5ocrkBS8E3ASQgR43hhAh14DMFdO84P54wJILiCOsDe8QJY2OISAzUMDZjlBG8T4Js6oYhgkhSoveEAmlAFc3wH4vhbYLm/deJl3S6KISmhiJqmjoIP3OivYOgxULlJSiykCYJuRcEYeIhIRIwHYQj/Kz5yO++sUlSmH8X//vb/Hdtze4PzCWmVA5mphCIMI4jNiMEeMwYkwDUpzXBh4l3mIdOLgZXHqAE5RZnO12+q61E6pN4jdjhq1hB2T1fsHAIdAMNHow1uHZD7rSoaW3ADhhXO2gbkz9caqMCFhohrZecYGKB2khDlhkCTNQqQqO5YqaiqRKhgCr9N8/o3L1ulzGDJ20la96BBTEwCHKL4PrgrvbK9zd3oJCwmdf/ByvPv0Sm90Ov/zFbzFsRnz99R+BYcB0uMfVd99gOk4Y0oBxMPVRbl5ZmK9OotZJa4zd1lSiIeTTYYgAPSRzAlAqoQRIMwed7jZrnTeMCEFryqyMeRAmnWvBctxLSKkWrONasOQFS57ByJBukfVkSVn3axtT8DEAYHYvTGUp8l3yLGCpZBCLQsKZpE4btVbEBGlTOmp6b16O2JfsXksDwQLOA4IWEg5hQAgSOiwpIAHgjHm+ByEgagg40RbDoKm/ZpTiqt6+imXeo+Qsrea1GHWwgsAMVDYFRj2gGmGi2NOFI6t3j1O/75VuLfquTaevn+377qvV2gNwvtuvSe+56/CA/O0g7TEg1IRdMyad0u/axyPPCGoPEG8OM0PtM7arHaTI/AhQssL36saQFExhiypAJYohxSQpzWnwz6y+YIXwsZDkgdn5x8PxG+gGd8Z8GyM1MAIAVnicmZGQxElRiqSDVTE0DDXgfLdDCgnHecH93R4lBCxnCePA4LzoPlWjp8rTFMSAMEOi3rgyBgoKiElTDHUs/b8uxYUAl2NS74YwLRlzZRSqOGQpjpmCpNyJYoxmrHZAq7wduj5BvM++j20GY5SIRGY1PltcTdtzpz/dwNppDf1nXMQnWUtV5aw5EKaSMWfhWzUQKEWEKimHlqJh6/z/j6PUCl5YI2XYjQ5AB8hVppDyqaIKaiSJLF/hO27yMoSIlETp40iu/JUi6TH3hwOWJWMcd9iMOwwpdHWXIoYqTi0K0Qu2lipNFrbbBSlZuhErhqrYH8TYb9GhpnAEoi4iRI1glQCVsVGLRMs+jJ76NM8LYmTEcfRUbSbxaD9/vsH5bsCzlyPOLwnznPHd91f4y5+vwJzAGBAHKRQMiKFzHDfYbLQGZ1InZIgIoWqkpKZVeCOQplgazrHoycoMxORKrTcP6V3HThMPDSsUmtJimOz0PD75vdaywk+P8ezVldxjIzOg6SXrYYqMJTW0aXdbl/FdHTjvVqbkX4WUJF2ftS6nRXnY+zjNNgW073oGU24sZVuVV+HJpGuSUXLG1fsZtze3CGHAlz//BT7/4mcYNiN+/Zt/REgR//HH32NhYDkesb96izwdEdOANAw+H9YluaqhJnCQzANmTRljdWiJfkOwumItDfVU9lneRXOcqbJYJZWTqxSjZ5IOqAiGVy1XSei91Irjfo88FlxkSZmvFThOM47TDNCoDYui7r3a+HFlZBX+TWYTjMPGGEUBLgXTNGGeDqg8o1TpdLssYpgLFLoUUGuABIQktDRNR4lgrxU1a+q5TkeggKCOvUARRFEiLwfBR6UcsD8UkaNxRKAojWSiRFeKcZbBKG7wm4/3WJYZwzBi3GwlXb4WTW6sKKzFpMMAoqiF4UuLZGT4vUpRuR+cQHzvd26+E3oyejOZ0dGfzrGZ1zsU/oAenV6NT/M6qn1F2wRwRx++p9pguluTX9OcyWJGMgxC1GhP/q80Fxv/EqeORlFyW9NSCniW4vtpI3LBM2yMLwMgiohJ6agUrB12awzVVD8Dq+yf18Cg2iKfGNDoVEIpQXWR4sEuQwrYbjeqa1Xc39wgUcBuPJeGPmq0BLfMKUCMHsJXGZnk3TmeUnZHTGQ4tZXYMRxLgAdulFoxl4pYGROJM0YiqtVmkDTVtDPstFRaMagG726q9+4xVxRHes2+tbx+W2VLcVuX2HC81Mk2fXlt0MYe6Wv6FqApe5XlAWkn2LFK0XUwe3rmxxqabN4/7qCOAFQuVNMULTME1PZQB+jcK+MGBJFSAbSmNPQKUJtkkUXWWcy6Cq2xtG2mQGbMIN+0RBUpZsTIGIaAzTagVOBwyJiiMKaSdVFgRqeO6TC5d4j7RWyjlo2zEmos4NvGHKXl70YLgkuYb8U0F+z3GfMswoEeMCDqlBmbH2Nw7dwG1LtxrzRGvZWGIhbdzO71esy4Y6F6HRhaKVfGptePcGXnMU/1qTX/Y4/HPN4EA4b21P7c7tndnrK9a+zC59Qm+PS5/l7Nc8B4nMjI9vYKOUoa5JIXEBGOh3scD3sHmjEmjOMG290ZwIw0jFji5LXG2s2bx3hlpfYOIrZnTLjAz28WnLUKTSdDbdL2hCxd3zsFVvoUtlpHGnWkXdzsvKgG2WiM1v7HTYzqkq6ey4B6ZskZdGuPylgTYRNeq7HrtVIjQoQPmxfPrtG0JaKg8bdoEYukhossdeBELgSJhOSMWiOC1l8ScGPRjdL2NyBKIVlEFQT23LaHyXej3aQtUlvNRw6bND2dqb3/xwiBxh6ULk54cR8z0VFXB7a6ubc/XcH5iPQk34A9bQHEJlDau9lYiW0MHb2uHqSeIBXYHNp+6D3Tzt+pGZDXUZXt2e2d4HuxPdM5Xkeb62edRm8YXcYQERODctZIHWiqtP5jXteRgCi/J5k7HRBeMZ7VOW0OabVsxh6aTBevVoFGAq2A8/r+TUZyW0vDZ763u3m1dwROUllsoJ2zAIApYza2xiucIa3W3pUG1uhrPolk6JaLiPp+AH+bw8Hrepw2jh5iCX+j5jgyJ0KQSMq2j4C+uGqvbHoERndzS8GXU2i1540GLSXcvbgEhFAxJMYwVMVfUjfy/sCgY13Ps8mnjqc0nm8yu5+X/t11fJbqpvNj+2DcROzOBqQktZdyKZjngmnSaIlI6z1ur+94UDkurXlkGxO3/dgxurZ0ZoCwsa3PpRURoPE055E9T+jo8QQz2LOabF9jAYA73LY+GsW2SC1CH/kp8mcN6cnefH0TdGPpxtkUwhZJ5Xiwm1Pou7ehUnuvBwCkXd8iN8xokLHMB4Qw43jYYzoeZF9SxJA22Gy22GzPQSBMaUBZlhU/fiCLuK0z93zC97C9Mzc6sLfxiVzPPa9n8CH+XekWdgtzVIkTIni3xJYt4rKCEiwZyPgDUeOV/PAlXa7bP+vSa9FXbdeTY+ne2NofUt9SnfM1r8CaRIZI1DcHRgiMwK3xSqkFKItiKEKliqEsqCVL2iUICN04S0EpC0pe1Ag96ho1/Meqizq/8aim6nNkMsqdQ1YL2CDYw2WE7bkPyQa2dTv5vDnZ+s/a3nPjb6dr2R7r9T1pMvD4szu04bTXYxaPTuLTfcsnd1jvwf4BPQ4/3cOnfKCRsVIr0Vq46/3Jz6WGS8CreVzhL5dvzciz4plkdCHRuDmr7qGNf8AK5FfsuXFnsUfYT34wHmMFrDRk82J4pidiglBl0ftWKIbiNr2P1gM7wTz9vPZ/uuwiiCGbevrsyt507OvRowNRDV9xe0/dT8YLC2orSu7jlkkgJ5BOt/6J46ONTckAiYYig9CaUWtYO+msRwqgysgahZGLMAjJ69d2ejF5MeRmvWuJAMwGYISxBEBb5wagBpAWbQ5oqbsRhEpAoogaGEwBiSKIKnZDxBArPvt8g9/8+gylVvwf//IGX397i+ORcHsjReqivSfJuNARgLdKJYckqJB2h1SDg6NIFYG0sFitQM4YxwFf/ewZXrzYYbOLeP36GtNUcHW14H4PgALGTYJZqCtL+mHOYiSrveCJETEWZFiYYxP6zsh6LqpChiHMFixFU0O0l2kMyBSZvvRJiA1IyD+G11siGfsK3MFvpwy2+6A7BFjK76fRRPyAWXbfAQpG9b4dw+qBliv0NhfCKTSdiXVfsYB3CMBlLR5nBixJ7dE6QdGKta4BRA8gTbjZvMsUMaIWD755/wbH/R22u3Mc9vfY7s6Qdhv88he/xXQ8YDtusb+/xf31e9y8+wFgbt0Ng3iBJLpQmKt55Qw0kc5lSpLKV8lGya22AJRFOPJBI2YNq/a1pJZe5kG2rr3Lf1hrJJU84/bmChRH3N1eIwTCZjNgc74DhYBpYtxcFS0eaXPVmBv3tOZckTwEfJlm5HmSNqxLRhxE0IybUTztixi88lKQJ2lVPc+LzOFQVBEBwmDzpVb6CizLDGZ4ZBOIQCkpf9IivhSR0gCigJIn5OUo0ZXDRsOIxY9RSsHd3TXm6YhhSBi3I2JM0iWjahQAtFi7Rm6hMuoi4Kp6eKusRSmtEGBnngNsDdEDDgPNAIfeKEqr/5qBpfvQdJjVZ/a7C1ovGWJ8uheUSodB9xO1sfSHyQ/fhyABFZCiwiGZXKkOHFGboW4tVDvUw52XKWeNbC3u1QyBkFJU/iTeMdKoDgKpZzb49+1gcAjKGy233+Zd2GeMPaBXmdXVirJixdJ8gIFE2Gw3CCmhMGOatZ5YnpBrAXLRvQKwhXrB+BW3lDmGywaEFlWVS9Hila0uSAgRUdv11izeSQMxobJ+RzjkiokrzpJERpqtGq606JxoAf7KYpwqLh9lhiIL/6yBwJoOVbUwc9JmDWBoXY62jDZnvvc0GqvCjML9mlflXcrHTWFCQCkSGVBzAEUgWeZ4t9//M565/18PixAQHCTP9YAYCYl0+V1Y5ouL0HjVWlcxBAxJooGS18YJ3p7YuKfsb5HPXoInBKRxBIeEmJLL9H6vE0maQQpR6xpJDacUgadbwtkWePE84csvR8y54P/1f36PP359QMkDlnmApMC2NG5z4liaQiUxVDEsmka82QsREADzlkewpEIgIgYgJcLuLOFnP3+KTz+9wPE44U9/fIvjsWB/x4i0k+YBKcGMbBYJvCyLyt/W6MMjKWtFZimLWqnbE0TezZCItCdD56xhS2kUpcYBO8M7Q9rWEtmtjVLCCe8F2j19DWxfqrmoa6gCW69O0ebuunaKXqP5fI797IF6HRmuNCb/4OgxsPG93uUq79PXOwU3PGp7KpI22glmlD9FbE3GCO+3J7mgQEAGasH7H77F4f4G29059nf32O7OMaQN/v53/wPHwx7f7i5xf3eLw/017m7ei/xPyetzliJ7rJTsRfSVvfpoQggSJdp95nyPec037OIOH0k5gRb54KiG+yQ7iHKudV0ri1Py5voG0wxMxyOePr3EZjMCcQsKA6a54uZ2QSlFeYg2cmFejVHmTHFAlfqGpQgemucJCBkhaiH9YUDabFCWjONxQS0F87RgmWatdSnR6sMgGBiBkQbBTibrKjOWLM8VvCSyNFTFUhrtJMZBiWwqyxHz8YAQIsZhgxCj4/tSMu7ubjDNE7bbLQgzYowYxguktHGZBiaprUVBjGB5QS0LpMC7GJ6KGe/IaiQ9QFHdWtqPDimTkcwp1mqbvt2j0YnhBDE2qHHIMYFd2+hgZfMxmnU+1Paa6Yj9gAnw9GAhFks5M+Oc4QQ3QZ/sX5Px4gAPUUpU5JxXBiePQiVNna4VMZDjLlKe2rO4lT5U2pzL+4lhUng+0Iyp8n0IjBhlbqwsp3WkY0RszzYIQ8R0nFHKBEJFyTNmruCSPVrVIKd1PiWWdP4KdRoEqSvp2Bhq8FRea/V80el4VSO8jPdlMApJQe1jqVgKsI2EnUUam57D7FFFXJvhtLA0NJAxBAQERI5adxcSOFwquEoqfOSm97bagT2A7/cwKQ8NvtasmJVQPC2OWCRwVkw3lIJpmsExYBPI+ii5svCfQU8fbWxyr2yMDppKKR5+xVW7wygzQjUhx5paxgqKdKMOBI6S9y2M6aFXhNFZ/QgaHh7A0iiipQRwV6dFBitClACQpK9s44ATbb9yAAEAAElEQVQxMT57do5//s0z5Jrx+u17XN8WBATs76Kn+rn11GvcdONSWpZCqspQKgOkBK0bJ+qYwQwqBUQDXnxyjq++fIL7/RHXV3c4HDLu7zOOMzAMhO02unFGNrOE5pUC9F1IgqZ7CQOpDihk3KFZmjtsgU5JcBbnPFM+cZ6gkM+YXQgtxaddxg11mWbp36+hyKm3ZzWfxuiIWj0bVmZ7cq6/C4xwZc9VY8DdOb04aXUZ2huIPmyGpgqwRRIpo7PpoxaRYMqjeAk7kAZjUdSNbW2SsnDW/f0Vbq7eYbM5Q82M7e4cX/7dr/HJJ19gXibkWnF/f4tSCt7+8BpQZu71EKIAxFkZqXQPMRohSHSc1UkR2qzKhFqIZTfRq3/QNDPp9CFeXOUuXjeiXwllaMwOSvb7O1AccTzuQSTF+s+enGOz2+DmesL11S1y1iKPltLYRd26t8r/lu4MzJKit8ySQldLQYiSGpRSQuaChbNGKco/q3fAYGnLFyRcN0Qz8LQw0qwpdkQLiLRLSo3qdYuaphcxDKPQXs2oeUGIEXVcEFMCIwIUkUvG4XCL4/GAcRzAkDSuMW2QQgQQnVahgg9VlHepNSFza0KN60m3G6MDbjTqq+pL2dPOmodRf/KKv5nBlD9wHTfDA7B6Qj8uUgDdQN16LI0UG+1YxaFWkwZgKqjaPovJjEw9WGz7D8r/LUWuKI1aZ6FapQiz8TLm7PelJOOQWjedAt7xAx+30bIpGDpFVhuqduDBeIYYnkTBIquPAyCNAxADhrwgpgiqCpBKBhVutQU0paMX7pKGJotRrTis8iozMpVqdUHI+VgkSVno06WlnhFA2tFv1k6niRishlljyl4jSQmX2BQo4aeiPOnzoMCOCIjKaWllKvP3W+0ybluGbD/RysQH65BEtQF6KFCS7SDRu/OyACVgMwbvymlztZYJ//2HpZyHTpYUi2AwDEUEqtXttcYDypLd2GTyrmrNpRgYKXRKEJsxp6p01jTyQMKnAkvEZff2K3lmSwiSNCNIxNDZOODpNuDLVxv8j9+d47gs+OM3b/HNm4IcIkoJYA5qbGop0zbPFaZK2PJZ0WICuIKr8B7bSxlapywQYgLGTcLLT87x5VdP8Je/vMP3f7zF8VAwHQOIRjFmxNABe9nnJReUCKfJVYQjq9EUzXvuuPIEFwE9JxNkE8nS/JTnGlvo5GTvmW+TYncznEyOm/zRIK358fhhMkCZrhuO7WOiE6+5j88Zi86JSXOT6Q3X2MisXEOjv04KGD21QbVHmig4xVCrWzyC87hxu4Y3Be/cXr/D1fu32O0uEDHi7OwJPvvZV/j8i5/hcDzgOC+ImzPkkpHf/QBwRUpWt0/uVmvFYqnYPb8hK8xPntZZO+z8GCaVle8RZ3M8AGgYSmIFbNXlnp0crFV2/X6/xzQDy7zg7OxMatCmDRAG3N3PuLlbULkicrvW91I/gSrfrTZTrQU5L1iWBSEVIFaRiSkiDgNKrliWgpKzliwQTFfLLFguRsBSfTQdjdUIXktBLovIAi9FEIBqnefkX6CImhbEEFHzgjyLEamOO6SUfB4NQ03TEeAF4wCpkxkSOIgMke7P9u5Sg6bWrFHnpa1Dregj7dcAU9brMadDo6H11BqRub20I7yVTbZ/ljVC6Q1VHcW3qCd7rkXYsBMLARo51MO2Tir2vK17RynP093br2gv5hHKUIMiyDFEPzZ5TjgxwDW6ho2xm2ByWlhHuzuWsYg2Ud5F3nnheasvzCInxK7oGGocEyhK594JADFL6i3UwOhyrXseq23FbAzEKw2WlO9WLRfEaPaPXnWqmr5PsfF7hSOYizgGI0WcYb0eltrZIim5YVXle9YkRF2wptpJ1FRuMrRh/sflhLOXkz1BWsO09nvbcC03g/hSKpYlg2rQkiynjuKPPz7a2OQWQoJ43LgrzumMulsMB31qumBWA40c0qmAFSyb16mvr+NTpc+NauFkYTYV0tXEAFwIbdNq9flGhJDip5kxTRWHOyni9fTyDD//6gnevMl4/35GzhVECdaiNXTW2v5wQWh5riE6Qwis1mvdjGe7AU/PR1xebrDZRMRIyEvFzfWM47EATNiMyWsWEMxRawLI5tmf7v8EUHZKHrp1QMdUlGHRyZw+dpByMuoUxd6q3QAtunV/eJcGUtg3pfHNRw9uXrz+fbjfW+g+6N+33/a90bIDM22bmtLaQ5kmBNjnSv4OxuipY5QrQ9J6LH6Pdqqc7yG+pACg4Hi8R60FV29fI21GoRQGtpsdLp8+x6vPv0RZFuTDHnVZfG9Xtoxpe01WAWQ1CGi9S/RdQ1ecjgheq6kpxVUjuMxD0ibR33gl5Gq3DSQab55n0H6Pkgu24wbDMODy4gK7izPk5RaMa+SatWNMcOZmQl+Rtz+589U7X6BAiCkiDQln23OcnV/i7vYOd9MeeclY5gl5WZBLVg8X4JFEakAjgoS5qqJr70F6fwoBcUiStlJJx1eQyyy1dzhLd7sQUUoWcBUiKAzCz6qlm0hESQCBNfoLJAV3iVpx+loLcpFoHOlu1gyk3M1Bry/0pGh7uYGXbj+e0HBPuw9psnl2sN4Ca9BjzzQgArihpgd1Br5cEeuesn5e/51e44XCudF128Ld+8GL+67wn9bSqixeKmj7dQHJIvQ5oru3Fmg0AIA+ZeKE71C3JmhKbAhSf4NCcK+VDkbXvDrNxSCesnEYsdvugFIR5wUo2j3FamliDfZ8FMxAVyDca60Y+HXgabOsCinIPawBrPVEGAPEIDBTVLBhcVS63h0wkn1Azj6tl2WDdhDvHbGIySoRM23+pSMqGR9m+H6XbXa6yN0e0GfYuNQeCWstnrSIbgBJdDUzcgUqa22QFa/H3+wQAx+JM8xeqzfe9byu44Emu+QfWeUCjX4WZaCojKEoNVNatxpLoRLvaEoJVBhDiEgaYWV0Qhr1w4bNdPVjkH0yzwX3qDgeBixHgDng6ZMdvvziAjc3hO+PErWarDYY9R74tvfg76Tfa2cjItl/pPuE9MTdbsSLFxtcXoxgZuwPMw6HjOOBMU0i94YxeD2knkcYb+hTB+37ll4EkKft+m5Hx/hstdqeR7t/z8ka3jpdfXsOdB/rc5xkHzI1J2fjoyejeXj/Tgqs+ORKgvzIodevGI3Mg9X8qEr/D2fGXJTGtzu54jzI6JrafLTXXcn6XkixXtcbDIjEeLK/v0XJGcMPgxi0uWJIA55cPkVdjqj5KAaW+YhSMrxU0gmOtFEFxQeNJNnLZ/T42TG2voTxWCHvrkj9an30eoLfw6PN9T9cqhhYZkatGednO+EbcQRiQi4MQIqgMwZV+vWeXYZCt/QrA6S9cYwRmzEiDSO2my02mx3yYcE0TSjLgmWeUfIiRhu2gtJNrgStF+oRFTJ7clawWmwBIQ1C19WiLypqtftWrQcnjVdE35KZrBp17h0pWXhlKQtoUaU3qHGeZJ1KWVDrgsKLrJfVY0OPh6vjIfa1o05Or/FFt1tXvzcalollW0/fIh3/4PUe67FDqy2v68Yn66e6mOGslS62vqvPHWyd/DPje4bP0PZiN04xSGl317bUOidaZD204ANmCTbh0O5NPeGv9CTDK2vO2r9sy2QhELVmLo26pI5YUBwlGRyD1BccGHlTQbUicjOim/PRMIY/q/sHNOxkkdlstgzjZRDbR4B2miSJ0O31aonCikLTRWSoO4wIbd/5bmqDsWwaa1hiayvlFKrqdmJvqBSBWMFF6mHL9m/4+HT7uajpdfFuH8j45JdIEvRROUB7DGLWOlxjgNTA5Oag6Iw1P3l8tLFp1sK/kVuBVGPaFKyzRrP+MWs9go7JMpOHdIv/vqJWAi+yUCFGKdbabXKbjUDANiStEyVvmoJWqJf/YyBa1XTxfc/AvBRMXHFzXfDuu4ztlvCLL5/j57+6xL/8f67xH1//FdOSQSFJEeAQkIa4EpSVtXUz28ZQY1dooduyeQJqBThXPLnc4te/eIHz8wFPLjcYhoDjIeOvf7nHslSEtMXlxagbQImzwt2aJVeUoN4V3yRmCRUjWgjQjnfdup/yIRgxhzXj4g5ckHi4ZQyyiNIdQk2EHg6MlWDTD9ALUhtDzxBb95WHxRZtnxgzJu59ReQM2++re8qZN7Vr/RslCNuHVnUfsLQ9S4ET+7GTP4kB0RkSqSDpBMIaOLY3qdyxEj1fwvlbKmSIAbVm3Fy/AYhwd/ce3379Z+zOL/Cz3/w9nj15ibOzc7z87Asc9/f4y7/9K67fvQPXBawFdgnizS6sjFJpxDzfkttL4FK9eDI8bbJBQ1kTBsXWsjil6JZvrsWBEGxudI6LdnCpLN5zMOP27g73xwyuwJOLS8QY8eKzV7h8/gTM36PiG0x5wjZFpCSdV6rn4MPX3OBxMMHI+j5aS2kcBmy3O7x4/gpPn79Env6K+5vvMc8TlulegZIWDw4EZgU/QQp2Cz3LOEFqCA9ASBItFVOUNKcYPEKq1op5Pig9mPIeQWGjfGNASqMCTkYKAUOMGIIYsGteMFcTHBFWVBkE6fSyzCh5xjCyRHFqah4QxYCozJOVwbvocBB7AvJ5vXS6eRvY0V/7tIAW5t0k1QoyePhhf1/y//aPclpW5b8qU/PoEheqbWigxo9MoK09gj2QlkGYp4goiLeX0AFe8XplZgzDgBildXTOi6ZzGV9U8MisRiJ7mwZMFeZ5Wpco5dV5aEpJ626w0ySTGHOscUYoYogKxBhiQAJAFJHiBpwLyvUNapnE8RJ4xdM6tOrdrpiBBRL5NHYrFSiAA0C1eTujpqxHBERIsXMHzKpA5FolErnAu6+C0DpVV1GIAI0sJuETGUXa/lrjD2b1MAMJ2l6XCCEl4cnTgilnEIARaihC6wxI1LesZgfmtiksEkRQhJwXSaOpku4rZhwW6Y65CcCozqwUxNgrq9tHVf33HjlnAMLD2KL3lO8FM8x0ikgFvOGfcmtUEIrTtUQDSRK4GLcpSX2XXjUiBciJGLsxorIY5CJJWLw002XZEyRp0UBGLYIt7E53dzP2lfHsMmF/A6Qh4hdfPsOTlyP+9Kd7fP/dO+RcMYQtEo0g5aNEHahlKT5v64WgcmcYBUsxI1QghOj0+PLFDv/wj59gHAIqV/zw9hbv3h1xfVWRM2OzjTg7G7zLX4Py5pDTmn1oykfzJAv/kFqfLfXFuEwv541VmVJk+JfRygCwr43+hxu2sTp0nalR7tf9F+0yHwaRGVI7E/3KkAHfS/0hZ9R2v84AeXpWb+h9eF94MWnB/mo0NeOAyW5q0DVoV8D+vQgqw9D4aeO9LT7e9j64GbesKDCzGjNCQM0z3r3+BkQB79+/wddf/xlnFxf45W9/h08//RzPnj3By1cvcDjc4z/++G+4vnonBm+bV0bfXw8Eifx0DIX2Xr4Ormjr+ENz4klqZlBZIA1LrMh+P+WCGxRDoUoKvcuaiuN0jSUTNpsRn7x4KXgxRuEbzAAvKHkCDwMojDK2us4gkFeipovpOhpQHscRF+cjhnGDZ5dPsdle4HBzj7vrayzLjFolhS7A0kVt82sDp6SRmVKgRnGHGCtiFBwUY8Sw3SCEgHmepbg4Fyx50vfQaF8KSHEjhcURBFMRIQ0JYxoQKaJmBmrBgqM0XgkSkUUUgJBBNGLJByzlHqXMqJRAcQCFBDHQkxZCzjofZgYglwBOmbrerJvfET01rmp0Ic14nNIaLXX8wT6jjs4auurpzHTlfqfY/lvrFK7nuFNSPjOOYtF0FKrUwNRz2aiL7cbGt7QbaoAac6AYRIx91slwHAZpgMRS4oVLloYLphcwg0NrkIIOv9s8sAUUGK7XL6XIvNQp9HpKLM5e0mweMKMEIAQpyxPSAIAwYMSAEZwLcLgHtEYudSmsLYVCdQsiWAGYhSsCE8YgdKYgHi4/YQX0AxJJWr45CGxNh0jYIKCUirkUlApkFr3CeK/JHJdHPm9ANceh1jAjZtR51s6yo8wzEzglta8smEpGgJQ58vfxGr2+s1wwucHJeLbOf9WxjI4/NHoQFftpRiRgIFYMha5I+jpK/ceOjzY2VcvDZNLQ9Q4odX0YV8QDdMSzFnP2neQqCzesrJE6ncKhD9I7aEqTdb7rZJkBgBZKCP9nwosrsGTG8VBAFHH+bMDmcsD52QHDIKHaHd3CWhW6gK+dOHSl24S0JYUClspEAMYh4vx8wG4nXgipIVAxTwqUonS2axXhT2eeV8R6+nmnLigYsU2gzKjnjsDDfUH9r9Q0mP4rx63cJrQ7oxULa+ttjMfv+9izdIAdtPPRNzrpInhIrzt5frtpD5zs8jZxq/34SOtgO3/1jVmuaS0gDAyupsOMUd1zm/fUPCkqmJjBZQYAHJiwLAKSyyLGpJQGnGmXw2GzQxpGFLCEKmO9T0xArqIYfL3aHrDt6XPd0w6awtMbaf2NqP3wpe2EICAh56UUFJZUtKBRgptxwNlui804avSeSZmTfUbd/mmEDTM2hBBA0ZKXrQucADxUIGcxCllXkg+mYXY0YWtphZ9JgZWF0UuUY9HzGVU9ck1Ya50VqqixKY5Immdtxu8KFKihkFSpCtGN45UlGupUCAlQ4gf7Ek4H5BvAa3L0vPjBdT99ULepff1965Jtq4f2ZhiMarz+hJr9u54nrGj69H7UIqcAaDpGd56ugV1szyTYvtbUHPeKr/njY+++DgO3h3UEoHdhoBlAgGa064WIjYaaod+eY6lS0gksifzz2jtdaL+tczezPS3bGvU+Mx8l2bNXb+njs4/dY8dmxiFXHImN955yXPJ3ZB3VaWFf627jcqibm4rOY75ag7bXbF59n5/QtL9/ty7WLVWKhMvoClt0i0Wf4MFs/XcfFgXQd81sRvYmt7j7bztoNfk9fmJ/t87wb9foT1Z+ZVGdZngU+5bxHFGcuXYywH5WaTldS8UyV8xHGfd2THi22eL8bEaKQKDalhhNpnhdMSMaW1LHa6JQWPkD8R6LMWwcI87PR8RIWOYJ85QxzwUlQ9JsoTWw2KJVO1n/gPWQy+xe2WF0gwbQA6f27WNE0LzF/eW+r/R8Xp3XU6g+5wSnrEU8dWTzkG91o2/GsTbFbRzGuP3zUz53+jyl7X4iHcfAo3pWA1ex3kv2NubOYYeGkSwixPmZbxX254mzQn4G5bOVGWWZAQYqBSyWKlQLAgWM44iz8wuAgGHcIKZBFM5cTrikvjOw+tcfhud7FtbLRcNcAh/WTpQ2/21OTS41GGSGUekatyzsTVViiqBhAKWIcRzEGCAt77rJfoAOWmH9XtYG67gcncaIxXnBRQwKOWdYrRJWDHJKSv0MGe8X3EBNb9I6p33HXnBzLtZqe0C6VEoXu4BASZ1FotmypzsyiLSbaZTsFEnZLWAqsGgpRoGotuZYB1YYXDdZjw8b7+0IxAyO9vaPQ4Y2D3wafdxjn0YDtjd+SvZ0KtRPHj1ePJXRgqF6xND/bmNHB4Yd7LkM6B1uHm2OR7aeGSE+NHCllfaIU0Z1OromiCxYohkF1ahGpPXgEjgKL7BrjW774fTSsY9y1sz89l4+3rZqdDLQTuNS2hcnn0UgmzOMYNHpJ5REJw9aFVdXyaQ4ygMslMFXamnnTVa5mOsYqn6j92es975AA7myJUMaTiIPdGkRwo5+u7n6CeLAf8bY5IjIsvngRfwiMwjauUlzc5rVzBBLEzBSV6F59rIasuq0YC5SEHm7HUFEmJcF85J1YwgQ325GaXlYKzhPWiSbkGLQyAcGsypyGolEQwJHxu0+41//cIXzs4h/vniOVy/O8MmzGb/57SWub2e8fc24uVqQKCGF0VsBynwGK0WCEJMUlA0BYRhkk8kLIcSA3WbAkBJePh/x+RdbEBg/vLnC8bjg6n0BaERMWq/K/qe1aVhbdxICmNR71CkrrlSYYkQ2N43ptE0Av97m23660rwiIPle0iv0ow4jWZvpRnztu4cAeU0/RqjrK9fXWDqMDKUBNuNL/jseAq+OR3bPb/MhbbmNSZp13YBMy8GtpaKQhuim3pBI/hwTQTZGYzkMi2poEYC1VORSlF7YhZIZskqZJQrgOuNP//4v2OzO8fzlK7z87HNs0xl+8Xf/gM+//BXe/fAdvv3mj8jLjHy8R8kziDUdxxgFa2qKjiEYDVIDTKtIKK3tFHRVhU6rtl3X+aYTRmuGGQtJhxSzZwCcC5gWzPMBh/sJwzjgy68+w6snz3D35A6fXZxhkwuOS8W8v5d9Gwf1jLRQUdIUo0gCjoYUEMMzlHyGw+Et7u/ucDzM+Pbrb/H2zRXevXuH/f2d1LtB9WhLF8IsnphSCCWL8ahq8USweNIRordp50AarWVBhkIPLSyXFCgycp7BdUaJEaVE+U4LWsc04P5W6jwN41baMacB42aHGBJAIxgROS9gUs9SkvB2UNTC0QFjDBhj7EAvdXtyre6cwIgHYGB9dFFNNl8dlagkcuJrXmg+Jd2fPBr9t78afXbgdVVPSNdP+XBA9XUJmt9PNj6Gt5ymEDBYSlAp7plblkWV6oAQBlAMDvp7EOIQ0TyHBiTdymq0L/RcOqMehSjfVYUCRBrJRogxIcbqdcIqV9RcUZcCzkWMkM7DLbIpOBO1dJ+kc1fAmLUZRWbGpHRrEcQUApIafaWIP0CBBdCv5IV4xTQ2CJUJc66444wUpL5USKTA7iS9XOuvycRZfbEWbh4pIYUBTEC2CY4BNEjRfBQ82EstUtiAkSkncEVBprg5K+ySMRCGQFgoSO0uAAsTDgsjBetm2+To3+qwfV3A61bEgHiDu260pjhIKmcDdAy4AS0qv2QQlqy1G+eCwhkhtkLi07xIenMIXrtmSBHjGAGWmkZWOylKLQNV2iu8VXxg1BTAFPD+JuNf/+UddruIr353hk8/vcR0C/zsZ+9xc0s43hOWI7vsCEQtKiOoUZyETkKMUqQ/ShpyYImAHGPCs2c7nO1GPHu6wdkuIOeCb76/xc31AccDIQ0jEqRY7GNzXUtFjY2qLbLVFJZ2yL4O7qHv2eSpstgraNbAQO/fndMbS9tvxi/kA2+rwu0ZfQ1vw2aP2JdORnLyu17cD6HBF8J6aD+9/y3l11lfX2MRDdNUsJfbIABZ6UwKCgc7U8fYjP/NuCT/9S6E0Gj0rn29GVapaPqIrldeDshlQi1H/Onf/id2Zxd48vw5nr16hTRs8Yvf/BNefbXH9dsf8MNfv0ZZFpQ8oxSNkAhNiW1prfIvdPPvbEkPiSaXFGGQrZU4pazzmclM6L5jD0slWKMd42W1MmpeUHPG/j5jmo4YxhG//NUv8elnn4GPBZcpCV5dZhxVT2hdu6yLZJCoQcNVRCDa4OnTl8hn5yjlHne3NyDscX8zI4QBV1fvMU8H1FqQktBVgNGM4ON5yaqXSaZLKVlxMxCjpMyFGFU3aRFVvT5oPC4EbRDEFUueIMbwKFGNBCzLncx/iHLvELAZd0hxRBpHbHfnwj+CyLRaskS1svAVhIhSgf3hKDxst0EKY6MRW7OOClakpsYzAQcNFeH0XHZSdczcHnJyEtGa9Dp59sFDB2v73a9V7NbqJTVDujeU0vcIQaK7JBCiGT36d7J93zAxYRjERJCLOHFDINQh6XqLgSfELn24mxtFjDCHl/CJejJFXcQWNy7p80Rtz4SQQExIkcFJmwYVlVElA1UaCEiNuND4Q4doDXsyGKnjSRmyVzNXLFWbq3gtp6DpZUGKhgNe/7LpR9Kwg0mc3nsmLAWYlopDXJACsE1xnV7ObQtUMgwArZsrkcpDjIqhgjsnQ5AIZ4oVSEnezfcz1HCEk72tTq2upihrRGVle0+LUyIv65NrxVRklhbFhDEQKAY3TH3IcXt6fLyxyYbcFavtdAJUK3ipBQXcgAzZ4DasdTFQjWYyEFYzQmaMQ8I4iGU7LzOmY1ZjkhRajWcRu+0GtWQc81HSIWLU7gwC6BkshSEN/AaxNN4fFty9O+DiPOF3f/8CZ2GH55dHfPXzc1zcJezv93j3bgGxMuhgoYf2QppepSAphNi6GOkixhCx2yRsxoSnTwa8ejVinjL++MdbvP7+FqVsQXTuYbdroAIXrqIDRP+efPOwC2pDEdZtqVeYZMbXhzGFZuHHI4DbFKt2I9+2emr4uP3lXKePAnv0hO7ZD6zQnUUd/tofOYDu3KbYKlPtwR+UyFWolir1i/o8dfhInXz9WoIwIEl7UPBlBagN+HpaqQgJCUUmKTZdCpZlwv4wgSiBC+Ply88xbra4/OolYkoI44A3b79HAVAOd9KpMEQMMZ3MB8O8XgYyG9i0zHphcDEQKgdn6nDA2C+CesT7JxA5/au8FLBZCpiAw2GPt++uJJqJgecXF7g5P8fL3RbhOOGH+Yj9YUaICeNWwEEMQcCDAhYL2SaSotrjSGBklLrH7Q2wLAvefP8GYML+sMfxsAfAGAZqIcBdB8FSxFC+dPNEui+iNSnQMFoxNtlWaXvFuwmBtNAyo5ZFOpsVQtGQ+rpI4UxPsw0R290FhnGDcdwCCIixIqQFFESQg1gMATFIV6UQpDgfCPOQkIei4L0BtsY7HjM4/ZQi0Yv9/sr2V3+e/U8R+aN3+rBD6yG99oaOHqi5x9v+Y+cpHw8I2vGEViMD2rV9we6csysrORdNFVWAbkrwKU9h4xdwwqG65k2i+HS1BYxPuUJtfMPqCRJCqFLwUtOsa9GWvTmDc3Vw2CuYa+O8ACcr9C1urwomMWIsquRA4RWFgIiEEETOFqgBWouAmnISHRC2n0th7OuCIRAuBklxkJSKE4BBgCB+3wU6J2ZsioiIGqotNEiBQENs4cxt8dt62506cMQMl129ocnWj0jS68cg83gkUWYXMI6FMTJjTLbEfvXf5PC06sJaSJQffNcUseAja9QgLpKiBkkWJgeuUrsBDFAoqAhIlTBoqHZeZhwOC1KK0qBFU6U3m6Q0IemgCRpNAIl4YpbOmiVr8xPFeLf3GX+6PeDifMCvfvMUXzx7itsXEz77dMRmy3iTCfOetRB5o04lEbiBXI1NIUTlv0GN2BLt/eRyg8vLLS4vB2w3AYeS8f7dPb779hbDsMNmvNRIjYdzXbkVBTblxXDSKtJGhWOLrnqEU5HNvP3RYwdbHYZregRXnOzRvpLKa5Q4sea/8u7cFt1XHuuzfnTXrqJ2Tlj8qRFMPnvsbo3nmFFalBWSPceNNhuGlKL8wh2qZO2HgBS1DpKgjrYmOtZqc6KHpZk4dtJ/hcVhJ3XehNZjECd3KRPKlLFMe/x1npCGAb/87T/isy9+jpAShvNLFK74Ov4eb1+/ETym8puC8tPVDLZZduR6YvWzz635Q1sdqFLd4XaidSeoTjuyzwz3S1HuBfM0YVoKNpst/uG3v8UXr17h/t0tzmPEBOCQZ0xLRggBKUm6GkhTUIOUa4AbmgghjAj0DLUuuL1ecHd9RC0ZOd+iFsZxPmJZjgCAcRgQQ2w6Cum6nESFsZWGCAGjYhZJBxZ8Kc0MWqoz+nkkiHG5sDheiuhOUTs85jKhVkk9Jo162m0uMQ5bbLY7NUIl4SGR1NgkN6YYAIooLB1JuVaMKaBs1BnonZ64NQV57OjVEyJPX199t4YN/X/ap6Yn9OcbcP6Jx7YbN5yxOvfUGq1YfL1vG0ZyvbbWFZ+Sa0VHt9qGMUqpizyLUXFIqavdJM4pr726HpS/CLmOy1pjuJd7Fp3aT1tvJHEqQ6AIDkCM4gwvAGYvZF+05Ed1NOyOG5+39Zxpc1oUIpiFo3LFUvuADnkXTfCUsiQMcVJqWRJz0jmGCvJOpTCWwJhyRQmEMRKgQTktpVG3AQFMAex1p+U7MeiZcYo9YpBAoBiBVCUauJpL3Ke94VbTU5m9aHqLMO1rbUpHQAJjCNLpm6hiYjmrMDBXRmIgkYqvD1POg+OjjU2+SOgBkX5mSl0HVHuByCsKWw+OmTUfXIValXOP84IQArICnRBIGGAMGJIW1AZjHAYUTXeJgdRDUF2m+39U8a4kRa4yAzc3C968OWJeGK+eXmC3GfHmScHVuXgGoxUg116JzEBUoJ1ilALlRGoNtPz/ijQGPHu6wcX5iM0YsN/PmKaM47FimtDoh5rgWW+SjtBOXClGkGbo6C3CdgeL5ACwTnHrF5Ef/93AiFzWrl2xYyVA6gbUs5oVo/QB9xy2F+v9iwOP5ub0jEOVCgOIq7N8/KeXG9hdA83u7jDbNxuzc4v42hAIqJLZ1R6w29W++CDQASX22hsGpIhEGrvtSydfTBwFx8Md3r75DuN2i8vyEuNOImGev/wM03EPYsaBpLBiLhIaINbvjqnaextt+WtLLi6CgENCE7grLGxzQPZ7v6Tdmhv41pQmZmk9P09H1FJwe3OD92/f4/bqBvNhj3w8YjrcY78/IISEJU8gBQ4xSovimAYNpU4IUVJQKYj3npgQaACTeNjEkFcwDAmMCgoyHjHoiVc1DgkhSj51XhZY3YlVuhIgRtvYIgYqxIBoUVBW0Nf2vkUIVq4ahaWClRmopPDajOkLKJsQJsQ4gCmhVkKti9a4iJKKAmnZezhOyEvBbkhYtqN4UWNSKlpv+MfaSXNbzU4It53P3MAIbP0f0JDco48Sa0/ih+TaX0U2y9153PET31drPrf+Tsfqd8WK2JsRXv7bG4DXhihLBw8IISGlKE0KLS2798yp0LfHncbA9PJtPWR5nkQNRn0uoxYCuKLEIkYuknSqGCqKv2czqsu+7B7mE8E6f4DFZ7Q4DVK7jcghBlADe+Hkx2HBCVqG1NJJQVNTSwWx8AkzBLDy9KrgsdQWxWnzHnQOgi2rfedNCSwSlwESABdVrqzmtxMQqzoQMJHS9o2FmltdlgB5jwIAtaJwbUFUj4mZv/HRy6MYo9cY62WdJ5b3slj3mBnhrPsgmLDkAuYI5ozjIsZBKyIeQsAwDEhDRErCa4mkQH0J2dMPLaXgVDiL3VSUw6kCqTBu7zKu38+omfDpywvsdiOm+wXHvXQLjUkxFKz+jjopWAxeMVrkoHq8iREDYxwIl5cJz56PCIFxfb3H4bBgnhnM2lXsNCWBVZZhXZvo1BjdxdcoD7c90Tmj9H5+GyPGE8NIt5q2qCcGHuOd+rsJjk4R8uH7KeQFW0+PUx7Uj3PtgGhM0Lh7v69Ogd/KuP0o/0eTlXwiMx+Zjz5Kto22KVJmSCIi98Rzj2uNfxWLdAK4WlS2zI3VibW6SxQs7aqgFsL97Q3efP8t0jginZ0hpIRx2OD5q08xHQ+4efcWh/09AMZSJHsiar2U09f3N+nWjQEt1N/LCf8FOsjGe3sR58ov+ZyeHrlk7PcHLEvGzdU1rt69x+31NabDHvNxj2MFDlV4aUoTrHNXjFHrKo0gihqlEHX+s86fKMhAQCkLSpao/3GQ9qMu54kwDIMou1EMSaUULFlLAqjCLQ49WUQKUaJWSSJkSZscWe0qi5yx6LY+0gJah5fBiCwOIZHbmnVQpesdzQFhf4cQE4aRkAYCo2q0uIynsjiaDocjypKw3Qw4rxtfj54mTrZ6t4ZYr48uvJGxsGEDzUZH63M7kC97wPWzjs90srP9Rg/vtdo7J0M/eZeGJQQbNiMfKQvqZY3+Tmi0qfII+rhGn/IiMSZJxyZyHk9aw8po+3Q83bR149YXtCkiFpsCa8FtNQiiBlQCQim6xiLfQmjzzsprm1N4/dDGjbpZ5jZPlbVnJLNjHgpBSves3od8zP1jCFrTSGvLMgqWzOCoUXwnz/fsl8qtrpqz8Y6XmJCqDGhNLQK0vhRc16DucruZXaocuDWS8ceQyi0GNEqRWNKVA4QnmmQt1Wo8EgyTfSyQ+mhjU28VtZ/mFU1p0HA7A0D9pvQ3B9AV2INMdC4F0zyL8k4R4gXOOGYt+KrpMENIuDg/xzgk7HYjduMA5ohNgod7W7rEshS39Bmhu/OGCDlGHJnwx/+4xe3VjJdfbPHP//wlKlUcboFpXlDKgGmKYI6ICYiJBN2ypDRYIUD5TJTJXMXCuhkifvN3T/DZpxfIteD71zfY7wvevsu4viVsNoSzHWl2RN9+0LZKVUunAXOdQTdBmnCWAuuVACuq16+Tp6O4cEG7GckaeUg7yD8D4FbLlYFG13ZttGHgESW3PfcxFrMmAqhiYuPq+asBNWMGgU6YZrcn1+ysHcbMDEi0iCSWoqBBx2PKGjSct1PCffjcPFDMLGmasFDEFkkESKcgMzSVQvqzolRJ+4xV6ShKagpBIh8IjHevv8H7t2+w3Z3hy7/7LZ48e45hu8M//I//HfM84Q//9n/hhzff43B/jdv334NLwW4YMMaoQ23A0oq5eUG7QJBUGWkTuiqn0a2B0zjI72HnCW0XN6BZeLvMa8U87XF9/R4Ewn/84T8wcMLb129w8/o17u/u8P7dFV7f3IrACBJ+nczYFCM22x1ijBjHraScxYhxtxHgxBFjOsdcJ0yHH3A4HjCMCefnGzAY83RELgU0DNhut0gpYXdxjnG7xfFwxM3VtXSmURYKhijBrFFFo+T7F/XI5FKQZzVQWfMB3aFcKrJGNsU4inELhDCIMXzOGdM8oVbCsgClLDgc71FvrhAo4OLyiN3ZUwxDxNn5gBgjUpICvcuS8cPdFQiESMBmkzCkhDQk9WI2KefqFXf6UGg0fyq/DD+Zx7rhKfa/17RFaMUoufv38KDVL90YH3jQTVifCnJ/4vpcQRFwJVMBhimoDLSoPDa/MisokT265AUDDdiMW2y3G0joMCtvK5qGp4qvGhL7ujrGId3Q7/OqirqCIIYYEBjCK7K2rq8VKFGi/4aYxOwbGLPJR+FyCrg01apVd23P0z2YGNhQcKCSiR1kMzPiKMpGVFq2eiJsbUxXwRVCD5tBvMLTETjMGUsA5u2AXM1DKVWjF+2eODNh0WKYACGReAITARHk9UBA7XEUAiglSYVf5pUnFmg8RbaFxWKSG/Khn3gnnFpBUsYDqQBDhbREHgYUAmrOmLPsiWLF108COP+7j1XxfRYQO6TkUXhmnHTvYyf8jT6DyWSIUy1XRtY6kMzAUghRwfp+WiQ1jsRAncYRZxdnGMcB4xgwDARUxiYm6ZRZMkrOXj/OZ1rlYAxVaQw4FsYyVfzlmwPqErB9EvC//Y+fY8kZyN/jeLwCSJwCoChdH80BrvvI6kbVCk2RKkgRGEbC5QXhl788x6efXeLt23v8/g/fYTpW3N0VlJqQ0IyVbqAAg0i98rqfAllaKpTGLeJp7eGV1zTFX9ZovTUaflkpBN11q2g8wHGRp00AzrtMfvQP6Y3+bqBHi/w3Ptnk78n+smd1w/MRnSiW9u1jhqIfOwwTyOvJk3LVecdaT4iaOiwypbaIJUAji9bGhlYMv02idbw25a+PdiIiJOXvMQTEUVKkasngUvDdN3/Gm9eCoX7+67/Hk2cvcHH2FP/wv/xvmI5H/F4x1HzY43D3HmDGdhgxxmG19g3TdThVsyik9mZtacv6tUlHslMh5T0MU4tCLpEKqN06mVwjwuE44fvvXyMQ4U9PnoHmjG++/ivev/kONze3uF4y7nOByIsEiwiPGjE4DhtJ3x82GMYRMURstxuJHi8AYQCYkZc9lmVGGhIuLs4BsHT0LVnqXl2cI6aEuBkQU8LheMTN9bWkValhCyxRT2BGGEbEszNxhE4ZXAvynFFmrTfqEfHc8HQR59owDBjGAQSgJEatETkXLEtG5YIlH1FrxjQfcHt3DaKIi8tPsD3LGEbC2flWleEFS16QlwXT/oBI0rr98vIckdgDBX786FbUcQ9cFruO63i5XdIwUEeJqse073W9Vclf7Tg/xxx8KgPAK55hvGD1Lt1Q/V6BtFC4ulCVNwUN0AghgKPc29KrUhDnaXWGx6usj3Gzw2YcBKDUou9RFHu1efK63Mw+fovs67EmgtyKEJC0MUWMEcMwoJaCmVpJhKDNR2JKYCLkpUCLoYjDmFtqoQ2ih5/SHKCtV1LDaOGKRaMvTUcYxgFDEMOahZa4gg6C9UsgYkRIQMswJGQI7rmfCoYIXIwMDD167ko8MFC4Nf8QrAYfMxWWiSRC4Ky4B0BKUq6hSLdyx1uKT21/2jMrW7Sh7isiLW1Gkppc1eheqxYFD9ikQdL8SsZUi+NwCkE6DnvH7x8/Pt7YRF2EA5kwCR4JEMyLW3rPkhxuFHahvFYk3NtkFm/oi5PUgpJcegnrGlJCilFD96R2EoeCUlQA28OadtCPxLl/YeD+kJGYcPlig/PtBpQYF+cjzs8j5jkiZ0KpYmlPUTYXcWvPSbqKXIRoBNgwhgicnydcPhlxe3vE7X3G4ZCxLIycSUAedUR2OtSOP/XAGh2BPny3n2CcStUdP0Rjau1a96qtOVb79sFjGijqr3ns6geA7UNvQP19OujUW946o9n6Do9pD/TwLzKr7Mlanj7XtpTeus8x7ovmWfE0IngdJ4uCEY9cq2NWqxnQNOqAW/qKzdM8H7AoCNjf32LYjEibLXZnF0jDBpvdJcbdPZZlkpQ26oTfGgl3go18Cs0YSbSeHfapbZ7JHsCezq6DXt+T8pK1FixavPPu7h5X769we3OL+XjAMk2Y5yPm+QABcAmEgBwtukm8cFG7XhAINUVJO1QvgPaHUCNzxoDo1y0hAAVagySqwBoxbjYouWg3wAAv1sda40rfNUTpAsdsewKtjb3PMWQsxtDVEkwgrxcViBEq+eSIolMkukqN6fM8IaYJFAYQWQF1OdxwzpAOYdpN0Vhb2y29atE4BQGrEPGmeKyv11dRhVb3f0foPwrKTjZEq/3bPC2PUeRPHWvwZLRoSO6Enm0/P6qAmaFVRmI0G4g8XF+8cawGEbl/89SueZXU0Hn8jVxZ7K/Xz2vVrpBmHKGghlb2Ma7RkP2n4/n9Vzo2xQoAQ4wqEF5UVJGTqhtN5vYK8WoWzYhDWo9A63QU9XQ5f9N7GQ/07ipoNd8avzh1SqDbDMGNc9Ww22o4bMPy9W1v38sb/WHYgrkV1AzW8UwjFEGt/lqTgD8lOf/LjoeRuGoA1H/mxRUFzKI+WqoooDU6dJ5BTV45gGWJdCJUTTki6drUPUMiirR9OTGoRiN+VCquiLR9rtRsMhBAAWGpjP2h4PZ2xnA24sn5FgUV52cDNlsCsxT+ZZCErUXA237CIt/kppKqJ9F+w0AYR8JuF3F2FvH2bcX9/YRpYuQi0RirfdApLzJcxslmc4zjntgTuj49elMT2y1tDrDGtKdrK1Np+6vb/w+wCh7ysm7UH+JpHxy4G5R6Dtw96+R5Jud/mkM/BtYIPY8/PZ06Pujr0xn31hFOyuNq07mbiGXHTc0oJfwtqMNMokRtTE1WL8cD8v0R8zzjeL/HbnuOzcUZdmeXiGnAZneGYbOVzrX6UH+Oz6e/cPfqxuegA+5mYrX27ap2nw590yNzZ1cSodaCaZoAZtze3uL6/RXubm8xH49Y5gnLsmDORZ+vjvqoBcBDBJeCEJKmS1XUmDCkqPyFYQpzizIDUkoAGHmZBRcRiaEpJenmOg4SBaYGJtLSB1ysMDe8jq2k3GUvBM5W0oTX8qzfFwS4cZi1Sk0IbT7FsVtRCiPnihAiljxjyFlS48MAy+qqar0suSISIRdx9mjJwZ80Nj2m65zSHvfcWRX7RoEnS/oIdvmQ0fhxwur5yU8cdPKzG1iTy20dHEOBPTXSV+TESWj0EWztvdA7wwq5rqLgT6dNJuuRwXbTY7Tc4QdpIGERU83AbzXF2pgf3le+O6kuxP00mQPH6oy1phsAWq0l04lWILp7uHads+ZCpdAKQ53q7o0P9hJr7Xy1/UDM8KLRlb0mmw2lnwDqfmcl9X4+VvNEorNQ7TQJ1YnEkau8nhqOOrHw4GOOjzY2XV5e+EtIgbFW9yKqkgiIt629sG3o9YQSCKOmwpVasd1sPFS2soTOpWGjqXES3bQZEoZBjD4mUOBdCopYCIsoZC0ESP45vGap+TSOUlTr7pgxTRm7dwPefz9h3AZ88vwC/8s/f4537zN+//sJx6lowVFh5qzGJlLhxpZLzozLywHn5zs8ebrD+XlESsDhmPH6uwOmqaJyxHYXkQYLaVUxtZL3nUCuUmiwFKwUzd6T1hN1nzJjm8h+2ua1OhcfOlp9mjYeO9bbnx58f3rnh2zxAQdc71MDbv7ftbfbxtffjphaO8cPHK0Ya88U2zxaBJN7WlyxYqBI6KC/H8NrwIjHUoD6ZhgQYkTJC6bDAVzLg5ljdPdWLcpbBGur0qxEkpmxcEad9/j26z/i3Zvv8PTFp9jf3iOmhOfPn+P5ixe4vnqD84st5umIw9U7zPf3TVmEeLWt05r3LVAGzQBSih3tGVNSQ64XUzXmJXuzdLWomsGtAX+bbK4Fy1Lwhz/8Ht/99TtMhz2u3r7DsizYLwuUZagnWu5lRbxznUEUcDgkDwNPw4AQooR9lxm1FsQQsNvuMIxJUn8I2G2l8521uo9BIqZSTBjHDc7PznUNpWsdKqNKk3dcXD7F+bNnyKViv5+Rl4ISjoA1GO9AshXyr7V4jRBJCZbWqAYa0xDBDA1vjwjZ9iSD64y87BHjBjkPAAJqzQg1gxCw1doEw2YHihIlUHXuYd1kRPQ7DTWFY0UqJ4Qk+5nZnbQNeABaX0f++jFMZkDicZWlB5VdWlgnTD8E+HpvnfxXjIPVDYTVv/GULOP5ujatg03zxtdSUAJhyRkpZ7mPR0NZp0H2yI42/uYoMb2TuWpqGYNqX/jSKIa7v3rjrabRRa2xoR17mLkZjTVaQBgS+Rzro9tSKr4LxCi2jvpPjFuSDp60OHQkbe+NeGLEAUxAJ62XNsWICkk5P+aKYS4YImOTzGitEViANwsxAOeA7GQ2RCmB5OCrYa8SUA2kPQK+DdwStJYQlOeThawDgaJ4YpkRcgGXAiqEUBaACZUYnKSWiaUORzDi49vvv+W4OD8HYPtUC7BqZJP9AyxVCLAXZJaIWGueYfObBomKLbliGa10QAKR1GWKQwQFSSWMgTAOCSlBIyxEuefKWlxV6aVWpwGZfDxQsEIMGDbyjLc3RxyPC5Z4gc9+doE4JHz2ySWWWnF7x/j+e2BeClKQiFWwvhO6roGlgoPw/09e7vD55xc4Px8Bzri7vcfd7YS7mwqpSRwxDGqY8wH2QL0d5nwRA78o71J8tXOPkcheS5VpDsv+7sBjQP1DNh/2OSPTPxpxdLdqFLK+7ynP7et3ubH4RyxlazNQh8/03UyBk/QRXt13de6pxmsKke3PrmaHiAryNDeJ6i5gEIqPpEU2ZcXqEnG39TokACHnjOl40Iiujnt0xqaqeIZqFZOEFdfV5eNqURgFxyPj6z//Hj+8/haXL17g5edfIMSATz/5HK9efYrr92/x3bfn4gS7u8M8TevaiGQr1a2QKmgAEAOvcDUDPsceVeeyxN6BVliq15EMm9ZaMU9iVPq33/8bvv3rN7i/3+Pt7XvMy4ICQoqa1syGJzJKVbSSJbVuOkYv0n53I82Mcl2Q8yTp/yFiHEcMaUDSYvvbzRbDIBHAVpUmxoSUEsZhxGa7RSpFDFtE4vBXw8KTJ0/x5JNPMR2OeDf/gDlPypMimCtKfszoqJhScRSo6SoSRTPqPrNU46J1GwGuE0o5oOQECUYJ0CRvpBCx2e0wJGnQAoquVZgu9TgRdYK+13xICcegBnpakMPrEjl+MfzPTif9Pjr5yPeQ/7c2fG04rncE+zXc0h/7+9gelvmX+faIfqVzc3zDdSWNNtMIaanV2BquEAFLXqQ4uISmCuHV4rWLW+Row3qBwpqP9NP9CE9rGqPWfVOdBMq3rbar1CkLMEOmGbD9Pv2zOkxqfwc23EumCSrrkWCaFCMiBaSQtFh4zxuwfhYYKUaMIEwl4KApclNmTFkM4x6yovdgSFCYcbxAluR6gikZkk1jzw8BrNhP7Aj8wGfZ+BJ7nS2rVcgkEZcxSPbWCNIyBNKwBjK9uu8DOAIcNJpVme3HQqiPNjYZUJKhVwVKQS1+QXOCjUGwK7xgiAJmKQRqNd2MGwwx+cZgSGeDUgtiTBg2Gw/7D4BGNQUVAOygqKqxqWq787oCS17Fw/8OBMQUwZVxt5+Q54yL9yPev5lxfp7w8uk5Xn1xhr98fY+/fvMaeckYYsIYZOkl6YK8tmOtJB24UPHkcocvvrjA+fkGu7OImBjTMePN6yNyAULaYdwkLWTu2wrolqsnN+aKonTch35T9z+vidFfh7Xx5cc2A62ezY156oUmIB9YWnWwDZN+APw4025s49HDhCweUYAem59OM7ZUwIdwEy4QDAC297HhkSt67dwm+Kv5wrlFNBkoDzFK4e4YMW53GDdbTIcDpsMRtenCKxBkhgLzwlcvOixgycBHrhUZC5Z5xuHbW3CpeH59jWVacH7xBL/+p3/Cy88+x7t3zxDHiMP+Dn+dJtzf3rpCaeHbIGVItRmbLDKRIcaLQizhmAwtmoyWKtrNt7//ibGpoX0F2ZqKscwT/vSnP+F4mOQajRkP44iQBtl/en0pUn+JwaizKZhNaBjoSUkMTxSAFKU4ZlQFhIgwpAEAtO5aEkOVGpt4ZOx2Oy3Ivki6UanIdQER4fziCZ6//BTTtCDna4Bn5GDJl9UNltLtqOj6NeNbKVUK45LleQu/AciNZgRGWVSg1wU5HxEzI+cNgIgQFoSakeKIcbfDEAcM4wYUpXaCFTYFSQFyBzW63iaczLj4GNkZTdhZAQ2kGMWJR7F5qT4EzE4NTi7g+PS8NQ/wv39SWpG/W6AqXVUogKjrfCYVsH0fCtgo7vlxY3uVeh5SGFlS21Ctko92q2T53fbl6fibg4DauUTd+9ODn24k8LlsMjNEqV1jXUFYx2KFOnvFFUDrcmTrxEa3pujAiz5SIC0yqVEtCvhiV+nJwZ/+nmKQqKAQUSiAuWLKFYnEgD4mw3rkoflrw9waJLZlZjU2MZCiv0DVpasMjco5vYtPrIxZQaBFNBABKRA2IDc2CeIvCEXmq4aIGsQ4Vrjakv1NjU3nZzt5q07OpZRWXlM/AYB152xG+NaRgYgwbgJSCuLln7XuZRfhMIxJoywVACdxgIWuA5bxMTbjQJ9e1mOojhZCIAwbMaC/v53xbikYzwbMh4gdRbx6cY7NBeH71zPevrvDvFREGtRhZ2lgDbBXSG0xVODl8y1+/XcvkBIBKLi/2+P+bsbdXUWtQd5Z04hXUby+jk2xA8T5aTX9+vR3fxmjR5VZvedvhcXAWO3H1XGyTx+DIabgdbTwU1EKxvOcwfrn67/95BV/7tWMjt931zLg9RyNzz+m8DnGMz7h+yKin0dA95MaSrzwb4+tFEtZpO4YxNhkcjpQwHQ84Hg4agR44x/2bEvJI7QUQytXIPqGYq1aUMuCnGd8+/U9uDJeff4lAGB3foGf/92v8ezlK7x+/S0qGPv9Pd4uX+OwPyDFgEENSh6xansELdIBISBEw079LlEe3eFzayZRvIbnCYbylbO5lHS2w/6A9z/8gGWaFc5J4e8wjIiKdRyHqB7EDCwu/m1TNkmUkkQpSWaKRI0PgxXnBuJGDBNpSE6nUXHUMAzYbLbeBZxAqEFKlwQCLi+f4JNXn+Lu5g7XP9yAeRF5FwO4SE0cGI6CYWDbG1VrzDWak4YpHXZgAKgo2bD5glqOKGVAyZqvC224EgN2uzOMw4BhEHwl64gTesED/vuA7vy/XTaHCc1quJlhRiUCvOuprSsrIZ1S2QOjEfr9vmYqbrQ5ua4/fD+tDFsi/0SHrdBK1ipPpNFCBcBqYKq1dO1jDQ+Ksx2QaPsQ9R5qbCI3ZD1khC7j6KEx6BG2c3KtXR+cHoX8IkCs2Dq0veTyq8MiRO05J+salPVLLJ3SSZC1CyFIiQ/NroorhPIAWAseSdLRep4DFmbUAsyFMRdgIIE/NibTkStLOq61e/KSA76bdMqsyZqlgpI67CBapFVIaG/XqcskNajdGUkS4cxBxrUJEaEy6lzBJQsFJsFZNXjRCY/WioTTGfjg8dHGpnX3MTEARaIGWX1hG0Ax4RoJ4KAWQzWWRJJOWGD5DgwUChrmGDBoBfagADNqroAosRbq1gowNwEI3YTQ/E+4vAbWG16YLCMXws3tjFIZTy8G7IaE3Sbh/Ey6GVEhVe4s/QlNxrKk2RGAs7MBT59uMY4J03FBKYzDIYNZtQA0wcXKNEXgOwXoHKJ1PXBlw17ETqDu5fqrO6Z2osw1oGAnnhKK/f2AFeKxow/FXEObdn/SL1ffsRF+/2kTJh6ZcSIQjImv3rMzgqxfqQGqZhDrn9XqWXnYtHrdvC0v2Wfsw1l5ofyBBLE+Cnuo1YwB8pUbKDoBK8xFGHOpFZQlBNmK21dTnG24gZDzgsP+DiDG7dV7pGHAfDiK94mBy6cvULN2tprFuONAUpmmr5srNELLlRwerZfQZrN/7xNwtFpYrJ8hqSBiZGIyD414QIPVBVGQzxohtL4f4N1yuHkFa82rlveEgAwrhBu1e4MopGCpHTCHGSWr+0ALZAaK6DGZeL6lq4UX+nPAS4hRFKUK21jVGUIzVCojF3QvEWIhYDNsENOIOUjElIQrV9SaUWtyj5F7KYOCgBSxO7vA0+cvJeVrPgJcGihl1jl6hE51DL3N0MCM0ZKN/uGlpoD0a0Grn+28E95ifIl7I8RD3rOi1wdM5DG+I4BDQH9LhbTIzhWgwNqz5vKDTfkszosMSK7MOEQPaymcMrJunLV/T6+F56OGRzeRRnRQoz/7nqENBDpedzoLbc3Ws+SiAeStdYMCUzMc923fT50SDkggVByC1FEDVxSW7nQpKg3C5pmcyTKr3DLW91hnr+4tvAayCmy2WkWw2lXruW/KQOtu5POje1VEo/E3lT+1YQJAlVEwLNDmJ3Duf9kR3FgJxxFWUwgG0MnPEGMaFATLyTBFRQxlVpwVoNQwBlginlKEO6OIxDRAaqRGkShB1sjMlibcj8/2q32qR0ezrBO7ZMbN9YQlJ8Qx4Mn5FvdnwHZLKEXeky19XN8NALRPBbYbafF8tkvY7cSQdX9/xLwUTMeKQElq0JF1F1Ve1issij172Q89p+GD1h+PjD850HoUxTQY0k1B4zF0ctIaZdiXK/6i5/ZRSqx8GvAfYC043Ed52vmPjfThMp3gOVrPV5Pt/XudYjLDVyeUbIp4/zFzF0Vtxq2GfXyFdKuLwUXksPGR9r1ECwV/vhbR7XBU+1yjirMYw6tGATqeAwEauZHzjPu7G9RacHdzjZQS8jxjuzsTQ9eTZzq4As6zY7XGZHVW3UjZaFMwGzuMPuV+axwIV4h9fmzDkhmzlIdqpwVpGqyMw9bS8aJho4rKpfGC1VKyP4O5oFZqGKrd1g1IIEIhRolaD25awJD6OIafPIpCX4BBYvBaZnDNiJqGIyk4AVAnRqXeqN2iacyRJ8H1go8kqj25kYUoYJ5mraMJwOV5UH0NIoRQgQFIw4Bhs8HZ2QWePHkO5oIyHSSCPGg6sckxom69jVpO5CQYPR3ZSnck3OihO8ONTh3tnN63KVPGi1mv7MbAvMrm+Kl0wNOtoBe1L4y3GZugE9nuz6YVvfWGsCYjHkMsRjP9iBpD7WnCjMh+en8rxS+uV9hn9j7UnBfoMO7pUx/jnGs7o10r95So4+Yc6XF3t1W6X6D2EY26VidXZcZSpBsyLENLn3a6nwJsXT+8tivuHgjMpNHKtZth/W31frajbM/ZQEixWzNKB5DqaQEc7DnS/Zb1RX9i+/nx0camaPm4inkCSchVBGm6l1rBtFBrCIRomzTIRFaC5gECQyQMSujJioZX8nbhQU1mZGBK2By4AoUDShGFY1kWuQZVujiRhIRZmJnVwzH6tnfgSNhsN6jjBsdM+Pf/uMXZLuJ/ff4JXpxfYn4G/PxnN7i5jXj3hnH1viAExjhIrRhDqSEQNlupg/DF5xf43d+/wjQV/PGPV7i5mXF3F8A8qofEPHuEYgXMrHU2oN302IuXBQPxViG+zxu1ol5KZCcN6VbHx4Fp25D9Fu6Ma6dnU2Owdv2KNpySyGRZN//tJAdSa2o/GUc7rGypKTV2zmO8tMHPPsJAgAfrTVqb3ZYCWjigcNE9adETjR1ULqoQSowhhQghJSlanzMjLyxdrkhrqFQrkClRcCKUZSylVMxzRv8UosbA4yDd2OblgDff/xlp2GCZjri4eIrLZ8/x8osvEJ4EnG0vcfj5Hrfv3+LbP/8By3QElxko4oEYU1JmrKyGCBFRQYgKfGoh4dStmwO6KhFL9cHSGMgiADInIUWEIYIGNZtDgShDDEs6t54jbmCIIDwAus8NDGieH9eMZV6UJmStF0FmICKkcYMQE2KsSFnuVfMd4u1BojqiFGOPGBCQJIKszmBmlGVGng6ouSIRA5FQIiHHoPxNHigtwaU1+FLEgCWGgiIAuooXIA0Bm62kGT+5fIbt9gL7u3sgSxHnXCvyckQIwDRtUEpCigtSLIiBEdOAYbPD51/9Av/0j/+AaX+P7//jDzje3wFcJCrHUOKKXtgBYCMI9aRqnYnACix6gdGFg/uaqOLghWFdcZOLrEbC2pAN5b3dGLq9At1/rf03+3XGzNZh4crDu3RBF+6GicAARS2s3epQNKXOGkmQhIAv0lF0SEnOM4FLgDXGtbQbgD2c/TTtgVmKO1a3Nqn3mwSkVNY6OxDjQIrSVaVWKXYegqS5lSBpeQtXRHReIzeG9fy2TZeRXbQnB2jdMSDFhI0Wt0yaXtUXxnZYYksCiIIAwiYl7HZnUn+tLFiWAqaAs1FqYPj2YpHdYAZV8mgJ60hna84woyiUD2h9hxgVxEgdDoLsnV6xgt6PSAqRM7Sxhu7zQAEJ0kFFPFMSQUhFBEVUbx5X4LDooiVGTD8G5/5rDwNbFNBFZDGIRJ4UC4fVWgzEVpRU6oyw1SIpiqGIMJCk7JLWzOwVhpgaiBZyY6As4KIygIUmSl68fp9c2ym7oEaPDtU7h8lIqIlxfyj4t39/h7OzhN/981P84vOnSLjBX7+9wfWm4HBXMe0LKAhPJJAWBWZsxoDnL7fYbgM+/3SHT15scHe/4A+/3+Pt2wNy3SKlndCBdvsUwKt0SSLRVt30/LVb6jNBG3+E6Eqm3KKuirHbQRDM6pPywUMxpipopwhmpTJ02N/wWynFv7PoASZR0F339OuNb3aA9seOFaZrQ5Bb9TU6AKCuznPDHvdXaToLGv2yVJ318cmUtnIBJnPY+bBGMhZIlCoiwNKmHszIRSK7S6lukK+1Ss0dboXFwUCBOF1KYcxSkrelXxF523Ap+UE4Tnf49us/YBg2mA97PHnyDNvLS3zy6gsQgCeXz3HY3+P2+h2+/+ZPWOZJ+ZEUHk7WMVLHSiQRyxGMXLR7Jx4uDZvs1egF8yWu0vKZ1fiq3bVTRBwS4piQ6iDOOob/EywmjUtyyXBjBQMg2etmVPVoEBYMVeuCMi8yOM0hCmhOiSGNWmi8os6ik83HIk0dCGL41TgQUPUmTQRIp7zbK+TjhCEwtiMhc0QuEUCUNG2WjJdSKkooin+1HlPNMr/afXgYBuzOpUnMZiMNX/Y39yhHdR6WgjxPCMRY5hE1RRAWgDKw2eHs/ALn5xf48me/xN/94lc47O/w9Z/+Hfv7OwwDJFvGdATbv76A7DiDVE5Ww6xKWyv71CmdmVHUeCv3mkSH25Q/sVV3NqLX9HKvGdc+fvDAxxyBK75FqgtZkxWqir+4KVMEEGlHZAasKLVxtZ4OLcND5IU6mTXau+d564AABrN9a8Yr9v1sTvoA28Nw/d86PYeYpFMeszoxVF4F0u5shrm6IBn9edpl9ZQ9BrUfVJUVCFKzLA0JEYSoNTC9aYPpo/p+5rxKQZDqOESM2xHgirlW4LgAQ8BO+QhDKp0JT2j8XkIXrFGV3tuwTrdvLJgDiqHqUpALvJscMcBB1xya1gtoJ2E1GDoeJARERJayBBzVaZ4zKhF4TKgUUbliXyoCM3ZJMzjw08fHFwjXDeOdrQBtL6wR651S0vAht99VOJqnzTaCgG9b9CAOYS087ikQwVIIJAKimuef2VuSBw8FQjOEmDGGWYuRdi/EQIgSolkq4/ZuQS4VJQNDSNgMCednCZULbt6LF9ysqcJ7GFyFGIYkRS13uwEXlxuAZhyOGdfXR8zzCGBYGYYMLPlQuHpXANjcGng5xRM2Jz0Q99lmZy6PYaNHsUl/Ip9eR91v64tPAZX/4YjVmGLHWk/mXz6j7j4PN63tJ+4v447tcvu8x4Wr+V0hvPa0XpHuo3VOo49Oo3hWkU2wGAS7JzUrvfLyyhZR0S8oe30DmawG9MyYGMygqJb1mguWeUZcZtxevUeeFgzDiBSk09D5JWHcnaPkgjhukEsB1+zPtNBve+xpXjnZRPsJ5BPeh6b2QvQxrwrpPiCN6HHvHIRmCDonirhaZCLaWBQwWT0eW2FjuKwRZ00I6zqEAFBC1MI1RMIblgqUpYihaWw1fDzSw/ZA1Tz1ws6nZA2U7wUD4AyOpkC3zWf7xpQckOZ8p4hxM2Kz3SDPi9QcqRW5WnRmEeWLigjQoAbRIPO43Z7hyZPn2IeIGAdNHaW2juy7vKNUbkqm792eLhthcdsKToW+Bfxnt0ZuBLI98JA/cDcvP350jK9bzwdnOSPRsNVH1DkZSwCzpMY13YxWhUptzjl2a4vOw9W9CAVad+eC8Qj4P2dF3avY+zRoheYsoPWzjJWzggAikj28oq/1nLS3lyvbc4ze5HkW3dQ81t1arsBvuxugBpyUpMhllkKvhaW+WwgCGtlkmSoxds8eRwPtGYTuFFN2VZ4ZUAvdHjWAvFoP2F5wRqYAt3M6GG2oA0FMv0BBl2bDbR3/FofJ0D483sfMvJIBmtjqtl/pT0IOxu07wVEW+Q3nY8HkR3s4VKDBDKau6PZRTZ08cIjR455uTzNYZBMBS6m4uZnFWFgDzrYbnG0H7HYB80KY91CnWRf1rkKSQNhtI87OE7bbiHGQyPfDPuPmdkFMo9S5NGOFvaqJTpPXbXjro5PVjsF6pr3mmB1EOGUG7czHbU/tfg/xjKmz7cxeOXwYUUTrcTg4bL8/lva2orl+wU6OPjrqgxhN+Wf76/RtTjCNySAflynuWodMr/TP0KAGQN5QxZRPwxm2Vz2yydEft1px0G5UDO96SlomAARNaQ8oJWM+TljShLvrK6AwQhqwGUaElFBrxTCOKHlBiANA2oXWVsT3DjsdBKMPotWarCLS9KWtZIjNQZsA9ml0Y69ld0Sr6RYVN9n5nQGrmgPUZlk8SOJoD84zmrbNTaYZXoF1Hg4IHI3pIKOAAqMwQLlqx97BcRk7M9X75Iw8T6h5AUEim6piOYAhTvc2B8LTyOfMI0ZYawkRIaYo9aK0FucyzlIGQg3N7rysVZsS6LWA1JoaBmx3Z7i4fKp7I3Z7r5FJTym+j07Ip2VC4CFMYeouMEzWgSjHJC0AgnTR+yih7nSYwWlN6uuHn/KSxw1OHTjp+aAxUqLOyaNr1clYIgIcrwaXGxJQYqOhbs93PJkfRsk7BDE53GEoGZEJGuPD1I09gGBNNGSyXO/Heh1P14i7KaH+UxUJ7RE6JxbVpP8Dn/JebrxRX0DdshLdFIOWBq1YakWJgHbL8HfuZVrDcboMPQ+nB6/j+wewCEK91vhQe2udRnJa5RMe7/xD7ydpeWa4ajJDSh4AY79uP3F8tLHpoFbwPrWEIyOSeZrlXwhBQsSobbqgCpoYAzXUVcM9SQv5BZAX/QaLlZ1IPLRePFWZoxU0Zm558D14b5OqaRZEIO6UBSP2TvDNhYG54vXrA86318hU8MVnT/EyFxzur3B1fdvkPqTAYVkyLi4GfPHlE1xcDBhGwvevr3F3t+D91Yzr2wKPUOk2ATvTx2pMFmYPV34amES3mU34yu8EV76VUXib3QYhIEwAvskeC9FbwxL5S9KS7MXZ585xWCAvP+XGvI6QO53Gx2RAtj/45Pz+ol4RXtVU4Ae3Wd9s9dzHDuoYHTvDM4HO1AwhTpQO0iHtzHEAUUCeM0JIyIsUrhYvlAjhHihZ+LGBLn+RbkzGbV1R1s9DbKkw87IHc8EPbxi5ZgzjFpfPX2J3foHLy6f4u7//ZyzLhLevv8HN+zfgUjDlWfLqQxTBz8BpYUbmVpNJmLl6MesjTEWHGhQQEcO7J6VIGIaInOOKMUeLjulabJfSKztyY3HyEyJrbRuC1od5PFrGP6uMvEwoJSOEgGUR757xkRACJo3wsvQ2ZgYXiXWa7ibc8JWOQcJSqQaM6VyeQfKkZF5ABIQwwQqcl5y7zk8E86Y3cCPjDjGASgRzllp1JaOUBUSMuIkYR6kxVZaKhRbcXF3j9XffYTnuscxL2+Iu13n10+bSqeWUEEgI1maSsCKb/y8PvYuCGAK62irdWp0otg/uYrzp1BDaXW/r19+LmUFFvWUOJKVmkdCNRDUREeZZvKLb7QZJIx2SyjUD8fKw9sxVQXznCRobFNRBAFUS2Yy7QZV/kWexRsQUQYVQStSoAIDngroU1NIrfg+N7+6AWRGj8mUGon4WSSPxSEOmlQdBsfCDmff5aveNAHYxohDhmCOWWlERMFfWcvqyRFYvoDKLs5RFjBcUwd7UjM1mPK4AuFQ3hhERKoVWv8kjJeCA2CIjKrqCvFYrlKFpeHA5BTaFCkCpoFA9spqJkJkxfVzX3v+S4zBNANAMQURINawcYdZBk6KlO/Z8USmsVhWDUnfDlG5HF8rXJc3U9r7OnbPJ6sqmY/jQ05nSltl10eqJkd0Hhg3k79vDgqVW/PDDhMvLI+YZ+OqLp3jxYsGf6gH7u6OGaG31/gsqLxg3G3zx1TmePtuAueIPf3qHu/uC233FXBLGGBBPuJNLAFazG+n7BpFDgUxRPZmDThFqaUxyM65Vyj10dGcql/EgV2ZMyfJVWVMUowWJmvOocdkTZRCnvLDhNnmWRVc/fjCMHzSg5J8BwImzYfUUXcd2FVbndrYtOG8/GSb3dKao2usKwiIWrESBXGPp8jkvONzdgCiYvQIlL1pHjP3djYfBn3H6PuTz5UdvVOQAT8MaRI85HG5RikQ1z3lGGje4fPIMu7Nz4Pkr4Lf/hGWe8P7ta9xdvwdzxZIzwOwprIzmkKyltpqTGi3gNMXd+Ln7172RpcKHEMFah2YYEnJO6nBXB5imzJSc3chSy+KyyO7IpNgrdPUBTQ3mNoB2jegQku4zS4RRJoQszSRCSu48DEcx/mr5KH8/ImB/ewCX9+DKkupWK4gJMSR9B32uljrgoJG/LAbHrLWgkmdyRFg2icgG3ZtBIuhrZVRk1CK/B2YMg2SbhBhxPEqB8qt37/DDxbc4HvaoOWt0qewRo7OTrY01mbLrHLbX7WQvG4uHWRY/hqx6+pLfTU7q57pn6+qzNb84jWh67LvVM9HeO4SWlkYUwKGrp8Wqj5Ok0xMFUDHeB8zzDOaKcRiw3WxcB3dewryiR3fwcZtr2TOqG0QzdrXZspKkzJJFFYiRtDNirQXLJDYElApestRP1ueas3Ot1yo/foyhMntUtmNONcxYs4LC6+D/HqEJRbFCKPkrUcD5MMq7zwsKChYQJhabR4ZiJ73W7sEMVFRNQe/WkJrxmBmA8lXBEAEItUXjhua4W4/UdkGDV/ZHrVk+VFuMpSODSDoBKga2Z2QAy0cqDv8JY9MMQPMQFSDWxIgadREpgKJUhw9JWZoKZNLCfyJwtfgYF5RKQGBEL58jXCR0BBWDeFdrrcim6FdpHQ5Yue6mpMKMKmCQFdBV5WRtoSZfgMrAVBllrnj9/R60VDz7ZItf/tMzhAS8fr3HX7/LqJVQs4T+5pwxTwc8eRLw1VeXePnqHHf7I7777gp3dwXv3k+4vinYbBm7nTDkdX2Ih8p7Y3CyaQiqGHStHQFT/JtF0sAPP1j0h2BVLmjk/IHT/QNZ6/Z3M1T5YFfGLT5xA6wtp8aJZKBtzdoAHQB1wvDRo9dFHux0/jH+/vBWBhbU69QMQ1h1C/EWvfpCpWRpTQ+Aee+PtMeuDDgmx1R4ygmN4cK/7ufB1rQz3iqnW+YDlumA/f4Wr7//HuNmh9/94/8T57sLPLl8hs9+/jMpzP+vAfd5wnI84Hi1B+eMTRoxxiAMrfaGJkszymjFOdepU6eGAxmzGFaEyXfGphSRU3QFXkLOJaGoZDhQynlxoNLen3WKorbj1VpMtAaUUtdi7UktXhmzCd9gwrKby5QGCYEPEUMaASIc746Y9kdN99i4QWkczsGwbnMVIRRUygCLcphJQGipBVSrhIoHC11NEpKLluJBFqLOLIamLAYn4XkDNpsNQhhQloq5Lrh+f4XXf/0ruGQs89wBlGZM6BUoQAx7Vuz9MW2FVag6UjKS+0i6ebgP1rRs+7atVdtDj+0j0WXMXNMUw1V8wCNAKnYOCdsLpVoEuBRhFmdHdePPNM2uDG03GwABZIW6qxRaPRnaSZ0CfY+uw2NUAwF1a2PePLmv/EwpSQTbEsAUQBWoc5F6a7W60uWMt5ur8GA+ZeEYknVg826p5EHPq6ioRQEmEcQz2N7ODKHcCaUIwi4llFqRY5LweRCmyogs4DAEkrlWA58VK2cWTzgTtNGH0oJZJ9g82qJUMUHDvcVTWTq5QWyp1qb8N2BGJp8qUHOLYiKCyMmiZ2qtBAZUO5J0vKn8iIz5Lz4O01HmNVAzNhU1gkdJmwkgST+OUYBiNeVAab0aTsLKOcdqcWt7M/h10bsdohVoZy0AC8067GUMSMohKPhGsPty25v6X4uWLbniZs44LhVv3hyxG0eMF4SfffUMBRVX777Dt98eQRgB3opSWzMqHzCMCV/87AyffnqJP/7hCn/4/TscJ+BmnzDXhFADBn+m7NouExRmTGAKLlspVISgRt7QKQ56rPc7w3rKsCuOjfeQ/2zPBvV8qZP6vYLlSsup0op2Ph4qhD1GbIpfO7fncw+e2f3ymFNmxdx5fclDHPWo2FhdbvPYai0KIm94yTopVne66YsAAPIy436e9VXFiMKARKyoAccMWa48Upvvlrrcv5phy74anlwTguawgnE43OJwuMXt7RXevnmNzeYMv/vn/xUvnn2C7fYczz79HDkv+MO//k8cDkeUZcYyHVFrkdTrKA6kokZbN6oZlmQgMLkO0k+moZwecrtzPoqikFLCkAYsKcO6eNl5RBBlsGhX3fzQ2FQpgyBpfhy17HBX82y1kNQNj8VhZ/cxh4E47DrdgUjSi1T+WoOW/c0eh9sJfbdNmXtVN9XBGYkA44VWpY+BnItEg8Mwm8WCBknPLCy4L0SEyMiLpOOWlJQ3BqQ0YLtNiCHieJhQMuP9u7c4HyNqySh59lRhn4YelzxiuPkQjlrNIYyOHsHJj1/pahEzHhifAIhxrystADKHdRtf71D40cN0YbAb5oWfBI1WFp1dDJhF7QyClb1bqmYkzMcJyzwDux2248axhbyDtlbq9r1g3eJz3PR0e1/bBU1NtDIZDI0FMmPTOApmNhyXixibtF5bpZaqDsDrQ/rutZsCGtnJfh5p84oAS2WWUicMifSRaEFaG4F0vMav7Z0HijhLhFIr9rliKRUzE45VsrwKyI1NJtP6unSV9HmWWg9yXMiAp3Oa0bAQoWiWJCzqk6ibVZsQe33bPwAqS907BiSRUN9F9V4qFRTFYVdVbcgAFtO3f+L4aGPTOI4KYsUAFEPAZhi0Q0HEMEhng7SJoETI04LleIR4ddtrmVLQF8u0iVsdKyBQ2996sl9Nj1iS+eTnyXdym26qFbQzgGmuuLtfsLlIqIuMczMmXD4ZMU8BtzcFJVfEBJyfD9jtkrbiBZal4OZmxv5QkQtBiik8TN/70LFWHdpnHrbZX+6KBvmffTh5Ox4yofWfbbOd8tEPsS4bk959dYFFi52M9uQN23eNeXbfOmB+ON7VGE+MNLz6rEHiFRAzTGg/H5lra61rAqCPZmiP0Cu5WyOGMyFbx0fhniqgp8CxReeJl6s3vqzWotu/wqIKuC44Hu5wd32FbTlD2o1gArabHZ4+e4l5fwfMk+S2V2oRWx1NwZ9kq9gBYohRw0LGoeKOVakzr5wNTZQcUkWnU2RsL3f0betrhfjk4+qzJymsAX2ut4/VpVL7AZgPsKEo5tpAgEd1FTFIMFAghh7VmIV5c9DaUYB5X2S6dI4oao53QkoV1m6Z1JNoxSyZCbUIiJpn7YDndScsSkZBNTfjRT//JWfM0wSwdZvp6t/YfOI/eXQAyYCOv+QHlKNHjUS+Ftzo/8Qo9CC0+7E7ODJ4+Hiji9Pnn97bATtRS6NGA2PWscSqv1k9NTktPj5GnaAHfMCUQfTvtqabR95yZfDsjbnsqQgdjzWgcHrbjqmx31miqyoUXNna2k+Yg4M+eK/+NwI6hUCUCZDUyqma6ilNxHScGkoftCC3S4ITQN8+bPQJ431aTNO6gFiUoO0nfw9/c4s4MaygtHrCeAV8dc+BzMOq/vt/8zFuNwCk25/xxWEQED8MCeNmlHeJYiApU8ZyFKUvdlFHVtdnvVW5Z4P6ke1XiVjojSvr69dSWy7t5WgnZ+0TowFflyZvD8eMm9sJ5yHhkkekELDZSJpcyYRlki6Q4xhxPuxwfr4BV8Y8LzgeM+73GdNCqJykHqJF6emetuE0kdXJg14o2zgbQa3ny9+op4e2p9rc/MTxQRD741eu53h91SlueWBgAh783a5pa+wgZnXn/rEdvnAM2N1zNWcEIot2Xt/K8KPxRMNQctqJM6S/CNyyR/mRKcT6dF2dNlbqL1rThckMGyr10+Aavo6wSOe64/4OtzdXiOOI8fwMYGC3O8PTZy8wTwfccUbOC4hZOms7fuojMtYbwh9D1GqsdGMNgbzGVb9EZuAxI05/tMikRssyL23vtqlWfqrK84p+Oh4g/+X1vPjzADESSXqvRMar45uq1+cyoze08QFBahdyX2TV94XIP6mjKTU2rWREIGq8n6HR7wWBpCZm0YY6Ta5pt241+Nn8mV7ADKmvucxgxU/NWQOnsSZn23eNNbQN9BAmGP5vn/wk3/jQsVJ4VtvFv/PIm4++Z/eTjePb3ulkMVrUuES2EHonreEA03dY6yxZh23bf6cNBdwZvOIBZlRZD7K96qMgxcfBwSphwo0rniZOhhE659/JdMgWX8u2HkM9drizWAay/u70fqrbWDYHqTOEIRgqEKOYcd7fCwi1d22cPoNBvXO4cUT512PeLtAmmHPxhNfac6F4zXAoUdNv+xckpy0Zm3W1+5jjo41Nrz77DAAwjgPGcUSMEWe7HVJMODvb4fLiQgQAFVSq+OHb7/HNH/8kxQ95FLMkCMM4AhAQu67H0iZKPHhiYCosgoDRPMsESduRrdQmomq4N1exEz5IgQKaIrvGUJryAry9OuLm+oipVHz+2Q5n5wkvnu3wj//8KX744Yj/8/+4wv1dxlefX+KLT1/g8nLE2TkhpIK37/f4l399h1wiKi4lrzkl9ch03in0+1S2CaPLa1elkyoQClDjiiJ7EaNAW95Jamk0i3dviW4Fzejk2SaoPnCYEQWdXNUoM7B5ralR6vrSFVNro5dn95652s/NjyCOtYGkCfO2F9YCg/2/+u4KMqyLFbiBGCuAHULQ9p4tEsUMCbZxjOXUthhg7X7mLcg7JtoMTEE7RbG/T380xs6gwG19bS10oiyqQFLYCEQZ33/ze7z57i948vwlPj/8BpvtDq9efI6fffUr3F6/w1/+9K847G9x+8M73L2/kucF9nUz74ZEGpgi3ICTvWrQv4pazqlWD6/NpaCAESKw2QxgrhjHhGGIrfMRq1dd6dTSNOW8EZUrlmXWKI+KXDOIAhIN0P4IgHYic0bZ4YYuZd73goA8KSYaDaxa+hoISz3IiRYWjgCKRxBEMYxROtxJi2bx0sVIoJiw2xHGMSPnIoWnKWAzbqStORGWhaRofL5HCAeUnCUNl4t0jkEF16JpdCpQNBokkqQ8zscDbq9/kC4XkEYIOtwOcDUhuBKGjAdF2E1EGb6quq4+j/qzB1A/ZjAikhB97s6Vz+UDj2hB+172QV2dt/LQ9WD5tHJ5d033iXYL1LHruGwfx5iQEjmdQ1M453lGjRGbQQqY2ty5Ys5rOvVxE8BabbuyzShpCcnV28L4UwgSaQJILQlo6jPnglqK4CUKKJCOHwSpX2Nr05T6Xgo0oAHntzJ2BlB0PT0ykyQCCURdG9+1fAG0FlAMCEzYDCMQEkpecDcfATDGGpESITMBSSJxEgIGDiCuCEWi/Xp1vWrEmCglEudtiipCQNgkNTJVoLJEHWqx87xklFpRmFFYUskSacQjMmqu2m3NCMGM4yQgdBGPeRjFeFWZMGsh+L/F8emXnwMgbDYDNhvBUNvtDilFXFxc4MnTJ6i14u7uFvM84f2bt/ju9htwqdhsBiSK4ugbxSiVlM4NQxkAtF1Qa9GaVUG6P0FaFtsOktQahmv7bvjuovgsZ0W/X52n/0xZiYPM6+s397i5OuKzL87w8tNX2OwSXr04w/zrBddXC/7073eYjozf/f0n+PWvX2AYCPv7Iw6HA7756z3+8u0RQMJ4doZhM0qtGptEdhXJaxLZ/jIMJZGNBaUUVO0SVitpQdTW8RA2d9RjIrmjR+Ip7+ijcsznoT7nk1VWhe108V3Brngo8xvtPoxyag7ExyKg3eBEypd07df4oheI/Ry2+evEJ1yidMNs8xUQYLyvG78qNqXI/IcCZDd68Gpt2IwSOpmk1nDDOEa7bTZVLvShCj43LdqeLJJYC8MGj2hr78yApOqQRPxYLbsAoOYF3/zHH/D9X7/B5fOX+PwXf4dxu8UXX/4Mv/jlL3F99Q5/+uO/YX9/h/3NNY53N8KfU2x7Jhqu1bIWpIqjYjrWd7axsM5X0fydygxkqd8YiLDdiCF2P+yl9gtb1JRGNUIi+EyhHYbBM0HmOSuGYtS6iGSSVAlfewXD/sMWmjz/hjXSr+0dwSW692pB0a6uiznKQgI0hW+2iAyN3vQIYDL8GkGRsNudYRwljdZqFo5pQEzSMvSwn0BEmMIi+HyeJZJM+VxR/LQss9LYqJFYmoIHwjIdcX97pdurOkjnNVjvKAONMjqaeXCm6y+stbbgvBgnlNUu6e/SEdLJzZshwPZyi9Kz+/SR1j/p0DvVx1T4Gg8nyB4GGJVIyu9T62g7DAkpSZf243REyRnLsGDJGZUZcRwkDbSj8bW+ZrShxcBhdZzI+aClLa+mjZvWFWLAgAEB0hioVoAqI+TicquwrF3RovVmbDF9ysdj+13/k9T4UxjInb5lGLvJgPBgvntWK1hNU/9CQCHGkBgFEQUZt/MEiS4TOqkUEJPE76ZKSFUM06HWbk+YgY+7ABZq9X2ViHmQAvxRG4vJ2ikwnrNEi5KFTAMepcUVNUvR9xb1Z3IJ0pVuqWLkG7SpC1gimz7i+Ghj0+7sDESEjRa5jTHi/OwcKSVcXl7i6ZMnIAKWOqNyxt3VtTI5E/BCgVa/yQGyrZIt2skGrR3YaTxBazzBJqP69ysg1Nao+2nW1KZEkBlMAExTxqFUPLlfMB8Kxhiw3SQ8P9vhcKyonLHkGeMY8OzZFmdnCXGQMRyPGe+vJjAG7M4JaRjg+ZU2BHvXDu14DnN7y26ca4ayep9O9j7G0taEwN30ts+p++uDakev5Jge0ymv8uyTp3djPGkBcHICw/KU+bGvT657fC745BJef97XLIClBthfth7dvjHD0umK+LON9dj6uIatCvzjxOfGVAXKDxhqfw7Bf7qwM3AvZ7rATgpw9vc30jEKwJPnn4Ir48XLV3j16lMMMeL9u+9AgbC/uvP361MkSdcqkOT52zPsdWwV5R9JdySwgCciTy+wDhVmpLE0jorq4AoKyICWLWQ1CqyNLREk7UMLIDBHnTv3BTiz7PfqQ9mu37MALVPOLIoNDHBW6GodDCgAWby4MUakJEZIQvQ5EvBGSLGqUtLSD2OQEG4QSdM4YtSiHQdXrca5jcUim7jtAwMXtRQs01GEQBQPCLMlETes5K9/qrQYPZyQTq9oPAamTqeyeQNP93jby1bcvX3TFKP2IXka6eNP+3HQZPdbC3wjbAHE3Bnezfju8qeTM6UU7WIFn/PT4yEPgK9f78TrVBr/xHisKacm3ANJ4VRA+anJLCF3Vxwjd9E4Jwp/R74GC+Sny0xV9EhBio7E6wfSKefm1Q2D8h/puGTdF5UDRCnGWg1dkxjaAmtL7GpGz+7uK3nB3r1G1gkayWK1E1Q2qycVZE4ZjaZ6IFIYsBpaPi/kxixiboVMSXkYHt7mv+vYnZ+DiLDdbrDbbcVhd3aGlBKePn2K5y+ey16MAYfDHnfXN6hFjCYDqyGUoArUj1DIIxhqHZkJOL8HHAf1x48Zmoxf+XkqQi3ian/IONwvuLgcUDJATNhuE548HbHM0m1qWQp224RPPrlErQX3+xssy4K7+xl399I9NZ1J50aJDtWB2n8NV+g6GsZaRR+usCB377nmcKfk3qDoQ//yoyjmwQZ6hH/oidz/rnPYItX66/jkR9vvDxTKE/paP7QZq/rPV1EdD4bbrW8/CKhCYsDT7f+NxiS6RBTVPsWtN5gxGj4n1ojlTj51qLW9L8F5TP96jo8649u69ph8z3qBYy9WJayLjgAX3N9eixONCM8/+RwhRjx7/hTPnj0FxYDd629RasXx/h5FU2FiN5VBcdDDNWrRCh6YwIA2JFW+1nix8buozUVMbsnRwhNMd7CagEOKGMdBuuWWIu9ebL61xttJNkgzyOlUrnQFXQfDWDoug0lF8bLgl6yTwMLDiVBN3sWIwNGVWJHBUTtrBaSYECiI4armlYHD0q8AwVFEQR0zStM6Lkv9ql1EBzpZX0pBXsRoJU48I5FGa48bkLt9zB0tfPD7/xyO8dO4/drf2YwIFgm9ct6sxtR+f0zPEzpY84IeyVkUWAiGq3iFl4QfRq2TqOuhaY0e2YQOu65mxpHumkefYKUVTfs7rdiD7qcALsGxDil+IqstS21f2r2pd3i6OGsMx+Y1MFrdIxuAjs2cuoJAHjpA2/kNZ/QO1xCTYPkiOk2EOvWDps9CUiaNvpQg/fmGDW2ehG/RunRDCFrMW97I6AjMsBYCvRQk/2lGbHvWiRtC57etr+KxfkJ/5PhoY9Ovf/UrgCTs20K/x2FAjAFnZ2e4vLxArhlvrw84TAdMy4JiSvvKyERO1LIp4KGdPnkni8a9Mtm+lEmxTEcG+k5gBjzk+na58xbu7tj9zkEUuP1U8fXX9zg7S3j6xRZPPznD8gz41c8vcf98wS9+fokvv3yCUgq++/4e85Lxw7sZFSNAUmNGLLjQorS2aPrPQf4pjGlbIJAUumwOHREuDoZghN3kcPOiNMI/LaTbTe3qcxF467EwJAvfzjXm7ERcoRoJIdTQ9qXPbYvMaYCp3a8Bko4IToAvAR4rYB3cViCoAyjNMMInm8nm75F8dWYfSy0VNdQV8wTQMa7Grs2Y2rk6tbh7cIbpd7A9bgDKxneyrVdA141N7b0aAtD1qoCVlwkxIoFQ8oz3P/wV97dboGbsb29Qa8GTi5c43z0FlYSYdpjnA25v3iIvsyu/0ELHslTUvYPtG25pOhCPDtkAFXhYAnIAkAJht90iXzLmecZ9uUPOBaxRPSlGbLZnYrw+P8fu7AylFOz398g5Y3/Yo+yzr5VO8YkAJGfCK3JygdcLY2nZegrQK6y7XTfhlhrIAVUL+VYDQjG4N7F50wXMAUApDOnJqh7Xbswyb1KAXClWsZwUUJznGYf9ESkBux1rRxpCHKSde+EiHmSKoBq73aDP0L+b0O5FS9tHnsrse67/A6ufj4GA08O42wN+i2ZkWa2HzonsbTq5y8mdT9kk9Xyiu59eHwIDdBK1wr5NPRw8RE3TcUVG18TmQcP47U7MFTkXr3fTYss6j5z9TiSblaFtesUoK14kSQdga49Ws9QVghmAWyrvTwFW46vWgYjAnmefsxTpTiFgiIPTS6s3YHucH+W79ksgQiKghAAOCZUrplox56qg1NbSomVaVOaKd+hzQlS5BGjdAZbGIjpfrNGhlSuyNichljof1dtuK46oBWAZR88zxXhlckNTPWpF1FVbSGoO/K2OX/3yVwAIw5AwjB2GChHnF2c4OzvDPE9Y8oz7/R3meYJFTIipL652ghtgjClyk+9mmMPp+Sey040yfiu5n9Uv9GtdM2v4yQ9yqgGgLWAYuNtnfPv1nTjkdgGfv3iCTdhg/2vG8Vjw6Wc7nJ1F3N9nfP/6Hre3R1zfEGIcQXEQZby0KBrqH6a/yjub6bTxFmsOYzVEjLRbBJFOWYAYRckmwFJAyPGpzaelia7rRXVrcDKfzbzQ+HNTVoDmpGpcI3Tp6JXb+6zXsTFBNwqCUEm7M3W0vOpE+uAXHVFjn/rRqcHWd8uKO1s6R61ar8gwVK2gIJGD/QPNdmnbh0kLhVfjX41bWJ2fxtPRoqHs+Z1862OwDWq7x96GQPB1YSJvBCOwR/dFlHp383zAm+//gvH9FsvxHvvr51hKxvNnn+Ly4jmGOCKmhLwsmPZ3qKUInWraPYfHFPuGU9jH2BRsIhm7dKbNIC4YAqFGwm67QannyMuC/X4Pdn7HGFLC7kwiJDfbLTabLZZlAd3cYVkWTNOE6TjDmpt4p19zKNqqmkw1vn1iuDTFvFaJWiOQ71GGRfcyUIvBXbBiYWkGJb+XrKlyXZqc+XYLV01rJ8xLRtS9DTOymDLEJI6Orgo0EcSJVwqWOeN4kKCA3ZaQUkRMASFJhMeidUJHSqA4gNAZpG2tlB/0TJeUDzp9GGbSqQpd9F2j5J867G4PI2UcSumGOSGB//TR8yQZXe/w4+5VSEtIJH3Ph5gshATJco6aVQM8ilXMmA65HzNLhHOXbdN+ns4fnAeYYbhWHTcFoAZwDRINXUS+O88jrYrx6PjxQIb5CEgMTiGLI7GEipmyNAWIzQkvt9DgBVgk/MksGY2DkQIwMrBUwsJRdBEAIEbgikhFG6WRY9WefQFoxnowIlqWDJUCsbMAKYlzri5Fs6RY6IgVmZrDPajzQ6O/UNmzlExOupETaO9HjFFJo8Bavv308dHGpn/8h39QIRARYtKFEQ6x3W2wO9vhOB3x5uo17o97HOcJuVStoaBpKHYzlnxnbw3uZrwemnaTzD3bdkmtDLC2P9EBWj3biNU/4Y7ZtyX0X2uQVJC7Q8Uf/nSL3Sbg//Fsi5fnFxhqxP7XR0zTgp9/9RxffvEMP7zb43/+22u8frvH3X1C5REhJDeQVZYUIyHebhHVxWpWa0uzM5UFgAOioApEz7jMgxOsc10HqPpz7KelbthcPfzJXiTTxId9yWTfP1RIpNbMOgqjfflgJVdrWWtdeb88JLx/hgpg1jDIvg7Awxd6lH+4Ec5PovW7M0Pe3fOPtfaOvrcRWu+Rs/EXq/zN5nHoDKu6pw2ntwgr9vv2s7M2EjZPluxxY6AyzwwBxRUkjBYafZAScj7ih+/+DKKI++sbvLl4jqfPn+OXv/17bLZbxOEc48Uz3F6/x+39LebjhDFaXRAoCGFRhmt7B+g8kAKPVmOm81ZUBXDMiJA0l7PdGUIcsb+/x/7+Xum2gHlBiBGXF+cYxxFPnj7D5ZOnWJYFNzdX0u2iVhz3e1kvy/XSopvm/Wqr3XOJfieYkVQ9cdbSVue7ckWVksSwtCagoBmOdNsQEBcpMCpKjBW+HPx3kKxLXioKQQv/qhKcJMFKDJtWL6ZFejJLQcb5OOGeCJsNYbsVaRlSQBojWDtwWMdDUsGQggGJZiJsBlduZELtXajjHfbhYxF3DTR9GOl8CATxY3iiG4S1Q3YK5Q8/o7+PC78H37fCyG6g7viW8bgQImKSMH4xSll6Zm/A7Dw41kJMFTHOlsDRaQ6sPMyMzR7xo2/HokxGquI6K4SaGZyrVMyvBURVFc6ubhytva0i5+C0t14HkjQR9fTlJWOuBWNKOBsGaeLBaKmmdU2/dg+bZDstyYRiCQEcImolzEXCrlOo2AxVujOxwCCCFjNfgWf2tZCgP90HGrkoDUYI1nWIAeSlgmdNf41BjU2yVjLu6kWzXWEzHqryEVCjRZXU5IHF/Fm69/tbHH//23+QX8wADWhCMGPcjtidbXFPwDwfcXt3jUkLigdIR8tI1i7ZsA+73AimFHXGNqBhop5eXMazeWvlMEMgur0AQDlJe97a2NQRtj646L+b+wV//sMNznYJv/nHp/jqk0s8PZ+RUsS8VHz66hyXlwn7wwFf//UW37++A9MlQnoi0WxVohGYDIO0zoUOoagpJT42HbN5dNu+0O+UNzjfDarDmrIDA/rrKBUzXPS01xQMm9tu7tTgavy2zX0/b2JrXhvE4Bi2Q2J+/za+lu4IlV1QGqxOy4ar8MjRyUvuP+tq3mCtLpt8ARjEkq5RDc9XRq5FsFOBFKrtFHHzQ/l7sfIELdLfO0oJLaLCJo/wGL+zK3VsDJgh2rqD2ns15U3OLpVBZqBz7CN7bJ7u8e1f/oAQBENdPnmFyydP8MUvfolhHJCGDWgz4nB3g8Nhj3k5YhxGJIuYIXLZYNG3/R6obPtDmLGk1IiM4Cr1o1ALhghgCDg/3yKkiMNhj+PxHqUUiHESGMeEZ8+eYhw32J2dYbvbYZomMAjH44RaGcfjBDD5HDh2OsHsXaCpr7ftO1uzSmqi8HWxPWdYOEMiXwh9MyLA6gHJmgbVYQik6URBO43afqmquySkqBkiFDQaThyAYhQPLTxejU3zcRaMfC5RYSklpJQQU9TIkkXqPgVGSDYH3GEQGTuDWtah7zly2nZeS+07q8PYy+efjqHtnYPtM3mnxuP6chH+melNqzF217dP9b998YVH8JaJEq2XdzoqOQJCHMTgQVIo33Q5p1v2U2WfaddfyYoJUFPL+m1d3+ygojLGENUDpboPkWRM1UJAAULWFMzIvmYSNPmI4wXGW9lxm/HeACkzQKV6PdfKjBQDxkE6xXZsUmjK5KbPP/k6EDEiGIOUvEStAYWDOJxLRaWKgRlbsDp1msPDNliTvaylN7SUir2HduINm4SQBlSumEtBqYxYKjhXBG1mZM5vDvr+apSCGnlJjA7+Hib3gjLwQEBSsXdk/r95+9MlSZJcPRT8oGpmvsSSmZWVtXX32Q85pIxcyn3/VxiRGZkhOWTzHPZWXVtm5RKLu9uiivsDgCrU3CMrm/ewrTsrItzN1HSBAh+gWDCdU9DF65ONTZbszZQ8WfI6scVVcVkwz7Nmna8AoLrNOsW0CFQUIuOCcM83ps8HwrkyP9s0l5WP2pQXVJc2aB2UKILznBAIGE8LxsOMnBjX1xtsth1iRxinGadxxnFMOJ0SliUA1MEUPOlVZfAo/RUCZEYN24HpJcb0lOvbxn9C0TM959K3PsSkBRwX5rZZizpfnmkVcOXm0G+wc1f8KrjYK0Yr0KutNc9746AIxCcYo3+fW+vyqLbdtOvDUuyBwtTqszCQ7kCDjbN4eZW5qIy/6mryoc1eCzoJPqn2Ok+VMUHXm7rOXHldgO0FlPLinFnBSMY4HkFBTtIPDw+SxyJn9P0Gw2aL3f5aG1vAeUGBt2vF8+KlY1DwQuxWqKwtlwpcVrWEXBWQEKSiSd/3JRFmCJZfJ0uFphAcHZnwvtAbx5ibkwdbRa6AlRp6q4ZEKmCLYIFMhcZZDFOUJfwpaG6nkgOODFxZH9TV1vJwgcEhlDUooYxBKqbt9ztNlBklrpoNnLk5M0JrKIN1LS5NCnvyUVntbrzwjBk3qE6G0qvNcUv7Z69EmTY3n67Dq3dWYFJ5VbldgcCZAayyDbeO9jKPAM9BnIyteh9mTXid1/vaeA/VdsxjqXqLmjeB7zc1P+x3GUNlAszchpUyw+T8GTRdWxDWv6/nFAKaxMGOxZDujAvBg8HVnLvBr/7mwuNAKEltLZWd4+QwoEQ2zgv8xAMo4zmFXEkngpJ6T0pJa5lxLglASem+KqqXCZMUiBCzeoIIjq4l6f/3X+VAxqwKqEYO83hkZszLgmmasKjLqmGBKne0/15eGt3rzwLYz2TySobB7aUnNrXJVXbPN+M6mz9Zh5wZp1G8HOYpI89ikLy52kgYATEeHk44HCZMU8ayABSB0LkVKfTQjsHv6WKksd+NZxShrA21XVxhQz/g+sPo9+NysPar7aOXMbbnfcso/fc4yfirx7f6aSvbLq2Xw2Puo6YP7WjPx8Xrr113rSfEVOTEWfPu90qXxuIqzizjK2tm/9y6Ud0bRY6RnzsP+qqMMPneyqsqJ8+xavu3HCTKoc54OqKLD+i6iNPhESlJov/NsEXezNju9gWjZ79WZQhP0w65//ioBZslM+5ZVW7DSOWwmakYU/q+c/mQ9LMu6TP+sJnb92sfba0q5nfhh0V/qIhD8HHlW9Z2Q/drDAvWcEEdGZtVQA8O4HLXQhVfJBTjIwKg+NbyUUmepIh+6LHbbjW/plaVtaIQgVxVyoL4ZKadngXfXZuHCwdgLQ0+sbhlhm1ujC+dr8PTz65/Kw2d9afKWN8/o31qPvuozOMCfWDc/exutzcBMTRZNbtzL+kV3yHHn63DOi6Gw3v+O2tFmYSdv9vhttcLJEqjeoWzeyccDV8c+AonBuPFOYu34iXe+NTfvklHX4UnOJnKBfA5eqO6BrbfYM9ixU/NQlunuGIo5xSQmWVM5OSEroUd5FQv3Aty0bBq1pN/wi/Qf70+2dh0Op10kqKeBtcKKZ1Zi+cZ9/f3eP/2HQ6PB1GmMrAsi1i/ZNXKAO1fpnqq7R2iCepJ5RJds/00N2+/gsr4UIiVG/Bpgq2cULlTdZtWcyNjZhzGhHnJ+P7PHxDyhP2LLX7zT6/Qbzv88O07/Nff/gnv38948/qIu7sEaAJaU/qzVTkiqqCOGIHDKsZV4io747te0SQURbPKX5sv5TtOsMEIkP2JyiUw6P+uClYRGo4RkwGg7I1lldCLMCrNVzDUeBU4pmLfewZ5ebe2bWrncC4dmi9Xzzkndh1LKVjkNmcMEegszKWlryZuXIUclZh/UV4t2WSMGtrkaCm5/DTlRFWVAs5c489tblJ1ZfdeY6zCih0QkTAC1ASaRXkF7u/e4v7uHT68f433739G32/x2Rdf4vlnrzA8H7D55w3mecRPP/wJr3/8Vjxm8gJwRqSILnRl3jzDA1QpJkLkgKyeCrTYaUUu4S19X0+UNputfJtmpDRi6DvcXF9hu9tpYksxeG02A7ouYjztMV6dsKSEcZQyvyHEhq7XP9fAx34vYImNvlEEVfP9JTrST7J6elUAx0hpKYw/rVyDSb0YCNDk4uKRYYmxYwC6vsPzF7f4x3/4RwzDgNc/vcbbd++RcxZD3NCjs/dZOW+lDhEewNrdm8E1Hw+hhhYYLCbPA+qer0K+ECvKUSP8Pr18FfwAi+e+YCKuklUTy6IoE3YyePYexytlz2QFueKqZMkmDWDAgQ0bq2c/GbJ/mVmS0aeAaeokN6ahAJOkIajdUXOMKeAX/lH3tVcYW+URZUxZQXVmxjzPmKYRyzyLKzMzuiAneEvOmM2LSvc9uMqAumryG7OCdPUS6jQZLOcs1eNAUlIaQB9iCS8zQ4J5YzJXIG8HTHJlAAlECSEyIgFTkpLAAUHWgzQBCVDAi8yBhdNLXjZb/bRI3o2kRQPEa1r3dYxgEHJiJJJE43nJGv6WsURJnh66iCFEBE6ICcXIUT1kq0whVr56miRJ+tCj7/96CcJPpxNgChRZvjfN37XIv3EacX9/j3fvPyAdZ0CVekvAakYnIgPVKz7oBZr+sJyUwt6EXlu5fHZ0X3mDCkkfwiRbQsMYHZu0k+0QJUdLYsa7uxMeD4SXPw242kXsrnv83d88R+gDfvvbN/gv//U7PDwkPDwAmXeI6GWvui61ylPtlkn1QJpsGCW3LfzBcJWTLml0Mzw9VApUqKWprnU2h65vqDIeaDHN2vjUXitcCuNPghk1S2GBzN7YUo1tKHJeO1N+XEZRdoPjIg5/VfvAugXHVxssoFnlDKvC6KIaJwpOZPFUSZqrxAzGBDltB0j1CT3MttBznV9iQl7VPSKSZ4t3mQNsNt9S6MXyYhkuF68bjyGk4IN62RDBElUDwIf3b3D/4QPevt0JhhoG3L78DC9fvMJ0fYvtdo95OuHtzz/h7ZufhJeZ/kKh4YPF+FaWQcI9OTM46pGqFa+BVGADEvq+A7oeKS3o+076R4wcgGEz4Opqj812A2ZgmScwZ+z3e2w2Gywp4XQ6qQFNxmo5nirdoZkPW2Qum6keyBnuAM7p8nycKresWQCkYasUozhQcMVQFvHCjkwlt9aktNKBKBRjIBFwdT1gu93i9voWv/ryV+hihx/fvsPbDx8wDKkY3mKpdqyHRZGLPklEUnmVKu2zo6f1Tijb4RJOdOOtn6kkv6CP/aLRqRhJPv6MlwPn+I5K1Jp9l7PHLueFC4RhAjLqWvRE1pDLITADIp9ywDQskm5CD2AZqAfpJWpA2i0OLGf7A5WmoPMJKsm0zWEl54x5WjCNM/KSS9L6PhIoEjhlJM4lzA3249J0F9rVnHQspWIIhCUzliWDwMi5k5BB1APQ6nxDMJOCeZyKXIoKedV7CJbQP2NJUlQpxAAOhs3NRkE11NW1BxLPcc4sla1RPWFDDiAWs07s1AsLC/Kcyz4DA0uUfHEA0MeIIXYAJSDPKLpvMzWqI+UMLAw+sqzh0KH7RAz1ycampExb3E4FiELL9+aU9aQ+YRonHI9HzPNchFdWS7Q3NpmHFLt8QhY24PUccgSYHZEVY5OBBweyygmyY+rMjm24v8ukOsWUSBcySYW3h7sT3vUJcRvx7Pkeu2cbfPfnd3jz8z3u7hccDgvGMaPbAH1nHg8ML5h1O0GgDzcEb5u/uPxnE7COOa2Yl0eDZzDGjD+OebQMThUzN23r5024mJi59J56r2N+2mgBbTnV8TOVfl9msA4of4T/mkHRDc7Qz0efbZRB/aV2o3osgMjNoQdMSn8F8Nf1MVDhy4Q2Y1pftqRVlq/mpZ48W1x7I7Hd+sgUEMzg4GXMPB2Q0oLj6YDHwwl9v8Hu6gafv+rRdT36zQY5Lbi7fy+RPYAmhs1NBTFe/azz7lyjDcCV+ZY+xhAQQ6+uzBFp6QroDyFgGAZshk1DO516QVmOOIAwUYKFFJoB7uLUuvWzftge4wKgHO2CG9qQ9i8vm31fs6MaTxK+JIrzWYcEzESpqlcNJwKwQyBst1u8fPkZtpsN7u/unbAK5aROcJAZs0NRctbmnMZo1Hakfq7E19zFOAvZWj9fh/SEZ2g77FqmFagC3ZR//Y9yo9LuZQM5NK+SPhcI5HKAwNbU1o4ruyHYlNexhxzApJVLtKxiShlLyiU5I9UHG/5LzjAjyladQLH3VN7v58s3xCz54ZJW/1A0gqh8JDc8n+r2/9iUsxrfoNVeWcSggARNoJpDDee1V1Ddi2Zssj7auMSXX7xRAoknWJFvxkd9jWGduzV9URTQWnK8cFbDOgM5qCeOgizd41kGASjvzSSKqmBWURLEGJAvKABKayaTtJITkyg7sYu/MKn/dteySL43ZALISnzbKbwURUgpYRwnHI8n0FxDYjMzeLEMU7pv9dBP8uFyiyu80Y9dZg4nx/zeuXQghUZLbOeo8tiyNPp5xTOcGKdxwTIDh8cZx/sJm03Es9sdhl3Esiz44Yf3OJ0I0zQA3AEagupxYMFxDTW12MaMTV4eFlmkjXn81whJMNidJstwi+Av+NIb3H6J9/2y18JTz1WeVlDYkxitvWwveyy7+rYyXbgFa9qy72SSquLssYfDUra/SKhSPG5KL2F5VK3PRqf2P8/vLYcP2+sajAdc2qZrw6Efamv4qw1wQ9btOjv0AvWhxGk8IC9Adzxgmib0wwa762tst3v0wwAKhHmZcf94r1Wac0EI5PZQy09N3ll/WsXb8J3JhRAJPXWaLNwO4CWEKXax4KR5XlTXqpXpzGscoDPebmt7Ri9ksQS0IhcqRVX8elwysFrfvYwkGM1U/CB6gqawYAnJLDcTIOq/GIQSySGD4XDxgg/YbHrs9zu8eP4MXRzw7v4RKYmeGKj1Dl9jDH8Y7mefdAwMXJgffPQ6357nh26XMdRqL7Lb18DH931pt/Lg9n1P9dXkeH2/qVTFoLLivkX3CeLZX4zIKSHlWHSXFh9Zb1uj29oYa55mxYjs5st79ViOXcNQpP2MmlxvCSQ5MVthYqN+YjIqfYZC+1lz+eohjVWDo3ZWvJ5ex2KyC7qWVS5TIClMZGOubOFsvLamQLUTcF6qAw7qe0nlsuTcYuRAJTxWChNJiHOGFaqRbJAcWKvs1bQtjPO9bfohEwFdQPjEir6fbGxyU1CFt3NLzAqe53nGPImlMZDlftG4dFTAUDY1WxlpBQvGdKFM2CEZrlIIZnBgu4/8ZrKFY1heDTuzKpPHDF+GlrRePYVY+piJgADETY9hv0E/9NKfRcq1d0OQcr8dgCigLwYqHi52SlIU6+g+1++6KKXVA+mpnA6x5gr4yKZgx3y4Mm27gnrYGMA8a2L1URVu9a3c3nD2rPWhGGZsiRrQoj8bhvhxZXX9/Zkwu4jAKviRHlSFsH7vx0KrD+u716cDMcZCb94QULxs9H9BY/5NWFvzRnceuF1YEQfmHFCCMd/q91ecmKDTasqGNlOYW4x6YhhBlJHzhLt3r/F9IAzbLW4/e4mu7/D5q6/Q9RHj6YA3P32H8XQEUsK8JDWKCO1mOBo7W4MVGGf1kAoE0iopm+0OCAHzcsQ0n0BEWBYpWbvd7bDd7JBywvF0Apal5DmzvVBKV6vyeEmCXgQ+bm3tp59jn0S/WY8nrmJAByShn3alGAbdnLROR1WwMEn8dtDqET0BfQzYqDv4ZuiFjlZ7vRgjWDypmAg5AMFc0svY9E+fqNXApQHB1Z4soy5bV56pDqIejK/n1rdjc9IK0UszeonLeWNh7ZMNiMr+reDDQh5NHjhjekVORQ6gCG8zIOeSUwSop5ysPKXKngoYfLvNfJfx15x0lS+rATFEdDGgjxGzhgaAWRJchoDAVb5ZvwiaqLxFfRdxL0E9PligAGXJI4a0IG4IFDuAGYse3BRDOyqdGdi2SSVI7qZt32HJjHlOSJQRScZjxnbzuCmx/tauW2fJ1xEl15CuATGARSoLUBSwlEMAYoRYFnMR9oUvWB9VUWkOaMAl3L4Ytvwc5YyQ8kd2+b/95emaQKUiFjMEO80z0pKRE4Myax4sFC8L8SBp90VWBbcYdm2/FoDJuEQkRdG+1E8nS86fMxlY/zb8JezCOkFiXIxAt+kw7Ad0mw7IDF4YMUqVugyADqIYUJCQIe/NHUg+AwGhuO5TydnUBy2mgnoEkEn4qw/ZrmywMNSqZFE1vlmumPWesPBLX436olH8ItYynHl5vuu8r6f9CQzom+HVxxewVeMxUDxn3MMu/NvjKDKsfamT7n2kd5bPlRcILZJiESsKoP8zzyaKuhecEcAroPaTffsovH59Gb2bbkFE5adfh0aZK+8yAyUXoRe7AEvZl/OEZcl4/+41EIF+GLC/vsFuu8GrL75BNwyYxxM+/Pwa03gCs3huGj8u0kMG5ebW/6w81wqXdF0HdAM20wbb7UbySk0nzFqoIisuGoYe2+1WiqwcRyyz5HayKSU0jsq6d9eyy+aCVVRWWgBxUcLZk5Fb9+bAdE0w2pKtjWEoW9MAKpu42n9NxjGIc2E04t1M8lOTHPedGN02w4Ch36DrekiqA98NKvRphyuBvGcTsJaqRcepFPKRywGes+HX7z7JIP3E9v+Uy9bWfj9r2u2Bur+48EKrFChk4GOOauese5JewhmKQW2/y+8B1XPvaT5p/Su6etF/NB9bqAe1kXyYmXgyBSb1TNUDwDUXIxWSRXapnCg0pxiFReYQWHMILpiRMXS9eslpXsHMgttCbaBQraU5ITHOdSBsKCDljDktWHKq3rmWD9bnrIM5o1S5BRZ8FHudI8vdxwwsCRwIoQvqbZ6xqB7CljPL3mFzrkCz5Y+GH6rOVUJcbZhZkql/yvUXGJuo+QEyoCQfpJywpIR5nDEeR6Q5IVIUoJdlQGZQKaCEWJmxNMlaycFeQ6RKUXYsiwALK7g0xmY7eEVJHybOgLrtZ14giUWlvK6xNQq6+XRx+m2P3e0ew26QxKtzQiRGvw3oxyDF56KcPlipXku+Z0REIWhMdbT9DCJC3wV05noMZc+6EaoYdLugGZ7MrVVVMaFqgtXCd7LNxdlM1TaL8F4JiIsMkesv5o7v+LQKpRVDdoL9Uy87UfT9eJpB09kY2dNBJdz2KT6bXWU0esLqwGpEJywyVwWleP/oB4HUqAh1CbY+l/63wt0eJhgfqeO03w38MuoQOQRYaE4IaEKLZFzS6dh34qLJLJZwXvDmpz/h3evv8ezFS1xdX2O32+FXv/47/P0//3t8eP8W//n/+//Cu7evMT0+Yjw+iCDeDAL4U2qSl5Y5WzFr8YRQY1NH6Dc9Utrg6voK3dRjHg8YTwcQEaZpBlHAzc0Nnj271ZxvC8YsBmsJRbNJNoOTCD9yFcfOaaTt30WNCy1Aeuo0dN2eKFvaB5dPoAutld+Asv9d9q3smRwhDiNg9JGwiQH77YDrqz367RYIQbzNCrLmMifLPGNeZkmaHOmsWo8JFQNIxdBvxGa04hJZ135zGa4pFE8ppm4my896arWC00/sXz/Ta0NTO6gykxXUwJ0OFXMRVeObguOSQHc1HOOXiRlJv4whqvwVg0UJxbG5QG0SjBVfMkFd+5bVe4kooIsRiBl97MBdh9EqiWVGyBlIyg+0r0nnzdKY+wkjqieD/ivz1+koIKmyN40LZiL0MYI2QvPLsiAtqXgVNIZ2Wy814oAlzG8feyRmTNOCZcno1HgWSU4Vy/OW/FWV9sziMi5YICDEIEaUBShG5DmJLN0A0JBC6iKQCJy4rGUpZsCs1fxyObULQUtm54yU5jL/vnAImCQB6PLXrEdn70YROiFExBCQ84J5XDCNE+Z5wTJnRK6GpcQZjCxV6Sg6cadjUgVbjzzkFUofmaunZjG81M12xhYNA7huyn+LPPbebybTCNFCIMuDYmwKPWHYD9jdbDBseyADec7oY8T+ekAmRugALNCCCoqhnPer5aKJxatD+iHGpgCrfxIUtyWthlYMF2XcZmDi5l8ZC1SpUTDvjU1mMLYqa5+KZ9aHZk89JzjhEp9dyzFbJfsQZZ+5G5/ETkWphHuVYqR2Prgy5lXTDXbUfnnMbji69osKMbFWZyo8rJz+U8GOFua7pNQoO3U+CM0EuCvr+vn1LfzMDbpWQ+PyWVl7UsdBMmNTFK8bPmGZCK9//BY/v32NZ89f4t/9h/8D11fPcHVzi2/+9u9w/+Ed/vt/+X9jeZeQ5wlpngVDdQNCCBoqZklnDBtUTFV/y2AkMDL6oUO/2YFTxtX+SmQHL1iWSZpRPLLd7nC1v8I4TpjGCQtL2I4kZm6mqQzbDb8YmS4f1BnOq/PNudK04dzyOwFUDPxs/4fFuNbk9oaj7ZBCMFQR3yZfGZDCLbofUwY4IKcFOfUgAJtNj82wwXazw25zhaHfVp7kyEXKw8t6z/MiObFK4au6v9fz0BqcntJFKj8xIj/f8Wcm3PP5Lp31sGmFM87eqr8zn63txXeYbG4KDYgHMyMUqMWlL9Q8a+8onk2EikNt3l3HqBQfcEWPwKv9XflcMXUzFDOLUTEGKRQSSf5lQA8DMkKS9VlY05OQeMflWnOy9o9sDs5mBh0EU8+23gzM04IcBeeEfkBOGcu8YFmSVjzsCh80fJo1DJpICqD0neC4JWec0gRKKiejjIUsSI9C2Rem2wvdS1qB0EXJ78oZmGaRTzmDlxkIAaHfgmLEHJJEkGWzaWSxtah9AEmxU7bIkcobc8pyIMlc+LAsmfJQ1sThT+hW/vpf8Gxq1qNsPgujSymX5LbAejs4Ivo0Oa0AoCoWBRCUG2zb2vbX93pBaT3xQrJoCm4wtr0ZxUDURcKw6TBse8QYMB4tv4aUIx1HwjAEdH2WfBOwcz0FSmQnNhLa4PNgEFlcaO29n1dzhysDXU/Mam796RU1G57PH10BmMLL6w0NQCt/llfweZf02fLuAt6eXu9POvHjc8bcMKaPMn6DJpc2hH3WgsF1y2bosbXNBlD8Re3PiuW5/s0AnKHpgk3ko2M4v8+Nqcz1E3l37G9lVpkTpmnE6XRANwwIfQRhhy722O2uMF2NCBlI0wxSRnmpm5VunFA1fK9MPGooWNd16IcBDPEUs5O+orHYRZXRCvmujXMyYC/ym51MPrfGJ0wuzumv7hFPH61oL3paKV/MWPfG5sNRGC79auGEwzCg63qdn1hoznCptOe4qipXBZDRmuNeuM4UzAoiWDvb8FKyJKCXYVPT0qV9vObDtWVHNWse9Ql8AXaarhx0ZcStfEc/X7XlZRGzeaupN2w85xbkb0blbWe9WrHcBrR6Qww5E6CBrSx01IB6Flr3bNmGc8bRHP81iRZs/bKe9FmeMt9hoO2jvaMA0DrjUT2WyymcVz6azuBSB+U9ejhiVcEcrCzP+hLmrLGNAh6pDp5dm7Yg5b3OsOD7Zu0+tYD/uy8qFFv4pNjMtMpkduMBOXryfN0GINelqZbPDSiv97znF6t9A5srz9kd/eMSjaMoH/ZoJEK36dAPAV0f5aQVwOm0wEqfX19tkDmj7xaMgaHOMIX+LWE+kcvN1Cg8q31AXA+QKqRb8RE/ugtzorzfkqs3hxFutj/mmfAUXrmkwNaxuBN6P5Fo9/VTb2lowPa3N6StAccaGl7oVzVItLhuDTHWz9RB+fFB+V8N+1jLhkvXuZfWqhMFC38cB15s255y2PlsL5lSWiZMcp8kJszTiPEk6QniRkLauq7HdnuFeT9hPh0xWWlxW9/a8EUc7aE7Kc13MaLvulJMRXJX+jQH58q694xYLXShcVnfFkWRMSibIMcH/H/XM13G6GiFTd6z8CuFoPLdak+IbcLJdMfHDWcZNqlcysK5JI9m3w/oh0GUfnUiIP+EPlY9eqrIaEb0BOzwhrX1dqxeYTq3bt4rnvLICs26OHF/1oFzGORktOMb9jZvaGqN3V4P9qlj1sIBYCdiGjr1+hA1jwiGyrKKNQzN3VEGWb/4qAgm30DrgVcM3HVwtZ+5TckjHzEqNbjmV5foUPq9/VO68SkSPNsyu9olZbestvIQAjTs29kHtJNM3D5pzXkd3PctECibEGwISOwHbPtZFpPJ9dvaYzP2nc9FufuCDl7epYflv3T9Bcam+lL7MwS1rOWM03TEaTqKa+c4ySmVIgdzD5NJto4Zo/HAQpRMYyJm20c5SbKofK6D18mTajsoC1nBB8p72E66zFgQALCdnkWVKXJ+vN0EXN902G4Dvv7VLX71m2eYxhm/+2+vkZaE6+dX+A//8Df4+d0B7+/+hM32gPkUMJ9kYeOgCnYM6DW3VR8siTSXSp0xcClEmZUTapErGQtLln9TmvROYWXEdayOgdtmIZii4bZrw3i4+WmhBudLfsaKWw5R5DxLSA8LUGPXn+Jt5Zibt2ZfUljOk9ZdtuSvVIk1O2l+PXveVesyRhlIPE5q0U9PmxDrseYRKSWGi0CrSaLNy0yYkCl8AMwVeNVHPz+Npd+DlJXSUNr0M6J7zt5RQnhMyKjbw/H0gP/5L/8NfT/gs1df4eWrLxFiwD/83b8HBcJPP36PH374FvN4wuHDz5jHo7whRpCuaTYBoK8OROgC0HcB202HnCN2ux2G3R59NwBxg2macHq8w+PdO3TFoyIgLQmn0wRmRt9tEKhDCB+wLElO0klPwEhd0y0xOgVxKS2J2V0+I0UT4tmQyzSdez+1a9AyX1J8tj7x01PAkmMgFBpZl30nRyPq/F15Yxewvdrh1ddf4fr6Bm/vRrx+c0IXe3SB0AXZ8ylnDRepwkX2mvw0J+NLRogyUubaE+Onha9WwVj5CKkAJHAwMFj5dp251R5mP69uHsivjwp2LlFk8Pu4tOPBfuHnsieZNKeV3pvUc6aMh1H3KFlRBme40X1NBIzThJQSNpsBfdcpmFFeSvXENSdLYsolTKsMzoagtEoWnqnAVpJgR4QEMSayJB9PaUFOEm5BC4AY0HcdzKcq2czbVr4g2yvfrDPe6YeJgTElZGQsqcfCCcRq9A1RaNgZbJgqKGbmAjztJJSYsYkdUi8nlMsi6Xv7wMhB8kKZ4aCuRetpEGJEzgQKCZwNhkkfaMkgTnJy1kVwFg/IjAyiWLxH8yx5tmgRrzBiIHEqnodW4YiBM88/MEvY3l/potUfROrJEwPGKeFwOuJ4OknC+CUBFCsQjZ3cD9LkopUGGlZzcfPXAwgv64tczxYiwWXvmKG/7l6uOdM4aOLSKj4jkXgkARLDloH99YCvvr7Cbhfx4tUecR9xnDL+5X98QEoZ25sd/s//9A948/aI++MP4LdHBeCCk/ogp72CoYQvd1ENdG6QgRQzFdwoez3oWXYkNVh5/s3V0Gu5WtqDphU2lRgqRV8tn/QTfsmQxO5z769eNSGHXVjzTbiwtqzVhCxs0NqsbUt/iiOIMzQ1725FnRpzVw2i5eMfu8pdzGAWvlu8kM6UD5U7OnDyfSz9srlkTYoOV5SmHYOw1Dr35P5Tw7wuKEjNHFDzUTs4cnLKJ1fWBOYEgBccHj7gf/72P6PvN3j+8iWev3wJIsI//N2/A8B48/pHvP7xeyzLhNPjA+Z5LvJEWF0oCjLBlHSJAOljwHbowMy4vtphe3WNLkbM04RxHDFNR5wO9+LHyDJX87TgSCNSSmL02gTEcIe0CH4gYsQAkBZwIZCCBknlEUItbkNEWnE0FVkNDQkyrlrXpsX2skYtVvIz7b9q9BBW87jhC+NtpW3lSRlCc2D0Q8Tuaovr5zf47MuvsN3u8eef7gF6B0JUfYvBLLJC5E9AjFS8NrIrfvRLl8c2FtlDDT0pj9W2haJ1X+dfesmlvUerX40/U/G8lvda31jy/tojtGqjfF7zNFpovziOWGuO+yuPaRmkpnRgy3MLnMYJS8oY+h77jXmVZbTMR8PaXToO42MXOllkDbOisYLZFuGTmZCXLMmyOclnAYDm8wJE3s0gRGb0oAY/Ca6n+hebDNFqsCxe5aypA0CMoR+QFGhZwZhGxrrhVmeFis+DGkiHGDF3UphmSRk5iddWVJoPqy3E4CJzzZgaHBa3+yhzwVAEBnVBwgCRkJMmxNce55yxzFLMiYr3LosHVAXmMg5q+4OUgfnTvMP/Ys8mz/htwjKz5F1ZZqRlQV4SiAlksdghWHEJNbIoqEQdRHF3hvvegBGxSzTbKnx1E7CGO2hcv9WPLpe26d5DJr0J1eVXQUjXRdxc99jtOzx7tsWz5zu8/znh7Q8POB4n/PPNDb58+QIhdHh222OcAx4zYTpWRSjGIO6ZmsepIyGieqKJApLKbFTdqt6jQKmAKfZz5zFLVa4b6+xF5o/mswrTPrb2vP6g/dNm2Qn5tUHL+uMVD/t+rayW+NDyqExOS+9tHxz+aHu2eq6QoJED2ym4A5J6Y/mf9q+4nRLQ+ibbSclqzG4czWeFSVj/vICgAtpakEj1d+U6Hnjad81+KtqnO4kgxjSPOL7+AWZs6OOAq5sbfPXVr7C7ugIj4DCecDo84PjwXio7FLBFJWylmWYIX4ghoO8icmYMfYdNPyCEDonEu2kzDMJUnXdE1uoKQK32JpVHqhJUqmhp/LbQTctHrIKD0JfFMlfX+rLRPnJ5F+FK2AXyunEbnxKhyuqVwiQG7UrTtQH/iZVf74ce17e3uLm5xWZ7hRA2YpggqjyCtbabub/q0jJruKZvl9pT01WxOlhgHZp/1mY1IJpwIwPdEMN3dO+y+XpiIuvL2d1bZXuzh02+eA8AsnZWG9gAu3jBmVH13HhQt5wP963A2PpuVdhilOohTTU/N0Y2bszekFX7ZfdXpY4KiVAIkhcwZJi7tCgKWr1xQQkfiFotZwE0caMbDGrYtbS9RgGAKNQq5FURzCxKR7JqcxZOAA1LQCX39drAFG89EOqC5JyyEPqks58hB00CsD0I8q2ZEl/5XjmBg4AlqMt8CEGrVwFJ5aG4m0MUjpSL/AfQ0j2cPPI0pTzfQhb/GtfZHnGgkzljVgyVU9KwOJbcVYonKFChw0t99kYYal8DNHusAmpPT1V2cbMu1kbhh4qXivzUPsWSuFTuG/qIF5/tsL/qsbseEPqA+bjg9esj5inhH59d4de/eoluuMfV1WvcP6g4zaHQhsiIGjYZhf2VXpV8Mu7QyHao7HVesQ4HnlnbeIIAjGYaJZpreIqfzyeePpfN7CbtTA5VoiUDggXToZH11pTXa1ovarfGaPtbBQX9khhEw7jRyq52uOxyfkjHKovnlufD6HStZKpwZPdd0/+2L42ssD75dyimauZntTGeMjCYUusxXcUWdXXn6YQ3P30POyTfDFvs9nu8/PIrbLZbMBMeHh8xnk44HY/IPBWPBnjc6fZt0R8CoY/iDbgZBmw3G+Scsd3vS1oOMmmkhJC0Kjhzra5s1dtYK2GRMnfOGSALLZI1MSxm4TtMEtbNYKugXkBRi73LCjTzXzEaYJhMvqt8yH9eZpYt1638brytilmjDkbsAvqhw2a7xdXNLbbbK/SbLcw6S4qVmetBsK2XeTe1OPpyXqa1DnPpd39v5bP18F8MW1Usts8+LYma+8gwlBnL0RCy0Gutds5cMc8a+9gVKICDOBuUPaO4rZWQOlFKJ+zaYQbmOSFnCZPHVvdL9jtZ31/YhK237c21tILKx/VeJaFdJrP+I6ek44ayEglbM7xWjlS8DkA2Z2tO7RwhIHp6ZsacxcC55FzaC4FQTf02RTXuwlhXoQE12jBIwzcjoJFh8nhGVlmf3Tr67jmttK6PySmb7qyjZpT8RZzkLKjkx1bclLQacuAaZ8DJbQqPZf3qZAaWmnftY9cnG5vMZVMSDctpcowduthhWWZM84hpEot6Zs0tUGK2m/42V51Iz6xaK7M3IHjPg0qbVDYUATVEoWDX6trJmoDViI0gG6NTBS7o/66uBrz68gb7vZQZffP6Hu/fHvDuw4zxuODd2xHPXh8xTgmvXt5it9/gx+8z5qOcHnRBFDI7VfPu4AQzuqEQoWELoKTtEtdQQMtB22xUhakwDmWmhRmrULRS2E8pgudA6CngVG/66Pcl4ZoxjOJE2yh1T162WWDA7ownuPc9bRprvaUcM0Nl0MJ4qSagVwZxBuBUyIo7YrZX1y6v4Jd5v4h9I6kCTOX74tZch9s8vx7DU5coVMrMyq3i8RZyQNISyggSd1xf68IQCMXIejo84N3PP+B4uEPsAra7PY7jEddXz9B3A+bxiM3uCuPpiOPhseStKvRGwsECySxFAroYkIOcpIXA6ELEVb/FZkm4ub3F7e0tCIRpPGGZJK+BrZPleRuPR1HCOaMLhGyu0bZpeAFnKbW6KGMOIdaTd9sVIYpAVaVbQO6Fcq+rS+aNCnuickjDsPjm4tlUACrAHMr+tDU3445VXKFA6Chg1/XoM2G5P2HOHdIpgTmAawkJMRRYIQVrjwJi7Mp6ZuYzjyo9o5GtuT4JLqDC7n2KFwid5cxF0TNPF+8V8NT+rrvQ9cn2GfPFNfCAr/CR1TvKvJKdhtaTuobfmPHM8QKvQJa8Haj9MVBq5XQrnlOgze2YKiNvBtHMa8FcWaq3pCUhzUkr5qi3SKjKMWvyd1BseHVJ/ux7YKDdd0NBBZsSoR8uKeE0z4gUsImSiy0zg4Lng3UOC/+G8juVvVGNTUTVvbxW4/SyunaoAlM7icwluW3NU2h7ioFAoEgiFbsI4owQQxkPGYq0pM2sdFPYcuXQAqRR1q/S0F/nKmEv6skZg4TdxE7yLpzGEeM4lhPfYjw3HqTjaQSHgvRfFK3NH3XPuokyblCU3brm8owpIhQ0N1J52pKbytp3nQDwm2cDXny2x27XYZom/PDDCceHBW/fjUgz4+5uxuOHGXkGvvziFpvtgLv3hPfvEsRru3PYievPOozm8in2xOuRNXWBy0+B+j2FIMUd1uynzDuhGG087zHFyDNPo6y1kefsvyjYxWiR/L1c59v+ODOYrLHC6hMvk+spfe26/WT29P8kmio/WRuqW8saNS9Cp2A7+aEoBSWyoOloKx/WB2wpmRJWFWWvMK+aeqL/T+DfgrltvVq5mQ34OZkZuF1vwIyfjNPhAW/f/KhGpozNZodpnHB7+xmm7YicF4ybDeZxxHQ66jzVzUtAkxhfeKyMQLyOgL7vcHNzjc1mwMOHa5we9gixw/FwwDSO2Gy32Gy2yJkxTTNSypimkx72O75YaFdya+YkL2BOBUMFTZ1gB61kKXzWObEKfbf4H/AywIQfFdwka2CfexxbeZK1V/pCgqMsCiMw0HHADh3ilHD6+Q55mJFOs2AjrZbGWu0za/hLUPxU0zXIXs85K6+gVR/bcXlvQW/MWe8j9r+xFBcgC6wJl+myUMOK3rltzb3/si605hVPyQhy/C5AjE5gLsa+8r7mJQaIpW9WRZKhuWq9YQ9c2JnxPr/HG33KyW2T54a19HGHERQnqKEkRm/YlPcE5lIswrfhh3Guh9l669hgh6tUcMaSEqZpkkgOknyF4mUG4RlZtDErFmYva2QmSdXtIXZSGRlcvE2Nzr3HVO2woLqUM/JsGKqlDVKcafMvtBYUS7lE5C0hVXlfMCaqLs418snGIXUUPg1DfbKxScqPA+qfJjHEg4QbHOcHHI4HHE8HLMusFnNzdSeYkr7ePMB6oZUZYQWk7c0eQFKbhcf0QakqYJVxUMqwWtiDX7yaSymgpyiLry5sn73Y4R//8XPs9h1++vEtfv+7d7h7P+P7708Yx4zd1SO6+B7DvsPf/+ZLhA3hv8V3uH//M3LK6NS5qiOU32NoDU5w/TfFwGidNDloDEDXhZK0HIAzplFzygcwqOTCEeJIqU3+2px+Ac1cm5Lx1PWUYlha4hI3UTfIOf9tLq/0eZBkbTSinVES7X4MGpWtveprNX7VU9i2/7WNzGbNVoWNcymjKYJXgXhR9PU5tRIzaxnQlBTsdkWxDeT92dq+Xla813PmRsTVI8FmK1NN9OatnMUjKYRyshYVhD/cvcXd+9fohw3evn2DYbvDyy++watvfo2cEzbbLcbxiDc/fY/7w+/EsFFOnCTcIXCQxKwExBgw9JJUs4uEQBn9sMHN1WfIzDjcvUI6PeB4POLt67eY5wXTOOJ4PAIMLEks7g+Pd5LwDkDfxULDOTMYltgOyCBJhAySeP0QEUOHrutVsZP555yx5AUMcVlNuSa6Pb8cbVrRAAe0jBazIY6yVrYvDaQJHwwkeQRSzpizJAAeQoebfoshAdPrOxzvE6aHGTlFcCItfcTgHJCSVJcIxXVWchRYSF7lcWvCaT1K/PgI/uCJi4Ap3k2FzgAJW5R3K/F7pPXE/LXfMbgcMTXei+WRim5qr+U9lw1NQPFuo4hYJKTlgIAmAq1hrf414pERdO9m5ZmS9JFjROwDYnA0x/WE15SvioComQqbUqFUAYspM5IaWiQhtFRu7UIAQzyeQCxJwVNCJgLFUNaleFIxn027QZkCBFDBORe+ypiWhHw8oY8d+t2ALkYE5KIUJi2gwVSftyqLBsoBYOgCiHrMKSCVRLE2r76aij3CzVyLsakqK5Wfkia7ZKCPIN271BsP1VPvzAgZEiOoe9B2YZU/yvOyhoKAJVQJpnx9GlD6t7hKmK96t3VdRNf36LuIlDMeHx/xeDwgWTglWUqAViaudecK0HH23dnHXrEldyqq39nnNdckFREeMpAUQNtjMYTSvwBJF3C9lzQEr764wq9+/RzDJuK3v/0ef/jjG4xHxoefhWc//+yEF7cnIAL//PefYwHjX/7lDo8P78Ec0cVB8E8AohqbOkpNGDGguAVVHSMoViT1jIqWYFzlK0HDRgIyE/xZgSlOHi81KQCMYZ5pX3Xv5UYW+FVwfJVrKoWCWVw/5FUrsFjwmSgcHloZC7f1Khhw3UuufA6gj7Pvj1z+XWA0Sbw5s3hJaBEM9rl6lI9Xhb6OrxQesTZYPHVSyuLlpobtmjj3HJOe4Sc3D+vPC+pluHmVdc7Zz5zyJ7L5qsb0IgvBuP/wMz68+xn9sMH7t+8wbLb47PMv8cUXv5ZCHkOHw/ERH96+wf3hAZyyGlSrJ5OEfMnMxAB0UfoZIyMGxm47YNjtsSwJ0+MH5NMDxnHC+/fvkFLC/uoKu/0eKWUcj6OmJjhJAn3jm4RSNp5hHiHeQUGTmZOEWHdRquJa0aOcMyhL4QXLMwfYgYPJAZn36qRQDU7FCMpcvTm40qRdlhaFKIBDhO1NWZ+EnBcwRWxAuEaP7rDg/o+v0cUB8/0JXddLiDgn5AykRFiSVkuNPcyoFtWo3dCT+/vSVXkDypjO9pHboFaRzB/Ii+PGpcahenMo+kbpG+oeUepVVrTSdRx2832+NA4Aos8wlQii1gscirdXfM1EbJB5lH5lLQSSMS8JOWapFmqGSouGKLRSG/PvO5t1E/GA5S8HJwYvGbwIdum6qA86g4gaUDgAmeQQOzujiofKZ8tnMg6ii8/Ku1OW4iiHcEIXI663G8QuglJGQi44w/hK8C9xbRMIm65DQEBKCyZmgLOmCqkytTxuzFo7tqSEZZp1DfRjGwgzOCUJc4tB+hcyIkdwYERIpJXJRL40JwXWSl8kT13FTkyMwKHkNvyl65ONTZVQDeRXMMIQpS3l6ilgMrJMwMXlrFcRel6ClpfXR4nQnqivWjVAQPpyUziEWp1BA7bh/T+g7wP6jrAZIvohousDUmIcDwvGMWHJQM6EaZLPKBL6LmLYdNhuIjbbgLQQSEpICWA04bSeF6CCYhs615NZamkLDXTwQEX/s56LJxnlhSn29zfuoh9Zs+ZZ13/fP6Cd51+6bF18m+1bjOnK3yv5VHMBXGqbLif2K29efb6Gkk+d3LTz5k/3PHMW+vODogKP23bqOz8Conyf3N9+u5VusrWm3zKX/WP7M+eEtMwACKfjAUvKuBlPSMsCgNH1G4AIw2aHYdiKUXmei/W8mUmq6yhdyIC6t3ZdBIMwDD02mx5pmREjQYobZeQkCmhaVLnPuZwAxShGV3HTzWCWXDYG4LNyRzEIESSPRDRsDlh+BF1HW4WPXWuaJaDELfuTW/tPe1LcAgHL83W2WszgJWE+juhyB05ZQq2onvIWmnIluhsgAt92vYqAKvxP31vGgPq8aQ5/4XXZq+nj81pdmd0Tro1C14WOyQmJCxeRCj0jPi970MyVf1/pe9nDtX+Vl11AC/AfEWqooOcjF7ksoEpezrmEgFVJT3UI7mMApYpTYSEX5qNZiyIznYzT/F5LygiUkV0f7QTr0kUKBuGaFkMdkLIof1x4gQHrlUD364gKni/Pqe0dx0tCkPBD30/WeVgZms6lYRkIqgvM0+P933E1BysOcxgdppQkhI51vuF4tO9/2yjg9orHBeV2alYBMHov/Pl8X3g5XPaWtcPtWEQ5VvWICMPQYb+P2Gy6kj5hWTJOx4RplIME5IBpzDgdFsRtwOaqx6YDtpuIvidwtvQBhqHaLVI2h++7C78yej1XAh3z1Ge9cknE7a064Bb/rufT/bHCUE5CnF3utdLnwn/PZc7FJgrfovJn+cVjlPat9d0rGXC+GdYvrfzwYyTZNuX5aisPy4m5J2GVC1Xm1T4+xf49djrDUR4MXXj4Y3rSWq55nHcJywqGEh44no7IOWOeRsmRAqDvB2w4od9s0PUDUkjiKY36r/I7HZvrKLN6Q2vy677v0Q89Us5SnSsL9snKR3JatGoko9PcNVZhL6daKTmx5XCrhlJYrju2vJAAhxq6Lf/3c14mu1mXs2u1Fxtdo4TuGkFwc58pxu4FwsITg5cFaVown0bkWHGjHbDIeAxD+b1RjciMVftl6vkijTWfmczx7MjGa5t73Tb53V5lkZffH9O/mv1RpuRcj7g0luY9qDKJDSdS3TLGHwl+nS/wHHbG4vJPZ8e+N3l93jPUyXuC75yNXQ5/WSs7Cjuh5nn5i5uWPE5Yc1ozeHp2b+tj+In0/ZaKoHlZ+eXyGvj3MSR8MQaAWXQb5ICSpsHuX9FOad1hVPJzx/Um03eIoKmN6gFSs8fO1sRwVNv5iwbLiyM9vz7Z2NR1nfaJAARJihXkxD+njPE0YxpngKtxBUV4ch3MKqlOy6QcAetH/oTNwkeihpcBXMGyk/w2kTKxltuhMkcjEEvgGrJYAakLePXFFq9ebrG7HjAvM5bHGW/fjfjxxwkpEYbtNfpNwPFI+O5PBzz7bIPPv7pBPwR89myDf/iHK5yOGT//kHE6TIgY0BcruoyfCMVeaYq5HaQwrdddt0SzeW3IXC3muuGYs+SLsfERlZO5tlXjgS3DsZN/bzT6ZIOTBxEXrvXnlvvIfg+GTI0ZsqMMA1VsY+aaWd8BveZEiltQ7Pvny3xLTpCaJNU2rFAblWebOSH71tw0ct389p4QEM0YwEKtkr+ltvPUHBXQZQ+vQSi7nzZGYw9lrzha0vcDkNKdpY/KdGMnMf4EjKdHjNMBP/w54f7uAzbbHb741a/x7NkrxNhjf7XH6XTED9/9CQ9370GJwVqOkyCegrXCQkaaR3AmxK7H0PegGHFzfYXx+S322wGbyJjnGVNKmJYkIWacAGYx4A57gGoiPjPAgMULhVkSFE+zGKqWnJE4YUmEeRl1XjUdHhGKu6MTTE6vKp+tT0xFObb0sAmZFxAR+r6TRLZdj77vwQyMpxHLIh4ikiSeYAmqiRgxyqnoeDriIc14RwO+//232G32mGnA1dUeFBaAHzWXEIG5L3zMCySZZumX3OdO8Y1HKJ3YaRqz7imqBs81YCSq9F8M4M4Y0l6VNxUPgLa584uUFyvfq/TePmt9tb3QGIlQgZJKVKVDOxW0vaftFGVS9y8Fc10sOUfMOxFEyNQBGlMv7vjyLK1oxMn3ykKce3GjxOrHKSXMyyKHNLVLsk6MEi5UvY6AWfLjo+cqvL1xvvCKNb8nQh86BIhX3TQuQGYs2wVL1FCjqHzP8ShW/iYh3bb3hI/0FNF34rWYWGVHWjDlBR0zOrR0UrGYB4OVVgzEFdAKgGJG1GpOfYignkBJTjM5MyhJUsvimVCmX2asOHgGwSxgVgMf/upX7HwBg+hc7OWEf14mzGmR0EH1zrS9V7rrZBqafSuXh1c2I0F5HgHFyyTGiFiwhsdjPj1BJUlWoG24qrzPQlEgpvyhC/jmm1t8/c0NiBjv3j4gpYwPbyeMB0kIP2xFWb67X/C7f32P2+cb/NPzz3G12+DLFyfcf73FNAGPd4xlSiXvJYFQIQI5ph0L7eeCDWpy3jIG48WqeAKsIZzqtaen7xkZnKqHSVBcZKEideytd33lV+1Bk5cpv3SdYSe2QyI0YN/G7wvjGla2t1VY1PS68PnqScJ1/zioDsf3oWH5xncLHi/9kI4EklyWctJ+LgTq4UeZGDd/uvedEBCDQUl9rt5SLZZ76qqY/yNzrxPVHIZSNXmsr+wO1yyvUUmm3wXEIOM7He5xOj6COeF4fMSwGSSB+LMX2G2usNndYBpPePvmRxwfH4SnLkafPgxc5mSZR0zHR3SbPba7W/Q94frmGtPzW8zzjN12QEoL5iVhWRJAWUqsE2HoB4AGHROrvsGa/FsqsFq+zEnzPaW8SDqWZcY8TzBhajRfGUSdqZos24wLXj4afmLV2mTvZV4QQsB2u0HXSQXeYEWnjifMy1z0G2aNSFB66/sekQiH+3u8nhZMNwt28Tn6fospT4hDQDcAMSQEYpQImyd4vx1iWz+9PPIe2OsoEUB4RskrXPSSVt+Am39Z25r/qyZ99hxL6dfzFf3Dklh4zPVLRqZLxtIzDAVCCFywUjE45cozDeQY96PCl9jt4QzmBM4BiNWL0e8xwXI1BF+TPer3vvfax0AohZZYDIo5zUjLhJwXFIlHFQPELH1LxJL7uczg+jWXdrvxJ5HXkYCeOgQOQALGcQJ3HdJ2g55Fv5B8n+L9XnmVNefekYWfDlEqTU4LJA9UzsVRu4MU3vD2kKZ3ZEErLu8tW7EdWx+Zt46F+pcYwYFACwOTpHCgWfKyAZLPqa5npR1AMUPXFTlasMhHeLC//sKcTQawqViNhVgy5nnRjOZ1M1LdJfLjbMbaWbwgh87cuU0BsudJGZcxPXKbs5k0R9z2fInV1c1EYNzeDvjy6z0okiQ+nTMeHxZ8+LAgxh7DZosQIqZxxvg4IsQAnhgxB9zsO3zx5QaPDwn3P58wckKgDl1Q6VvzkQvToTqSgLKHC3GtBV57Etwy86wKCVgyznvhWd3kWqIoSudqC66V7E/ESb6nzTvan+s+uLWwmEDHbyr4raCoCAXgvN/cKhJPnUL591NAsfqeAQ33aJ0XozX5fX0a2jxa1sC+5pL07ZOMeM2aXwZO5OarMnQH5HhNO/WUzJ63pNqZM6b5hMwZ8zjj/v0drm+f48tv/gb7/Q36vsNuv8Xx8IC3735Gvv8g489iHLKZqaCXxVspn8BpQRcDQt9ju93gar/Dpg/oQ8KyzPjw8Ijl8aDKbAIxo+sIXT/IfEWXhE/HJTkdGPO8gChLmNI8g5PkgllmA4cBBFWMYl+UJMv/VHlFO79rIV2oToUpUUDsArquwzAM2O0kX0JaMlKy+0xIM4qxWfnAssw4LjMewz3ev/4Z4+aE9PwltjdXmoomIacZnDdVkAPVyE5KI/4dsB/VQG3GuaKt4ZL8MqMUN7Tkw2YKTfm/q7agK95Q30Vs572JfH/I+u4fYgM/VMa/NpJbribf4HoPk1YC9X020CfzZC79XCpqVqGjiSbV3ZQoKABuulnabQGNmj4a0hKBnZZUK1bCuIrMv6QCIZQUlwQsSjfR3ucAXDXI+TErf4XkByMizDljyQmBRMZlqFGDaqhcGUcBnXVgNs9SGSyCmdBHRqIgHs5oyKPM9xoLlyX0SmnBq7rOWdZBwuMJTFFzNSRJXKvfV4ngFhy1r4GC8A8GMpNWWalr8de4zD2+yI9QMY1UShJPBCap1Ef4JRlR8RO7v9xs1vu8DCRb48rvmrVxQPXpN1PTjtAko4vA8+c7fP3NMzw+nvD6p3c4HWccHhfMo4YPbgYECjgeF8yHSYA1d7gaNnh2PeDlix7HY8b0CCTOCOACuhtsa5MHM8ipsQOaBNXRceGTZphkJw3ZDpoUCxk9sVa8NKXQlEc3t2u6NszSTufHMUjzMOqe9cYgT9Me4Pt213mpCACvN93ZVTGV8X8z0Kq9QKe4xVme3xIpbWfJ+yZIwoMSKm2XcZX+t31pf1a53PJZkasNznFzVhTvslCXcZOfKM9H8ZG7PRYwbxs50Jb9DC1UMU0nDdteMJ6OuLq+wRdffo1nN88RYg/0A07HA+7vP+Dx8V7a1STe6z4wGHlZMI8nxG4Qz6YQsd1usd/vkFKP7dAhpYT7+wc8PBwkX5ka/GKM8gwgIcTFqAIt7iQYapoDrOptnqXwQs7AnGY44gSatBBWyKVdL51U8ToqRibv8eK9UgjDEDEMUkSm6/qS6HxelnbeYdtexhUAnI4n3B0nhNzj4fYRw5aReiB25skleXTJYbBWQDsDxupdtj/q347GWsJAuSnUe62vJV9foyA4mVpm+AkMutKT2x5d0gkuREpc4EPnxibpCem+JVUgGsP6CrdVvEB1v7HnK268q/f5QyIA54W6nQT0B1NGPzkbPrZQIkMCcq+mU0NgFJl2zhGf5g0EAtv+RkBHciCfUhIMBWpytpp9gUny1F6cd5tTlmiNSOo9qKGinDOS6uur2jr1KrhG8R0F13ShXPnMxk9SUVkOUWR/U9J0BWaHdSpWi+she17zYmFJ54DuF66/IIyu9QYwwmRI3O48z1pJyoTeeoosPIyaz4BfFojV0LQSuKgxwVVYkmOmLbFX4C1vNq+gLgKbqw7bIWJ/NWB/tcFpXPDhnSQAH8eMGHstC6ptahKmJQHv354kBnoAbm6uEGjB7mrBNGbEYBZO513kjEwm6BgongamNJhBogA6JXodKc42ohEXtYKzzvaa+fjPW/XIvlkbrS6tjX/OhK+dcpjSS668+lMMD8WwtQLAjoG5D1b9B0wpbWG2eSXVz0k9qoImxi1lbQNJDKrrnweOntayepL4rFIiVJzA8u3ofzw499eluV1/VhTC8p0xsQrcLrHNsrpuvmxvWNJpoUkJM7P8LIKdEnIacffuNRgZfR/RDx22wxZfffkNrq6uMD4+4vH9O6R5xvHhHvM8ISkgFRVE3koBJSFu12k+Jc7A0CNpboJ+6JETYzwtmsxRS00YXVClKTDEKyQDUzcjBJKqCpHQa66HOZjHGQlvAMnJtZ1oF5qt/MTzulYoQh3YuADsrovY7/fYbAZsNlvsdpIvYVlkfy6zVJdiuBh4sr0tJyAzGMe84P18wokI6TggE6PrMjY7ljmL5PaitF0oU7UCAyEWk37pMtqsNMgNeKkhDVw5CrX8xdbiSf2J6y+83sv+WllmyK1tAXNuH5nuteIe5V1FKSFnWGej97OXl/fZuoTgaCQzQsjFyMWkxoEckJFce47vOkBee6X/JSrVr6DQBbkqv2U1i3Kl66LJJonMsBXQLMxqjtZXBcbVyyNAwAd0/y9JwsERosrZ0kOYTF0X6bDx2v2BCFkV0sysIX/N8vgfZ1cB2lR/L6/U5B3mKZqRsWj/zwFtM/j68Wofl778hYDp/85lvJq0BCVBPGYkWfyCNC/IKUlC0iDZGty0t21hNZeGGSDyt+AJuLEXDOYxQv3ZzOUTst5AbamEmhkLJ+w2Ec+ut9juOgwbqUQ4zwvu7iYcDzPmGZJLj8wgokYhANOc8f7dSQ0dAZ99doPHQ8LduwPmaVbaZ5SS1rBQeLKtVXmEG2/FIqEcZpVqqvVux+/LRxewav36bIocNLH3e2MWnfGD8+tcdpOx9UZ5b5XA6qXkkHHb22Icqbx1vWe8oQnc9tFQfsVW0oecM3II6hRaFfVAJCfnwTCt/afFfdlXsi0KaCgKWs3/U+UtN/S8OngCcIahbJwr/aE5hFW5ES6090vtG48WfK+0BI8j5K+cZszTCXfv32oVY8K236CjgC+++Fow1PGAw90HpHnGeDqIwUcxFBXwJn3tuk6MMrETYw+AODAkZcAV+l5C68Z5LnmzivzWZMqCE2R+7cCunyJCkL9jnDEvSVK+LFWG2s/MScfuDLVlz8WCIW0vCS2LIp11bWIghNCj7ztcXV1hu90ghA4x9khpwThOhT8uS2rK1QOV0hcwRjAe84z34yN6ThgTYepJ8jGFreQlDI7XOUL3+keGVOSyw3m/rwv/9O93zzaOAB8npPqc/WD/NXswtJJZrfz62GHEUwanup8u6xi1i6vvYLCjyn/Qyss8EDgpDs0sHmWKlc0bqRlnAxJ0fRyPKzhIb1PUrLlaGZyStGm8AagzxNBUNELolCW9Ri7tnI/7bL7d3rP2AwQDGi/NOWPRkDoZ57ojKPTk8Y1fuoK7FPe2BxbW2Pl6lJ/G5wiKGwgWCmtymgmSIJxCxZMq0C5Rkd8jth5UCcfN0y/Qu15/cTU6EXAknhAEMDKWZcbpeMR4GgGQKJGZgZSbbhRlyw8o10S7wbLtOcIx2hOB4KdXBFqMcoMlfyWIu5zJ2eL2WpR8Aqmb4LxIfPNm6PH8sy32+w6ffX6Fz15e44cf7/DtH9/j4WHCPHUYhq0DNEk08aHHaWH86fd32G4CfvXPz/Gb37zE49WEtz+dwFiwnIDpmAAKcrIs9qoqAFGND5pkvvxtyc4lwaX8LEyc0T4De/bj62j0kdkLDwMbBr6qEePMwOeYr61FBUBV0FZ68e/lch9RdU1vOubvN6KGxoxXxFQZsf5uP0u2T5MBRdGsgCqwnMKXOdDHQoiSzB1U4rrN64AsDAO1RHpxUyRCjJ1WFWIgpUbsFKXR5suP83yJdHhuMzdgzAyeVRH2yl8ZtQOAZ22XBJ6a4JoMJGXdUxGRoigrecYy3uP7P/4PvP7hj/jiy1/h13/z99hf7fDyP7wEdRE//vBn/M9//S0Ohwc8no44PkwSM991IA6SwDsnxAhsNh26YcBms5E9FQO2MQE54fnzWyAG5MSYp0VPCCeM06ju3jX5XllR/WyaZ5zGCUtOOJ5GTMuCZKF1WRIz5wwsS8JpmsXImMw9mopnVxc7TUSqc03GnKnkZOCcQCQJyzfbDT777AWur6+x3e6w319jmReACV18wOFwwDRNDigLUdjumJExIyOkEX863mGYTwjzEeF+g6vrAV/f3GK77dD3EVE9I6St1fGzXtn4KVxBhYbeDBQxKiFy+a7ZhytA1F5U7il4y+fs4Qv3ftLleU6l3wZAEArtSxcEAsiQzEuoBQ9eUWl/yr0hsCYTlUdTzpJ3T+8VvhsF6BCDoUmcUTC19b4CNnk5QFrlRZINghEE9KSEvMySyBEo7RGgIcK6xzUhpnjHmrJf3yEFUNxeNyJz4wdzCc2Tf2JAmpcZCBJ2OHQ9CKp4qVJfTh5NaSEXPmJyChISGgmYiZHAiBBw4/Ox2HTUDwqTLvMcNdEosclwAi+SwKeLHThGzCQVb5G5mLIbCnPEVzGEjEuwQS73/bLnx7/dVU4fg/EUYEmzJhydMI2TVOUMGpqbJZyrXgS/snVqRR7IZ7Fgpmz3l61aAW41yFTvBFHsktyTpHWHNeVeBzqZGeNpxjIlPLve45vf3GC/73F13YEx43ic8MN3Bzw+LiAaMAw7sJgKodQNBvB4SvjTH+7w808nfP7rK/z933+Fu/sRb9/8GafpBOIkeW/I5QllVHXBGXNMqREalQpFYqyv/4qhgrlWpSt8sd2HZ3xk9bPgIcu942i58gaHocpnblWpflsPJG1cVHExqnGkpIdAqbdw3rD20eOcuqdXGMPux/llSmmRG4yiuLMpkfpgiJ3wQMNbJlN0D1qYicjyVMdChNB1RVkzY5Q/KKw8fG0wvDwWP4BiDKLqZWKhIL5aofXannuqyXJYmUUfMN3CEmRY2hGAsSwnnA4Lvv/29+iHLV6++hpf/fpvEWLE5y9fgsH48cfv8ft//S2Oh0c83H/APM/IOSNGkRVEADghELDZbCXKotcUHV2HLvQgYtze3IBJDt3GaULKGcs8Y55nGU9KDi/LHjYcNE0zjqcBS8o4nCbBUIkxL1o4Q/PyLsuC0zgr1jDjBUFC9EmSnitPiSFIWDBFTbmSsCwTck4Yhk5yd243+Pzzz3F1dSUJu2PENM2YJnFeGMcZy3ys9AfHAwkYwZiRMS0jprvX6LoB3SYi9hERO3Rhh2Ho0BVvUcHAnhfKmgqt5vA0LTUmgDNacnqIdc5Radmjq6vRBxSA+Ip9tLrZN3Fhy1/4pO4RwY8ZOZsOVnl54XiNni6HTX7M7g8AbVhhqSwLPUghAiggdp0cuiq/SJqb0Pgjk3sxtWNYG/HMaMUpIS8L8jwDSF4gAqozUuayK0MWvS7rmkVjTc2Q6hzYd6zFiMCMSAEUGEm9o3POmFNCWBZ0XSf0nn3eSFRdlaosaPiNkqIY6iWnofibh0vk0lzrlbY9V4x09m41cocY0IWIDPGeAjPiqp1iE+CKZ42/yaGi8wRs8NzHr784QbiVL62iD6q4aZl3MiBTzrRbAkUrfAEfJlVucMlR/WDtPge5Cmjyro2O6nQP2bPlrJ0UoDMQI2G77bDddoidtCHeFQmn4wKgApRivFAlKzNwOgkYWmZGIGGWwxCx3UYcF01KXFy1PVSs/13ZWYsSBJwTVBmYES9xKZlYn3368mDD2vKAwfeq/t0mDCtzSL6/RifncFjeh2Zcq9EAjuFZ/8Qi7Pu6Im1+mtQbjxR3bzFY8MpLbIUE2xVZMVoVLEXXN3DoPmyi2415rcfsxvnU1dJ9edk5k3wKaz3VcBE+3NxcFGbLA5YTpvGoFbSOSPOMGAP6/grDdoPd7grb/R6JM7phEHdQltN7mV31TkKrsMYYwYigJIloQt8hdB1yZnTqfUYww1rGEnKpWFPmTZk7FAyFRFg6MfYF9UBhZoQlq6Ip7uXIUOVf9qUZL0TBlxu4ZFbzdFlPhoIagTfFeDag70Vh73vJ39TFTlesnnpS05pcC2eMaUIC0AdCBEP0PtYqNf6J9jTprIfs3J5Nav7ideEepQ+68Jk84UfE5WugZecXDU8tybXf+i4bXft9uQII8ggVg66VYjVvDv+CM+P5qmtFzmU5tKieHrU/hCo77N1PcWmcfWP7VGjPkluuOukmwIQ+amJ6+2dyrUq1FY+q1NuMEYD5mdrJXO2HexyruXbMvxXXloeifTajGlXpjAYK7G8+9d/W9RZebfNQZIhNk2OsvppObZTO3vGJ+Ojf9Go8whSzWDgAWwgNy64KVh0IdRyXRKefQRMRtveDW7DGiKF9+diBkhkJq1dUK/NNVtp6xC5gt+ux2/UAMeY5YZoTpiljnjK6HoiddpAbikXKjONxATKQlj36rsPQJwybgGEg5EXuqYL26asls0pn5x4AToWh2ic/D5dktf1uYNyzB29oanDSqhFy9Npy7rbf7oOzcTbf2rwQimwqfYLbC66Pn3pZUYvymI3X/XyqyTNZ4GgPrl+tfU0wg3nwsk/m7zvQvKMervn22+ucS3sec5mqWv50cYyGi/0EOX1FipVkpJwwjifxtp5GyREbArp+g9BFbLd7DNsdUkqIXV+88GRduYwR0NQiQYykougzYtTQ/BABy4VKUrhJDp1YwvQCyU+THAzkUI1GS+oRQsKsFY6XwABJ7klKWv0TAXG2+VdDNytTYFK5FiAHP7aP3G+6WYgk/UDf9RiGAZvNoAYrMTj2fY+u6yUHFdY8vV6WRXPmhHGesDBjEztQ7MA8NHLdr9tFyFP+4/jBp2AoavnHJYpqv+XVvjCmu2rH7z1HjmwfXCb15oXr97IDWORkZd1z5w3ZXlnjTmt/Lduk60YbF0Ch7+zZMC7PXRk+Q/OQKm9i89pmh4nWeo3qkYU3K46+sP/XuNr/VrFTvSezGfRX9LniCX58LQ6p+Gmdc7EVDxdkRdOqu4ugthob/gpnrZpxIqREmbIK+DPZuYKrn4qlPtnYZLBRLHJBkymKJTOlRapT5QVdiNj0A3hZkNMEwJJc2UZCHYAyzaiBgua9A6ibP9SdXE8Bgya3lVwm0pDwLT0t1s0iuQrVsmmkpwipTCIz+k7K6r54vsHf/9MLbLcR4zjhX//1J7x7e8TDQ8J4kvywPjyKAUmmGgiJGfeHBRHAzz8ecXNzDwTg1ctbvPjsBj98d8Dx8CiWZEQtZSgn3dAxGGgxht9eeubGWV1XE4AEcEakgD7UOVivujcArS3PfAaUbItar87BTts3tyPMuOJBkjFOBXEmYEQmmYLvlTkWb6JiCFvPh6xcLStc+1v6SiwxpwXMcelb6RLLs5nlNN7moVhqIbnSkm7UoCGB5BR+oUmjK01EHCKAIIlJlaXbyU/pilsXZjFn2BzUkuyhzGMIaqjQk01JumnGyzouL+ia+fKVy1CZqHfxLnfbSUom8UjMVGeZGct0AmjCmx//jPF4xLDZ4vOvf4399S2YIv7uH/4jpmnEEHe4vvkB9+/f4PV3/1Ni7rPQb0oL0jyBKCLEDsPuGjwfkZZHcFoQMiMmRoB4OTIF0NAhQsup5nq2ZTTFmoS76yK6LiDljK6LmJZFDMBLkhxK6iq+pITdOCDljGmSnAAlqZ7OA/MIZkLKc1mHEGI5+c9ZvCF3uwH7/R4vXrzAs2fP1d1b3nNzfYvdZo+fw1s83D8UwOTxS91GhCXNuHt8jxgirq932MUtGAsCPUOgDsQLcpoViDnhpcQUdL9lBpYMEDG6qDRacnloKdWiSKkBnLJz1bduGThnlED6IunbO1E+Nop6CjooryuTgCcuapGF+9UbPjg7YFA6FND0TmUMr/jNJU+nLnbIQZT+tCzgTFjmBcs8l+5SZRhudA6SMJdzBXa8zHhLThk5EZYxIU0zeJ6E9kn5kyZAlX8i+KOOb8mMWRlJgvInAOZLYMDUeKI/HGCI9xYx0MWIXlHTvGQsnOW0K0uoQjIXdY9WTbyWd9npKwGcETRsLnYRkXqAgSktmAEMCOhM7hUcUP1ICPVwxdiXla5nZs3NlJGDJgFlRuii8l0qtGHHQSXhKMlJHgB5fnEGwrWR/a9w+YTCkSTUTIoZiBdnYEJgoI8B3AUtFmLeF0ITxo8NnMpYAhDVryLGmoxW7w9WqILEE8Wu9U4tBihSymG5g2w76i85C58jAFe7Dt11jy9e7fH1N9foh4CffvqAP/3pgPu7hNMELBxFBqSlYC+ZEAJFMbT//O4BMRC2tx2ePd9iyRlffnmL2xc7vH094/X3EzITpNC5eZwCcHRvJ82CSysmLvuv7H/5R4oVJSE+kLIZ1SpNrlmUvKc6UHPBOS0uqXevG9D3n7PJpj1/e80ppe8gyVNmBj9rk83QmmvhHEs47fHepcuf6NdkyBW0tAePtu9sL+tJt/FYVAhGSu+WMNwObbtOPAMK3qEaysasfJItYsEp5hDZRgqqLJ2BYSjzNvFYzfQMoeVqPNWy1u2KseN7T8wRsMr3qrNg8yb2uVD6KJuGMZ8OWOiENz98i9PjI/rNFs9ffY3t9S1i2AmGGk/oQodhs8fj/Vu8+1EKhHSQ8FrOEpYfQocYOvT9BsQJAVOV1ZkRGBgCgSmi6zN69BVnmvjSfbEk4fcxEmIwDNVjWcRINivGWrIUs5iXBZuhQ04Z0yzhdgDA2TBIBudJ9LTF9MYoGCpJxeGcM4ahx+2zW+y2W9zc3OLq6grLkjDPC0LocHv7DJthi/fv3+P4eEBKde9WSqz4YFkmPD6+kxxV/TW6bo8YFs2FJT6VCYvs7eBSKFgLOi9ZZSBI8gQSCAhUC3Y4z7rCTwpfuQxqCt7wWGHFLYwen7wuNe+x4KXL6T9QzGxs0/fr8susCXcw4SS3PKp8WN8TOlY6YEzzjJgClu2ClGNJMm7jJpUz2dOjkzvWv9JF01kyI80JaZKwc2RJiO8PoWzoxCKngnr2yNG3TEIGpJjWE1NQMIniMEBsGQwgIqAjQV5TSsizyMdOYwgTp+I9R0SKGyuubY31DMpAR1LwIYeA3Ak/n3MqedOj2jWqRc3zZP3HjGId8ZhqyXL+nwPMopX7DggJtESELFy8muKqhxqTtCEYCmpwDLZgT/LL9fUXGJuMUavxJwBMCQwxguQkCx+DWKsz5zIXdjJvG1kmwgQM1YzqwapYycYubtP67hii64+Cd9iYbRIZ0MoDxusF5FrYnyZ/heSQoQDc3PT45lc3GIaA3//ra/z0/Qc8PCw4HhLmGeh7Rtep8FalnKPMQU6Mw1EU6g9vR7z7/ojNVYeXv7nGcNXjcMjAtx9grrChjg5FUqliUitdFAnvQFIu/4yxBYixjJmQ6Byo2JrVP537GxxOWT/ljUZlus8/K2KaoZTtFBG9x4B/xS+s4RXtaZSxl7oJxb2XjQvpv+b00c9VGa9RRgVM2fagMiJe0aK9rxgwIIArAEBJIE2FqYcojNNyb8DNF+vmFvDKpextAMrzJtTEgMglBFQUESoKsgExS+RtJFPnmJvhezDtl93EXGHw1NJFOSHQjtWTd6o0s4jh+MO7ER/evcWw2YHR4fZFwrPPP8fXv/oNUkoYj6MkwGTGj9/9AcsCgDMIYqhJaUZIHUKMcpJHCXzQk3hmBD2RiyXnQ0BAJ2F0jDMlIocFnDO6GNBFAUpEhH6JxchkgMri/4e+Q0oZxy5gHCU535zUoJWSGJQYkOgmQgwZHHqUhIQ5I4aA7WaD/W6H25tbPLt9hsfHI8bxEczA1f4KBMJ4GhFjp0bHOuf+N4a4FR/me6kes1mw2S5gjgi0IJCcjnJO6r3DqBX1ClmDINUokMVYlyEVxGA8tPAej0/Ue6ySV+mVgYuKTteXAQL93YGE9Sj9J8UoxZduO3/Gv5rdM+scDo0B1j3tT8sveREWI2wMIJYDhCUlcIbk0lk6EAFdCfmtHXP28frV6h3FPsWMnIA0M9KSwMuMvEyAhmVqZ8o/+8gOXopxGpIfKRdg5ajJ9u8Tcw+SapE9ETKJCzhnxtInBYOqoOb2QTtxM95jAzN5YoFIIQYEkup98yQhG5EInQLS4CjL+ujzpZTT+0Cq+EJC8olFaUjyXgtpPgPaDFhSfuGbpsBmcDL6oGbd/1pGJ+PnUV3djfenLHMvYY5ScamL8n0ynh/M0IRCfwViBl+wJRTcFByvF14e5OQMJu/QoF5CDUMr8fml71RYTmZCWqTc+m7bY7+NeP5sg5ef7xAi8PvfjfjjH95iniOmZUBGRLJwIx0AAUCEFGJJGR8eJnBmfPZuj8f3I+IQ8OKzPV50hGW+w08/HJCZAGxglfXqLEhX5YQ5r6S/oQaPowxHCE8WBcKrUWZoP99DZe4c+yr8r2FovPrMLx7XP1f0W7juSiFp2mGAgyodjo/6A6d6qMiujZZXPeXlSbTaEwY/qttAmSFuHkKdF6WvdbUkGy9p5dtigGoAC+ve4GJssj5W7wuZx1JdcMVzLZVDOVgLNhCPGk0aOcPzJ/CCNYbKMAxV1wBc8yIaJp3nEWDGNI748PYdhs0OmTa4TR2ubm/w+ZffYJ4nCaNLCYkT0o8Bc2IQJUn/obyCMyNQQNcNQJ5BeUZZAOkAesWNERGd9jExHE0IHQctUhGC6FjiWd6JsYkzljQrhkpqfFrQRQnVO42EcZIqwKaILkvCggRktiJXYO6QcyeHGOrFabmadrst9vsr7HZXOJ1GzEsGBcFQ280O0zSVdW/2z+pKacY8jwgh4OZZhxgHhKBhgxoKlTXksayP/auriwzWBM21yIDXRdvLZLLnOHWflLt4ZYYmdy/gWMUaQ5297swe9ZT8qjNF7pP2V8a5p9Kl+ZXiIQw7iGj1Nip6kqQLADglpGVGDoQlLbL2XDgxTPfPAvILv2i6+ATm5CT4KS/mDVzzuhaDEyp3IkCM8wCgHusAIVOoBfDOsKtvp34lXj8iw4PaI5aUJXVAjEI37KpKGsWs+XzZF1yUmY6ABMWhAJBl/zEDvca6EVEZbtPHFf8EUPXG4jVNQM6w6kQcQ/nJi+lbhYEXfdC8ZQ0fGoby7gqfYnD6ZGOTxSAHnWTx4EilIz4JYwihJFQtAlWFETlCsxP3qINvS7dWEAEVfikngKSEX7J5LQqPO7VyGklQSjFSEgU0IQTCzU2P7bbD1VWHZVnATDgeZjw+zDidJAggBOfSi9IsPOMLnYTyzEvG/f2IBMaLRTbedtPh9vkGy8zIJzU+BPHSAsSqawsK176N321PnAvL9n5TfCr4qaCS3WZ2EBJE3BRwI1Tikom/TA+XXJUbVz1yIWxuY5mhvRHwF553n7YDLfP+NBBc9VT7c7nv4omQyxzZWmS2+0hPZWrOJtZTDw82C3ytLjLwSmf12jK7fut66U8WAdtT9TMC1aS7Z4B1PQsqEHQNLbTPC1SvaK3Djc6XwRv95GfKCx7u75AyIXEGdb30mSKePXuBeTri5ZffYDw+4vDwAePpEaQlbXPOiF2HYbfHgoQ5dlq6tArlwuCJ1Aggrw86f6W8J4diBxUdiTDkriSBXxZTPCXUNQTxPLNcXCFIMuhOjVLzsog3FDOWpdIBkXmpVdDADSDOiDFiv99JzqlxQtITvGqsdLyJ2rUVeS2VIrouou8jOlcy1tatGqUVLGkC0RCMdyr4ybqQRY/XveN4i/+83c5ecBmNtYRW6YHqs4QVPV4gTr2nIbHVH3a+YttofbVuzq0Rr1aaOeen6722bs+MrGxGXhI6medF8uUV8WqAid0QW7i5HnMgAjggq+EQTTcrdzdeAnb9UgAje1lAA8dQcrXUWa7CXwdW2nQZBETmKnBeYEq6VP6yOWjXsA7EywbpeuVFAjY1LwsIWZNeMcRQRro/dVujvqEFvGeA3r7Ldc5JmI3kgIihJDwnCA+qba7HonOiE/PX9G7qYgcQirFJJt2GqF4FpiSTeMmaHCUYPXAFvmSeipbKqxqc/IjrJlJjnRld9dOWn+mpqMqvhhYcrROJwf32dsCL51vsdh0eH09glpC4eWIsWsOZkOGN46vdJ/2OEg40Tgkf3p+w2fd4fnOFYeiw3w24uumRZoCXKn8D2eGZyW5uulpgcLPOjlmdkVmZ2DOMUJDHmndpi9mAl2PXTWoEx/dLDy5gqPI+qiNZk6j/zmPHEg5Y7vezUV6vOuNlz74166wtUZkyH6Ug9QtsjqnOETPA4k3Qazl7b6Ap8snNj3/WQ/l2PjzG87yHyk//ey05X6ejhdoFkJ6P2WEk/5lv32jMY6hWOtWuGu2IDpSR8oLH+w9IDEzLEQhiOOv7DV68fAVwwuPdz5hOR6TpIAcTZGZ9SVmw2V8jLyOW04Ssnj9s3hxUsVQgUgxa19gMsJm5mZsQGDlr3sosRq7MLN49OUjuJVRPshhnOZjR6qDTsiDOixjLNdG50U/VF5XfpAUp5TKfXRex2WzEw2mSolNSrMMMh4DLUuZ3s6Y0lOgYO3yM5RlPajJHADSHm9v3KxpbbwXDG09sXdeb5oXw/KawVIer6k5tpd8lLPGL14pH+ZGUx2n9lqo/PnV5nlExk7WlAXoUxDsnl4yByClrtehzU10RaSaTmg5Qw8uEhpTHZDGow3hFmdPW7FExFMR7J1ANEyPjIGco8vL4daZA0p5Ux0XxAjcvZAlfC4DK70pfNtvnbxPvJ8t9SYhqcGLikjrEcaGqU7gxPt1xUpkGObjLGYFNvwyKo6hOCgFEmjGKVnis8GaTAZ+OoT7Z2LTZbMrEBQpSIj0nZC3/3XW9KG1xAocMDlEScYlkq4NVzbAzBd6USe26EX75xBkDMuzUSlU+qpZpD5QMeMRAgFofjahSyphOE4Yh4quvn+Orr68xbAJOxwPSkvHm9SN++P4ACV4YJAE5qDAnOyExl1UiIG5E4Xs8zfju+zvcHnb44jfPETni+bMt/vYfbnE6JvzwxwkPH0Z0XY9BDRdZPS5ss7DOlS1sTfhb892UU0qn5QUtySjz0K6dWVmlyYqGTHXKjvkWSOa6sSbqBjSUduvPUnnAG1uc4akYBS+hmnJ9yvftJnuK6I1JePdq6wxraBQDJZyqhL+FgLAJUvXDyseSrJl4uSigRl2nSq+shifHKKiGBrLrLylzKZ2FCs5I1RgBFAPLem4bw6w1oYxdALl8H1braL+bu2SZKwN6Lu+a5V0iTZC3LBN++O6PYI7YXd3g+o9/xna3w6///m/xt3/3z3j+4gX2N3scDg/4w7/+N7z+/ltQP2BZFlCYMOz22D4bcLzvcXh4rSdoSwkpMkNLiAF95/OlsZysa1W4pIItZEbshJZj12tC8KweKoxpXsSbhIHtRtrZ72bMKZXwOrlvwjzPSCnjNEny3pTESJyQ1dNA1jWlXEr0TtOEYbPF7bPnWOYZP/7wE06PJyzLLF4MUQwXmZOITXWzNw+PGAP6ToDS1W6D/W6D7aYvValMdREjmBjDYuzQdaRJ3SU5YU4LljQbM3F7RERc8OvfGL7spM/CjsykQgUstjKtBQXl55m7UXu1EG59r/Jxu8sEm6NVbxiqQtv2kfknoPBOU0rX6PCS8mKesxwZsesAltwzzCO6LoI2g+wnzrofUJiLjYu5hqFUfhkkcS4RUlpgLsoCmAz5aGcK8Na9SZJUVcrXZqmoQgBTRIpBja2hwhcyUFYVLNnjEHnFjI4IHQUsAEYNCVpSxpgsNFuS0XPOxZPXT18JU9PhC2QR+TREeXZZFoxL0jK+EipFROhhMlvarJTAKs9tr+v6m5wHtDClnMCHLoADkIcOGRlIjKgVi0IMetDlTp0bUlOVj+va/zWuzWYDoB6qUSaERSYhhIC+78CcMYWIHBKYghRvsEk2fqGHEJ0ap1HggE1oNYoSK6UWDKUHb+TmVRe3JAhHtVEbRvNKMyEhYMEwdPjNb27wt3/7AsfThB++e49xXPDmzRGPj6JQhyD4UN4Qvc4lWDAL2uv6HgBwfz/jD797h2cvdnj1zQu8uLnG8WXG42HEeEp49xPjdFDjb5Ry7inl4tFqxszifaS4MKdLa03NbyEER4/6s8EvXs46CE4MlJyldX3Yj9V+rowVZtAul1NyvQJmBiLzyrDG/YhqigGnlujebxXJ9vvmsv3SzFLl/QVva1cLXmJNH2A8Kyc91A3YhY1UUKNaOCZbaBNnpCWXz8yjiV2CcJv/ilVaBcfGULyYVsamYggq01v5Addf2jF7JdG9v3kH2bY0g3DFUP5d7NZF1pURAmNKI77//nfIHHB1fYPnLz/HsNng86++xlff/BrvPv8S2/0VjocH/PTt/8T7N9+DQwSzpNHYXt+g3+4wHu7x/s1Rw+Ek1UYA0JF45wciCTs2vUllek3mDKQcwIERo8x71ym+zQnzEovhKOnB2ma7QTmcUwyVNGXBOE2Yphk5WUW8rBiKkSDOlTkTOCeM04jYdWV+N5sttrs9pmnGw90DjkfFUDGg5NDkapwy/mUYWvI8Bey2PTZDxNDVtBSGH8VLS8Y+DIPQJFFJ0yIpH1S3c0VZrGjQaseUz9h/+wSroUIzDipV5lDx95NXRTyX9nPboOd5Fxq9MJDLRp96c90SxhPqwSCRevwgIGWZL2JIoncWz5+h71Y8x4xcXOQ1UPdO2VOWykRHnzTCoPTTPwurdGkFCYC8JCALTgkk2UIyMRZiRMXFFm/kp6Y92ASYajGzngR7jGlGWjKWXmwgAcYngsPY7Wyu55eI0KmuxkEOzzIlSctBsm8Co+h0BAJC2w6t6LOsi31HEGPTkhCI0HdRQhK7gJwCQq4U3EUCIlVPxIJT6/uUExe8/kvXX1yNTty0zRneBgl4w09lxnWHFSC03nTkJkPBekuKFXiWExQr7Yu1QHbAYKWoWNtgcxcHttsO1zcDGBnLlDBNC6ZRklpKWXPS8VaCMSAvf7JpBQJ6MmNcMqYpIc0MXoAYA/ZXvQiqbi5hMAIEV0LQXOXhCeVc9K9nyJQKI5Wyed18tozw0gzXuz52XTJUXDwh80S5Zngr7F+NLr5PT18e+F0CC5f6c8n6W+im/K44zvpgtF7+KW0LJ9D+VmZXO6INKb162macz7Ipln4SbPtUBWLd9yfG6/YYbBxPjH/VC7M5NG156hN8W8c1jSdISiYCo8cyz+DE6Psem+0e17fPEfoO2/0Vus0WsRtKP2LXodtssUwbxH6DuMzIJF6LylFVsUKZ59K9bGCXwBxqZ025irJGSWqcihFcPc4YcsKhskgqyjAjLkHBurxnCVJ5JWiS8kU9SiyXTFVoKv3HEDD0fcOXbAkaWnELZfcGktCZqP/kVM7xULfvzwyOWrTBquPAlPTySm4Un9ID9nvujBxWfEI//hgd/QILuQR7znh0+bwqix9951pgYMUzHa94igesP/cKlVVBDJory7h3w6it7xf5Tt3HZCBhreg8tcFNNjohX3TN0pPKw8xw6Zf+KU5PQDnQsXstvLw00azn5ZNP93WZOzGmqJKnym5JFu46VKOA6l5o2l29y7wbff4ohKDH5NnxTipe1ewrw2Q/I5c48f/ea21k8NCwHuR5DFWeLHTkPml+q2zCyYsCDCrGyFbh0PK4uUWtFX2hFUq9rG3xVBeBviNsdx2urgfMy4zjUf7NU0ZK6m0VAMuxQ4WuvAeBdlXxZUqM03HBdpeARAiI6LuI3U7yY8Q4y1rDGSU/so6tTD+fPf9Z9Ypct+HxkW0uY546t34vM+o6rPZixbrtTzNUlX2O2hVvdPHPXcI87GjmbNRu/34KZjvnl9T8Vg+/JDoDVA/WWF9YMZPhJ/M04lKd097H7uFLhqZLV4VNzotptc9kaVskXQzQbmk/li6nvu/j8o9Wc+TH0Ep/+d80zho2Rug3A1LagyAV53a7K1zdPCspB2I3lEMLENB1PWLXI6cZoRsQ0oKcSKthuRwsLscQadkACR0SmUZBirlL/+ygWPQeJkaGViZWr0iJYKGyLhYSvISgh6mikKcgVUNTJhAyFl1g89gHfAoJFIORpB2oBsgKo3SPulkEVd4oz1sbEh5bw4ubp86wm7zfcFuVSbiwJy7JptKw0SP8TdT8bPn4OS771OuSPK4dafd6wxZW9/pE0rXtqtutjUP+Hv93xSBwFa7lUC1pNVHfXXpiAOuPGiOKE9/nfN2+aJ6ueIZF5/bwTcoAyX0VNbsxufEbhrdc+CGQ6CDmQJCrjldqzV1abKWvwiuIdK9KR81AbBXkLNfUJbz+JD9qlqwgIOEHGcV4Bz2k4mBeZE42BS2UxLKuZle5JFs+5fpkY9M4jtoJdfFGRqYE8+Awy1cIEV0H5LQ0HTdwQ064pJygkXEQLwYvMNxEkZwm50WrURGEgerEAe2pXJ2ypCAUJuWx3Ud89tk1drsOn73c4fZ2g/dvH/Htn97jdFpweEzohy2IhGGBNHTQkNKqX3KZm7uEES4L8Pr7B5weZ+yf9fj85S1O24R3z8RSyYmQZ1k4U6hBVJJ3FpdsHYkQ4bkxr7jG4jLgKsym+c8547Bx+CTj6xMi/3P92SXvJvu8ObVDxWBF4brMLZ3QXn+/fheU8XyE+1/Yj2YVN2HHrB4sDAzbHbb7GzUeREkymxOWpSaoFYBVrb5EwmAyUz21cwnO2eV+CsZw9DtxEbYTbOlsjKEI5SapuxlKLq63E56WuxcadtOyeRRxaILcc/Kzplu1mDSpZj9ExA6gkDDO90iHE/78p3/F/d1bxD6i221xfdXjN3/77/Hisy+0/7JPtjfPsbm6xe31LZ7vd0jzhGk8YJpOyMuC8fiItMyYpyPm6QDmBE6zABkLQ4F4WmX1cpITVoApI2neoqCgKISAPlkJX5mnvpfccqWaJjOWWUJql5RxmiakJIJySXICezhOWJYMBGBZZqSUMGw22O/36PoBgCjau90enIHD4VBOeU1AlRN4omJUijFgM4hn09BHdFqmO5AUZIhBPOtylnwCAijVq8v4gZ2mKK9yMMpUUgXZfjWh82jK5MeFyMcNP/Ai9BfbeOp9a+N0c6rtlTzDFaRCFBWQeCDS8tMVH7vYA+XlEI+3ZZa8D5uhA0q4OCnPyK6rwm/kNHQFmrju26C8oniNXJhTa86fxoIkiWRW0Gah+9WTSvlmGbsHBu34A+lpHkUEkoSox2lCRwFdp4ZON1cGLJuucn2LJc6Uf8oP+87cpsApl76S/jRXe2+MX8so4e9eFgIRBApRQjn6TkY2L+A5wcozWLsW/p+WhIzUtE8hIPyCJ96/5XU6nQBowu4QkPJScgwBBlEIfYxA1wMpY6HqNVFO8nWNzVMSAEgVwaglx6E05g08YMas3gdRx89cExunZHzK58pUiMqMWfnd82cDvvjyBXa7DpttwHEc8eHuiO+/v8fpuGCaCJvtVtuxBM0BROI5SI5ejaaMzjIFTBxwGBk/fneP8bCABuCbL1/geFxwuHuPWfejeb5J6IaFFSsnSOfVFQHDTaiVvCSBZMMI6lMu2TyqAboVhrIWgcQzZA2v1rymGBnJIZyqFdZ3k/dyaMfB9oxTCD2vr01Qo6xfuhpjyMpg5T1yAmreO+1qwTfm7cKAFGgBYbvfY399LePlpHQGSRLPzgu8/HMYhMRgkc0A5adU+ZClz7PplTyydkAlH3pP9mw5T21OnXwAo4TVns92OzcWOlYPi5VHA4X+TJk1xZXL4BzY0v01DISuAwIlHA8fMM9H/PDtgIcPdwAB++0Ntv0O+E3Cs+cvEWOPbtiKnjXs0HUbLPNLPHvxDGkZMU8HLNMRKc2YDEPNE+ZpkvEt1RvECuTEqPMazdsToCUhJSkcYXsq5VjzzCXx2shdV9JBpCSesNtNr9goY5xm8YhaMpZFvLLvH09YFkllImFyGcMgxVZs1nJmbLYb7HY7nI4H8bLNCTFSwcrG2wwr913AdhPRdRFDJ/Na75cCIGbIMrwIQMJygxWCCUJ7KZdIgDUtyJZ/AudcBBNObYRJsU+TO+tDS9fkky2YscwwUD2MkofK+exKx1rreWu9Tr47G9rFSyomRoDFiywliSoYBiP/UMMzc2qfDVRkhelJihAkFF/lSS0eRmVPlQkoc+HGoMamjs2Ag4KjzOh0aV0b/KkTL5hbk99TEA/PlDGeJsRA4h3u86q62Spyr3xm+hkX+ggE8XDqIphF/xSeWLGu50tlzWz8LN5b5T5bY3YH3FH3c9+p7EmyL5kB6kqqo6hgNiMhLwwx+Io9JxCB4qfR8icbm6Zp0kEFBRAMdLkkejbhH0MEIpXkWQyUU41QgCWQ5qWU+jXi6IdeAY6siFnwAYAyFVdOBFtzgrlUppSwmAu4GahSLlZIRPls2A149WqH/a7D8+cb3Fz3ePuG8f2393g8zKCwRdcPQrvBgHloGI+cbFMDiwnQeNCIJTHe/vSIx/cn/PqfPsNvnt3gtF1wffuA4zRhOhDGMYNZGSEI0HxXAMAa1qUTXgTT2tgkm85b4p+4WovCha/owteXlA2U34sQ96GLTbtPMSrv1v1xIl0zVGOg/h3MxkieaoWfGHc1NBX3ba2A0vcDbp49E8OngZR5QtIEj9a7GuKISq9ArYpj9O0moAnlU2EnRpFQaE5urbHmlgCzbJenBlv2oQiUBubyxyjESzF7aZ2/5jlXVr7rpCrQwhnT/IB5Cfjhu4S3r3/C85ef41f/8I/ohwHbX++R8m9wOh7w4d1bpJxw9ewFdtcvEDihe/UKxAmHwz1Op0dMpxPe/fwTptMJjw9vMeVJiqzkGWBGIC652IgIOYQCfi2+GUnUzqCVhqIr72tJw03YyKmEVlxZOqmalzOGsS8u4ItWmqMQMc8J4zxjnCcBSn2P7W5XhA9RwHa7BSFgGIZiCO970tDI+q+L+q8LGAYxMvVdLDkHbN+HICd+RBkx13qcnOX00bf5sVU+V16qNwtwfpJFDWmc8wLgl/exf9fT8KQ0Vtpc73VT9mj9PnaeW6r8Ncpjrkrg2fwQgVZ7g9QQJFXpEtKyIISafJ60ak8uBmWn2JLGwhdFsPbfQIDJOO/FYrRIzU/dz/o/gp7WEmExFgLNXQDxAllPbwVKMv8mUk3pDYFALG7v4zQjhYBdGEr4uZ22XVp7AzbWlq1BAYSxAwUGqVFe+ir0VgzoYDWo6ogLfdbKVG5qFbjb4RUjdZ2kPTIjvAFsoISXAiqnCqZlx69/gR7/Da9xkgO7aGGKWmXTLkLNeYUMpLjU78zQRGY4luT11StA/9PJ6b6d5nueYIl5TWH2MtzLQwBAkJASXwZ5niWHyma7xa9/8wzbbYdhEzBOE+4fTvjpp0ecjgs2uysMw6btO1kpdzSYz0ZulfoYhIUDThPjzY+PON1P+OI3t/jqV89wPM344fsHPDwCeQGW2bevir7NUz5/h612Mba6ufR0Y5d0c5WToNzTysmSWB1OYq54TjE0rX5v260v5/rrxcvLsPPrMl03RqXG2LPCb2d9a/mIl7eFD9r+JQkZ/ezl5wCAx4c7zONJ8NCynBmZ6nxWmrV2mxGd4d86UgrVmzKosd8fBrM7sJOxU5UP+h/v2XRxTvxnOs4y/4S2XwIsbGOiTIwMRMaqSimBkDhhPD1gHAN4YXz4+T1unz3HF1//ClHzGM3zl5iXGafjEcyM3fVzbHa3AC8g/hzghNPxA8bTPabxhPfvXmMaTzgcHjE93IsBNs2FoGyuI8yoLOHYzFAcJTInsHhDRTMA5oyUXPoFxeBmdFrSgpRqxV/JnclYloxpXrAkxjipTE2Cu/q+x3a7bXJgDsOAzWaDrouKpxOo66qxScdg3kx9HzD0cljSd4QYpIJXKPgpou86WKEYKyKVs4SPE9W8UKxhoSuoVJbSwwzA79GqH6wv8v8tRPLLV2NwOvvuEn+oelGhz8YAY/1Y93WN/fx72T3byqFLfKxgKGakZQbn5HikVZdX/T1XDFn1WtnLOefiUKIjk2djaHSpy7C39tlwBDGjg3gkLWwHdtXU0yBU98eZHltwG4F0PCkzpmlCDAFxcKlRzq7W0GSfNBgKwtOoE4MdFganKl/WfNucdKzbXlf2UqLm7yU5OAWwdLFUIE6K0czbS3CctpLdwWqZgzqaX7r+l8LozNiUPWFyTWLprWymzAFUFYIilPXZ0o6CdKJ2G5BMmD8NtRI9tm/MUk2QWEwCYbOJ2O168RbYdYh9wO1Vh2fPBwxDwDwlvH9/xOPDJOFASUoSi3Gsuh4aU/YdavQZPdUx+2TOwDQLsxpPCcfHhCUzdtsBz57t8YAFp4cZmQnEkszYM7bMQriSp4OllCQDltGsGlmK/nJ+eS6kYK8lvpap2HXO1HRkKyV0fW95HblnymbX0wD1nPJsrjKZygQJNi5WEMiAq15XPr/g91yoohJXAUih/M3l1KzakgFb0S522G33iF2HzaZH7CIO9x/w4edRhGPKZc3Pp70CZ6CehPn9WBQr7auEg+mcKQ0zCZ3b/mk8uWys1Nrhbb9Vy7eO6Vwi+h6Xp+qudSCtDsz9tBPeXPvODCBjmScgMQ6P93j/5g26YUDsxMiCzNjtrgBAS/YS8pJxODyC04wlTeCFEShiv7vF0O/QdxHbzQY5z5jHgwiulJAXy7U0ixKVcjkhIViuKl1fkh4HQq0m2YB5DdEFAyyeHiHL2CTvEyOmjBgS5qUviuKSCOCEx8cHfHj/Dn2/xWbYIaWEx4cDjocjTqeTAiI5geukLFcxMnedT2Ypn1sC4WA/1ZNGjJFazl15nhlShEZc4nDdT5lZi0/Ymj2xZxVBVWrwS34BOLVWqIa+PJVVSrp8tfzm3EXdgxDv2dSMhTx00vU2nvNUn9fjca8VxbUNG2cQkiaoDkwotbrIwhetyoIZxIw/W6uW7FkN2ywedla9pECEknixBRXWx8DmtOg4Fl2SA1WCsrPYMLPer2OB0JsZPqRfCUsWHmZgwp/u2c9G8VLjtlTDY6ksCQVz2r8AaBi5A6mFdlaLYTyJbO3dbczglMq6F08zPZUOCowYlqS8ysLmEEQaf5Im/q0vw1Cm+GRhmQ4NywgJtV8eVJIRtG0SB5sM/LZDajl6USKLHIXK0fqdlZlnk9MshzAASw6UAdjvO+x3Pfoh4Hha8PCQ8PgwgzmAQoe24qU7SXW40DanceHiQUSmfAPHUdbu9pgwT4ycCNtdj5vnA46Pkkyc2by5BJSbvMxZ+m1hnGtly2g9nG2cKjtrP3XuHa0a3/TUYx4vvr0VYrLVrfTXvPX8MuyyFt1sxiq/D31fUZ/jZuznxqazdzbv1zBUIyB9T5WXlT/bCJmBrh9wdXWLEAjDMGBJM04Pj3h4967xJq+0XsNIAN3TqAas9QFI/VPRrPPeNhnfVM10W8zmdD3WT7nKoyowGMrTmnmmeiBS3ktrYqhrC4gc15uXZQIzcDhEfHj/M2LsSuVvgLDZ7nS/R8zLAl4mpFEwVM4LkCNiGLDbPUPf79F1OwzDFTglLMcjeEnIeUFS7IRlAuWknvqGmrjmaiMqc0zIpZJaPeRVuWBedFy9HtDL2CJlxCAVnLfbueRHyzlhmSc8PtxL/iQtQDVNM46HIw6PB8zTJEU0SXFSF0Goobkl/YBGCNjhbYzRYafKG4lqcuQWmztshNYQbTroZYJpP6QLf1Bzn8q/lnm0X69fteqjIYJGdHjc7/e4fmgYR8LmuNIljGeoI0DTW4+MalflewtRd3dQxY6FHzqxJZ7gaiMIAU0KiDKYFdcsPI1LH4uhW7E7sYaGlmfqnPBaVJYPHC6C8W6/YOd9Kf1xEx+ISoGSpEZ3iaywRP2Gd6i0Z3uf3LtIJ8ruCoqZzNaW9e/KfqpBuOIDRxAOv1PhptqQ5v9k7RdpnksmAoLqDRbKSg7P1ll1QvCct126PtnY1GsCxxgkvCMjY8pSmk8CPRgRjHrGK4ABjFJ2EmSAkMvAy2kUkZqh9USz3edgaKhLlhLBhllZB7qotRosJ6kA8OL5Dr/6m8+w2fZ4+dUV9tcDth3jasNIy4Lvvn2L3//+EXcfEo6niJSiJNqlCBCDSELwAgVNUKcrSCglRMWSL4peHwIoAHNi3D8uCCFh92bE1Z9HdEPA55/f4tXXt/j2D+/x85ufsCQAdA3mzjgEGFIFa0kC1iOkOgQnAklWM+QE5CSeLkmxtCx4i4CKS6+zAKfibePj280KnZHN984xLgONHqRc8hAIVqPbnvfAlgFmq15RIlrLVU+xKqiWEAOuSjXqibiey5/RKa9+gp1xKgQViKyVM6TfpO6elhRkt9vj88++wG5/hS9+/TWub2/wx9//K/5/j3eYT0ekaUbWk5lewzQ8Cum6Hsw1LKF0lWzj63yadwrLSZEfhQkIU7jWEqjuj8psmjkwDuVcZosRChWMWcJ+Y1uFfMivTz01tHcyo4SeATXGeBzvccyMx4cPeP3jj4hdh89efobrm2tc3TzDl9/8Gl0/4DguGMcFjw9H/PD7P2I6HXB9tcfVfoduGPDVq8/R9R2kokPGsky4v3+HaRrx+PAedx9+xrLMOBwegHkCphkpjQCyhMaUShA1t4fR1KKnaSaThR50DrsAzp2s34ZLzh5Zy4zN0GNZEj48ADmPQJ7w5z/+Hq9/+BEvXnyOL159jXle8N23f8a79+8xjo/oYkanYXJdF4viRQR0XUTsopSHj1EThXfo44ChG9D3A/q+F2+HIMKpDxHMUfq1SHheTgsSi6utnERYmBek0kTQvcV2+uxO2fki+4BR3aWr0LHy3wJ+dN9buFQt9WDEWYWhKH2+UW5A1lpJAqqyLLcr7ZViVyY/CBRYjA6OBz15KV0XZVg9xXII6kUmSbhPCyPkJKgm6OiiVBWlRMXL1xJ/m1FbZAiDicSQkzLmlDGmhFPKiJzRkeQGk/xnYpRiZ9A2AEIGONigCiGJWEC8ODgHD6xPWT2SidDHgEjAmBmjJno9hRmZGV2MGNQzqEgFbgtxMGulID3di2qIl/mTkL8ZwAyVZZlhktSfxrVdriAwhogQOwCMaUlILMnAMUr8fegIfS+ye+nUsyslxLyIoSHa6XVd/5TFc1gA7yegpH+jyzBUF8WDMWXCaVHlWMEfmcBVZWxReS2A1sA7F4ZWDNDmGVuAa5XtgCZyViNMStqG5rGzsGIJF06laAtIEj1PKaHrCC9e9NjtNvjqqyu8+uIKzMB//c8/4rs/f8A0AYwBXQc11AozMUN3MN0CBKNU8/6Vd1vRA/GImxbGm/cTIi3or3Z48TKBIuPll1e4fbXB939+xM/v3iMthF1/hT70yJyQspZpX8TTPUAOEXNCqRTLnLHYuKgz1li2iuUiAiCMpWpP+nw11Nl3BQ+xAHmoAiRiW9bUGxeAuqfKwf1FwyeXf8zmFW6Kc01oXt5N1nffuu37it+8Ef+pq/HUYjM/mieCVK9k6P7Xw8yssvV6/wy//ubvMGw2iNsIigF/+sPv8F/u/j8Y5xlIC5ClomGneYhsZigQ+q4XzJ9zMYD66rw2N0UuIJf1K79ynW3znmxQUqNQfgofsCgCXVZbckvloQcK3udD7i9+AsWmIM9IpEY5DCD54ni4Q84Z93dv8ebH7xFCxO3zF9hfX2N3fY3Pv/wKsevx7sM97h4eMT0+4P6Hb5HmE25ub3F9e4M+bvHq5Zfi2UkZoIy0zLi/f49pGnF8vMfh/j3SsuB0uEeaR8zzhDwewJlLsmQJN9VQZC3RxDkjBaMLmQjmLPoMS87MYuDT/JoSSpUxLwl912FeEu4fHvHh/gGHx4w//uH3eP3TT9jvr3Fz/QzzNOPH737Au3fvkPOEzUZ6NPR9MTYZVum0KEXsAro+ys+hR99v0PcDutihc2kpKBCGoVOjhXlzctm7ZPSieyn7Kq1Qfu2ysxiur1i9kIvSa80FRO2OXZNXxakwnQe1hD08jrXDxXO6NRr18p7g8/CZntce5lQ9w/5Z+wzjI358/sD2jHcRgSKBOABZPZxYDghiYGDoNKcfFd5BlvtIgblgqVz5Ast/cs5YZqGlKS3Cx2MqIfEVP9bIG5B4wDEg+clY7BO5fgKGZTSjusmbefWHNGJcJTB6Em/khRmneVFDp1TJjkGKsQh2q7i3esxWHG1hwCHnwlSirlGCwB5L8x9AtQo3VulqinFL/lP6w8A0Syi8YUkoX+2jJDdPXQTrXqWkGEvfk8GalNx0c/eST7g+2dhkG81KUBZzIdeB0eperzQYuGtOYYqWU//ZAKRpb421U47KZBqCMAFa/oknwXbXY7cf8OzZFjfPtuhCwiYumE6SJf/u7ojDgZCTef6YYEAdV2EahMo2VGU38CGpccpGn1MGJQmXOx4SNgzsX2ywuQ7YbDuJc1yqbdLPk9mDShrMqi8UHO6HWjrK9Vb70IyO56CiesWUUA6mZo2MAVVG5J52ypu3OrdAwDpfT+aMmZRnHCDwp+ZlwA3YqgMsGx7kFqn2G74FPxA0JGKz1MxhCBF9N2AYNri5ucXtixfYv/kJYRhA8wzGJEY78h5f9aTAQuByznqCw/D7sY6x9nk9pxUQsiplHia59UEFab6NSxhytV30SZuXuoY+UartW7/DveJfQjK00ZSk6lueJqTDETF22A49+hix211h6Af0my3m+YiJF+Ql4fh4wOnwgD5E7PoBiIyh32DYbBF78f6ZlxkMwjidkHLGaTyC5glxnsXwm4EQFwE3wcCSAgRdezmdDQgqpI0GshkUmIsZn9mUI0YKGSmQ/MxSDUvyKsm6nI4HTOOM7WaHaRwxzwuOhwMOj49IeUTQcNwSGleMTRKKGKNV5bRTOSoeTU2IpTeKMIMzabWqCu4EEFT+a6cwZYVVkJfVNsCsf1zASoVmsf5uxedlKzr+Ue7zN7V02jzv9y2f32fhZk3/3f2li/rS+l2dk3Yc9XfP4wEICFJDSg7SeNZQrayKVxFbIDGaKUDIbvz2iz/9FrCXkVhOwMiBJA+UCu9yo7Gt6c5dYVuYm5fqze7yfNW2fHCKkMmfpMp4+IghpvGQcDQn3rj6mVe6yrxV6FA0ryeuCpaoZVGi6YIDgRCLYbBNpmkeA7nMi3LpKgfIU8n//muNobLP2s8CRv2SlfVvhVWVq4X+UPiDGZvgDE1c6M7RlTbWyg69r+wFzy/EU/zqqsNu12EYIpY5YzwtuPswQbJA9eXwkLV1U7DJtwn3h17VOCu9zgyMk4D5cUyYxoQ4EDa7DkMX0G+OYjB1ctf6Xyqasc1fGRxMepb3AS0F2L3twrnf26/4/KP20XJDJfH1SQAAyV9JREFUxXl1vt173Due9iA3uV8NV2i+Of/Fr721tcYZbTQCl8/bPgD1MIDP3t+EBbEoX5thh812i83NDt2mw5s3ryUsJEZJFVFk0/l8S0oKJe5wHsro4Fwzjtq3dqy0Mmybd04zaWWPPbGi7uN1iJXwFS/oCrcpeLcaJOv8FmNAkcOMlEQhzGlCTkeEEDFsxHCy3WV03YBuGAA8YFkSpmkSrDGesBm24D2AEDB0O3S9eJbHjiTnGjPidAIzY54mhDiLNzoLDlooIAQ1RhBKsYfKd7ImE24rbeVMiMqnSfcjmIrRPFDGogeAm0G8w4+d4KecFhyPj3Iwy4Sh22KeZpxOR5yOJ8SYEHvDS6EcVkP1Q/NqiiGUvL8lp4/mRTSMamRaKmbbOpbqE3X1iofPmh8o7dfhO/3BPmmwyPrXyjXO9TIXEYLLV5Fv636t2rG+m/5jBxkVJ656VTCUSe2V8ewCp6vsprZX+L3hSdPtuU27wir/TW5J1VTdN2s+Vf5bwzwtf2lCXrkd2Nhr2JfNKhUQrPLJ1lLpwiGaOimXxuvGLCmXCQtLf8x7PXEWY1uRxyj6WqWdahup847iIW5mkoKhYPKbbWCFJ5Prc/HYM4xAwT8FCV+kwmtDCOIIpM/Z4QQRI1uxlUIgfm3oEllcvD7Z2DTPs4C6VBVosXSbp4lMpBmiLO6ac0bW2EA7BQWAqKXkgUpsDTPWSVtSQsqLljKXwcUQEbtalaEyepkUydNIABIOj3cAOuQ5I+QR05jweFowHhe8fzvh7n1GThFdH2W5QlWWTKAVwlcwxJDTwMxZvYu4bFQjaGNwdw8TvvvuDvurHtsbCcvabXt88fUOp1PC+zczHh9mBD3tdOTnQKQryqgbzTL8JxdO0C46Nb+bTb3Ezbqy6B4IruPkbX3+V64nZXYjtPWnVypL301409lzlzmx3E+rGwvoLO9qMZkx9y524Mg4Hh7x52//iP3VNfbXVwATtsMO/+E//iecTkd894c/4P3PPyMtM8bTCcwZnSZzrqBXmg+B9FRZlJ7oq9oZwFP68n9fupqTxgtTUHPHtGtffluDWPsPy7O8fsQxyJL2xr7TvV33ho03gHqL8Zd3jqcHfHg3Y1kmqayy2YC6HSgOkocJC5gXPN79hOnhe8S+x4d336PrewzDFsOwlUR1sUegiOvNc2xe7ZBywmk8Ykkz5umE8XjAsix4vL+TSnmadJzLyVUufSxDIQFOls/J8mwx1xN/g+FEwIb7wrcsYfc0y+nr8fAB336rJX/He8Q4YxgCun4PIkLfdehCLf9NJHwwRAF0fSdu39vNBkPfyd8kvFNOgIPTmxgUxW9IypgGDe/j4mFTkrA62inLB1McSkQyyOd+8pRT6ADt5xWdtJcaU895UqU765OXWT4o9CxUS++PXnO1sWl/q8D1oL+l+zZkGM3v3iBFCqBrNVI5hZZwDXH1lwqC+u6cAc1dMs+SS4dyTb4colJRnjGNE6ZpwrQsmPIChIyeqswBi/zIkLXIdrpXtraE/3RMUsIXBhAyEqostvj8s7GTyQPNowigA6FTL7ScGQsyetbcCHp/6Yspds0EQoGNhkuRnOhlAAvVdc2aS6fmq6p9rAqsoz8WA7ZxvBpOCZBPlRUI1HdAJNnnbEaF6rZPEOMaR2mXonhcfDJa+r95zbMkGeLM4C4jZZe3kiwcUDyq21N0bpJPy0ljqBXlgIKFvIIkwJ4wL0vxHAKJN17XdTV5eqpFLgAprNBp3rh+6LDZDtjuIn7zt7d4/mKLwAl//vY9pnHB/f2MnCMoRMnXSc57g6txuOTgZpZxQxKqmnesGSJJsY1nNnf3I/74x/fY7jt8+TdXuNpvcXs94bOXgxii7ic8HhYJ5Qx1Pogs32YoPN/mJevpLSiBkZQ2nrqUzxFgYR9Pkow3cFQGWtambhku/fHXJay13mv/i3Dso+/4pavhP3z+nckZCV0i3H24w7/89rfY7ff49d/9DW5fPMfzmxf4j//P/4TT8Yjvv/0DPrx7C84J0zwD4FIQo8VQ3pvC5rVdT//TdkBrwKKK88g11cDEqmAW78KL1/nnVcZmd5dTBvQTPZ/0r3T91+dZDjvtkCMHaWs8PiKnBfM8grqIrh8wLVnD7xmMESkf8PhhwXJ8ixg7vN9dIXYd+mFAP2w0B0yPGCRNwabfg3PC8mJETgvG8YDj8Q5pmXF4fMA0nZCWBfM4qQKdlZ9y4fE21hDkEM+MvUXH0H/MkhKkQ8BuMyD1GaAb9EMvei8HMC84PN5hPJ5Er8kzrnY9uqHHZiM8PmpYnLxXVqwYl2LAoGkvtsMGXdejj537XqJygJq/0/TOQFRot4vRGf1N6a7Fq4RGKhkJoVbdg6yquInbS1RTHrlAa6Z4XrjOdYNKP83zWO1zo1GIiLQetYZs63CbnqOOouVrZzY4NxSbL2/MZpisEaxXwspN/puTRc5Is1gX7M3VPkBIy4LxNGIaJ8ycsECiqgp80KdEbxYXtBqmWnl3YNFRmMRrxwxepgJb7slmFjwWVjkQKWiCcSrKZcoJlMSzKUSNZjC09UQKFv8OO+izvqVZ5CRx9YQtOiTBGXit8/WfGLClmFuhY6Uxw4qARJ2FPgKBQHMCtPiIz3lq742mQ2n43acIpU82NkklLtuYQUpihqQntvUUM4ilBYBzk0b9rHTW4mmb/VCNOqaMzMuMaZp0o5CCpVBc0oWnO4DGhM7ANGccH+9A6JAXgHjEdMx49/OC0yHhw7sJ9x8YXQ8MmwhzJ4QJAW73vYXUZNsQenqWk9D4Qho/GqA5Vwj3jzOOh3vc3Gzw1Te3wG3Abtvj1dc7HA4L3r99wONxRN8N2G52WiGmzpMwL5dUGlwYek4JVvQvgHTRbUMY83DzDpS1QxHml1hhK6hbBa1V/j5uXa/z53+ur6YJz/PsT2WOzrDa7Kt2jDVO2D5ZAxJb4/U7oya8Ph4OOD5+i/3VFV6+fCVrc32Ff/8f/w9M04h5TjgtC04P93h8uEdOCZu+x9D36pYrzdYkpMpIUZUKf0mC8uoG7hXt8xNGx1SpgqpyAu4HRO3ar9BVmYt6GlxdTk0hLbSUTWjYWnJJGGfGTwCIXVcYkXlmjcdHHB/vcTo+Yp4mDMMGt59/jevnn2vVygRgxsP9G8yPb0Ehouu3CKHDdnuD7fYWm80eLz//FXa7a1ztnmNztQUTsPCMjIxxPOFwfMA8jXjz5kc8PNzh9HiPaRZjIHIGWSJlar2LjNcwAE6WTwIl5FJVJ+QgAoxZQmKurq8wzws+3N1hHEccDx/w+qcfZB56yRW33fa4urrSXEydgmnAvFksn4BUPuzU2DRgGHr0XSfCSr/vYhQlTYFSgAi6EAhDZ5XNKvif5rnyUy4EUzBOoT9GqZBoQv0MalBLT81mZM933D6rlFg2M6++LxSsbXgd4FyRkN/PEoQ7M1PVvssLyn5aG3jXlwdKgIQFi4wScGAhRoCE+sRAGDpJpIxV8vmUCJmE7oDqncbMmMYR0zRiSjMmTpJ4lVqf2iJnL4xV/Hkq57aUfplz8dSIFgjhFsAbm+yH0IIkie2UNkvC6J4bY5MoQlYauzX82IIanYRA6IIYm2yfgasBFCEUw2HxOnB8pPQNIuf0U0cbOhdeVvZRJiMlQBP+G8i0BLAgIGrC29B1Ggb517kaYxNLdSUzJJKC40C1uqQYRnQcXMMZjY5jiBWUMleDgF6m9M3zjHGaxGDf9aXYQN9LuHcI3tgkcy/GKML+ZotnL66wv+rx679/hVefX+HH797gd//9NU7HGQ/3CZw1ua56bXL5Hwrf4czgKAeGS8rlsCxrURdWmWOnqYIRAQTC3cMJ4zjh5maDV9/cYj/scXN1wouXPY4Hwo/3Ex6PC7quw7AZCvEYsC7e+DBMKoZjCadMiEhCWaHmlaqX9h+Vj1l6Apl3+2meNZ63VMWm7uuKu9bJx58yNF26mo8/opx+Snu/hOHO7lkZv3SXAgiqzBPu7+7wLw//A1fX17i9fY7r3Q2e3bzA81cvcTwdMU4nPBwfsYwjpsMBYEkS3Xc9rOoS4HgH6kEorTBUg5UKdvQYCigGgbI0fAFHrtb6Ey5r3/YfFxynahw5DIVWxjQyuBSaEE8dyUEH5CBjGI+PODzc43Q6YMkJ/bDB9voWw/4a4mA9IecjHj68w8M0Cg/ueiAEbLdX2OyuMWx2eP7qG2z219hu9xi2O5spAIzT6RGPh/eY5hFvf/5RCrYcHjHOb/VAvYb3+OIWlSfLYVfW/QVQEU5Z83sGxSvMwDD0uL6+xrwseP/hEeM443A64vB4gnhSbrDf9dhsI3ZXHUJYGV11TquXeIdhO4hX3WaQwz1NTRDV2NTFqG1IdTRClJB71Sv9wQpYDzr0nY0Xv426sFwua1rucXqM4S77vSo3ZfLaqrREWHsmtzTndJmzG3BGwAWLMUMiWOo3JksLjYI0t+I5a/klm0KBX1RzWZaclpCw8MCGfWOzl5mhhYDkMICS8E8tcFmkf0oJ03gSXSxnLCSGDOYWtwp9mgdbOzkEMTSBoQdiNZLIEm9YVFFzWKkLVx0GoLqSFC4SPFWrFPeKMQJJ5VPzdM2UnJ7vFwglRI6INH8SMJHz6DLeGFyBsUJPsmDtiAVH2PqElX6mnEoq5Had5AsWI4e0o/lIDdsZBhFbjFZr/4Trfy2MTg0WkrSuVSBsAUzAM9rFWl/VAOGIGw7wmrAgN1ivNBjxmFGGocwC9YSu02CBDCxTwuPDhNNRqkw11cFQAW7toPzHFLyaYNPNjeVGKgoZgSDWQ1YjSUoZh8cZ9x9GLGDsthuAAza7iGELLUNqmfcJzbbhtYLmUCFV8GmcQLwK6vx4y7Iph9WVz8I46vu88H1q7dYKoNA7F2Zrz9f+OgC2mu0qeLn53GbijJm7O5uWHNC41M/yd9mUbUtGi3KavGBZZjze3+Hu3RaZE7ZXG3BOuL66xueff4GHfsB8Eg+agOq9VPeKnq4aTXqF74n5fKrvZ4CQzv8sU9h8pwCqmd8qqDxQYz//xahVA0dBdV/JR6Tfk6sG5vpEdU6JZE9P4xE5J+ymUQV5Ruwi+qFHOgXMdrKvpaNympCWE2YCTsc7cJ7Rpw2WLEkycxBPnpQSAsT7abe7AYUOfdeDILkK8jxpAk1JgCx7hJXYTWOQvRwspE6y/oAgZUAlD5ECYTWyMwObzaBKSihzGrsOFAibTY/tZpDcB+z3tQncamyKlntAE16GUD08yE2tGTwyyRqJd5MkGDdjU+ZLe9cBlDUYaYB3a5j52MWMs0T11lnPg9YvbEEjCq15NOONRNXDzI2kAC6qPMwBOa8IrtuU3+H2BZXv24uaZ0zWSR6EenLHOpACPiwMBNVAaxNmVcFEhkLXbK3knBuaC48nAS1kyeGDUKnU19F4ft8Wr2San0Tbn6Dy3DlPoDOG284jnX1nq2/gzfpuZoiSbYb5bN0vXdT+p84NA5TtsKW4tbTFS+pQ2/acceuvcfkE4YFCdSkEyrxI57yRJAKcn9iLyttVk6HqPqQYymGW0ra9Yr1mKAqC/Q5Icufrmxvsdj2AHtNMGEfG8ZQwnhI4A5ZE3/mjucmuf7OFtuWKn2zvlBNacvtFH80MLIt4kB4PEx7vR+TMuL7eIYYZ77YLQs+llLZOgc6Nvv7iMlPp8xm/U6BhYebVYHqOPeojK6xRh+B4of2Xz54xXnKpzeZzcj+f6EzrDfWRG8/urZ+t+1Cb8PxU2mcnE4kk1xd4wjyPeLj/gPdvt9hcbbHvrhFBuL25xatXX+L48ID3S0JOCwKoeIKu6cFkc2G0rm/loMi6thIUvyzFzi93fNG0xat1axR/VLr2c7WWN+SJW74p81huLNgYqIc5DM4Js2KofreDhdrErkPseuRlRC6ekZLfNucZaT5hIeB0fEDmhHneYFmmqjeBsKRZDvrigN3+BiF26LoBgFS+TIt4QHFWIzEzSgIvj6GMjwAABZ23WOarVAMmgAMARGw3vR7O1jUbBsm31G8CNkMHClUvBFAOnYrxPQY1LsVS8TOEUNaxbBsiPZijwi8Mg4nOqqFeOZ/tDS6yqjKCsrfZ6TK0prt6qLZmM6VznyiKbE/YAcE5b3N4Bk/TfzmANDo7e571O169w2HYX7BEVaNMZeZMNQyupMRbP7fCXfY+1lw1Xl9h9289D+V5p4zYoSwg2AFB+YeO0xdg8ctT2vR/OzlGcF5avIosADdUeCbPyf1itGO4jLjgSplCNf4UGceKNX2Pn7i0n+tDwnJpgib2PMhowa1jKWrzF2CovyhBuDARTRDOCacllZLhxQBDVIw8280GOWV0zGJFLHuUW6ah4MIsdSlpwkhN+p2NgcWop/yxLGpSxiSMQhdJY922mw7PbjvsthFd6IEc8fDhiD/97gPGkcF5wHa3gVkQpXPUEBIDyIlBISFlKd8pFZ4MMIp3gQyiA0jSpQeKsOS4TIRxzvj2Tx/w85tHfP7NDr/6p5di0X8/gmnEeAAO7xeJfe46AZlwpyYm1JQ5mteMGcuiq1BlhZHWRiQjnXOgw4V5laErMa0/a/ri22AU8Nx81oDOFu7L/tFx6ljLhnSbp1WduG5cs767N+RyV3u1JwFmDXZu/gDAWQqasZRZHU8J3/7ut/j5+z/h1ZdfAdM/Ythu8Xe//jv80z/9P/DTD9/hv2+3OD4+4MO7Nzg83JVwqOI5A3X2ZVU0HBO7FIa2BjNN3904vTQrApD9XfYSBuspTgH7qHNh3qVQxbcgddL+5XovQ/MOdVHWThPiW9XEsnSwddGYZjWecJpx9/aN5MTaXqHfXSHlGfvbawy7HsR3SLOcLg1BqjkwDhjHE6YpYBx/BlFECD0obqSd3U6qBu6usLt+jiFu8c03n6HrB5zGIx4PHySR+P0HTMcjxvGA+7u3WNKMZTwgLSeZhyTutpGClGwvYKLSXkoZx3GRZJeZETNj6BnbzQYMRlqS5JZilmTdYHRdh00/ACDkOUmFJObqIqzAwXs27Ta9eDb1nSTMJanvRMxFqSYQEmckJEQQNrFD14knSSIg54Q0LyhJHo2+vIAhNIdn7OnOCZanT74dbTAX91zzuqj8S+6thuOPXM7wIHwtFr4HW4k1b+KnQ6E8/6wVVT04rP271EYItRQ9aTjmPM84nYC+i+jDBsyhjIzJTqbleQGzFU5xyuB5BicJ+0EvIQQZMs6o/I4bJYWwBm2cJVE2x4AUULzuiCKY9dTuqSvXvWq/RyIMISIzY8yL5G3SEHYOAZFjye90KbF36/kgSxiVr0b1pMlISDSDOSOojsLkvEn8GutvDmMBJDkFssvDFJJWnyOgG7Ss9RyQFwKyVmIs66un8rof8lKTj/41rmHYAJCEtn2MotzN4vUjHrEJmSVpMhEw9L1W4swa4ljptpG/hJJXJWgy0iVnTGmSPCw5lVPbSyFItgcsfxwREEkMLM+fvcA//OM/IcaAeTnip9czfnqd8NNPI+ZpQaQthqFzCjJQLKioskDCSrWk/VKN4UFD70rC/RDFaCiAEAhSojotGXyY8e0f3uPu5wOevdzi7//mK4zTjMeHP+G0HJBmwnJaBMMpLmIWLwuJVqxrXapWUUCE83TVvrJTJgs/Aq3Ppy5eXkmqEYF+7dDMf+W5pYX2z6ZxN9VOv3jKK4ocL/UeGk/2HVTabw5VzxSTVj4UDGNecmBkLDg+Tvj9b/8rfvrj7/Dq66/wN//0T+iHAf/8j/8e/+7f/Qf8+MN3+G////+M/4u3P2+SJEfuBNGfAjAzPyIirzqb3STn4izfW9kVefK+/2d4sys7szPLIdlHdXVVHpFx+GFmAPT9oaoAzNwzK5vCppVkRYS7GQyHQvWnCj1OpwOOj0+YTkeJXAiK8Zt4Jc+uvNvem1Jq+Lfearf90tY2hbPIgAa7MF0cokjajAaTY42hq/FSBVVDdy3teXjfrg+pQt+sO5u3o+SgDF4P+OOIx/c/w3mPbuixu7mB94Tdbo/OESbMmPNJlFSvB8l8xjyOiLPDeXwEXIBzAc73IOfRDVu4EDBsb7Dbv0Dfb/Hdr76C7wLG8YjD4SNinHE6PGAaT5jOZzw/PEiI3XxCjCPAUq3I9DivVSWLl3sOGo2RMZ6lqrMHITDAnRibmIEUGfOsnqw6NyEQQic5Z6Zp1txOlZ/bvIfgMfQ9nHfY9B2GrkenYYPmUW7Nei8YNrHl4ZRnvQ9SDCamwpOrVqErrbkbieq+bjdra+S9si31nkpzVb5xiQBaYJ+mzXqQDaxzt13DaSVkCtVAU7FF1ZwEC2mnLEcsNZ1c8MPrY7p2mTHTey8V5JBAWYp9uHlCcA6OxJDY7lerFgjNy6R2DRlDZoCT6GkOYC+HS6V+t05uOxtlHszYAjmMyTmDg5N/jiSMLovu4laeUoo6ARhfN8OLfB/g0DuJPoicEVNGZ0XNyMkzOp/Ordb2Gv8GwZP0yTkP8h6cpV3iDGYHJC26JZPdPlw7TU1Ynn4h9herbJChZ/ugvgNyRppkD0r0RMVhZmc1/ShHS3Hwy0Txxcam1qjhvZcXpvq9LYQtpIEaggBCY552YmDMuu1i65pmSVS5IRoj3JZgrE2xWCrF6iL6IFUHul4EFydgmjIOzzOmicVyHlzT/1WHtIMM4aUGCplFoBVmU7yjKhLQbCqlqZwZz88TxvOMu68GDEOP0HlsdwHbvUOOkAxYmeCLMqVMYsVMWkxSTwJJAYJ1fKG3XV4rvnSNUfGVz68aQS6UtvZSwLAAROtOGcNeUUThc7bevPi8rP2qpfLJJ5VkvZek7VrKtR2XJGo8PD1iOh6xGTY4Pz/DMbD/9ju8+OoN5nnE7d0LEBEOh4dirCFXgauVj7WVk/QvxjwvjXfr6wKQWsdbvrI+ASjTaIBI/pW8RE17mkIFtNDXadW3urbZ3kXNeZGRvdFdYWkotEkAYmJM4xlEDvM0IkVRPEPfwTmG74LkLwLgvDC6xLEAvHk6aScDgF7C7OYbhK4HwWOzzXCesN3ssdndoN9s4fseMc5wFHAOB8AHnMYTMDtJwJmdhNgpFyVyYjyWWZBxKJhxLmOOOrnExdXY9cK3DJwwM+Y0IXGG9x596AEGZszIZLkPaDE/5tlkxg3vJOGmawGL7qFixKSad6d4S5gSwivvpJXwJWNs1Pz9CXROurmvsRJe/V7KypLSBptxuPEygPXRaPfqa68qUDqUy160vOeCt11v//OXgTvLu0bl46xKjnd2MroYmcS8Z9sXK54nG1ERjYLLLO0vJFHDi1qFsfxulctsPwMa31/XtpWbDXNbDxGWaLVUOGHziMmaJ6CCVGvvmhdGuYpyrv9UbpN6fjI00SVXt/PKLz7TpoGe9mNmIGtuKUcAOURXE+cbrdl7F+K94W//FpfhoZK4Vo2kZf1MDhR+I55NVOTGUp5XDKW0prvYOam6ms3QgmZPNjTZyowljUHD+cS74ObmBuQI9/cTTscRp1PG+ZwQ54zNAHS+odwq7LSTpuiIXKj5XJSXFW+0aqg2nms8xA7Q5sg4PI9ATLi5G3Cz26LvAzZbj24AkBkzsxSLKPxHerbols0VVQxX3vsLV2Gvv3QfVa6wbveTGArmIVzx2597XfVIavvE5nl06S1X9vQvTkSdqxU6LG2IIiOHxc+P9xgPT9jsNphPZwTn8eLVS+zubjHNE3Y3N8hgjKcT+Gy0XxWkwsyscm6hKeVTufHMoHp77VblR5+et2a+GWJo4hW+bDEU13x8djmbu4ZAKra7XPPaYZ3TonE3B69Kn47kQCHHhHk8g5xDjpLrypFWQO46pOCRFAaU1CxqxM4JiJMUWgF5EAWQ9+i3N/ChB1HAbvcSRB6b7Q367RbdsIELYhh3nhDOHcgFjKcJoAkpz6A8q+Ax44+r+qJTYOlEfmQiREeoh8kySN8HEDl1NECZX9ZxeF8xqcizXNeVzLPJF/104dlU9EpbmHrAYXvfDu69U0+sNvdbs25F5+DKdwuGKhi4Spp2n9R21nRXtAOsr2teh5VujO7X9yyUA9FBtHJkSYjdMMMKEU3ArPBMi0cuxrGWqvWxou8X+Z9ghyPmSCJ8UnTdVi8RWWDzsp43bv6hCEVLIVAjFrD4vpUvBGjqgzq8gk1IDE2r+h0XV6VFa55K/iawpNQp+lNLM6i0U/jllfZt7EW+a/ipITHbHwA0bynXh6zTtGyN1h+b0M5coiwspF3mg1BzeNl+a54r0PuXhdWfnbOpehslDUfRk4zCHHV6lMCkP5rJ05gP1YGDyiPlOZhbth5LshohmM39LmtMMKqhRyfMEdD1Dt4BL19u8N33d3DEeHw84f27Ez68n8HYgByD4ZDMc8PosWGCtpfqJ3oSx5rLwgxf5UTfAZCTuhpnKj8TGMdxBk3Ax/sz3v9wggvAi5sbDEOHtz+d8fzwhBkJTB5Zs9jnsqZNnKidyjmH7KpHk3S3BZD134JbrK5qLKrW71ZoRz2xMEGrD5Vn6+wAS+LWv1nW0QDmtatlbwsmXhiBbOBqnW/7X39pdMJVv5qNYo03Lq0EwiJtm57skmfAJRwOH/HD7/4Rw2aHmROeHx8R04y/+eu/xTxPuNlv8f79C8zjiPOT5HGyfDrMUrKSGeItpPHvKaeS96g9DfncZRu7zBGWawCdbju5KLwk2ymggDMDSlkbUX88wQWuCmG4yleAyvAM7LWgz+bXmCfJNBa9gZlNpwDniDifQETo+y04DAjdBuQ6iEeUeId5uBITnK10tXaKXAbnsyS0fEqYxiOc93i4/wld34PhNJxGAOoQdnA7D+c78SJIZw2ti0jzWVzUpwlxmsA5IU1TyTuXcwJnhg+y311mUOIyJwTJscAKUJ2e4psHIhjInrR0fY0Mhyl3jbHJeSmAYPHQlv+tUIAKbOcAClbStxp1BDDxIv/INShiClkVPJdIfbG2QOG1lpS7vWqp7+anCfPCNwxgVQyw7FV7GlhBd764r6FJxiKEqAK4SpNFtly5Pmng0O+Mpo3Wc8qIRJrrRve1Gp1KUYxc+V29R3mo1GGXsrhe6DMm9TzJLNXceM3llhcrCBUnErkzNYAgUU3Qb/zvGmildrF0DEQEYsmfcx5neOew7ZYJUk0JWh8AtERRjSEMbwDBE5gc1DFLPkL1IPiksswMcS9bKoDMKNijcwEMRu568UZOSfMNqBfNuoOoNPRvcc3TrHJUDM4xxeLBrbG5sGMqLgoSinu/wVTXFBmQCa7KFJlRrkljkHW/MiAHZk0pb4JUwSRUDyvvCTc3HkPv0PkTDk9/REqMP/3hHg8PRxyfj/B+AJGsh1RmBaDyo5XlRsVLDKUyx7mFFxNDT3DJlzEVkK0g+Okw4XSesb3b4Ol+Ahzj9asb+A64fzfhh9NJMJ3mh8mKG01mCh1QqbLl4IrXwxLLGDBo6UU4bAM3Lq9GASgcWzEro8FYCwOEYakVDy19WqsIn8cIn7rWB1vteHNRHFhOuanFVcqz0WCztkftHFVABTPogTIYCU+P9/jn//nfMWy2+O7013jx+jUoMv7Tf/zPmKYJf/zh93j//i3SPGE+HcBZMZTy78wix3My/spNvkuqSpAr3ASrnn5mbppb9Wc55LU5KofNXAoEtWviHMMX2m6Mpo3sA5pcd0VAVtlSJxzNnq+i2faDhGlnUIpwAPp+B0cO8fyE7AIIEA9tIpCTDH4MUtmCokSCMjiekPKI42NEPB/gfMDD+z181zdMRoayCXuEXY+ONuqJOSNzRIozoob3xWlCioqh5qnoiOYx6Duv/Wdh6crTTFZ5Z300o0iVhV7Dj0kLp1RyrHktSzLwEAqmotU+NpzhIPzSFx1SKmB6NYi1T9WDu/qjpiJe01gTNqX8p/CFxuiFxRPXqZQbSFZZQ8Orik6DostZX3OZw8UjzZ9Kd1nzMYKBTGu2V+jvukm+peH1NFhOIOmj8cDiUZYNxzQH3M2huMkB052yuh55llB88g4UJJ1BVDuENz6q07KOjAGoUpQss6QWIzE0VSxZZ6mYctp2dW9Y64Jz9E4N94s5Y5wmiVzwnR6IobRp2Lg9jG3nteTCJSA4QoYcppl3Xeaa06ppuMFmlXgKP7P5tHv1NgdC1wUwM6Y+SqhszuAkdOQL419R4xdiqD/b2JRSApHEtSZKpRpdfTmKQUR9/UoeEQ8uiqNZ+owSqRhrNNDIeZDsABkwiTsZMaQqUEowTytyJMg1iUfEpif0HeH1qw1+9euXmKeI/+u/POJPPz5imjyAjXYtl0ReZpUhulz4Fuj5FVBaeFuRh7mIUCN0ARHmp/OMlDN27zr8vDtiswt4/etb/OrVKzh8wA+/e0DMEZwCOGvVBKpRD0bhzmkyTu/h1NWSkarsKrfWbV5hv45psbrmvZIbti6PZjAs47URuDGQMjmQveWsJOn6HWUjcFnvxdvXipXRNLVCp/nXMtDmRYWm2vFz4xkAoFg2rVJO0yGn79Ewc7nVZcABz88f8fz4EV3XY55mPL35iDfffYv/+L/8HSh47PY73P78Ck8f7/Hjb/8J8/mslUIU8OsixnmWxPLIyCkWo2kLxtt99KnLDAtLV8z6fTYhrcAi5YxZkx1KFcPKeEAED48ANWQyqVHIzsqXsEjeZwkTDcS2YWHWfwWc2rVycuIsj8AJPgzotncgIoRuCyI1NmmomPcdyHVKnwlLwJzB+YSUgdPhAeOoRQxcADmHfthje/MKIfS4ffENNrs7DP0N9i++kn3kGc4xcpwwj09IacbTwwc8Pz0gThPO/AyOETmL2zcAdOoJGRODXD1L0RcXKdehkznLWco8ZwY7QvLVEF/XmCovIy2eYGDJ+QLEKtGrsuiohotAeEw9nTO3flu7dsPYOYXyPAOxttBlTe3kuK7tIjFrQ7FVOldAVtaJrevNjluQtiq7WBqayr4mgHm5FyyXitCiGXQI/gqH+5QB43P7q97j4BzDZXXdZ6kAKqBYqhg6Ax1sFUobmah7ICUDTAzWBNbeCT0xMuZk2J8RLLa1Ja3WuNe0LaxMZGziCnHVsQre9iAkZGA5OJRFl9nPJVTT6Snz6SxAqfMBYZ1LuyLf5e8wfM3FCOcIclrsXamwEpMY1pwqXnbCXJ5v2mivvNDCFCgzwbsAJmDuZH0wz0CM4CQJoC1Svvz4QpD0r3XN0wRAClFkDkhmbLIy8KgGoPYskXSczCghCSDS4ivNIRRVfmB7lYGCwwDlR6SAMyme8KGkL+A5wTmHu5seNzceXTji+ePvMI4Jf/jtPd69PaELHYZhAw8gp4iYU33/SriXHEow0VtDa1pjEzsHBlVjU0XzpfAJZ8bD84gcM3b7DR4+TOgHh69e3+Kb7/b4Z3+PP/7whDRnAB0AqwTbbhmbG1EwXfFAb25qPWHInmp4x4pueEX37e8ENZRbMY0SwnaN+FjP5GjZaO1NffQ6kPvktfRUrifuduXCS5dvLCzS+Eir1MAUJRT8bF1SO2ExNgGMh4/vcP/+Lfphg3mecToc8fqrN/j7//y/AgRsdjv0+x2OTw94/+MfECdG5xw6J0bDpHx+5oicIxgSri758xrcUWiHUbnftUkB2qlerGNjHLDfLd9j1iTGlgRbUwnDag1Idg1azRmKTLQ2y/ypvC2VoB1KnwlQz9K6IBZ5SsiA5rrqhx2C73Hq7pEtzYgamyTlh+oTrVznDCAhxwmZGYfDR9xPCWAC+Q5EAcNmi93+JULX4ebla2z3N0BPuL3VVBGdgwuEeR5xfH5EjBOOjx9xOjwiziNOzw/IcdYqX2JwdcHDBQ+KLGFAIE0WTWhzDdt6pJwRNVwnOD2qcxKqL8ssWIGcFU3Qg7sQ5F3OLQ1ODE35IR5jTg/zSA3CIjepGi2LjKNlx5qPq7pnsnSt5NjN6w/pyk3tHPCCFj91re29pT/ctsqLt5guB6B440D1LVrQbhlcbetCgMpYLg60irGp8lDTQYoTA3dahTRXQxO3TFs2acpy0IeU4XJWewKBghevvSQ5ypAhh8FlHpbY1BwXoId0xdiEEk0Gw1/UGByllWu8pBqcfDNWQFNvTBOCVZtvcohduy4P2OSnA9B5QgJh9pqfMy/1PJOvVq0RnJsmiukJAKq3s72H1UNSC6+lYUbKCUgJPLLYYMoMyooWPfwLZdAXG5vqpZbGK5updMTAjlqhi55QlNB6Knt12lefM5bCntv7qCoNDLFI77YB261D6AjTOGMaI85jwjhmxFirvQmmZ+0vKiAz2rwQ+KjKdFGqG2BiP8sftT2uaAtzyjidZiH2NMDBowsSUgcA05kwT6kokevVNOOLAdD65lbBaaac7NtLQNEqgRct6SZv553Bta0qjZs1WHR0+fcvKHcmeI2QgYL76qYBXx0Hmu+lheUJuAEic3us5dIrQ6Y14a0al3lPGMcTjocn7A47HA8HhC4guICb/S3yHLG7ucUUgsSzplgY7sIeRHY6td5HdY/UW6nMz2Wv6j3FmLNYrzonZT1R5EpV3JKcUlucstOTwsKPbF24nu1WZl5ppHXVv2CqNmYSt96UIpzvVKgJIPJadtaVEDJXVrPkl7p6sTBXAMgzOBOSC5jHo5T1PT/LPHoPTnKyFoITT4ucQeThnZwQbncZqZvh4CQvwXRGnM4LIZgpgTiuFgGwildmZGkFtRnyYEp1MTRVvtJWT7KS3SXRfJO8l9DwItuRDc9qXcPN22ZBVyaYbF0Kf2pm9Ar/a91+aTV2W4bLZy4/K7zNSLahlsoD9P+aAHyt67U/pT9Lw0RLk196VU+Cix5X4MINCGx5R/mpnIU0NM1kpvHs1tvGifedGH3NA6XKpJY2bDIrN1rKQpMHFqKWATmNWvEEW/PVwEtrxQuIUYzhcirdHMy0jdm6tG22xja2aMFqEGEN7zJQa0O4fL7y6bKViC7WmZpnRBFxYFVSi8Hc+O9C/n0hUvpXvCqGsM5wZcgMVXJk/4uMkIqIJkdMjvF6v37mncxVlrZ3Fs89qAHGE7rOYbsL2O8DnAemccJ4Toiac84qZIFQw+JsoZs9WnaC8QxuyK5Cp/pBgw+bDq5nDwxgnjOOhwkpedxsCV0IGIaAYasVO1Pjib3GIajTbV2p5+/NbrYlMgxlfH3RcWo+vzLv+rIFVCn3rnDXFWV2ie/Wb742rus8e/2z/n7lvqY/VrmqLsPSeHIhM4hWS6sIRDvLyMg5YjyfcHx6xGazwfkoHsld6HF79wKOGcfdHpMPcCnWapRyar0Y/8LIeQW+fZrzV55QPrmyjqtjUBidF27J1UucKCMp78yU1eO5TsMCM6NREBVXFezKNfzIhm3vLgql9tXC9sl5kGc4F+C9eja5NnG/0ngh/IpJrT8Sli0JXzkRGBlx9pinE3KOmM5HwSLOg9SQ5RHg4cWTlDy869EPOyAzYjeIDEkzUpykUAszctLUCEigbFXOK/1XumYVoy2/UmxIhBKBa2tfIj7agzhX0loYfZh3o+EOeymrbJZn6r1oftrvReasqKWlOAJWxh69q9GXLpuoTLJwiVbGNm+4Km6vtHvtVbz6PymGX7Ag0peX08hLM8libCZgGcv7eIWP9MvKnxfSooyjfEpUq3Ur9jI6LnmLNUzUumwDb+UNNZNo+7fqk6LZMqBFVqShcpiDK4a0xbq00gSKOsTWkDMjUa4G/QXaNXqSb66tqQ5FihS1GKrBn2jGea0/1oYO/1J2GA9TnEAkziyt7GKbu1Z44ssx1J9tbJKYWEn2GRNpsq66iJY3wTsprZsSIcWI7IT5Ok3MZhbMxSDaF5Eomub+DbakXDopqoSV0zGXAJex3Xb4m7+9w+s3cnry+9/+jNMp4e1PJ3y8zyCX4YKeSCQJkYGD5E9oF2xl0ZR/jdWwdrOMfaF9WegfKfh3cgqAQDiNEX/88QG7XY8XX21xu/fYbzb4m799idNpxh9+d8LpPMo8+q7ZFCpg2MIYvXh5kcVny8tIGVax5jdM/EsvauT62rJuBif7fbGIa5jBvPzUGl6gpuoWaB4r7WXjr/+vgIkXOw2wON/C8BaKPUyqyWZnKmCZAD1lhRhC9JQpMyOx0P0wSFz54+NbHA8f8Xy4x/F4wLDd4evvv8ff/uY/4OnVA4bdDqfTEe9++B3u3/4k3gK5gjBLftd1AT404zBZ/ylh1KKDdjwXDO/KRVLaNSuNZCTkzJgs4b0X4e2cQx9CCf8iy19kJTYboaT5W5tppUXfzShSy+QCzGIwSSliGk8A6Yk2eXTdBkN/AwdGcFJKNCWxgzEDOXHxpirD1zULwYN7KzsvnkRxfMI8HQFyODy9h/e9gKRuA+cchu0WfT8ghA7b7Q7OD3j18hbffBOQcsI4nZBywvn4jPH0jBgjTsdnxHkGDs+Ynp9r/h1mdeOW+ZpTRlLazzpzwTtN5EwKAnVRaWlo6rpO+9Wj6yRpZan4RDLnRkekbngpiUcNOcn5RpDy5QBhipKQmqEng87O89eJnqlFtg3pyLq3wqoYNttrva8/SYs67FY74AXOAmA5g0kTK8oclnCPsvf10EDztFRvM+CXOrNWwj5n4CUCfEnqaN6BwidclkMO7x24GMZc2ctCIrp7sniDcEronAOHgDFnZD3xyk6Mqo5QvGhbyWhyPnOT90inUYyKopjNgJ4AixGVs82HLNLlyauMiyDjJEeIOWGKEc45bNIMlyQngSRXJQlvv4Jcyq/CgEuIAhFhCgGioEmifVMSLE/aQiGGyXnZ4yVHQeb1K8V4FSNAYmgahgEJhJFGZIjbPuVc+BFMwfs3NDaZV6D3Hl0Xiqyqp7kCqD15qQoVArquR3YJjAhGLqf2ZY6Mx/Bl/quWUcqerfMqeV58yf8GAvrOwW863NwE/Po3d3j9ZsDbt0/48Y8fcT4nzFOElZKem7QKzJLfqeRl1r1JUA8Bolo5CtAS0Uv6qzTT4hUqgN/alNCggMMh4rf/9B67XYf/ePMaL19v8eLFhF/95gbHU8S7nzKeHyckFzT5foNnYB6ICY5sP+i7YQqKDMBSzhjuoEYnqkpClX3ri1D36ZrfLO7TdzIv+dDlZfKj9vWaEanM6+q7eo8aposx7vKdZbw6vmW3qgG8GBzJQiTlMClrpRr2ErEghkzBFh/e/gkP9+/x8f07nA5HDNstXn77Nf7+7/5XPDx8wLAZcDoecP/Tj3j68Fb5fyicy6sRoet4sQ+WjKgRWJ+9VgqZ8rQyl81nReEmlH03z2Lwkb2Z6t4qmEkOy0zciRe48G3zZq7daA41Fl2Uh4mV/xIhJTHaySHdAOc79MMWm80eBEYg8dyRPEiyT7OBqUYZdRaREcSvg7PdnxCniKf5CCLC8fABvutRirSQx7Dbodts4H2HbtjD+wEvX75A902HlCOm6YSUI8bxgOn8LMVanh8wzxNOz0fM6RnV2CByz2kcnaRrEVBMotiUsHMxjlv/qeB3p2F0IQR0IcCHgOBDDdPTe72rhximPGfFSD4EKSgFrXAXvO4VnTFd14UUNZoBmk+b7z/BHxYXX/KGwjVbcvhEOypm108266xhcqYvrA0J+tO17ROwrqD32SE0GHD9iKyZF36egRibvJeKeSyUz6JMKqWS5HzKLHp7jEBOCMGjdx3iyIiz9LNzWpyLuBgNq57K6mFXDTVFtybLs2R4St9LbQ5AXg+q7Gfm+r0nV/JfjtMM7x22XYfknc6Du2hnzadKZA7EQ52V3r0PEKtQQsxZvfDEO8+wjjUp4lTTuaBiKIkSa/iAgkqOSYq2BI/gNsjjiHQehS41p4+1a+v9pRDqzzI2tafv9oaWbdmsmSIkIXO+UbDqZjeBJEAEVyiT0Bpv2EZWlDMs2hPZywgBuLsb8Pr1Fu/fz3j79ojTMeF4jBhHhu8YvecCXjOzJnNdo2Ves5PFhlt0twXcn9mUpN4aMWU8H8R1dR4ZHAmdD7h7sUHXO3T9GcypJK62rWJWWIuBvgYuWkG1CB9r+v05o4RYlK8xvEbxKp81CA6MGthLl8+u2lv3afnC6z1cf1YBZLMA5fUFMSxCjeoLq3dGEbtKSGyGxsKMdO2CGAim6YQxH9VI02O7u8E3332Pu9sXIO9wmM/oTxs8vP9ZTu+VmVpsLEDias0aZqpAuszvFYVflAgqAm0xc8rUBNKsAJL9ocmTmqIcyMyIKVdm78Rg0ua0IFIPDG6TV3IBZeyoiVs3gFrpbrHvF0anLEboEsYqyXCD70HI8C7BcuDASng3JbPRvMd+996VnFgJAqzmdAYATNMZRB7kOrhuA+eDuHcPWwzDFpt+B3Iem2GP3e0emTPGOCJzQjdsEIYe8zTJqcc4YZxnkDspDQnHdaroMgDKdk5CJq9B5DTMSzlLURhIgbpb/POas8kpuCyCDyZESHOCseYBW/IDR06q3jQVe8zjtIVDC3zSIumiaJTV/CTo+Kx6tKJZKnGV9uPy6UJBVIVmlY0t36l/1lxl7bvrSIHPC8ZqKOUr96kXUl7y3nIeXWjbgdlBrF/rvaz3axuCEajk/rPEjGZNbOl7cZq0UKzW7cv/UwG/xg+W89A03KgdSptFmRXPJoYkmk45gTzg4VF7YDK5aWvBaA0sWVUVp96UVBwVqhm7jpWbFkrIaQnZX8o1VuLgJBZHF8RYxjavEKNAe2J5Dbn8W1y2Z+WQzE7X24MTLrRkCcLBkli30Jg0JGNv5IL9zVjug6v7i9pDAFXAvEPfMzabgJubHncvNvh4f8D5NOF8TpBIYgWtbWg9A9lxMSiVg0SipQfx1Rm5Dp7q0cy63w7kCfOc8fhw0jBEIDjxbLq560GB8PGD8O7M7hKEyAQtabXwuPpBBdVLHNryrFbBW+7X9pVL3ryUYcv7v1Spq3sOxdD1S8bT1tCkvVopp1dervNi8ubiS8VbrTwpOhlzPSwmVG9iBsbTQUL5MzAMe2xvbvDVd9/j9as3IALuH+/hug5P9++RFJ9YiDQ18+3J1dCwa3z7k9NR1295b9P/BTi0KbqUJ7lUO8xqdJL5ytn2FjVzZPNvnsZK042sraZYvlyVZs9yFgwFL9XaCJJ2IHhJRSAh1Ob9hIoxm0kyzAto3kjHEpadoyYVbzDUPGmlXjE2OeeRUkQ/R3TDFiHcgFzAMNxgdyMYakojMkecT084n3rM0yhht+MZ0xTFeyLnkmqB1EAGIqkMLVnXYDvOeJatgIlLk6GlyqQ6IViC8JIovH3HYukrzoTJZqqeM7lxqqjYzSjhkshazbGSzhdv7kVLVdB9Tl61zM0MW3WeaqXp9f1tC00ERoOlhCbdEiuuAVj5/8WGKp+atz2rniI5ArnwCgDqySthbYX3ACV3kfHukovRaSi0E68fp50Xg6BicLLw5GJWqhCSedHTyq+vrCqtprAdaStMdM87AIl54R2esxwYXXrILmVJO292p+hlWrBGHyjOnooPTNYItm4wg2J+RsWeVebpmLNgU5k/SdXDGr5qvOPyMOPKZHzi+mJjU5u3w9zajLnaWEFAZsltwXqKaAzCjohMuYwxISVJkuq8mR8XEloHY94MFnssAiY46bqU92a8uAl4eXeL3b5D6AhzSng+RLx/O+M8JsyzgVYx9tSZIjQz37y8UQah+F8XoSwe1XtsbmoTRplVQbNElERC9DEC798ewInRbYHbF3tshgEv7k44PJ+RIyGfE8SImxtaNgX1kvAXsnEhVJpcWRdX3UILbzPCBXHZtF1jm+vtc+2eRrZd9Pnqi9bPm6BxqrQu2qjssAiERtBUJYbKkkvqIvV0MyBWBI6cynvnEJwTizkRPCRBJSFhPD4ixxF//P0/YTwf4boO2+0Gw02P8ftfI3QdzocDPvzpJ0zjKEkVlVEmzg0NWr9MAbHZYmW0hOWn9Rd5VP9QQGTznCw3fysgmwWQPAQMyoxMjOwA5FhO5QwoOcsDQMbXzGihc+xp9Q4UQxvgSohTqZjGLAnokBE68YL03QDXDQAnUJ5AUgISWOSaqYCyBQbZPONUwWEC4B28ToTT8rdMDNAMcEKcGJzOmKdnxPkE5wMOTzv0m63QVyfJEXLOIJZSutuv70AAjucjjqdnpBgxHg9IccI8jZjGI3KS5OMR6oXVJFynss41t5vkwNNpa3LBMSxfUoL3QU5BZdXKXrO191oa2UAoA5oc0yGmWGmmVXSu7NDizs9O0ho05NIavJY87zqIKlDH2GLD3ulya5d7jP5Lqy2dgxuZQ4UZVaWwFc+1vU9dLfa+HEsDKE0Ak5ZhZzGEppi0PGwAOb9UJNFMd85yIpeSgn/1UgkeLiU4HwASLznrMzkZn4GUAmB13IUHaNiAdx6eg1QiK320kPfGCEGXK18OMqDGTBBmVo85Fi+nmGU/eKdVZBqCukZL7QwyS7te6cEScjKAhAyy8j/aJjfjM4Ndq1Si4TP2WIqpzIckNnFA10nlpnEE5lRC9+s+vNrtv8gVYxS+6QXzpJRqRavGKFMq3rJ6PsCDKRWgGDV/XIxR7jWjFFBk3mJghqFMASPjMRLkmZNUtbp5tcW33+4xDA7THPHh/QH39yMeHhKmKSPOQhmcjQNZ+1T/yQcXY18oek1eKcNka0Wm8ohGaSMCeVE7mRlTYrgx4t3PRxAImTK+eXWHcRfx9OEDnp/PCM4h5aQ505b5raxwQ5Wb17COKSx1Pi/VrH+ti5p/NmbDYJfeYAovv7gT65Ag8yZYKonVINWGH5nH0uLttpkaJQVsh7Qoc1yqL3onCX0BdEQIiQFEPD/dY5pO+PF3/4zpfAI74MXNS9zsbpHHGc4HjKcTHt6/xzyNslwKhyVnLBoZ0PLxureWUHLJO9Yfy68VzxTvd2plXyqHBomz5AWzqqLq0WoelDKFhLo1Na+Ptu31vYaNWp5Z9gIaGSfKCCwk0YeA0PciT7oe5HrFTOpxAQZb1ncsD5OLok8GRU34urLuofzuNbKDAcwAR8SJgDwhTgfM4wnOexyfdhi2W+FpIej8Sx61vuvwzTc3ABjn4wHH52eklDCPR/V2P+N8OuieTTKvjeer6YB1XqGHojInhp1kQIpnckamLPmcvNPPc4EJxdPVvBypeiH54MFEiHPEHGclp8YbbU07jKKvmtFhTWcX+/ATvKVBUNWg8EXa/SUOoqIDmBy9fIr0vlq7pj0QXQ7zGqCkxQ2t7ki6P5Xfs1Ua1GJfmrupFNppZkJ4nK5PyX8qIf3E4r1H3oG9w+QsOimXebIZtMq6ZU4IzT0kuTPVq0o7jzmKsagnllxijUGfnMm7NfdEyXvJREiZEWMCOz3YNzuKbyfq80yciNSzU3JceiX86DShOYndJcNpuKG0Vb2XagdFTxJ5J05DdR6YM9I8C50F2SvsHCh0ABx4jshzBJHkpqo898tA1J+dINyujFwMTkBlxCkmMAugdqohOInPEYtlUsA0J1mEICUqqSR5bayPQDE2FQu1hugF34FzxniWE6yb7zb423//Cl3vEHrCPEc8Pk748ccRsyaMdF7ORuYoYM0SwwkDpgZrFLRfhCaRMjq/LKVZBduKYRSkjKYN0u9ZQ5gYP/7whPufj/j+b+7w/W++Bojx7s0TTucDTs+Mh2MCJi7zBhjDtVhs2TxrQ6kpFrbZqN0Nzc8G1ugzeXEbtO/XXMAvsZkya/uLcDVmuTVKyFxd2WiNFXUd5kIgy8O+eHc9uakCoXjiaTtrZSsXdyM16lCNxyZI2FHwHl0I6IPEqWevmzknHJ/fg8hhGo/44+9/i6+//RX+/n/7/2Cz26Pve7z69lu8++kn/Pz+HQ7HCRwToPSnkl5PYSTZYXGrLkqwGXbr3JYTCCwwcAvLLeUpJKRHPVpgBgkUcJGSJOo1YOIoI/vczLWAx2DJJr3TPopbvIP8XvMJlVVtko6mok4UYJCzKDmc0fUB/aZH2AxwwxZIM2hKEi5T6FXXqFlroZFiTbOhg516pzlxZydImJ13Un0yZnELnc7HYsh7tCqSroejDl0/YPfiBULXY9jeYtjeYrPZ4utvvsdmu8OcZ0w8YZ4nfPzwM87nIx4+vMP7n/+IaZ4QpxkTzwhgdJ40LMoqHzXGJlX6zMuy0LnOf1KvJDMcCZpZ0r2caDqVAGrwByGEAOcc5hiv7MNLAVENTQ1F0aVhfQm621O+Kzud6je5gbkVUJBtv0U/rIt1xwO8HgHV79r5WI+Nue3v8h22x6S9yseXBig99YUThYKsqqOcLBNYy7/7ZnDWpnLWJPs+R00KzVmAvPPwKUhodwnJRCPIGxnY8LLC75wCFydy0VOHNGfMcQJnILWOHVwnei0v6pqU3KmSdyNlEMvhjU+CATofJC/JCtAtGrFP9JV2ch2U90bSEHOWKjJAhlNALGA0VxGqE1HzA2ERzk76nRmbfPAg9W6ioQenjBwT8hQlITlxqULUVmz8S1/zPJcOkyPEFGvRDVQ5KzlqZKxe0w5kPc3MzJILkCVcOKWkISO+2YfLq8g9Fh4kZcHV+M4JKY4AEl6+uMN/+k+vkTnj48dHPD5OePf2iA/vI1LkYqxiRklmTFpelCwjve0zNXybUDDDg3lstjyuKmW6y9nk29LQZO2AgBQZU0yIZ8aPPzzj8HHC19/t8O/+7jVSzvj57RM+PET4RMhzQpxpwV9bT4fCb3gpTyV0IBfSXmO9L1H7Ltfi89+XsPV2KbnlfA1wM50Jl1zwetstZtVGDIeVKRCvFoaFadtzrjzTjqEYKyTWWZCJiikrNOCcb8rSC04IQXqc84zHjz+DyGEez/j5D3/EV999h7/73/539NsNQuixefEC9+9+xtv3b3EYj4I5eBl2K9WhqcEiwkfKQZ3inWvSop2f+od4njOkcEzWSpiunSu2yr5Z6hPlSh0uVoObtW1pLbyTZOJEBM/q62yKeNu3gm9qGE+5lwQXphQRwOg3PXzoEPotyG0ATgDP+nyt4ileoGpwajFVEQ2ar8gBYAlVW1TYc3L4ltMketx4xnwWmogqunzQvnQDtvtX8F0vxVm2txi2W3zz3bfYbLeY5xHTfMY8j3h4eIfxfMSHD29x/tMfwVEq2qUs5wYWQOlcKLpPO7dVn6g4hdm8NViME8rzABavOmblh67Qh3mKmidNCB28F/3LisSUimKFcS8pyngjq2FMVMm2IMyyz582Nq1ocsE86OLupWPA+l4UvcLyM8k3ZuD8NAcxHlBlfMODVh0mfaD1giHl71I/R6M51PCSsiYKB8N3AQ2b0Q1beb7IccmDKzlIMzo1hibv4YJTlyiItxwEy5gsrU4rOh9aMdgR0HsPDpJmJDkAKWOKEcSsHpVVFy0hZaj5a23KbQ4NnkxZwmyTk+qzMXlJIu5cxUfNPF+dfEgOXfO2CiRzmRyQHUAkhRLEyAbUBHlmSalomxVXCT/yOlWia0mF7ggmgncDfPCA93D9gOwln0mNgjFe5z7R8cvrX5AgXOdg9XcFTMbUL681vjVhjysbqpwEoGHgJizLCxneC0H1vcOwCfAemKaIcUoYR3H9zklOxHSv1W1F6ubdAFrraPmrCGgU4LsU2MsZaI253ICX5d1V+YlzxjkzpjEhzhnOA13nsdv14Jjw5OamQxVh1L2/7Hd5mYGAy5df40Of/xwVCC9uMIZw5aHidfCZS7pY1c+FJfwTV+s5U5egrqptfzuJu8bQF+1d+aMCuMt3kwEOmEGKAc6IcQKPDuP5iNPhoN1i9N2AYdhgu79BTAnz6YSZR1G89JSPNM9Z7YKBATMAfKKj1yeozIORjSwFl4G1YqWugfzLEFBuCYIZZjlXw2W28B8xjuTMxaDVdKE2joYsGxpmRkmUbMZTp5XXzDPn2txLZRZCZaH1MvfcZSdWv6OOtQpEJSamErdPRJjHUTw0XQdyAY6AaTzDk0PSKoUEQuh69MzYbPfY3dyhmyVENnQdHGcEnqVn2QRAA9gN6TEvhOsixKXpP4FK2NCF4lDWcvFRATuuGJ8r6yCs9nUh/OXp1/Jk19qtn9XxLPnBghSonlvZh1fwivbB1hlFUV7eYH2oJ8YXr0e79Jd7Zn1vy6+vM0PCMtzacr9URXb98sojuJyEV6M31LtA3cv15eVM2pSB1T6yvrQnsVDQbKWhJ30+23MXE1N/oWugsShU8j/L+5GdwRe6vnZXL1l3AkkuhhVdWz8JpJ4WKtw+IT/WuIEIoIxFe0jqIeacKItuITCuGtv+0tflifY1LlYE++Ky/XOtzasYtW2twTjrwxcA6Drx2Ot6Bx8InIBxTDgcZkxT1txjpo60O/oCJOi6GE9d9ZMambzCW+uQJWt9gdcuB48MYJoSTi5impJU2AOh7wK2uw6YAhBF2VzODBq6b8d0SXMXuBVQHrxssrTCvOSJzRy0+5muzs8aqxgeRp3XtldVnDXvvjJfq83a4qjF6JiLu9NayRQMaHjCPluC/SW/XQVwWlNUKUlEjcj7eRrh6IjzSf7Z2m82O2w2O2x3ezHUxwSO6nleDJfNUFb8kktLn9/w7dyVNS7zT9dIA7aeaxnVisOid+iHapcTg73iJ0AwVTN1C7m84OE2cSpTAFbPMV+Sgi8PjVDwTcUPdV7sxjWusnktz7f8s5kzcIMVGOA8I0X5YJ7OclDiVxjKkVS7YoDg0IUePAiG2t/cIcYZwTvEeQRx1mqwEIctfdninSaRjL5ID/Iag2l7rY0+RR6vaMTkTN2fld7r9LT/byfd5mXVaovnmn6UNVsCkdI2t3+sX/XZq/KQa49Uzn7tDqpNkP1ypZUvkqdUELo1VTzP3Kdz3hWdhnPFUNqPsrcIkIMP4SW5YEulT+uk3dx2m8SIWpLQ8jInZt3aawS2/qvF1zqrzCUvXsq5VG5dNPCFYKSyz8aQreM3LyZLfA/Qin+0wmo1DiJN+YCamKzgVIA8iZHQ0ZWibl8OpL7Y2GSnBcFLyEvmhHHWOMSmY5KQVLPHa6dzypIMrLhv26k7w3tVMhuG4EhO6h0zQvAISU7i+q5TzyLxtAqecXcXEILHqzcDXr7eYBxn/M9/+ICP9yc8PSYwi7XUZKaE9PnSN5lsS0K6UoZsUV2tCLVmWgLGs5AZ2c96UleF85JvmzvnaZSkZ9v3J/zpt4/oB4+Xt3u8fLXFTz8+4/HhZ6Q5qbFM3ZLJSvdWy/nnOY8yiIXwaR4x2ndyGgWgKD5mEZZ+N0yyAKbKLM27pZ2/tUuF0DOXJOb2jmts5ipmsjVowUX7kyFC9cpaWZeK8qbgwvLslBeWJN0oAt2UQhMKtgmdl1KRmWfM04z7d4z/+v9L6PsNvvnNX+P1t9/hzctv8P/+3/+/OI9n/PC7f8KPf/g9uhDw6uUduq5DjBFxjogx4vn5GfM8g6OE3QB8xYOsgo9c/0ARakU4yqfODN4NyCUbrp58mfeU7kAxNjWgkKGnAsqI7XQnaR4GZvPMouY0Z6mgcAEDYk2Pyj+cdwihQ99tMPR7JJwxn5/Fmw+SEI/NDdZpJStj2mSmP50DFqFRyEENPAkiqDKjJH+3+XDeoet7EDnkpOWN+YzD0yRz8PGtJuzt8eHH36Hregz7G2xvb+FCwLDdYbPb4MX+BX7zm3+HlCKeD08YpzPieMJ0ekacJ9x/eI/D4Rk5zmLI4gzKCWCdWz2Z9UToug5OiywQVW8AQpNo2MlJsRkDeMVsbM7IEfq+W4JpkncJHVy6VZtBROLL82Iv1RVt6K7ZV1h9d3kZaFMAXBbLoEjjuaYKVm727PX2ajtrrFY/b42iK+anny09npbPS74BS9QuHh7TNCP5hC54pK5r2rUcGA5zjlrVcJaKPDmCNTkxQ06q+hCQU8IEIHFGny2hNVfhQRXqmUEKmlCevMcmbND7AWeacDyMiJw1/I0X/Ksdd1WuHGqOsQowmcX4cB5nxJTAW8Ju2JSiC9RM55JCgBJ+RFwOdbzScPAeIXQAZ0xzAnHCxnXogi8DFEWstlpCcBvAKgqWyFkpnsIYY0Kcz4B6NjIcUtchhaj8PGn+vC9G6/8ql5UV7roOXdeD1Fk85wRAPYfAeuIo4a8p5YVXs+ERAEVJKp4czUUk/EEwW0LmgOAkMbl3HpwZ4zRhMzh8/c0NdluP2xc9IkcczxN++OERH94dMY5QRREA1dxxzlXZDYZWgrJwdYKVRShpByx8r92kMHpmpGxeG+pZh4q5uN4Ic5EjIoROcNzjYcTheYTvHd68nhB6hzcvX2CzH/B0P+Ln3x6AHFGN483hoSM9NbaXtNenlB9clcnt3Lc/WROmVHLjxfeLnbPYoyzPNkYP/VTD+HUXMGCn97Ym1dOjpRtavMMUYftMmqreNa19oRqXKn+1KZP1lbYEX5PmvzGeK6G4Hibj6vw5T+g3HmBCnJ8RpyNSPmOaZ/SbLb761Xf45uuvse82IACn0wHv3/6M+/fv0PcD3rz5CkM/4Hw+43Q6I8YZh8cHzPMoIabFGyVcGBKWCuR1haloBAVj8xJMAeCcNKePPaHKXytrhVuVeWOo9wMlJC0wITlssaDR4oWx6KUajXJGijM4SyqCvu8RwgDyA5Bn5DyVxXLeA46ktHumEq69ZNy2ZrrQGjJneD3pWLL+LmMQIvEqw0AkBsEcwSnj9PwOgMPh4Z1gqK7Hx7e/Q+h6bLZ7bHY3cCFgs9thuLnFzc0b/PrX/xE5J5xOj4izpCY4HZ4Q5xkf7z/geDggxYg4jYLvFON57zH0nfKGgH4Y4H1ACF0TxSJzbIVcrFodsR0YmfHPDnkVEWuicLDmNbV1We3pBX01Sl/BZlcorex5Bgjrg1YuNLjkAn/+dSnuGl5TQF37lkp1rDTANhY0Xj0NBqg4vL6spV07rM+mE2TGPEs4uCeH4AEzilaDoUMCIc0R8zhJnjI0BifIgXUIHXJKmMeIeU7oKKPk/MrN4K3bJPvUO0LXd3BBvJs4O8zjjKfTiMQZA2fk7AoOM15KOl+mi5XNXdUcMIDIDEqMwzgiccJus8GwGQRbp2u6b+Udi0N85a/BSRL3mJOG80HLhwCdcxh8JzpBTI0sUNpzxqFQILjXqBVL2cGQZ+Vvgus7UMeCXWPFUHX5lwW9PnV9sbGpPRXzzusGrwDeDAaS5d9VMIIm1wJVIei8Azn1aijW5/o+S6Jlbo6mWHkLx8sJ8MAwOGw2wG7nsd0FxJTw8DDipz8dkKITYxNhAVIMrBVDCkFBkS0pFgRUTuIKs6C6wQrJ6/1Kba0FsOqAXASPUxAVU0acM46HGU/3I7a7gDd/tcHN6w7nU0Lo1DhTTrWoGJ1aYbRmQwuGViRI3QC0uqmwl0ZAAlVoLk7Mmg21oI9WnNt4sYwRt/6Yd8ZFBy5GsVQ4WmOT/F3HYScbxqjsixJn2zDT8moFnO1aKVdcMfd1wnjtl9J5jlKi93h4xPkwoQsb3L16g+67ALfZ49vdgClFPD094ue3P6Mbety8fInNMGAcR4zjiGmacDifJDYWQHGhhiq66zkiA3UNeF0rHfqF4PSGcRUAK2Cw3cO0zr9AEI8mBZE2f44y2Es7YqvV+dEkjdRsAia01CHJATXvgYWnStneHuwTmNXAQNZXNVTnrGXiW0puaUk/c05CINDyIAPlDRNXfmAhZ5EiOIrL9DzFki+HM8ORx+nxAd53uH31RpJjbjbYbm8w9Ftstlvsb/dgzng+PmGcRoynAw6PHzCNZxzOI47TDGYgwYBSEqMCCd8knUfvbE5cqaRS6NWq0jlLEE4gTQJKwMJQbJ5pwTssYvUbfksa77rYjiZIFkRnC2K8xFaUF3csaG911dc3IKdRZBaARX8UJeriDVfaL7y23Qq0uoeb72RMlR19uv2L01BATmchVenasDLj8VZ6OqesubxyU8HVgJKst/BFyWEUOSPktEgGTzq+kiJH+ZzkopDqO4MPSF4q0iXWEI9sIS0LDr2cF8KVwgQyksyMOcoYh66JFWEUkFynUueIUW/S+SVU93LZ8x6cgAQJC8tUDamZuZz0V6+6VmDJd5YM1kIlMzN4EsO9Cx6h70T3tdgVDVUsMunf0OBUk9XK4Vl2TVU5oOITi2NRxW65b+s8GEYyrFUvnZvmPsNPTg/OooWFEOHmtsftbY9h65E5SQqChxEf3p/FG8H1VZ4SLtbCwKatnSnW0t3m4GcF8grZFNkj9NJ6eyyWx2jO5kqB9niakeeMw/OM43PCsCFs9xvsXvZw6Rnv/bNUI2xCyFuFQGS9ydFWRi5nlBbdsMMolG8q+V9yvipvl9+377g8IKsD5mZvUuGJS4TyKdbFxIvDwUsPqiW+smPuFZQoa1GwLOq81DY/3RWGYXD9QI3JljtkniakOUn1spnR9Vu8fP0aN9sbBO8x5YjzeMI0RzwfnrHZbvHqzRtstzs8Px1A4QnT+Yzj4Rk8y/vk0JukSItbd+yKbGuuMj5dUzsAWcg7o92izFavz1bEEAn+aiCUtJ0k/yf7WoyFnOlatNjvtVNVvucsOXK9hio670EuAJZHyoxNJNVRiRr8tFjgKl0Zis8V95VvDT9BDzpMzgIg79D1orROk+YLzBFxmiTUMMm+ds7jdHiCDx1u7l7j7mVGv9lgt3+BYdhj2AzY7ndgzjidHjHPZ5yOT3j8+B7jOOJwOoPGSaoNZ2genyw4GEDPnXAfzYco82LpC2Q+HJnxu6F/5WstT2rnpxxKNzpcebQ1PGJ5WTsX1LXeXFjLUm7WuuFJ+HNEFmFN73UPL8e2wAVr9xVd/MUoTVe4eCdXPLf+llbv1T2V9DAld1yGbfpXSeEAScFjRpDaG8VRKleZJQ+vGeM7ykUDLXuyQssiRyTE14sjCjs96NYE31yxXZ2vZvCNDDC5YutrugfAmFMC5oyu6+q+tg4163Tp0MKL93qdx3p4aDmwgM5yYJttQzcqs/H+5VKBNZ2QOtu4JHxDcvlKnkffy55KwQHeqaGaLnjhL11/Vhgds4UN5JLg6/ImY5BeLGYgzE5iIdvNXMeaS6wzU41NNobbBQ9AT/fNKCD1o9GFgK++3uDmNgBI+MMf3ovR5jFiHA1RNAnH7OWWTPhSey+wgWBhmawJO+00rG6kYpDJFSxa9RXH5pem/SjYwJi19scRKDhMMeP9hwM2p4Ddq4D9nZzyvvl6i3lOGLaEnGdkjrDNLhZGTcTeGEzKRmiNEA1rqIrVevTXSeeah1BrvLraStnQqxZVYBXPpovOXBGA15FLgwaWjM0E4xrILT0b6uYticb1mczWb6o0rz8dmvxVzTgdOa1PSWCOyDjj44ef4P/ZIwwDhlcvQN7j5cs3+Nv/8HfoQsDLF3fouoA4z5jniGma0G9uMJ7PJXkipwTJEJ8X7zPXzOy4VARa8D6714AQsyQoZpmrqoCQVOzJuXr8KPMqp3qs1a1SVsMviregzAfBcnQwu5L0v7O94mp52tpJo1+NE47iqeRDj5xmZdK5OQ1vAIIy6WIcYAZKKJ+BShXylNsZUYMTCt0ZFXPtUjE4Oq/vVNAm85ZBmBHHA05PDvO5B+cZoR/E2HRzAxBhVuNDThHBb0BDh6+/+Q1u777GNJ5wODyIt8t40hO6hDTPygc9YhZykrpfwn/YMiqbqy8AqKEwRfGQJK/5v5wmIiYxfKcsoDalJtl0EYh1L7cKRftTgIoqgbycv7qkl3R4jXWU7yqxLhQX+XlppFYqKH/8UpLxanCuvbzm2bQ0PH2aFy2EvgEg3TMxJcwxwZEY9kz/X+SNyKyuzmZAkESXYGgie5mwrJ6WrHveu8Z4booG5AzUo4bhycmg5ZjrinE1coYHIZC/Mi7jl1V6LL+V+YtJZM2UkuRvDB6efOURDQ3VtePC7w10E2v+MnIIJHkHZmjOJfXEkn2mvNTWjOs77HVEkHkl4WtmwyOweFFA8q0AogxR34FSUoMTA5yXbf6FLzvYMuO1VeJp+ZLNpcn0EAISEfIci5cGsJTVNR+F4A+r+OOdL34qwQo4sFTrDD4jeMZuR7h70eH2rsN5nPDP//yE4yHidMpgBNQaYNIvBuA4w8K+C+8obFne3W5m88Rh0vNsS3Cs+0nArdwn+Qu15ZUMtzbLHq65UAECTuOEn35+xGajB3b7Dvttj1evBqSY0fck+bDMY5Bsf5pHSX1Vmd/KbtDuGypj+7JraYT61FNGAYSW36zxT3PHxW41pnv9Gb7g7wuOSw3Pbeb104MqLKtgY/vd8ouZYardw5IfdckfADXGdtJATmfEOePDuz9p7hAH7gI6v8Xr198idB2GfsDr128kVcHmBrubF5imEcOmx/l8xHg64XQ4ikdzVGJhKs72ZiQt/KkZMzf9YjP45nowRwTNHws4l6RojGEHm8JiEJTfIzIo6yGx15BiLwZzW0siUXwtp4ux5SLK0GgpOYNzTVRuuIa8GN8r37VFcoDzMFNYPU5VPsjVW4WyOQg4rCtYWUhtzWyqvDobOcnfBKiBW3EqM4gcHGUQIuJ8xOn5A+axB3NE128wbDfY7fZCA5w0LxWj727g3QbffEO4u/sK0yhGxZQipvMZ8zRBDm5YcnYSqUdWmxhauichR00OSZPFSQp3iDeUB9BUis0ZMfgLnXG9PdY6VMVY9n+bdcXXjR5VRBxzPZVpEdZKf1m8t8Fy60Ojtehse9sahxdP6Qdr/lJD2D7FGujK781LFGAbPjMMxQBizoiamzKUvnHZfyYXa2NZ83HJ5+KIwpidQyKHYBW4G5RiZfmMIjIBGiEmUXTsQCwHdt57lVuEyCK7fAHGWAiBy/mzd6O8L2qkxpySVPal1UPNGl3oq4yyl8mwjepwrLmvkBnROc3fhGJDkan71EKjqSybS59dwfKVRsh7oAuSnC7zZcjML1xfbGwqwEAtXkmrzpUBmOxQAeScR9cPSCnCj2ekqACjbDtl96oEA+rBoZMYnFjJN0OHYQiS7DQpuEQEeMIwEH7z13u8+WqD3//+I/77f/sJp1PGu/cOx6ND1zn0vXbRovrAxeOhSoWlAlHGq+Oz0oVEVI1JqvgyM2Ip9ctyKEQsCl/zigq8AGNzzAAFD+8JpzHiD388YTN4vPpmi1evt9gMHf7qN3dIOWG/c4h5RMoTShLvnMERgJNEg7X/LaIokBSyWV3tT7Ouds+C6bXMxjYGr/81z3Nzb21yeRUFv5kWlYdFubh48BPEbH28DCT95FXBljxg4WKl+41QFWrJyOyQs5y42fqX9dT25LRa7otpQsoTfvrhH/H2xz/i9uVr/Obv/l/Y3tzi+29+jV//zb8XRcK7BVOZ5wkf3r/H+XzCh/dv8e6nHxHnCfFwQJ6mZr6romIGhPKZxvAXTx5N/saZwZGFR4AQvJdKKEGShnOUSioGUNo1kPdoomrn4T0X2vdZwERMcsKekkfwYiQOqjgQsNhb0maWvCoxIs8z0jyB4BC6DXKaJVEfK5yRzIJw5NXjQTPj6bzJXs3qkQVNEsgWj6GKqDHupYAVehSGnMHmsAkQwYeSZh1WPpXyDDBhOt0jjo8AEe7fBYCc5JXY38D5DsP+BUK/QTdssd3dwm8CXr/5Nbq+x/F0wMenD5jnEY8PH3A6PGE6n3B4uEdOEdkFTBkIxPCFcRGQZB6dJuXjWEOYU4zIzOioR+i8eGv1GmanYDYnxjTOYvSgoi+i5MgvQLH1JqT2S8Aq4Vl4h86p0SLbWlMLqtC01RLB8m/bV0uDbquirQyWZb9eg3wKqKkNZW55od65sFg1mgKq4qTkoDjJaEgTjerByxwTxmlCFzz6IJUDrdJKykncpSODsgWqSPJtZjGydiQHLPAOOXuREFryQ+Sh7M+UjZ7VBVyNTN45dN6h8xIq1Q+DnNLNI8Y4oyOHXosQtJNoSr7Bx/aMs8A0JjEyccIwzZjiDAbDBV9Cv4xM2+fNEFdFEJfvA3nxNgKQIK7mU87osoTbD76ThP4pSfheI49lPUj4b04lpMPSeThItSsiEsMICCkE0MaBoiS6lH8McDXg/KWvqAnWg++QkvFw47eKiArNCT/tuh7ORaRpQo4QMLgiY1ZDHSCGxww55Q1dADmHvnNgBHBizKN4a242wLAh3N0RvvpmwIuXA/7bf/uI//P//EGSac87MHptHwBVKsmgmkQe+tM1+z7X0OZyKMLibeeIwJ6K3LP2c1ZQ7FXhJZLk9+ut3bIipQmpPAo8Hc74x38esd10uHv9K9x+ewd3y4jfS66f7dZJKICug0xzRuakmK55H4uK0HIEuwqsqmCxuefSI6hOEhd+ZOt2idO5fAdUY+TlVb3GTWkt5bq5aashFhvNyu9G/qYW4l3K/0+qE0Ql/ULLLzUBCLjxzLAlK15kjcGJIIn9HTnJbRIPmNMRf/zdP+DnP/2Imxdv8Ff//u+x2d/gV3/1An89/Hs459B7qcJmHsjzNOH+/mucxyMePnzA+5/fIs4zzs8HpHkqU6KzC8FNqqyp0dZ2o62PpRgwfGUHcd57sP60U0pRTlF0mqoisdaFkXBZl+RAImTZ594JKyISA7N3DASNIrlCT8SkRrQoh3W6SOQdXB8gpi1G5qQHdh7kzBDBAGUQKedk46DiTVoMbapQZk2AsxDX5MVbrCgSEm5t+ItUqVebTUNNABABJEynj4jnJ4Ac7t/9CCKHYbPDdncD7wP63R1CN2DYbLG9fQnvPd68/iv44HA6n/Dw+BHzPOPx4R7H4zPm6Yzz8UEOMJWOwCQe+EbfZuQwj+OcNXeUVuVklhw1XkPvXFcrqGkl6RhTlW1lD13bGktFqObEouYTKvzDDN+2h0n3VyNAF7N4gXtsaVU2tnK3nf/qJb/kAy3vIAiN1XCu5QquB35h9DaGsrjMWCv3m2dZ1EO4OWX4lBBIIw3UYJhyKh58wr9U2puRUA+l+xAQiQDvEZ1HkEEAYEk5AyFpS2SfHUmBKEfwTkJBO+fhqQOnjK7v5G05YUxJ09cohipJ4qnhl6sh254k6fGYEigxhiEWY5MrYZw6vc2cSxO2dpVX2rwFEj0uAZhmKRbgPWFmsU0EL8n0s2LPhebd/Gq8EzCSIPjUrKiSCXUexAMoRsVPhGKo/oLrX5wgvPR3hSeBymAV7i+FX/N03X6fthWYINTYOVFwneSG6XqCD3KCn1LG8TjjfAZSVvTTtlq0BW1rtckqhlluzNayWHeitnUdVZT729AtM6hYfpT18kiVmQznCdMYMZ4TcmIMfQDDoQuuMMraneZEph3E1c6gjBC2JitDU/15IR3KRap4r+MEG4x22eS1HnFj2Lr8cgHe2p8XIX365sUJuwHQVeNc1mSl5Fqbq0e4eaYNM5MpaFHpWmlWS32cwDmjH7eYxzNC36PbbbHZ7ESpLujO2nXYbHcg57E5HBC6AczAmA9SQdEAmoFU7Vtufl+Ko5ZRLS9zw/TOlZAVq0BS+mOkX18r9zI3yfNE0WTiRnGlzy39gkzl+SRGMaBUZ2teX5j6wsquyNY8+7hkuAPMOm9zKlPcxBVf7JHlSTAv9hHVnG+s666Tw4quhJGLB6f3Ds53cL5XBZwQfI8cEkLXi6EH4nXAvkPfb5BT0vjthJyS5KnT6j2dAnDxjJEeZc5FOBkozC19NmNkqIuxJk+s5oRrWhwWe2DhdmtswwAmNTzzKhCpk3iF+haLS21/VzcvUr4tF2bx3LU9vejNomFT/PT9tH4vYQ0UL0ZQlGWVGlwT5l/cveAhuNgdNg4Dl4W2jZNQA+ZszWHijKqSr3220BTnnKTngBpbm2UvRm60Y9d1VVlV+AxsXytIY6453oryXMe0BkvFIGz7Utt3RCqlbfDV8PJJQLCatyIHm0+o7UMRvMJb4DRE2ObiC97zF7muYXEAFWM0N9ncAItch0CVowsBTE072pgYoRjCrDNC8NhuPYa+Gk3nOeN8zkiRpGJOyYd3Sf9FUaL2s8qCGSj0bn1npUHxbLFOX2m7YSxrT+Q6OZU2iVDKTE8pwTnCNCXESRSbYQjImeB9874FrOOm3XY0i5FdfldkwfLz1gPy2tUa2tpb6u+y0wqeabuIyguKoantRLNf6wNFWJgoBRpsWv/fDuXaqrfztUR8l88vmrrEUIWbGHIzxmTzIIAjzhNiIvSbHWKckVOCdwOGYQARFe9KZ54zIGy2OzjvcDqc4IMYdpNWhVqAb6rrZVWa2OiKlzKD67dNP9Wg7ZRXs5xzkdF5wQmrNdF5EAxFZZ8Uw1yjc8jMrFeikQULTKjzSa7xjAGMYuSgtAiahj4li86CzMs6mGHYAFAzdUY/DIAbDGVjWfHY6u1rr5B5N+9s8cYUHJV8B3KdhEM5Qph6ZC/5gJ0TQ5H34r3bD1vkzAghgJzk5twMveT4hUOgDmZYMhyYWA4PLWpB8u62+67BNcyNjJW5YvV0WbKFZi+s8Qcq72Zw4X8i6yoA4cUDyzav7Ud5VctP1jxJd1i7OHafffI5PXY1hk9eLUZpn1kDulUfFtxAMRQ3B4AFWqx4iEqARQcIKFVmTbliUOMDUeVGPdxZ7gfDvBKNISHnrAVgjOuWXKcA6patemUrU7j5Z2pzMVxL+d0Gq1SyWR7G8IIOoO81HS4TNe8xQzmh9Su5IqYu16gYH/VQsPAhlTREtZhVe7LwhRjqzzY2GZDlLAlS5WTXPHV0UkiYSM4JKUXEFDHPs8YU66k8KrEUZzOq7pmWT8AMLOYuyZzx+tsB3357g802YJ5nfLzPuP8w4/4DECOBKKDfeGVuKwawOH6pgjDG2DAP3el1rgHI2lULeVUKnI3dygATwcIjLPyuxmcu26xEScjOY86EP/14wHiKuLnr8e13t1olJsL7hNNJ+pazeFTFLKFdjhmOayl6adpI0AZWFYbFqdoKMBZpa2TK69uoJJtk8xJrx8fLTdZe9m7jo+WR8kw1oC3Zr9xs5SuBSzDX8GZcA0uLzbv67KIhfWfKmsCRgDl6sZB7Xw1FxsJyLmEvVk6UkcCIOJ8f8NOffof+YY/v/X/A/uVrECQG2cYOAB4dXt19LcAnAsfnE56fHvH7hz/gw7t3yElCrQCg9wHBOfggXgxO444lb4YkxluYngiA1xNpXddAHrttj5QzzlOEG2dkzpjnqhgb9mEFKQwg5gRHhDlqSXZLDuoIhCD5hpoyvlndz0n5n5CK5bxIiOMR0RMYCW7oQDGAVYmV90o+A6fp68UzxxWAwprjw1Ice9IwTYYwdJZ1ZD2hK2A9m4u15DCxfVXDQETZIlRDr+W98d4jhLDaSxnz+Rkgwnw+AM6LGzp5EHn0ww1CGOCCh+vk5Gy33eHFzUuErsNmu1XakvHEecb58IQUZzw/PeL56QkpJRzHE3JOpYofgcSLjBwyhCeT1feKwoO88zqO2NA+IGFxjdH6ymawfCFseroB7cVmaQyBzdMNF1m2T+unm2eWuAjGDAi2X5u7PyPo6qkcLz5rjfZtdwTzrQ1Ncm/xQrF3kjgzeweRd9lkCFcXaRCIPICEOUqYbExR8ohwVh4q6ye06tCFgATZJzElZDB6uydruXtmRMpIAAK45AAq3poEDL2Hc8AxOUwTizIO1txNJaMOmFMF1WQKkHgkRD31zcxwXryvQMCUMhgOvbcxVuO+ze1VvmrfA/C6vEySxDtrsvSJk5TyZkkYul7L9e+ck8haOyFEo3yzePNBZbMLkuw+K4sMwcEj4Bdg9L/a5b0c83tvOZucAs+2SmEZJdjkT0qaLHwG1INWaKYa0A07GTZhQDBUSoDyk5wSUppAnPH69Qv89d+8ADng4f4Z9x8yPr6fwPMOyATfdWIQh3jfaZeUfy6xACBdiXOqe9QgVLMHxTAuCiWcFTeh8p3wIwPeGspt+ew+AWztGVIQP2cGpogf//iEOGbsbzq8+foFQkfIfEbOcy2vzSKDOUWYQb4k/qWKR/TWJR8rys9iGlZ9u8Qb7XX1BHuldDIaflg+q5i2/Ma2b5u5BkTDoXo/AJAk4pQxkR0sUR3z1b1b18X4RbtWLV82Y5G1E1OEhQw7ZznqSBXDOibOqZywO6/5V/KMFCNOx4CP9z/iPD7hq+477O/2AAMprpLnk8eLu68AZoyHjJ/xEXOM+OndBzw83Iv3cxKaCuqBGoIk15bcLb7kQktGl80UmJeL0C4DzmGAGEXmmAANZ09c5cW11Tccm6HeN0wlr6UVLJLcslwMPRd7DnbIIWXVfYripdFLWJrlphWFVtqyfC7Mlu+RVQaYviP8MgBgh7IHAfPwykpT6oGTquEsap6cxGhqP1aeZLqR7Xuv+SgBwFx2CRPSOSKRw3R+Eu9ccmAtMND1O0n47Tu4foBzHrf7F3jz6juEzmNz02v6AMmPlaYZp6cj4hzx/PSE52fBUNN5LKHHzhk8phqtEhOIsub+ccgaXueceDYtLrrcowt20OgzXPJzAmiMFnU/1oPv9bX4bKUDFU/fz8iyq9+tDU1U2MUnLltRC4Wrn/7S1co2c7po+XrmjBhnkPfIPpS8xgzRIeIkCcI5JUjIJHTeGvM7MUJw6LIHZah+LOkGAKHnOUUkMJKGW7KzSo6hYignSeYZwJwzzpzRwWEglLZsULkxlrLJ3ixJ9JPyPWb1mJP0dJiSePpuOodGHP3yVfaRhA32EnAI74JGZTjEzPCQf+ZF2q79BdY2A55z0kdogTdmyauXLLxOPLvgGaxpDhwF+M8TTLn+BcYmWYisO6yGsRhZqIg2EFVCCWSTsecmwWEV4hXJyF9Z25QcLQxOGWmewJyw3W7wzbcbCduJCYeYcDhEHA/iJtdtHEJwZZPbW4rBp8hII3oJRVqEVKgyURbkykS04D5T039FAY2YKnPXXsXAwgLWMzlEBh4eRkynCcR32P56g+2mA/wZcDO6IMYGywGSLQFYVkKn6uNTyFfnQDYCXx8PrhF7VUCp+Z7Qgr9LJsMXv1x+W/6v2tsC5DT0cb1XNp/XVNV2vT7DeD81CdaiCpCsYWkpS1UgsZbIyZF52gjp58XDMl8JjIQ5nvD48B7hfMTrb38ldKVbxTL+A4Ajj+12gHcez7tnbLc3OJ8nPB1HvL1/RJqlipkjwq4f0IeAfuixh+RI6vtOT6TNt0j/2VK56mFn9dr6LhSPDNmnwJxSiS6pNghq/lbmRPXznGW/GLCgspdrmKDlD6rNicKU04Q0BwCiEJJo8KqM1ns1YEcZnQEtSAJUsOYyskwCXBQjFEGgrqLWZ5DGJqtXFufFWFGEYRXojry4qHZSKU7GLgb3HCUhprR3ELf+lDHOouZ33R7eDxi2O9y+eIVuGHB7+wI3N6+wu7nF6+++04pVknR6PB1w//YnTOMZU0zg4xEpJ5yTVDXz5OFdNe5ZVUVmSQyY2GSTg6MAy6vVhtuacvJZSce2IZTWXeGoq02zUkLrNJaG7DChWdb6DNvcX2hXqsQubixreYGXrvCk9rsWJJUWVVm6TLaM9Y3Ld1I1cCT1qsg5IxdlWmjZKrJaZTEG1NhEZTiOUYphsOYdYDZlQ2g7q/Enk+YbQE2SbUqeuFC7Al4jy37IqDpjO7dWBckuCb/golzYXpeDIlUqTNkoqwBdyyUILvjAXlaeENCWSfPHwfLG5bLWax59bV3LSSflqlwBTRsZnEn4tZOf4vgsROUuswb/xS5LdmpeZxdzdGUfysl7Lq7uDm6FdrVttPsaKlsaIxEgOftyBJCx3wd88+0e4xTxxx8POBxHHJ8ZOfUCKkmq/GWuaIKa9V1pPoKhcl6OgQA0xVgAoz8Frjofshfy5bZfGYk/M7PKnkhSGsSMjx/PyDPj2+9u8Ju/eYnN1uN0Thinuexdo7GseUI419C9tU27gUIocPcz1y/ji9r44lSc+Sqm+sybyv/txFz+bvH44s3lCVUZG+MQLu9v8d+nmqwDwWWhCalGDR1W9HYo5YvRz15b3k81XCXOUYwD0wnHwwMyR8T5FZxmY0s5luTcBKmstNts4X3AMHwAUYeUCI/PR7z/cC9xw0lCl4dhkKIKQ489JBVC31ev6nVeWjn4qpKPPAGZ0QXz9mT4zMjIEmGymMTL9Rb8QqBc58D0isVethXTZmQLGb0Ij5Y0D3JA73yA86EoplXDqgZF81YqXhbWpBnuXFlOlHyYOZn6ajfrAZ5mv9J1yNwc2NmbG28IOVAjNfTpsUNk8dBOEWlOyAzMWTyQYsqYphkMQtftEcKAYbvHzYuv0A8DNq++xosXb7C92eHVd6/FSJBngCPOxxM+vn2P6TximhNwOCGDMc6xhB1JjkXNlUWkRk7VVzOKXtgWoqircnld3b22r43X6/yZkWnxfMugVrzA+NzivsW7m9DaL5RrS90OCzm+bhsQ3lJw1Be94drbjBYZZjwRPVzC1crOU0wo5JeENnL1KpMpcGpT52Kf8Jpw36qcFq7IEnKemJFLPkI18JIr/SMSw3NmyCEh13iNi3lfGZaNd1iBFkveLX0TvhXV4N0aFls5e/U97RQCWpnOV0MRi3nJCmy0hzirRxd/lxQjzEUvJOtQln0pOqX2nwRHMZN6gH1qrZfXvzyMrgyknsgVEA2dWHLIuoDlHvMuMIssqFpSGyunvqQITyLGzW0P7xh3dz32+x4xMu4/ThjHhPOJ4TQhuVW3g00YCM0habmEwFvlQyA5AzXbaNMhcoS2NOyirWXHr0yXLfra7VlnzIiOgXFKyAl4eh5x//6I8dRh9xLY3HhVxG1YMi6rSlVKzpdurE6YuYKS8mqbCL1hAfCaUXHz93rclsfIhODilJavsTxGVeSbjrXtthy9ysuS9GwZNmLC055tG1v2eeFuuvrM7ib7ngDkKgyyWJ8A6Gk/NcppC9RMkOgG7kKHFy9fod/eYLvbVYu90kMp8ZwZz08H5JTw89u3+MMPP+Dp+RHneQSCbO4UxWdl0hwaKSfk8xkheHS7DYb9TpMUSxfm8xlxmqXviZu+Qhmqg2OW55OHy64okylqLK95tqyEiwGVAlx0AsnosgiR5boaf7Bk0ynOSGmGCxsMYQOeR/gQ4JzXEz6q819wm629g5WqtX/FY4lLR/X+agyziTAjg61FK3irIit8IjNg5epzyoiUirKSOavnABfe2M6xCLQE8Iw4n3B4BvwpgJFxODxhf3MnJe+HAcPQo+8lx8p+f4ftZgcij83uBvM84fn5QUMKsiZ9z5pEnsHImJJ42Bgv8C6gC67ZYkvwe+2qgFd2xGJH6VSX9b7GFxoebj/KCS0xcIWPmtJj72+Vn9YQfeUli6tV3r70+tz9lWcAS2i2aKHMFzOK27W1m7NWoytGaS78Egb4WaSLdw7JOSTlE4mrMlMAu9OElt6XfHFglFABMzw6L5XqJF+BeMISeU10qfuFTV43tG//WOR13wX4XpKPp8ygpgLfshoP61pLC9TsVQOYcnLGReZ5R8hQo48qXilnLUlfPRdAl5RmOYpKQl00ZNEsFQlS0n8kntmo+Vf+LS4j7wvM1IBVu9PAvLnJQ5X2TLmsic1H6zVddzaj5EBUmggBePV6i64DtrtOvPHmhMNzwtNTwjxbQRYqHpO0mMN2Ypv/L/aOYigTfzlVHkGSeBRAMVzUUIoK8ousX80fN2tV5WfFnQyWtSXCcYxgBoangI8fT9iOAeSzeJX5pcec5d80Obx8+RKrtTt/aXQihXHt4Ws7LY0X1wqDXDWilkmSv9bNNQ3Xvuh7GiBU55LqAVPBUO3atWvbetJQ85mOz5bL1tRC3O1eO6CxqqlteAnnjAyCpC+y55aHukS1Ei2IJH/PZsDtyzts9rfoN0OT3FmeceoNlFPCu3fvEOeIH3/8EX96+5Pk8+EEGjpRSNWQ4Poe5D2465CcAwWP7e0t9rsdUk6IcULOGdM8Yo5i1MppacAlR/CQxMTBe6k9QHK4QMiQegRG7C1ZGe6QA7OsGKOljfXBUEHh1BgIlZdmTUXgvcew2cAh4ex9KcxEupGv0lGx+tk7zBu96i1cBk0LzG8eqVCKkb5KyL40afReq2bafs2Zi2caR3FMKNV/jcxIWLbkzyQJk+MZcT7i+PwB49jBB8J4PmB3s0fiEf3Qo+sCQheQE7Db3WIz7ADy2Gz3iPOM56NgKGZJsI6szgw5SVyAei/55oBAPFOXo63zulyf5fzik1jlk1ezbwoGsiUSxrnQte0S0dDwMFa+eBWz2LtoSZf6zDKUazWeX4aQC71qfXDQeiNePlfxTpuuQyoaile45VBd9EcPO5wjyScZWZ1icMEvoEWMXPBq/HSl2rbkp83w3oEh3oCkh0Nie8mwnF9ldhVE2eFJa6Z2Tg7Zuz6IN7X3UmSFM5JGR8BaUtFBVBN325zZWhkjERwuqTG88yj5+VFTOrhGFhtXb41DDMNQ+o5GnpkstpBZK86UnfAVpprn9kuuP8vYtD6JY0tIbJVdmlHJBDhkVwWJeOIoo9eylCjCuQ6+vXJKyDFjsyF889UW243Hd9/c4M3rHR4fJvyPH5/w4cOIMXp0/UaYoK4HgHqSpnK1EAZQmTbVN3PW08QsxM2MqvTWicBym1zZMgsGYAwcF4aQFmyax9fzcVaCZ2yDx37X4Tf/6RY3r3bwftT7VWlwDs5bCFX7YhNIy7CCKjzaSbqWe4MKwykCpgVbKwWAyrygysU1iFYgVOafNbS2BWztCGzRGsZL/pKZV3BzfT1aha+6Sbry2foyV1+AFRSJATLqiRipy4hzkqDNxl9EQ5lWGdiw2eD7X/8au9uXuHn5Cs479UiTd3sX0HUB43nEu7fvcHh+xv/zD/8P/st//T8wjiNO4zPQExIIs+V0dMBMDMQJmEb0fYcX33+N/Vev0DmPbd8BnPH44R6HxycgSYLzuj9RqkJBmTsgXguJoGFlEXEWzy5ZRdeoBeIqmiEhba3SaYYmA+/mzSFzawYfI4eMOJ3hHGG32WN3eweHhK4fMHddYfQiy5NB4ALCuCmPbsnqJEl7brd1USjqxbCwg2bhy9ozV9Cj0lf6q149MSZEBUopJa1Wk0tYqSsVLgi90xMUlpCf6XTC8+M7MAjv3v4Ich1u7l7i2/t7DNsdvvr6a7x4+QrDZoM3r75F6AK+/la8PqY44fH5I+Z5xPFwwPFwwDyNePr4DvN4ln/nEwAuFQD7jiUsYQE6zGNmyXFNaagAVf81txnoWW+3gkFWwgwwHMuL+5uXLrmp8iJqTsmvg55LvlvvWxrO/6XXsg2TI1SUBbTzpaOQ0AMWfkzSRowZ8yw5uawKku2BrDTLEDrtSErvRudAWSq0TVqKF1YWO0h+sNB3CF1ACAFIEsqXISFixISu7xDmQdqJEcwJ3pMoWagwVg5pJAzTkpRmdQEnImx3PTa7HjlmzJPkE5xjQvJJDGRF6eXV3FORS63i6VLN/xZ0s+TISE6qOkWpBrJA0+t8RdKeK0p0XREqcjbr/iUNf84pIXqv+xZSne7f9OJGDufi/b0wQsD4s5TvFu8sKQLgiMAhA6jliouS2CiLKC0Zr4oYhg6/+esXuLntcLPvkHPCeE748HbG/f0MUI9h6BZdlX4YjaMYn1rDAMr8qxLJKAb/pOECIQT44EueGjS8Rf7PhbcvJsG6ogzHct7Zu0wxYVVM4B0SAx+fz7jPjBkZNzcd9vsOb772ePFS9oopC+INF4RXaxXJ1vhX31WV7spBm9lujQeWbFUm6JM6mRnFrxq6DTfxFQPBwgCwJAH7oOgmrspLk3+OPo2V7F5e9J3K7zYXYGjxDyoGjUoghq+WeA5KD5QhYb0kNM7uskqmtedCDxc67G5u8fX332N/9wJdv0WpDqf3O+fQhQ6H84R/+p//iPsP9/j9j3/A//zdPyKmGQkRYb+Vddb+eh9AzoOdQ/Qeru/w8ttv8M3XXyPOE8bTATFGPHy8x/Pzcy32YIaGwtMUn3QEOOHdUolWQlAt7KrdK3ZlrabliFQ/aL0f65qVwytd0/KpeTVFCTfsug6h6zF6wjGIEc2tkhk3K10USkkmk0uVhZQSUpTwGS4KLgHkAcqFFgDFgDCdAmVvc5FrEtID9UB3xSDHSBA9Z55iSUMhMqfSqfOE3mvKghzBmHEej3h+/gCA8HD/J4Rug/3tHb65/w2GzRYv33yF27tXGDYDXr36BqHr8NXXkmh6nic8H+4xzxNOpwNOpwPmacLHD+8xamW7aTwDAIJ6bnShUyN1s9HKci5xZaH7hYHgUre9hl+qt8s1ntA0cpWpKHOmer+t978ECX3SWAQ1dDGu5sZtjUkXzxqvuvY+/ZnBWhnbXP6o4Ow0azVRQtFPhR8Z9paiR713iMyY1RDccyxeRhKmCvjQgfqA0HVyCEEeMatnHSDpa9hhmgPG0Ze+xcwItqca+QAo31NZlMBio/cSNrzbbTAMHfKccB4neCJsux7codhAxISScYFdr/BYAmtNMkIIHcAByOKxZ44Itl7E5ukun7TrQZo8vWTCYvvceAMDGWLA80H4g/e6TgnIX4ah/ixj0yV4N0JesbDWENGAcCP9CgipNnOxeVqlIcO5gM0mYLfzCJ3GVCfGNGlSS9RyoW3llIsXqEGsymVqNKSl9bN6I7U7vBUYS5C1Zj6fOzFtWUAFCsq8s4xtjhnn0wzvJDa9MvymN9T2hhbtL2aA6yuu7XVeT5dd6yEwL26pJ5G1U59kKM28lxXhujYV/1QmbU0vPOHsw/Jo9UgxMIx1W+3YWkxbmPvlgO3WdQQ1K1fg7ErFMwBtWgO51F08dB36YYvNdgcfQm11MU+ycU+nI56fn3A8HTFOE+Y0g7xD53tkIslJAQm5AzlVwMSY0A8bbHd7dN5h03VAZowbEZ5xTnLq1ig3KHNpeRTktN+rcSeSxfXLvNjurYYGA+GNUaCdRjNE6kCp+ZvIDJlW5UNKnsvJc9Awk6Y8EMk6tBxkgW10neSk0DwumhXl5kaYYqP5iJr9VGmiWXNGoZHWXdaUxmSGJp0HQqMMNLRbiUNAaGYgzwAoYRpPOJ8OYGacj3tsNhs4QBVMp/kkAjoAQ7+Bc1KWNWeGDx7zuFPjEgsgy1LeW8Cp5pIrc1Yp+9pV+Ui7Ua7dfsm4r3K8xvCw+OwCqH3q2SoLyqMG4JSprRW2a8YmumAOX/D+1fPVIEBYJDfgujfWBhdm1JxupU9NO6gfEaoyZEDf6n1UdQOynhoatji5Rt3Xkp9JjBLOYDyv6oewPlP4a52/doq8E6+mmAFwKrmdslZ78yYH8iW4vH5Vt3RHkkuuKjXQMuPWI+WVqHzEZrCVGWV1G6AkOWlWByI2t8Byn/+Fr+JFaX8vfl7Zi6TyDnW8Cl8aEUmFF5lAWct94bmM4AmbbcBu12kS7YhpiphnRpwZLgA+2L76hEbQAFJ5f/uy9f7ia6NqvoXiEaptkbXZfFZfu3puBVqo3pjUa2KeE8YxIgRCTq4o8xd0uTIKrThHnfzy/RoToMiD5Re8nCTbyAUrLHlXe6B72Y70ZQnPGmMUUQl7ujDK6g6o9o7P0z394h3tOOqJ/mUr9WajXf1L/tbE3hW41YNNACDv4bsOXd+h73vNrWQl6Bu+AME2c5zxfDjg8ekRp/GExEnyuHSScLocgkEwFGklzxA6dP2AzXaL3X6PeergCIhxxvl8xjTNiDFKOoWsYYGrAZMjuCwE7JR3F6XNdnnJEqwraaQFWpNYmUPbDwWzoWIqadQOuhLIBzgX4LwvsqFuqkt5KFiWlHXUkKPiSVvWsfHEbfpa+mz0THYvLV7HZU1rBEIxmjJbtA5sVxvPMqlU9ohjnTvNJcdAnCdkZnTnDueTpC/YbPfo+y0IhLhPJczcew/mgL4f4LyFqTO8Cxg2J4gF1ekaSzEqAktEyZLZNXOzWK3lx+0ztLzz4vtmXS6vJe/51N5cG3ounl3I9cKELu+/wrhNktZjAbp+3ycMTZ/Cm83NsPDL6iFacd7Sa5RL91v7AlDT2kgya8FpBY8XDKy4SSMnWo/a0o56i5f7jF4VR/n11FH7dHN4RFD87hB8QEyMqB0q+6yR09VLrunnNZowHgIuxVaWCVTag4rGK5j5kk6xELGofAdo+yLjIZvkT/Cs69cXG5uSngDayZJ1WjY8l7AzU3DsXIOAJSjmCjAt3pCtjKENrXgVMBxlhJ6xv3H49V/vcXvb4XAY8T/+xzs8HxI+PkecI4k3ha99LBvGynaiEm2Ja6c6eQvDFyQ/DAXxfnGanM47YURMTt3+NcGnlQMnKjkKWoWtuksXqFYUUwPUpKViAXEZJS+E+PB8xpRmHM9ajSNHOMfwHiBnYkoBaVtuCHWDNby9Ibl675JYaPF7LRlfTxJL7KoOqnhD2EbW04DMQKlL3bSeG/Bs1VJbI1KZr9at3d653nNs/2vPO5ffl0csNJJhwZK1VwSQ0QXXubKSzNxm4S/MWIS8conSHXGzJGz3dxh2e9y++RY3L7/G7vYFyIl3AAhauUzCyKbxjI8f7/F//8N/w89vf8Y5nfHi21cgkvxA3jsBzpPkfRlPZ6Q5Yug67IcNtpsN/v7v/x5/9Ve/0r0lyXAf7j/g+PiE0+mED+/fYZ4mHE8HnM+nAlCYxVU0gECZMTAj+AwPoHMSAzzNEjYjJ9ZQjyaZvcSMyElckdOMGAFPmnDRSRUgw7/mUeaIFTAwpvEERsaekySmDT1ct4XvzyCOyDkWBm/11EwIWd4bTlKONuVaht4ADxGh76TCW60+wkgZkjOB0eTqMVDuxKCnNJUTF2OiQwVIgMSAmxA0AeP0lMU5J/sZkquAyKEfgJvbLUTh7QCSHAvj6RHzeECcnvDh3R8QQofd5gbed+iHHfphC+cD+u0A5z12ww4vv34BgJF/9RswZxyfn/D0dK8FFY5IScLtcopIMeI8z8jzrDRsKogkui5bqYxyDZwqDzP+srh+ASQZbxUFq2m4xTZsTckhg51utSd0dpLqmFcCcbmn1+Eqi141g22//5w3VFWwqyC2diSkLBfvSe8TugAwHGISr6I5zuVkvPBL5Yg6NeiIEEDg4DB3oRioLK27sRryDqT5zSzUtAJ9lFK/fQjY9L3kE5tnMGf4lNHpifKqjIDwZFYDKgFeDRD7vsPNMOCUZ8wK8seYABrR+wDf9Za+H+aFUo1CupZc5bCZvGryTgIoIAeSxJ5JPPmcEz5CgOZkoFqSuZFNIPNSUWWy5BVTiMwsybLBcH2HHDz4NGGO0y9i4H+tq+ajSmBKEOmnHlwsBT4qlRttSugfOw92QX6Sg7jDu2LAZwtDVINPzpKYGQxsNsBdH/D6VYev3mxwc9PjT396xJ/+9ITzOeM8MuA75UdJwb6FshhvQ8n5VzEUQ9IQ1Bx7xiTIOzgmdBqyZsVhPLli/GaQwgOucpVMzi71tbpFqQD+WmFUc3VAaIQBsJOUA5KO4IyUZ7z+yoPQr4C2chSW/FSEZahbq0BUQ0nlFwtjHxaPlN+ZuWRMNq+gFqdcMzgt/uYGrRjfbCBu+zIzUreYs8zhlf41vUA119pA67pcY4sZ6o3fjKbMUW7nS97qSCpHC9erJm8uwxIlJivOIPLY3d7i9uVXuH35GpvNDfpuK7xWvcxD14GIcHh6xvPjMz4+fMRv//RbvH33FmHb4df/6Td6ENfDBymSIfm5GONpQpojtpsNXtzcYtMP+Jvf/DW+fvNG5Od0RooJrz7e4+npCefzCR8+CIYaTyeM57PQilYK9kSAJ2Ry4OyRPRBcQPAypjllJFZPcS7HAiBIovCURQ8Qj9IEIo8QGoMRSxEIM5axESUz5vEIQsZmf4dhMyDHDZzvAdcVeqirZAfXti7G91MJY5tiwjzPYpx19l6VM7nm1M25ri/bvlW+BNaiLcr7Y1R57QX/gUv3ZU+RU4iuXEGhtfMsCeWtD0TAhnCjhRKYAkAezhMOz/c4nR4xnp7w/u0f0YUOm+0ewUshnW7YwHuHYdjABYdh2OH29hUYwDe/+hvknHE6PuPw/IicIub5jJwj4jxhHk+IcwRPZ6RZOK4p0NXYSou9urQ1Vb5zDSnVi6/+VXmQYrdVI43GueQv7X5u22TWfYglxuLKO9y6DZjBaYmHro7iCtNYe4rLh0IfGSyHTA4IlJC9FAVy8ODESDFJkQw2z7raiumPDkAgB08AvGAoJAYnIJUwdEikpxOPI0+2C+t/kizegQnoO4++D0AWr+6YGZ0m9jeDWOVqrP+UrxGhg4N3HvvQYz8MOCbgnEdkAGPMCDHCk0RAyDjWjL2ZbMVWIJELxBmegQ7iXR5JqjmCWQu8MAI5oVOyNEBttNNyNQzbkq86Fjde4pl1f/c9KATk8xl5vowOunZ9sbHJXIOXsZYm8eq/WhKzzEm17isDMpdecxG10n02ocwQ5Q5ZGI1nbLaEN19v8PJlj3/4hyN++OMjTmfgeHKYk0MgMUzVBpotqkieQXpiahPdcgMqn5k8txNm++fU2GQGp8SVwORNulAGBsplnzddKiE8VD4013/vAWIJTTqeJyR2OE+zVCdqKygQUPLVMJacjQ1GtR+t4cYKdhjYWgAhC6do77xsSf6oTIqIUAPvVwyGav/0zXBFOalgyVmZiMWdy7eKEqLfLe5d3VkEs96ReTFf1Haq+cclwVwFwWC0N0AErTH5XGJ6w7DB9u4ltrcvsbl5gc3uDjFmdU8GXKcJd6eE8XzC0/MjfvjxD/j9D7/Hzes7vPjmJUIXsNvt0YUOKQHznJFiwuP9R5yPJ9xsd3hz9wL77Q5//Zu/xa9//ZuyRpwT9vs7HKwKBxjn0wkJjClKqGaepRIJOUIggDKjzx4pi6XckzJprSiXG69BVpoz63zKUkUyJwcOUrHPO1OIGgAMQChTjLVxniAVvbKeygW40IP8IIIiz9Ujo01YC6ou5UzIUfPSRHVdL8LQwXuNnWaHZDkBcuvZpCKroWFH6g/Sei2RCkWGAkYN3+AGkOt8yMklw8PoWcJxu85js+1A5MDowPCIKeN8PiBxxvEApTgHTz2c89jvXmG/e4Fhu8Xrb77BsNnidneDly+ERvrdFj54PD5+xMeP7zS30z2m6YzpfMb5KK7i5F11QGDZyaHk8KjhlBdbbQWcyrZSxax4sFrbV/bi5cPX2kM53aHGyF1ompvt17I7zosPWkNTVebkodbQVKDyJwDTtf4BRkv1wKAY5JlBMSJlB6IA76T4hIQlWLUlYzDtkYz8P2g/kpPEpZkA9q4YKqQAXHMi13g2tdPp9L7gPfquQwQwQZT7yLmEN1nyyvZfZjE4icck4D1hCB7bEJB8hlPZNKcEuMaVve2DDa9MGq9kvB1MsYbgsSZVF+/KpAdQntvg3abxhRtppVmTPS2vKSutobWuC2JomyKuhZL+pa7qFamSmYwWcls0TO9QyU1qzGn/VWSle44Azc0gGEv2g3hDA31wuN073N4E3N32uLnp8NvfRvzwx0fEREhpA3Je1k8NOFaNZiH3s+xvXnivtT+pAj6ghO/YIQMpgDeDEuucFLhkIMkw1GKk0P4tZnQxv/ZqhuQBQ4OhGF7DmWze2jZUhsOVPX3xihVbbN6oNNZ8ozi3bePSU6k20fKqKn8UYV8jTSP91ceu4cEXBqvSteWAWjbf4rraT+OZS29N+aoewJS2Cj9c9Z0MojpNnbC+AQYCwST8x4ExbHe4e/Ua+9sXGPotgu/BeUbKUm3NB6kgNU4T7u/v8eHjB/z84Wf8fP8zvtt/j+//6lfo+h6bzR4hdJBjZAl1e/r4hPF0xt3NDb559RqbYYNvv/sVXr98hZwzYpqQUsJmf4ubpyc8H56QmOWgDsAco+ZwEuMIEZRnZ7AancyTKuWMNGakJJjB6KVULlYakcNdPWQhOahzTSb1pfHCqacUI01nRGLQ/hZd12MOHcgFwPnmfmgDbSMEakwKmaUwXEwJc0ogYqmlQARPToo6sNjtzQht+4BNVzLMZ3spa9EMTTScCQ0GMb5YcXZG/dzEdtC2g1YLDF1AtxlAqoelLHk0x/MzmBnH50dZa3JwroNzHrv9Lbb7GwybLd589Q2GYYP9/gVevHwDHwKCVgM+PD/g6eEDYpxxOj1oyoInPH7MyI7AjvTAq9HzqPKUNfsos91urhXeWBucF9+t2mybMpj1KfTSoidc/GZruPyu+JYp5qYGy7XYu3g6fabvV/tUcHn9nZm1KBEDvjq3WKY5OctOWvSieu1bp1quHjRHUvTOlGnRt9UwyiQPkDPj6FLOONPznNBk8A6h88gRiNDqvUnsDdYH26P18K6Gl3pyCOQwhIBt6DA7wR2sBqEpJ3TOoW/zJK5EyBJY2brVeQiQtTKPrtYg7NCCC+Xn1wSayl3TBVrCtb1J5mwUJJyOxxn5CzHUFxubJDka1DXNemKEatF+q46zCT09fTVwBAFD5qpoALww3JyQNMnt/lYA0u1th2ma8fyc8fw04flpxjQTcu6LIDOPpTKPvFqjIjDtI7nBEmwTqADkYsnXsVaFeZnYtoyeG9dCa730o41BpvLeMlU2nyRZ9aMm9HTeYbsL2Gw8+iFI0mRLEK4gjSyxmYETm981uF/0rR1A9RlY4CNeT2JlWy0hrhU3oqrMLdlT+xAWfVsyKvOgYi1p30ilMl9c11PXxiqVta9pmZE+WP6oa9BuXlZ6hBgSjV6aPpP11zamecQUg6mFmRH6zQ43ty+x3d2olwyVoZQTKgKOxwPe/vwWHx4+IDtGvx+wudlif3ujBgqvXcvFWOogYW/bYYNXL19ht92i74eGkQs99f0G2IvL+PRmxDSeEboO3dBjniccnx8R5xkpZqQ5w1HW0toAedkO0THmKA3HxGBIyJskJ5Yys96zejH54glo82oAmJmLZ1MxTECFSHIL0O18gA8dMs9I5tZhzxhIQT39KnsfBB88Qg4iLNUGkVIGc9R8TrEYisCaL0Gr5Dh2oqiU95EKK2re04bCqIHWeVCu1eyc0qnTU0FLlirjc/AugJxDyqR5DXU/M2m+TuWbetKQecI0HZAx4/HBozv1iOmE8/iM0AVs9zfwXUDOEYECXEdwt68k0ek8YR5HzNOEPmxxPBwwns54fngS13t9x6e9ehpQafzwk/fVddUnGt6z5JB1L5osqZ+tHr76LuMhrWLVApk/5/rU2BehcItblnyNwZJcEhqqCqjSoNCjMUaZvCMrYY/KA8vBRpbTMAF1EZE0YjcbcPAV1DdgqdCl0jcR4B2QLX8UUPIJrMQQrk54mVdJokqsBmSthjrHiGBV80qi/k/P44XHRSs7mYshQ7NG6fhJeeZy5gnLdasHglUpXvdG2aLIC+fAi6Svf9mrhhHXz6rLPF9MfwuAWyWuyqyEnJv1AUoOTclfIRV29zc93nw9YLsNeH4+4nx2eHoaMU0snrv2skYuV4xk/zPeq/7DzffEUgnQDEokTt/S73IoJiMpBpHm4ua95VBS58bkB+XFbJT5YWjeRy2fZefuVjcreI+b/YDtTk6nSWVuoY4L3iytfpIVWp/t/wUmNXipGVjdj6sGfoE/VcOO7lNunrnYt5ftlueL0ZV1uMsnTWJVbFqbaV8JoBjum+HBOtfyHWWFsHSYpepm7b5EDpCGNSofFK8W5RNa2GDYbLG/EQMB7P0Fmzsgi0p3eD7g7buf8Xw8YLPb4bX7CncvX2K7u4X3HkSSvJtTQk6xFGwglpxxm80Gm2EDglTAaw+D+67Hbn8D5xzmacQ0jlIJOHSI84zj0xNSjIh6oACS5MNERQkCZYKPSfcOI2saAa8HUB7iwWmVZdvDeMOqotijYk5wOWjNOSFHwTUlVNB5kAuyP5WmCVQjC1SomecCw/QJiPFFPihrJ4cmorelNBeeQ7rGrPlUPZsHu4Fmp6MgxWTVs1l+NLIvK4YAgZx6LJIVWKHyUzCUGMhT5BJ2XfmML/RlfCnlGdN0AiPh8TGg63rENGE8H+BDh+HmFiF0YE4ILsB3DsG9RM4J22GH3WaHeZoxhC2Oz8+Yxwnj87HkEGr3XpnP1T6y3biWA+1zuPJd/aKirzZdjW3FtUxsHsPnGceyf5+67dIQcf26Fkq3DA8rXS/rVgza2QoPZfGAawR/oVml4uJF1xrXqeIocnIYHlGkbJE3Ennha+5DNMi2udF0LTg9JtI9Yzq2RHaqnGrkByspS8oQ/cAODZ3TA/qMaZ5BPoB9+Oy8mo5Q5pAKOiq5EQRfyrusoJXTCrykfTXDU5VZy3es6adwG1bHIOLKm7xDDYv4/PXFxqa+7+UBPUko4KQh+Nb7ywCSuT465xfnuDlJxvcKbOoC5RgRxzMcMb56/Rr/4d+/ACjj8HzE42PCT396wk9/OoIpwPcdnJfNEdVjZAlnmjwaqDQkDFo+D8GhC74qy16YlAgpc5UDzPgge7YqN/a1mdPqxucmyTCKIt4uaFUYrAwwI44TcsrouoBXb7bY7TvcvNig3/bwfac0K8RtZUQX+W2YwUQl0evF1Wx+Lj/bldMByKo0c8flllYQmlHIEsG2zOWavmiheUYjBiDsvtwkHCvnhsxocGjpIsEs0WqlNmPhtXE3X7AmZpS1yPZi3aRyUsL2ABkQEvWnuPQWpmZzY7HnBILH7e1rfPv932LY7OFDj6J7QsbReSnv++79W/wf/9d/wXkakTrG/usXePnVG3z17XcAA4enZ8zTJII+ZXBKcEToXMDLuxf427/5d9htttjvbqHVb2GlPG/2L+FuCDFGvH79FWKa8f7+Le4/vsfx8Iw//vH3OB+PGI9njPlcBb5j5CCjiknCDOYYEWPCHGX8w0ZKBzMnMCc4Ej4ROg8X6onaNUWzBfgW3pNjVIXDIfQbhGHGrF5NwvWpAK5FiWc2mpJ9MPQDQuiQUkaMWcMAI2KUk8pJY/y9eoV49TZyRAhBwu2IUIoCGB1kSDgdNGkyKc2ZUZqhCjmJMHH6nQFPG794Nw1w5HCedE0bYG7JQQVQCa+d4wHTdAAdCY9PP+sc9eh0rDd3r9ANA7766mt89/13CF2Hzc0NQt/rfpfk0ffv3+N4fMbPP/6If/zv/zfmaYSknpeT1EVFsk+An7J+q3suwuMaXlLAmO6XeilX5vb+ZrMauLmm/TXKlN3/5SdsdWWX4/zU85dCeNGOGpGICTNFEBGGLoBIlH4BUaLgxBjV6OHK4UYJL1VaCezRZ0aijDNNiAAcZ7gCbDsEL0U2Cm1RnW8rMOGI0XXqwecE/EQwJgU9Dqt9ycuhlWaT7E/HjCEEpMw4pzPiPEtusU0Pxx6LS8HRNeBpY2ZmKbig3yUtIpIsOTm7uvTN2rReZWCUUt3QPZrVW6XUjJGjPsA7ODU6cAjg4QtQ0r/SFfTAzjW8DwqujcesXehtbb2XhPBWuILZTn+X/edk7WUQTfCe8PW3G/zdf36N02nEjz+8x+k44cefZjwfZF92vXhK5wqOFkqmdTWX/BlUCpuSWvMDOfjQadiwhkuRVeIEStJThkQOtgC3/Ge+fhamkVf7nhST1QMLAmo11zqlSHFCzhGbYcA339xif9Nhf9NLSWxXMYUnwVAANC2B7gelK0vn0KqJbOuGpSJVV7HtMa7wDW2/UU6Ld+gFjTeGL1VebP3XdGLPADUSQR8ryuZCjWx5vRkL7d4VG2yN4XXMVumoYqiCh1lSEJixwA4hWT3KJfxXvHY8afLdnJBSBnkH3/Xo+h63L1/hq2++hwsdyDskTVEQQpB3KCb6+ec/4b/+t/8KBIcX33+Fb/Z/hdu7F3j56hVyZjwfjpimiDjOmM5nMcbOM5ASeh/w6u4lhn4AmHA8npR2hfntd7e4vX2BFGe8fv0KMc748P4dPt5/wOlwwE9//AHn0wnn8xmnfAYxNGEvI7DQd1QjzRyrsVawSi8H+TkDSRTDLngEH2Svl7mWdsqhN6CYV2hkniaVMQneyWGWDx2c70E5AjkW+WvhP6lEUKWyjuSkMlc/bOA76bNhqHGcEeeIlKRSHzNrYSKnmEaxm/fQopYwr6lq0GLEJMTrnB6oNKJL/Ast9LbSiGv1JIg+GTT0d5pnLSgBEEl7IXQIXvKjOuVlMZ0xHg6go8PD43sQETrfyb9uwO3LN+iHLb76+mt89/336LoOw3aH0HUiGCkhzjN+/tOPeH58xLuffsJv/+EfMKcJniTk2+wBVY8vnL1sOoLxri/FKs1zLX8ov5SXXehahYSuKWLNPfaOBeZavb9tYP390qBk7X6Gl7XjagxNWXGJeTY5x4CHGnksvY7Qs/ABzUeqhiVC1am9ZyCIJ/806/5hlmqUjtA5h6CFykx3bwfGWpTFOYe+6zAz4Uyjeoczgumwhm91zDZTci6teisYnCJyjCDO6ENAylmiMNIM9D1u+k5CUZczq29o55cbbCaCuzXSJZVZOak+ovLZDsAJdLEWJqdMbrQ6urdiWppnlg1DEYAQwJIv4hevLzY2XQfhvPhRhOdK6JrFj4BijWXmEuq2Pj1maC4HBwy9w24XEFPE8yFhmmecx4R5ZoAYrq/bQNd22ZlVn8oPvtw8pZ+NRbyMdLFhdVcb8NP2DEuZEaTwgNUOWyyyGiwKx230J+cJ/Sag33jJ+3LBBFRxW1lhuBFS5TPg4u9qgefP3PkL18XYFihSe9m8s3nGfl8y0DVNfKZvDUPXcxN93yWtVgzdCvDWc4kLgJSykaWx8nxmhms/XCi3tnn1BNo5hG7AMOzQ9cNFn0yBZjDGccTT0xPmHEGdQ9/1UmUqdBLOQC2zFiLzzoN8Rt912G222G63kvwQbfpASSrt1TvKOSDliPN0wpwmgIDNZiunfHNC9BGMJNXfNPcMK4j33iGzK0yNHKHzHiGI11VOuZyoXVZ+W67j2kaQOYOyeTbpaZaTk02yapa2rmSMtzld59Weck5LuxNSkvbkNC4h6j+ZS+0ny15jEo+S7PSUgrmMnxsaAMv47YCxgPlmHxbvNxOEZELceKGOhevaGoOh8hzKKWZGQjKijOLqNccZ0zTChx7kArppwu3Njbj2+wBHHr5Jihp8wm43CsjdfIRzkmTe8iLBxrDew5/DRKv7Lw1Oy1vLSi6Sa3/iBYQiGNvrUxyKlv/7hHHo85cpfZ/7/voX9kP2B1zLX9i+qWq1EZT1vbyz0o/T0y9Qk2OO9ZChoavFk4RKU7aXqCnrTpWOi0zGerWawxD9UsYl9OdITsrA0IS5zThL/oKGr67mjUBNDscysYt+i7nEQlargXKh7K7nnw3kaRhrsz+Lt4/lO9G26AtP5f5SVzWzrOTcFQNFOeSzJ5uqNWWsbDTMcJ7QdUDfO2y2AfM84Xye8fw8YhxFxlluq0qh+i6TZcBFqNRaIivXKrTSHp4t6Jrrey7moWyJhl6u0I7BLuuf9ZIWi81adYwRAqEfAoYhiPFg0VIzu4VvrHkNN/ev+ILu4fWYfollLnhM+zpa3nP5sjqHF+2s2l/8XLSxfikK8djJuc3qlTv1diq4qfVWaOVwVWbU0525YGSRqG7RXn1evLad9/BBKqt1/SBJwWEhO7XseJwTUko4n0ccTkd0gxiptvu9GExch5KTK0tIc5ylgEZgFINHCFrRkwUrkCM4lgBf7+V78ToCUk4YT1J4BSzVhlmrfZoBHcoLZZ4IntW44nOdB6cVRb2XnOHMxaNp6a1b5xcN2SzWiZMUrDG+XjybPMRdtMppIirh8nUddRXJDLgaVttoVzZ/9q+lLwbgsoOjjOysOrF1r+pGXF7Gpu4A3OLBKo3MO794NKGVeYa1dPzZcIW0sZSPdk/WCl2pYKhIE2Z4hE5wVJwjpttbcEpg7yVjEAUtnjAg+hm77R4cM576B1H2S65cRmGYjfdIMdTqOD/HG+zS0WCxA00GNnusvd9uWrd/RR28wOAmX+qS/QKGavDOn3/xYs9fa9o8dJiq3tPqP4vHGrmjI7nA3wkoFbPbwNKSA6xtrsEYFW+ZPaA91GBjyS3sXIzBSIJssOodTorJkhrQcimIggumW8as77PPql4BlAPNCxyFxb9PrQfzCltpNdnW4K3AsWCoauRz1xdydX2xsWmapvK7cw4p12RypuizcQ7YgDXxpSMtzWwxlwxOl8O3CR96wlevdtgMhFevOgxbYHyK+OHHZzw/jXh8ZPiwAZrFl3nQkxlt1jyrZGbUTGAbFnVxyUm53JwlCRklsQZOc8PIjOgs90DJL4Hi/ptiAjRxYe9CVbhXzFEEkiqTdtJm+ZKIxDPEA/vbHq+/2WC/79D3JN4tManQ8ohUcxiY8lBmdCWsWgFon2Vzg7VYeVu+5iehUYS4MpdPA6r66XUA1xCu/aVKvfytylrTb1O8m8fK5jWg154gLA1eAnIWDzdtyymTfm4W3JQxp9QwZM1loe6DfRcQFCh4dRFOmtDW9z32+1v0wxa3L17j5vZVqZ6SFIx43yGliI8fHjDNE96//4D7h3u4zuPV628w3GxB5PH4cADnjPE8I8ZU9owPDnevXqH3Hb7+6ivs91sM/SCKk8B+8doxpY8z4IDQd/Ac8PLVG2z3O5xORwzDBufTCffv3uHju/eYpxHPDw9yUqazSg7Ybjt0yYnXQJI16YIw4Jwl3woRqXt5kNO6kpcjL4ExSaPejC0pS5aWPIPTBAJj2N0APiDNRzWycMn/VPmLhIEU4aPgVtyrAeYIkHgkzSnjPIv7fMzygNG/d7m4hlomGaAGpBqfA3Ox+HvnNeG3lJk3jwMLI5OMVEJTpN6H5jJPJJWgQIRpSpijFRgokKrsjcSaEt07KREPgFh/OikkQJQwnZ+Q5iPe/5yQ5wN8COj7vSQX1yo7YgCVk9RAHYLfIHuW0IKSbNf8Ty9BzpdcIhgr4CknJMb+FleLnpaS2gBmkdYXKt1KstOVz7EEe1U+XfalVdCMv18ZXXlZ5UMK0pwKa91vnBjznDG6iGmMmKeoSo7RsXgxOSeJiXM2r1w1FzuHTr1DTkSIMEkn+eD2wWPoe3QhCHixohhlfCKzHDl0RGDvxTuZHGhOmFOEZ8lHcE25WRh+tV9gTYoaIEIv1hO0eYqAZ3ROvFsksXRu2qpTaAZxASoseQBIPBumeS40Y15Yc04lxKT00ahDebsoQrHIAtnPruQsKbOjgMkBgHoa/1tdKckqpuyQsm+8ZlAZmIEZ1rWGGE6ChyQLZgZzVN5nORxrXhcLs97vAr7/7habjcduR3h+fsbDxzPevp3w+BgxRvEKhyZBNU8wO4QrSQEaEG8dlff5wm8N8M4xgUgSHVsS4/IUV0Ar4aGNRxJL6oDMDMoAJVnbrtBm3Z8VzilmItRCIoppCMBuJ7n/XrwacPeyw27XgbwUjkgpwnvxZudMNQSn5Xlcc5KAmiUxAK+GhJyrNtEeZMnM6M9m/toDvrVaWE72Lxhl5Ts644Vfr/nWYg83ctI8sdfNLg73iqKM5Z4t76bFJ8u9TQueyiyn9iDAZa95RAjETotxeAQvoSlmSM9R8lH2wxav3nyNzXaP/e1LhGELBiEqbXfeowsdTscT/vTjTzgcjnh4fAB5wPce+/0Otze3yBl4/PgoHkXThJwS5mnE+XiAdw6vXr7EzXaLl3e36s1MVeQoZndwFncMRx59vwUz4/Vrwm6/x/l4xHboMJ5PeP/+Pd6/f484R5wOR6Q5CsfWNd1teqSs+eJY1lGiHQRtcONpbTLCDEwFC+eKDyz1h2DLuSCXzgd0ocew2SGljPn4jGk8Q/auBzk5vOKsUqXgaKVzQCMmPDJHZE6ax0nSKTADUj6GETNAzHAuA4iCobjud1OUDUPV7C+AywyvURHmcSjsWWgpw0nGHvI6TwQfOq2aTDifRwAS0WK8hchCz8nSqUpIL0G8xczjns0rRVfZMabpGTmNePc2Ic7P4j3VSeXf7VbCOYkIKWZQ7kAcAASAYlU6W7XW9oMtYqOjLL7/7NVisTVoQTF21Nv1cGbdTNuvFtqtcFnRU1vDAyue0D+YmnvLEBu+Z0afqwar5QQZRwNphIriKPPOmbLwhXEcpRpkSvCeEHy4kE1FRui/4ByG4JGIcCBg4qz5izR1TvDoug7eed2nvNgEpHs0OKFBMCH0A5g8kBJSzHAMBO2zs7Bg1iJKrIceXnOv6fw5ArogKTTiLAnHY87inQfJYelUH6/pQdr5N1nYVguXK2dWfYLLWmZIDjwGSv5YaZEXtJA0JzQzNyH7jRxjqGcYF4TAnYdHjy+5vtjYFNUS7L1Dzh6cUwWFBjqsYwzAgCa4uFlKqIyA8RJGh6rQSylvYL8NePNmg/3O4/ZFQD8w8kPC27dHfPhwBngD74eSJVtoRBmMEgsBumBigMJiQ6F5L6qlX7gobAj2C2vJBUtM55wrbmmQ19VqRJwF4Pe+bNryPtRNWP55FdIs4AkQ5ZXB2O4CXrwesN93CB2QZklIaIprSzTL9Lh1XGaQWRpaoIqAzb+3/V6AVZkEqmu6cAZb6YfXLwOKl9/U+ZX+OVMKy56qLn1lLO3zxhB0/EUNXYMltnfUjWPO5OvNZgSRwer9Ut/NLZMiAgXxzmAv65qyPBPIY7u/w2a3x+7mJXb7W3FBniVfkPcSspXSjKfHA47HIz5+fMDj0yM2+y32+xu8eP0KT89HPDw8q5CWCgzI5tbo8fLFHW63N3j98iW22w26ENRgigJ8S8iFMh4XOoCA26HDLd1imkZsNluM44ihGwAGxuMR03hGZvP+EUWwHwJCllMctbtBXDLF4JMSFQOUJXG0Ncuag6wVQsIkCSD1QtDKeMgziDKG7QbkA46Pfal85KscrGAmN8ZEtMoHkJwHa9WtOUmFlQUIUkZueUucxL0VOuAs8R7FqN6Aa+cEKBWlyjcntbAEzUJTVsXFe68uqRKSyAwpO55Y8sgEiz9X5QG6Vwk1tA6SV0o6TLo/E+bpgAggpxNOh49yEoMexB67/Q1u7l6gHwa8/vo77G5uERAQXIfkImKiT3CQ5iO6/nXZN63i0fKaEiKkceuLBhsQVdqm0obtVTN0XOMj9UWf6V972wpotdci9KQxUi1fYrylHQe0NK58F62CXMyYKGGaJXQuadUiU7JNkS6vYRuGKIYhOAk5IqvdJIqZA4O8AKXgveBcK3xhRGP8SmkwOIfQdcjkkNOoCcCl/67JDWaPZxYDbOlfY3zyHjD3cFOmUkxwGQhDKHvbwtSXBpU6a0QWei5f5iwVkBiA1pyWyngaelNmvTU4FeUmY44RklgXxWbKmg+mVaZIN5UYxL8I8f+rXMVFXQ1Na4OBCmoYzxalV+dJK+cIihU+lvKsCpwDXChtMTOGgfD993vc7APgE47HE56eR3z8OOPhY4QfOrihq9utStAiKwGlRZghoezGooy3m85CHyjXBPoFTym8cs6h76nm8NT5F/ykByOQPdL59alzVbTbk+tSSbS8BNhsA4aNw81tj/1Nh83WIzcVIUVxdVJUYuVhX3gTG32tsFMzz4ZDLJem0RM1z9jHa52LccljrnkS1GctBOL6va3hyQ7Rarg5Lmi9YiaV83WDfaIv+gTVZ6oRUGihfUWpYO1EeUEmEEuomG/xiT4jeZQyvA+4ffEKu/0tNrtb+G4jymeaVIFz6EKHQz7i/bsPuL//iKfnZ8ADvvPYbLbY7/Z4fjri+em5zgcYaZ4xjmf0IWC33eD1q5fY7/di7Ch7wShNaTRrnhL1gCIi9H2PW77DNJ6wGTzG8wkueMScMJ5HpDliyvWw1HGGow4WemiFGerUtsam9pBcsbCOQQ4W1OvcPD6ZJQ8VAALDqzGuH7aSR2o8F97jO/U4LLkni9oIZvMalzBYEIGc9jdLUvCYjACa4ilgOMVozgwVUDmiXuRWYRAoeeDhJHIQVnjJke0vESxsuZvISdEYEk995zwyJ8zTLHyQC+KCeVWCSWVl1UwFfxkHWYboEhhxPiLNhBiPODzfy6fZAexwd3eH12++QggD9vuX6PutGpt8eff6aj1RCOYtD5GdZSN94mpZ0QIrrb5v72sgSR2aPVvDNy9VnuZhKh8uXsYqi4qIoktjeXu1fM14qOH25SBMLxN6d1pVtea9lJD4aZ6KMUQOXqrpYs0P7c2eCIP30NrLmJnh9VCZSL0nvejzxo9rG7WfksNWKiX6rkNS+kyspyLkCqajxlCnDu7wbnlgRwCC8yDdsbK3RH8kiFehd3a0uMS+df4NG1BJHWP7LJXwPzPa2uFEQ6dUXBEKQQhmlYMsH0Lx5FIoKYYmxbjUyj3Xranz6vXFxqaS2NeUSKO8dhLIWBcXQqnCqMZWwkAGU5k0nQGxQHcBt7cb3OwDuiDhIjFHNSqJR5ELXkJctD9ZXVOFZpW9lPdpD21eG6GsyEnjPZvN0/xq4prLrFcQWECzMn8DiND3owH1y7HWPgGkBjjRdbe7gK7vsNkEpJgxTVGsvsxISV5AvoIQsrHoy5fjoArQF1iKSp+4LSVtPStrRxcMyvrO3Pph1HluT58XNh+ji1VL1Yth8WlRJMobP0HRhZ1Sy75aJmT9lbuLkbQ1LBrd2AZWj6XViFXwZmUMjKRAt1imncd2f4PtXvLlMFH1sm2uGCMenx7w+PSE0/lU5iDOM6aznMIZACLymgibgZThibDpB+x3O/R936yA5M2qrtho1r/OlfwU9+Bh2MA7j9u7F5jHM07bLWKccDoOGMcR5/EMZCmvSdBTYCOdxYKs6cDWsAGil5tK96AkzEwxYp4nCIk7+NAm72v+kas5RnKl2QWxkXiLpJw01CdX8LuU5IUmDVSVsCCLfTbPpsXI9ESWaz/K3BJK4l7HpiJY/yUHTamIV7rRjtGGQSCua1vzJLV32Ql8nQLmrBVdIogZ83zG+RyQ0ozHhw+Y5hGH5wfkNEuCcLC+h2oXmj1PtUMmexRIXYKNxX5t9rvxoFbxb9u+yhab1y53YmXCpf0ChOxtFSDB+mtPU9vOuv+tJ9T6rYRlckUqU9a2JwcrAGdGnGbEacY0T5jmEY6kzG1d7sYt2/6nWp8DKcAWL8oElqTWzniKCZQ6i6wDXI+RSEBTcIzJkVQtgYAZC3lwXPm+zF1NWGvKDcprJeeZ1/0ZdR/3QPFiWKzhWjFufoqXiBmNpMvOyUGMS2KAkHBW7VszMoaBvHq4hObkr5VQ5d2yYTU/2jXZ85e5SnERXTMLCzLFHUCZg0XxGOWHpKA4m0GDXOGvVg3VDJV91+FmN+B2H3CcTzjPM2JOYHIgH0DODN8NP+RSCLvBMO1+qTyvwo06FltVp4bGejU8uiV96BqxGJeKPOaqyJDhkxX2KqjM5svoAxLOvdl2uL3rMPQe59OEnDy8T3DFIase8lXS5PLOWiWsxTOMllraMZWTZMMaixuapVzw1c/TXR1T86KKdpYtX+HFZbJ5xYcX7XH57Ro3vrZv64FNnfvaQoMwXOVHi/GzGBcpZrEpSxkqyQlGDj702G4VQ4Wu4HQiLQSTJRRuGic8H57x9PyIcRpt4RCT8Fs73JNcSVHz2GUE59B58QzdDBt0oat8gkhDMJuiQQ39W4i0jdW7gGHYwjuPu7uXGMcZ4/kMJMb5dMY0TTiPZ+WHGcgqr7lR9oBaIavl64XWCQ5ZCyhfkVlQz04So380g6qXPGpUDKH6Q/UiC3+hzCW/TMXMcnMbOrfAQSUHU2vIl99TBsjJXCUtJJG1uI2Np+XKC6Mo1xBoz1zarPRY6S8XDwsxVtVDfJsVNMiorlnRBdjmo5G9+pO1EAcr0c7zhNPxAO9H5AR03QnH0zMYqeiB7fYhBSXt7i37j7Guo1LGXjtKi33bDGDFD3DZUPs1L3HL4n2rhyt+srlbI+XVwyZ71jzCJrMYNOy++nM5hCVHNaxMLFEmaY6I4yR2gBThQ4P5LFLHGqM6zyYLJRG44RgGE0tVQaOXBd9rBN+V6XSKTcQbuB6+VLqsBr1yyN+E4Bkfk+j9aqQCSaifY0YgAJrKpI6NK7TVPpox1t5rBmlAPdJtzKrrWp/KOnPFUCAuPIF4HaKHGkpvBFy9GtQmdDFdF9cXG5uCJgj3QYAKZXFlFHcxSDnLyoeRwUg6ATCglKUqhCn17HQTNB3NGdjvBvz6r17jxYsOp/kex/MjTuOMxIRMAcF36Lwo8hJFI5Z6U8JqMjkLWWPxxFJhwSkXBldyV3g9xXD1lLcmwVbmUNzlqDAYR+KulzW2NOlghMihp9IKwujKSZa6YacUkeKM0Dm8efMSb77Zw3vG6TRjGmfM24BhcBjPEc7LqTcRVPmXRLCS+d6j+Eu7YvKs61IRgtwLHVxGAb8mvEribNR50OYq4yyGhNJsOzppazniRZsmWK8bnHx5RtZ2RStoAKvDMr9O01dL7l2YAcRoVzYvQauA6cmS9+g6XU8LdSCDslKBKaWI5L0wBAKmOGPOCTddh9ff/Qo3///2rv1JjuM2f+iemd29O96RlCzZciWV5P//n5ykYlui+BCPd/uYmW7kBwDdmNk98iTTSlWqP9eZq9159AONBtB43N5hd/tCFEOwhCqWmq4Zx8Me//nff8Gbd2/x4eN7ce8lYP+wFyYSI4ZBkkymJF6BPM3gPEtCy7s7fPfNtxiGTck7JK7XNaliNTbpGLPscrY2+jjg5YvXYDCud9f47g/f4XB4xO2rO+wfH/D27c948+YnpHkG4YQ8JWHUZAmP6wa5NOyizKmsQXbcyubFPNcywBJCcTwd8fj4CRQ6dN1OKqJ0PUCdzqicIgUC0BMCMzImIGdz/AJYGDayJDYfxxnTPOM0ThinWWmFyrgQdONgLbCeatLTnOYiKFmYU1B3+5xZkkKS8J5o+RnUgyuzus4GyOkYBYA7AAEpJZymSfhlkJO6EppSNm+/ZQJWfcU2FZWFdKmT0xtUOdc2EwPpcMLx9ACigPcffgaFiPF0wnTai7EpM6IWmC/zo8KOCYZ+7cppkyyuQF5olEZkXXSLDUpdjMuidCD3V9auU2aE39RT1zpvyndsaRUh0sK06qs8aV6yk63dsS+d6gvPJ3OIW7EroylNBM1AOk04HI/YPzzg08Mv2D9+wnYbcLXTtWJ82gmQ5g1SDCGkySlzxpRmzGDZN4Mdl+kJGJvCXwslBO2rnfAOnaydedQQbEiYGpDAHEFZ9uzEkqBb3L0lZFiqaYqwFpWf9V2HDUs47JEzYgY2BHV90nnz3k1uootYxEBilKqM0P14M0TELoLnhDzJvM+cJcyK1OVeh0EGL6CLXRG2GFyTfur8shlX0gxOEpYWu98vjC7EXuemE6MhzJtb17ReVwJ42Qx8AUQRIXTIUgMajAwKHSLlMo4gCaHpYsDtzQ5//v4lbm87/NePJ7y93+MwMhB7hKFH129EhoKF07N6u6mscuZVVGUCVgVUFqmmBAhUq4qhemYErxARIBU6TaEXjk5E6EJEIFFOU67hmxotB41TlTWtwoaF25OWv2POYMygGPDtH3b4459ukeYZH94+AGDcve5xc9upgFz3KxHEq6DuvcbLGGgJeAZAmgKHMolSjSXPMBXL6NlrowvO/gwBfQHWgWRtL9nbaMnfFjd5vua+Kky7MmmCyEGFr9qffvD9lP2RdQ9DqaBqDQkhIPZd4d/23gyRWcdJkoFLpSer4BYRugHbqxt8890PuHlxi2F3jTzLyujUUpjmhOm0x/3Hj/j7j3/Fm5/fYKYZEvHG2B/3oIcOgQnbQfK9HvcnnE4nIGfs1Mh09+IWr1++QggdouaBChQ1H6NLSl2U2IycZp130S36boOXd9+COWN39QLfffdH7Pd7/P3ub3h83OP9+7d4+/YN0jyDR+2zJrwrBhNWk405WhbRuHrtMYu8c5EsMmPWqJDT6YjD4RFzSoj9gA0Ix8eh8D6Ts0OM6EgPXudZFK+yCQlPBmvo3JS0MIzku5Rp9uvD0onoWtACDZxZ0j+opmuG2y6KDohsxnJgTuIZm1UutOIqIDM6iY6ZtIR9ylkqIzPQ9eKhYvqe6EUyX4LlgSWzGDGsPWQyjPEDhraZwDwDDBwO91KgBQRQDyBiHI9gHkEhqyetyWpcjUnFqGiHO6UVZa9bzKX9aeoIL0cXzmHygv1nSSrNLvrkEq3Q6nty7aqGRivQRG6el8+AvRhY8R6LRCOVw3l1fZXLauGs8mQS+UKukYOV08MjjvePOB0POBz3OE0HhK7HBv15u9z85Sz92sSACEl9MqVe9jvKopxHq4RphiB9ho2nrj1SJhaI0UUZs3ECJqr6LcOcjrmEhGeIR6elXTHje6AgIeKB0adODupiwIkzZohxrI8S2pc4lcgq6yc5WpYQOWDS1C+Wk0y8L3uVoTKShppm3e99bmvzfgcIPdmWZbRcK9mxuR4SI8+TzOfQI/TPMyP9hgThdHGntG22/MN14dj9rMRWTiOxOtVVgT7EgM3QYTN0GDOBJ1VKSYjQEjATmUs31OrPWDSjCApmfeTlZmkeDCoEEUEVWBOSuNBw7Ud9vu/1ckhsUan7IM7vqQpPVS7NuDNsIq6ue3CSsuWJpGJe11HJEUCWWkU5TjlZAxcm+pnZXAoccAIB239bXDlwllOlvtaN80rE8YPmXmv3me5xsW2+Ifadu8ErkecqIQrhrU/gRAf23/HiFWft931zY525xoinLHSZbLxixLDdYrO9Quy6pVeT/mvJJB/3j/j0cI9xOhVhNKWEeZrVC6HmPMpZXdHJqqd12Gw2Grtc21oNrVWwKLRQ5F45NSDN/SXkILmgYhfx4vYWIQY87B/RDYMwnHFWg6RLDEn+mas5cP31J8P1Gnf6q5qSVeqKHaEjKUtqfZb5NO/FpRJ5RsuQZ5rgYsqcGVKD0pPxD78hegHQ/5vN8GL8Qtct6xpfuLuynMhlOzHULspPy3cQafieSV2eIMsaI9e9J07LTAjxdM1SABwpI82SIwrTJEpuSsjsCsKyn6flvC1g67fwm9XPlvPFhI4l87sM9/OqGNfq1UrPxr+AQnxcGlaNyMThi69+CudeTfb/DLecsGCEqGsOpErANGOe9S/NyBzB6BZK57qRxS6j3QyaHy6xGJjYaOXJ6VEBUBeYbYs++azRSlaRvHgNOd5oFS2Dr3TqWhsolOjRcjLu2oEF72U3PvYQo1Mq77bJk1BxQg6ERFVJF8OZ20jKuMPJFFYWebmeZN9gt3nwsh3/bDgZyr+x8NPVNW6xwTZ9qW4o/00mGJuSB90D1DA99BFDr2GNtkJCkEpxTpGWuSeATGzmBTuqS8HLT9nNF1SL4tJsUarU40qJ0eak/ls3dBN4zauhkrjyE1wi9ypLCQOT94cgScF3VwOOjxkPR6l2ejNLkmnPO9g/6uz0/4Jcs5oaL4yYR1bxVmF3SOb6sXzg+TuWr1/tCfYvexmy/nYWCuiauthPyM+r3uEGuazjImdxWcdlrWIpW/nlVuWPalR2yxvMeuCne7uEtXQlMfiw2WLY7BD0gMXomgHkNGGaZozTiMPhgMPhAAwEGmRuc8pIaQZRRAwdQiZwTkizeJV2MaLvNNSsH+BlJHtP9ZLRcdXBKXxMoxgCSXoC2zmjhubc33wCKGB/eNRqZsA8B1AmPQWQ6xfTT/WvkNdqb7HDUg+2ec9yOJqS5KaUSrgmQ9VrSSdIPKXziucY6VQjqqUHsUMmKoIbYIp5XeF1nn2aFb+fmuy8oK/M6rCgMhfI0Vttt3zW52YzZlR9q3alChJ+eH0b7N2FT6nAstjFtD0pZaR5AkDIPAIQWV2qftY3cOGBNpaec9UWXOZnbi6t3Z/T5bxsZeva7rT1bdfonK09vep7bFw8ddU1ceHFsHVja/9JDyd/J9kaojpuiwmy+dT8uZmRpln+kkYp8LrK+np8qfAMQA811MsnQ6Io2GSassm5e+lcsrWmURDPXVNv645pH+pxl91ocpff9y0nU/FYBpCU3uyZNogLNZUZNflA9TZnqCOJ7d+gEnqfg3hNKcuqdG97XuF92h5PUtaM0gBlWOVdqGP4BTzb2HQ4HAAAm+1Gsqi7agQgLR8buCZwSwnEszQ4BJhfdTm5VWbnT5RIucl4HPHmbx9xvO9x/brDd3/4BiGe8O23QNdPmMcO8yhGK/Est/wm0h5Ldpkzl5CGlHMJi7EJlFMDPTEr3g4onKB4ZkQR0AIFdJ3GDptCD5Tk1lLVQn8LVPrjQ4VkEpVQiIq3UxfFErnZRLy43eD2doOPv+zx80+fkFLGD39+hevrazlJY1VWsyccKivCFpnlujHvjIoqrCz5Q1XIFwQug7FQGGzxFMIkKgbhMm4Ereph7tQ6ttnCmVDo1Qu0pYm6Ycks5cWzHTsuiwiMctqZy3yLW28VduSDeXixTrgXNpZM0y0q7UDWZzBDwtsCod9ssB063Ly4xe3tS9zc3iF2fYnD7bootH0a8TiO+PDxF7z7IAkls56MUBTPwW7o0PUSSplzxjRJcrxNiNhdXWO33eJqt8NuI1VaIqlnjFadWwtKHgs2ygBrFsUYI7ZhixgCvv/+TxinE7a7Ha6ur3E6HvHux59wfHzEdBpxOpxE2UAtWZw1p1s5EVdhoIa0nAtOBjFqZkzjhMN+j832Clc3Uolm6AcEihAjl8uvgdXGqGuufs/Va8COW2BCboK5roaga6GMVzXUEQl7TLN4QsDTGVByJlVjkwlSEibAkGp406xlcXNCDNAKg1VAMsrS3edszmwsLZFteY8JWHqNzIWcRAIoJ/RidNMbi3elGBfBjHmicuIW3PNWrOGydFRb7y5Vns5AqSZTrePl/Z4OiJd0efZ4sqMJFUR0/mTTr8KhLGsSyrxoa/Lz64fYOmib+7J9tfuO70MFA+aLtJ3mhOl4wnwaIWFb0JCOSUPBCeJdSlptyfEn58YfLbl3IIzKB4N64nqhsvLzelBge08gOS2LIeLUzVLpkVmSvzIjMCMqX0wsxQ46SP41yxWU5lQE/QwpGz/EDpkzxpyRMzDO4rWHvBQIrY2kc2n/wTBvFgBcK1l2IPQAUgjgXpKgm/ciW944QPKX6P+sjHZmr/DXOXFHXZKPKgN5zJ+h66+LkxVZiUDgWIVKAhACaOgBFg+oQAGcZlAe/cCB9U86H8paJd0nrQDC/uGIN3/9iON9h23X49//5Y94fzPhw4d7cFTvjKTVS1nFZq4yVEqp7Ps2QBJijMKnZEyDW49w7VQ5QYsoRPXUi2TJj+uBYwBrDicVpMnyTaipSfepui5t9cmnrEUUhk2Hu6sNhm3EZisK/mmc8fbdA3LKuHm5was4gGjS8KAE5uBkD6+06LrPJg/lIqlqmtmiGMN9LnwPlfYKd3BKTDXGeL5R01VYMyTSSb3zLWzCJGYnj/m1Zu+yRpjsc6F7S8VDn2meDfWQRnrB7hqjh3ooQ0rGwnT94U75c3zKKkNlEBIyQoy4ubrC9Ytb3N69xHa7w7DZSD7FlOVgTE/Q7w/3+PDhF7x7+w4Pn+6xf3zANu6w7XcY+h5932PoeilcMI+YxhnjOGIaT9hdX+P17UvstlvsNltNrK+JfcmH21woElHoGzaxUHUGABBCj+0mIIQO3/+JMY4jdtc7bK+2OJ2OePfmJxwPkjh81nxD0H1cvKfVoySEUjyO2aarCNpFZS2mBZYiDUzApDmpiCRHX+xEluRCC1xCp7N6lJe9jywdyOpQnn2IjtG60qcp9VS25ELbIQRQJ/SatYCO8YbM4ikIUKXtIqNLj3MSBTwFxpwyAhNC5mLg8JXqzmAyhskHLFUAzUulTqn3FNH+JsYM9eAqvK+GEIqMrV6+UdttByalLUsh5kzWuwQiWCyx7bMLenPGkcUzfvP+5ficvXPFWy/dY7K86bGFSROVsV2LcL6ZNam1O2Ra3WF8NKeEeZzksBSs+7vJUBLGKs91OdcKXzSZFnI4D/GMG1kiHKChbUaPJncZv3ScuRishr5HiFnWr+obCRbRJfcmTWMhBy1y8BNIPLdny0WlsmMkKarEYIzTjBAIm9BhCLHkrVoOoh93k6FQ1ihQ99qO5G8OhNxZTlGJtCJjyGyysNKVnR7Wzau2IZjBX3ZB4ylZ05N8Cc82Nh2PR3lfCOj7XhPm2gZCxToXeym1nohASTS0sphVSASjJFpmqCGEdRslYDrOePfjJxx3Pf7j5R2+/eYlQAe8/uYIioRPHyM+jWRjD+/RI/23RUolVrFUfnGKJxVFiGpIg/0GY5hafayzUBfpZ1Wd9HaIFZH1npK0EoB5LHmhRrLWkyYFlLC47S5is+twczPg5sUG9x/3ePvmAeOY8PrVHWLYINBUNmsLD4Nvkd8LlVgtQbPNn3VzbWwyYakaAF0HdTxMsbL8Me6iheEJgBqatAxq2SKrsFjfW3lVfZq1B7JR6PX2Vm+ssCdVhV8WgNFoSiLwLeijjJGyWH2cVVe7eJqgJ/dWnTDrJhpCxPZmwNX1Na5vXuDm5hY3Ny8ws5x+RCIJPwXw+DDh/tMDPt7f48OHD/jwy3sMVwM21xtJIt3FIiD0fa8CsQjGoetxvbvC1XaL3XaLzWYDYdhV2TJj00qTXoyrHzjzvJPqah36YcB2t0HmjN2V9Ofx4QE8TbiPAcfHPbIm2iY1tuSUkGJYjiuqEhDWdOGax27dTtOE4+GIEHr0XY/tdou+HxBClDks9MpVoHUL1nIQlFM4E4TzgpqL0EBRc+s45ReurdGFA0kIhbWVSxuM7YYi0StDVwk0JcY8S7UWDhmJhI6EZ/ppUiWyaAWV2RcBveQ1cCTphBsTDlPSse4jIomb7Zxs/Ru7k/4xA5jNE4GxXtW+Dc+GCl6gqlAVNX+1xpd9WL3T/S4htHbiZZ1Y3lBDKbl40dZH+048IaD6pxXZackLyp0kPKWUkEaVucyAmVPCeBoxT5PwmCA0OU6snoud5JAh3eQZEuJtgpby7xgjBt1bOnbGJm2I0U2hTKXXog1p2/rY6fOkUhe0UAfU2JTdmrF+dVpxsyg0rCESACL1CDFgzFR+m1KSRN36TBlLr4TXPdfyfWSWdQKotxSJO3cvXyDBEu0wWEMnWAq3IDCrsSLKHg0Cca2uWCquun3D5AzOQJ4vicX/HIzjBECSGA8rZRwxgLpO+GXoESjqHM4QjyNTCixcshqGyQjP5iglHB6PePfjPcaHDt/92x1++PNrbDd7/OV/DhhzQjoGpENQ/p+rsqfDkVJWOq/hr4vyzGYUolh+Z2AVLW2yUBDP7CimqYigOWvKrCCSKu2hGoMrL2I19gCa0E8fT05BI/R9j7tX19hsOwya/Pw0zXj//hFpTvjhX18hxAFEp5KLphzIaTvK4lbYoZTsNaooOIMagAtGp9r/2oPVoxdKMpUrzuQOMg8AKn+WpLW8357gh8bewef07a+p3KF0poZ1LoxNS1ySocrzA5XE0XXPNvqVTzmzVlYUGa0DYbO9wt2rV7i5vcWw3aEfNlrFU8LsolaWPOyPePf2HT68f4+Hh084HB7RX/fouw69VsPtuw5jGjFOk+R6mUbM04i+u8Prly+xVfmJrIKU8qXooiYWc8FuBkh1GftJD6Ji7BDjgH7YYnO1Q+aM7dUG26sN9o+PSNMJ94EwHk8wl+eg4Xs5J8x5LvJ1QeaFwGQ8XxI017ZJLteMaZowjifxDttdyWFkjOJxwxa14QxIRkdlq5R+Z+ccYHPo6c1C4xaKKi3/O4RQ9ugZc90ri5xU91fWfhZ6VM9wIjmwk3QWeihGJHwpuAqC1i5PpDphdmBNzG6tVh5SwtDcQbU9yQyPSaMRiIDeRMXApaJySmpAWdC6WxO0lHKe8lYybmSPWhcaWPRt+eE3Yfl0gm/1udjn+NXK8OXTLthT1zod4HWAyvNquKNrlwoyeU5SGGsWxxXJ7Sce41ZRzkKiiUwHqbzYggb6vsMmREw5YVb5uHj8mWzt14Prv3UhakhcZMaxk3Q1mWHFKsu9ibnk1DSbgRweMRIDjFTkn0gBfQiY84xjmoEETF2PKffVS2INWtOPtUOujZpKJQZN5RMCUhRDK6e67kxJkVBC3XOdsclSxJifinhhmSe0fJdVZn0OGT7b2PRr8eV3+214+W3pTBGUjZiq8vK5Z3gsfnli4T7Z1id+WG9C5cNKUPkszlfyJVlnMQ5faO3l1zzFrJ553bqZi75f0BwvG2kcU/psc7hczrz87kvgS+MJr4CdP2ft2rv+7hlvLYJ/pUh/UlIZ6vq9/q9Ab3nqtIbcp2LdXn1/8fonNrZLF5uQWtec5d946i3+3ufS5tMb7VPXnXVhZdg6e5bbdBYP+VXz+wx8gQWt+U+hmC8OVd20/5Em/H6q9IVW6MeLHnYXeeiFpz4xDNVY+bxWPZ9vnl+3MDj5n1cvv8yC+LM05xWxp3pTFBxaf3v+/s9/8dSdn4MT5nmpVJa22SfVSMyA/Y/DjzkvvvNjvfxFP9PaQ/XCRcBlifj/CoXWn8sfL2Ox5xVB0XlBnm/bvwJ1j15gvTx4+cPZOrz4YlpP4q9qWVF2/fNZ/u+ccp+Pi8aWi9ddkDGAi1kIDP6wYX1YZ88sUsRX2b4+M6bOcP5srBrEF7578tb152fTpbVTVfNnvc/LWVV+ejJEaY1Ll53Nq5dXTIZyhitvMFpP5kIJh6PXJ2Q696lQ9tkwXF5rz6WhOq7PueEf56GX+lt+cWMt+/E53bmlpP/89jb5PZ/PCHXxweELMttv2GfK3kZL2jq77vcT9J6Bz/dzccBaGv65e9ade849522qalXV1n79c/SO1a2f10bo/FdHsGWr8qLIsyZ0pVeef3X5+vWz1Ui2pqsnZagzfGaD88/jX6ddNzQ0NDQ0NDQ0NDQ0NDQ0NDQ0PInfrxRLQ0NDQ0NDQ0NDQ0NDQ0NDQ8P/ezRjU0NDQ0NDQ0NDQ0NDQ0NDQ0PDV0MzNjU0NDQ0NDQ0NDQ0NDQ0NDQ0fDU0Y1NDQ0NDQ0NDQ0NDQ0NDQ0NDw1dDMzY1NDQ0NDQ0NDQ0NDQ0NDQ0NHw1NGNTQ0NDQ0NDQ0NDQ0NDQ0NDQ8NXQzM2NTQ0NDQ0NDQ0NDQ0NDQ0NDR8NTRjU0NDQ0NDQ0NDQ0NDQ0NDQ0PDV0MzNjU0NDQ0NDQ0NDQ0NDQ0NDQ0fDX8Lzc1+ljq1PN2AAAAAElFTkSuQmCC\n" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -904,24 +892,20 @@ "source": [ "tuned_model = tuning_job.tuned_model.endpoint\n", "\n", - "contents=[\n", - " 'Image 1:',\n", - " types.Part.from_uri(\n", - " file_uri=str(input_image_one_uri),\n", - " mime_type=\"image/jpeg\"),\n", - " 'Image 2:',\n", - " types.Part.from_uri(\n", - " file_uri=str(input_image_two_uri),\n", - " mime_type=\"image/jpeg\"),\n", + "contents = [\n", + " \"Image 1:\",\n", + " types.Part.from_uri(file_uri=str(input_image_one_uri), mime_type=\"image/jpeg\"),\n", + " \"Image 2:\",\n", + " types.Part.from_uri(file_uri=str(input_image_two_uri), mime_type=\"image/jpeg\"),\n", "]\n", "\n", "response = client.models.generate_content(\n", - " model = tuned_model,\n", - " contents = contents,\n", - " config={\n", - " 'temperature': 0,\n", + " model=tuned_model,\n", + " contents=contents,\n", + " config={\n", + " \"temperature\": 0,\n", " },\n", - " )\n", + ")\n", "\n", "response" ] @@ -952,7 +936,8 @@ ], "metadata": { "colab": { - "provenance": [] + "name": "gen_ai_sdk_supervised_finetuning_using_gemini_on_multiple_images.ipynb", + "toc_visible": true }, "kernelspec": { "display_name": "Python 3", @@ -961,4 +946,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_qa.ipynb b/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_qa.ipynb index dc750f0cb5b..f4121513139 100644 --- a/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_qa.ipynb +++ b/gemini/tuning/gen_ai_sdk_supervised_finetuning_using_gemini_qa.ipynb @@ -33,22 +33,22 @@ "\n", "
\n", - " \n", + " \n", " \"Google
Open in Colab\n", "
\n", "
\n", - " \n", + " \n", " \"Google
Open in Colab Enterprise\n", "
\n", "
\n", - " \n", + " \n", " \"Vertex
Open in Vertex AI Workbench\n", "
\n", "
\n", - " \n", + " \n", " \"GitHub
View on GitHub\n", "
\n", "
\n", " \n", " \n", " \n", " \n", @@ -58,23 +58,23 @@ "\n", "Share to:\n", "\n", - "\n", + "\n", " \"LinkedIn\n", "\n", "\n", - "\n", + "\n", " \"Bluesky\n", "\n", "\n", - "\n", + "\n", " \"X\n", "\n", "\n", - "\n", + "\n", " \"Reddit\n", "\n", "\n", - "\n", + "\n", " \"Facebook\n", " " ] @@ -160,8 +160,7 @@ "source": [ "### Install the Google GenAI SDK and other required packages\n", "\n", - "The new Google Gen AI SDK provides a unified interface to Gemini through both the Gemini Developer API and the Gemini API on Vertex AI. With a few exceptions, code that runs on one platform will run on both. This means that you can prototype an application using the Developer API and then migrate the application to Vertex AI without rewriting your code.\n", - "\n" + "The new Google Gen AI SDK provides a unified interface to Gemini through both the Gemini Developer API and the Gemini API on Vertex AI. With a few exceptions, code that runs on one platform will run on both. This means that you can prototype an application using the Developer API and then migrate the application to Vertex AI without rewriting your code.\n" ] }, { @@ -257,8 +256,8 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "Nqwi-5ufWp_B", - "cellView": "code" + "cellView": "code", + "id": "Nqwi-5ufWp_B" }, "outputs": [], "source": [ @@ -274,9 +273,7 @@ "\n", "LOCATION = os.environ.get(\"GOOGLE_CLOUD_REGION\", \"us-central1\")\n", "\n", - "client = genai.Client(\n", - " vertexai=True, project=PROJECT_ID, location=LOCATION\n", - ")" + "client = genai.Client(vertexai=True, project=PROJECT_ID, location=LOCATION)" ] }, { @@ -298,7 +295,6 @@ "source": [ "from collections import Counter\n", "import json\n", - "import time\n", "import random\n", "\n", "# Vertex AI SDK\n", @@ -309,9 +305,8 @@ "import pandas as pd\n", "import plotly.graph_objects as go\n", "from plotly.subplots import make_subplots\n", - "from IPython.display import Markdown, display\n", - "\n", "import vertexai\n", + "\n", "vertexai.init(project=PROJECT_ID, location=LOCATION)\n", "\n", "from google.cloud import aiplatform\n", @@ -612,43 +607,43 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "udTxzY8mpGYf" + }, + "outputs": [], "source": [ "def get_predictions(question: str, model_version: str) -> str:\n", "\n", - " prompt = question\n", - " base_model = model_version\n", + " prompt = question\n", + " base_model = model_version\n", "\n", - " response = client.models.generate_content(\n", - " model = base_model,\n", - " contents = prompt,\n", - " config={\n", - " 'system_instruction': systemInstruct,\n", - " 'temperature': 0.3,\n", - " },\n", - " )\n", + " response = client.models.generate_content(\n", + " model=base_model,\n", + " contents=prompt,\n", + " config={\n", + " \"system_instruction\": systemInstruct,\n", + " \"temperature\": 0.3,\n", + " },\n", + " )\n", "\n", - " return response.text" - ], - "metadata": { - "id": "udTxzY8mpGYf" - }, - "execution_count": null, - "outputs": [] + " return response.text" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PFvwmGll3MIv" + }, + "outputs": [], "source": [ "test_answer = test_df[\"answers\"].iloc[row_dataset]\n", "response = get_predictions(test_question, base_model)\n", "\n", "print(f\"Gemini response: {response}\")\n", "print(f\"Actual answer: {test_answer}\")" - ], - "metadata": { - "id": "PFvwmGll3MIv" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", @@ -938,41 +933,41 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gdcy4umfpGZE" + }, + "outputs": [], "source": [ "train_dataset = f\"\"\"{BUCKET_URI}/squad_train.jsonl\"\"\"\n", "validation_dataset = f\"\"\"{BUCKET_URI}/squad_train.jsonl\"\"\"\n", "\n", - "training_dataset= {\n", - " 'gcs_uri': train_dataset,\n", + "training_dataset = {\n", + " \"gcs_uri\": train_dataset,\n", "}\n", "\n", "validation_dataset = types.TuningValidationDataset(gcs_uri=validation_dataset)" - ], - "metadata": { - "id": "gdcy4umfpGZE" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NkboVUkoqWSp" + }, + "outputs": [], "source": [ "sft_tuning_job = client.tunings.tune(\n", " base_model=base_model,\n", " training_dataset=training_dataset,\n", " config=types.CreateTuningJobConfig(\n", - " adapter_size = 'ADAPTER_SIZE_EIGHT',\n", - " epoch_count = 1, # set to one to keep time and cost low\n", - " tuned_model_display_name=\"gemini-flash-1.5-qa\"\n", - ")\n", + " adapter_size=\"ADAPTER_SIZE_EIGHT\",\n", + " epoch_count=1, # set to one to keep time and cost low\n", + " tuned_model_display_name=\"gemini-flash-1.5-qa\",\n", + " ),\n", ")\n", "sft_tuning_job" - ], - "metadata": { - "id": "NkboVUkoqWSp" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", @@ -996,26 +991,26 @@ }, { "cell_type": "code", - "source": [ - "sft_tuning_job.state" - ], + "execution_count": null, "metadata": { "id": "WECSLyPRth6M" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "sft_tuning_job.state" + ] }, { "cell_type": "code", - "source": [ - "tuning_job = client.tunings.get(name=sft_tuning_job.name)\n", - "tuning_job" - ], + "execution_count": null, "metadata": { "id": "_iwz4lhUDC_f" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "tuning_job = client.tunings.get(name=sft_tuning_job.name)\n", + "tuning_job" + ] }, { "cell_type": "markdown", @@ -1040,15 +1035,15 @@ }, { "cell_type": "code", - "source": [ - "experiment_name = tuning_job.experiment\n", - "experiment_name" - ], + "execution_count": null, "metadata": { "id": "_IoiiRH5Lhpf" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "experiment_name = tuning_job.experiment\n", + "experiment_name" + ] }, { "cell_type": "code", @@ -1125,16 +1120,10 @@ "cell_type": "code", "execution_count": null, "metadata": { - "id": "DL07j7u__iZx", - "outputId": "c31ad64a-cf9e-45d7-b625-e4a7dbf49cc9", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 542 - } + "id": "DL07j7u__iZx" }, "outputs": [ { - "output_type": "display_data", "data": { "text/html": [ "\n", @@ -1170,7 +1159,8 @@ "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -1248,14 +1238,14 @@ }, { "cell_type": "code", - "source": [ - "get_predictions(prompt, tuned_model)" - ], + "execution_count": null, "metadata": { "id": "ifhRboiCOBje" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "get_predictions(prompt, tuned_model)" + ] }, { "cell_type": "code", @@ -1283,12 +1273,12 @@ }, { "cell_type": "markdown", - "source": [ - "After running the evaluation you can see that the model generally performs better on our use case after fine-tuning. Of course, depending on things like use case or data quality performance will differ." - ], "metadata": { "id": "kBawjkvKQ_Q-" - } + }, + "source": [ + "After running the evaluation you can see that the model generally performs better on our use case after fine-tuning. Of course, depending on things like use case or data quality performance will differ." + ] }, { "cell_type": "code", @@ -1306,7 +1296,8 @@ ], "metadata": { "colab": { - "provenance": [] + "name": "gen_ai_sdk_supervised_finetuning_using_gemini_qa.ipynb", + "toc_visible": true }, "kernelspec": { "display_name": "Python 3", @@ -1315,4 +1306,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} From 96e567face9c0c0599d8ee98821c8d8df236ba26 Mon Sep 17 00:00:00 2001 From: Thomas Bottrill Date: Fri, 13 Dec 2024 16:08:59 +0000 Subject: [PATCH 3/3] fix: pins financial-advisor-spanner itables version (#1519) # Description Fixes itables not loading properly by pinning the version. --------- Co-authored-by: Holt Skinner <13262395+holtskinner@users.noreply.github.com> Co-authored-by: code-review-assist[bot] <182814678+code-review-assist[bot]@users.noreply.github.com> --- gemini/sample-apps/finance-advisor-spanner/requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gemini/sample-apps/finance-advisor-spanner/requirements.txt b/gemini/sample-apps/finance-advisor-spanner/requirements.txt index 4e0ee04f3ee..718d0d1ccf6 100644 --- a/gemini/sample-apps/finance-advisor-spanner/requirements.txt +++ b/gemini/sample-apps/finance-advisor-spanner/requirements.txt @@ -1,6 +1,6 @@ streamlit google-cloud-spanner -itables +itables==2.1.5 streamlit-navigation-bar streamlit-extras streamlit-agraph
\n", - " \n", + " \n", " \"Google
Open in Colab\n", "
\n", "
\n", - " \n", + " \n", " \"Google
Open in Colab Enterprise\n", "
\n", "
\n", - " \n", + " \n", " \"Vertex
Open in Workbench\n", "
\n", "
\n", - " \n", + " \n", " \"GitHub
View on GitHub\n", "
\n", "