Skip to content
This repository has been archived by the owner on Oct 14, 2022. It is now read-only.

Latest commit

 

History

History
667 lines (561 loc) · 27.2 KB

README.md

File metadata and controls

667 lines (561 loc) · 27.2 KB

Google Cloud Platform for Chef

This cookbook installs all Google cookbooks for Chef to allow managing Google Cloud Platform resources from your Chef environment

Table of Contents

  1. Description
  2. Setup
  3. Supported Google Cloud Platform Products
  4. Summary of Supported Products Types / Providers
  5. Supported Operating Systems

Description

This cookbook is a convenience to install all Google Cloud Platform cookbooks for Chef with a single command. You can install them individually if you wish as well.

Setup

To install this cookbook, insert the following into your Berksfile.

cookbook 'google-cloud', '~> 0.4.0'

Supported Google Cloud Platform Products

The google/cloud cookbook installs the following cookbooks automatically:

Summary of Supported Products Types / Providers

Below you can find a summary of each supported type and a brief description of its intended behavior. For full details about each provider, properties, parameters, usage and examples please visit its respective Chef cookbook project page.

Google Compute Engine

Detailed information can be found at the google-gcompute project home page. The list below is a summary of the supported types by the cookbook:

  • gcompute_address Represents an Address resource. Each virtual machine instance has an ephemeral internal IP address and, optionally, an external IP address. To communicate between instances on the same network, you can use an instance's internal IP address. To communicate with the Internet and instances outside of the same network, you must specify the instance's external IP address. Internal IP addresses are ephemeral and only belong to an instance for the lifetime of the instance; if the instance is deleted and recreated, the instance is assigned a new internal IP address, either by Compute Engine or by you. External IP addresses can be either ephemeral or static.

  • gcompute_backend_bucket Backend buckets allow you to use Google Cloud Storage buckets with HTTP(S) load balancing. An HTTP(S) load balancer can direct traffic to specified URLs to a backend bucket rather than a backend service. It can send requests for static content to a Cloud Storage bucket and requests for dynamic content a virtual machine instance.

  • gcompute_backend_service Creates a BackendService resource in the specified project using the data included in the request.

  • gcompute_disk_type Represents a DiskType resource. A DiskType resource represents the type of disk to use, such as a pd-ssd or pd-standard. To reference a disk type, use the disk type's full or partial URL.

  • gcompute_disk Persistent disks are durable storage devices that function similarly to the physical disks in a desktop or a server. Compute Engine manages the hardware behind these devices to ensure data redundancy and optimize performance for you. Persistent disks are available as either standard hard disk drives (HDD) or solid-state drives (SSD). Persistent disks are located independently from your virtual machine instances, so you can detach or move persistent disks to keep your data even after you delete your instances. Persistent disk performance scales automatically with size, so you can resize your existing persistent disks or add more persistent disks to an instance to meet your performance and storage space requirements. Add a persistent disk to your instance when you need reliable and affordable storage with consistent performance characteristics.

  • gcompute_firewall Each network has its own firewall controlling access to and from the instances. All traffic to instances, even from other instances, is blocked by the firewall unless firewall rules are created to allow it. The default network has automatically created firewall rules that are shown in default firewall rules. No manually created network has automatically created firewall rules except for a default "allow" rule for outgoing traffic and a default "deny" for incoming traffic. For all networks except the default network, you must create any firewall rules you need.

  • gcompute_forwarding_rule A ForwardingRule resource. A ForwardingRule resource specifies which pool of target virtual machines to forward a packet to if it matches the given [IPAddress, IPProtocol, portRange] tuple.

  • gcompute_global_address Represents a Global Address resource. Global addresses are used for HTTP(S) load balancing.

  • gcompute_global_forwarding_rule Represents a GlobalForwardingRule resource. Global forwarding rules are used to forward traffic to the correct load balancer for HTTP load balancing. Global forwarding rules can only be used for HTTP load balancing. For more information, see https://cloud.google.com/compute/docs/load-balancing/http/

  • gcompute_http_health_check An HttpHealthCheck resource. This resource defines a template for how individual VMs should be checked for health, via HTTP.

  • gcompute_https_health_check An HttpsHealthCheck resource. This resource defines a template for how individual VMs should be checked for health, via HTTPS.

  • gcompute_health_check Health Checks determine whether instances are responsive and able to do work. They are an important part of a comprehensive load balancing configuration, as they enable monitoring instances behind load balancers. Health Checks poll instances at a specified interval. Instances that do not respond successfully to some number of probes in a row are marked as unhealthy. No new connections are sent to unhealthy instances, though existing connections will continue. The health check will continue to poll unhealthy instances. If an instance later responds successfully to some number of consecutive probes, it is marked healthy again and can receive new connections.

  • gcompute_instance_template Defines an Instance Template resource that provides configuration settings for your virtual machine instances. Instance templates are not tied to the lifetime of an instance and can be used and reused as to deploy virtual machines. You can also use different templates to create different virtual machine configurations. Instance templates are required when you create a managed instance group. Tip: Disks should be set to autoDelete=true so that leftover disks are not left behind on machine deletion.

  • gcompute_license A License resource represents a software license. Licenses are used to track software usage in images, persistent disks, snapshots, and virtual machine instances.

  • gcompute_image Represents an Image resource. Google Compute Engine uses operating system images to create the root persistent disks for your instances. You specify an image when you create an instance. Images contain a boot loader, an operating system, and a root file system. Linux operating system images are also capable of running containers on Compute Engine. Images can be either public or custom. Public images are provided and maintained by Google, open-source communities, and third-party vendors. By default, all projects have access to these images and can use them to create instances. Custom images are available only to your project. You can create a custom image from root persistent disks and other images. Then, use the custom image to create an instance.

  • gcompute_instance An instance is a virtual machine (VM) hosted on Google's infrastructure.

  • gcompute_instance_group Represents an Instance Group resource. Instance groups are self-managed and can contain identical or different instances. Instance groups do not use an instance template. Unlike managed instance groups, you must create and add instances to an instance group manually.

  • gcompute_instance_group_manager Creates a managed instance group using the information that you specify in the request. After the group is created, it schedules an action to create instances in the group using the specified instance template. This operation is marked as DONE when the group is created even if the instances in the group have not yet been created. You must separately verify the status of the individual instances. A managed instance group can have up to 1000 VM instances per group.

  • gcompute_interconnect_attachment Represents an InterconnectAttachment (VLAN attachment) resource. For more information, see Creating VLAN Attachments.

  • gcompute_machine_type Represents a MachineType resource. Machine types determine the virtualized hardware specifications of your virtual machine instances, such as the amount of memory or number of virtual CPUs.

  • gcompute_network Represents a Network resource. Your Cloud Platform Console project can contain multiple networks, and each network can have multiple instances attached to it. A network allows you to define a gateway IP and the network range for the instances attached to that network. Every project is provided with a default network with preset configurations and firewall rules. You can choose to customize the default network by adding or removing rules, or you can create new networks in that project. Generally, most users only need one network, although you can have up to five networks per project by default. A network belongs to only one project, and each instance can only belong to one network. All Compute Engine networks use the IPv4 protocol. Compute Engine currently does not support IPv6. However, Google is a major advocate of IPv6 and it is an important future direction.

  • gcompute_region Represents a Region resource. A region is a specific geographical location where you can run your resources. Each region has one or more zones

  • gcompute_region_disk Persistent disks are durable storage devices that function similarly to the physical disks in a desktop or a server. Compute Engine manages the hardware behind these devices to ensure data redundancy and optimize performance for you. Persistent disks are available as either standard hard disk drives (HDD) or solid-state drives (SSD). Persistent disks are located independently from your virtual machine instances, so you can detach or move persistent disks to keep your data even after you delete your instances. Persistent disk performance scales automatically with size, so you can resize your existing persistent disks or add more persistent disks to an instance to meet your performance and storage space requirements. Add a persistent disk to your instance when you need reliable and affordable storage with consistent performance characteristics.

  • gcompute_route Represents a Route resource. A route is a rule that specifies how certain packets should be handled by the virtual network. Routes are associated with virtual machines by tag, and the set of routes for a particular virtual machine is called its routing table. For each packet leaving a virtual machine, the system searches that virtual machine's routing table for a single best matching route. Routes match packets by destination IP address, preferring smaller or more specific ranges over larger ones. If there is a tie, the system selects the route with the smallest priority value. If there is still a tie, it uses the layer three and four packet headers to select just one of the remaining matching routes. The packet is then forwarded as specified by the next_hop field of the winning route -- either to another virtual machine destination, a virtual machine gateway or a Compute Engine-operated gateway. Packets that do not match any route in the sending virtual machine's routing table will be dropped. A Route resource must have exactly one specification of either nextHopGateway, nextHopInstance, nextHopIp, or nextHopVpnTunnel.

  • gcompute_router Represents a Router resource.

  • gcompute_snapshot Represents a Persistent Disk Snapshot resource. Use snapshots to back up data from your persistent disks. Snapshots are different from public images and custom images, which are used primarily to create instances or configure instance templates. Snapshots are useful for periodic backup of the data on your persistent disks. You can create snapshots from persistent disks even while they are attached to running instances. Snapshots are incremental, so you can create regular snapshots on a persistent disk faster and at a much lower cost than if you regularly created a full image of the disk.

  • gcompute_ssl_certificate An SslCertificate resource, used for HTTPS load balancing. This resource provides a mechanism to upload an SSL key and certificate to the load balancer to serve secure connections from the user.

  • gcompute_subnetwork A VPC network is a virtual version of the traditional physical networks that exist within and between physical data centers. A VPC network provides connectivity for your Compute Engine virtual machine (VM) instances, Container Engine containers, App Engine Flex services, and other network-related resources. Each GCP project contains one or more VPC networks. Each VPC network is a global entity spanning all GCP regions. This global VPC network allows VM instances and other resources to communicate with each other via internal, private IP addresses. Each VPC network is subdivided into subnets, and each subnet is contained within a single region. You can have more than one subnet in a region for a given VPC network. Each subnet has a contiguous private RFC1918 IP space. You create instances, containers, and the like in these subnets. When you create an instance, you must create it in a subnet, and the instance draws its internal IP address from that subnet. Virtual machine (VM) instances in a VPC network can communicate with instances in all other subnets of the same VPC network, regardless of region, using their RFC1918 private IP addresses. You can isolate portions of the network, even entire subnets, using firewall rules.

  • gcompute_target_http_proxy Represents a TargetHttpProxy resource, which is used by one or more global forwarding rule to route incoming HTTP requests to a URL map.

  • gcompute_target_https_proxy Represents a TargetHttpsProxy resource, which is used by one or more global forwarding rule to route incoming HTTPS requests to a URL map.

  • gcompute_target_pool Represents a TargetPool resource, used for Load Balancing.

  • gcompute_target_ssl_proxy Represents a TargetSslProxy resource, which is used by one or more global forwarding rule to route incoming SSL requests to a backend service.

  • gcompute_target_tcp_proxy Represents a TargetTcpProxy resource, which is used by one or more global forwarding rule to route incoming TCP requests to a Backend service.

  • gcompute_target_vpn_gateway Represents a VPN gateway running in GCP. This virtual device is managed by Google, but used only by you.

  • gcompute_url_map UrlMaps are used to route requests to a backend service based on rules that you define for the host and path of an incoming URL.

  • gcompute_vpn_tunnel VPN tunnel resource.

  • gcompute_zone Represents a Zone resource.

Google Container Engine

Detailed information can be found at the google-gcontainer project home page. The list below is a summary of the supported types by the cookbook:

  • gcontainer_cluster A Google Container Engine cluster.

  • gcontainer_node_pool NodePool contains the name and configuration for a cluster's node pool. Node pools are a set of nodes (i.e. VM's), with a common configuration and specification, under the control of the cluster master. They may have a set of Kubernetes labels applied to them, which may be used to reference them during pod scheduling. They may also be resized up or down, to accommodate the workload.

  • gcontainer_kube_config Generates a compatible Kuberenetes '.kube/config' file

Google Cloud DNS

Detailed information can be found at the google-gdns project home page. The list below is a summary of the supported types by the cookbook:

  • gdns_managed_zone A zone is a subtree of the DNS namespace under one administrative responsibility. A ManagedZone is a resource that represents a DNS zone hosted by the Cloud DNS service.

  • gdns_project A project resource. The project is a top level container for resources including Cloud DNS ManagedZones.

  • gdns_resource_record_set A single DNS record that exists on a domain name (i.e. in a managed zone). This record defines the information about the domain and where the domain / subdomains direct to. The record will include the domain/subdomain name, a type (i.e. A, AAA, CAA, MX, CNAME, NS, etc)

Google Cloud IAM

Detailed information can be found at the google-giam project home page. The list below is a summary of the supported types by the cookbook:

  • giam_service_account A service account in the Identity and Access Management API.

  • giam_service_account_key A service account in the Identity and Access Management API.

Google Cloud Pub/Sub

Detailed information can be found at the google-gpubsub project home page. The list below is a summary of the supported types by the cookbook:

  • gpubsub_topic A named resource to which messages are sent by publishers.

  • gpubsub_subscription A named resource representing the stream of messages from a single, specific topic, to be delivered to the subscribing application.

Google Cloud Resource Manager

Detailed information can be found at the google-gresourcemanager project home page. The list below is a summary of the supported types by the cookbook:

  • gresourcemanager_project Represents a GCP Project. A project is a container for ACLs, APIs, App Engine Apps, VMs, and other Google Cloud Platform resources.

Google Spanner

Detailed information can be found at the google-gspanner project home page. The list below is a summary of the supported types by the cookbook:

  • gspanner_instance_config A possible configuration for a Cloud Spanner instance. Configurations define the geographic placement of nodes and their replication.

  • gspanner_instance An isolated set of Cloud Spanner resources on which databases can be hosted.

  • gspanner_database A Cloud Spanner Database which is hosted on a Spanner instance.

Google Cloud SQL

Detailed information can be found at the google-gsql project home page. The list below is a summary of the supported types by the cookbook:

  • gsql_instance Represents a Cloud SQL instance. Cloud SQL instances are SQL databases hosted in Google's cloud. The Instances resource provides methods for common configuration and management tasks.

  • gsql_database Represents a SQL database inside the Cloud SQL instance, hosted in Google's cloud.

  • gsql_user The Users resource represents a database user in a Cloud SQL instance.

  • gsql_ssl_cert Represents an SSL certificate created for a Cloud SQL instance. To use the SSL certificate you must have the SSL Client Certificate and the associated SSL Client Key. The Client Key can be downloaded only when the SSL certificate is created with the insert method.

  • gsql_flag Represents a flag that can be configured for a Cloud SQL instance.

  • gsql_tier The Tiers resource represents a service configuration that can be used to define a Cloud SQL instance. Each tier has an associated RAM, maximum storage, and list of regions in which the tier can be used. Available tiers vary depending on whether you use PostgreSQL, MySQL Second Generation, or MySQL First Generation instances.

Google Cloud Storage

Detailed information can be found at the google-gstorage project home page. The list below is a summary of the supported types by the cookbook:

  • gstorage_bucket The Buckets resource represents a bucket in Google Cloud Storage. There is a single global namespace shared by all buckets. For more information, see Bucket Name Requirements. Buckets contain objects which can be accessed by their own methods. In addition to the acl property, buckets contain bucketAccessControls, for use in fine-grained manipulation of an existing bucket's access controls. A bucket is always owned by the project team owners group.

  • gstorage_bucket_access_control The BucketAccessControls resource represents the Access Control Lists (ACLs) for buckets within Google Cloud Storage. ACLs let you specify who has access to your data and to what extent. There are three roles that can be assigned to an entity: READERs can get the bucket, though no acl property will be returned, and list the bucket's objects. WRITERs are READERs, and they can insert objects into the bucket and delete the bucket's objects. OWNERs are WRITERs, and they can get the acl property of a bucket, update a bucket, and call all BucketAccessControls methods on the bucket. For more information, see Access Control, with the caveat that this API uses READER, WRITER, and OWNER instead of READ, WRITE, and FULL_CONTROL.

  • gstorage_object_access_control The ObjectAccessControls resources represent the Access Control Lists (ACLs) for objects within Google Cloud Storage. ACLs let you specify who has access to your data and to what extent. There are two roles that can be assigned to an entity: READERs can get an object, though the acl property will not be revealed. OWNERs are READERs, and they can get the acl property, update an object, and call all objectAccessControls methods on the object. The owner of an object is always an OWNER. For more information, see Access Control, with the caveat that this API uses READER and OWNER instead of READ and FULL_CONTROL.

  • gstorage_default_object_acl The ObjectAccessControls resources represent the Access Control Lists (ACLs) for objects within Google Cloud Storage. ACLs let you specify who has access to your data and to what extent. There are two roles that can be assigned to an entity: READERs can get an object, though the acl property will not be revealed. OWNERs are READERs, and they can get the acl property, update an object, and call all objectAccessControls methods on the object. The owner of an object is always an OWNER. For more information, see Access Control, with the caveat that this API uses READER and OWNER instead of READ and FULL_CONTROL.

Google Stackdriver Logging

Detailed information can be found at the google-glogging project home page.

Google Authentication

This cookbook provides the types to authenticate with Google Cloud Platform. When executing operations on Google Cloud Platform, e.g. creating a virtual machine, a SQL database, etc., you need to be authenticated to be able to carry on with the request. All Google Cloud Platform cookbooks use an unified authentication mechanism, provided by this cookbook.

For examples, installation and usage visit the google-gauth cookbook home page.

Supported Operating Systems

ProductOperating Systems
Google Compute Engine RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Container Engine RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Cloud DNS RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Cloud IAM RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Cloud Pub/Sub RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Cloud Resource Manager RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Spanner RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Cloud SQL RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core
Google Cloud Storage RedHat 6, 7
CentOS 6, 7
Debian 7, 8
Ubuntu 12.04, 14.04, 16.04, 16.10
SLES 11-sp4, 12-sp2
openSUSE 13
Windows Server 2008 R2, 2012 R2, 2012 R2 Core, 2016 R2, 2016 R2 Core