forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Windows.AI.MachineLearning.idl
768 lines (693 loc) · 41.1 KB
/
Windows.AI.MachineLearning.idl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//! \file Windows.AI.MachineLearning.idl
import "Windows.Foundation.idl";
import "windows.graphics.idl";
import "windows.media.idl";
#ifndef WINDOWSAI_RAZZLE_BUILD
// Pull in definition for DualApiPartitionAttribute, because the WinML IDL
// does not build in the OS Repo, and needs to access internal definitions for
// various custom attirbute definitions.
import "dualapipartitionattribute.idl";
import "windows.graphics.directx.direct3d11.idl";
import "windows.graphics.imaging.idl";
import "windows.storage.idl";
#endif
#include <sdkddkver.h>
#ifdef BUILD_INBOX
#define ROOT_NS Windows
#define INBOX_ONLY(x) x
#define OTB_ONLY(x)
#else
#define INBOX_ONLY(x)
#define OTB_ONLY(x) x
#endif
#ifndef ROOT_NS
#define ROOT_NS Microsoft
#endif
namespace ROOT_NS.AI.MachineLearning
{
[contractversion(5)]
apicontract MachineLearningContract{};
//! Forward declarations
runtimeclass LearningModelBinding;
//! \enum LearningModelFeatureKind
//! \brief Defines the list of input and output feature types for a machine learning model.
//! Each of these maps to a corresponding FeatureDescriptor that you can use to learn more
//! about how to pass the feature into and out of the the model.
[contract(MachineLearningContract, 1)]
enum LearningModelFeatureKind
{
//! The feature is a tensor, use TensorFeatureDescriptor
Tensor = 0,
//! The feature is a sequence, use SequenceFeatureDescriptor
Sequence,
//! The feature is a map, use MapFeatureDescriptor
Map,
//! The feature is an image, use ImageFeatureDescriptor
Image
};
//! \brief Describes the common properties that all features have.
INBOX_ONLY([uuid(bc08cf7c-6ed0-4004-97ba-b9a2eecd2b4f)])
[contract(MachineLearningContract, 1)]
interface ILearningModelFeatureDescriptor
{
//! \brief The name you use to bind values to this feature.
//! This property is required and will always be there. All features have a name as
//! primary key for the model. Usually as a single word. You use this name when
//! enumerating the features of the model and then later when binding a value to one
//! those feature using a LearningModelBinding. It will be unique across all features.
String Name{ get; };
//! \brief A description of what this feature is used for in the model
//! This property is optional. If provided by an author model it will be a description
//! of what the feature is for the model.
String Description{ get; };
//! \brief The kind of feature - use this to know which derived class to use.
LearningModelFeatureKind Kind{ get; };
//! \brief If true, you must bind a value to this feature before calling Evalaute().
Boolean IsRequired{ get; };
}
INBOX_ONLY([uuid(2a222e5d-afb1-47ed-bfad-b5b3a459ec04)])
OTB_ONLY([uuid(ae066239-6b19-4509-be3e-502ba40203b3)])
[contract(MachineLearningContract, 1)]
interface ILearningModelOperatorProvider : IInspectable
{
}
//! \interface LearningModel
//! \brief Represents a trained machine learning model.
//! \details This is the main object you use to interact with Windows Machine Learning. You use
//! it to load, bind, and evaluate trained ONNX models. To load the model you use
//! one of the Load constructors. You can then enumerate the InputFeatures and
//! OutputFeatures. To bind and evaluate you create a LearningModelSession.
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ILearningModelStatics", e3b977e8-6952-4e47-8ef4-1f7f07897c6d)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ILearningModel", 5b8e4920-489f-4e86-9128-265a327b78fa)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass LearningModel : Windows.Foundation.IClosable
{
//! Loads an ONNX model from a StorageFile asynchronously.
[remote_async]
static Windows.Foundation.IAsyncOperation<LearningModel> LoadFromStorageFileAsync(Windows.Storage.IStorageFile modelFile);
//! Loads an ONNX model from a stream asynchronously.
[remote_async]
static Windows.Foundation.IAsyncOperation<LearningModel> LoadFromStreamAsync(Windows.Storage.Streams.IRandomAccessStreamReference modelStream);
//! Loads an ONNX model from a file on disk.
static LearningModel LoadFromFilePath(String filePath);
//! Loads an ONNX model from a stream.
static LearningModel LoadFromStream(Windows.Storage.Streams.IRandomAccessStreamReference modelStream);
//! Loads an ONNX model from a StorageFile asynchronously.
[remote_async]
[method_name("LoadFromStorageFileWithOperatorProviderAsync")] static Windows.Foundation.IAsyncOperation<LearningModel> LoadFromStorageFileAsync(Windows.Storage.IStorageFile modelFile, ILearningModelOperatorProvider operatorProvider);
//! Loads an ONNX model from a stream asynchronously.
[remote_async]
[method_name("LoadFromStreamWithOperatorProviderAsync")] static Windows.Foundation.IAsyncOperation<LearningModel> LoadFromStreamAsync(Windows.Storage.Streams.IRandomAccessStreamReference modelStream, ILearningModelOperatorProvider operatorProvider);
//! Loads an ONNX model from a file on disk.
[method_name("LoadFromFilePathWithOperatorProvider")] static LearningModel LoadFromFilePath(String filePath, ILearningModelOperatorProvider operatorProvider);
//! Loads an ONNX model from a stream.
[method_name("LoadFromStreamWithOperatorProvider")] static LearningModel LoadFromStream(Windows.Storage.Streams.IRandomAccessStreamReference modelStream, ILearningModelOperatorProvider operatorProvider);
//! The name of the model author.
String Author{ get; };
//! The name of the model.
String Name{ get; };
//! The namespace of the imported model operator set. All models implicitly import the default ONNX operator set.
String Domain{ get; };
//! A description of the model.
String Description{ get; };
//! The ONNX version assumed by the model.
Int64 Version{ get; };
//! The raw ONNX model provided <string,string> metadata.
Windows.Foundation.Collections.IMapView <String, String> Metadata{ get; };
//! All of the input features.
Windows.Foundation.Collections.IVectorView<ILearningModelFeatureDescriptor > InputFeatures{ get; };
//! All of the output features.
Windows.Foundation.Collections.IVectorView<ILearningModelFeatureDescriptor > OutputFeatures{ get; };
}
//! \enum LearningModelDeviceKind
//! \brief Defines the list of devices that can evaluate a machine learning model.
[contract(MachineLearningContract, 1)]
enum LearningModelDeviceKind
{
//! Let the system decide which device to use.
Default = 0,
//! Use the CPU to evaluate the model.
Cpu,
//! Use a GPU or other DirectX device to evaluate the model.
DirectX,
//! Use the system policy defined device for high performance.
DirectXHighPerformance,
//! Use the system policy defined device for minimum power.
DirectXMinPower
};
//! \class LearningModelDevice
//! \brief Create an instance specific to which device you want to evaluate the machine learning model on.
//! \namespace Windows.AI.MachineLearning
[contract(MachineLearningContract, 1)]
INBOX_ONLY([constructor_name("Windows.AI.MachineLearning.ILearningModelDeviceFactory", 9cffd74d-b1e5-4f20-80ad-0a56690db06b)])
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ILearningModelDeviceStatics", 49f32107-a8bf-42bb-92c7-10b12dc5d21f)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ILearningModelDevice", f5c2c8fe-3f56-4a8c-ac5f-fdb92d8b8252)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass LearningModelDevice
{
//! Create a LearningModelDevice from the specified IDirect3DDevice.
//! During evaluation, the specified IDirect3DDevice will be used to create resources and queue work during execution.
static LearningModelDevice CreateFromDirect3D11Device(Windows.Graphics.DirectX.Direct3D11.IDirect3DDevice device);
//! Create a LearningModelDevice from the specified list of devices enumerated in LearningModelDeviceKind.
[method_name("Create")] LearningModelDevice(LearningModelDeviceKind deviceKind);
// BUGBUG: this needs to be Windows.Graphics.DisplayAdapterId which is only there in the RS4 winmd
//! Returns the unique identifier for the chosen adapter for model
Windows.Graphics.DisplayAdapterId AdapterId{ get; };
//! Returns the chosen IDirect3DDevice for model evaluation.
Windows.Graphics.DirectX.Direct3D11.IDirect3DDevice Direct3D11Device{ get; };
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ILearningModelEvaluationResult", b2f9bfcd-960e-49c0-8593-eb190ae3eee2)])
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass LearningModelEvaluationResult
{
//! The optional user supplied string that was attached to the Evaluate() call to connect the output results.
String CorrelationId{ get; };
//! If the evaluation failed, returns an error code for what caused the failure.
Int32 ErrorStatus{ get; };
//! True if the evaluation completed successfully.
//! If False, use ErrorStatus to find out what caused the failure.
Boolean Succeeded{ get; };
//! A set of features representing the output prediction along with probabilities.
Windows.Foundation.Collections.IMapView<String, IInspectable> Outputs{ get; };
}
//! \class LearningModelSessionOptions
//! \brief TODO:Docs
[contract(MachineLearningContract, 2)]
[dualapipartition(1)]
runtimeclass LearningModelSessionOptions
{
// default constructor
LearningModelSessionOptions();
//! The BatchSizeOverride option will allow the model compiler to use constant batch size performance optimizations when setting up the LearningModelSession.
//! The default value for the BatchSizeOverride will be 1 indicating a static batch size of 1.
//! BatchSizeOverride = 0 indicates that the batch size present in the model should be honored.
//! BatchSizeOverride > 0 indicates the size of batch that will be used to override the model batch size and optimize evaluations.
UInt32 BatchSizeOverride { get; set; };
[contract(MachineLearningContract, 4)]
{
//! The OverrideNamedDimension method will allow the model compiler to use constant batch size performance optimizations when setting up the LearningModelSession.
//! The caller can specify the size of the dimension for a given named dimension.
//! dimension = 0 indicates that the dimension present in the model should be honored.
//! dimension > 0 indicates the size of the dimension that will be used to override the model "name" dimension and optimize evaluations.
void OverrideNamedDimension(String name, UInt32 dimension);
}
[contract(MachineLearningContract, 3)]
{
//! The CloseModelOnSessionCreation option will allow the LearningModelSession to take ownership of the LearningModel's
//! internal model representation. This will defunct the LearningModel session, but decreases the necessary peak working set.
//! CloseModelOnSessionCreation = True indicates that the model's internal data will be moved into the session during construction.
//! CloseModelOnSessionCreation = False indicates that the model's internal data will be copied into the session during construction.
Boolean CloseModelOnSessionCreation { get; set; };
}
}
//! \class LearningModelSession
//! \brief TODO:Docs
[contract(MachineLearningContract, 1)]
INBOX_ONLY([constructor_name("Windows.AI.MachineLearning.ILearningModelSessionFactory", 0f6b881d-1c9b-47b6-bfe0-f1cf62a67579)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ILearningModelSession", 8e58f8f6-b787-4c11-90f0-7129aeca74a9)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass LearningModelSession : Windows.Foundation.IClosable
{
//! Create a session, on the system default device, to evaluate the specified model on.
[method_name("CreateFromModel")] LearningModelSession(LearningModel model);
//! Create a session, on the provided device, to evaluate the specified model on.
[method_name("CreateFromModelOnDevice")] LearningModelSession(LearningModel model, LearningModelDevice deviceToRunOn);
//! Returns the machine learning model attached to the session.
LearningModel Model{ get; };
//! Returns the evaluation device that the session was created on.
LearningModelDevice Device{ get; };
//! Returns the list of properties set for model evaluation.
Windows.Foundation.Collections.IPropertySet EvaluationProperties{ get; };
//! Evaluate the machine learning model using the feature values already bound in 'bindings'. (asynchronous)
[remote_async]
Windows.Foundation.IAsyncOperation<LearningModelEvaluationResult> EvaluateAsync(LearningModelBinding bindings, String correlationId);
//! Evaluate the machine learning model using the feature values in the map 'features'. (asynchronous)
//! This method is an alternative to the separated bind then eval form that takes a LearningModelBinding.
//! It will take the passed in features, create a LearningModelBinding for you, bind the features, and then evaluate the model.
[remote_async]
Windows.Foundation.IAsyncOperation<LearningModelEvaluationResult> EvaluateFeaturesAsync(Windows.Foundation.Collections.IMap<String, IInspectable> features, String correlationId);
//! Evaluate the machine learning model using the feature values bound in 'bindings'.
LearningModelEvaluationResult Evaluate(LearningModelBinding bindings, String correlationId);
//! Evaluate the machine learning model using the feature values in the map 'features'.
//! This method is an alternative to the separated bind then eval form that takes a LearningModelBinding.
//! It will take the passed in features, create a LearningModelBinding for you, bind the features, and then evaluate the model.
LearningModelEvaluationResult EvaluateFeatures(Windows.Foundation.Collections.IMap<String, IInspectable> features, String correlationId);
[contract(MachineLearningContract, 2)]
{
//! Create a session, on the provided device, with the desired model compilation options, to evaluate the specified model on.
[method_name("CreateFromModelOnDeviceWithSessionOptions")] LearningModelSession(LearningModel model, LearningModelDevice deviceToRunOn, LearningModelSessionOptions learningModelSessionOptions);
}
}
//! \interface ILearningModelFeatureValue
//! \brief The instantiated value for a feature.
[contract(MachineLearningContract, 1)]
INBOX_ONLY([uuid(f51005db-4085-4dfe-9fed-95eb0c0cf75c)])
interface ILearningModelFeatureValue
{
//! The data type of the feature.
LearningModelFeatureKind Kind{ get; };
};
//! \class LearningModelBinding
//! \brief Holder for associations between model inputs/outputs and variable instances.
[contract(MachineLearningContract, 1)]
INBOX_ONLY([constructor_name("Windows.AI.MachineLearning.ILearningModelBindingFactory", c95f7a7a-e788-475e-8917-23aa381faf0b)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ILearningModelBinding", ea312f20-168f-4f8c-94fe-2e7ac31b4aa8)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass LearningModelBinding : Windows.Foundation.Collections.IMapView <String, IInspectable>
{
//! Create a LearningModelBinding from the specified LearningModelSession.
//! During evaluation, the specified adapter will be used to create resources and queue work during execution.
[method_name("CreateFromSession")] LearningModelBinding(LearningModelSession session);
//! Bind a value to the specified feature.
void Bind(String name, IInspectable value);
//! TODO:Docs
[method_name("BindWithProperties")] void Bind(String name, IInspectable value, Windows.Foundation.Collections.IPropertySet props);
//! Remove all bindings.
void Clear();
}
//! \enum TensorKind
//! \brief Defines the list of supported tensor data types.
[contract(MachineLearningContract, 1)]
enum TensorKind
{
//! Supported by ONNX, but should never happen and is invalid for Windows ML.
Undefined = 0,
//! The tensor type is 32bit float.
Float,
//! The tensor type is 8bit unsigned int.
UInt8,
//! The tensor type is 8bit signed int.
Int8,
//! The tensor type is 16bit unsigned int.
UInt16,
//! The tensor type is 16bit signed int.
Int16,
//! The tensor type is 32bit signed int.
Int32,
//! The tensor type is 64bit signed int.
Int64,
//! The tensor type is String.
String,
//! The tensor type is Boolean.
Boolean,
//! The tensor type is 16bit float.
Float16,
//! The tensor type is 64bit float.
Double,
//! The tensor type is 32bit unsigned int.
UInt32,
//! The tensor type is 64bit unsigned int.
UInt64,
//! Supported by ONNX, but is not supported by Windows ML.
Complex64,
//! Supported by ONNX, but is not supported by Windows ML.
Complex128
};
//! \class MapFeatureDescriptor
//! \brief TODO:Docs
[contract(MachineLearningContract, 1)]
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.IMapFeatureDescriptor", 530424bd-a257-436d-9e60-c2981f7cc5c4)])
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass MapFeatureDescriptor : ILearningModelFeatureDescriptor
{
//! Returns the data type of the map's key.
TensorKind KeyKind{ get; };
//! Returns the properties of the map's value.
ILearningModelFeatureDescriptor ValueDescriptor{ get; };
}
//! \class SequenceFeatureDescriptor
//! \brief TODO:Docs
[contract(MachineLearningContract, 1)]
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ISequenceFeatureDescriptor", 84f6945a-562b-4d62-a851-739aced96668)])
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass SequenceFeatureDescriptor : ILearningModelFeatureDescriptor
{
//! Gets the properties of the specified feature.
ILearningModelFeatureDescriptor ElementDescriptor{ get; };
}
//! \class TensorFeatureDescriptor
//! \brief TODO:Docs
[contract(MachineLearningContract, 1)]
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorFeatureDescriptor", 74455c80-946a-4310-a19c-ee0af028fce4)])
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorFeatureDescriptor : ILearningModelFeatureDescriptor
{
//! Returns the data type of the tensor.
TensorKind TensorKind{ get; };
//! Returns the count and size of each dimension.
Windows.Foundation.Collections.IVectorView<Int64> Shape{ get; };
}
//! \enum LearningModelPixelRange
//! \brief Defines the list of image nominal pixel range specified in model metadata.
[contract(MachineLearningContract, 5)]
enum LearningModelPixelRange
{
//! [0...255] for 8bpp(8 Bits per Pixel) samples
ZeroTo255= 0,
//! [0...1] pixel data is stored normalized
ZeroToOne,
//! [-1...1] pixel data is stored normalized
MinusOneToOne
};
//! \class ImageFeatureDescriptor
//! \brief TODO:Docs
[contract(MachineLearningContract, 1)]
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.IImageFeatureDescriptor", 365585a5-171a-4a2a-985f-265159d3895a)])
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass ImageFeatureDescriptor : ILearningModelFeatureDescriptor
{
//! Specifies the pixel format (channel ordering, bit depth, and data type) of the pixel data.
Windows.Graphics.Imaging.BitmapPixelFormat BitmapPixelFormat{ get; };
//! Specifies the alpha mode of the pixel data.
Windows.Graphics.Imaging.BitmapAlphaMode BitmapAlphaMode{ get; };
[contract(MachineLearningContract, 5)]
{
//!Specifies the nominal pixel range of pixel data.
LearningModelPixelRange PixelRange{ get; };
}
//! The width of the image.
UInt32 Width{ get; };
//! The height of the image.
UInt32 Height{ get; };
}
//! \interface ITensor
//! \brief TODO:Docs
[contract(MachineLearningContract, 1)]
INBOX_ONLY([uuid(05489593-a305-4a25-ad09-440119b4b7f6)])
interface ITensor : IInspectable requires ILearningModelFeatureValue
{
//! Returns the data type of the tensor.
TensorKind TensorKind{ get; };
//! TODO:Docs
Windows.Foundation.Collections.IVectorView<Int64> Shape{ get; };
}
//! \class TensorFloat
//! \brief A 32bit float tensor object.
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorFloatStatics", dbcd395b-3ba3-452f-b10d-3c135e573fa9)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorFloat", f2282d82-aa02-42c8-a0c8-df1efc9676e1)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorFloat : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
//! Creates a tensor object without allocating a buffer.
static TensorFloat Create();
//! Creates a tensor object and allocates a buffer of size 'shape'.
static TensorFloat Create(Windows.Foundation.Collections.IIterable<Int64> shape);
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorFloat CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, Single[] data);
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorFloat CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<Single> data);
//! Returns a read only view of the data.
Windows.Foundation.Collections.IVectorView <Single> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorFloat CreateFromShapeArrayAndDataArray(Int64[] shape, Single[] data);
//! Creates a tensor object of size 'shape', and uses the data in 'buffer'.
static TensorFloat CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorFloat16BitStatics", a52db6f5-318a-44d4-820b-0cdc7054a84a)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorFloat16Bit", 0ab994fc-5b89-4c3c-b5e4-5282a5316c0a)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorFloat16Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorFloat16Bit Create();
static TensorFloat16Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorFloat16Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, Single[] data);
static TensorFloat16Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<Single> data);
Windows.Foundation.Collections.IVectorView <Single> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorFloat16Bit CreateFromShapeArrayAndDataArray(Int64[] shape, Single[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
//! 'buffer' contains a packed array of 16bit floating point values.
static TensorFloat16Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorUInt8BitStatics", 05f67583-bc24-4220-8a41-2dcd8c5ed33c)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorUInt8Bit", 58e1ae27-622b-48e3-be22-d867aed1daac)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorUInt8Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorUInt8Bit Create();
static TensorUInt8Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorUInt8Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, UInt8[] data);
static TensorUInt8Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<UInt8> data);
Windows.Foundation.Collections.IVectorView <UInt8> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorUInt8Bit CreateFromShapeArrayAndDataArray(Int64[] shape, UInt8[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
//! 'buffer' contains a packed array of 8bit uint8 values.
static TensorUInt8Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorInt8BitStatics", b1a12284-095c-4c76-a661-ac4cee1f3e8b)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorInt8Bit", cddd97c5-ffd8-4fef-aefb-30e1a485b2ee)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorInt8Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorInt8Bit Create();
static TensorInt8Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorInt8Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, BYTE[] data);
static TensorInt8Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<BYTE> data);
Windows.Foundation.Collections.IVectorView <BYTE> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorInt8Bit CreateFromShapeArrayAndDataArray(Int64[] shape, BYTE[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorInt8Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorUInt16BitStatics", 5df745dd-028a-481a-a27c-c7e6435e52dd)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorUInt16Bit", 68140f4b-23c0-42f3-81f6-a891c011bc3f)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorUInt16Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorUInt16Bit Create();
static TensorUInt16Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorUInt16Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, UInt16[] data);
static TensorUInt16Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<UInt16> data);
Windows.Foundation.Collections.IVectorView <UInt16> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorUInt16Bit CreateFromShapeArrayAndDataArray(Int64[] shape, UInt16[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorUInt16Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorInt16BitStatics", 98646293-266e-4b1a-821f-e60d70898b91)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorInt16Bit", 98a32d39-e6d6-44af-8afa-baebc44dc020)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorInt16Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorInt16Bit Create();
static TensorInt16Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorInt16Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, Int16[] data);
static TensorInt16Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<Int16> data);
Windows.Foundation.Collections.IVectorView <Int16> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorInt16Bit CreateFromShapeArrayAndDataArray(Int64[] shape, Int16[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorInt16Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorUInt32BitStatics", 417c3837-e773-4378-8e7f-0cc33dbea697)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorUInt32Bit", d8c9c2ff-7511-45a3-bfac-c38f370d2237)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorUInt32Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorUInt32Bit Create();
static TensorUInt32Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorUInt32Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, UInt32[] data);
static TensorUInt32Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<UInt32> data);
Windows.Foundation.Collections.IVectorView <UInt32> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorUInt32Bit CreateFromShapeArrayAndDataArray(Int64[] shape, UInt32[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorUInt32Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorInt32BitStatics", 6539864b-52fa-4e35-907c-834cac417b50)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorInt32Bit", 2c0c28d3-207c-4486-a7d2-884522c5e589)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorInt32Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorInt32Bit Create();
static TensorInt32Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorInt32Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, Int32[] data);
static TensorInt32Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<Int32> data);
Windows.Foundation.Collections.IVectorView <Int32> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorInt32Bit CreateFromShapeArrayAndDataArray(Int64[] shape, Int32[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorInt32Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorUInt64BitStatics", 7a7e20eb-242f-47cb-a9c6-f602ecfbfee4)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorUInt64Bit", 2e70ffad-04bf-4825-839a-82baef8c7886)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorUInt64Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorUInt64Bit Create();
static TensorUInt64Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorUInt64Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, UInt64[] data);
static TensorUInt64Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<UInt64> data);
Windows.Foundation.Collections.IVectorView <UInt64> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorUInt64Bit CreateFromShapeArrayAndDataArray(Int64[] shape, UInt64[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorUInt64Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorInt64BitStatics", 9648ad9d-1198-4d74-9517-783ab62b9cc2)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorInt64Bit", 499665ba-1fa2-45ad-af25-a0bd9bda4c87)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorInt64Bit : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorInt64Bit Create();
static TensorInt64Bit Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorInt64Bit CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, Int64[] data);
static TensorInt64Bit CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<Int64> data);
Windows.Foundation.Collections.IVectorView <Int64> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorInt64Bit CreateFromShapeArrayAndDataArray(Int64[] shape, Int64[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorInt64Bit CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorBooleanStatics", 2796862c-2357-49a7-b476-d0aa3dfe6866)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorBoolean", 50f311ed-29e9-4a5c-a44d-8fc512584eed)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorBoolean : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorBoolean Create();
static TensorBoolean Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorBoolean CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, Boolean[] data);
static TensorBoolean CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<Boolean> data);
Windows.Foundation.Collections.IVectorView <Boolean> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorBoolean CreateFromShapeArrayAndDataArray(Int64[] shape, Boolean[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
//! 'buffer' represents a byte packed array of boolean values.
static TensorBoolean CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorDoubleStatics", a86693c5-9538-44e7-a3ca-5df374a5a70c)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorDouble", 91e41252-7a8f-4f0e-a28f-9637ffc8a3d0)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorDouble : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorDouble Create();
static TensorDouble Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorDouble CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, Double[] data);
static TensorDouble CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<Double> data);
Windows.Foundation.Collections.IVectorView <Double> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorDouble CreateFromShapeArrayAndDataArray(Int64[] shape, Double[] data);
//! Creates a tensor object, creates a tensor of size 'shape', and uses the data in 'buffer'.
static TensorDouble CreateFromBuffer(Int64[] shape, Windows.Storage.Streams.IBuffer buffer);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.ITensorStringStatics", 83623324-cf26-4f17-a2d4-20ef8d097d53)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.ITensorString", 582335c8-bdb1-4610-bc75-35e9cbf009b7)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass TensorString : ITensor, [contract(MachineLearningContract, 2)]Windows.Foundation.IMemoryBuffer
{
static TensorString Create();
static TensorString Create(Windows.Foundation.Collections.IIterable<Int64> shape);
static TensorString CreateFromArray(Windows.Foundation.Collections.IIterable<Int64> shape, String[] data);
static TensorString CreateFromIterable(Windows.Foundation.Collections.IIterable<Int64> shape, Windows.Foundation.Collections.IIterable<String> data);
Windows.Foundation.Collections.IVectorView <String> GetAsVectorView();
[contract(MachineLearningContract, 2)]
{
//! Creates a tensor object, allocates a buffer of size 'shape', and copies all of 'data' into it.
static TensorString CreateFromShapeArrayAndDataArray(Int64[] shape, String[] data);
}
}
[contract(MachineLearningContract, 1)]
INBOX_ONLY([static_name("Windows.AI.MachineLearning.IImageFeatureValueStatics", 1bc317fd-23cb-4610-b085-c8e1c87ebaa0)])
INBOX_ONLY([interface_name("Windows.AI.MachineLearning.IImageFeatureValue", f0414fd9-c9aa-4405-b7fb-94f87c8a3037)])
[threading(both)]
[marshaling_behavior(agile)]
[dualapipartition(1)]
runtimeclass ImageFeatureValue : ILearningModelFeatureValue
{
static ImageFeatureValue CreateFromVideoFrame(Windows.Media.VideoFrame image);
Windows.Media.VideoFrame VideoFrame{ get; };
}
}