forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
large_model_exporter.py
395 lines (334 loc) · 14.6 KB
/
large_model_exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
Export LLM to onnx
"""
import argparse
import inspect
import math
import os
import tempfile
from pathlib import Path
from typing import Optional
import onnx
import torch
import transformers
from torch import nn
def disable_huggingface_init():
"""do not init model twice as it slow initialization"""
torch.nn.init.kaiming_uniform_ = lambda x, *args, **kwargs: x
torch.nn.init.uniform_ = lambda x, *args, **kwargs: x
torch.nn.init.normal_ = lambda x, *args, **kwargs: x
torch.nn.init.constant_ = lambda x, *args, **kwargs: x
torch.nn.init.xavier_uniform_ = lambda x, *args, **kwargs: x
torch.nn.init.xavier_normal_ = lambda x, *args, **kwargs: x
torch.nn.init.kaiming_normal_ = lambda x, *args, **kwargs: x
torch.nn.init.orthogonal_ = lambda x, *args, **kwargs: x
def get_model_parameter_size(model: nn.Module):
"""to calculate how much memory this model needs"""
param_size = 0
param_sum = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
param_sum += param.nelement()
buffer_size = 0
buffer_sum = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
buffer_sum += buffer.nelement()
all_size = (param_size + buffer_size) / 1024 / 1024
return all_size
def initialize_model_and_sample_inputs(hf_model: str, cache_dir: Optional[str], tokenizer=None):
"""
get the pretrained torch model from hugginface,
and sample model-inputs
"""
disable_huggingface_init()
model = transformers.AutoModelForCausalLM.from_pretrained( # type: ignore
hf_model, torch_dtype=torch.float16, cache_dir=cache_dir, trust_remote_code=True
)
if tokenizer is None:
tokenizer = hf_model
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer) # type: ignore
sample_inputs = tuple(tokenizer("Hello, my dog is cute", return_tensors="pt").values())
return model, sample_inputs
def auto_pipeline_parallel(model: nn.Module, gpulist: list, sample_inputs: tuple):
"""Make the model executable across multiple GPUs."""
def input_gpu_device_hook(mod, inputs, kwargs):
modifyed_inputs = []
first_dev = None
for layer_input in inputs:
if type(layer_input) is not torch.Tensor:
modifyed_inputs.append(layer_input)
elif hasattr(mod, "weight"):
modifyed_inputs.append(layer_input.to(mod.weight.device))
elif hasattr(mod, "parameters"):
device = next(mod.parameters(), layer_input).device
modifyed_inputs.append(layer_input.to(device))
elif hasattr(next(mod.children(), None), "weight"):
modifyed_inputs.append(layer_input.to(next(mod.children()).weight.device))
elif first_dev is not None and layer_input.device != first_dev:
modifyed_inputs.append(layer_input.to(first_dev))
else:
modifyed_inputs.append(layer_input)
if first_dev is None:
first_dev = modifyed_inputs[0].device
for key, value in kwargs.items():
if type(value) is torch.Tensor:
kwargs[key] = value.to(first_dev)
return (tuple(modifyed_inputs), kwargs)
def move_layer_to_device_rurc(mod, dev):
mod.to(dev)
for layer in mod.named_children():
move_layer_to_device_rurc(layer[1], dev)
model = model.half()
all_hooks = []
all_hooks.append(model.register_forward_pre_hook(input_gpu_device_hook, with_kwargs=True))
pre_fix = next(iter(model.named_children()))[0]
for top_name, top_module in model.named_children():
for name, module in top_module.named_children():
all_hooks.append(module.register_forward_pre_hook(input_gpu_device_hook, with_kwargs=True))
if type(module) in [torch.nn.ModuleList]:
num_layers_on_each_gpu = math.floor(len(module) / len(gpulist))
for idx, attn_layer in enumerate(module):
all_hooks.append(attn_layer.register_forward_pre_hook(input_gpu_device_hook, with_kwargs=True))
to_dev = gpulist[min(idx // num_layers_on_each_gpu, len(gpulist))]
attn_layer.to(to_dev)
move_layer_to_device_rurc(attn_layer, to_dev)
print(f"move {pre_fix}.{name}.{idx} to {to_dev}")
else:
module.to(gpulist[0])
print(f"move {pre_fix}.{name} to {gpulist[0]}")
if len(list(top_module.named_children())) == 0:
top_module.to(gpulist[0])
print(f"move {top_name} to {gpulist[0]}")
with torch.no_grad():
model(sample_inputs[0], attention_mask=sample_inputs[1])
return model
def retrieve_onnx_inputs(model: nn.Module, sample_inputs: tuple, with_past: bool):
"""
auto retrieve onnx inputs from torch model as we can't enumlate all possibilities
for all models
"""
user_inputs = []
def hook_for_inputs(_, inputs, kwargs):
user_inputs.append((inputs, kwargs))
return user_inputs[0]
hook_handle = model.register_forward_pre_hook(hook_for_inputs, with_kwargs=True)
forward_params = inspect.signature(model.forward).parameters
input_keys = list(forward_params.keys())
default_values = [forward_params.get(key).default for key in input_keys]
out = model(sample_inputs[0], attention_mask=sample_inputs[1])
hook_handle.remove()
user_inputs = user_inputs[0]
onnx_inputs = default_values
for idx, _val in enumerate(user_inputs[0]):
onnx_inputs[idx] = user_inputs[0][idx]
for key, value in user_inputs[1].items():
idx = input_keys.index(key)
onnx_inputs[idx] = value
for idx, (key, value) in enumerate(zip(input_keys, onnx_inputs)):
if type(value) is torch.Tensor:
value.to(model.device)
if "use_cache" in key:
onnx_inputs[idx] = with_past
out = model(sample_inputs[0], attention_mask=sample_inputs[1], use_cache=with_past) if with_past else out
return input_keys, onnx_inputs, out.past_key_values
def move_to_appropriate_device(model: nn.Module, sample_inputs_tp: tuple) -> nn.Module:
"""
According to the model size, we will upload it to
CPU if has no GPU or enough GPU memory,
Single GPU if has only one GPU in local or model size is enough to fit one GPU
Multiple GPU if there is more than one gpu in local and model is too large
"""
total_mem_per_cpu = torch.cuda.get_device_properties(0).total_memory / 1024 / 1024
print(f"Model_Size = {get_model_parameter_size(model)/1024} GB")
print(f"total_mem_per_cpu = {total_mem_per_cpu/1024} GB")
if get_model_parameter_size(model) > total_mem_per_cpu * 0.45:
device_collection = [torch.device(i) for i in range(torch.cuda.device_count())]
if len(device_collection) > 1:
print(
f"{len(device_collection)} GPUs are used to export onnx, \
Please set CUDA_VISIBLE_DEVICES to use specific GPU group"
)
model = auto_pipeline_parallel(model, device_collection, sample_inputs_tp)
else:
print("!!!! convert model to float and export onnx using CPU")
model = model.cpu().float()
else:
print("Export model on a single GPU")
model = model.cuda().half()
return model
def adapt_inputs_to_device(sample_inputs: tuple, device: torch.device) -> tuple:
"""move inputs to device"""
sample_inputs_ = []
for sample_int in sample_inputs:
if isinstance(sample_int, torch.Tensor):
sample_inputs_.append(sample_int.to(device))
else:
sample_inputs_.append(sample_int)
return tuple(sample_inputs_)
def fetch_onnx_inputs_outputs_name(
model: nn.Module,
onnx_inputs: list,
torch_input_names: tuple,
past_key_values: tuple,
with_past: bool,
input_with_past: bool,
):
"""fetch onnx inputs and outputs name"""
num_of_past_key = 0
kv_cache_axis = {0: "batch_size"}
# try get num_of_past_key and shape of past_key_value
if past_key_values is not None:
num_of_past_key = len(past_key_values)
seq_index = (torch.tensor(past_key_values[0][0].shape) == onnx_inputs[0].shape[-1]).nonzero().view(-1)
assert seq_index.numel() == 1
kv_cache_axis = {0: "batch_size", seq_index.item(): "seq_len"}
if not num_of_past_key:
num_of_past_key = model.config.num_hidden_layers
# filter out constant inputs
onnx_inp_names = tuple(
[torch_input_names[i] for i in range(len(torch_input_names)) if isinstance(onnx_inputs[i], torch.Tensor)]
)
assert (
"input_ids" in onnx_inp_names and "attention_mask" in onnx_inp_names
), "input_ids and attention_mask must be existed in inputs"
onnx_out_names = ("logits",)
onnx_dynamic_axes = {
"input_ids": {0: "batch_size", 1: "seq_len"},
"attention_mask": {0: "batch_size", 1: "seq_len"},
}
# add dyanmic dimensions for the unkonw inputs
for idx, name in enumerate(onnx_inp_names):
if name not in onnx_dynamic_axes:
unknown_dims = {i: f"{idx}__unknown_dims__{i}" for i in range(onnx_inputs[idx].dim())}
onnx_dynamic_axes[name] = unknown_dims
if input_with_past:
for i in range(num_of_past_key):
onnx_inp_names += (f"past_key_values.{i}.key",)
onnx_inp_names += (f"past_key_values.{i}.value",)
onnx_dynamic_axes[onnx_inp_names[-1]] = kv_cache_axis
onnx_dynamic_axes[onnx_inp_names[-2]] = kv_cache_axis
if with_past or input_with_past:
for i in range(num_of_past_key):
onnx_out_names += (f"present.{i}.key",)
onnx_out_names += (f"present.{i}.value",)
for idx, name in enumerate(torch_input_names):
if input_with_past:
if name == "past_key_values":
onnx_inputs[idx] = past_key_values
elif name == "attention_mask":
attn_mask = onnx_inputs[idx]
onnx_inputs[idx] = torch.cat(
(attn_mask, torch.ones((attn_mask.shape[0], 1), device=attn_mask.device, dtype=attn_mask.dtype)),
dim=1,
)
elif name == "input_ids":
input_ids = onnx_inputs[idx]
onnx_inputs[idx] = input_ids[:, -1:]
return onnx_inp_names, onnx_out_names, onnx_dynamic_axes
def do_export_internal(model: nn.Module, onnx_io_tuple: tuple, onnx_inputs: tuple, onnx_path: Path, opset: int):
"""do export with torch.onnx.export"""
onnx_model_name = onnx_path.name
onnx_inp_names, onnx_out_names, onnx_dynamic_axes = onnx_io_tuple
# two step to export onnx
# 1. export onnx with lots of pieces of weights
# 2. save all weights to external data
with tempfile.TemporaryDirectory() as tmpdirname:
tmp_onnx = os.path.join(tmpdirname, "tmp.onnx")
torch.onnx.export(
model=model,
args=tuple(onnx_inputs),
f=tmp_onnx,
verbose=False,
opset_version=opset,
input_names=onnx_inp_names,
output_names=onnx_out_names,
dynamic_axes=onnx_dynamic_axes,
)
onnx_path.unlink(missing_ok=True)
(onnx_path.parent / f"{onnx_model_name}_ext.data").unlink(missing_ok=True)
onnx_model = onnx.load(str(tmp_onnx))
onnx.save_model(
onnx_model,
str(onnx_path),
save_as_external_data=(len(os.listdir(tmpdirname)) > 1),
all_tensors_to_one_file=True,
location=f"{onnx_model_name}_ext.data",
size_threshold=1024,
convert_attribute=False,
)
@torch.no_grad()
def export_onnx(hf_model: str, cache_dir: Optional[str], onnx_path_str: str, with_past: bool, opset: int):
"""
do export
model: torch model
onnx_path: where the onnx model saved to
sample_inputs_tp: inputs for torch model
"""
model, sample_inputs_tp = initialize_model_and_sample_inputs(hf_model, cache_dir)
model = move_to_appropriate_device(model, sample_inputs_tp)
sample_inputs = adapt_inputs_to_device(sample_inputs_tp, next(model.parameters()).device)
# input_keys would be usesful if the model has some special inputs
input_keys, onnx_inputs, past_key_value = retrieve_onnx_inputs(model, sample_inputs, with_past)
onnx_io_tuple = fetch_onnx_inputs_outputs_name(model, onnx_inputs, input_keys, past_key_value, with_past, False)
onnx_model_name = "model.onnx"
onnx_path: Path = Path(onnx_path_str).absolute()
if onnx_path.suffix != ".onnx":
onnx_path = onnx_path / onnx_model_name
do_export_internal(model, onnx_io_tuple, onnx_inputs, onnx_path, opset)
if not with_past:
return
onnx_io_tuple = fetch_onnx_inputs_outputs_name(model, onnx_inputs, input_keys, past_key_value, with_past, True)
onnx_model_name = "model_with_past.onnx"
onnx_path = onnx_path.parent / onnx_model_name
do_export_internal(model, onnx_io_tuple, onnx_inputs, onnx_path, opset)
def parse_arguments():
"""arguments parsing."""
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
required=True,
type=str,
default=["meta-llama/Llama-2-70b-hf"],
help="Pre-trained models in huggingface model hub",
)
parser.add_argument(
"-s",
"--saved_path",
required=False,
type=str,
default="./onnx_models/",
help="where the onnx model will be saved",
)
parser.add_argument(
"--cache_dir",
required=False,
type=str,
default=None,
help=("cache directy of huggingface, by setting this to avoid useless downloading if you have one"),
)
parser.add_argument(
"--with_past",
action="store_true",
default=False,
help=("The tool will export onnx without past-key-value by default"),
)
parser.add_argument(
"--opset",
required=False,
type=int,
default=17,
help=(
"the opset to save onnx model, \
try to increase it if this opset doens't have new features you want"
),
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
export_onnx(args.model, args.cache_dir, args.saved_path, args.with_past, args.opset)