-
Notifications
You must be signed in to change notification settings - Fork 13
/
utils.py
45 lines (38 loc) · 1.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from data_preprocess_and_load.datasets import *
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from datetime import datetime
import argparse
import os
import dill
def datestamp():
time = datetime.now().strftime("%d_%m___%H_%M_%S")
return time
def reproducibility(**kwargs):
seed = kwargs.get('seed')
cuda = kwargs.get('cuda')
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
np.random.seed(seed)
cudnn.deterministic = True
cudnn.benchmark = True
def sort_args(phase, args):
phase_specific_args = {}
for name, value in args.items():
if not 'phase' in name:
phase_specific_args[name] = value
elif 'phase' + phase in name:
phase_specific_args[name.replace('_phase' + phase, '')] = value
return phase_specific_args
def args_logger(args):
args_to_pkl(args)
args_to_text(args)
def args_to_pkl(args):
with open(os.path.join(args.experiment_folder,'arguments_as_is.pkl'),'wb') as f:
dill.dump(vars(args),f)
def args_to_text(args):
with open(os.path.join(args.experiment_folder,'argument_documentation.txt'),'w+') as f:
for name,arg in vars(args).items():
f.write('{}: {}\n'.format(name,arg))