-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathupdate_iedb_data.py
260 lines (235 loc) · 12 KB
/
update_iedb_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
'''
Script to download IEDB data for B/T cell epitope and then compute RF (upper/lowerbound)
output:
- ./data/IEDB_updated_data/iedb_epitopes_[%d%b%Y].csv (downloaded) [current day]
- ./data/IEDB_updated_data/response_frequency_[%d%b%Y].csv (generated)
'''
from selenium.webdriver.common.by import By
from selenium import webdriver
import webbrowser
import time
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import glob
import os
import shutil
from datetime import datetime
import pandas as pd
import numpy as np
import requests
from selenium.webdriver.chrome.service import Service
#from: https://stackoverflow.com/questions/13059011/is-there-any-python-function-library-for-calculate-binomial-confidence-intervals
def binP(N, p, x1, x2):
p = float(p)
q = p/(1-p)
k = 0.0
v = 1.0
s = 0.0
tot = 0.0
while(k<=N):
tot += v
if(k >= x1 and k <= x2):
s += v
if(tot > 10**30):
s = s/10**30
tot = tot/10**30
v = v/10**30
k += 1
v = v*q*(N+1-k)/k
return s/tot
def calcBin(vx, vN, vCL = 95):
'''
Calculate the exact confidence interval for a binomial proportion
Usage:
calcBin(13,100)
(0.07107391357421874, 0.21204372406005856)
calcBin(4,7)
(0.18405151367187494, 0.9010086059570312)
'''
vx = float(vx)
vN = float(vN)
#Set the confidence bounds
vTU = (100 - float(vCL))/2
vTL = vTU
vP = vx/vN
if(vx==0):
dl = 0.0
else:
v = vP/2
vsL = 0
vsH = vP
p = vTL/100
while((vsH-vsL) > 10**-5):
if(binP(vN, v, vx, vN) > p):
vsH = v
v = (vsL+v)/2
else:
vsL = v
v = (v+vsH)/2
dl = v
if(vx==vN):
ul = 1.0
else:
v = (1+vP)/2
vsL =vP
vsH = 1
p = vTU/100
while((vsH-vsL) > 10**-5):
if(binP(vN, v, 0, vx) < p):
vsH = v
v = (vsL+v)/2
else:
vsL = v
v = (v+vsH)/2
ul = v
return (dl, ul)
def compute_RF_upperlowerbound(df):
'''
Compute Response Frequency lower/upperbound for each position (from IEDB table with B/T cell epitopes)
check: https://help.iedb.org/hc/en-us/articles/114094147751
'''
#beginning/end of the protein
start_position = df_all_epi['Mapped Start Position'].values
end_position = df_all_epi['Mapped End Position'].values
all_positions = list(set(list(start_position) + list(end_position)))
#divide between linear and non-linear epitopes
df_non_linear = df_all_epi.loc[df_all_epi['Sequence'].apply(lambda x:len(x.split(","))) > 1]
df_linear = df_all_epi.loc[df_all_epi['Epitope ID'].isin(df_non_linear['Epitope ID'].values) == False]
#dictionary pos, tested, reactive subject
d_pos_tested = {}
d_pos_resp = {}
#for linear epitope
for i in all_positions:
beg = df_linear['Mapped Start Position']
end = df_linear['Mapped End Position']
df_tmp = df_linear.loc[(beg <= i) &(end >= i)]
d_pos_tested[i] = (np.sum(df_tmp['Subjects Tested']))
d_pos_resp[i] = (np.sum(df_tmp['Subjects Responded']))
#for Non linear epitope
for idx in df_non_linear.index:
sub_tested = df_non_linear.loc[idx]['Subjects Tested']
sub_resp = df_non_linear.loc[idx]['Subjects Responded']
pos_epitope = df_non_linear.loc[idx]['Sequence'].split(",")
for pos in pos_epitope:
pos = pos.replace(' ',"")
pos = int(pos[1:])
if pos in d_pos_resp.keys():
d_pos_resp[pos] += sub_resp
else:
d_pos_resp[pos] = sub_resp
if pos in d_pos_tested.keys():
d_pos_tested[pos] += sub_tested
else:
d_pos_tested[pos] = sub_resp
#add subject reponded, test, and RF to df
lowerbound = []
upperbound = []
for pos in all_positions:
N = d_pos_tested[pos]
R = d_pos_resp[pos]
rf = np.round(d_pos_resp[pos]/d_pos_tested[pos],2)
# Wilson score interval for N>=50
if N>50:
lower95 = np.round((((R/N) + 1.96*1.96/(2*N) - 1.96 * np.sqrt(((R/N)*(1-(R/N))+1.96*1.96/(4*N))/N))/(1+1.96*1.96/N)),2)
upper95 = np.round((((R/N) + 1.96*1.96/(2*N) + 1.96 * np.sqrt(((R/N)*(1-(R/N))+1.96*1.96/(4*N))/N))/(1+1.96*1.96/N)),2)
# Binomial proportion confidence interval for N<50
if N<50:
lower95, upper95 = calcBin(R, N, vCL = 95)
lower95 = np.round(lower95,2)
upper95 = np.round(upper95,2)
#print(pos, rf, lower95, upper95)
lowerbound.append(lower95)
upperbound.append(upper95)
df = pd.DataFrame( {"positions":all_positions, "lowerbound":lowerbound, "upperbound":upperbound})
return df
####################################################################################################
### SETTINGS ###
####################################################################################################
list_protein = ['Spike', 'Nucleocapsid', 'Membrane', 'ORF1a', 'ORF1b', 'Envelope', 'ORF3a', 'ORF8', 'ORF6', 'ORF7a', 'ORF10']
#N.B. ORF1a and ORF1b are Replicase polyprotein 1ab (UniProt:P0DTD1) in IEDB
list_path_iedb = [
"https://www.iedb.org/immunomebrowser.php?cookie_id=e601a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC2&source_antigen_name=Spike+glycoprotein",
"https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC2&source_antigen_name=Nucleoprotein",
"https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC2&source_antigen_name=Membrane+protein",
"https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTD1&source_antigen_name=Replicase+polyprotein+1ab",
"https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTD1&source_antigen_name=Replicase+polyprotein+1ab",
"https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC2&source_antigen_name=Envelope",
"https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC3&source_antigen_name=ORF3a+protein",
'https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC3&source_antigen_name=ORF8+protein',
'https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC3&source_antigen_name=ORF6+protein',
'https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC3&source_antigen_name=ORF7a+protein',
'https://www.iedb.org/immunomebrowser.php?cookie_id=e609a1&source_organism=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCBITaxon_2697049&source_organism_name=SARS-CoV2&source_antigen=http%3A%2F%2Fwww.uniprot.org%2Funiprot%2FP0DTC3&source_antigen_name=ORF10+protein']
#download correct chromedriver version from https://chromedriver.chromium.org/downloads and set path
path_chromedriver = '/home/giancarlo/Documents/programs/chromedriver'
print("** Path chromedriver: ", path_chromedriver)
path_download_folder = '/home/giancarlo/Downloads/*'
from selenium.webdriver.chrome.options import Options
for protein, url in zip(list_protein, list_path_iedb):
############################################################
# 1. Download IEDB epitope data and move to ./data/IEDB_updated_data
############################################################
os.environ["webdriver.chrome.driver"] = path_chromedriver
options = Options()
options.binary_location = "/usr/bin/google-chrome-beta"
driver = webdriver.Chrome(chrome_options=options, executable_path=path_chromedriver)
#driver = webdriver.Chrome(path_chromedriver)
#s = Service(path_chromedriver)
#driver = webdriver.Chrome(service=s)
print(protein, url)
driver.get(url)
#wait until page is loaded.. may take a while
try:
element = WebDriverWait(driver, 100).until(EC.presence_of_element_located((By.CLASS_NAME, "txt")))
time.sleep(20)
element.click()
time.sleep(20)
finally:
driver.quit()
#mv IEDB data from ~/Downloads (latest file) to ./data/IEDB_updated_data/PROTEIN
list_of_files = glob.glob(path_download_folder)
latest_file = max(list_of_files, key=os.path.getctime)
print(latest_file)
if latest_file.split("/")[-1].split("_")[0] != "immunomebrowser":
print("*****ERROR: file doesn't start with `immunomebrowser`*****")
#date last update IEDB
req = requests.get(url)
for word in req.text.split("\n"):
if "site_data:" in word:
site_data = word
date_str = site_data.split(": ")[-1][1:-2]
date_last_update = datetime.strptime(date_str, "%B %d, %Y")
#adapt to your format
format = "%d%b%Y"
time_file = date_last_update.strftime(format)
#print("Formatted DateTime:", time_file)
name_out = "iedb_epitopes_{0}.csv".format(time_file)
name_folder = './data/IEDB_updated_data/{0}'.format(protein)
name_out = "iedb_epitopes_{0}.csv".format(time_file)
path_iedb_epitope = './data/IEDB_updated_data/{0}/{1}'.format(protein, name_out)
#make folder if it doesn't exist
isExist = os.path.exists(name_folder)
if not isExist:
os.makedirs(name_folder)
print("Created {0}".format(name_folder))
#if file already exists -> skip it
isExist = os.path.exists(path_iedb_epitope)
if isExist:
continue
#otherwise move is to the right folder
shutil.move(latest_file, "{0}/{1}".format(name_folder, name_out))
############################################################
# 2. from epitope data get upper/lower rf (you could also download them directly from IEDB webserver)
############################################################
df_all_epi = pd.read_csv(path_iedb_epitope)
df = compute_RF_upperlowerbound(df_all_epi)
name_out_rf = "response_frequency_{0}.csv".format(time_file)
path_iedb_epitope_rf = './data/IEDB_updated_data/{0}/{1}'.format(protein,name_out_rf)
#adapt to IEDB format
f = open(path_iedb_epitope_rf, "w")
print("\"position\",\"lowerbound\",\"upperbound\"", file = f)
for idx in df.index:
n = int(df.loc[idx]['positions'])
low = df.loc[idx]['lowerbound']
upp = df.loc[idx]['upperbound']
print(str(n) + ",\""+ str(low) + "\",\"" + str(upp) + "\"", file = f)
f.close()