- Introduction
- Getting Started
- Switching to G4F Client
- Initializing the Client
- Creating Chat Completions
- Configuration
- Usage Examples
- Text Completions
- Streaming Completions
- Image Generation
- Creating Image Variations
- Advanced Usage
- Using a List of Providers with RetryProvider
- Using a Vision Model
- Command-line Chat Program
Welcome to the G4F Client API, a cutting-edge tool for seamlessly integrating advanced AI capabilities into your Python applications. This guide is designed to facilitate your transition from using the OpenAI client to the G4F Client, offering enhanced features while maintaining compatibility with the existing OpenAI API.
To begin using the G4F Client, simply update your import statement in your Python code:
Old Import:
from openai import OpenAI
New Import:
from g4f.client import Client as OpenAI
The G4F Client preserves the same familiar API interface as OpenAI, ensuring a smooth transition process.
To utilize the G4F Client, create a new instance. Below is an example showcasing custom providers:
from g4f.client import Client
from g4f.Provider import BingCreateImages, OpenaiChat, Gemini
client = Client(
provider=OpenaiChat,
image_provider=Gemini,
# Add any other necessary parameters
)
Here’s an improved example of creating chat completions:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Say this is a test"
}
]
# Add any other necessary parameters
)
This example:
- Asks a specific question
Say this is a test
- Configures various parameters like temperature and max_tokens for more control over the output
- Disables streaming for a complete response
You can adjust these parameters based on your specific needs.
You can set an api_key
for your provider in the client and define a proxy for all outgoing requests:
from g4f.client import Client
client = Client(
api_key="your_api_key_here",
proxies="http://user:pass@host",
# Add any other necessary parameters
)
Generate text completions using the ChatCompletions
endpoint:
from g4f.client import Client
client = Client()
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Say this is a test"
}
]
# Add any other necessary parameters
)
print(response.choices[0].message.content)
Process responses incrementally as they are generated:
from g4f.client import Client
client = Client()
stream = client.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "user",
"content": "Say this is a test"
}
],
stream=True,
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content or "", end="")
The response_format
parameter is optional and can have the following values:
- If not specified (default): The image will be saved locally, and a local path will be returned (e.g., "/images/1733331238_cf9d6aa9-f606-4fea-ba4b-f06576cba309.jpg").
- "url": Returns a URL to the generated image.
- "b64_json": Returns the image as a base64-encoded JSON string.
Generate images using a specified prompt:
from g4f.client import Client
client = Client()
response = client.images.generate(
model="flux",
prompt="a white siamese cat",
response_format="url"
# Add any other necessary parameters
)
image_url = response.data[0].url
print(f"Generated image URL: {image_url}")
from g4f.client import Client
client = Client()
response = client.images.generate(
model="flux",
prompt="a white siamese cat",
response_format="b64_json"
# Add any other necessary parameters
)
base64_text = response.data[0].b64_json
print(base64_text)
Create variations of an existing image:
from g4f.client import Client
from g4f.Provider import OpenaiChat
client = Client(
image_provider=OpenaiChat
)
response = client.images.create_variation(
image=open("docs/images/cat.jpg", "rb"),
model="dall-e-3",
# Add any other necessary parameters
)
image_url = response.data[0].url
print(f"Generated image URL: {image_url}")
from g4f.client import Client
from g4f.Provider import RetryProvider, Phind, FreeChatgpt, Liaobots
import g4f.debug
g4f.debug.logging = True
g4f.debug.version_check = False
client = Client(
provider=RetryProvider([Phind, FreeChatgpt, Liaobots], shuffle=False)
)
response = client.chat.completions.create(
model="",
messages=[
{
"role": "user",
"content": "Hello"
}
]
)
print(response.choices[0].message.content)
Analyze an image and generate a description:
import g4f
import requests
from g4f.client import Client
from g4f.Provider.GeminiPro import GeminiPro
# Initialize the GPT client with the desired provider and api key
client = Client(
api_key="your_api_key_here",
provider=GeminiPro
)
image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/cat.jpeg", stream=True).raw
# Or: image = open("docs/images/cat.jpeg", "rb")
response = client.chat.completions.create(
model=g4f.models.default,
messages=[
{
"role": "user",
"content": "What are on this image?"
}
],
image=image
# Add any other necessary parameters
)
print(response.choices[0].message.content)
Here's an example of a simple command-line chat program using the G4F Client:
import g4f
from g4f.client import Client
# Initialize the GPT client with the desired provider
client = Client()
# Initialize an empty conversation history
messages = []
while True:
# Get user input
user_input = input("You: ")
# Check if the user wants to exit the chat
if user_input.lower() == "exit":
print("Exiting chat...")
break # Exit the loop to end the conversation
# Update the conversation history with the user's message
messages.append({"role": "user", "content": user_input})
try:
# Get GPT's response
response = client.chat.completions.create(
messages=messages,
model=g4f.models.default,
)
# Extract the GPT response and print it
gpt_response = response.choices[0].message.content
print(f"Bot: {gpt_response}")
# Update the conversation history with GPT's response
messages.append({"role": "assistant", "content": gpt_response})
except Exception as e:
print(f"An error occurred: {e}")
This guide provides a comprehensive overview of the G4F Client API, demonstrating its versatility in handling various AI tasks, from text generation to image analysis and creation. By leveraging these features, you can build powerful and responsive applications that harness the capabilities of advanced AI models.