-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain_vl.py
516 lines (462 loc) · 26.8 KB
/
main_vl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# Copyright (c) 2015-present, Alibaba, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma
import collections
import logging
# customed libs
from datasets import build_dataset
# from engine import evaluate_vl, train_one_epoch_vl, visual_vl
from losses import DistillationLoss
from samplers import RASampler
from libs import utils, pvlt
def get_args_parser():
parser = argparse.ArgumentParser('PVT training and evaluation script', add_help=False)
parser.add_argument('--fp32-resume', action='store_true', default=False)
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--config', required=True, type=str, help='config')
# VL parameters
parser.add_argument('--num-text-tokens', default=128, type=int, metavar='VL', help='number of text tokens')
parser.add_argument('--token-hidden-size', default=768, type=int, metavar='VL', help='token hidden size')
parser.add_argument('--word-mask-rate', default=0.15, type=float, metavar='VL', help='word_mask_rate in masking strategy')
parser.add_argument('--loss-type', default={'itm':0, 'mlm':0}, type=dict, metavar='VL', help='please indicate the loss type')
parser.add_argument('--mask-ratio', default=6, type=int, metavar='VL', help='mask ratio in itg task')
parser.add_argument('--mask-strategy', default='square', type=str, metavar='VL', help='choice: square or stroke or random_grid')
parser.add_argument('--pretrain-pth', default='/data/oss_bucket_0/PVLT-Data/preweights/pvt_tiny.pth', type=str, metavar='VL', help='please indicate the loss type')
parser.add_argument('--mask-patch-size', default=16, type=int, metavar='VL', help='choice: square or stroke or random_grid')
# parser.add_argument('--valid-mask-t2i-loss', default=False, type=bool, metavar='VL', help='choice: square or stroke or random_grid')
parser.add_argument('--eval-retrieval-itr', action='store_true', help='Perform retrieval_itr only')
parser.add_argument('--eval-retrieval-tir', action='store_true', help='Perform retrieval_tir only')
parser.add_argument('--eval-recognition', action='store_true', help='Perform retrieval_tir only')
# Model parameters
parser.add_argument('--model', default='pvt_small', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
# parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
# help='Name of teacher model to train (default: "regnety_160"')
# parser.add_argument('--teacher-path', type=str, default='')
# parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
# parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
# parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--use-mcloader', action='store_true', default=False, help='Use mcloader')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--viz', action='store_true', help='Perform visualization only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument("--local_rank", type=int)
parser.add_argument("--runtime", default='local', help='env where to run')
return parser
def main(args):
# update distributed training parameters
if args.runtime == "pai":
print('\n', '*'*40, '\n', '>>> running on PAI <<<\n', '*'*40, '\n')
utils.init_distributed_mode_on_pai(args)
elif args.runtime == 'dws':
print('\n', '*'*40, '\n', '>>> running on DWS <<<\n', '*'*40, '\n')
utils.init_distributed_mode(args)
# utils.init_distributed_mode(args)
print(args)
# if args.distillation_type != 'none' and args.finetune and not args.eval:
# raise NotImplementedError("Finetuning with distillation not yet supported")
# 这里可以用于增加不同的mask策略(已删除早期其余尝试,这里不用管)
if args.mask_strategy == 'random_grid':
print('>>> using random grid masking strategy for vision! (load from engine_grid_masking.py)')
from engine_grid_masking import evaluate_vl, train_one_epoch_vl, visual_vl, evaluate_retrieval, evaluate_recognition
else:
# print('>>> not using random grid masking strategy! (load from engine.py)')
# from engine import evaluate_vl, train_one_epoch_vl, visual_vl
raise Exception('Line-202')
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
args.nb_classes = 1000 # 这个参数仅对最后的fully-connected layer作用,所以这里设定不影响自身模型(保留这个参数接口是为了方便后续模型拓展)
dataset_train = build_dataset(is_train=True, args=args)
dataset_val = build_dataset(is_train=False, args=args)
if True: #
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
# Repeated Augmentation (RA)是FAIR在MultiGrain提出的一种抽样策略,一般情况下,训练的mini-batch包含的增强过的sample都是来自不同的图像,但是RA这种抽样策略允许一个mini-batch中包含来自同一个图像的不同增强版本,此时mini-batch的各个样本并非是完全独立的,这相当于对同一个样本进行重复抽样,所以称为Repeated Augmentation。
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train,
# num_replicas=num_tasks,
num_replicas=0,
rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val,
# num_replicas=num_tasks,
num_replicas=0,
rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
print('>>> TrainBatchSize: {} & ValBatchSize: {}'.format(args.batch_size, int(1.5 * args.batch_size)))
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
# 建立模型
print(f">>> Creating model: {args.model}")
model = create_model(
args.model,
pretrained=True,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
token_hidden_size=args.token_hidden_size,
num_text_tokens=args.num_text_tokens,
loss_type=args.loss_type,
pretrained_pth=args.pretrain_pth, # imagenet pvt pretrain
)
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
if 'model' in checkpoint:
checkpoint_model = checkpoint['model']
else:
checkpoint_model = checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f">>> Removing key {k} from pretrained checkpoint")
logging.info(f">>> Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
model.load_state_dict(checkpoint_model, strict=False)
print('>>> load pretrain weights ({}) of MVLT for downstream finetuning'.format(args.finetune))
model.to(device)
model_ema = None
model_without_ddp = model
if args.distributed:
# https://blog.csdn.net/huuuuuuuu/article/details/106381157
# print('>>> find_unused_parameters')
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])#, find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('>>> number of model parameters:', n_parameters)
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = LabelSmoothingCrossEntropy()
if args.mixup > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
criterion = DistillationLoss(
criterion, None, 'none', 0, 0
)
output_dir = Path(args.output_dir)
# 是否resume模型训练
if args.resume:
print('>>> load resume checkpoint from {}'.format(args.resume))
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if 'model' in checkpoint:
msg = model_without_ddp.load_state_dict(checkpoint['model'])
else:
msg = model_without_ddp.load_state_dict(checkpoint)
print(msg)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
# if args.model_ema:
# utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
# 是否处于eval状态
if args.eval:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print('\n', '*'*40, '\n', '>>> only use evaluation <<<\n', '*'*40, '\n')
test_stats = evaluate_vl(data_loader_val, model, device, args)
print(f">>> accuracy of the network on the {len(dataset_val)} test image-text pairs: mlm_acc={test_stats['mlm_acc']:.5f}% itm_acc={test_stats['itm_acc']:.5f}%")
return
# 是否处于下游任务的ITR和TIR任务状态
if args.eval_retrieval_itr or args.eval_retrieval_tir:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print('\n', '*'*40, '\n', '>>> only use eval_retrieval_itr or eval_retrieval_itr <<<\n', '*'*40, '\n')
test_stats = evaluate_retrieval(data_loader_val, model, device, args)
# print(f">>> accuracy of the network on the {len(dataset_val)} test image-text pairs: mlm_acc={test_stats['mlm_acc']:.5f}% itm_acc={test_stats['itm_acc']:.5f}%")
return
# 是否处于下游任务的父子类识别
if args.eval_recognition:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=500,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print('\n', '*'*40, '\n', '>>> only use super-sub-class eval_recognition <<<\n', '*'*40, '\n')
test_stats = evaluate_recognition(data_loader_val, model, device, args)
# print(f">>> accuracy of the network on the {len(dataset_val)} test image-text pairs: mlm_acc={test_stats['mlm_acc']:.5f}% itm_acc={test_stats['itm_acc']:.5f}%")
return
# 是否对网络关键设计进行可视化
if args.viz:
print('>>> init data_loader_viz')
data_loader_viz = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print('\n', '*'*40, '\n', '>>> only use visualization <<<\n', '*'*40, '\n')
test_stats = visual_vl(data_loader_viz, model, device, args)
print(f">>> accuracy of the network on the {len(dataset_val)} test image-text pairs: mlm_acc={test_stats['mlm_acc']:.5f}% itm_acc={test_stats['itm_acc']:.5f}%")
return
print('>>> init data_loader_train & data_loader_val')
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print('\n', '*'*40, '\n', '>>> start training ({} epochs) <<<\n'.format(args.epochs), '*'*40, '\n')
start_time = time.time()
total_max_score = 0.0
# 开始训练
for epoch in range(args.start_epoch, args.epochs):
print('\t---- training at {}/{} epoch ----'.format(epoch, args.epochs))
if args.fp32_resume and epoch > args.start_epoch + 1:
args.fp32_resume = False
loss_scaler._scaler = torch.cuda.amp.GradScaler(enabled=not args.fp32_resume)
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch_vl(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn,
set_training_mode=args.finetune == '', # keep in eval mode during finetuning
fp32=args.fp32_resume, args=args
)
lr_scheduler.step(epoch)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# 前2/3的epoches数量,进行训练
if epoch < int(args.epochs * 2 // 3):
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
# 'model_ema': get_state_dict(model_ema),
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
print('>>> the model is directly saved on {} when [cur_epoch < total_epoch/2]'.format(checkpoint_path))
cur_itm_accuracy = 0
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# 前2/3的epoches数量,使用eval数据进行挑选最佳的epoch
else:
# gather the stats from all processes
test_stats = evaluate_vl(data_loader_val, model, device, args)
print(f">>> accuracy of the network on the {len(dataset_val)} test image-text pairs:")
cur_mlm_accuracy = test_stats["mlm_acc"]
print(f'>>> cur mlm accuracy: {cur_mlm_accuracy:.5f}%')
cur_itm_accuracy = test_stats["itm_acc"]
print(f'>>> cur itm accuracy: {cur_itm_accuracy:.5f}%')
cur_sup_cls_accuracy = test_stats["sup_cls_acc"]
print(f'>>> cur sup_cls accuracy: {cur_sup_cls_accuracy:.5f}%')
cur_sub_cls_accuracy = test_stats["sub_cls_acc"]
print(f'>>> cur sub_cls accuracy: {cur_sub_cls_accuracy:.5f}%')
total_cur_score = cur_mlm_accuracy + cur_itm_accuracy + cur_sup_cls_accuracy + cur_sub_cls_accuracy
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# svae model weights when the following conditions
if total_cur_score >= total_max_score: # fix bugs
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
print('>>> successfully find total_cur_score: {} and save model on {}'.format(total_cur_score, checkpoint_path))
total_max_score = total_cur_score
else:
print('>>> current score ({}) does not surpass the best one ({}), continue the next training'.format(total_cur_score, total_max_score))
pass
if args.output_dir and utils.is_main_process():
with (output_dir / "dws_stdout.log").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('>>> training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
args = utils.update_from_config(args)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)