-
Notifications
You must be signed in to change notification settings - Fork 8
/
trainer.py
115 lines (91 loc) · 3.97 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import sys
import logging
import copy
import torch
from utils import factory
from utils.data_manager import DataManager
from utils.toolkit import count_parameters
import os
import numpy as np
def train(args):
seed_list = copy.deepcopy(args['seed'])
device = copy.deepcopy(args['device'])
res_finals, res_avgs = [], []
for run_id, seed in enumerate(seed_list):
args['seed'] = seed
args['run_id'] = run_id
args['device'] = device
res_final, res_avg = _train(args)
res_finals.append(res_final)
res_avgs.append(res_avg)
logging.info('final accs: {}'.format(res_finals))
logging.info('avg accs: {}'.format(res_avgs))
def _train(args):
try:
os.mkdir("logs/{}_{}".format(args['model_name'], args['model_postfix']))
except:
pass
logfilename = 'logs/{}_{}/{}_{}_{}_{}_{}_{}_{}'.format(args['model_name'], args['model_postfix'], args['prefix'], args['seed'], args['model_name'], args['convnet_type'],
args['dataset'], args['init_cls'], args['increment'])
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(filename)s] => %(message)s',
handlers=[
logging.FileHandler(filename=logfilename + '.log'),
logging.StreamHandler(sys.stdout)
]
)
_set_random()
_set_device(args)
print_args(args)
data_manager = DataManager(args['dataset'], args['shuffle'], args['seed'], args['init_cls'], args['increment'])
model = factory.get_model(args['model_name'], args)
cnn_curve, nme_curve = {'top1': [], 'top5': []}, {'top1': [], 'top5': []}
for task in range(data_manager.nb_tasks):
logging.info('All params: {}'.format(count_parameters(model._network)))
logging.info('Trainable params: {}'.format(count_parameters(model._network, True)))
model.incremental_train(data_manager)
cnn_accy, nme_accy = model.eval_task()
model.after_task()
if nme_accy is not None:
logging.info('CNN: {}'.format(cnn_accy['grouped']))
logging.info('NME: {}'.format(nme_accy['grouped']))
cnn_curve['top1'].append(cnn_accy['top1'])
cnn_curve['top5'].append(cnn_accy['top5'])
nme_curve['top1'].append(nme_accy['top1'])
nme_curve['top5'].append(nme_accy['top5'])
logging.info('CNN top1 curve: {}'.format(cnn_curve['top1']))
logging.info('CNN top1 avg: {}'.format(np.array(cnn_curve['top1']).mean()))
if 'task_acc' in cnn_accy.keys():
logging.info('Task: {}'.format(cnn_accy['task_acc']))
logging.info('CNN top5 curve: {}'.format(cnn_curve['top5']))
logging.info('NME top1 curve: {}'.format(nme_curve['top1']))
logging.info('NME top5 curve: {}\n'.format(nme_curve['top5']))
else:
logging.info('No NME accuracy.')
logging.info('CNN: {}'.format(cnn_accy['grouped']))
cnn_curve['top1'].append(cnn_accy['top1'])
cnn_curve['top5'].append(cnn_accy['top5'])
logging.info('CNN top1 curve: {}'.format(cnn_curve['top1']))
logging.info('CNN top1 avg: {}'.format(np.array(cnn_curve['top1']).mean()))
logging.info('CNN top5 curve: {}\n'.format(cnn_curve['top5']))
return (cnn_curve['top1'][-1], np.array(cnn_curve['top1']).mean())
def _set_device(args):
device_type = args['device']
gpus = []
for device in device_type:
if device_type == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
gpus.append(device)
args['device'] = gpus
def _set_random():
torch.manual_seed(1)
torch.cuda.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def print_args(args):
for key, value in args.items():
logging.info('{}: {}'.format(key, value))