forked from sail-sg/EditAnything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
editany_lora.py
908 lines (825 loc) · 34.5 KB
/
editany_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import subprocess
from collections import OrderedDict
import re
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
import requests
from io import BytesIO
from annotator.util import resize_image, HWC3, resize_points, get_bounding_box
import torch
from safetensors.torch import load_file
from collections import defaultdict
from diffusers import StableDiffusionControlNetPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler
from utils.stable_diffusion_controlnet import ControlNetModel2
from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline, \
StableDiffusionControlNetInpaintMixingPipeline, prepare_mask_image
# need the latest transformers
# pip install git+https://github.com/huggingface/transformers.git
from transformers import AutoProcessor, Blip2ForConditionalGeneration
from diffusers import ControlNetModel, DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
import PIL.Image
# Segment-Anything init.
# pip install git+https://github.com/facebookresearch/segment-anything.git
try:
from segment_anything import (
sam_model_registry,
SamAutomaticMaskGenerator,
SamPredictor,
)
except ImportError:
print("segment_anything not installed")
result = subprocess.run(
[
"pip",
"install",
"git+https://github.com/facebookresearch/segment-anything.git",
],
check=True,
)
print(f"Install segment_anything {result}")
from segment_anything import (
sam_model_registry,
SamAutomaticMaskGenerator,
SamPredictor,
)
if not os.path.exists("./models/sam_vit_h_4b8939.pth"):
result = subprocess.run(
[
"wget",
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
"-P",
"models",
],
check=True,
)
print(f"Download sam_vit_h_4b8939.pth {result}")
device = "cuda" if torch.cuda.is_available() else "cpu"
config_dict = OrderedDict(
[
("LAION Pretrained(v0-4)-SD15", "shgao/edit-anything-v0-4-sd15"),
("LAION Pretrained(v0-4)-SD21", "shgao/edit-anything-v0-4-sd21"),
("LAION Pretrained(v0-3)-SD21", "shgao/edit-anything-v0-3"),
("SAM Pretrained(v0-1)-SD21", "shgao/edit-anything-v0-1-1"),
]
)
def init_sam_model(sam_generator=None, mask_predictor=None):
if sam_generator is not None and mask_predictor is not None:
return sam_generator, mask_predictor
sam_checkpoint = "models/sam_vit_h_4b8939.pth"
model_type = "default"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
sam_generator = (
SamAutomaticMaskGenerator(
sam) if sam_generator is None else sam_generator
)
mask_predictor = SamPredictor(
sam) if mask_predictor is None else mask_predictor
return sam_generator, mask_predictor
def init_blip_processor():
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
return blip_processor
def init_blip_model():
blip_model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto"
)
return blip_model
def get_pipeline_embeds(pipeline, prompt, negative_prompt, device):
# https://github.com/huggingface/diffusers/issues/2136
"""Get pipeline embeds for prompts bigger than the maxlength of the pipe
:param pipeline:
:param prompt:
:param negative_prompt:
:param device:
:return:
"""
max_length = pipeline.tokenizer.model_max_length
# simple way to determine length of tokens
count_prompt = len(re.split(r", ", prompt))
count_negative_prompt = len(re.split(r", ", negative_prompt))
# create the tensor based on which prompt is longer
if count_prompt >= count_negative_prompt:
input_ids = pipeline.tokenizer(
prompt, return_tensors="pt", truncation=False
).input_ids.to(device)
shape_max_length = input_ids.shape[-1]
negative_ids = pipeline.tokenizer(
negative_prompt,
truncation=False,
padding="max_length",
max_length=shape_max_length,
return_tensors="pt",
).input_ids.to(device)
else:
negative_ids = pipeline.tokenizer(
negative_prompt, return_tensors="pt", truncation=False
).input_ids.to(device)
shape_max_length = negative_ids.shape[-1]
input_ids = pipeline.tokenizer(
prompt,
return_tensors="pt",
truncation=False,
padding="max_length",
max_length=shape_max_length,
).input_ids.to(device)
concat_embeds = []
neg_embeds = []
for i in range(0, shape_max_length, max_length):
concat_embeds.append(pipeline.text_encoder(input_ids[:, i : i + max_length])[0])
neg_embeds.append(pipeline.text_encoder(negative_ids[:, i : i + max_length])[0])
return torch.cat(concat_embeds, dim=1), torch.cat(neg_embeds, dim=1)
def load_lora_weights(pipeline, checkpoint_path, multiplier, device, dtype):
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# load LoRA weight from .safetensors
print('device: {}'.format(device))
if isinstance(checkpoint_path, str):
state_dict = load_file(checkpoint_path, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
layer, elem = key.split(".", 1)
updates[layer][elem] = value
# directly update weight in diffusers model
for layer, elems in updates.items():
if "text" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = pipeline.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# get elements for this layer
weight_up = elems["lora_up.weight"].to(dtype)
weight_down = elems["lora_down.weight"].to(dtype)
alpha = elems["alpha"]
if alpha:
alpha = alpha.item() / weight_up.shape[1]
else:
alpha = 1.0
# update weight
if len(weight_up.shape) == 4:
curr_layer.weight.data += (
multiplier
* alpha
* torch.mm(
weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2),
)
.unsqueeze(2)
.unsqueeze(3)
)
else:
curr_layer.weight.data += (
multiplier * alpha * torch.mm(weight_up, weight_down)
)
else:
for ckptpath in checkpoint_path:
state_dict = load_file(ckptpath, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
layer, elem = key.split(".", 1)
updates[layer][elem] = value
# directly update weight in diffusers model
for layer, elems in updates.items():
if "text" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split(
"_"
)
curr_layer = pipeline.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# get elements for this layer
weight_up = elems["lora_up.weight"].to(dtype)
weight_down = elems["lora_down.weight"].to(dtype)
alpha = elems["alpha"]
if alpha:
alpha = alpha.item() / weight_up.shape[1]
else:
alpha = 1.0
# update weight
if len(weight_up.shape) == 4:
curr_layer.weight.data += (
multiplier
* alpha
* torch.mm(
weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2),
)
.unsqueeze(2)
.unsqueeze(3)
)
else:
curr_layer.weight.data += (
multiplier * alpha * torch.mm(weight_up, weight_down)
)
return pipeline
def make_inpaint_condition(image, image_mask):
image = image / 255.0
assert (
image.shape[0:1] == image_mask.shape[0:1]
), "image and image_mask must have the same image size"
image[image_mask > 128] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def obtain_generation_model(
base_model_path,
lora_model_path,
controlnet_path,
generation_only=False,
extra_inpaint=True,
lora_weight=1.0,
):
controlnet = []
controlnet.append(
ControlNetModel2.from_pretrained(
controlnet_path, torch_dtype=torch.float16)
) # sam control
if (not generation_only) and extra_inpaint: # inpainting control
print("Warning: ControlNet based inpainting model only support SD1.5 for now.")
controlnet.append(
ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
) # inpainting controlnet
)
if generation_only and extra_inpaint:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
else:
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
if lora_model_path is not None:
pipe = load_lora_weights(
pipe, [lora_model_path], lora_weight, "cpu", torch.float32
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
return pipe
def obtain_tile_model(base_model_path, lora_model_path, lora_weight=1.0):
controlnet = ControlNetModel2.from_pretrained(
"lllyasviel/control_v11f1e_sd15_tile", torch_dtype=torch.float16
) # tile controlnet
if (
base_model_path == "runwayml/stable-diffusion-v1-5"
or base_model_path == "stabilityai/stable-diffusion-2-inpainting"
):
print("base_model_path", base_model_path)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
else:
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
if lora_model_path is not None:
pipe = load_lora_weights(
pipe, [lora_model_path], lora_weight, "cpu", torch.float32
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
return pipe
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann["segmentation"]
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img * 255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
full_img = Image.fromarray(np.uint8(full_img))
return full_img, res
class EditAnythingLoraModel:
def __init__(
self,
base_model_path="../chilloutmix_NiPrunedFp32Fix",
lora_model_path="../40806/mix4",
use_blip=True,
blip_processor=None,
blip_model=None,
sam_generator=None,
controlmodel_name="LAION Pretrained(v0-4)-SD15",
# used when the base model is not an inpainting model.
extra_inpaint=True,
tile_model=None,
lora_weight=1.0,
alpha_mixing=None,
mask_predictor=None,
):
self.device = device
self.use_blip = use_blip
# Diffusion init using diffusers.
self.default_controlnet_path = config_dict[controlmodel_name]
self.base_model_path = base_model_path
self.lora_model_path = lora_model_path
self.defalut_enable_all_generate = False
self.extra_inpaint = extra_inpaint
self.last_ref_infer = False
self.pipe = obtain_generation_model(
base_model_path,
lora_model_path,
self.default_controlnet_path,
generation_only=False,
extra_inpaint=extra_inpaint,
lora_weight=lora_weight,
)
# self.pipe.load_textual_inversion("textual_inversion_cat/learned_embeds.bin")
# Segment-Anything init.
self.sam_generator, self.mask_predictor = init_sam_model(
sam_generator, mask_predictor
)
# BLIP2 init.
if use_blip:
if blip_processor is not None:
self.blip_processor = blip_processor
else:
self.blip_processor = init_blip_processor()
if blip_model is not None:
self.blip_model = blip_model
else:
self.blip_model = init_blip_model()
# tile model init.
if tile_model is not None:
self.tile_pipe = tile_model
else:
self.tile_pipe = obtain_tile_model(
base_model_path, lora_model_path, lora_weight=lora_weight
)
def get_blip2_text(self, image):
inputs = self.blip_processor(image, return_tensors="pt").to(
self.device, torch.float16
)
generated_ids = self.blip_model.generate(**inputs, max_new_tokens=50)
generated_text = self.blip_processor.batch_decode(
generated_ids, skip_special_tokens=True
)[0].strip()
return generated_text
def get_sam_control(self, image):
masks = self.sam_generator.generate(image)
full_img, res = show_anns(masks)
return full_img, res
def get_click_mask(self, image, clicked_points):
self.mask_predictor.set_image(image)
# Separate the points and labels
points, labels = zip(*[(point[:2], point[2])
for point in clicked_points])
# Convert the points and labels to numpy arrays
input_point = np.array(points)
input_label = np.array(labels)
masks, _, _ = self.mask_predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
return masks
@torch.inference_mode()
def process_image_click(
self,
original_image: gr.Image,
point_prompt: gr.Radio,
clicked_points: gr.State,
image_resolution,
evt: gr.SelectData,
):
# Get the clicked coordinates
clicked_coords = evt.index
x, y = clicked_coords
label = point_prompt
lab = 1 if label == "Foreground Point" else 0
clicked_points.append((x, y, lab))
input_image = np.array(original_image, dtype=np.uint8)
H, W, C = input_image.shape
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
# Update the clicked_points
resized_points = resize_points(
clicked_points, input_image.shape, image_resolution
)
mask_click_np = self.get_click_mask(img, resized_points)
# Convert mask_click_np to HWC format
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
mask_image = HWC3(mask_click_np.astype(np.uint8))
mask_image = cv2.resize(mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
# mask_image = Image.fromarray(mask_image_tmp)
# Draw circles for all clicked points
edited_image = input_image
for x, y, lab in clicked_points:
# Set the circle color based on the label
color = (255, 0, 0) if lab == 1 else (0, 0, 255)
# Draw the circle
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)
# Set the opacity for the mask_image and edited_image
opacity_mask = 0.75
opacity_edited = 1.0
# Combine the edited_image and the mask_image using cv2.addWeighted()
overlay_image = cv2.addWeighted(
edited_image,
opacity_edited,
(mask_image *
np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
opacity_mask,
0,
)
return (
Image.fromarray(overlay_image),
clicked_points,
Image.fromarray(mask_image),
)
@torch.inference_mode()
def process(
self,
source_image,
enable_all_generate,
mask_image,
control_scale,
enable_auto_prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
detect_resolution,
ddim_steps,
guess_mode,
scale,
seed,
eta,
enable_tile=True,
refine_alignment_ratio=None,
refine_image_resolution=None,
alpha_weight=0.5,
use_scale_map=False,
condition_model=None,
ref_image=None,
attention_auto_machine_weight=1.0,
gn_auto_machine_weight=1.0,
style_fidelity=0.5,
reference_attn=True,
reference_adain=True,
ref_prompt=None,
ref_sam_scale=None,
ref_inpaint_scale=None,
ref_auto_prompt=False,
ref_textinv=True,
ref_textinv_path=None,
):
if condition_model is None or condition_model == "EditAnything":
this_controlnet_path = self.default_controlnet_path
else:
this_controlnet_path = condition_model
input_image = (
source_image["image"]
if isinstance(source_image, dict)
else np.array(source_image, dtype=np.uint8)
)
if mask_image is None:
if enable_all_generate != self.defalut_enable_all_generate:
self.pipe = obtain_generation_model(
self.base_model_path,
self.lora_model_path,
this_controlnet_path,
enable_all_generate,
self.extra_inpaint,
)
self.defalut_enable_all_generate = enable_all_generate
if enable_all_generate:
print(
"source_image",
source_image["mask"].shape,
input_image.shape,
)
mask_image = (
np.ones((input_image.shape[0],
input_image.shape[1], 3)) * 255
)
else:
mask_image = source_image["mask"]
else:
mask_image = np.array(mask_image, dtype=np.uint8)
if self.default_controlnet_path != this_controlnet_path:
print(
"To Use:",
this_controlnet_path,
"Current:",
self.default_controlnet_path,
)
print("Change condition model to:", this_controlnet_path)
self.pipe = obtain_generation_model(
self.base_model_path,
self.lora_model_path,
this_controlnet_path,
enable_all_generate,
self.extra_inpaint,
)
self.default_controlnet_path = this_controlnet_path
torch.cuda.empty_cache()
if self.last_ref_infer:
print("Redefine the model to overwrite the ref mode")
self.pipe = obtain_generation_model(
self.base_model_path,
self.lora_model_path,
this_controlnet_path,
enable_all_generate,
self.extra_inpaint,
)
self.last_ref_infer = False
if ref_image is not None:
ref_mask = ref_image["mask"]
ref_image = ref_image["image"]
if ref_auto_prompt or ref_textinv:
bbox = get_bounding_box(
np.array(ref_mask) / 255
) # reverse the mask to make 1 the choosen region
cropped_ref_mask = ref_mask.crop(
(bbox[0], bbox[1], bbox[2], bbox[3]))
cropped_ref_image = ref_image.crop(
(bbox[0], bbox[1], bbox[2], bbox[3]))
# cropped_ref_image.save("debug.jpg")
cropped_ref_image = np.array(cropped_ref_image) * (
np.array(cropped_ref_mask)[:, :, :3] / 255.0
)
cropped_ref_image = Image.fromarray(
cropped_ref_image.astype("uint8"))
if ref_auto_prompt:
generated_prompt = self.get_blip2_text(cropped_ref_image)
ref_prompt += generated_prompt
a_prompt += generated_prompt
print("Generated ref text:", ref_prompt)
print("Generated input text:", a_prompt)
self.last_ref_infer = True
# ref_image = cropped_ref_image
# ref_mask = cropped_ref_mask
if ref_textinv:
try:
self.pipe.load_textual_inversion(ref_textinv_path)
print("Load textinv embedding from:", ref_textinv_path)
except:
print("No textinvert embeddings found.")
ref_data_path = "./utils/tmp/textinv/img"
if not os.path.exists(ref_data_path):
os.makedirs(ref_data_path)
cropped_ref_image.save(os.path.join(ref_data_path, 'ref.png'))
print("Ref image region is save to:", ref_data_path)
print("Plese finetune with run_texutal_inversion.sh in utils folder to get the textinvert embeddings.")
else:
ref_mask = None
with torch.no_grad():
if self.use_blip and enable_auto_prompt:
print("Generating text:")
blip2_prompt = self.get_blip2_text(input_image)
print("Generated text:", blip2_prompt)
if len(a_prompt) > 0:
a_prompt = blip2_prompt + "," + a_prompt
else:
a_prompt = blip2_prompt
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
print("Generating SAM seg:")
# the default SAM model is trained with 1024 size.
full_segmask, detected_map = self.get_sam_control(
resize_image(input_image, detect_resolution)
)
detected_map = HWC3(detected_map.astype(np.uint8))
detected_map = cv2.resize(
detected_map, (W, H), interpolation=cv2.INTER_LINEAR
)
control = torch.from_numpy(detected_map.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, "b h w c -> b c h w").clone()
mask_imag_ori = HWC3(mask_image.astype(np.uint8))
mask_image_tmp = cv2.resize(
mask_imag_ori, (W, H), interpolation=cv2.INTER_LINEAR
)
mask_image = Image.fromarray(mask_image_tmp)
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
generator = torch.manual_seed(seed)
postive_prompt = a_prompt
negative_prompt = n_prompt
prompt_embeds, negative_prompt_embeds = get_pipeline_embeds(
self.pipe, postive_prompt, negative_prompt, "cuda"
)
prompt_embeds = torch.cat([prompt_embeds] * num_samples, dim=0)
negative_prompt_embeds = torch.cat(
[negative_prompt_embeds] * num_samples, dim=0
)
if enable_all_generate and self.extra_inpaint:
self.pipe.safety_checker = lambda images, clip_input: (
images, False)
if ref_image is not None:
print("Not support yet.")
return
x_samples = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
height=H,
width=W,
image=[control.type(torch.float16)],
controlnet_conditioning_scale=[float(control_scale)],
guidance_scale=scale,
guess_mode=guess_mode,
).images
else:
multi_condition_image = []
multi_condition_scale = []
multi_condition_image.append(control.type(torch.float16))
multi_condition_scale.append(float(control_scale))
ref_multi_condition_scale = []
if ref_image is not None:
ref_multi_condition_scale.append(float(ref_sam_scale))
if self.extra_inpaint:
inpaint_image = make_inpaint_condition(img, mask_image_tmp)
multi_condition_image.append(
inpaint_image.type(torch.float16))
multi_condition_scale.append(1.0)
if ref_image is not None:
ref_multi_condition_scale.append(
float(ref_inpaint_scale))
if use_scale_map:
scale_map_tmp = source_image["mask"]
tmp = HWC3(scale_map_tmp.astype(np.uint8))
scale_map_tmp = cv2.resize(
tmp, (W, H), interpolation=cv2.INTER_LINEAR)
scale_map_tmp = Image.fromarray(scale_map_tmp)
controlnet_conditioning_scale_map = 1.0 - \
prepare_mask_image(scale_map_tmp).float()
print('scale map:', controlnet_conditioning_scale_map.size())
else:
controlnet_conditioning_scale_map = None
if isinstance(self.pipe, StableDiffusionControlNetInpaintMixingPipeline):
x_samples = self.pipe(
image=img,
mask_image=mask_image,
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=multi_condition_image,
height=H,
width=W,
controlnet_conditioning_scale=multi_condition_scale,
guidance_scale=scale,
alpha_weight=alpha_weight,
controlnet_conditioning_scale_map=controlnet_conditioning_scale_map
).images
else:
x_samples = self.pipe(
image=img,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=multi_condition_image,
height=H,
width=W,
controlnet_conditioning_scale=multi_condition_scale,
guidance_scale=scale,
ref_image=ref_image,
ref_mask=ref_mask,
ref_prompt=ref_prompt,
attention_auto_machine_weight=attention_auto_machine_weight,
gn_auto_machine_weight=gn_auto_machine_weight,
style_fidelity=style_fidelity,
reference_attn=reference_attn,
reference_adain=reference_adain,
ref_controlnet_conditioning_scale=ref_multi_condition_scale,
guess_mode=guess_mode,
).images
results = [x_samples[i] for i in range(num_samples)]
results_tile = []
if enable_tile:
prompt_embeds, negative_prompt_embeds = get_pipeline_embeds(
self.tile_pipe, postive_prompt, negative_prompt, "cuda"
)
for i in range(num_samples):
img_tile = PIL.Image.fromarray(
resize_image(
np.array(x_samples[i]), refine_image_resolution)
)
if i == 0:
mask_image_tile = cv2.resize(
mask_imag_ori,
(img_tile.size[0], img_tile.size[1]),
interpolation=cv2.INTER_LINEAR,
)
mask_image_tile = Image.fromarray(mask_image_tile)
if isinstance(self.pipe, StableDiffusionControlNetInpaintMixingPipeline):
x_samples_tile = self.tile_pipe(
image=img_tile,
mask_image=mask_image_tile,
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=1,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=img_tile,
height=img_tile.size[1],
width=img_tile.size[0],
controlnet_conditioning_scale=1.0,
alignment_ratio=refine_alignment_ratio,
guidance_scale=scale,
alpha_weight=alpha_weight,
controlnet_conditioning_scale_map=controlnet_conditioning_scale_map
).images
else:
x_samples_tile = self.tile_pipe(
image=img_tile,
mask_image=mask_image_tile,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=1,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=img_tile,
height=img_tile.size[1],
width=img_tile.size[0],
controlnet_conditioning_scale=1.0,
alignment_ratio=refine_alignment_ratio,
guidance_scale=scale,
guess_mode=guess_mode,
).images
results_tile += x_samples_tile
return results_tile, results, [full_segmask, mask_image], postive_prompt
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")