-
Notifications
You must be signed in to change notification settings - Fork 2
/
core_matrix.c
308 lines (271 loc) · 7.75 KB
/
core_matrix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original Author: Shay Gal-on
*/
#include "coremark.h"
/*
Topic: Description
Matrix manipulation benchmark
This very simple algorithm forms the basis of many more complex algorithms.
The tight inner loop is the focus of many optimizations (compiler as well as hardware based)
and is thus relevant for embedded processing.
The total available data space will be divided to 3 parts:
NxN Matrix A - initialized with small values (upper 3/4 of the bits all zero).
NxN Matrix B - initialized with medium values (upper half of the bits all zero).
NxN Matrix C - used for the result.
The actual values for A and B must be derived based on input that is not available at compile time.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val);
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval);
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val);
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val);
#define matrix_test_next(x) (x+1)
#define matrix_clip(x,y) ((y) ? (x) & 0x0ff : (x) & 0x0ffff)
#define matrix_big(x) (0xf000 | (x))
#define bit_extract(x,from,to) (((x)>>(from)) & (~(0xffffffff << (to))))
#if CORE_DEBUG
void printmat(MATDAT *A, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",A[i*N+j]);
}
ee_printf("\n");
}
}
void printmatC(MATRES *C, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",C[i*N+j]);
}
ee_printf("\n");
}
}
#endif
/* Function: core_bench_matrix
Benchmark function
Iterate <matrix_test> N times,
changing the matrix values slightly by a constant amount each time.
*/
ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc) {
ee_u32 N=p->N;
MATRES *C=p->C;
MATDAT *A=p->A;
MATDAT *B=p->B;
MATDAT val=(MATDAT)seed;
crc=crc16(matrix_test(N,C,A,B,val),crc);
return crc;
}
/* Function: matrix_test
Perform matrix manipulation.
Parameters:
N - Dimensions of the matrix.
C - memory for result matrix.
A - input matrix
B - operator matrix (not changed during operations)
Returns:
A CRC value that captures all results calculated in the function.
In particular, crc of the value calculated on the result matrix
after each step by <matrix_sum>.
Operation:
1 - Add a constant value to all elements of a matrix.
2 - Multiply a matrix by a constant.
3 - Multiply a matrix by a vector.
4 - Multiply a matrix by a matrix.
5 - Add a constant value to all elements of a matrix.
After the last step, matrix A is back to original contents.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val) {
ee_u16 crc=0;
MATDAT clipval=matrix_big(val);
matrix_add_const(N,A,val); /* make sure data changes */
#if CORE_DEBUG
printmat(A,N,"matrix_add_const");
#endif
matrix_mul_const(N,C,A,val);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_const");
#endif
matrix_mul_vect(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_vect");
#endif
matrix_mul_matrix(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix");
#endif
matrix_mul_matrix_bitextract(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix_bitextract");
#endif
matrix_add_const(N,A,-val); /* return matrix to initial value */
return crc;
}
/* Function : matrix_init
Initialize the memory block for matrix benchmarking.
Parameters:
blksize - Size of memory to be initialized.
memblk - Pointer to memory block.
seed - Actual values chosen depend on the seed parameter.
p - pointers to <mat_params> containing initialized matrixes.
Returns:
Matrix dimensions.
Note:
The seed parameter MUST be supplied from a source that cannot be determined at compile time
*/
ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p) {
ee_u32 N=0;
MATDAT *A;
MATDAT *B;
ee_s32 order=1;
MATDAT val;
ee_u32 i=0,j=0;
if (seed==0)
seed=1;
while (j<blksize) {
i++;
j=i*i*2*4;
}
N=i-1;
A=(MATDAT *)align_mem(memblk);
B=A+N*N;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
seed = ( ( order * seed ) % 65536 );
val = (seed + order);
val=matrix_clip(val,0);
B[i*N+j] = val;
val = (val + order);
val=matrix_clip(val,1);
A[i*N+j] = val;
order++;
}
}
p->A=A;
p->B=B;
p->C=(MATRES *)align_mem(B+N*N);
p->N=N;
#if CORE_DEBUG
printmat(A,N,"A");
printmat(B,N,"B");
#endif
return N;
}
/* Function: matrix_sum
Calculate a function that depends on the values of elements in the matrix.
For each element, accumulate into a temporary variable.
As long as this value is under the parameter clipval,
add 1 to the result if the element is bigger then the previous.
Otherwise, reset the accumulator and add 10 to the result.
*/
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval) {
MATRES tmp=0,prev=0,cur=0;
ee_s16 ret=0;
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
cur=C[i*N+j];
tmp+=cur;
if (tmp>clipval) {
ret+=10;
tmp=0;
} else {
ret += (cur>prev) ? 1 : 0;
}
prev=cur;
}
}
return ret;
}
/* Function: matrix_mul_const
Multiply a matrix by a constant.
This could be used as a scaler for instance.
*/
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=(MATRES)A[i*N+j] * (MATRES)val;
}
}
}
/* Function: matrix_add_const
Add a constant value to all elements of a matrix.
*/
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
A[i*N+j] += val;
}
}
}
/* Function: matrix_mul_vect
Multiply a matrix by a vector.
This is common in many simple filters (e.g. fir where a vector of coefficients is applied to the matrix.)
*/
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j;
for (i=0; i<N; i++) {
C[i]=0;
for (j=0; j<N; j++) {
C[i]+=(MATRES)A[i*N+j] * (MATRES)B[j];
}
}
}
/* Function: matrix_mul_matrix
Multiply a matrix by a matrix.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
*/
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
C[i*N+j]+=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
}
}
}
}
/* Function: matrix_mul_matrix_bitextract
Multiply a matrix by a matrix, and extract some bits from the result.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
*/
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
MATRES tmp=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
C[i*N+j]+=bit_extract(tmp,2,4)*bit_extract(tmp,5,7);
}
}
}
}