-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSpectral Forecast equation for signals.html
670 lines (610 loc) · 64.5 KB
/
Spectral Forecast equation for signals.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
<!-- ############################################################################################################################## -->
<!-- # John Wiley & Sons, Inc. # -->
<!-- # # -->
<!-- # Book: Algorithms in Bioinformatics: Theory and Implementation # -->
<!-- # Author: Dr. Paul A. Gagniuc # -->
<!-- # # -->
<!-- # Institution: # -->
<!-- # University Politehnica of Bucharest # -->
<!-- # Faculty of Engineering in Foreign Languages # -->
<!-- # Department of Engineering in Foreign Languages # -->
<!-- # # -->
<!-- # Area: European Union # -->
<!-- # Date: 04/01/2021 # -->
<!-- # # -->
<!-- # Mode: Native JavaScript # -->
<!-- # # -->
<!-- # Cite this work as: # -->
<!-- # Paul A. Gagniuc. Algorithms in Bioinformatics: Theory and Implementation. John Wiley & Sons, 2021, ISBN: 9781119697961. # -->
<!-- # # -->
<!-- ############################################################################################################################## -->
<!-- ################################################################################# -->
<!-- # The following Base46 code contains the w3.css file from the great W3Schools # -->
<!-- ################################################################################# -->
<link rel="stylesheet" href="data:text/css;base64,77u/LyogVzMuQ1NTIDQuMTMgSnVuZSAyMDE5IGJ5IEphbiBFZ2lsIGFuZCBCb3JnZSBSZWZzbmVz
ICovDQpodG1se2JveC1zaXppbmc6Ym9yZGVyLWJveH0qLCo6YmVmb3JlLCo6YWZ0ZXJ7Ym94LXNp
emluZzppbmhlcml0fQ0KLyogRXh0cmFjdCBmcm9tIG5vcm1hbGl6ZS5jc3MgYnkgTmljb2xhcyBH
YWxsYWdoZXIgYW5kIEpvbmF0aGFuIE5lYWwgZ2l0LmlvL25vcm1hbGl6ZSAqLw0KaHRtbHstbXMt
dGV4dC1zaXplLWFkanVzdDoxMDAlOy13ZWJraXQtdGV4dC1zaXplLWFkanVzdDoxMDAlfWJvZHl7
bWFyZ2luOjB9DQphcnRpY2xlLGFzaWRlLGRldGFpbHMsZmlnY2FwdGlvbixmaWd1cmUsZm9vdGVy
LGhlYWRlcixtYWluLG1lbnUsbmF2LHNlY3Rpb257ZGlzcGxheTpibG9ja31zdW1tYXJ5e2Rpc3Bs
YXk6bGlzdC1pdGVtfQ0KYXVkaW8sY2FudmFzLHByb2dyZXNzLHZpZGVve2Rpc3BsYXk6aW5saW5l
LWJsb2NrfXByb2dyZXNze3ZlcnRpY2FsLWFsaWduOmJhc2VsaW5lfQ0KYXVkaW86bm90KFtjb250
cm9sc10pe2Rpc3BsYXk6bm9uZTtoZWlnaHQ6MH1baGlkZGVuXSx0ZW1wbGF0ZXtkaXNwbGF5Om5v
bmV9DQphe2JhY2tncm91bmQtY29sb3I6dHJhbnNwYXJlbnR9YTphY3RpdmUsYTpob3ZlcntvdXRs
aW5lLXdpZHRoOjB9DQphYmJyW3RpdGxlXXtib3JkZXItYm90dG9tOm5vbmU7dGV4dC1kZWNvcmF0
aW9uOnVuZGVybGluZTt0ZXh0LWRlY29yYXRpb246dW5kZXJsaW5lIGRvdHRlZH0NCmIsc3Ryb25n
e2ZvbnQtd2VpZ2h0OmJvbGRlcn1kZm57Zm9udC1zdHlsZTppdGFsaWN9bWFya3tiYWNrZ3JvdW5k
OiNmZjA7Y29sb3I6IzAwMH0NCnNtYWxse2ZvbnQtc2l6ZTo4MCV9c3ViLHN1cHtmb250LXNpemU6
NzUlO2xpbmUtaGVpZ2h0OjA7cG9zaXRpb246cmVsYXRpdmU7dmVydGljYWwtYWxpZ246YmFzZWxp
bmV9DQpzdWJ7Ym90dG9tOi0wLjI1ZW19c3Vwe3RvcDotMC41ZW19ZmlndXJle21hcmdpbjoxZW0g
NDBweH1pbWd7Ym9yZGVyLXN0eWxlOm5vbmV9DQpjb2RlLGtiZCxwcmUsc2FtcHtmb250LWZhbWls
eTptb25vc3BhY2UsbW9ub3NwYWNlO2ZvbnQtc2l6ZToxZW19aHJ7Ym94LXNpemluZzpjb250ZW50
LWJveDtoZWlnaHQ6MDtvdmVyZmxvdzp2aXNpYmxlfQ0KYnV0dG9uLGlucHV0LHNlbGVjdCx0ZXh0
YXJlYSxvcHRncm91cHtmb250OmluaGVyaXQ7bWFyZ2luOjB9b3B0Z3JvdXB7Zm9udC13ZWlnaHQ6
Ym9sZH0NCmJ1dHRvbixpbnB1dHtvdmVyZmxvdzp2aXNpYmxlfWJ1dHRvbixzZWxlY3R7dGV4dC10
cmFuc2Zvcm06bm9uZX0NCmJ1dHRvbixbdHlwZT1idXR0b25dLFt0eXBlPXJlc2V0XSxbdHlwZT1z
dWJtaXRdey13ZWJraXQtYXBwZWFyYW5jZTpidXR0b259DQpidXR0b246Oi1tb3otZm9jdXMtaW5u
ZXIsW3R5cGU9YnV0dG9uXTo6LW1vei1mb2N1cy1pbm5lcixbdHlwZT1yZXNldF06Oi1tb3otZm9j
dXMtaW5uZXIsW3R5cGU9c3VibWl0XTo6LW1vei1mb2N1cy1pbm5lcntib3JkZXItc3R5bGU6bm9u
ZTtwYWRkaW5nOjB9DQpidXR0b246LW1vei1mb2N1c3JpbmcsW3R5cGU9YnV0dG9uXTotbW96LWZv
Y3VzcmluZyxbdHlwZT1yZXNldF06LW1vei1mb2N1c3JpbmcsW3R5cGU9c3VibWl0XTotbW96LWZv
Y3VzcmluZ3tvdXRsaW5lOjFweCBkb3R0ZWQgQnV0dG9uVGV4dH0NCmZpZWxkc2V0e2JvcmRlcjox
cHggc29saWQgI2MwYzBjMDttYXJnaW46MCAycHg7cGFkZGluZzouMzVlbSAuNjI1ZW0gLjc1ZW19
DQpsZWdlbmR7Y29sb3I6aW5oZXJpdDtkaXNwbGF5OnRhYmxlO21heC13aWR0aDoxMDAlO3BhZGRp
bmc6MDt3aGl0ZS1zcGFjZTpub3JtYWx9dGV4dGFyZWF7b3ZlcmZsb3c6YXV0b30NClt0eXBlPWNo
ZWNrYm94XSxbdHlwZT1yYWRpb117cGFkZGluZzowfQ0KW3R5cGU9bnVtYmVyXTo6LXdlYmtpdC1p
bm5lci1zcGluLWJ1dHRvbixbdHlwZT1udW1iZXJdOjotd2Via2l0LW91dGVyLXNwaW4tYnV0dG9u
e2hlaWdodDphdXRvfQ0KW3R5cGU9c2VhcmNoXXstd2Via2l0LWFwcGVhcmFuY2U6dGV4dGZpZWxk
O291dGxpbmUtb2Zmc2V0Oi0ycHh9DQpbdHlwZT1zZWFyY2hdOjotd2Via2l0LXNlYXJjaC1kZWNv
cmF0aW9uey13ZWJraXQtYXBwZWFyYW5jZTpub25lfQ0KOjotd2Via2l0LWZpbGUtdXBsb2FkLWJ1
dHRvbnstd2Via2l0LWFwcGVhcmFuY2U6YnV0dG9uO2ZvbnQ6aW5oZXJpdH0NCi8qIEVuZCBleHRy
YWN0ICovDQpodG1sLGJvZHl7Zm9udC1mYW1pbHk6VmVyZGFuYSxzYW5zLXNlcmlmO2ZvbnQtc2l6
ZToxNXB4O2xpbmUtaGVpZ2h0OjEuNX1odG1se292ZXJmbG93LXg6aGlkZGVufQ0KaDF7Zm9udC1z
aXplOjM2cHh9aDJ7Zm9udC1zaXplOjMwcHh9aDN7Zm9udC1zaXplOjI0cHh9aDR7Zm9udC1zaXpl
OjIwcHh9aDV7Zm9udC1zaXplOjE4cHh9aDZ7Zm9udC1zaXplOjE2cHh9LnczLXNlcmlme2ZvbnQt
ZmFtaWx5OnNlcmlmfQ0KaDEsaDIsaDMsaDQsaDUsaDZ7Zm9udC1mYW1pbHk6IlNlZ29lIFVJIixB
cmlhbCxzYW5zLXNlcmlmO2ZvbnQtd2VpZ2h0OjQwMDttYXJnaW46MTBweCAwfS53My13aWRle2xl
dHRlci1zcGFjaW5nOjRweH0NCmhye2JvcmRlcjowO2JvcmRlci10b3A6MXB4IHNvbGlkICNlZWU7
bWFyZ2luOjIwcHggMH0NCi53My1pbWFnZXttYXgtd2lkdGg6MTAwJTtoZWlnaHQ6YXV0b31pbWd7
dmVydGljYWwtYWxpZ246bWlkZGxlfWF7Y29sb3I6aW5oZXJpdH0NCi53My10YWJsZSwudzMtdGFi
bGUtYWxse2JvcmRlci1jb2xsYXBzZTpjb2xsYXBzZTtib3JkZXItc3BhY2luZzowO3dpZHRoOjEw
MCU7ZGlzcGxheTp0YWJsZX0udzMtdGFibGUtYWxse2JvcmRlcjoxcHggc29saWQgI2NjY30NCi53
My1ib3JkZXJlZCB0ciwudzMtdGFibGUtYWxsIHRye2JvcmRlci1ib3R0b206MXB4IHNvbGlkICNk
ZGR9LnczLXN0cmlwZWQgdGJvZHkgdHI6bnRoLWNoaWxkKGV2ZW4pe2JhY2tncm91bmQtY29sb3I6
I2YxZjFmMX0NCi53My10YWJsZS1hbGwgdHI6bnRoLWNoaWxkKG9kZCl7YmFja2dyb3VuZC1jb2xv
cjojZmZmfS53My10YWJsZS1hbGwgdHI6bnRoLWNoaWxkKGV2ZW4pe2JhY2tncm91bmQtY29sb3I6
I2YxZjFmMX0NCi53My1ob3ZlcmFibGUgdGJvZHkgdHI6aG92ZXIsLnczLXVsLnczLWhvdmVyYWJs
ZSBsaTpob3ZlcntiYWNrZ3JvdW5kLWNvbG9yOiNjY2N9LnczLWNlbnRlcmVkIHRyIHRoLC53My1j
ZW50ZXJlZCB0ciB0ZHt0ZXh0LWFsaWduOmNlbnRlcn0NCi53My10YWJsZSB0ZCwudzMtdGFibGUg
dGgsLnczLXRhYmxlLWFsbCB0ZCwudzMtdGFibGUtYWxsIHRoe3BhZGRpbmc6OHB4IDhweDtkaXNw
bGF5OnRhYmxlLWNlbGw7dGV4dC1hbGlnbjpsZWZ0O3ZlcnRpY2FsLWFsaWduOnRvcH0NCi53My10
YWJsZSB0aDpmaXJzdC1jaGlsZCwudzMtdGFibGUgdGQ6Zmlyc3QtY2hpbGQsLnczLXRhYmxlLWFs
bCB0aDpmaXJzdC1jaGlsZCwudzMtdGFibGUtYWxsIHRkOmZpcnN0LWNoaWxke3BhZGRpbmctbGVm
dDoxNnB4fQ0KLnczLWJ0biwudzMtYnV0dG9ue2JvcmRlcjpub25lO2Rpc3BsYXk6aW5saW5lLWJs
b2NrO3BhZGRpbmc6OHB4IDE2cHg7dmVydGljYWwtYWxpZ246bWlkZGxlO292ZXJmbG93OmhpZGRl
bjt0ZXh0LWRlY29yYXRpb246bm9uZTtjb2xvcjppbmhlcml0O2JhY2tncm91bmQtY29sb3I6aW5o
ZXJpdDt0ZXh0LWFsaWduOmNlbnRlcjtjdXJzb3I6cG9pbnRlcjt3aGl0ZS1zcGFjZTpub3dyYXB9
DQoudzMtYnRuOmhvdmVye2JveC1zaGFkb3c6MCA4cHggMTZweCAwIHJnYmEoMCwwLDAsMC4yKSww
IDZweCAyMHB4IDAgcmdiYSgwLDAsMCwwLjE5KX0NCi53My1idG4sLnczLWJ1dHRvbnstd2Via2l0
LXRvdWNoLWNhbGxvdXQ6bm9uZTstd2Via2l0LXVzZXItc2VsZWN0Om5vbmU7LWtodG1sLXVzZXIt
c2VsZWN0Om5vbmU7LW1vei11c2VyLXNlbGVjdDpub25lOy1tcy11c2VyLXNlbGVjdDpub25lO3Vz
ZXItc2VsZWN0Om5vbmV9ICAgDQoudzMtZGlzYWJsZWQsLnczLWJ0bjpkaXNhYmxlZCwudzMtYnV0
dG9uOmRpc2FibGVke2N1cnNvcjpub3QtYWxsb3dlZDtvcGFjaXR5OjAuM30udzMtZGlzYWJsZWQg
Kiw6ZGlzYWJsZWQgKntwb2ludGVyLWV2ZW50czpub25lfQ0KLnczLWJ0bi53My1kaXNhYmxlZDpo
b3ZlciwudzMtYnRuOmRpc2FibGVkOmhvdmVye2JveC1zaGFkb3c6bm9uZX0NCi53My1iYWRnZSwu
dzMtdGFne2JhY2tncm91bmQtY29sb3I6IzAwMDtjb2xvcjojZmZmO2Rpc3BsYXk6aW5saW5lLWJs
b2NrO3BhZGRpbmctbGVmdDo4cHg7cGFkZGluZy1yaWdodDo4cHg7dGV4dC1hbGlnbjpjZW50ZXJ9
LnczLWJhZGdle2JvcmRlci1yYWRpdXM6NTAlfQ0KLnczLXVse2xpc3Qtc3R5bGUtdHlwZTpub25l
O3BhZGRpbmc6MDttYXJnaW46MH0udzMtdWwgbGl7cGFkZGluZzo4cHggMTZweDtib3JkZXItYm90
dG9tOjFweCBzb2xpZCAjZGRkfS53My11bCBsaTpsYXN0LWNoaWxke2JvcmRlci1ib3R0b206bm9u
ZX0NCi53My10b29sdGlwLC53My1kaXNwbGF5LWNvbnRhaW5lcntwb3NpdGlvbjpyZWxhdGl2ZX0u
dzMtdG9vbHRpcCAudzMtdGV4dHtkaXNwbGF5Om5vbmV9LnczLXRvb2x0aXA6aG92ZXIgLnczLXRl
eHR7ZGlzcGxheTppbmxpbmUtYmxvY2t9DQoudzMtcmlwcGxlOmFjdGl2ZXtvcGFjaXR5OjAuNX0u
dzMtcmlwcGxle3RyYW5zaXRpb246b3BhY2l0eSAwc30NCi53My1pbnB1dHtwYWRkaW5nOjhweDtk
aXNwbGF5OmJsb2NrO2JvcmRlcjpub25lO2JvcmRlci1ib3R0b206MXB4IHNvbGlkICNjY2M7d2lk
dGg6MTAwJX0NCi53My1zZWxlY3R7cGFkZGluZzo5cHggMDt3aWR0aDoxMDAlO2JvcmRlcjpub25l
O2JvcmRlci1ib3R0b206MXB4IHNvbGlkICNjY2N9DQoudzMtZHJvcGRvd24tY2xpY2ssLnczLWRy
b3Bkb3duLWhvdmVye3Bvc2l0aW9uOnJlbGF0aXZlO2Rpc3BsYXk6aW5saW5lLWJsb2NrO2N1cnNv
cjpwb2ludGVyfQ0KLnczLWRyb3Bkb3duLWhvdmVyOmhvdmVyIC53My1kcm9wZG93bi1jb250ZW50
e2Rpc3BsYXk6YmxvY2t9DQoudzMtZHJvcGRvd24taG92ZXI6Zmlyc3QtY2hpbGQsLnczLWRyb3Bk
b3duLWNsaWNrOmhvdmVye2JhY2tncm91bmQtY29sb3I6I2NjYztjb2xvcjojMDAwfQ0KLnczLWRy
b3Bkb3duLWhvdmVyOmhvdmVyID4gLnczLWJ1dHRvbjpmaXJzdC1jaGlsZCwudzMtZHJvcGRvd24t
Y2xpY2s6aG92ZXIgPiAudzMtYnV0dG9uOmZpcnN0LWNoaWxke2JhY2tncm91bmQtY29sb3I6I2Nj
Yztjb2xvcjojMDAwfQ0KLnczLWRyb3Bkb3duLWNvbnRlbnR7Y3Vyc29yOmF1dG87Y29sb3I6IzAw
MDtiYWNrZ3JvdW5kLWNvbG9yOiNmZmY7ZGlzcGxheTpub25lO3Bvc2l0aW9uOmFic29sdXRlO21p
bi13aWR0aDoxNjBweDttYXJnaW46MDtwYWRkaW5nOjA7ei1pbmRleDoxfQ0KLnczLWNoZWNrLC53
My1yYWRpb3t3aWR0aDoyNHB4O2hlaWdodDoyNHB4O3Bvc2l0aW9uOnJlbGF0aXZlO3RvcDo2cHh9
DQoudzMtc2lkZWJhcntoZWlnaHQ6MTAwJTt3aWR0aDoyMDBweDtiYWNrZ3JvdW5kLWNvbG9yOiNm
ZmY7cG9zaXRpb246Zml4ZWQhaW1wb3J0YW50O3otaW5kZXg6MTtvdmVyZmxvdzphdXRvfQ0KLncz
LWJhci1ibG9jayAudzMtZHJvcGRvd24taG92ZXIsLnczLWJhci1ibG9jayAudzMtZHJvcGRvd24t
Y2xpY2t7d2lkdGg6MTAwJX0NCi53My1iYXItYmxvY2sgLnczLWRyb3Bkb3duLWhvdmVyIC53My1k
cm9wZG93bi1jb250ZW50LC53My1iYXItYmxvY2sgLnczLWRyb3Bkb3duLWNsaWNrIC53My1kcm9w
ZG93bi1jb250ZW50e21pbi13aWR0aDoxMDAlfQ0KLnczLWJhci1ibG9jayAudzMtZHJvcGRvd24t
aG92ZXIgLnczLWJ1dHRvbiwudzMtYmFyLWJsb2NrIC53My1kcm9wZG93bi1jbGljayAudzMtYnV0
dG9ue3dpZHRoOjEwMCU7dGV4dC1hbGlnbjpsZWZ0O3BhZGRpbmc6OHB4IDE2cHh9DQoudzMtbWFp
biwjbWFpbnt0cmFuc2l0aW9uOm1hcmdpbi1sZWZ0IC40c30NCi53My1tb2RhbHt6LWluZGV4OjM7
ZGlzcGxheTpub25lO3BhZGRpbmctdG9wOjEwMHB4O3Bvc2l0aW9uOmZpeGVkO2xlZnQ6MDt0b3A6
MDt3aWR0aDoxMDAlO2hlaWdodDoxMDAlO292ZXJmbG93OmF1dG87YmFja2dyb3VuZC1jb2xvcjpy
Z2IoMCwwLDApO2JhY2tncm91bmQtY29sb3I6cmdiYSgwLDAsMCwwLjQpfQ0KLnczLW1vZGFsLWNv
bnRlbnR7bWFyZ2luOmF1dG87YmFja2dyb3VuZC1jb2xvcjojZmZmO3Bvc2l0aW9uOnJlbGF0aXZl
O3BhZGRpbmc6MDtvdXRsaW5lOjA7d2lkdGg6NjAwcHh9DQoudzMtYmFye3dpZHRoOjEwMCU7b3Zl
cmZsb3c6aGlkZGVufS53My1jZW50ZXIgLnczLWJhcntkaXNwbGF5OmlubGluZS1ibG9jazt3aWR0
aDphdXRvfQ0KLnczLWJhciAudzMtYmFyLWl0ZW17cGFkZGluZzo4cHggMTZweDtmbG9hdDpsZWZ0
O3dpZHRoOmF1dG87Ym9yZGVyOm5vbmU7ZGlzcGxheTpibG9jaztvdXRsaW5lOjB9DQoudzMtYmFy
IC53My1kcm9wZG93bi1ob3ZlciwudzMtYmFyIC53My1kcm9wZG93bi1jbGlja3twb3NpdGlvbjpz
dGF0aWM7ZmxvYXQ6bGVmdH0NCi53My1iYXIgLnczLWJ1dHRvbnt3aGl0ZS1zcGFjZTpub3JtYWx9
DQoudzMtYmFyLWJsb2NrIC53My1iYXItaXRlbXt3aWR0aDoxMDAlO2Rpc3BsYXk6YmxvY2s7cGFk
ZGluZzo4cHggMTZweDt0ZXh0LWFsaWduOmxlZnQ7Ym9yZGVyOm5vbmU7d2hpdGUtc3BhY2U6bm9y
bWFsO2Zsb2F0Om5vbmU7b3V0bGluZTowfQ0KLnczLWJhci1ibG9jay53My1jZW50ZXIgLnczLWJh
ci1pdGVte3RleHQtYWxpZ246Y2VudGVyfS53My1ibG9ja3tkaXNwbGF5OmJsb2NrO3dpZHRoOjEw
MCV9DQoudzMtcmVzcG9uc2l2ZXtkaXNwbGF5OmJsb2NrO292ZXJmbG93LXg6YXV0b30NCi53My1j
b250YWluZXI6YWZ0ZXIsLnczLWNvbnRhaW5lcjpiZWZvcmUsLnczLXBhbmVsOmFmdGVyLC53My1w
YW5lbDpiZWZvcmUsLnczLXJvdzphZnRlciwudzMtcm93OmJlZm9yZSwudzMtcm93LXBhZGRpbmc6
YWZ0ZXIsLnczLXJvdy1wYWRkaW5nOmJlZm9yZSwNCi53My1jZWxsLXJvdzpiZWZvcmUsLnczLWNl
bGwtcm93OmFmdGVyLC53My1jbGVhcjphZnRlciwudzMtY2xlYXI6YmVmb3JlLC53My1iYXI6YmVm
b3JlLC53My1iYXI6YWZ0ZXJ7Y29udGVudDoiIjtkaXNwbGF5OnRhYmxlO2NsZWFyOmJvdGh9DQou
dzMtY29sLC53My1oYWxmLC53My10aGlyZCwudzMtdHdvdGhpcmQsLnczLXRocmVlcXVhcnRlciwu
dzMtcXVhcnRlcntmbG9hdDpsZWZ0O3dpZHRoOjEwMCV9DQoudzMtY29sLnMxe3dpZHRoOjguMzMz
MzMlfS53My1jb2wuczJ7d2lkdGg6MTYuNjY2NjYlfS53My1jb2wuczN7d2lkdGg6MjQuOTk5OTkl
fS53My1jb2wuczR7d2lkdGg6MzMuMzMzMzMlfQ0KLnczLWNvbC5zNXt3aWR0aDo0MS42NjY2NiV9
LnczLWNvbC5zNnt3aWR0aDo0OS45OTk5OSV9LnczLWNvbC5zN3t3aWR0aDo1OC4zMzMzMyV9Lncz
LWNvbC5zOHt3aWR0aDo2Ni42NjY2NiV9DQoudzMtY29sLnM5e3dpZHRoOjc0Ljk5OTk5JX0udzMt
Y29sLnMxMHt3aWR0aDo4My4zMzMzMyV9LnczLWNvbC5zMTF7d2lkdGg6OTEuNjY2NjYlfS53My1j
b2wuczEye3dpZHRoOjk5Ljk5OTk5JX0NCkBtZWRpYSAobWluLXdpZHRoOjYwMXB4KXsudzMtY29s
Lm0xe3dpZHRoOjguMzMzMzMlfS53My1jb2wubTJ7d2lkdGg6MTYuNjY2NjYlfS53My1jb2wubTMs
LnczLXF1YXJ0ZXJ7d2lkdGg6MjQuOTk5OTklfS53My1jb2wubTQsLnczLXRoaXJke3dpZHRoOjMz
LjMzMzMzJX0NCi53My1jb2wubTV7d2lkdGg6NDEuNjY2NjYlfS53My1jb2wubTYsLnczLWhhbGZ7
d2lkdGg6NDkuOTk5OTklfS53My1jb2wubTd7d2lkdGg6NTguMzMzMzMlfS53My1jb2wubTgsLncz
LXR3b3RoaXJke3dpZHRoOjY2LjY2NjY2JX0NCi53My1jb2wubTksLnczLXRocmVlcXVhcnRlcnt3
aWR0aDo3NC45OTk5OSV9LnczLWNvbC5tMTB7d2lkdGg6ODMuMzMzMzMlfS53My1jb2wubTExe3dp
ZHRoOjkxLjY2NjY2JX0udzMtY29sLm0xMnt3aWR0aDo5OS45OTk5OSV9fQ0KQG1lZGlhIChtaW4t
d2lkdGg6OTkzcHgpey53My1jb2wubDF7d2lkdGg6OC4zMzMzMyV9LnczLWNvbC5sMnt3aWR0aDox
Ni42NjY2NiV9LnczLWNvbC5sM3t3aWR0aDoyNC45OTk5OSV9LnczLWNvbC5sNHt3aWR0aDozMy4z
MzMzMyV9DQoudzMtY29sLmw1e3dpZHRoOjQxLjY2NjY2JX0udzMtY29sLmw2e3dpZHRoOjQ5Ljk5
OTk5JX0udzMtY29sLmw3e3dpZHRoOjU4LjMzMzMzJX0udzMtY29sLmw4e3dpZHRoOjY2LjY2NjY2
JX0NCi53My1jb2wubDl7d2lkdGg6NzQuOTk5OTklfS53My1jb2wubDEwe3dpZHRoOjgzLjMzMzMz
JX0udzMtY29sLmwxMXt3aWR0aDo5MS42NjY2NiV9LnczLWNvbC5sMTJ7d2lkdGg6OTkuOTk5OTkl
fX0NCi53My1yZXN0e292ZXJmbG93OmhpZGRlbn0udzMtc3RyZXRjaHttYXJnaW4tbGVmdDotMTZw
eDttYXJnaW4tcmlnaHQ6LTE2cHh9DQoudzMtY29udGVudCwudzMtYXV0b3ttYXJnaW4tbGVmdDph
dXRvO21hcmdpbi1yaWdodDphdXRvfS53My1jb250ZW50e21heC13aWR0aDo5ODBweH0udzMtYXV0
b3ttYXgtd2lkdGg6MTE0MHB4fQ0KLnczLWNlbGwtcm93e2Rpc3BsYXk6dGFibGU7d2lkdGg6MTAw
JX0udzMtY2VsbHtkaXNwbGF5OnRhYmxlLWNlbGx9DQoudzMtY2VsbC10b3B7dmVydGljYWwtYWxp
Z246dG9wfS53My1jZWxsLW1pZGRsZXt2ZXJ0aWNhbC1hbGlnbjptaWRkbGV9LnczLWNlbGwtYm90
dG9te3ZlcnRpY2FsLWFsaWduOmJvdHRvbX0NCi53My1oaWRle2Rpc3BsYXk6bm9uZSFpbXBvcnRh
bnR9LnczLXNob3ctYmxvY2ssLnczLXNob3d7ZGlzcGxheTpibG9jayFpbXBvcnRhbnR9LnczLXNo
b3ctaW5saW5lLWJsb2Nre2Rpc3BsYXk6aW5saW5lLWJsb2NrIWltcG9ydGFudH0NCkBtZWRpYSAo
bWF4LXdpZHRoOjEyMDVweCl7LnczLWF1dG97bWF4LXdpZHRoOjk1JX19DQpAbWVkaWEgKG1heC13
aWR0aDo2MDBweCl7LnczLW1vZGFsLWNvbnRlbnR7bWFyZ2luOjAgMTBweDt3aWR0aDphdXRvIWlt
cG9ydGFudH0udzMtbW9kYWx7cGFkZGluZy10b3A6MzBweH0NCi53My1kcm9wZG93bi1ob3Zlci53
My1tb2JpbGUgLnczLWRyb3Bkb3duLWNvbnRlbnQsLnczLWRyb3Bkb3duLWNsaWNrLnczLW1vYmls
ZSAudzMtZHJvcGRvd24tY29udGVudHtwb3NpdGlvbjpyZWxhdGl2ZX0JDQoudzMtaGlkZS1zbWFs
bHtkaXNwbGF5Om5vbmUhaW1wb3J0YW50fS53My1tb2JpbGV7ZGlzcGxheTpibG9jazt3aWR0aDox
MDAlIWltcG9ydGFudH0udzMtYmFyLWl0ZW0udzMtbW9iaWxlLC53My1kcm9wZG93bi1ob3Zlci53
My1tb2JpbGUsLnczLWRyb3Bkb3duLWNsaWNrLnczLW1vYmlsZXt0ZXh0LWFsaWduOmNlbnRlcn0N
Ci53My1kcm9wZG93bi1ob3Zlci53My1tb2JpbGUsLnczLWRyb3Bkb3duLWhvdmVyLnczLW1vYmls
ZSAudzMtYnRuLC53My1kcm9wZG93bi1ob3Zlci53My1tb2JpbGUgLnczLWJ1dHRvbiwudzMtZHJv
cGRvd24tY2xpY2sudzMtbW9iaWxlLC53My1kcm9wZG93bi1jbGljay53My1tb2JpbGUgLnczLWJ0
biwudzMtZHJvcGRvd24tY2xpY2sudzMtbW9iaWxlIC53My1idXR0b257d2lkdGg6MTAwJX19DQpA
bWVkaWEgKG1heC13aWR0aDo3NjhweCl7LnczLW1vZGFsLWNvbnRlbnR7d2lkdGg6NTAwcHh9Lncz
LW1vZGFse3BhZGRpbmctdG9wOjUwcHh9fQ0KQG1lZGlhIChtaW4td2lkdGg6OTkzcHgpey53My1t
b2RhbC1jb250ZW50e3dpZHRoOjkwMHB4fS53My1oaWRlLWxhcmdle2Rpc3BsYXk6bm9uZSFpbXBv
cnRhbnR9LnczLXNpZGViYXIudzMtY29sbGFwc2V7ZGlzcGxheTpibG9jayFpbXBvcnRhbnR9fQ0K
QG1lZGlhIChtYXgtd2lkdGg6OTkycHgpIGFuZCAobWluLXdpZHRoOjYwMXB4KXsudzMtaGlkZS1t
ZWRpdW17ZGlzcGxheTpub25lIWltcG9ydGFudH19DQpAbWVkaWEgKG1heC13aWR0aDo5OTJweCl7
LnczLXNpZGViYXIudzMtY29sbGFwc2V7ZGlzcGxheTpub25lfS53My1tYWlue21hcmdpbi1sZWZ0
OjAhaW1wb3J0YW50O21hcmdpbi1yaWdodDowIWltcG9ydGFudH0udzMtYXV0b3ttYXgtd2lkdGg6
MTAwJX19DQoudzMtdG9wLC53My1ib3R0b217cG9zaXRpb246Zml4ZWQ7d2lkdGg6MTAwJTt6LWlu
ZGV4OjF9LnczLXRvcHt0b3A6MH0udzMtYm90dG9te2JvdHRvbTowfQ0KLnczLW92ZXJsYXl7cG9z
aXRpb246Zml4ZWQ7ZGlzcGxheTpub25lO3dpZHRoOjEwMCU7aGVpZ2h0OjEwMCU7dG9wOjA7bGVm
dDowO3JpZ2h0OjA7Ym90dG9tOjA7YmFja2dyb3VuZC1jb2xvcjpyZ2JhKDAsMCwwLDAuNSk7ei1p
bmRleDoyfQ0KLnczLWRpc3BsYXktdG9wbGVmdHtwb3NpdGlvbjphYnNvbHV0ZTtsZWZ0OjA7dG9w
OjB9LnczLWRpc3BsYXktdG9wcmlnaHR7cG9zaXRpb246YWJzb2x1dGU7cmlnaHQ6MDt0b3A6MH0N
Ci53My1kaXNwbGF5LWJvdHRvbWxlZnR7cG9zaXRpb246YWJzb2x1dGU7bGVmdDowO2JvdHRvbTow
fS53My1kaXNwbGF5LWJvdHRvbXJpZ2h0e3Bvc2l0aW9uOmFic29sdXRlO3JpZ2h0OjA7Ym90dG9t
OjB9DQoudzMtZGlzcGxheS1taWRkbGV7cG9zaXRpb246YWJzb2x1dGU7dG9wOjUwJTtsZWZ0OjUw
JTt0cmFuc2Zvcm06dHJhbnNsYXRlKC01MCUsLTUwJSk7LW1zLXRyYW5zZm9ybTp0cmFuc2xhdGUo
LTUwJSwtNTAlKX0NCi53My1kaXNwbGF5LWxlZnR7cG9zaXRpb246YWJzb2x1dGU7dG9wOjUwJTts
ZWZ0OjAlO3RyYW5zZm9ybTp0cmFuc2xhdGUoMCUsLTUwJSk7LW1zLXRyYW5zZm9ybTp0cmFuc2xh
dGUoLTAlLC01MCUpfQ0KLnczLWRpc3BsYXktcmlnaHR7cG9zaXRpb246YWJzb2x1dGU7dG9wOjUw
JTtyaWdodDowJTt0cmFuc2Zvcm06dHJhbnNsYXRlKDAlLC01MCUpOy1tcy10cmFuc2Zvcm06dHJh
bnNsYXRlKDAlLC01MCUpfQ0KLnczLWRpc3BsYXktdG9wbWlkZGxle3Bvc2l0aW9uOmFic29sdXRl
O2xlZnQ6NTAlO3RvcDowO3RyYW5zZm9ybTp0cmFuc2xhdGUoLTUwJSwwJSk7LW1zLXRyYW5zZm9y
bTp0cmFuc2xhdGUoLTUwJSwwJSl9DQoudzMtZGlzcGxheS1ib3R0b21taWRkbGV7cG9zaXRpb246
YWJzb2x1dGU7bGVmdDo1MCU7Ym90dG9tOjA7dHJhbnNmb3JtOnRyYW5zbGF0ZSgtNTAlLDAlKTst
bXMtdHJhbnNmb3JtOnRyYW5zbGF0ZSgtNTAlLDAlKX0NCi53My1kaXNwbGF5LWNvbnRhaW5lcjpo
b3ZlciAudzMtZGlzcGxheS1ob3ZlcntkaXNwbGF5OmJsb2NrfS53My1kaXNwbGF5LWNvbnRhaW5l
cjpob3ZlciBzcGFuLnczLWRpc3BsYXktaG92ZXJ7ZGlzcGxheTppbmxpbmUtYmxvY2t9LnczLWRp
c3BsYXktaG92ZXJ7ZGlzcGxheTpub25lfQ0KLnczLWRpc3BsYXktcG9zaXRpb257cG9zaXRpb246
YWJzb2x1dGV9DQoudzMtY2lyY2xle2JvcmRlci1yYWRpdXM6NTAlfQ0KLnczLXJvdW5kLXNtYWxs
e2JvcmRlci1yYWRpdXM6MnB4fS53My1yb3VuZCwudzMtcm91bmQtbWVkaXVte2JvcmRlci1yYWRp
dXM6NHB4fS53My1yb3VuZC1sYXJnZXtib3JkZXItcmFkaXVzOjhweH0udzMtcm91bmQteGxhcmdl
e2JvcmRlci1yYWRpdXM6MTZweH0udzMtcm91bmQteHhsYXJnZXtib3JkZXItcmFkaXVzOjMycHh9
DQoudzMtcm93LXBhZGRpbmcsLnczLXJvdy1wYWRkaW5nPi53My1oYWxmLC53My1yb3ctcGFkZGlu
Zz4udzMtdGhpcmQsLnczLXJvdy1wYWRkaW5nPi53My10d290aGlyZCwudzMtcm93LXBhZGRpbmc+
LnczLXRocmVlcXVhcnRlciwudzMtcm93LXBhZGRpbmc+LnczLXF1YXJ0ZXIsLnczLXJvdy1wYWRk
aW5nPi53My1jb2x7cGFkZGluZzowIDhweH0NCi53My1jb250YWluZXIsLnczLXBhbmVse3BhZGRp
bmc6MC4wMWVtIDE2cHh9LnczLXBhbmVse21hcmdpbi10b3A6MTZweDttYXJnaW4tYm90dG9tOjE2
cHh9DQoudzMtY29kZSwudzMtY29kZXNwYW57Zm9udC1mYW1pbHk6Q29uc29sYXMsImNvdXJpZXIg
bmV3Ijtmb250LXNpemU6MTZweH0NCi53My1jb2Rle3dpZHRoOmF1dG87YmFja2dyb3VuZC1jb2xv
cjojZmZmO3BhZGRpbmc6OHB4IDEycHg7Ym9yZGVyLWxlZnQ6NHB4IHNvbGlkICM0Q0FGNTA7d29y
ZC13cmFwOmJyZWFrLXdvcmR9DQoudzMtY29kZXNwYW57Y29sb3I6Y3JpbXNvbjtiYWNrZ3JvdW5k
LWNvbG9yOiNmMWYxZjE7cGFkZGluZy1sZWZ0OjRweDtwYWRkaW5nLXJpZ2h0OjRweDtmb250LXNp
emU6MTEwJX0NCi53My1jYXJkLC53My1jYXJkLTJ7Ym94LXNoYWRvdzowIDJweCA1cHggMCByZ2Jh
KDAsMCwwLDAuMTYpLDAgMnB4IDEwcHggMCByZ2JhKDAsMCwwLDAuMTIpfQ0KLnczLWNhcmQtNCwu
dzMtaG92ZXItc2hhZG93OmhvdmVye2JveC1zaGFkb3c6MCA0cHggMTBweCAwIHJnYmEoMCwwLDAs
MC4yKSwwIDRweCAyMHB4IDAgcmdiYSgwLDAsMCwwLjE5KX0NCi53My1zcGlue2FuaW1hdGlvbjp3
My1zcGluIDJzIGluZmluaXRlIGxpbmVhcn1Aa2V5ZnJhbWVzIHczLXNwaW57MCV7dHJhbnNmb3Jt
OnJvdGF0ZSgwZGVnKX0xMDAle3RyYW5zZm9ybTpyb3RhdGUoMzU5ZGVnKX19DQoudzMtYW5pbWF0
ZS1mYWRpbmd7YW5pbWF0aW9uOmZhZGluZyAxMHMgaW5maW5pdGV9QGtleWZyYW1lcyBmYWRpbmd7
MCV7b3BhY2l0eTowfTUwJXtvcGFjaXR5OjF9MTAwJXtvcGFjaXR5OjB9fQ0KLnczLWFuaW1hdGUt
b3BhY2l0eXthbmltYXRpb246b3BhYyAwLjhzfUBrZXlmcmFtZXMgb3BhY3tmcm9te29wYWNpdHk6
MH0gdG97b3BhY2l0eToxfX0NCi53My1hbmltYXRlLXRvcHtwb3NpdGlvbjpyZWxhdGl2ZTthbmlt
YXRpb246YW5pbWF0ZXRvcCAwLjRzfUBrZXlmcmFtZXMgYW5pbWF0ZXRvcHtmcm9te3RvcDotMzAw
cHg7b3BhY2l0eTowfSB0b3t0b3A6MDtvcGFjaXR5OjF9fQ0KLnczLWFuaW1hdGUtbGVmdHtwb3Np
dGlvbjpyZWxhdGl2ZTthbmltYXRpb246YW5pbWF0ZWxlZnQgMC40c31Aa2V5ZnJhbWVzIGFuaW1h
dGVsZWZ0e2Zyb217bGVmdDotMzAwcHg7b3BhY2l0eTowfSB0b3tsZWZ0OjA7b3BhY2l0eToxfX0N
Ci53My1hbmltYXRlLXJpZ2h0e3Bvc2l0aW9uOnJlbGF0aXZlO2FuaW1hdGlvbjphbmltYXRlcmln
aHQgMC40c31Aa2V5ZnJhbWVzIGFuaW1hdGVyaWdodHtmcm9te3JpZ2h0Oi0zMDBweDtvcGFjaXR5
OjB9IHRve3JpZ2h0OjA7b3BhY2l0eToxfX0NCi53My1hbmltYXRlLWJvdHRvbXtwb3NpdGlvbjpy
ZWxhdGl2ZTthbmltYXRpb246YW5pbWF0ZWJvdHRvbSAwLjRzfUBrZXlmcmFtZXMgYW5pbWF0ZWJv
dHRvbXtmcm9te2JvdHRvbTotMzAwcHg7b3BhY2l0eTowfSB0b3tib3R0b206MDtvcGFjaXR5OjF9
fQ0KLnczLWFuaW1hdGUtem9vbSB7YW5pbWF0aW9uOmFuaW1hdGV6b29tIDAuNnN9QGtleWZyYW1l
cyBhbmltYXRlem9vbXtmcm9te3RyYW5zZm9ybTpzY2FsZSgwKX0gdG97dHJhbnNmb3JtOnNjYWxl
KDEpfX0NCi53My1hbmltYXRlLWlucHV0e3RyYW5zaXRpb246d2lkdGggMC40cyBlYXNlLWluLW91
dH0udzMtYW5pbWF0ZS1pbnB1dDpmb2N1c3t3aWR0aDoxMDAlIWltcG9ydGFudH0NCi53My1vcGFj
aXR5LC53My1ob3Zlci1vcGFjaXR5OmhvdmVye29wYWNpdHk6MC42MH0udzMtb3BhY2l0eS1vZmYs
LnczLWhvdmVyLW9wYWNpdHktb2ZmOmhvdmVye29wYWNpdHk6MX0NCi53My1vcGFjaXR5LW1heHtv
cGFjaXR5OjAuMjV9LnczLW9wYWNpdHktbWlue29wYWNpdHk6MC43NX0NCi53My1ncmV5c2NhbGUt
bWF4LC53My1ncmF5c2NhbGUtbWF4LC53My1ob3Zlci1ncmV5c2NhbGU6aG92ZXIsLnczLWhvdmVy
LWdyYXlzY2FsZTpob3ZlcntmaWx0ZXI6Z3JheXNjYWxlKDEwMCUpfQ0KLnczLWdyZXlzY2FsZSwu
dzMtZ3JheXNjYWxle2ZpbHRlcjpncmF5c2NhbGUoNzUlKX0udzMtZ3JleXNjYWxlLW1pbiwudzMt
Z3JheXNjYWxlLW1pbntmaWx0ZXI6Z3JheXNjYWxlKDUwJSl9DQoudzMtc2VwaWF7ZmlsdGVyOnNl
cGlhKDc1JSl9LnczLXNlcGlhLW1heCwudzMtaG92ZXItc2VwaWE6aG92ZXJ7ZmlsdGVyOnNlcGlh
KDEwMCUpfS53My1zZXBpYS1taW57ZmlsdGVyOnNlcGlhKDUwJSl9DQoudzMtdGlueXtmb250LXNp
emU6MTBweCFpbXBvcnRhbnR9LnczLXNtYWxse2ZvbnQtc2l6ZToxMnB4IWltcG9ydGFudH0udzMt
bWVkaXVte2ZvbnQtc2l6ZToxNXB4IWltcG9ydGFudH0udzMtbGFyZ2V7Zm9udC1zaXplOjE4cHgh
aW1wb3J0YW50fQ0KLnczLXhsYXJnZXtmb250LXNpemU6MjRweCFpbXBvcnRhbnR9LnczLXh4bGFy
Z2V7Zm9udC1zaXplOjM2cHghaW1wb3J0YW50fS53My14eHhsYXJnZXtmb250LXNpemU6NDhweCFp
bXBvcnRhbnR9LnczLWp1bWJve2ZvbnQtc2l6ZTo2NHB4IWltcG9ydGFudH0NCi53My1sZWZ0LWFs
aWdue3RleHQtYWxpZ246bGVmdCFpbXBvcnRhbnR9LnczLXJpZ2h0LWFsaWdue3RleHQtYWxpZ246
cmlnaHQhaW1wb3J0YW50fS53My1qdXN0aWZ5e3RleHQtYWxpZ246anVzdGlmeSFpbXBvcnRhbnR9
LnczLWNlbnRlcnt0ZXh0LWFsaWduOmNlbnRlciFpbXBvcnRhbnR9DQoudzMtYm9yZGVyLTB7Ym9y
ZGVyOjAhaW1wb3J0YW50fS53My1ib3JkZXJ7Ym9yZGVyOjFweCBzb2xpZCAjY2NjIWltcG9ydGFu
dH0NCi53My1ib3JkZXItdG9we2JvcmRlci10b3A6MXB4IHNvbGlkICNjY2MhaW1wb3J0YW50fS53
My1ib3JkZXItYm90dG9te2JvcmRlci1ib3R0b206MXB4IHNvbGlkICNjY2MhaW1wb3J0YW50fQ0K
LnczLWJvcmRlci1sZWZ0e2JvcmRlci1sZWZ0OjFweCBzb2xpZCAjY2NjIWltcG9ydGFudH0udzMt
Ym9yZGVyLXJpZ2h0e2JvcmRlci1yaWdodDoxcHggc29saWQgI2NjYyFpbXBvcnRhbnR9DQoudzMt
dG9wYmFye2JvcmRlci10b3A6NnB4IHNvbGlkICNjY2MhaW1wb3J0YW50fS53My1ib3R0b21iYXJ7
Ym9yZGVyLWJvdHRvbTo2cHggc29saWQgI2NjYyFpbXBvcnRhbnR9DQoudzMtbGVmdGJhcntib3Jk
ZXItbGVmdDo2cHggc29saWQgI2NjYyFpbXBvcnRhbnR9LnczLXJpZ2h0YmFye2JvcmRlci1yaWdo
dDo2cHggc29saWQgI2NjYyFpbXBvcnRhbnR9DQoudzMtc2VjdGlvbiwudzMtY29kZXttYXJnaW4t
dG9wOjE2cHghaW1wb3J0YW50O21hcmdpbi1ib3R0b206MTZweCFpbXBvcnRhbnR9DQoudzMtbWFy
Z2lue21hcmdpbjoxNnB4IWltcG9ydGFudH0udzMtbWFyZ2luLXRvcHttYXJnaW4tdG9wOjE2cHgh
aW1wb3J0YW50fS53My1tYXJnaW4tYm90dG9te21hcmdpbi1ib3R0b206MTZweCFpbXBvcnRhbnR9
DQoudzMtbWFyZ2luLWxlZnR7bWFyZ2luLWxlZnQ6MTZweCFpbXBvcnRhbnR9LnczLW1hcmdpbi1y
aWdodHttYXJnaW4tcmlnaHQ6MTZweCFpbXBvcnRhbnR9DQoudzMtcGFkZGluZy1zbWFsbHtwYWRk
aW5nOjRweCA4cHghaW1wb3J0YW50fS53My1wYWRkaW5ne3BhZGRpbmc6OHB4IDE2cHghaW1wb3J0
YW50fS53My1wYWRkaW5nLWxhcmdle3BhZGRpbmc6MTJweCAyNHB4IWltcG9ydGFudH0NCi53My1w
YWRkaW5nLTE2e3BhZGRpbmctdG9wOjE2cHghaW1wb3J0YW50O3BhZGRpbmctYm90dG9tOjE2cHgh
aW1wb3J0YW50fS53My1wYWRkaW5nLTI0e3BhZGRpbmctdG9wOjI0cHghaW1wb3J0YW50O3BhZGRp
bmctYm90dG9tOjI0cHghaW1wb3J0YW50fQ0KLnczLXBhZGRpbmctMzJ7cGFkZGluZy10b3A6MzJw
eCFpbXBvcnRhbnQ7cGFkZGluZy1ib3R0b206MzJweCFpbXBvcnRhbnR9LnczLXBhZGRpbmctNDh7
cGFkZGluZy10b3A6NDhweCFpbXBvcnRhbnQ7cGFkZGluZy1ib3R0b206NDhweCFpbXBvcnRhbnR9
DQoudzMtcGFkZGluZy02NHtwYWRkaW5nLXRvcDo2NHB4IWltcG9ydGFudDtwYWRkaW5nLWJvdHRv
bTo2NHB4IWltcG9ydGFudH0NCi53My1sZWZ0e2Zsb2F0OmxlZnQhaW1wb3J0YW50fS53My1yaWdo
dHtmbG9hdDpyaWdodCFpbXBvcnRhbnR9DQoudzMtYnV0dG9uOmhvdmVye2NvbG9yOiMwMDAhaW1w
b3J0YW50O2JhY2tncm91bmQtY29sb3I6I2NjYyFpbXBvcnRhbnR9DQoudzMtdHJhbnNwYXJlbnQs
LnczLWhvdmVyLW5vbmU6aG92ZXJ7YmFja2dyb3VuZC1jb2xvcjp0cmFuc3BhcmVudCFpbXBvcnRh
bnR9DQoudzMtaG92ZXItbm9uZTpob3Zlcntib3gtc2hhZG93Om5vbmUhaW1wb3J0YW50fQ0KLyog
Q29sb3JzICovDQoudzMtYW1iZXIsLnczLWhvdmVyLWFtYmVyOmhvdmVye2NvbG9yOiMwMDAhaW1w
b3J0YW50O2JhY2tncm91bmQtY29sb3I6I2ZmYzEwNyFpbXBvcnRhbnR9DQoudzMtYXF1YSwudzMt
aG92ZXItYXF1YTpob3Zlcntjb2xvcjojMDAwIWltcG9ydGFudDtiYWNrZ3JvdW5kLWNvbG9yOiMw
MGZmZmYhaW1wb3J0YW50fQ0KLnczLWJsdWUsLnczLWhvdmVyLWJsdWU6aG92ZXJ7Y29sb3I6I2Zm
ZiFpbXBvcnRhbnQ7YmFja2dyb3VuZC1jb2xvcjojMjE5NkYzIWltcG9ydGFudH0NCi53My1saWdo
dC1ibHVlLC53My1ob3Zlci1saWdodC1ibHVlOmhvdmVye2NvbG9yOiMwMDAhaW1wb3J0YW50O2Jh
Y2tncm91bmQtY29sb3I6Izg3Q0VFQiFpbXBvcnRhbnR9DQoudzMtYnJvd24sLnczLWhvdmVyLWJy
b3duOmhvdmVye2NvbG9yOiNmZmYhaW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6Izc5NTU0OCFp
bXBvcnRhbnR9DQoudzMtY3lhbiwudzMtaG92ZXItY3lhbjpob3Zlcntjb2xvcjojMDAwIWltcG9y
dGFudDtiYWNrZ3JvdW5kLWNvbG9yOiMwMGJjZDQhaW1wb3J0YW50fQ0KLnczLWJsdWUtZ3JleSwu
dzMtaG92ZXItYmx1ZS1ncmV5OmhvdmVyLC53My1ibHVlLWdyYXksLnczLWhvdmVyLWJsdWUtZ3Jh
eTpob3Zlcntjb2xvcjojZmZmIWltcG9ydGFudDtiYWNrZ3JvdW5kLWNvbG9yOiM2MDdkOGIhaW1w
b3J0YW50fQ0KLnczLWdyZWVuLC53My1ob3Zlci1ncmVlbjpob3Zlcntjb2xvcjojZmZmIWltcG9y
dGFudDtiYWNrZ3JvdW5kLWNvbG9yOiM0Q0FGNTAhaW1wb3J0YW50fQ0KLnczLWxpZ2h0LWdyZWVu
LC53My1ob3Zlci1saWdodC1ncmVlbjpob3Zlcntjb2xvcjojMDAwIWltcG9ydGFudDtiYWNrZ3Jv
dW5kLWNvbG9yOiM4YmMzNGEhaW1wb3J0YW50fQ0KLnczLWluZGlnbywudzMtaG92ZXItaW5kaWdv
OmhvdmVye2NvbG9yOiNmZmYhaW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6IzNmNTFiNSFpbXBv
cnRhbnR9DQoudzMta2hha2ksLnczLWhvdmVyLWtoYWtpOmhvdmVye2NvbG9yOiMwMDAhaW1wb3J0
YW50O2JhY2tncm91bmQtY29sb3I6I2YwZTY4YyFpbXBvcnRhbnR9DQoudzMtbGltZSwudzMtaG92
ZXItbGltZTpob3Zlcntjb2xvcjojMDAwIWltcG9ydGFudDtiYWNrZ3JvdW5kLWNvbG9yOiNjZGRj
MzkhaW1wb3J0YW50fQ0KLnczLW9yYW5nZSwudzMtaG92ZXItb3JhbmdlOmhvdmVye2NvbG9yOiMw
MDAhaW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6I2ZmOTgwMCFpbXBvcnRhbnR9DQoudzMtZGVl
cC1vcmFuZ2UsLnczLWhvdmVyLWRlZXAtb3JhbmdlOmhvdmVye2NvbG9yOiNmZmYhaW1wb3J0YW50
O2JhY2tncm91bmQtY29sb3I6I2ZmNTcyMiFpbXBvcnRhbnR9DQoudzMtcGluaywudzMtaG92ZXIt
cGluazpob3Zlcntjb2xvcjojZmZmIWltcG9ydGFudDtiYWNrZ3JvdW5kLWNvbG9yOiNlOTFlNjMh
aW1wb3J0YW50fQ0KLnczLXB1cnBsZSwudzMtaG92ZXItcHVycGxlOmhvdmVye2NvbG9yOiNmZmYh
aW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6IzljMjdiMCFpbXBvcnRhbnR9DQoudzMtZGVlcC1w
dXJwbGUsLnczLWhvdmVyLWRlZXAtcHVycGxlOmhvdmVye2NvbG9yOiNmZmYhaW1wb3J0YW50O2Jh
Y2tncm91bmQtY29sb3I6IzY3M2FiNyFpbXBvcnRhbnR9DQoudzMtcmVkLC53My1ob3Zlci1yZWQ6
aG92ZXJ7Y29sb3I6I2ZmZiFpbXBvcnRhbnQ7YmFja2dyb3VuZC1jb2xvcjojZjQ0MzM2IWltcG9y
dGFudH0NCi53My1zYW5kLC53My1ob3Zlci1zYW5kOmhvdmVye2NvbG9yOiMwMDAhaW1wb3J0YW50
O2JhY2tncm91bmQtY29sb3I6I2ZkZjVlNiFpbXBvcnRhbnR9DQoudzMtdGVhbCwudzMtaG92ZXIt
dGVhbDpob3Zlcntjb2xvcjojZmZmIWltcG9ydGFudDtiYWNrZ3JvdW5kLWNvbG9yOiMwMDk2ODgh
aW1wb3J0YW50fQ0KLnczLXllbGxvdywudzMtaG92ZXIteWVsbG93OmhvdmVye2NvbG9yOiMwMDAh
aW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6I2ZmZWIzYiFpbXBvcnRhbnR9DQoudzMtd2hpdGUs
LnczLWhvdmVyLXdoaXRlOmhvdmVye2NvbG9yOiMwMDAhaW1wb3J0YW50O2JhY2tncm91bmQtY29s
b3I6I2ZmZiFpbXBvcnRhbnR9DQoudzMtYmxhY2ssLnczLWhvdmVyLWJsYWNrOmhvdmVye2NvbG9y
OiNmZmYhaW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6IzAwMCFpbXBvcnRhbnR9DQoudzMtZ3Jl
eSwudzMtaG92ZXItZ3JleTpob3ZlciwudzMtZ3JheSwudzMtaG92ZXItZ3JheTpob3Zlcntjb2xv
cjojMDAwIWltcG9ydGFudDtiYWNrZ3JvdW5kLWNvbG9yOiM5ZTllOWUhaW1wb3J0YW50fQ0KLncz
LWxpZ2h0LWdyZXksLnczLWhvdmVyLWxpZ2h0LWdyZXk6aG92ZXIsLnczLWxpZ2h0LWdyYXksLncz
LWhvdmVyLWxpZ2h0LWdyYXk6aG92ZXJ7Y29sb3I6IzAwMCFpbXBvcnRhbnQ7YmFja2dyb3VuZC1j
b2xvcjojZjFmMWYxIWltcG9ydGFudH0NCi53My1kYXJrLWdyZXksLnczLWhvdmVyLWRhcmstZ3Jl
eTpob3ZlciwudzMtZGFyay1ncmF5LC53My1ob3Zlci1kYXJrLWdyYXk6aG92ZXJ7Y29sb3I6I2Zm
ZiFpbXBvcnRhbnQ7YmFja2dyb3VuZC1jb2xvcjojNjE2MTYxIWltcG9ydGFudH0NCi53My1wYWxl
LXJlZCwudzMtaG92ZXItcGFsZS1yZWQ6aG92ZXJ7Y29sb3I6IzAwMCFpbXBvcnRhbnQ7YmFja2dy
b3VuZC1jb2xvcjojZmZkZGRkIWltcG9ydGFudH0NCi53My1wYWxlLWdyZWVuLC53My1ob3Zlci1w
YWxlLWdyZWVuOmhvdmVye2NvbG9yOiMwMDAhaW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6I2Rk
ZmZkZCFpbXBvcnRhbnR9DQoudzMtcGFsZS15ZWxsb3csLnczLWhvdmVyLXBhbGUteWVsbG93Omhv
dmVye2NvbG9yOiMwMDAhaW1wb3J0YW50O2JhY2tncm91bmQtY29sb3I6I2ZmZmZjYyFpbXBvcnRh
bnR9DQoudzMtcGFsZS1ibHVlLC53My1ob3Zlci1wYWxlLWJsdWU6aG92ZXJ7Y29sb3I6IzAwMCFp
bXBvcnRhbnQ7YmFja2dyb3VuZC1jb2xvcjojZGRmZmZmIWltcG9ydGFudH0NCi53My10ZXh0LWFt
YmVyLC53My1ob3Zlci10ZXh0LWFtYmVyOmhvdmVye2NvbG9yOiNmZmMxMDchaW1wb3J0YW50fQ0K
LnczLXRleHQtYXF1YSwudzMtaG92ZXItdGV4dC1hcXVhOmhvdmVye2NvbG9yOiMwMGZmZmYhaW1w
b3J0YW50fQ0KLnczLXRleHQtYmx1ZSwudzMtaG92ZXItdGV4dC1ibHVlOmhvdmVye2NvbG9yOiMy
MTk2RjMhaW1wb3J0YW50fQ0KLnczLXRleHQtbGlnaHQtYmx1ZSwudzMtaG92ZXItdGV4dC1saWdo
dC1ibHVlOmhvdmVye2NvbG9yOiM4N0NFRUIhaW1wb3J0YW50fQ0KLnczLXRleHQtYnJvd24sLncz
LWhvdmVyLXRleHQtYnJvd246aG92ZXJ7Y29sb3I6Izc5NTU0OCFpbXBvcnRhbnR9DQoudzMtdGV4
dC1jeWFuLC53My1ob3Zlci10ZXh0LWN5YW46aG92ZXJ7Y29sb3I6IzAwYmNkNCFpbXBvcnRhbnR9
DQoudzMtdGV4dC1ibHVlLWdyZXksLnczLWhvdmVyLXRleHQtYmx1ZS1ncmV5OmhvdmVyLC53My10
ZXh0LWJsdWUtZ3JheSwudzMtaG92ZXItdGV4dC1ibHVlLWdyYXk6aG92ZXJ7Y29sb3I6IzYwN2Q4
YiFpbXBvcnRhbnR9DQoudzMtdGV4dC1ncmVlbiwudzMtaG92ZXItdGV4dC1ncmVlbjpob3Zlcntj
b2xvcjojNENBRjUwIWltcG9ydGFudH0NCi53My10ZXh0LWxpZ2h0LWdyZWVuLC53My1ob3Zlci10
ZXh0LWxpZ2h0LWdyZWVuOmhvdmVye2NvbG9yOiM4YmMzNGEhaW1wb3J0YW50fQ0KLnczLXRleHQt
aW5kaWdvLC53My1ob3Zlci10ZXh0LWluZGlnbzpob3Zlcntjb2xvcjojM2Y1MWI1IWltcG9ydGFu
dH0NCi53My10ZXh0LWtoYWtpLC53My1ob3Zlci10ZXh0LWtoYWtpOmhvdmVye2NvbG9yOiNiNGFh
NTAhaW1wb3J0YW50fQ0KLnczLXRleHQtbGltZSwudzMtaG92ZXItdGV4dC1saW1lOmhvdmVye2Nv
bG9yOiNjZGRjMzkhaW1wb3J0YW50fQ0KLnczLXRleHQtb3JhbmdlLC53My1ob3Zlci10ZXh0LW9y
YW5nZTpob3Zlcntjb2xvcjojZmY5ODAwIWltcG9ydGFudH0NCi53My10ZXh0LWRlZXAtb3Jhbmdl
LC53My1ob3Zlci10ZXh0LWRlZXAtb3JhbmdlOmhvdmVye2NvbG9yOiNmZjU3MjIhaW1wb3J0YW50
fQ0KLnczLXRleHQtcGluaywudzMtaG92ZXItdGV4dC1waW5rOmhvdmVye2NvbG9yOiNlOTFlNjMh
aW1wb3J0YW50fQ0KLnczLXRleHQtcHVycGxlLC53My1ob3Zlci10ZXh0LXB1cnBsZTpob3Zlcntj
b2xvcjojOWMyN2IwIWltcG9ydGFudH0NCi53My10ZXh0LWRlZXAtcHVycGxlLC53My1ob3Zlci10
ZXh0LWRlZXAtcHVycGxlOmhvdmVye2NvbG9yOiM2NzNhYjchaW1wb3J0YW50fQ0KLnczLXRleHQt
cmVkLC53My1ob3Zlci10ZXh0LXJlZDpob3Zlcntjb2xvcjojZjQ0MzM2IWltcG9ydGFudH0NCi53
My10ZXh0LXNhbmQsLnczLWhvdmVyLXRleHQtc2FuZDpob3Zlcntjb2xvcjojZmRmNWU2IWltcG9y
dGFudH0NCi53My10ZXh0LXRlYWwsLnczLWhvdmVyLXRleHQtdGVhbDpob3Zlcntjb2xvcjojMDA5
Njg4IWltcG9ydGFudH0NCi53My10ZXh0LXllbGxvdywudzMtaG92ZXItdGV4dC15ZWxsb3c6aG92
ZXJ7Y29sb3I6I2QyYmUwZSFpbXBvcnRhbnR9DQoudzMtdGV4dC13aGl0ZSwudzMtaG92ZXItdGV4
dC13aGl0ZTpob3Zlcntjb2xvcjojZmZmIWltcG9ydGFudH0NCi53My10ZXh0LWJsYWNrLC53My1o
b3Zlci10ZXh0LWJsYWNrOmhvdmVye2NvbG9yOiMwMDAhaW1wb3J0YW50fQ0KLnczLXRleHQtZ3Jl
eSwudzMtaG92ZXItdGV4dC1ncmV5OmhvdmVyLC53My10ZXh0LWdyYXksLnczLWhvdmVyLXRleHQt
Z3JheTpob3Zlcntjb2xvcjojNzU3NTc1IWltcG9ydGFudH0NCi53My10ZXh0LWxpZ2h0LWdyZXks
LnczLWhvdmVyLXRleHQtbGlnaHQtZ3JleTpob3ZlciwudzMtdGV4dC1saWdodC1ncmF5LC53My1o
b3Zlci10ZXh0LWxpZ2h0LWdyYXk6aG92ZXJ7Y29sb3I6I2YxZjFmMSFpbXBvcnRhbnR9DQoudzMt
dGV4dC1kYXJrLWdyZXksLnczLWhvdmVyLXRleHQtZGFyay1ncmV5OmhvdmVyLC53My10ZXh0LWRh
cmstZ3JheSwudzMtaG92ZXItdGV4dC1kYXJrLWdyYXk6aG92ZXJ7Y29sb3I6IzNhM2EzYSFpbXBv
cnRhbnR9DQoudzMtYm9yZGVyLWFtYmVyLC53My1ob3Zlci1ib3JkZXItYW1iZXI6aG92ZXJ7Ym9y
ZGVyLWNvbG9yOiNmZmMxMDchaW1wb3J0YW50fQ0KLnczLWJvcmRlci1hcXVhLC53My1ob3Zlci1i
b3JkZXItYXF1YTpob3Zlcntib3JkZXItY29sb3I6IzAwZmZmZiFpbXBvcnRhbnR9DQoudzMtYm9y
ZGVyLWJsdWUsLnczLWhvdmVyLWJvcmRlci1ibHVlOmhvdmVye2JvcmRlci1jb2xvcjojMjE5NkYz
IWltcG9ydGFudH0NCi53My1ib3JkZXItbGlnaHQtYmx1ZSwudzMtaG92ZXItYm9yZGVyLWxpZ2h0
LWJsdWU6aG92ZXJ7Ym9yZGVyLWNvbG9yOiM4N0NFRUIhaW1wb3J0YW50fQ0KLnczLWJvcmRlci1i
cm93biwudzMtaG92ZXItYm9yZGVyLWJyb3duOmhvdmVye2JvcmRlci1jb2xvcjojNzk1NTQ4IWlt
cG9ydGFudH0NCi53My1ib3JkZXItY3lhbiwudzMtaG92ZXItYm9yZGVyLWN5YW46aG92ZXJ7Ym9y
ZGVyLWNvbG9yOiMwMGJjZDQhaW1wb3J0YW50fQ0KLnczLWJvcmRlci1ibHVlLWdyZXksLnczLWhv
dmVyLWJvcmRlci1ibHVlLWdyZXk6aG92ZXIsLnczLWJvcmRlci1ibHVlLWdyYXksLnczLWhvdmVy
LWJvcmRlci1ibHVlLWdyYXk6aG92ZXJ7Ym9yZGVyLWNvbG9yOiM2MDdkOGIhaW1wb3J0YW50fQ0K
LnczLWJvcmRlci1ncmVlbiwudzMtaG92ZXItYm9yZGVyLWdyZWVuOmhvdmVye2JvcmRlci1jb2xv
cjojNENBRjUwIWltcG9ydGFudH0NCi53My1ib3JkZXItbGlnaHQtZ3JlZW4sLnczLWhvdmVyLWJv
cmRlci1saWdodC1ncmVlbjpob3Zlcntib3JkZXItY29sb3I6IzhiYzM0YSFpbXBvcnRhbnR9DQou
dzMtYm9yZGVyLWluZGlnbywudzMtaG92ZXItYm9yZGVyLWluZGlnbzpob3Zlcntib3JkZXItY29s
b3I6IzNmNTFiNSFpbXBvcnRhbnR9DQoudzMtYm9yZGVyLWtoYWtpLC53My1ob3Zlci1ib3JkZXIt
a2hha2k6aG92ZXJ7Ym9yZGVyLWNvbG9yOiNmMGU2OGMhaW1wb3J0YW50fQ0KLnczLWJvcmRlci1s
aW1lLC53My1ob3Zlci1ib3JkZXItbGltZTpob3Zlcntib3JkZXItY29sb3I6I2NkZGMzOSFpbXBv
cnRhbnR9DQoudzMtYm9yZGVyLW9yYW5nZSwudzMtaG92ZXItYm9yZGVyLW9yYW5nZTpob3Zlcnti
b3JkZXItY29sb3I6I2ZmOTgwMCFpbXBvcnRhbnR9DQoudzMtYm9yZGVyLWRlZXAtb3JhbmdlLC53
My1ob3Zlci1ib3JkZXItZGVlcC1vcmFuZ2U6aG92ZXJ7Ym9yZGVyLWNvbG9yOiNmZjU3MjIhaW1w
b3J0YW50fQ0KLnczLWJvcmRlci1waW5rLC53My1ob3Zlci1ib3JkZXItcGluazpob3Zlcntib3Jk
ZXItY29sb3I6I2U5MWU2MyFpbXBvcnRhbnR9DQoudzMtYm9yZGVyLXB1cnBsZSwudzMtaG92ZXIt
Ym9yZGVyLXB1cnBsZTpob3Zlcntib3JkZXItY29sb3I6IzljMjdiMCFpbXBvcnRhbnR9DQoudzMt
Ym9yZGVyLWRlZXAtcHVycGxlLC53My1ob3Zlci1ib3JkZXItZGVlcC1wdXJwbGU6aG92ZXJ7Ym9y
ZGVyLWNvbG9yOiM2NzNhYjchaW1wb3J0YW50fQ0KLnczLWJvcmRlci1yZWQsLnczLWhvdmVyLWJv
cmRlci1yZWQ6aG92ZXJ7Ym9yZGVyLWNvbG9yOiNmNDQzMzYhaW1wb3J0YW50fQ0KLnczLWJvcmRl
ci1zYW5kLC53My1ob3Zlci1ib3JkZXItc2FuZDpob3Zlcntib3JkZXItY29sb3I6I2ZkZjVlNiFp
bXBvcnRhbnR9DQoudzMtYm9yZGVyLXRlYWwsLnczLWhvdmVyLWJvcmRlci10ZWFsOmhvdmVye2Jv
cmRlci1jb2xvcjojMDA5Njg4IWltcG9ydGFudH0NCi53My1ib3JkZXIteWVsbG93LC53My1ob3Zl
ci1ib3JkZXIteWVsbG93OmhvdmVye2JvcmRlci1jb2xvcjojZmZlYjNiIWltcG9ydGFudH0NCi53
My1ib3JkZXItd2hpdGUsLnczLWhvdmVyLWJvcmRlci13aGl0ZTpob3Zlcntib3JkZXItY29sb3I6
I2ZmZiFpbXBvcnRhbnR9DQoudzMtYm9yZGVyLWJsYWNrLC53My1ob3Zlci1ib3JkZXItYmxhY2s6
aG92ZXJ7Ym9yZGVyLWNvbG9yOiMwMDAhaW1wb3J0YW50fQ0KLnczLWJvcmRlci1ncmV5LC53My1o
b3Zlci1ib3JkZXItZ3JleTpob3ZlciwudzMtYm9yZGVyLWdyYXksLnczLWhvdmVyLWJvcmRlci1n
cmF5OmhvdmVye2JvcmRlci1jb2xvcjojOWU5ZTllIWltcG9ydGFudH0NCi53My1ib3JkZXItbGln
aHQtZ3JleSwudzMtaG92ZXItYm9yZGVyLWxpZ2h0LWdyZXk6aG92ZXIsLnczLWJvcmRlci1saWdo
dC1ncmF5LC53My1ob3Zlci1ib3JkZXItbGlnaHQtZ3JheTpob3Zlcntib3JkZXItY29sb3I6I2Yx
ZjFmMSFpbXBvcnRhbnR9DQoudzMtYm9yZGVyLWRhcmstZ3JleSwudzMtaG92ZXItYm9yZGVyLWRh
cmstZ3JleTpob3ZlciwudzMtYm9yZGVyLWRhcmstZ3JheSwudzMtaG92ZXItYm9yZGVyLWRhcmst
Z3JheTpob3Zlcntib3JkZXItY29sb3I6IzYxNjE2MSFpbXBvcnRhbnR9DQoudzMtYm9yZGVyLXBh
bGUtcmVkLC53My1ob3Zlci1ib3JkZXItcGFsZS1yZWQ6aG92ZXJ7Ym9yZGVyLWNvbG9yOiNmZmU3
ZTchaW1wb3J0YW50fS53My1ib3JkZXItcGFsZS1ncmVlbiwudzMtaG92ZXItYm9yZGVyLXBhbGUt
Z3JlZW46aG92ZXJ7Ym9yZGVyLWNvbG9yOiNlN2ZmZTchaW1wb3J0YW50fQ0KLnczLWJvcmRlci1w
YWxlLXllbGxvdywudzMtaG92ZXItYm9yZGVyLXBhbGUteWVsbG93OmhvdmVye2JvcmRlci1jb2xv
cjojZmZmZmNjIWltcG9ydGFudH0udzMtYm9yZGVyLXBhbGUtYmx1ZSwudzMtaG92ZXItYm9yZGVy
LXBhbGUtYmx1ZTpob3Zlcntib3JkZXItY29sb3I6I2U3ZmZmZiFpbXBvcnRhbnR9" type="text/css">
<div class="w3-bar w3-black">
<h4 class="w3-left">Powered by the <i>Spectral Forecast</i> equation</h4>
<img src="" class="w3-right w3-image" style='height:50px;'>
</div>
<div class="slidecontainer">
<div class="w3-container w3-cell">
<p>Height:</p>
</div>
<div class="w3-container w3-cell">
<p><input type="range" min="100" max="1000" value="300" class="slider" id="canvas_h"></p>
</div>
<div class="w3-container w3-cell">
<p><div class="slidecontainer" id="info_canvas_h">300 px</div></p>
</div>
<div class="w3-container w3-cell">
<p>Width:</p>
</div>
<div class="w3-container w3-cell">
<p><input type="range" min="100" max="2000" value="1100" class="slider" id="canvas_w"></p>
</div>
<div class="w3-container w3-cell">
<p><div class="slidecontainer" id="info_canvas_w">1100 px</div></p>
</div>
</div>
<canvas id="bio" height="300" width="1100" class="w3-animate-left"></canvas>
<div class="slidecontainer">
<div class="w3-container w3-cell">
<p>Distance:</p>
</div>
<div class="w3-container w3-cell w3-animate-zoom">
<p><input type="range" min="0" max="100" value="0" class="slider" id="sys_distance"></p>
</div>
<div class="w3-container w3-cell">
<p><div class="slidecontainer" id="info_distance">0</div></p>
</div>
</div>
<script>
document.getElementById("sys_distance").oninput = function() {
spectral(this.value);
document.getElementById("info_distance").innerHTML = this.value;
}
//Canvas Height
document.getElementById("canvas_h").oninput = function() {
document.getElementById('bio').height = this.value;
document.getElementById("info_canvas_h").innerHTML = this.value + " px";
spectral(document.getElementById("sys_distance").value);
}
//Canvas Width
document.getElementById("canvas_w").oninput = function() {
document.getElementById('bio').width = this.value;
document.getElementById("info_canvas_w").innerHTML = this.value + " px";
spectral(document.getElementById("sys_distance").value);
}
//Spectral forecast for signals
var tA = [];
var tB = [];
var A ='10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4,28.9,24.7,22.7,43.2,17.2,31.5,8.3,17.9,3.9,4.1,2.3';
var B ='18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4,62,39.7,50.3,75.9,52.9,44.9,32,64.8,37.4,19.3,9.4';
var tA = A.split(',');
var maxA = Math.max.apply(null, tA);
var tB = B.split(',');
var maxB = Math.max.apply(null, tB);
var max = Math.max(maxA, maxB)
document.getElementById("sys_distance").max = max;
spectral(1);
function spectral(d){
var P='';
for(var i=0; i<tA.length; i++) {
var tmp=((d/maxA)*tA[i])+(((max-d)/maxB)*tB[i]);
P+=tmp.toFixed(2);
if(i<tA.length-1){P+=','}
}
Chart(A, '#ff0000', 'y')
Chart(B, '#ff0000', 'n')
Chart(P, '#000000', 'n')
}
function Chart(q,c,e) {
var s = q.split(",");
var mx = Math.max.apply(null, s);
var mn = Math.min.apply(null, s);
var canvas = document.getElementById('bio');
var w = canvas.width;
var h = canvas.height;
if (canvas.getContext) {
var ctx = canvas.getContext('2d');
if(e=='y'){ctx.clearRect(0, 0, w, h);}
ctx.moveTo(0, 0);
ctx.beginPath();
var d = ((w-80)/s.length);
for (var i=0; i<=s.length-1; i++)
{
var y = h - 15 - (((h-15) / mx) * s[i]);
var x = d * i;
ctx.lineTo(x, y+1);
}
ctx.lineWidth = 2;
ctx.strokeStyle = c;
ctx.stroke();
if(s.length>=2 && s.length<=(w-80) && e=='y'){
ctx.closePath();
ctx.beginPath();
//horisontal divisions
ctx.strokeStyle = '#454545';
//distance between divisions must be visible
if((w/s.length)>=5){
for (var i=0; i<s.length; i++)
{
ctx.moveTo(Math.floor(d*i), h-10);
ctx.lineTo(Math.floor(d*i), h);
}
ctx.stroke();
}
//bottom line
ctx.moveTo(0, h-1);
ctx.lineTo(w-80, h-1);
ctx.stroke();
//left vertical line
ctx.moveTo((w-80), 0);
ctx.lineTo((w-80), h);
ctx.stroke();
//top axis
ctx.moveTo((w-80), 1);
ctx.lineTo((w-50), 1);
ctx.stroke();
//top left vertical line
ctx.moveTo((w-55), 0);
ctx.lineTo((w-55), 14);
ctx.stroke();
//bottom axis
ctx.moveTo((w-80), h-15);
ctx.lineTo((w-70), h-15);
ctx.stroke();
//vertical divisions
for (var i=0; i<10; i++)
{
ctx.moveTo(w-80, ((h-15)/10)*i);
ctx.lineTo(w-70, ((h-15)/10)*i);
}
ctx.stroke();
//MAX value on chart
text = '100 %';
dim = ctx.measureText(text).width
ctx.save();
ctx.translate((w-80)+18,18);
ctx.rotate(Math.PI / 2);
ctx.font = "18px Arial";
ctx.fillStyle = "#000000";
ctx.textAlign = "left";
ctx.fillText(text, 0, 0);
ctx.restore();
//MAX text
text = 'MAX';
dim = ctx.measureText(text).width
ctx.save();
ctx.translate((w-65)+20,14);
ctx.font = "18px Arial";
ctx.fillStyle = "#000000";
ctx.textAlign = "left";
ctx.fillText(text, 0, 0);
ctx.restore();
text = '0 %';
dim = ctx.measureText(text).width
ctx.save();
ctx.translate((w-80)+20,h-10);
ctx.font = "18px Arial";
ctx.fillStyle = "#000000";
ctx.textAlign = "left";
ctx.fillText(text, 0, 0);
ctx.restore();
}
}
}
</script>
<hr>
Paul A. Gagniuc. <i>Algorithms in Bioinformatics: Theory and Implementation</i>. John Wiley & Sons, USA, 2021, ISBN: 9781119697961.
<hr>
Paul A. Gagniuc et al. <i><a href="https://aip.scitation.org/doi/10.1063/1.5120818">Spectral forecast: A general purpose prediction model as an alternative to classical neural networks</a></i>. Chaos 30, 033119 (2020).