-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
141 lines (114 loc) · 4.63 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import sys
import time
import json
import torch
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import numpy as np
from arguments.argument import get_args
from backbone import darknet_tiny, darknet53, darknet_tiny_h
from libs.dataset import BOP_Dataset, collate_fn
from models.model import PoseModule
import libs.transform as transform
from libs.distributed import (
get_rank,
synchronize
)
from libs.train_libs import data_sampler
from libs.eval_libs import valid
from tensorboardX import SummaryWriter
# reproducibility: https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(0)
np.random.seed(0)
if __name__ == '__main__':
cfg = get_args()
# create working_dir dynamically
timestr = time.strftime('%Y%m%d_%H%M%S',time.localtime(time.time()))
name_wo_ext = os.path.splitext(os.path.split(cfg['RUNTIME']['CONFIG_FILE'])[1])[0]
working_dir = 'working_dirs' + '/' + name_wo_ext + '/' + timestr + '/'
cfg['RUNTIME']['WORKING_DIR'] = working_dir
print("working directory: " + cfg['RUNTIME']['WORKING_DIR'])
if get_rank() == 0:
os.makedirs(cfg['RUNTIME']['WORKING_DIR'], exist_ok=True)
logger = SummaryWriter(cfg['RUNTIME']['WORKING_DIR'])
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
cfg['RUNTIME']['N_GPU'] = n_gpu
cfg['RUNTIME']['DISTRIBUTED'] = n_gpu > 1
if cfg['RUNTIME']['DISTRIBUTED']:
torch.cuda.set_device(cfg['RUNTIME']['LOCAL_RANK'])
torch.distributed.init_process_group(backend='gloo', init_method='env://')
synchronize()
# device = 'cuda'
device = cfg['RUNTIME']['RUNNING_DEVICE']
internal_K = np.array(cfg['INPUT']['INTERNAL_K']).reshape(3,3)
valid_trans = transform.Compose(
[
transform.Resize(
cfg['INPUT']['INTERNAL_WIDTH'],
cfg['INPUT']['INTERNAL_HEIGHT'],
internal_K),
transform.Grayscalize(cfg['SOLVER']['AUGMENTATION_Grayscalize']),
transform.Normalize(
cfg['INPUT']['PIXEL_MEAN'],
cfg['INPUT']['PIXEL_STD']),
transform.ToTensor(),
]
)
valid_set = BOP_Dataset(
cfg['DATASETS']['TEST'],
cfg['DATASETS']['MESH_DIR'],
cfg['DATASETS']['BBOX_FILE'],
valid_trans,
training = False,
DZI=True)
if cfg['MODEL']['BACKBONE'] == 'darknet_tiny':
backbone = darknet_tiny(pretrained=False)
elif cfg['MODEL']['BACKBONE'] == 'darknet_tiny_h':
backbone = darknet_tiny_h(pretrained=False)
elif cfg['MODEL']['BACKBONE'] == 'darknet53':
backbone = darknet53(pretrained=False)
model = PoseModule(cfg, backbone)
# load weight
if os.path.exists(cfg['RUNTIME']['WEIGHT_FILE']):
try:
chkpt = torch.load(cfg['RUNTIME']['WEIGHT_FILE'], map_location='cpu') # load checkpoint
if 'model' in chkpt:
chkpt = chkpt['model']
# model.load_state_dict(chkpt) # strict
# loose loading
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in chkpt.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
#
print('Weights are loaded from ' + cfg['RUNTIME']['WEIGHT_FILE'])
except:
print('Loading weights from %s is failed' % (cfg['RUNTIME']['WEIGHT_FILE']))
print("Random initialized weights.")
else:
print("Random initialized weights.")
model = model.to(device)
batch_size_per_gpu = int(cfg['TEST']['IMS_PER_BATCH'] / cfg['RUNTIME']['N_GPU'])
batch_size_per_gpu = 24
if batch_size_per_gpu == 0:
print('ERROR: %d GPUs for %d batch(es)' % (cfg['RUNTIME']['N_GPU'], cfg['TEST']['IMS_PER_BATCH']))
assert(0)
if cfg['RUNTIME']['DISTRIBUTED']:
model = nn.parallel.DistributedDataParallel(
model,
device_ids=[cfg['RUNTIME']['LOCAL_RANK']],
output_device=cfg['RUNTIME']['LOCAL_RANK'],
broadcast_buffers=False,
)
model = model.module
valid_loader = DataLoader(
valid_set,
batch_size=batch_size_per_gpu,
sampler=data_sampler(valid_set, shuffle=False, distributed=cfg['RUNTIME']['DISTRIBUTED']),
num_workers=cfg['RUNTIME']['NUM_WORKERS'],
collate_fn=collate_fn(cfg['INPUT']['SIZE_DIVISIBLE']),
)
accuracy_adi_per_class, accuracy_rep_per_class, accuracy_adi_per_depth, accuracy_rep_per_depth, depth_range = \
valid(cfg, 0, valid_loader, model, device, logger=logger)