-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathspatial_resolution.py
535 lines (408 loc) · 18.3 KB
/
spatial_resolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
"""
Spatial Resolution
Contributors:
Haris Shuaib, [email protected]
Neil Heraghty, [email protected], 16/05/2018
.. todo::
Replace shape finding functions with hazenlib.tools equivalents
"""
import copy
import sys
import traceback
from hazenlib.logger import logger
import cv2 as cv
import numpy as np
from numpy.fft import fftfreq
import hazenlib
def maivis_deriv(x, a, h=1, n=1, axis=-1):
"""
Performs differentiation the same way as done with MAIVIS to find the line spread function (LSF). This function has been re-implemented from IDL code written by Ioannis.
;differentiate the ESF the same way as done with MAIVIS to find the line spread function (LSF)
max_deriv=FIX(n_elements(ESF)/4)
lsf=FLTARR(4*max_deriv)
for lsf_element=0, 4*max_deriv-4 do begin
aa=ESF(lsf_element)+ESF(lsf_element+1)
bb=ESF(lsf_element+2)+ESF(lsf_element+3)
lsf(lsf_element)=(bb-aa)/2
end
;pad the last 3 elements of the lsf
for lsf_element=4*max_deriv-3, 4*max_deriv-1 do begin
lsf(lsf_element)=lsf(4*max_deriv-4)
end
Parameters
----------
a : array_like
Input array
n : int, optional
The number of times values are differenced.
axis : int, optional
The axis along which the difference is taken, default is the last axis.
Returns
-------
diff : ndarray
The `n` order differences. The shape of the output is the same as `a`
except along `axis` where the dimension is smaller by `n`.
See Also
--------
idl_deriv
numpy.diff
"""
max_deriv = len(a) // 4
b = [(a[i + 2] + a[i + 3] - a[i] - a[i + 1]) / 2 for i in range(4 * max_deriv - 3)]
# pad last 3 elements of b
b.extend([b[-1]] * 3)
return b
def create_line_iterator(P1, P2, img):
"""
Produces and array that consists of the coordinates and intensities of each pixel in a line between two points
Parameters:
-P1: a numpy array that consists of the coordinate of the first point (x,y)
-P2: a numpy array that consists of the coordinate of the second point (x,y)
-img: the image being processed
Returns:
-it: a numpy array that consists of the coordinates and intensities of each pixel in the radii (shape: [numPixels, 3], row = [x,y,intensity])
"""
# define local variables for readability
imageH = img.shape[0]
imageW = img.shape[1]
P1X = P1[0]
P1Y = P1[1]
P2X = P2[0]
P2Y = P2[1]
# difference and absolute difference between points
# used to calculate slope and relative location between points
dX = P2X - P1X
dY = P2Y - P1Y
dXa = np.abs(dX)
dYa = np.abs(dY)
# predefine numpy array for output based on distance between points
itbuffer = np.empty(shape=(np.maximum(dYa, dXa), 3), dtype=np.float32)
itbuffer.fill(np.nan)
# Obtain coordinates along the line using a form of Bresenham's algorithm
negY = P1Y > P2Y
negX = P1X > P2X
if P1X == P2X: # vertical line segment
itbuffer[:, 0] = P1X
if negY:
itbuffer[:, 1] = np.arange(P1Y - 1, P1Y - dYa - 1, -1)
else:
itbuffer[:, 1] = np.arange(P1Y + 1, P1Y + dYa + 1)
elif P1Y == P2Y: # horizontal line segment
itbuffer[:, 1] = P1Y
if negX:
itbuffer[:, 0] = np.arange(P1X - 1, P1X - dXa - 1, -1)
else:
itbuffer[:, 0] = np.arange(P1X + 1, P1X + dXa + 1)
else: # diagonal line segment
steepSlope = dYa > dXa
if steepSlope:
slope = dX.astype(np.float32) / dY.astype(np.float32)
if negY:
itbuffer[:, 1] = np.arange(P1Y - 1, P1Y - dYa - 1, -1)
else:
itbuffer[:, 1] = np.arange(P1Y + 1, P1Y + dYa + 1)
itbuffer[:, 0] = (slope * (itbuffer[:, 1] - P1Y)).astype(np.int) + P1X
else:
slope = dY.astype(np.float32) / dX.astype(np.float32)
if negX:
itbuffer[:, 0] = np.arange(P1X - 1, P1X - dXa - 1, -1)
else:
itbuffer[:, 0] = np.arange(P1X + 1, P1X + dXa + 1)
itbuffer[:, 1] = (slope * (itbuffer[:, 0] - P1X)).astype(np.int) + P1Y
# Remove points outside of image
colX = itbuffer[:, 0]
colY = itbuffer[:, 1]
itbuffer = itbuffer[(colX >= 0) & (colY >= 0) & (colX < imageW) & (colY < imageH)]
# Get intensities from img ndarray
itbuffer[:, 2] = img[itbuffer[:, 1].astype(np.uint), itbuffer[:, 0].astype(np.uint)]
return itbuffer
def get_circles(image):
v = np.median(image)
upper = int(min(255, (1.0 + 5) * v))
i = 40
while True:
circles = cv.HoughCircles(image, cv.HOUGH_GRADIENT, 1.2, 256,
param1=upper, param2=i, minRadius=80, maxRadius=200)
# min and max radius need to accomodate at least 256 and 512 matrix sizes
i -= 1
if circles is None:
pass
else:
circles = np.uint16(np.around(circles))
break
# img = cv.circle(image, (circles[0][0][0], circles[0][0][1]), circles[0][0][2], (255, 0, 0))
# plt.imshow(img)
# plt.show()
return circles
def thresh_image(img, bound=150):
blurred = cv.GaussianBlur(img, (5, 5), 0)
thresh = cv.threshold(blurred, bound, 255, cv.THRESH_TOZERO_INV)[1]
return thresh
def find_square(img):
cnts = cv.findContours(img.copy(), cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)[0]
for c in cnts:
perimeter = cv.arcLength(c, True)
approx = cv.approxPolyDP(c, 0.1 * perimeter, True)
if len(approx) == 4:
# compute the bounding box of the contour and use the
# bounding box to compute the aspect ratio
rect = cv.minAreaRect(approx)
# OpenCV 4.5 adjustment
# - cv.minAreaRect() output tuple order changed since v3.4
# - swap rect[1] order & rotate rect[2] by -90
# – convert tuple>list>tuple to do this
rectAsList = list(rect)
rectAsList[1] = (rectAsList[1][1], rectAsList[1][0])
rectAsList[2] = rectAsList[2] - 90
rect = tuple(rectAsList)
box = cv.boxPoints(rect)
box = np.int0(box)
w, h = rect[1]
ar = w / float(h)
# make sure that the width of the square is reasonable size taking into account 256 and 512 matrix
if not 20 < w < 100:
continue
# a square will have an aspect ratio that is approximately
# equal to one, otherwise, the shape is a rectangle
if 0.92 < ar < 1.08:
break
# points should start at top-right and go anti-clockwise
top_corners = sorted(box, key=lambda x: x[1])[:2]
top_corners = sorted(top_corners, key=lambda x: x[0], reverse=True)
bottom_corners = sorted(box, key=lambda x: x[1])[2:]
bottom_corners = sorted(bottom_corners, key=lambda x: x[0])
return top_corners + bottom_corners, box
def get_roi(pixels, centre, size=20):
y, x = centre
arr = pixels[x - size // 2: x + size // 2, y - size // 2: y + size // 2]
return arr
def get_void_roi(pixels, circle, size=20):
centre_x = circle[0][0][0]
centre_y = circle[0][0][1]
return get_roi(pixels=pixels, centre=(centre_x, centre_y), size=size)
def get_edge_roi(pixels, edge_centre, size=20):
return get_roi(pixels, centre=(edge_centre["x"], edge_centre["y"]), size=size)
def edge_is_vertical(edge_roi, mean) -> bool:
"""
control_parameter_01=0 ;a control parameter that will be equal to 1 if the edge is vertical and 0 if it is horizontal
for column=0, event.MTF_roi_size-2 do begin
if MTF_Data(column, 0 ) EQ mean_value then control_parameter_01=1
if (MTF_Data(column, 0) LT mean_value) AND (MTF_Data(column+1, 0) GT mean_value) then control_parameter_01=1
if (MTF_Data(column, 0) GT mean_value) AND (MTF_Data(column+1, 0) LT mean_value) then control_parameter_01=1
end
Returns:
"""
for col in range(edge_roi.shape[0] - 1):
if edge_roi[col, 0] == mean:
return True
if edge_roi[col, 0] < mean < edge_roi[col + 1, 0]:
return True
if edge_roi[col, 0] > mean > edge_roi[col + 1, 0]:
return True
return False
def get_bisecting_normal(vector, centre, length_factor=0.25):
# calculate coordinates of bisecting normal
nrx_1 = centre["x"] - int(length_factor * vector["y"])
nry_1 = centre["y"] + int(length_factor * vector["x"])
nrx_2 = centre["x"] + int(length_factor * vector["y"])
nry_2 = centre["y"] - int(length_factor * vector["x"])
return nrx_1, nry_1, nrx_2, nry_2
def get_top_edge_vector_and_centre(square):
# Calculate dx and dy
top_edge_profile_vector = {"x": (square[0][0] + square[1][0])//2, "y": (square[0][1] + square[1][1])//2}
# Calculate centre (x,y) of edge
top_edge_profile_roi_centre = {"x": (square[0][0] + square[1][0])//2,
"y": (square[0][1] + square[1][1])//2}
return top_edge_profile_vector, top_edge_profile_roi_centre
def get_right_edge_vector_and_centre(square):
# Calculate dx and dy
right_edge_profile_vector = {"x": square[3][0] - square[0][0], "y": square[3][1] - square[0][1]} # nonsense
# Calculate centre (x,y) of edge
right_edge_profile_roi_centre = {"x": (square[3][0] + square[0][0])//2,
"y": (square[3][1] + square[0][1])//2}
return right_edge_profile_vector, right_edge_profile_roi_centre
def get_right_edge_normal_profile(img, square):
right_edge_profile_vector, right_edge_profile_roi_centre = get_right_edge_vector_and_centre(square)
n1x, n1y, n2x, n2y = get_bisecting_normal(right_edge_profile_vector, right_edge_profile_roi_centre)
right_edge_profile = create_line_iterator([n1x, n1y], [n2x, n2y], img)
intensities = right_edge_profile[:, -1]
return intensities
def get_signal_roi(pixels, edge, edge_centre, circle, size=20):
circle_r = circle[0][0][2]
if edge == 'right':
x = edge_centre["x"] + circle_r // 2
y = edge_centre["y"]
elif edge == 'top':
x = edge_centre["x"]
y = edge_centre["y"] - circle_r // 2
return get_roi(pixels=pixels, centre=(x, y), size=size)
def get_edge(edge_arr, mean_value, spacing):
if edge_is_vertical(edge_arr, mean_value):
edge_arr = np.rot90(edge_arr)
x_edge = [0] * 20
y_edge = [0] * 20
for row in range(20):
for col in range(19):
control_parameter_02 = 0
if edge_arr[row, col] == mean_value:
control_parameter_02 = 1
if (edge_arr[row, col] < mean_value) and (edge_arr[row, col + 1] > mean_value):
control_parameter_02 = 1
if (edge_arr[row, col] > mean_value) and (edge_arr[row, col + 1] < mean_value):
control_parameter_02 = 1
if control_parameter_02 == 1:
x_edge[row] = row * spacing[0]
y_edge[row] = col * spacing[1]
return x_edge, y_edge, edge_arr
def get_edge_angle_and_intercept(x_edge, y_edge):
# ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# ;Apply least squares method for the edge
# ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mean_x = np.mean(x_edge)
mean_y = np.mean(y_edge)
slope_up = np.sum((x_edge - mean_x) * (y_edge - mean_y))
slope_down = np.sum((x_edge - mean_x) * (x_edge - mean_x))
slope = slope_up / slope_down
angle = np.arctan(slope)
intercept = mean_y - slope * mean_x
return angle, intercept
def get_edge_profile_coords(angle, intercept, spacing):
# ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# ; translate and rotate the data's coordinates according to the slope and intercept
# ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
original_mtf_x_position = np.array([x * spacing[0] for x in range(20)])
original_mtf_x_positions = copy.copy(original_mtf_x_position)
for row in range(19):
original_mtf_x_positions = np.row_stack((original_mtf_x_positions, original_mtf_x_position))
original_mtf_y_position = np.array([x * spacing[1] for x in range(20)])
original_mtf_y_positions = copy.copy(original_mtf_y_position)
for row in range(19):
original_mtf_y_positions = np.column_stack((original_mtf_y_positions, original_mtf_y_position))
# we are only interested in the rotated y positions as there correspond to the distance of the data from the edge
rotated_mtf_y_positions = -original_mtf_x_positions * np.sin(angle) + (
original_mtf_y_positions - intercept) * np.cos(angle)
rotated_mtf_x_positions = original_mtf_x_positions*np.cos(angle) + (
original_mtf_y_positions - intercept) * np.sin(angle)
return rotated_mtf_x_positions, rotated_mtf_y_positions
def get_esf(edge_arr, y):
# ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# ;extract the edge response function
# ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# ;extract the distance from the edge and the corresponding data as vectors
edge_distance = copy.copy(y[0, :])
for row in range(1, 20):
edge_distance = np.append(edge_distance, y[row, :])
esf_data = copy.copy(edge_arr[:, 0])
for row in range(1, 20):
esf_data = np.append(esf_data, edge_arr[:, row])
# sort the distances and the data accordingly
ind_edge_distance = np.argsort(edge_distance)
sorted_edge_distance = edge_distance[ind_edge_distance]
sorted_esf_data = esf_data[ind_edge_distance]
# get rid of duplicates (if two data correspond to the same distance) and replace them with their average
temp_array01 = np.array([sorted_edge_distance[0]])
temp_array02 = np.array([sorted_esf_data[0]])
for element in range(1, len(sorted_edge_distance)):
if not (sorted_edge_distance[element] - temp_array01[-1]).all():
temp_array02[-1] = (temp_array02[-1] + sorted_esf_data[element]) / 2
else:
temp_array01 = np.append(temp_array01, sorted_edge_distance[element])
temp_array02 = np.append(temp_array02, sorted_esf_data[element])
# ;interpolate the edge response function (ESF) so that it only has 128 elements
u = np.linspace(temp_array01[0], temp_array01[-1], 128)
esf = np.interp(u, temp_array01, temp_array02)
return u, esf
def calculate_mtf_for_edge(dicom, edge, report_path=False):
pixels = dicom.pixel_array
pe = dicom.InPlanePhaseEncodingDirection
img = hazenlib.rescale_to_byte(pixels) # rescale for OpenCV operations
thresh = thresh_image(img)
circle = get_circles(img)
square, box = find_square(thresh)
if edge == 'right':
_, centre = get_right_edge_vector_and_centre(square)
else:
_, centre = get_top_edge_vector_and_centre(square)
edge_arr = get_edge_roi(pixels, centre)
void_arr = get_void_roi(pixels, circle)
signal_arr = get_signal_roi(pixels, edge, centre, circle)
spacing = hazenlib.get_pixel_size(dicom)
mean = np.mean([void_arr, signal_arr])
x_edge, y_edge, edge_arr = get_edge(edge_arr, mean, spacing)
angle, intercept = get_edge_angle_and_intercept(x_edge, y_edge)
x, y = get_edge_profile_coords(angle, intercept, spacing)
u, esf = get_esf(edge_arr, y)
lsf = maivis_deriv(u, esf)
lsf = np.array(lsf)
n=lsf.size
mtf = abs(np.fft.fft(lsf))
norm_mtf = mtf / mtf[0]
mtf_50 = min([i for i in range(len(norm_mtf) - 1) if norm_mtf[i] >= 0.5 >= norm_mtf[i + 1]])
profile_length = max(y.flatten()) - min(y.flatten())
freqs= fftfreq(n, profile_length/n)
mask = freqs >= 0
mtf_frequency = 10.0 * mtf_50 / profile_length
res = 10 / (2 * mtf_frequency)
if report_path:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(11, 1)
fig.set_size_inches(5, 36)
fig.tight_layout(pad=4)
axes[0].set_title('raw pixels')
axes[0].imshow(pixels, cmap='gray')
axes[1].set_title('rescaled to byte')
axes[1].imshow(img, cmap='gray')
axes[2].set_title('thresholded')
axes[2].imshow(thresh, cmap='gray')
axes[3].set_title('finding circle')
c = cv.circle(img, (circle[0][0][0], circle[0][0][1]), circle[0][0][2], (255, 0, 0))
axes[3].imshow(c)
box = cv.drawContours(img, [box], 0, (255, 0, 0), 1)
axes[4].set_title('finding MTF square')
axes[4].imshow(box)
axes[5].set_title('edge ROI')
axes[5].imshow(edge_arr, cmap='gray')
axes[6].set_title('void ROI')
im = axes[6].imshow(void_arr, cmap='gray')
fig.colorbar(im, ax=axes[6])
axes[7].set_title('signal ROI')
im = axes[7].imshow(signal_arr, cmap='gray')
fig.colorbar(im, ax=axes[7])
axes[8].set_title('edge spread function')
axes[8].plot(esf)
axes[8].set_xlabel('mm')
axes[9].set_title('line spread function')
axes[9].plot(lsf)
axes[9].set_xlabel('mm')
axes[10].set_title('normalised MTF')
axes[10].plot(freqs[mask],norm_mtf[mask])
axes[10].set_xlabel('lp/mm')
fig.savefig(f'{report_path}_{pe}_{edge}.png')
return res
def calculate_mtf(dicom, report_path=False):
pe = dicom.InPlanePhaseEncodingDirection
pe_result, fe_result = None, None
if pe == 'COL':
pe_result = calculate_mtf_for_edge(dicom, 'top', report_path)
fe_result = calculate_mtf_for_edge(dicom, 'right', report_path)
elif pe == 'ROW':
pe_result = calculate_mtf_for_edge(dicom, 'right', report_path)
fe_result = calculate_mtf_for_edge(dicom, 'top', report_path)
return {'phase_encoding_direction': pe_result, 'frequency_encoding_direction': fe_result}
def main(data: list, report_path=False) -> dict:
results = {}
for dcm in data:
try:
key = f"{dcm.SeriesDescription}_{dcm.SeriesNumber}_{dcm.InstanceNumber}"
if report_path:
report_path = key
except AttributeError as e:
logger.info(e)
key = f"{dcm.SeriesDescription}_{dcm.SeriesNumber}"
try:
results[key] = calculate_mtf(dcm, report_path)
except Exception as e:
print(f"Could not calculate the spatial resolution for {key} because of : {e}")
traceback.print_exc(file=sys.stdout)
continue
return results