-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathslice_position.py
231 lines (163 loc) · 7.04 KB
/
slice_position.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
Local Otsu thresholding
http://scikit-image.org/docs/0.11.x/auto_examples/plot_local_otsu.html
"""
from hazenlib.logger import logger
import sys
import os
import traceback
import pydicom
from skimage import measure, filters
import numpy as np
import cv2 as cv
import hazenlib
import hazenlib.tools
import hazenlib.exceptions
def get_rod_rotation(x_pos: list, y_pos: list) -> float:
"""
Determine the in-plane rotation i.e. the x-position of the rods should not vary with y-position. If they do it's
because the phantom is rotated in-plane.
We can determine the angle of in-plane rotation by plotting the x-position against the y-position. We then fit a
straight line through the points.
arctan (gradient) is the angle of rotation.
If y=c+mx, we can formulate the straight line fit matrix problem, y=X*beta where y is the x-position (because if I
set y to be the y-position the fit isn't very good because the x-position hardly varies ), X is the two column
design matrix, the first column is a constant and the second column are the y-positions.
Parameters
----------
x_pos: int
x co-ordinate of a rod
y_pos: int
y co-ordinate of a rod
Returns
-------
theta: float
angle of rotation in degrees
"""
X = np.array([[i, 1] for i in y_pos])
m, c = np.linalg.lstsq(X, np.array(x_pos), rcond=None)[0]
theta = np.arctan(m)
return theta
def get_rods_coords(dcm: pydicom.Dataset):
shape_detector = hazenlib.tools.ShapeDetector(arr=dcm.pixel_array)
try:
x, y, r = shape_detector.get_shape('circle')
except hazenlib.exceptions.MultipleShapesError as e:
# logger.info(f'Warning: found multiple shapes: {list(shape_detector.shapes.keys())}')
shape_detector.find_contours()
shape_detector.detect()
x, y, r = 0, 0, 0
for contour in shape_detector.shapes['circle']:
(new_x, new_y), new_r = cv.minEnclosingCircle(contour)
if new_r > r:
# logger.info(f"Found bigger circle: {new_x}, {new_y}, {new_r}")
x, y, r = new_x, new_y, new_r
# logger.info(f"Found circle with x={x},y={y},r={r}")
except hazenlib.exceptions.ShapeError:
raise
x, y = int(x), int(y)
# clip image in xy plane to only include regions where rods could be
x_window = int(r/4)
y_window = int(r*0.95)
arr = dcm.pixel_array
clipped = np.zeros_like(arr)
clipped[y-y_window:y+y_window, x-x_window:x+x_window] = arr[y-y_window:y+y_window, x-x_window:x+x_window]
threshold = filters.threshold_otsu(clipped, 2)
clipped_thresholded = clipped <= threshold # binarise using otsu threshold
labels, num = measure.label(clipped_thresholded, return_num=True)
measured_objects = measure.regionprops(label_image=labels)
rods = []
for obj in measured_objects:
if 5 < obj.bbox_area < 25:
rods.append(obj)
if len(rods) != 2:
raise Exception(f'Found {len(rods)} rods instead of 2.')
rods.sort(key=lambda x: x.centroid[1]) # sort into Left and Right by using second coordinate
ly, lx = rods[0].centroid
ry, rx = rods[1].centroid
# fig = plt.figure(1)
# plt.imshow(labels)
# plt.show()
return lx, ly, rx, ry
def get_rods(data: list):
left_rod, right_rod = {'x_pos': [], 'y_pos': []}, {'x_pos': [], 'y_pos': []}
nominal_positions = []
for i, dcm in enumerate(data):
nominal_positions.append((i + 10) * dcm.SpacingBetweenSlices)
lx, ly, rx, ry = get_rods_coords(dcm)
left_rod['x_pos'].append(lx)
left_rod['y_pos'].append(ly)
right_rod['x_pos'].append(rx)
right_rod['y_pos'].append(ry)
# img = dcm.pixel_array
# cv2.circle(img, (lx, ly), 5, color=(0, 255, 0))
# cv2.circle(img, (rx, ry), 5, color=(0, 255, 0))
# fig = plt.figure(1)
# plt.imshow(img, cmap='gray')
# plt.show()
return left_rod, right_rod, nominal_positions
def correct_rods_for_rotation(left_rod: dict, right_rod: dict) -> (dict, dict):
"""
Parameters
----------
left_rod
right_rod
Returns
-------
"""
r_theta = get_rod_rotation(x_pos=right_rod['x_pos'], y_pos=right_rod['y_pos'])
l_theta = get_rod_rotation(x_pos=left_rod['x_pos'], y_pos=left_rod['y_pos'])
theta = np.mean([r_theta, l_theta])
left_rod['x_pos'] = np.subtract(np.multiply(np.cos(theta), left_rod['x_pos']),
np.multiply(np.sin(theta), left_rod['y_pos']))
left_rod['y_pos'] = np.add(np.multiply(np.sin(theta), left_rod['x_pos']),
np.multiply(np.cos(theta), left_rod['y_pos']))
right_rod['x_pos'] = np.subtract(np.multiply(np.cos(theta), right_rod['x_pos']),
np.multiply(np.sin(theta), right_rod['y_pos']))
right_rod['y_pos'] = np.add(np.multiply(np.sin(theta), right_rod['x_pos']),
np.multiply(np.cos(theta), right_rod['y_pos']))
return left_rod, right_rod
def slice_position_error(data: list, report_path=False):
# get rod positions and nominal positions
left_rod, right_rod, nominal_positions = get_rods(data)
# Correct for phantom rotation
left_rod, right_rod = correct_rods_for_rotation(left_rod, right_rod)
fov = hazenlib.get_field_of_view(data[0])
# x_length_mm = np.subtract(right_rod['x_pos'], left_rod['x_pos']) * fov/data[0].Columns
y_length_mm = np.subtract(left_rod['y_pos'], right_rod['y_pos']) * fov / data[0].Columns
z_length_mm = np.divide(y_length_mm, 2)
if z_length_mm[0] > z_length_mm[-1]:
nominal_positions = nominal_positions[::-1]
# Correct for zero offset
nominal_positions = [x - nominal_positions[18] + z_length_mm[18] for x in nominal_positions]
results = np.subtract(z_length_mm, nominal_positions)
if report_path:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 1)
fig.set_size_inches(10, 10)
fig.tight_layout()
ax[0].imshow(data[19].pixel_array, cmap='gray')
for idx in range(40):
rods_x = [left_rod["x_pos"][idx], right_rod['x_pos'][idx]]
rods_y = [left_rod["y_pos"][idx], right_rod['y_pos'][idx]]
ax[0].scatter(rods_x, rods_y, 20, c='green', marker='+')
ax[1].scatter(range(10, 50), results, marker='x')
ax[1].set_yticks(np.arange(-2.5, 2.5, 0.5))
fig.savefig('slice_position.png')
return results
def main(data: list, report_path=False) -> list:
if len(data) != 60:
raise Exception('Need 60 DICOM')
data.sort(key=lambda x: x.SliceLocation) # sort by slice location
data = data[10:50] # ignore first and last 10 dicom
try:
results = slice_position_error(data, report_path)
except Exception as e:
raise
import decimal
decimal.getcontext().prec = 3
results = [str(abs(decimal.Decimal(i)*1)) for i in results]
del decimal
return results
if __name__ == "__main__":
main([os.path.join(sys.argv[1], i) for i in os.listdir(sys.argv[1])])