diff --git a/examples/BHEvolutionWithSF.ipynb b/examples/BHEvolutionWithSF.ipynb
new file mode 100644
index 0000000..3b211d5
--- /dev/null
+++ b/examples/BHEvolutionWithSF.ipynb
@@ -0,0 +1,340 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ff3f7338",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Isotropic Schwarzschild BH example\n",
+ "# see further details in https://github.com/GRChombo/engrenage/wiki/Running-the-black-hole-example\n",
+ "\n",
+ "# restart the kernel to clear past work\n",
+ "# (can also do this manually from the Kernel options above)\n",
+ "from IPython.core.display import HTML\n",
+ "HTML(\"\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "5ae36db4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# load the required python modules\n",
+ "import numpy as np\n",
+ "from scipy.interpolate import interp1d\n",
+ "from scipy.integrate import odeint\n",
+ "from scipy.integrate import solve_ivp\n",
+ "import time\n",
+ "import random\n",
+ "import sys\n",
+ "from tqdm import tqdm\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "# homemade code\n",
+ "sys.path.append('../')\n",
+ "from source.rhsevolution import * # go here to look at how the evolution works\n",
+ "from source.bhinitialconditions import * # go here to change the initial conditions\n",
+ "from source.hamdiagnostic import * # go here to change the Ham constraint diagnostic\n",
+ "from source.Grid import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "e0b8dc67",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Base dx is 0.03366381638499971\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEGCAYAAAB1iW6ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAApUUlEQVR4nO3de3xU9Z3/8ddnJpNMLhAugYgkEC9YREjVgNVCK9a2q1Sxtdbq1rbWdtnaumv7q7/V9vdYd9v97cXHr7/aZallrbba37pQd6312nVbm9QbioCAAqKICAHknsuQTDKX7++PmYRcJskMuczt/Xw85jHnfM/3nHy+TPjMN9/zPeeYcw4REcl+nnQHICIiI0MJXUQkRyihi4jkCCV0EZEcoYQuIpIjCtL1gysqKlxNTU1K+xw/fpzS0tLRCSiDqd35Re3OL6m2e/369Yedc1MSbUtbQq+pqWHdunUp7dPQ0MDixYtHJ6AMpnbnF7U7v6TabjN7b6BtGnIREckRQyZ0M/Ob2Voz22RmW8zs+wnqLDazZjPbGH/dOTrhiojIQJIZcukAPuacC5iZD3jBzH7rnHu5T73nnXNXjHyIIiKSjCETuovdGyAQX/XFX7pfgIiMiVAoRGNjI8FgMN2hjIry8nK2bdvWr9zv91NVVYXP50v6WJbMvVzMzAusB84EfuKcu73P9sXAI0AjsA+4zTm3JcFxlgHLACorK+tWr16ddKAAgUCAsrKylPbJBWp3flG7eysrK6OyspLy8nLMLA2Rja5IJILX6+1V5pyjubmZAwcOEAgEem275JJL1jvn5ic8mHMu6RcwAagH5vYpHw+UxZeXAG8Pday6ujqXqvr6+pT3yQVqd35Ru3vbunWri0ajYxvMGGppaUlYHo1G3datW/uVA+vcAHk1pVkuzrkmoAG4rE95i3MuEF9+GvCZWUUqxxYRGUgu9syHcjJtHnIM3cymACHnXJOZFQMfB+7qU+cU4IBzzpnZBcRmzxxJORrpFok6fvHiu7S0h2jc08kHF3QysbQw3WGJSAZLZpbLNODB+Di6B3jYOfekmX0dwDm3ErgGuNnMwkA7cF38TwM5Sdv2t/C/nzpxomTBlve5/oIZaYxIRPrqukCyoqL3gMTjjz/O1q1bueOOO8Y0nmRmuWwGzktQvrLH8gpgxciGlt/aOiMA3POF8/nGQxs43hFOc0QikqylS5eydOnSMf+5ulI0QwVDsYQ+oTg2ZakjHE1nOCJ5bdeuXcyePZsvf/nL1NbWcs0119DW1gbAv/zLv3D++eczb9483nzzTQAeeOABbrnlljGPM233cpHBdSX08cU+rMe6SD77/hNb2LqvZUSPOefU8fzNlecMWW/79u3cf//9LFy4kJtuuol77rkHgIqKCjZs2MA999zDD3/4Q+67774RjS8V6qFnqGC8R+73efB5lNBF0q26upqFCxcCcMMNN/DCCy8AcPXVVwNQV1fHrl270hUeoB56xupK4EUFXnxeCIY05CKSTE96tPSdRti1XlRUBIDX6yUcTu+5LvXQM1RHPKH7fV4KPaYeukia7d69mzVr1gCwatUqFi1alOaI+lNCz1AdPYZcCr0nhmBEJD3OPvtsHnzwQWprazl69Cg333xzukPqR0MuGSrYo4euMXSR9PN4PKxcubJXWc8x8/nz59PQ0ADAjTfeyI033jh2wcWph56hgqEoHoMCj1Ho1ZCLiAxNCT1DBUMR/D4vZkahFzp0UlQkbWpqanjjjTfSHcaQlNAzVDAcS+hA7KRoWD10ERmcEnqGCoai+AtiH09s2qISuogMTgk9Q3UNuQAUeqBdCV1EhqCEnqE6wlGK4gnd5zVdWCQiQ1JCz1CxHnrs4ynUtEWRtNq1axdz585NdxhDUkLPUB2hKEXxMfRCr2mWi0iyNj8Md8+Fv50Qe9/88Jj82L6X/afjNgC6sChDBcMRJsWfUOTzQGckSiTq8Hry71FcIknb/DA88ZcQao+tN++JrQPUXjusQ0ciEf7sz/6Ml156ienTp/PYY49x+eWX8+EPf5gXX3yRpUuX8sQTT/Ra/853vjPMBqVGCT1DBUMR/AXxk6LxB4J3hCOUFOojkzz22zvg/dcH3t74KkQ6epeF2uGxW2D9g4n3OWUeXP5PQ/7ot99+m1WrVvGzn/2Ma6+9lkceeQSApqYm/vjHPwLwxBNP9FofaxpyyVDBULTHGLp1l4nIIPom86HKU3Daaadx7rnnAr1vlfv5z3++V72+62NJ3b0M1WvaovdEmUheG6onfffc2DBLX+XV8JWnhvWju26TC7Fb5ba3x4Z1SktLe9Xruz6W1EPPUB3haHdC93m7euhK6CKDuvRO8BX3LvMVx8rzwJAJ3cz8ZrbWzDaZ2RYz+36COmZmy81sh5ltNrPzRyfc/BEMRSjqMW0xVqYhF5FB1V4LVy6P9cix2PuVy4d9QjRbJDPk0gF8zDkXMDMf8IKZ/dY593KPOpcDs+KvDwE/jb/LSXDOxS4s6nNSVPdzEUlC7bUjnsD73pzrtttuS1iv6/a56TJkD93FBOKrvvjL9al2FfDLeN2XgQlmNm1kQ80fPR9uAeDzaMhFRIaW1ElRM/MC64EzgZ84517pU2U60PNMRGO8bH+f4ywDlgFUVlam/G0WCATS/g04FgKdse/Lxl3v0tDQSKSzHTBe3bCRzj35cx47Xz7vvtTu3srLy2ltbR37gMZIJBIZsH3BYDCl34WksoNzLgKca2YTgEfNbK5zrufNgRNd7dK3F49z7l7gXoD58+e7xYsXJx0oxP6cSXWfbPR+cxD+8Cxzz/4Aiz80gz1P/AFoZ9bsc1g8L3/+8MmXz7svtbu3bdu2MW7cuLEPaIy0trYO2D6/3895552X9LFSmuXinGsCGoDL+mxqBKp7rFcB+1I5tpxw4vFzXUMuvctFRBJJZpbLlHjPHDMrBj4OvNmn2uPAl+KzXS4Emp1z+5GTcmIMve88dM1yEZGBJTPkMg14MD6O7gEeds49aWZfB3DOrQSeBpYAO4A24CujFG9e6NtDL9RJURFJwpAJ3Tm3Geg3iBNP5F3LDvjmyIaWv7oSt6YtimSGsrIyAoHA0BXTTFeKZqBgv2mL8XINuYjIIJTQM1DfHrqZUVTgoUNDLiJpFQgEuPTSSzn//POZN28ejz32GBB7AMbs2bP58pe/TG1tLddccw1tbW0A3HHHHcyZM4fa2truC5IOHTrEZz/7WRYsWMDFF1/Miy++OCLx5c+k5ixyYgzd213m93k1hi557661d/Hm0b5zMoZn9qTZ3H7B7UnV9fv9PProo4wfP57Dhw9z4YUXsnTpUgC2b9/O/fffz8KFC7npppu45557uOmmm3j00Ud58803MTOampoAuPXWW/n2t7/NokWL2Lp1K5/97GfZtm3bsNuihJ6Bup5O1DXk0rWsIReR9HLO8b3vfY/nnnsOj8fD3r17OXDgAADV1dUsXLgQgBtuuIHly5fzrW99C7/fz9e+9jU+9alPccUVVwDw+9//nq1btwIQjUZpaWkZdD56spTQM1BHeIAeuk6KSp5Ltic9Wh566CEOHTrE+vXr8fl81NTUEAwGgdjQaE9mRkFBAWvXruXZZ59l9erVrFixgj/84Q9Eo1HWrFlDcXHxiCTyLhpDz0DBUO956AD+Ag25iKRbc3MzU6dOxefzUV9fz3vvvde9bffu3axZswaAVatWsWjRIgKBAM3NzSxZsoQf//jHbNy4EYBPfvKTrFixonvfrvLhUkLPQCdOimrIRSSTfOELX2DdunXMnz+fhx56iNmzZ3dvO/vss3nwwQepra3l6NGj3HzzzbS2tnLFFVdQW1vLxRdfzN133w3A8uXLWbduHbW1tSxYsICVK1cO9CNToiGXDBQMR/B6DJ/3REIv8nlpVw9dJC265qBXVFR098J72rVrFx6Pp19iLikpYe3atf3qV1RU8Ktf/QoY/F4uqVIPPQMFQ1H8Bb0/Gr/Pq2mLIjIoJfQM1PN5ol2KNeQikrH6PgAjXZTQM1AwFO2X0DXLRfJZ7O4i+eVk2qyEnoE6wieeJ9pFs1wkX/n9fo4cOZJXSd05x5EjR/D7/Sntp5OiGSg2ht63h64hF8lPVVVVNDY2cujQoXSHMiqCwWDCxO33+6mqqkrpWEroGShhD12X/kue8vl8nHbaaekOY9Q0NDSk9FSiwWjIJQMFQ5F+PfQin5eOcDSv/uwUkdQooWeg2EnRvj302HrX04xERPpSQs9AiaYtdvXYNewiIgNRQs9AwXCChO7rSujqoYtIYkroGahjkCEX9dBFZCBDJnQzqzazejPbZmZbzOzWBHUWm1mzmW2Mv+4cnXDzQzAU6X5aUZfuHrouLhKRASQzbTEMfMc5t8HMxgHrzex3zrmtfeo975y7YuRDzD/BcP8rRYvj6+2dSugiktiQPXTn3H7n3Ib4ciuwDZg+2oHlq2jU0RmO9rp1LtA9L11j6CIykJTG0M2sBjgPeCXB5ovMbJOZ/dbMzhmJ4PJR17TEAU+KashFRAaQ9JWiZlYGPAJ8yznX0mfzBmCmcy5gZkuA3wCzEhxjGbAMoLKykoaGhpSCDQQCKe+TbQKdsQuHGnftpKFhT6wsEGD3xg0ArH9tM7Y/Py7wzYfPOxG1O7+MaLudc0O+AB/wDPA/kqy/C6gYrE5dXZ1LVX19fcr7ZJt9TW1u5u1Pun9/5b3usvr6evfOwVY38/Yn3aMbGtMY3djKh887EbU7v6TabmCdGyCvJjPLxYD7gW3OuR8NUOeUeD3M7AJiQzlHRuD7Ju90dD9PtP+9XEDTFkVkYMn87b4Q+CLwupltjJd9D5gB4JxbCVwD3GxmYaAduC7+TSIp6hoj73+3RSV0ERnckAndOfcCYEPUWQGsGKyOJOd4RzyhF/a/fS7EpjSKiCSiK0UzTFNbJwATSwp7leteLiIyFCX0DHOsLQTAxBJfr3KPxyj06iEXIjIwJfQM09VDn9Cnhw5QXOilrTM81iGJSJZQQs8wTW0hvB5jvL//6Y3JpYUcPd6ZhqhEJBsooWeYY22dTCj2EZ8F2suk0kKOBJTQRSQxJfQM09QWYkKf8fMuk8vUQxeRgSmhZ5hjbZ39Zrh0mVRaxJHjHWMckYhkCyX0DHOsLZTwhCjExtCPtYWIRnXNloj0p4SeYZraOgcdcolEHc3toTGOSkSygRJ6hokNuSRO6JNKYz13DbuISCJK6BkkGIoQDEUHGXIpAtBMFxFJSAk9gxwb4LL/LpPLYuWa6SIiiSihZ5BjxxNf9t9lcnzI5bASuogkoISeQQa77B9gYjyhH9WQi4gkoISeQbpvzFWauIfu83ooL/bppKiIJKSEnkGGGkOH2LDLEQ25iEgCSugZ5MSQS+IeOsSmLmrIRUQSUULPIMfaQpQUeinq8/i5niaXFWrIRUQSUkLPIIPdx6XLpNIiTVsUkYSU0DNI8yB3WuxSEb/jou7nIiJ9DZnQzazazOrNbJuZbTGzWxPUMTNbbmY7zGyzmZ0/OuHmtmOD3Mely6TSQqIOmnQ/FxHpI5keehj4jnPubOBC4JtmNqdPncuBWfHXMuCnIxplnmga5E6LXbru53JU4+gi0seQCd05t985tyG+3ApsA6b3qXYV8EsX8zIwwcymjXi0OW6wG3N1qSiL3c/lsGa6iEgf/R9cOQgzqwHOA17ps2k6sKfHemO8bH+f/ZcR68FTWVlJQ0NDSsEGAoGU98kWUedoagvRfGg/DQ1Hem3r2e49rVEAnl/7GsHdKX18WSeXP+/BqN35ZUTb7ZxL6gWUAeuBqxNsewpY1GP9WaBusOPV1dW5VNXX16e8T7Y4drzDzbz9SXff8zv7bevZ7gPN7W7m7U+6X67ZNYbRpUcuf96DUbvzS6rtBta5AfJqUrNczMwHPAI85Jz7dYIqjUB1j/UqYN9Jfsfkpe7L/ocYcum6n8uRgMbQRaS3If9mt9jj5+8HtjnnfjRAtceBW8xsNfAhoNk5t3+AupJA9cRinv+rSygfIqF33c9Fc9FFpK9kBmEXAl8EXjezjfGy7wEzAJxzK4GngSXADqAN+MqIR5rjCrweqieVJFV3cmmhHnIhIv0MmdCdcy8ANkQdB3xzpIKSwenyfxFJRFeKZqGKsiIOtiqhi0hvSuhZaMakEhqPtevyfxHpRQk9C82YXEJnOMr7LcF0hyIiGUQJPQvNnFQKwK4jx9MciYhkEiX0LDRzcmw2zO4jbWmOREQyiRJ6Fjp1QjE+r/HeUSV0ETlBCT0LeT1G1cQS3tOQi4j0oISepWZOLuE9DbmISA9K6Flq5qRYQo9d0yUiooSetWZMLiXQEdY9XUSkmxJ6lqqJz3TRiVER6aKEnqW6pi7qxKiIdFFCz1JVE0swQydGRaSbEnqW8vu8TBvv18VFItJNCT2LzZhcosv/RaSbEnoWq5lcym6dFBWROCX0LDZjcgmHA50EOsLpDkVEMoASehY7bXLsros7DwXSHImIZAIl9Cx2zqnlALyxtyXNkYhIJlBCz2LVk4opL/bx+t6mdIciIhlgyIRuZj83s4Nm9sYA2xebWbOZbYy/7hz5MCURM2Pe9HJe39uc7lBEJAMk00N/ALhsiDrPO+fOjb9+MPywJFlzp5ez/f1WOsKRdIciImk2ZEJ3zj0HHB2DWOQkzJteTiji2P5+a7pDEZE0s2Ruv2pmNcCTzrm5CbYtBh4BGoF9wG3OuS0DHGcZsAygsrKybvXq1SkFGwgEKCsrS2mfXDBYuw+1Rfmfz7Xz5TmFXDLDN8aRjS593vlF7U7OJZdcst45Nz/hRufckC+gBnhjgG3jgbL48hLg7WSOWVdX51JVX1+f8j65YLB2R6NRV/u3z7g7Htk0dgGNEX3e+UXtTg6wzg2QV4c9y8U51+KcC8SXnwZ8ZlYx3ONKcrpOjG5u1IlRkXw37IRuZqeYmcWXL4gf88hwjyvJm1dVzlsHdGJUJN8VDFXBzFYBi4EKM2sE/gbwATjnVgLXADebWRhoB66L/1kgY6TnidHaqgnpDkdE0mTIhO6cu36I7SuAFSMWkaRs3vTYFaObG5uV0EXymK4UzQFVE4uZWOJj456mdIciImmkhJ4DzIwLT5/MSzsOo9EukfylhJ4jPjJrCvuag7xzSA+8EMlXSug54iOzYjNFn3/7UJojEZF0UULPEdWTSqiZXMLzbx9OdygikiZK6DnkI7Om8PLOI3SGo+kORUTSQAk9h3xkVgVtnRE27D6W7lBEJA2U0HPIRWdMxusxjaOL5Ckl9Bwyzu/j/BkTNI4ukqeU0HPMR2ZN4fW9zRwJdKQ7FBEZY0roOebSs6fiHPz2jffTHYqIjDEl9BwzZ9p4Zk0t47GNe9MdioiMMSX0HGNmXHXuqby66xiNx9rSHY6IjCEl9Bx01bnTAXh80740RyIiY0kJPQdVTyqhbuZEHntNCV0knyih56hPn3sq2w+0sm1/S7pDEZExooSeo5bMm4bXY/xGJ0dF8oYSeo6aXFbE4rOm8Mj6vXrWqEieUELPYTcurOFwoIPHN2osXSQfKKHnsEVnVjD7lHHc/8K7epKRSB4YMqGb2c/N7KCZvTHAdjOz5Wa2w8w2m9n5Ix+mnAwz46uLTuPN91t1fxeRPJBMD/0B4LJBtl8OzIq/lgE/HX5YMlKWnnsqU8YVcd8L76Y7FBEZZQVDVXDOPWdmNYNUuQr4pYv9Tf+ymU0ws2nOuf0jFWS+uGvtXbx59M1+5U1NTTz4Xw+e9HEnntHOq0fb+PzjEygp9A4nxDE13HZnK7U7v4xku4dM6EmYDuzpsd4YL+uX0M1sGbFePJWVlTQ0NKT0gwKBQMr7ZJPGo400dTb1K49EIjQ19S9Plt+Bx2DXwWZOLcue0ybDbXe2Urvzy4i22zk35AuoAd4YYNtTwKIe688CdUMds66uzqWqvr4+5X1ywUi0+4fPvOlm3v6ke233sWEfa6zo884vandygHVugLw6Et21RqC6x3oVoHlyGebPLz6DirJC/uGpbZrxIpKjRiKhPw58KT7b5UKg2Wn8POOUFRXw7U+cxdpdR/nvrQfSHY6IjIJkpi2uAtYAHzCzRjP7qpl93cy+Hq/yNLAT2AH8DPjGqEUrw/L5+dWcObWMu377JqFINN3hiMgIS2aWy/VDbHfAN0csIhk1BV4P3718Nl99cB2/ePFdln30jHSHJCIjKHumPMiI+NjsqXxiTiX/97/fYsfBQLrDEZERpISeZ8yMv//MXIoLvdz2H5uIRHWCVCRXKKHnoanj/Pzgqrls3NPEvc/tTHc4IjJClNDz1JW107h87inc/bu39BAMkRyhhJ6nzIy/+/Rcykt8/Pn/W09TW2e6QxKRYVJCz2MVZUWsvKGO95uD/MWq1whrKqNIVlNCz3N1Myfyg6vO4fm3D/N/ntme7nBEZBhG4uZckuWuu2AGW/a18K/P7eSMqWVcO7966J1EJOMooQsAf33FHN49fJw7HtlMaWEBn6qdlu6QRCRFGnIRAAoLPNz7pTrqZk7k1tWv8ew23e9FJNsooUu3ksIC7r9xAXNOHc/ND23g+bcPpTskEUmBErr0Mt7v48GvXMDpFaXc9MCrPL5Jd0IWyRZK6NLPxNJCfrXsIs6bMZG/XPUaP3tup+6hLpIFlNAlofISH7+86QKWzDuFv396G99/YqvmqYtkOCV0GZDf52XF9efzlYU1PPDSLv70vlc42BJMd1giMgAldBmUx2P8zZXncPfnP8jrjc0sWf4CL71zON1hiUgCSuiSlM+cV8VjtyykvLiAG+57hR8+s52OcCTdYYlID0rokrSzKsfx+C2LuPr8KlbU7+CK5S+wcU9TusMSkTgldElJaVEBP/zcB/nFVxYQ6Ahz9T0v8g9PbyPQEU53aCJ5TwldTsolH5jKM9/+KJ9fUM29z+3kkh828PC6PUT1BCSRtEkqoZvZZWa23cx2mNkdCbYvNrNmM9sYf9058qFKphnv9/GPV9fy6Dc+TNXEYv7qPzez9CcvsOadI+kOTSQvDZnQzcwL/AS4HJgDXG9mcxJUfd45d2789YMRjlMy2HkzJvLrmz/MP193LkcCnVz/s5e5/t6XeXmnErvIWEqmh34BsMM5t9M51wmsBq4a3bAk25gZV507nfrbFvPXV8xhx6EA1937Mtfdu4YXdxzWlaYiY8CG+o9mZtcAlznnvhZf/yLwIefcLT3qLAYeARqBfcBtzrktCY61DFgGUFlZWbd69eqUgg0EApSVlaW0Ty7IxnZ3RhwNe8I89W6I5g5HVZnxiRofF00roNBrSR0jG9s9EtTu/JJquy+55JL1zrn5ibYlcz/0RP/7+n4LbABmOucCZrYE+A0wq99Ozt0L3Aswf/58t3jx4iR+/AkNDQ2kuk8uyNZ2fxK4MxTh8U37+PkL7/KLN1p57F24bkE1186vpqaidND9s7Xdw6V255eRbHcyCb0R6PkImypivfBuzrmWHstPm9k9ZlbhnNMlhXnO7/Ny7fxqPldXxcs7j/LzF99l5R/f4Z6Gd7jgtElcO7+aJfNOoaRQz1oRGa5k/he9Cswys9OAvcB1wJ/2rGBmpwAHnHPOzC4gNjavM2LSzcy46IzJXHTGZA60BHlkQyP/sa6R2/5jE3c+9gYfP7uSK2qn8dGzpuD3edMdrkhWGjKhO+fCZnYL8AzgBX7unNtiZl+Pb18JXAPcbGZhoB24zuksmAygcryfbyw+k5svPoN17x3j1xsa+a833ufxTfsoKyrgE3Mq+ZNzKiGsXyGRVCT1d65z7mng6T5lK3ssrwBWjGxokuvMjAU1k1hQM4kfXDWXNe8c4cnN+3hmywEefW0vBQYf3r2Wj589lUs+MJXqSSXpDlkko2ngUjKCz+vho2dN4aNnTeHvPxNl3a5jPPC7dbx9tI07H9sCbOG0ilIWnjmZRWdWcNHpFZSX+NIdtkhGUUKXjOPzerjojMl07Cli8eLF7DwUoGH7IV565zCPbtjLv728GzM459Tx3T38+TUTmTrOn+7QRdJKCV0y3ulTyjh9Shk3LTqNUCTK5sYmnn/7MK/sPMqqtbv5xYu7AKiZXML5MydyXvUEPlg9gdmnjKewQLcrkvyhhC5Zxef1UDdzEnUzJwHQGY6yZV8zr+46ytp3j/HcW4f49Ya9ABR6Pcw5dTy1VeWcc+p45kwrZ1ZlmWbRSM5SQpesVljg4bwZEzlvxkSWfRScc+xrDrJpTxOb9jTx2p4mfr1hL79c8x4AXo9x5pQyzp42jg+cMp6zKss4q3Ic0ycU4/EkdwWrSKZSQpecYmZMn1DM9AnFLJk3DYBo1LHnWBtb97WwZV8LW/e38PLOo/xm44nr40oKvcyaWsYZU8s4Y0oZp1eUcvqUMmZOLlGPXrKGErrkPI/HmDm5lJmTS7k8nuQBmttD7DjYylsHArx1oJW3DrTy0o4j3UM2AGYwfUIxp1WUMmNSCTMmlTBzcgkzJpUyc3IJpUX6LySZQ7+NkrfKi329xuO7HO8I8+7h47xzKMC7h4+z89Bx3jtynKde309TW6hX3Umlhd1/EVRNLGb6xNjy9InFTCsvZmKJDzMN5cjYUEIX6aO0qIC508uZO72837bm9hC7j7Sx+2gb7x09TuOxdhqPtfP2wVbqtx+kIxztVb+owMO0cj+nlPs5tbyYU8r9VI73Uzm+iCnjut6LKCrQsI4MnxK6SArKi33MqypnXlX/ZO+c48jxThqPtbOvqZ33m4Psb25nf3OQ95uDvPLuUQ60BAkneEzfxBIfU8f5qRhXSOR4kOcDW6koK6KirJCKcUVMKStiUmkhk0oLNaYvA1JCFxkhZhZPwkWcWz0hYZ1o1HG0rZMDLUEOtnZwsCXIwZYODrTG3g8HOtjTFGXTK7tpD0USHqO00MukskImlRYxOZ7kJ5b4mFBSyMSSHsulPiaWFDKhxKe/APKEErrIGPJ4TiT9cwao03V/7OMdYQ4HYkn+UGsnR493cvR4B0eOd3LseCdHjse+GLbtb+FYWyfBUHSAI4Lf56G82NfrNb7nst/HOH8B43ssd5WX+QvwakpnVlBCF8lQpUUFlBYVMHPy4A8C6RIMRTjW1smx4yGa2jo51hbiWFsnze0hmttjZV3Le5uCbNvfSnN7iEBHeOhYCr2U+QsoKyqgzO9jXFFseZy/oLu8K97SQi+lRSfKyoq8lBTGlksKvfi8unp3tCihi+QIv8/LtPLY7JpUhCNRAh1hWtrDtARDsVd7mNZgiJZg7D0QDBPoCNPaESYQLzvYGowtd8S2JXvD7EKvh5IiLyU+LyXxL4DiQi/trUH+c98GSgpjXwB+nze+HNte7OtaLqDYF1v3+zz4fbHt/nhZPv81oYQukucKvB4mlBQyoaTwpI/hnKM9FCHQEeZ4R4TjHeHYqzNMoMd6W2ck/orVaw/F3ts6wzR1OFr2tdAe394eihCKpH5P/EKvhyKfJ57wTyR9f4GXoq5lnxd/Qayev+BEvaJ4naKC+HK8TvdygZfCgtj2nu+FBR4KvZ60T1FVQheRYTMzSgoLYo8SHHdyx0j0bM1QJEp7KBJP8rH39lCY9s5YeTAU6X4PhiK9yzsjdIQjBENRguFYWWswzKHWDjrD0dg+Xe+hCAkmH6WssMBDUfwLpdDbI9nHE77P2/uLwOf1cPRQB7879np3na7y2Mso6rk+xM3mlNBFJGN1JbLx/tG/9304EqUjnuA7wtH4K0JHqPdyMByhMxyNvSJROkJd7xE6IrHyjvCJ91C8Xlf91mCYI/HlUCRK6/EIW5vej9WPl53s896U0EVEiA09FXg9Y347h0R/mUSijlD8CyYUT/KhsKMzEmHWXQMfSwldRCTDeD2G1+NN+SIyzR8SEckRSfXQzewy4J8BL3Cfc+6f+my3+PYlQBtwo3NuwwjHmts2PwzP/gCa94B5wUW63z+KBxqi/cq734vjN5dqP5qg7BgUTxyZ5fIqmPVJePu/oblx8G0ns37pnbHjPfsDaG7kwqIKCCwdtM6IlNVe2+Pff5TKe33Gg+8z9dTPAYsH36ff700KPy+ZfZOtMxLHiNe5cM33oOHwwHWSPdZo1BvNuidTfwDmhhh9NzMv8BbwCaAReBW43jm3tUedJcBfEEvoHwL+2Tn3ocGOO3/+fLdu3bqUgk001pQTNj8MT/wlhNrTHUl6eXyx+9VGOlOrM5wyXzF88E9h07/3/vcfyfIrl8eW+37GA+wT8RTh/fSKgfe5cvmJL4KBtg9n355fCKN9jGTrpLPeaNYFtv7q+8zZ8dOk608p9bx76Hj09H4bSC6hXwT8rXPuT+Lr3wVwzv1jjzr/CjQ451bF17cDi51z+wc6rhJ6D3fPjfXMJTd5i2LvkY6R2cdbBFULoPHVgbcPZ9+qBbHloeqMxDGSrZPOeqNZF4jsfgWvCyVd/4Pf/a/OTe9HivrvkNyQy3SgZ7ZpJNYLH6rOdKBXQjezZcAygMrKShoaGpL48ScEAoGU98kGFzc3kr/XtqWfg4T//iNWHv/PPWL7RDpobmqiPNIxKvs2NzUBDFlnJI6RbJ101hvNugDliZL5IPV9Hga8AiyZhD7Q72GqdXDO3QvcC7Eeeqq97Zztob9WpR56GlnXeYfRKi+vji0k+IxPap/yaiZ8+8UB/7Ib7r4Tvv1ibGWoOiNxjGTrpLPeaNYFgv94Jv6OQ0nXD93lHXBMMplZLo1AdY/1KmDfSdSRgVx6Z2zMLN95fOAd4vLzRHWGU+Yrhrob+//7j2T5pXcm/owH2CfiKRp8n66Tu4NtH86+XcbiGMnWSWe90awL7Dz9iynV39fq9ibcQHIJ/VVglpmdZmaFwHXA433qPA58yWIuBJoHGz+XPmqvjZ0A6epZmbfXe7TrY+pT3v1ePOnErJZ+ZTZyy+XVMP+r8TiH2HYy65++B676SXdZsGjKkHWGXXblcrjiRz3+/UehvPbaPp/x4Pts/8A3B9+n60TZYNuHs2/C38tROkaPOsGiKQPXSfZYo1FvNOsCBysvTqn+4TZ3NOEGiN1UZ6gXsdkrbwHvAP8rXvZ14OvxZQN+Et/+OjB/qGPW1dW5VNXX16e8Ty5Qu/OL2p1fUm03sM4NkFeTmofunHsaeLpP2coeyw74ZjLHEhGR0aErRUVEcoQSuohIjlBCFxHJEUroIiI5YshL/0ftB5sdAt5LcbcK4PAohJPp1O78onbnl1TbPdM5NyXRhrQl9JNhZuucc/PTHcdYU7vzi9qdX0ay3RpyERHJEUroIiI5ItsS+r3pDiBN1O78onbnlxFrd1aNoYuIyMCyrYcuIiIDUEIXEckRWZXQzexzZrbFzKJmlvPTm8zsMjPbbmY7zOyOdMczVszs52Z20MzeSHcsY8XMqs2s3sy2xX/Hb013TGPBzPxmttbMNsXb/f10xzSWzMxrZq+Z2ZMjcbysSujAG8DVwHPpDmS0xR/O/RPgcmAOcL2ZzUlvVGPmAeCydAcxxsLAd5xzZwMXAt/Mk8+7A/iYc+6DwLnAZfFnKuSLW4FtI3WwrErozrltzrnt6Y5jjFwA7HDO7XTOdQKrgavSHNOYcM49Bwx8E/8c5Jzb75zbEF9uJfaffHp6oxp98Vt8B+KrvvgrL2ZqmFkV8CngvpE6ZlYl9Dwz0IO3JceZWQ1wHvBKmkMZE/Fhh43AQeB3zrm8aDfwY+CvgOhIHTDjErqZ/d7M3kjwyoveaQ9JPXhbcouZlQGPAN9yzrWkO56x4JyLOOfOJfYs4gvMbG6aQxp1ZnYFcNA5t34kj5vUE4vGknPu4+mOIUPowdt5xsx8xJL5Q865X6c7nrHmnGsyswZi509y/YT4QmCpmS0B/MB4M/s359wNwzloxvXQpVsyD+eWHGFmBtwPbHPO/Sjd8YwVM5tiZhPiy8XAx4E30xrUGHDOfdc5V+WcqyH2f/sPw03mkGUJ3cw+Y2aNwEXAU2b2TLpjGi3OuTBwC/AMsRNkDzvntqQ3qrFhZquANcAHzKzRzL6a7pjGwELgi8DHzGxj/LUk3UGNgWlAvZltJtaJ+Z1zbkSm8OUjXfovIpIjsqqHLiIiA1NCFxHJEUroIiI5QgldRCRHKKGLiOQIJXQRkRyhhC4yAIvR/xHJGvplFenBzGri9yS/B9hA79sviGQ0XVgk0kP8Toc7gQ87515OczgiKVEPXaS/95TMJRspoYv0dzzdAYicDCV0EZEcoYQuIpIjdFJURCRHqIcuIpIjlNBFRHKEErqISI5QQhcRyRFK6CIiOUIJXUQkRyihi4jkiP8Psb7ICiImlaEAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "