-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatarace.cc
1283 lines (1111 loc) · 37.5 KB
/
datarace.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "datarace.h"
#include "model.h"
#include "threads-model.h"
#include <stdio.h>
#include <cstring>
#include "mymemory.h"
#include "clockvector.h"
#include "config.h"
#include "action.h"
#include "execution.h"
#include "stl-model.h"
#include <execinfo.h>
static struct ShadowTable *root;
static void *memory_base;
static void *memory_top;
static RaceSet * raceset;
#ifdef COLLECT_STAT
static unsigned int store8_count = 0;
static unsigned int store16_count = 0;
static unsigned int store32_count = 0;
static unsigned int store64_count = 0;
static unsigned int load8_count = 0;
static unsigned int load16_count = 0;
static unsigned int load32_count = 0;
static unsigned int load64_count = 0;
#endif
static const ModelExecution * get_execution()
{
return model->get_execution();
}
/** This function initialized the data race detector. */
void initRaceDetector()
{
root = (struct ShadowTable *)snapshot_calloc(sizeof(struct ShadowTable), 1);
memory_base = snapshot_calloc(sizeof(struct ShadowBaseTable) * SHADOWBASETABLES, 1);
memory_top = ((char *)memory_base) + sizeof(struct ShadowBaseTable) * SHADOWBASETABLES;
raceset = new RaceSet();
}
void * table_calloc(size_t size)
{
if ((((char *)memory_base) + size) > memory_top) {
return snapshot_calloc(size, 1);
} else {
void *tmp = memory_base;
memory_base = ((char *)memory_base) + size;
return tmp;
}
}
/** This function looks up the entry in the shadow table corresponding to a
* given address.*/
static inline uint64_t * lookupAddressEntry(const void *address)
{
struct ShadowTable *currtable = root;
#if BIT48
currtable = (struct ShadowTable *) currtable->array[(((uintptr_t)address) >> 32) & MASK16BIT];
if (currtable == NULL) {
currtable = (struct ShadowTable *)(root->array[(((uintptr_t)address) >> 32) & MASK16BIT] = table_calloc(sizeof(struct ShadowTable)));
}
#endif
struct ShadowBaseTable *basetable = (struct ShadowBaseTable *)currtable->array[(((uintptr_t)address) >> 16) & MASK16BIT];
if (basetable == NULL) {
basetable = (struct ShadowBaseTable *)(currtable->array[(((uintptr_t)address) >> 16) & MASK16BIT] = table_calloc(sizeof(struct ShadowBaseTable)));
}
return &basetable->array[((uintptr_t)address) & MASK16BIT];
}
bool hasNonAtomicStore(const void *address) {
uint64_t * shadow = lookupAddressEntry(address);
uint64_t shadowval = *shadow;
if (ISSHORTRECORD(shadowval)) {
//Do we have a non atomic write with a non-zero clock
return !(ATOMICMASK & shadowval);
} else {
if (shadowval == 0)
return true;
struct RaceRecord *record = (struct RaceRecord *)shadowval;
return !record->isAtomic;
}
}
void setAtomicStoreFlag(const void *address) {
uint64_t * shadow = lookupAddressEntry(address);
uint64_t shadowval = *shadow;
if (ISSHORTRECORD(shadowval)) {
*shadow = shadowval | ATOMICMASK;
} else {
if (shadowval == 0) {
*shadow = ATOMICMASK | ENCODEOP(0, 0, 0, 0);
return;
}
struct RaceRecord *record = (struct RaceRecord *)shadowval;
record->isAtomic = 1;
}
}
void getStoreThreadAndClock(const void *address, thread_id_t * thread, modelclock_t * clock) {
uint64_t * shadow = lookupAddressEntry(address);
uint64_t shadowval = *shadow;
if (ISSHORTRECORD(shadowval) || shadowval == 0) {
//Do we have a non atomic write with a non-zero clock
*thread = WRTHREADID(shadowval);
*clock = WRITEVECTOR(shadowval);
} else {
struct RaceRecord *record = (struct RaceRecord *)shadowval;
*thread = record->writeThread;
*clock = record->writeClock;
}
}
/**
* Compares a current clock-vector/thread-ID pair with a clock/thread-ID pair
* to check the potential for a data race.
* @param clock1 The current clock vector
* @param tid1 The current thread; paired with clock1
* @param clock2 The clock value for the potentially-racing action
* @param tid2 The thread ID for the potentially-racing action
* @return true if the current clock allows a race with the event at clock2/tid2
*/
static inline bool clock_may_race(ClockVector *clock1, thread_id_t tid1,
modelclock_t clock2, thread_id_t tid2)
{
return tid1 != tid2 && clock2 != 0 && clock1->getClock(tid2) <= clock2;
}
/**
* Expands a record from the compact form to the full form. This is
* necessary for multiple readers or for very large thread ids or time
* stamps. */
static void expandRecord(uint64_t *shadow)
{
uint64_t shadowval = *shadow;
modelclock_t readClock = READVECTOR(shadowval);
thread_id_t readThread = int_to_id(RDTHREADID(shadowval));
modelclock_t writeClock = WRITEVECTOR(shadowval);
thread_id_t writeThread = int_to_id(WRTHREADID(shadowval));
struct RaceRecord *record = (struct RaceRecord *)snapshot_calloc(1, sizeof(struct RaceRecord));
record->writeThread = writeThread;
record->writeClock = writeClock;
if (readClock != 0) {
record->thread = (thread_id_t *)snapshot_malloc(sizeof(thread_id_t) * INITCAPACITY);
record->readClock = (modelclock_t *)snapshot_malloc(sizeof(modelclock_t) * INITCAPACITY);
record->numReads = 1;
ASSERT(readThread >= 0);
record->thread[0] = readThread;
record->readClock[0] = readClock;
} else {
record->thread = NULL;
}
if (shadowval & ATOMICMASK)
record->isAtomic = 1;
*shadow = (uint64_t) record;
}
#define FIRST_STACK_FRAME 2
unsigned int race_hash(struct DataRace *race) {
unsigned int hash = 0;
for(int i=FIRST_STACK_FRAME;i < race->numframes;i++) {
hash ^= ((uintptr_t)race->backtrace[i]);
hash = (hash >> 3) | (hash << 29);
}
return hash;
}
bool race_equals(struct DataRace *r1, struct DataRace *r2) {
if (r1->numframes != r2->numframes)
return false;
for(int i=FIRST_STACK_FRAME;i < r1->numframes;i++) {
if (r1->backtrace[i] != r2->backtrace[i])
return false;
}
return true;
}
/** This function is called when we detect a data race.*/
static struct DataRace * reportDataRace(thread_id_t oldthread, modelclock_t oldclock, bool isoldwrite, ModelAction *newaction, bool isnewwrite, const void *address)
{
#ifdef REPORT_DATA_RACES
struct DataRace *race = (struct DataRace *)model_malloc(sizeof(struct DataRace));
race->oldthread = oldthread;
race->oldclock = oldclock;
race->isoldwrite = isoldwrite;
race->newaction = newaction;
race->isnewwrite = isnewwrite;
race->address = address;
return race;
#else
return NULL;
#endif
}
/**
* @brief Assert a data race
*
* Asserts a data race which is currently realized, causing the execution to
* end and stashing a message in the model-checker's bug list
*
* @param race The race to report
*/
void assert_race(struct DataRace *race)
{
model_print("Race detected at location: \n");
backtrace_symbols_fd(race->backtrace, race->numframes, model_out);
model_print("\nData race detected @ address %p:\n"
" Access 1: %5s in thread %2d @ clock %3u\n"
" Access 2: %5s in thread %2d @ clock %3u\n\n",
race->address,
race->isoldwrite ? "write" : "read",
id_to_int(race->oldthread),
race->oldclock,
race->isnewwrite ? "write" : "read",
id_to_int(race->newaction->get_tid()),
race->newaction->get_seq_number()
);
}
/** This function does race detection for a write on an expanded record. */
struct DataRace * fullRaceCheckWrite(thread_id_t thread, const void *location, uint64_t *shadow, ClockVector *currClock)
{
struct RaceRecord *record = (struct RaceRecord *)(*shadow);
struct DataRace * race = NULL;
/* Check for datarace against last read. */
for (int i = 0;i < record->numReads;i++) {
modelclock_t readClock = record->readClock[i];
thread_id_t readThread = record->thread[i];
/* Note that readClock can't actuall be zero here, so it could be
optimized. */
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* We have a datarace */
race = reportDataRace(readThread, readClock, false, get_execution()->get_parent_action(thread), true, location);
goto Exit;
}
}
/* Check for datarace against last write. */
{
modelclock_t writeClock = record->writeClock;
thread_id_t writeThread = record->writeThread;
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), true, location);
goto Exit;
}
}
Exit:
record->numReads = 0;
record->writeThread = thread;
record->isAtomic = 0;
modelclock_t ourClock = currClock->getClock(thread);
record->writeClock = ourClock;
return race;
}
/** This function does race detection for a write on an expanded record. */
struct DataRace * atomfullRaceCheckWrite(thread_id_t thread, const void *location, uint64_t *shadow, ClockVector *currClock)
{
struct RaceRecord *record = (struct RaceRecord *)(*shadow);
struct DataRace * race = NULL;
if (record->isAtomic)
goto Exit;
/* Check for datarace against last read. */
for (int i = 0;i < record->numReads;i++) {
modelclock_t readClock = record->readClock[i];
thread_id_t readThread = record->thread[i];
/* Note that readClock can't actuall be zero here, so it could be
optimized. */
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* We have a datarace */
race = reportDataRace(readThread, readClock, false, get_execution()->get_parent_action(thread), true, location);
goto Exit;
}
}
/* Check for datarace against last write. */
{
modelclock_t writeClock = record->writeClock;
thread_id_t writeThread = record->writeThread;
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), true, location);
goto Exit;
}
}
Exit:
record->numReads = 0;
record->writeThread = thread;
record->isAtomic = 1;
modelclock_t ourClock = currClock->getClock(thread);
record->writeClock = ourClock;
return race;
}
/** This function does race detection on a write. */
void atomraceCheckWrite(thread_id_t thread, void *location)
{
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
if (currClock == NULL)
return;
struct DataRace * race = NULL;
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
race = atomfullRaceCheckWrite(thread, location, shadow, currClock);
goto Exit;
}
{
int threadid = id_to_int(thread);
modelclock_t ourClock = currClock->getClock(thread);
/* Thread ID is too large or clock is too large. */
if (threadid > MAXTHREADID || ourClock > MAXWRITEVECTOR) {
expandRecord(shadow);
race = atomfullRaceCheckWrite(thread, location, shadow, currClock);
goto Exit;
}
/* Can't race with atomic */
if (shadowval & ATOMICMASK)
goto ShadowExit;
{
/* Check for datarace against last read. */
modelclock_t readClock = READVECTOR(shadowval);
thread_id_t readThread = int_to_id(RDTHREADID(shadowval));
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* We have a datarace */
race = reportDataRace(readThread, readClock, false, get_execution()->get_parent_action(thread), true, location);
goto ShadowExit;
}
}
{
/* Check for datarace against last write. */
modelclock_t writeClock = WRITEVECTOR(shadowval);
thread_id_t writeThread = int_to_id(WRTHREADID(shadowval));
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), true, location);
goto ShadowExit;
}
}
ShadowExit:
*shadow = ENCODEOP(0, 0, threadid, ourClock) | ATOMICMASK;
}
Exit:
if (race) {
#ifdef REPORT_DATA_RACES
race->numframes=backtrace(race->backtrace, sizeof(race->backtrace)/sizeof(void*));
if (raceset->add(race))
assert_race(race);
else model_free(race);
#else
model_free(race);
#endif
}
}
/** This function does race detection for a write on an expanded record. */
void fullRecordWrite(thread_id_t thread, void *location, uint64_t *shadow, ClockVector *currClock) {
struct RaceRecord *record = (struct RaceRecord *)(*shadow);
record->numReads = 0;
record->writeThread = thread;
modelclock_t ourClock = currClock->getClock(thread);
record->writeClock = ourClock;
record->isAtomic = 1;
}
/** This function does race detection for a write on an expanded record. */
void fullRecordWriteNonAtomic(thread_id_t thread, void *location, uint64_t *shadow, ClockVector *currClock) {
struct RaceRecord *record = (struct RaceRecord *)(*shadow);
record->numReads = 0;
record->writeThread = thread;
modelclock_t ourClock = currClock->getClock(thread);
record->writeClock = ourClock;
record->isAtomic = 0;
}
/** This function just updates metadata on atomic write. */
void recordWrite(thread_id_t thread, void *location) {
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
fullRecordWrite(thread, location, shadow, currClock);
return;
}
int threadid = id_to_int(thread);
modelclock_t ourClock = currClock->getClock(thread);
/* Thread ID is too large or clock is too large. */
if (threadid > MAXTHREADID || ourClock > MAXWRITEVECTOR) {
expandRecord(shadow);
fullRecordWrite(thread, location, shadow, currClock);
return;
}
*shadow = ENCODEOP(0, 0, threadid, ourClock) | ATOMICMASK;
}
/** This function just updates metadata on atomic write. */
void recordCalloc(void *location, size_t size) {
thread_id_t thread = thread_current_id();
for(;size != 0;size--) {
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
fullRecordWriteNonAtomic(thread, location, shadow, currClock);
return;
}
int threadid = id_to_int(thread);
modelclock_t ourClock = currClock->getClock(thread);
/* Thread ID is too large or clock is too large. */
if (threadid > MAXTHREADID || ourClock > MAXWRITEVECTOR) {
expandRecord(shadow);
fullRecordWriteNonAtomic(thread, location, shadow, currClock);
return;
}
*shadow = ENCODEOP(0, 0, threadid, ourClock);
location = (void *)(((char *) location) + 1);
}
}
/** This function does race detection on a read for an expanded record. */
struct DataRace * fullRaceCheckRead(thread_id_t thread, const void *location, uint64_t *shadow, ClockVector *currClock)
{
struct RaceRecord *record = (struct RaceRecord *) (*shadow);
struct DataRace * race = NULL;
/* Check for datarace against last write. */
modelclock_t writeClock = record->writeClock;
thread_id_t writeThread = record->writeThread;
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), false, location);
}
/* Shorten vector when possible */
int copytoindex = 0;
for (int i = 0;i < record->numReads;i++) {
modelclock_t readClock = record->readClock[i];
thread_id_t readThread = record->thread[i];
/* Note that is not really a datarace check as reads cannot
actually race. It is just determining that this read subsumes
another in the sense that either this read races or neither
read races. Note that readClock can't actually be zero, so it
could be optimized. */
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* Still need this read in vector */
if (copytoindex != i) {
ASSERT(readThread >= 0);
record->readClock[copytoindex] = readClock;
record->thread[copytoindex] = readThread;
}
copytoindex++;
}
}
if (__builtin_popcount(copytoindex) <= 1) {
if (copytoindex == 0 && record->thread == NULL) {
int newCapacity = INITCAPACITY;
record->thread = (thread_id_t *)snapshot_malloc(sizeof(thread_id_t) * newCapacity);
record->readClock = (modelclock_t *)snapshot_malloc(sizeof(modelclock_t) * newCapacity);
} else if (copytoindex>=INITCAPACITY) {
int newCapacity = copytoindex * 2;
thread_id_t *newthread = (thread_id_t *)snapshot_malloc(sizeof(thread_id_t) * newCapacity);
modelclock_t *newreadClock = (modelclock_t *)snapshot_malloc(sizeof(modelclock_t) * newCapacity);
real_memcpy(newthread, record->thread, copytoindex * sizeof(thread_id_t));
real_memcpy(newreadClock, record->readClock, copytoindex * sizeof(modelclock_t));
snapshot_free(record->readClock);
snapshot_free(record->thread);
record->readClock = newreadClock;
record->thread = newthread;
}
}
modelclock_t ourClock = currClock->getClock(thread);
ASSERT(thread >= 0);
record->thread[copytoindex] = thread;
record->readClock[copytoindex] = ourClock;
record->numReads = copytoindex + 1;
return race;
}
/** This function does race detection on a read for an expanded record. */
struct DataRace * atomfullRaceCheckRead(thread_id_t thread, const void *location, uint64_t *shadow, ClockVector *currClock)
{
struct RaceRecord *record = (struct RaceRecord *) (*shadow);
struct DataRace * race = NULL;
/* Check for datarace against last write. */
if (record->isAtomic)
return NULL;
modelclock_t writeClock = record->writeClock;
thread_id_t writeThread = record->writeThread;
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), false, location);
}
return race;
}
/** This function does race detection on a read. */
void atomraceCheckRead(thread_id_t thread, const void *location)
{
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
if (currClock == NULL)
return;
struct DataRace * race = NULL;
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
race = atomfullRaceCheckRead(thread, location, shadow, currClock);
goto Exit;
}
if (shadowval & ATOMICMASK)
return;
{
/* Check for datarace against last write. */
modelclock_t writeClock = WRITEVECTOR(shadowval);
thread_id_t writeThread = int_to_id(WRTHREADID(shadowval));
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), false, location);
goto Exit;
}
}
Exit:
if (race) {
#ifdef REPORT_DATA_RACES
race->numframes=backtrace(race->backtrace, sizeof(race->backtrace)/sizeof(void*));
if (raceset->add(race))
assert_race(race);
else model_free(race);
#else
model_free(race);
#endif
}
}
static inline uint64_t * raceCheckRead_firstIt(thread_id_t thread, const void * location, uint64_t *old_val, uint64_t *new_val)
{
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
if (currClock == NULL)
return shadow;
struct DataRace * race = NULL;
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
race = fullRaceCheckRead(thread, location, shadow, currClock);
goto Exit;
}
{
int threadid = id_to_int(thread);
modelclock_t ourClock = currClock->getClock(thread);
/* Thread ID is too large or clock is too large. */
if (threadid > MAXTHREADID || ourClock > MAXWRITEVECTOR) {
expandRecord(shadow);
race = fullRaceCheckRead(thread, location, shadow, currClock);
goto Exit;
}
/* Check for datarace against last write. */
modelclock_t writeClock = WRITEVECTOR(shadowval);
thread_id_t writeThread = int_to_id(WRTHREADID(shadowval));
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), false, location);
}
modelclock_t readClock = READVECTOR(shadowval);
thread_id_t readThread = int_to_id(RDTHREADID(shadowval));
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* We don't subsume this read... Have to expand record. */
expandRecord(shadow);
struct RaceRecord *record = (struct RaceRecord *) (*shadow);
record->thread[1] = thread;
record->readClock[1] = ourClock;
record->numReads++;
goto Exit;
}
*shadow = ENCODEOP(threadid, ourClock, id_to_int(writeThread), writeClock) | (shadowval & ATOMICMASK);
*old_val = shadowval;
*new_val = *shadow;
}
Exit:
if (race) {
#ifdef REPORT_DATA_RACES
race->numframes=backtrace(race->backtrace, sizeof(race->backtrace)/sizeof(void*));
if (raceset->add(race))
assert_race(race);
else model_free(race);
#else
model_free(race);
#endif
}
return shadow;
}
static inline void raceCheckRead_otherIt(thread_id_t thread, const void * location)
{
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
if (currClock == NULL)
return;
struct DataRace * race = NULL;
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
race = fullRaceCheckRead(thread, location, shadow, currClock);
goto Exit;
}
{
int threadid = id_to_int(thread);
modelclock_t ourClock = currClock->getClock(thread);
/* Thread ID is too large or clock is too large. */
if (threadid > MAXTHREADID || ourClock > MAXWRITEVECTOR) {
expandRecord(shadow);
race = fullRaceCheckRead(thread, location, shadow, currClock);
goto Exit;
}
/* Check for datarace against last write. */
modelclock_t writeClock = WRITEVECTOR(shadowval);
thread_id_t writeThread = int_to_id(WRTHREADID(shadowval));
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), false, location);
}
modelclock_t readClock = READVECTOR(shadowval);
thread_id_t readThread = int_to_id(RDTHREADID(shadowval));
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* We don't subsume this read... Have to expand record. */
expandRecord(shadow);
struct RaceRecord *record = (struct RaceRecord *) (*shadow);
record->thread[1] = thread;
record->readClock[1] = ourClock;
record->numReads++;
goto Exit;
}
*shadow = ENCODEOP(threadid, ourClock, id_to_int(writeThread), writeClock) | (shadowval & ATOMICMASK);
}
Exit:
if (race) {
#ifdef REPORT_DATA_RACES
race->numframes=backtrace(race->backtrace, sizeof(race->backtrace)/sizeof(void*));
if (raceset->add(race))
assert_race(race);
else model_free(race);
#else
model_free(race);
#endif
}
}
void raceCheckRead64(thread_id_t thread, const void *location)
{
int old_flag = GET_MODEL_FLAG;
ENTER_MODEL_FLAG;
uint64_t old_shadowval, new_shadowval;
old_shadowval = new_shadowval = INVALIDSHADOWVAL;
#ifdef COLLECT_STAT
load64_count++;
#endif
uint64_t * shadow = raceCheckRead_firstIt(thread, location, &old_shadowval, &new_shadowval);
if (CHECKBOUNDARY(location, 7)) {
if (shadow[1]==old_shadowval)
shadow[1] = new_shadowval;
else goto L1;
if (shadow[2]==old_shadowval)
shadow[2] = new_shadowval;
else goto L2;
if (shadow[3]==old_shadowval)
shadow[3] = new_shadowval;
else goto L3;
if (shadow[4]==old_shadowval)
shadow[4] = new_shadowval;
else goto L4;
if (shadow[5]==old_shadowval)
shadow[5] = new_shadowval;
else goto L5;
if (shadow[6]==old_shadowval)
shadow[6] = new_shadowval;
else goto L6;
if (shadow[7]==old_shadowval)
shadow[7] = new_shadowval;
else goto L7;
RESTORE_MODEL_FLAG(old_flag);
return;
}
L1:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 1));
L2:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 2));
L3:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 3));
L4:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 4));
L5:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 5));
L6:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 6));
L7:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 7));
RESTORE_MODEL_FLAG(old_flag);
}
void raceCheckRead32(thread_id_t thread, const void *location)
{
int old_flag = GET_MODEL_FLAG;
ENTER_MODEL_FLAG;
uint64_t old_shadowval, new_shadowval;
old_shadowval = new_shadowval = INVALIDSHADOWVAL;
#ifdef COLLECT_STAT
load32_count++;
#endif
uint64_t * shadow = raceCheckRead_firstIt(thread, location, &old_shadowval, &new_shadowval);
if (CHECKBOUNDARY(location, 3)) {
if (shadow[1]==old_shadowval)
shadow[1] = new_shadowval;
else goto L1;
if (shadow[2]==old_shadowval)
shadow[2] = new_shadowval;
else goto L2;
if (shadow[3]==old_shadowval)
shadow[3] = new_shadowval;
else goto L3;
RESTORE_MODEL_FLAG(old_flag);
return;
}
L1:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 1));
L2:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 2));
L3:
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 3));
RESTORE_MODEL_FLAG(old_flag);
}
void raceCheckRead16(thread_id_t thread, const void *location)
{
int old_flag = GET_MODEL_FLAG;
ENTER_MODEL_FLAG;
uint64_t old_shadowval, new_shadowval;
old_shadowval = new_shadowval = INVALIDSHADOWVAL;
#ifdef COLLECT_STAT
load16_count++;
#endif
uint64_t * shadow = raceCheckRead_firstIt(thread, location, &old_shadowval, &new_shadowval);
if (CHECKBOUNDARY(location, 1)) {
if (shadow[1]==old_shadowval) {
shadow[1] = new_shadowval;
RESTORE_MODEL_FLAG(old_flag);
return;
}
}
raceCheckRead_otherIt(thread, (const void *)(((uintptr_t)location) + 1));
RESTORE_MODEL_FLAG(old_flag);
}
void raceCheckRead8(thread_id_t thread, const void *location)
{
int old_flag = GET_MODEL_FLAG;
ENTER_MODEL_FLAG;
#ifdef COLLECT_STAT
load8_count++;
#endif
raceCheckRead_otherIt(thread, location);
RESTORE_MODEL_FLAG(old_flag);
}
static inline uint64_t * raceCheckWrite_firstIt(thread_id_t thread, const void * location, uint64_t *old_val, uint64_t *new_val)
{
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
if (currClock == NULL)
return shadow;
struct DataRace * race = NULL;
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
race = fullRaceCheckWrite(thread, location, shadow, currClock);
goto Exit;
}
{
int threadid = id_to_int(thread);
modelclock_t ourClock = currClock->getClock(thread);
/* Thread ID is too large or clock is too large. */
if (threadid > MAXTHREADID || ourClock > MAXWRITEVECTOR) {
expandRecord(shadow);
race = fullRaceCheckWrite(thread, location, shadow, currClock);
goto Exit;
}
{
/* Check for datarace against last read. */
modelclock_t readClock = READVECTOR(shadowval);
thread_id_t readThread = int_to_id(RDTHREADID(shadowval));
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* We have a datarace */
race = reportDataRace(readThread, readClock, false, get_execution()->get_parent_action(thread), true, location);
goto ShadowExit;
}
}
{
/* Check for datarace against last write. */
modelclock_t writeClock = WRITEVECTOR(shadowval);
thread_id_t writeThread = int_to_id(WRTHREADID(shadowval));
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), true, location);
goto ShadowExit;
}
}
ShadowExit:
*shadow = ENCODEOP(0, 0, threadid, ourClock);
*old_val = shadowval;
*new_val = *shadow;
}
Exit:
if (race) {
#ifdef REPORT_DATA_RACES
race->numframes=backtrace(race->backtrace, sizeof(race->backtrace)/sizeof(void*));
if (raceset->add(race))
assert_race(race);
else model_free(race);
#else
model_free(race);
#endif
}
return shadow;
}
static inline void raceCheckWrite_otherIt(thread_id_t thread, const void * location)
{
uint64_t *shadow = lookupAddressEntry(location);
uint64_t shadowval = *shadow;
ClockVector *currClock = get_execution()->get_cv(thread);
if (currClock == NULL)
return;
struct DataRace * race = NULL;
/* Do full record */
if (shadowval != 0 && !ISSHORTRECORD(shadowval)) {
race = fullRaceCheckWrite(thread, location, shadow, currClock);
goto Exit;
}
{
int threadid = id_to_int(thread);
modelclock_t ourClock = currClock->getClock(thread);
/* Thread ID is too large or clock is too large. */
if (threadid > MAXTHREADID || ourClock > MAXWRITEVECTOR) {
expandRecord(shadow);
race = fullRaceCheckWrite(thread, location, shadow, currClock);
goto Exit;
}
{
/* Check for datarace against last read. */
modelclock_t readClock = READVECTOR(shadowval);
thread_id_t readThread = int_to_id(RDTHREADID(shadowval));
if (clock_may_race(currClock, thread, readClock, readThread)) {
/* We have a datarace */
race = reportDataRace(readThread, readClock, false, get_execution()->get_parent_action(thread), true, location);
goto ShadowExit;
}
}
{
/* Check for datarace against last write. */
modelclock_t writeClock = WRITEVECTOR(shadowval);
thread_id_t writeThread = int_to_id(WRTHREADID(shadowval));
if (clock_may_race(currClock, thread, writeClock, writeThread)) {
/* We have a datarace */
race = reportDataRace(writeThread, writeClock, true, get_execution()->get_parent_action(thread), true, location);
goto ShadowExit;
}
}
ShadowExit:
*shadow = ENCODEOP(0, 0, threadid, ourClock);
}
Exit:
if (race) {
#ifdef REPORT_DATA_RACES
race->numframes=backtrace(race->backtrace, sizeof(race->backtrace)/sizeof(void*));
if (raceset->add(race))
assert_race(race);
else model_free(race);
#else
model_free(race);
#endif
}
}
void raceCheckWrite64(thread_id_t thread, const void *location)
{
int old_flag = GET_MODEL_FLAG;
ENTER_MODEL_FLAG;
uint64_t old_shadowval, new_shadowval;
old_shadowval = new_shadowval = INVALIDSHADOWVAL;
#ifdef COLLECT_STAT
store64_count++;
#endif
uint64_t * shadow = raceCheckWrite_firstIt(thread, location, &old_shadowval, &new_shadowval);
if (CHECKBOUNDARY(location, 7)) {
if (shadow[1]==old_shadowval)
shadow[1] = new_shadowval;