-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopic_modeler.py
66 lines (55 loc) · 3.07 KB
/
topic_modeler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pandas as pd
from bertopic import BERTopic
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import PCA
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import seaborn as sns
sns.set_theme()
class TopicModeler:
def __init__(self, sentences):
self.sentences = sentences
self.topic_model = None
self.topics = None
def perform_topic_modeling(self):
vectorizer_model = CountVectorizer(ngram_range=(1, 2), stop_words="english")
self.topic_model = BERTopic(vectorizer_model=vectorizer_model, nr_topics=20)
self.topics, _ = self.topic_model.fit_transform(self.sentences)
def save_to_csv(self, author_text_pairs, output_file):
# Prepare data for CSV
data = []
for (author, text), topic in zip(author_text_pairs, self.topics):
data.append([author, text, topic])
# Save to CSV
df = pd.DataFrame(data, columns=['Author', 'Text', 'Topic'])
df.to_csv(output_file, index=False, encoding='utf-8')
def plot_topic_scatter(self, output_file='topic_scatter.png', top_n_words=5):
# Get embeddings using SBERT
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
embeddings = model.encode(self.sentences, show_progress_bar=True)
# Reduce dimensionality using PCA
pca = PCA(n_components=2)
reduced_embeddings = pca.fit_transform(embeddings)
# Get the top n words for each topic
topic_words = {topic: ', '.join([word for word, _ in self.topic_model.get_topic(topic)[:top_n_words]])
for topic in set(self.topics) if topic != -1}
# Use seaborn for the scatter plot
plt.figure(figsize=(14, 10))
palette = sns.color_palette("tab20", len(topic_words))
sns.scatterplot(x=reduced_embeddings[:, 0], y=reduced_embeddings[:, 1], hue=self.topics, palette=palette, legend=None, alpha=0.7)
# Create a legend with topic names and top words
topic_colors = {topic: palette[i] for i, topic in enumerate(topic_words.keys())}
legend_labels = [f"Topic {topic}: {words}" for topic, words in topic_words.items()]
handles = [mlines.Line2D([], [], color=topic_colors[topic], marker='o', linestyle='None', markersize=10, label=label)
for topic, label in zip(topic_words.keys(), legend_labels)]
# Calculate the bbox_to_anchor values based on the legend width
max_label_length = max(len(label) for label in legend_labels)
legend_width = max_label_length * 0.015 # Adjust factor as needed
plt.legend(handles=handles, loc='upper left', bbox_to_anchor=(1.05, 1), borderaxespad=0., frameon=False)
plt.title("Topic Scatter Plot with PCA")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.subplots_adjust(right=0.75) # Adjust right to make space for legend
plt.savefig(output_file, bbox_inches='tight')
plt.show()