forked from OpenISS/openiss-reid-tfk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crossds.py
225 lines (176 loc) · 6.79 KB
/
crossds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from __future__ import absolute_import, division, print_function
import numpy as np
import tensorflow as tf
import keras
import keras.backend as K
from keras import callbacks as kcb
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D, Input, BatchNormalization
from keras.losses import categorical_crossentropy
from keras.optimizers import Adam
from keras.utils import to_categorical
from data.dataset.market1501 import Market1501
from data.dataset.dukemtmcreid import DukeMTMCreID
from data.dataset.cuhk03 import CUHK03
from data.sampler import RandomSampler
from data.datagen import DataGen, ValDataGen, TrainDataGenWrapper
from data.preprocess import imagenet_process
from backbone.resnet50 import ResNet50
from backbone.resnet50v2 import ResNet50V2
from tripletloss import triplet_loss
from evaluator import Evaluator
from logger import setup_logger
from iotool import mkdir_if_missing, check_isfile
import os
os.environ['CUDA_VISIBLE_DEVICES']='2'
print('version of tensorflow: {}'.format(tf.VERSION))
print('version of keras: {}'.format(keras.__version__))
''' global variables '''
g_data_root = '../datasets'
g_output_dir = './output/cross_ds_v'
mkdir_if_missing(g_output_dir)
g_resnet_version = 'v1'
g_lr_warmup = 'on'
g_random_erasing = 'on'
g_label_smoothing = 'off'
g_net_last_stride = 1
g_bn_neck = 'on'
g_num_ids = 16
g_num_imgs = 4
g_img_h = 256
g_img_w = 128
g_img_ch = 3
g_epochs = 120
g_margin = 0.3
g_base_lr = 3.5e-5
g_stride = 1
g_v_peroid = 40
g_dataset = Market1501(root=g_data_root)
t_datagen = DataGen(g_dataset.train, g_num_ids, g_num_imgs, g_img_w, g_img_h)
# v_datagen = ValDataGen(g_dataset.query, g_dataset.gallery, (g_img_h, g_img_w))
g_num_classes = g_dataset.num_train_pids
g_batch_size = g_num_ids * g_num_imgs
g_steps_per_epoch = t_datagen.sampler.len // g_batch_size
g_dummy = np.ones([g_batch_size, 2048])
g_datagen = TrainDataGenWrapper(t_datagen.flow, g_dummy, g_num_classes)
g_train_logger = setup_logger('train', g_output_dir)
g_test_logger = setup_logger('test', g_output_dir)
''' configuration validation '''
''' loss '''
# all possible loss function should register here
g_loss_factory = {
'triplet_loss': triplet_loss(g_num_ids, g_num_imgs,
g_margin, type='all'),
'categorical_crossentropy': categorical_crossentropy
}
g_loss = {
'id': g_loss_factory['categorical_crossentropy'],
'triplet': g_loss_factory['triplet_loss']
}
g_loss_weights = {'id': 1.0, 'triplet': 1.0}
''' optimizer '''
g_optimizer = Adam(g_base_lr)
''' model '''
tmp_shape = (g_img_h, g_img_w, g_img_ch)
if g_resnet_version == 'v1':
g_base = ResNet50(include_top=False, weights='imagenet',
input_tensor=Input(shape=tmp_shape),
last_stride=g_stride)
elif g_resnet_version == 'v2':
g_base = ResNet50V2(include_top=False, weights='imagenet',
input_tensor=Input(shape=tmp_shape),
last_stride=g_stride)
tmp_ft = GlobalAveragePooling2D(name='triplet')(g_base.output)
# tmp_fi = BatchNormalization(scale=False)(tmp_ft)
tmp_fi = BatchNormalization()(tmp_ft)
feat_model = Model(inputs=g_base.input, outputs=tmp_fi)
# feat_model = Model(inputs=base.input, outputs=feature_t)
tmp_pred = Dense(g_num_classes, activation='softmax',
kernel_initializer='random_uniform',
name='id', use_bias=False)(tmp_fi)
g_id_model = Model(inputs=g_base.input, outputs=tmp_pred)
g_model = Model(inputs=g_base.input, outputs=[tmp_pred, tmp_ft])
# g_id_model.summary()
# g_model.summary()
''' callbacks '''
class EpochValCallback(kcb.Callback):
def __init__(self, evaluator, logger):
super().__init__()
self.evaluator = evaluator
self.logger = logger
def on_train_begin(self, logs=None):
self.steps = self.params['steps']
self.epochs = self.params['epochs']
self.logger.info('training start')
def on_epoch_end(self, epoch, logs):
lr = K.eval(self.model.optimizer.lr)
t_loss = logs.get('loss')
t_acc = logs.get('id_categorical_accuracy')
self.logger.info(
'[{}/{}] ({}) epoch, loss: {}, acc: {}, lr: {}'
.format(epoch + 1, self.epochs, self.steps, t_loss, t_acc, lr))
if (epoch + 1) % g_v_peroid == 0:
cmc, mAP = self.evaluator.compute(max_rank=5)
self.logger.info('cmc: {}, mAP: {}'.format(cmc, mAP))
def on_train_end(self, logs=None):
self.logger.info('training finish')
def make_scheduler():
'''
Implementation of the warmup strategy of the learning rate.
'''
def scheduler(epoch, lr):
if epoch < 10:
lr = g_base_lr * ((epoch + 1) / 10)
elif epoch == 10:
lr = g_base_lr * 10
elif epoch == 40:
lr = g_base_lr
elif epoch == 70:
lr = g_base_lr * 0.1
return lr
return scheduler
mkdir_if_missing('./checkpoint/')
check_point = kcb.ModelCheckpoint(
'./checkpoint/weights.{epoch:02d}-{loss:.2f}.h5',
monitor='loss', save_weights_only=True,
save_best_only=False, period=10)
tensor_board = kcb.TensorBoard(
log_dir='./logs', batch_size=g_batch_size,
write_graph=True, update_freq='epoch')
change_lr = kcb.LearningRateScheduler(make_scheduler())
g_tester = Evaluator(g_dataset, feat_model, g_img_h, g_img_w)
epochval = EpochValCallback(g_tester, g_train_logger)
g_callbacks = [change_lr, check_point, tensor_board, epochval]
''' compile model '''
g_id_model.compile(optimizer=g_optimizer,
loss=g_loss_factory['categorical_crossentropy'],
metrics=['categorical_accuracy'])
g_model.compile(optimizer=g_optimizer, loss=g_loss,
loss_weights=g_loss_weights,
metrics={'id': 'categorical_accuracy'})
# #################################################################################
def cross_dataset_test(model_path, ds1, ds2):
print('[reid] loading weights from: {}'.format(model_path))
g_model.load_weights(model_path)
tester1 = Evaluator(ds1, feat_model, g_img_h, g_img_w)
tester2 = Evaluator(ds2, feat_model, g_img_h, g_img_w)
res1 = tester1.compute()
print(res1)
res2 = tester2.compute()
print(res2)
# #################################################################################
ds_market = Market1501(root=g_data_root)
ds_cuhk = CUHK03(root=g_data_root)
ds_duke = DukeMTMCreID(root=g_data_root)
market_model = '../models/reid/market1501.h5'
cuhk_model = '../models/reid/cuhk03.h5'
duke_model = '../models/reid/duke.h5'
print('based on market, cuhk, duke')
cross_dataset_test(market_model, ds_cuhk, ds_duke)
print('*' * 20)
print('based on cuhk, market, duke')
cross_dataset_test(cuhk_model, ds_market, ds_duke)
print('*' * 20)
print('based on duke, market, cuhk')
cross_dataset_test(duke_model, ds_market, ds_cuhk)
print('*' * 20)