Skip to content

Latest commit

 

History

History
42 lines (40 loc) · 3.02 KB

README.md

File metadata and controls

42 lines (40 loc) · 3.02 KB

CVLNM/ pytorch 0.4.0/ testing

I provide the anaconda environment for running my code in https://drive.google.com/drive/folders/1GvwpchUnfqUjvlpWTYbmEvhvkJTIWWRb?usp=sharing. You should download the file ''environment_yx1.yml'' from this link and set up the environment as follows. 1.Download the anaconda from the website https://www.anaconda.com/ and install it. 2.Go to website https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html?highlight=environment to learn how to 'creating an environment from an environment.yml file'.

conda env create -f environment_yx1.yml

3.After installing anaconda and setting up the environment, run the following code to get into the environment.

source activate yx1

If you want to exit from this environment, you can run the following code to exit.

source deactivate

Download Bottom-up features.

Download pre-extracted feature from https://github.com/peteanderson80/bottom-up-attention. You can either download adaptive one or fixed one. We use the ''10 to 100 features per image (adaptive)'' in our experiments. For example:

mkdir data/bu_data; cd data/bu_data
wget https://storage.googleapis.com/bottom-up-attention/trainval.zip
unzip trainval.zip

Then :

python script/make_bu_data.py --output_dir data/cocobu

This will create data/cocobu_fc, data/cocobu_att and data/cocobu_box.

Training the model

1.After downloading the codes and meta data, you can train the model by using the following code:

python train.py --id c1  --checkpoint_path c1 --caption_model mcap_rs3_mem_new  --mtopdown_num 1 --mtopdown_res 1 --topdown_res 1 --input_json data/cocobu.json --input_fc_dir data/cocobu_fc --input_att_dir data/cocobu_att --input_attr_dir data/cocobu_att --input_rela_dir data/cocobu_att --input_label_h5 data/cocobu_label.h5 --batch_size 50 --accumulate_number 2 --learning_rate_decay_start 0 --learning_rate 5e-4 --learning_rate_decay_every 5 --scheduled_sampling_start 37 --save_checkpoint_every 5000 --val_images_use 50 --max_epochs 100 --rnn_size 1000 --input_encoding_size 1000 --att_feat_size 2048 --att_hid_size 512 --self_critical_after 37 --train_split train --gpu 0 --combine_att concat --cont_ver 1 --relu_mod leaky_relu --memory_cell_path kg/kg.npz

Note that due to the limited GPU memory, we accumulate a few batch to approximate a bigger batch size, e.g., if --accumulate_number is 2 and --batch_size is 50, then the used batch size is 50 * 2=100. However, the performance of such approximation is weaker than bigger batch size, e.g., --accumulate_number is 1 and --batch_size is 100.

Evaluating the model

1.After training the model or downloading the well-trained model, you can evaluate them by using the following code:

python eval_rs.py --dump_images 0 --num_images 5000 --model c1/modelc10001.pth --infos_path c1/infos_c10001.pkl --language_eval 1 --beam_size 5 --split test --index_eval 1 --gpu 1 --batch_size 100 --memory_cell_path c1/memory_cellrc10001.npz

what you need to do is to switch the model id with your id, like c10001 to c10023.