-
Notifications
You must be signed in to change notification settings - Fork 28
/
vggprune_lp.py
301 lines (264 loc) · 11.8 KB
/
vggprune_lp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import argparse
import numpy as np
import os,sys
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets, transforms
from compute_flops import print_model_param_nums, print_model_param_flops
import models
from qtorch.quant import *
from qtorch.optim import OptimLP
from qtorch import BlockFloatingPoint, FixedPoint, FloatingPoint
from qtorch.auto_low import sequential_lower
num_types = ["weight", "activate", "grad", "error", "momentum"]
# Prune settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune')
parser.add_argument('--data', type=str, default=None,
help='path to dataset')
parser.add_argument('--dataset', type=str, default='cifar100',
help='training dataset (default: cifar10)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--depth', type=int, default=19,
help='depth of the vgg')
parser.add_argument('--percent', type=float, default=0.5,
help='scale sparse rate (default: 0.5)')
parser.add_argument('--model', default='', type=str, metavar='PATH',
help='path to the model (default: none)')
parser.add_argument('--save', default='', type=str, metavar='PATH',
help='path to save pruned model (default: none)')
# multi-gpus
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
# quantized parameters
for num in num_types:
parser.add_argument('--wl-{}'.format(num), type=int, default=-1, metavar='N',
help='word length in bits for {}; -1 if full precision.'.format(num))
parser.add_argument('--rounding'.format(num), type=str, default='stochastic', metavar='S',
choices=["stochastic","nearest"],
help='rounding method for {}, stochastic or nearest'.format(num))
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if not os.path.exists(args.save):
os.makedirs(args.save)
gpu_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for gpu_id in gpu_ids:
id = int(gpu_id)
if id > 0:
args.gpu_ids.append(id)
if len(args.gpu_ids) > 0:
torch.cuda.set_device(args.gpu_ids[0])
# prepare quantization functions
# using block floating point, allocating shared exponent along the first dimension
number_dict = dict()
for num in num_types:
num_wl = getattr(args, "wl_{}".format(num))
number_dict[num] = BlockFloatingPoint(wl=num_wl, dim=0)
print("{:10}: {}".format(num, number_dict[num]))
quant_dict = dict()
for num in ["weight", "momentum", "grad"]:
quant_dict[num] = quantizer(forward_number=number_dict[num],
forward_rounding=args.rounding)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.__dict__['vgg'](dataset=args.dataset, depth=args.depth)
# automatically insert quantization modules
model = sequential_lower(model, layer_types=["conv", "linear"],
forward_number=number_dict["activate"], backward_number=number_dict["error"],
forward_rounding=args.rounding, backward_rounding=args.rounding)
# removing the final quantization module
model.classifier = model.classifier[0]
if args.model:
if os.path.isfile(args.model):
print("=> loading checkpoint '{}'".format(args.model))
checkpoint = torch.load(args.model)
# args.start_epoch = checkpoint['epoch']
# best_prec1 = checkpoint['best_prec1']
try:
model.load_state_dict(checkpoint['state_dict'])
except:
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids).cuda()
model.load_state_dict(checkpoint['state_dict'])
# print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
# .format(args.model, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.model))
exit()
print('original model param: ', print_model_param_nums(model))
print('original model flops: ', print_model_param_flops(model, 32, True))
if args.cuda:
model.cuda()
total = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
total += m.weight.data.shape[0]
bn = torch.zeros(total)
index = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
size = m.weight.data.shape[0]
bn[index:(index+size)] = m.weight.data.abs().clone()
index += size
p_flops = 0
y, i = torch.sort(bn)
# comparsion and permutation (sort process)
p_flops += total * np.log2(total) * 3
thre_index = int(total * args.percent)
thre = y[thre_index]
pruned = 0
cfg = []
cfg_mask = []
for k, m in enumerate(model.modules()):
if isinstance(m, nn.BatchNorm2d):
weight_copy = m.weight.data.abs().clone()
mask = weight_copy.gt(thre.cuda()).float().cuda()
pruned = pruned + mask.shape[0] - torch.sum(mask)
m.weight.data.mul_(mask)
m.bias.data.mul_(mask)
if int(torch.sum(mask)) > 0:
cfg.append(int(torch.sum(mask)))
cfg_mask.append(mask.clone())
print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.
format(k, mask.shape[0], int(torch.sum(mask))))
elif isinstance(m, nn.MaxPool2d):
cfg.append('M')
# apply mask flops
# p_flops += total
# compare two mask distance
p_flops += 2 * total #(minus and sum)
pruned_ratio = pruned/total
print(' + Memory Request: %.2fKB' % float(total * 32 / 1024 / 8))
print(' + Flops for pruning: %.2fM' % (p_flops / 1e6))
print('Pre-processing Successful!')
# simple test model after Pre-processing prune (simple set BN scales to zeros)
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def test(model):
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'cifar100':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'imagenet':
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.test_batch_size, shuffle=False,
num_workers=16, pin_memory=True)
else:
raise ValueError("No valid dataset is given.")
model.eval()
test_acc = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
# pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
# correct += pred.eq(target.data.view_as(pred)).cpu().sum()
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
test_acc += prec1.item()
print('\nTest set: Accuracy: {}/{} ({:.1f}%)\n'.format(
test_acc, len(test_loader), test_acc / len(test_loader)))
return np.round(test_acc / len(test_loader), 2)
acc = test(model)
# Make real prune
print(cfg)
newmodel = models.__dict__['vgg'](dataset=args.dataset, depth=args.depth, cfg=cfg)
# automatically insert quantization modules
newmodel = sequential_lower(newmodel, layer_types=["conv", "linear"],
forward_number=number_dict["activate"], backward_number=number_dict["error"],
forward_rounding=args.rounding, backward_rounding=args.rounding)
# removing the final quantization module
newmodel.classifier = newmodel.classifier[0]
if len(args.gpu_ids) > 0:
newmodel = torch.nn.DataParallel(newmodel, device_ids=args.gpu_ids)
if args.cuda:
newmodel.cuda()
num_parameters = sum([param.nelement() for param in newmodel.parameters()])
savepath = os.path.join(args.save, "prune.txt")
with open(savepath, "w") as fp:
fp.write("Configuration: \n"+str(cfg)+"\n")
fp.write("Number of parameters: \n"+str(num_parameters)+"\n")
fp.write("Test accuracy: \n"+str(acc))
layer_id_in_cfg = 0
start_mask = torch.ones(3)
end_mask = cfg_mask[layer_id_in_cfg]
for [m0, m1] in zip(model.modules(), newmodel.modules()):
if isinstance(m0, nn.BatchNorm2d):
if torch.sum(end_mask) == 0:
continue
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
if idx1.size == 1:
idx1 = np.resize(idx1,(1,))
m1.weight.data = m0.weight.data[idx1.tolist()].clone()
m1.bias.data = m0.bias.data[idx1.tolist()].clone()
m1.running_mean = m0.running_mean[idx1.tolist()].clone()
m1.running_var = m0.running_var[idx1.tolist()].clone()
layer_id_in_cfg += 1
start_mask = end_mask.clone()
if layer_id_in_cfg < len(cfg_mask): # do not change in Final FC
end_mask = cfg_mask[layer_id_in_cfg]
elif isinstance(m0, nn.Conv2d):
if torch.sum(end_mask) == 0:
continue
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
# random set for test
# new_end_mask = np.asarray(end_mask.cpu().numpy())
# new_end_mask = np.append(new_end_mask[int(len(new_end_mask)/2):], new_end_mask[:int(len(new_end_mask)/2)])
# idx1 = np.squeeze(np.argwhere(new_end_mask))
print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
if idx1.size == 1:
idx1 = np.resize(idx1, (1,))
w1 = m0.weight.data[:, idx0.tolist(), :, :].clone()
w1 = w1[idx1.tolist(), :, :, :].clone()
m1.weight.data = w1.clone()
elif isinstance(m0, nn.Linear):
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
m1.weight.data = m0.weight.data[:, idx0].clone()
m1.bias.data = m0.bias.data.clone()
torch.save({'cfg': cfg, 'state_dict': newmodel.state_dict()}, os.path.join(args.save, 'pruned.pth.tar'))
# print(newmodel)
model = newmodel
# test(model)
param = print_model_param_nums(model)
flops = print_model_param_flops(model.cpu(), 32, True)
with open(savepath, "w") as fp:
fp.write("new model param: \n"+str(param)+"\n")
fp.write("new model flops: \n"+str(flops)+"\n")
print('new model param: ', param)
print('new model flops: ', flops)