-
Notifications
You must be signed in to change notification settings - Fork 28
/
EVAL_ResNet18_ImageNet.py
286 lines (261 loc) · 13.6 KB
/
EVAL_ResNet18_ImageNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from __future__ import print_function
import os
import argparse
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import models
from filter import *
from scipy.ndimage import filters
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
parser.add_argument('--dataset', type=str, default='cifar10',
help='training dataset (default: cifar100)')
parser.add_argument('--data', type=str, default=None,
help='path to dataset')
parser.add_argument('--sparsity-regularization', '-sr', dest='sr', action='store_true',
help='train with channel sparsity regularization')
parser.add_argument('--s', type=float, default=0.0001,
help='scale sparse rate (default: 0.0001)')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--epochs', type=int, default=160, metavar='N',
help='number of epochs to train (default: 160)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--schedule', type=int, nargs='+', default=[80, 120],
help='Decrease learning rate at these epochs.')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save', default='./logs', type=str, metavar='PATH',
help='path to save prune model (default: current directory)')
parser.add_argument('--arch', default='vgg', type=str,
help='architecture to use')
parser.add_argument('--depth', default=19, type=int,
help='depth of the neural network')
parser.add_argument('--scratch',default='', type=str,
help='the PATH to the pruned model')
# filter
parser.add_argument('--filter', default='none', type=str, choices=['none', 'lowpass', 'highpass'])
parser.add_argument('--sigma', default=1.0, type=float, help='gaussian filter hyper-parameter')
# sparsity
parser.add_argument('--sparsity_gt', default=0, type=float, help='sparsity controller')
# multi-gpus
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if not os.path.exists(args.save):
os.makedirs(args.save)
gpu = args.gpu_ids
gpu_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for gpu_id in gpu_ids:
id = int(gpu_id)
if id > 0:
args.gpu_ids.append(id)
if len(args.gpu_ids) > 0:
torch.cuda.set_device(args.gpu_ids[0])
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.Lambda(lambda x: filters.gaussian_filter(x, args.sigma) if args.filter == 'lowpass' else x),
transforms.Lambda(lambda x: my_gaussian_filter_2(x, 1/args.sigma, args.filter) if args.filter == 'highpass' else x),
transforms.ToTensor(),
transforms.Lambda(lambda x: torch.where(x > args.sparsity_gt, x, torch.zeros_like(x)) if args.sparsity_gt > 0 else x),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.Lambda(lambda x: filters.gaussian_filter(x, args.sigma) if args.filter == 'lowpass' else x),
transforms.Lambda(lambda x: my_gaussian_filter_2(x, 1/args.sigma, args.filter) if args.filter == 'highpass' else x),
transforms.ToTensor(),
transforms.Lambda(lambda x: torch.where(x > args.sparsity_gt, x, torch.zeros_like(x)) if args.sparsity_gt > 0 else x),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'cifar100':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.Lambda(lambda x: filters.gaussian_filter(x, args.sigma) if args.filter == 'lowpass' else x),
transforms.Lambda(lambda x: my_gaussian_filter_2(x, 1/args.sigma, args.filter) if args.filter == 'highpass' else x),
transforms.ToTensor(),
transforms.Lambda(lambda x: torch.where(x > args.sparsity_gt, x, torch.zeros_like(x)) if args.sparsity_gt > 0 else x),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.Lambda(lambda x: filters.gaussian_filter(x, args.sigma) if args.filter == 'lowpass' else x),
transforms.Lambda(lambda x: my_gaussian_filter_2(x, 1/args.sigma, args.filter) if args.filter == 'highpass' else x),
transforms.ToTensor(),
transforms.Lambda(lambda x: torch.where(x > args.sparsity_gt, x, torch.zeros_like(x)) if args.sparsity_gt > 0 else x),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=16, pin_memory=True)
if args.dataset == 'imagenet':
model = models.__dict__[args.arch](pretrained=False)
if len(args.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
else:
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth)
if args.scratch:
checkpoint = torch.load(args.scratch)
if args.dataset == 'imagenet':
model = models.__dict__[args.arch](pretrained=False, cfg=checkpoint['cfg'])
model_ref = models.__dict__[args.arch](pretrained=False, cfg=checkpoint['cfg'])
model_ref.load_state_dict(checkpoint['state_dict'])
else:
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth, cfg=checkpoint['cfg'])
model_ref = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth, cfg=checkpoint['cfg'])
model_ref.load_state_dict(checkpoint['state_dict'])
for m0, m1 in zip(model.modules(), model_ref.modules()):
if isinstance(m0, models.channel_selection):
m0.indexes.data = m1.indexes.data.clone()
if args.cuda:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
def save_checkpoint(state, is_best, epoch, filepath):
if epoch == 'init':
filepath = os.path.join(filepath, 'init.pth.tar')
torch.save(state, filepath)
elif 'EB' in str(epoch):
filepath = os.path.join(filepath, epoch+'.pth.tar')
torch.save(state, filepath)
else:
filename = os.path.join(filepath, 'ckpt'+str(epoch)+'.pth.tar')
torch.save(state, filename)
# filename = os.path.join(filepath, 'ckpt.pth.tar')
# torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(filepath, 'model_best.pth.tar'))
if len(args.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
# best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
# print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
# .format(args.resume, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
print('nooooo!')
history_score = np.zeros((args.epochs, 3))
# additional subgradient descent on the sparsity-induced penalty term
def updateBN():
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.weight.grad.data.add_(args.s*torch.sign(m.weight.data)) # L1
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train(epoch):
model.train()
global history_score
avg_loss = 0.
train_acc = 0.
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
avg_loss += loss.item()
# pred = output.data.max(1, keepdim=True)[1]
# train_acc += pred.eq(target.data.view_as(pred)).cpu().sum()
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
train_acc += prec1.item()
loss.backward()
if args.sr:
updateBN()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))
history_score[epoch][0] = avg_loss / len(train_loader)
history_score[epoch][1] = np.round(train_acc / len(train_loader), 2)
def test():
model.eval()
test_loss = 0
test_acc = 0
test_acc_5 = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item() # sum up batch loss
# pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
# correct += pred.eq(target.data.view_as(pred)).cpu().sum()
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
test_acc += prec1.item()
test_acc_5 += prec5.item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy (Top-1): {}/{} ({:.2f}%)\n'.format(
test_loss, test_acc, len(test_loader), test_acc / len(test_loader)))
print('\nTest set: Average loss: {:.4f}, Accuracy (Top-5): {}/{} ({:.2f}%)\n'.format(
test_loss, test_acc_5, len(test_loader), test_acc_5 / len(test_loader)))
return np.round(test_acc / len(test_loader), 2), np.round(test_acc_5 / len(test_loader), 2)
prec1, prec5 = test()
print('Top-1: ', prec1)
print('Top-5: ', prec5)