-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
1280 lines (1069 loc) · 55.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from collections import defaultdict
import copy
import json
import os
from os.path import exists, join, isdir
from dataclasses import dataclass, field
import sys
from typing import Optional, Dict, Sequence
import numpy as np
from tqdm import tqdm
import logging
import bitsandbytes as bnb
import pandas as pd
import importlib
from packaging import version
from packaging.version import parse
import time
import random
import re
import sys
sys.path.insert(0, "./transformers/src")
sys.path.insert(0, "./peft/src")
# from huggingface_hub import login
# login()
import torch
import transformers
from torch.nn.utils.rnn import pad_sequence
import argparse
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
set_seed,
Seq2SeqTrainer,
BitsAndBytesConfig,
LlamaTokenizer
)
from datasets import load_dataset, Dataset, DatasetDict
import evaluate
from peft import (
prepare_model_for_kbit_training,
LoraConfig,
get_peft_model,
PeftModel
)
from peft.tuners.lora import LoraLayer
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from eval_func import eval_mmlu, eval_mmlu_wrapper, eval_wikitext2_wrapper, eval_general_ppl_wrapper, eval_lm_eval_wrapper
def is_ipex_available():
def get_major_and_minor_from_version(full_version):
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
_torch_version = importlib.metadata.version("torch")
if importlib.util.find_spec("intel_extension_for_pytorch") is None:
return False
_ipex_version = "N/A"
try:
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch")
except importlib.metadata.PackageNotFoundError:
return False
torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
if torch_major_and_minor != ipex_major_and_minor:
warnings.warn(
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
)
return False
return True
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
logger = logging.getLogger(__name__)
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
cls_tasks = {
'classification': ['sst2', 'sst5', 'MR', 'SUBJ', 'AGNews', 'TREC', 'CB', 'BoolQ'], # , 'DBPedia'],
'multiple choice': ['hellaswag', 'ARCE', 'PIQA', 'ARCC', 'OB', 'COPA', 'CQA'],
}
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(
default="EleutherAI/pythia-12b"
)
trust_remote_code: Optional[bool] = field(
default=False,
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}
)
use_auth_token: Optional[bool] = field(
default=False,
metadata={"help": "Enables using Huggingface auth token from Git Credentials."}
)
@dataclass
class DataArguments:
eval_dataset_size: int = field(
default=1024, metadata={"help": "Size of validation dataset."}
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
source_max_len: int = field(
default=1024,
metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."},
)
target_max_len: int = field(
default=256,
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
)
dataset: str = field(
default='alpaca',
metadata={"help": "Which dataset to finetune on. See datamodule for options."}
)
dataset_format: Optional[str] = field(
default=None,
metadata={"help": "Which dataset format is used. [alpaca|chip2|self-instruct|hh-rlhf]"}
)
@dataclass
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
cache_dir: Optional[str] = field(
default=None
)
train_on_source: Optional[bool] = field(
default=False,
metadata={"help": "Whether to train on the input in addition to the target text."}
)
mmlu_split: Optional[str] = field(
default='eval',
metadata={"help": "The MMLU split to run on"}
)
mmlu_dataset: Optional[str] = field(
default='mmlu-fs',
metadata={"help": "MMLU dataset to use: options are `mmlu-zs` for zero-shot or `mmlu-fs` for few shot."}
)
do_mmlu_eval: Optional[bool] = field(
default=False,
metadata={"help": "Whether to run the MMLU evaluation."}
)
do_eval_wikitext2: bool = field(
default=False, metadata={"help": "evaluate the ppl on wikitext2."}
)
do_lm_eval: Optional[bool]=field(
default=False,
metadata={"help":"Evalute on lm-eval-harness."}
)
do_lm_eval_task : str = field(
default="arc_easy,piqa,sciq", metadata={"help": "Evaluation tasks in lm-eval-harness."}
)
max_mmlu_samples: Optional[int] = field(
default=None,
metadata={"help": "If set, only evaluates on `max_mmlu_samples` of the MMLU dataset."}
)
mmlu_source_max_len: int = field(
default=2048,
metadata={"help": "Maximum source sequence length for mmlu."}
)
full_finetune: bool = field(
default=False,
metadata={"help": "Finetune the entire model without adapters."}
)
adam8bit: bool = field(
default=False,
metadata={"help": "Use 8-bit adam."}
)
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=4,
metadata={"help": "How many bits to use."}
)
lora_r: int = field(
default=64,
metadata={"help": "Lora R dimension."}
)
lora_alpha: float = field(
default=16,
metadata={"help": " Lora alpha."}
)
lora_dropout: float = field(
default=0.0,
metadata={"help":"Lora dropout."}
)
max_memory_MB: int = field(
default=80000,
metadata={"help": "Free memory per gpu."}
)
report_to: str = field(
default='none',
metadata={"help": "To use wandb or something else for reporting."}
)
output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
optim: str = field(default='paged_adamw_32bit', metadata={"help": 'The optimizer to be used'})
per_device_train_batch_size: int = field(default=2, metadata={"help": 'The training batch size per GPU. Increase for better speed.'})
gradient_accumulation_steps: int = field(default=4, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'})
max_steps: int = field(default=10000, metadata={"help": 'How many optimizer update steps to take'})
weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'}) # use lora dropout instead for regularization if needed
learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'})
remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'})
max_grad_norm: float = field(default=0.3, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'})
gradient_checkpointing: bool = field(default=True, metadata={"help": 'Use gradient checkpointing. You want to use this.'})
do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'})
no_eval_orig: bool = field(default=False, metadata={"help": 'do not eval the original test dataset corresponding to the training dataset'})
lr_scheduler_type: str = field(default='constant', metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'})
warmup_ratio: float = field(default=0.03, metadata={"help": 'Fraction of steps to do a warmup for'})
logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'})
group_by_length: bool = field(default=True, metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'})
save_strategy: str = field(default='steps', metadata={"help": 'When to save checkpoints'})
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
save_total_limit: int = field(default=2, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
few_shot_number: int = field(default=0, metadata={"help": 'few shot numbers for classification tasks'})
ddp_find_unused_parameters: bool = field(default=False, metadata={"help": 'enable ddp_find_unused_parameters in Accelerator.'})
enable_shrinking: bool = field(default=False, metadata={"help": 'Enable shrinkable LLM.'})
shrinkable_width: bool = field(default=False, metadata={"help": 'Enable shrinkable width in addition to layers.'})
width_choice: str = field(default='[1,7/8,3/4,5/8,1/2]', metadata={"help": 'the available width choices for shrinkable width.'})
nonuniform_width: bool = field(default=False, metadata={"help": 'Training with nonuniform width across layers.'})
first_width: bool = field(default=False, metadata={"help": 'An ablation study: Only active the first widths (channels) in each layer.'})
min_num_layer: int = field(default=16, metadata={"help": 'The minimal number of layers.'})
random_sample_num_layer: int = field(default=2, metadata={"help": 'The number of randomely sampled layers in each iteration.'})
kd_weight: float = field(default=1, metadata={"help": 'weight coefficient of the KD loss.'})
sample_per_dataset: int = field(default=2000, metadata={"help": 'samples per dataset when training on cls_combo and mc_combo.'})
num_remain_layers: int = field(default=1, metadata={"help": 'number of final layers remained during layer skipping.'})
distill_all_tokens: bool = field(default=False, metadata={"help": 'Distill both target and context tokens to small models.'})
layer_pruning: bool = field(default=None, metadata={"help": 'whether to apply layer pruning.'})
distill_method: str = field(default='sp', metadata={"help": 'distillation method: sp, gkd, atkd.'})
unc_thres: float = field(default=0.5, metadata={"help": 'the threshold for the uncertainty coefficient in ATKD.'})
layer_calib_dp: bool = field(default=False, metadata={"help": 'enable the calibration based on dynamic programming to get layer ranking.'})
dp_keep_last_layer: int = field(default=-1, metadata={"help": 'the last n layers to remain during dynamic programming.'})
calib_dataset: str = field(default='wikitext2', metadata={"help": 'the dataset used for calibration.'})
calib_metric: str = field(default=None, metadata={"help": 'the metric for calibration.'})
width_calib: bool = field(default=False, metadata={"help": 'enable the calibration to get width ranking.'})
prune_width_dim: str = field(default='in', metadata={"help": 'the width pruning dimension: {in, out}.'})
prune_width_method: str = field(default='flap', metadata={"help": 'width pruning method: {wanda, flap}.'})
wanda_sp: bool = field(default=False, metadata={"help": 'An ablation study to use wand-sp for pruning.'})
num_calib_sample: int = field(default=20, metadata={"help": 'number of samples used for calibration.'})
shrinking_method: str = field(default='first_layers', metadata={"help": 'the way to perform layer shrinking: {first_layers, calib, calib_dp}.'})
shrinking_file: str = field(default=None, metadata={"help": 'the path to the file specifying the shrinking configuration.'})
use_moe_lora: bool = field(default=False, metadata={"help": 'Use mixture of LoRA.'})
moe_num_expert: int = field(default=5, metadata={"help": 'number of experts in MoE.'})
moe_topk: int = field(default=2, metadata={"help": 'topk in MoE.'})
resume_training: bool = field(default=False, metadata={"help": 'resume training from the latest checkpoint.'})
distill_steps: int = field(default=-1, metadata={"help": 'number of training steps that enable distillation.'})
no_balancing: bool = field(default=False, metadata={"help": 'ablation study: do not use loss balancing.'})
eval_num_layer: int = field(default=24, metadata={"help": 'number of layers for evaluation.'})
eval_num_width: float = field(default=0.875, metadata={"help": 'width for evaluation.'})
@dataclass
class GenerationArguments:
# For more hyperparameters check:
# https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig
# Length arguments
max_new_tokens: Optional[int] = field(
default=256,
metadata={"help": "Maximum number of new tokens to be generated in evaluation or prediction loops"
"if predict_with_generate is set."}
)
min_new_tokens : Optional[int] = field(
default=None,
metadata={"help": "Minimum number of new tokens to generate."}
)
# Generation strategy
do_sample: Optional[bool] = field(default=False)
num_beams: Optional[int] = field(default=1)
num_beam_groups: Optional[int] = field(default=1)
penalty_alpha: Optional[float] = field(default=None)
use_cache: Optional[bool] = field(default=True)
# Hyperparameters for logit manipulation
temperature: Optional[float] = field(default=1.0)
top_k: Optional[int] = field(default=50)
top_p: Optional[float] = field(default=1.0)
typical_p: Optional[float] = field(default=1.0)
diversity_penalty: Optional[float] = field(default=0.0)
repetition_penalty: Optional[float] = field(default=1.0)
length_penalty: Optional[float] = field(default=1.0)
no_repeat_ngram_size: Optional[int] = field(default=0)
def find_all_linear_names(args, model):
cls = bnb.nn.Linear4bit if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
class SavePeftModelCallback(transformers.TrainerCallback):
def save_model(self, args, state, kwargs):
print('Saving PEFT checkpoint...')
if state.best_model_checkpoint is not None:
checkpoint_folder = os.path.join(state.best_model_checkpoint, "adapter_model")
else:
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
kwargs["model"].save_pretrained(peft_model_path)
pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin")
if os.path.exists(pytorch_model_path):
os.remove(pytorch_model_path)
def on_save(self, args, state, control, **kwargs):
self.save_model(args, state, kwargs)
return control
def on_train_end(self, args, state, control, **kwargs):
def touch(fname, times=None):
with open(fname, 'a'):
os.utime(fname, times)
touch(join(args.output_dir, 'completed'))
self.save_model(args, state, kwargs)
def get_accelerate_model(args, checkpoint_dir):
if torch.cuda.is_available():
n_gpus = torch.cuda.device_count()
if is_ipex_available() and torch.xpu.is_available():
n_gpus = torch.xpu.device_count()
max_memory = f'{args.max_memory_MB}MB'
max_memory = {i: max_memory for i in range(n_gpus)}
device_map = "auto"
# if we are in a distributed setting, we need to set the device map and max memory per device
if os.environ.get('LOCAL_RANK') is not None:
local_rank = int(os.environ.get('LOCAL_RANK', '0'))
device_map = {'': local_rank}
max_memory = {'': max_memory[local_rank]}
# device_map={'':torch.cuda.current_device()}
if args.full_finetune: assert args.bits in [16, 32]
print(f'loading base model {args.model_name_or_path}...')
compute_dtype = (torch.float16 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
shrink_config = {'enable_shrinking': args.enable_shrinking,
"shrinkable_width": args.shrinkable_width,
"shrinking_method": args.shrinking_method,
"shrinking_file": args.shrinking_file,
"mask_dtype": "torch.float16" if args.fp16 else ("torch.bfloat16" if args.bf16 else "torch.float32")}
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
device_map=device_map,
max_memory=max_memory,
quantization_config=BitsAndBytesConfig(
load_in_4bit=args.bits == 4,
load_in_8bit=args.bits == 8,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=args.double_quant,
bnb_4bit_quant_type=args.quant_type,
) if not args.full_finetune else None,
torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)),
trust_remote_code=args.trust_remote_code,
use_auth_token=args.use_auth_token,
shrink_config = shrink_config
)
if compute_dtype == torch.float16 and args.bits == 4:
if torch.cuda.is_bf16_supported():
print('='*80)
print('Your GPU supports bfloat16, you can accelerate training with the argument --bf16')
print('='*80)
if compute_dtype == torch.float16 and (is_ipex_available() and torch.xpu.is_available()):
compute_dtype = torch.bfloat16
print('Intel XPU does not support float16 yet, so switching to bfloat16')
setattr(model, 'model_parallel', True)
setattr(model, 'is_parallelizable', True)
model.config.torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
# Tokenizer
if "decapoda-research-llama-7B-hf" in args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
padding_side="right",
use_fast=True, # False, # Fast tokenizer giving issues.
tokenizer_type='llama' if 'llama' in args.model_name_or_path else None, # Needed for HF name change
trust_remote_code=args.trust_remote_code,
use_auth_token=args.use_auth_token,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>"
)
else:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
padding_side="right",
use_fast=True, # False, # Fast tokenizer giving issues.
tokenizer_type='llama' if 'llama' in args.model_name_or_path else None, # Needed for HF name change
trust_remote_code=args.trust_remote_code,
use_auth_token=args.use_auth_token,
)
if tokenizer._pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
if 'llama' in args.model_name_or_path or isinstance(tokenizer, LlamaTokenizer):
# LLaMA tokenizer may not have correct special tokens set.
# Check and add them if missing to prevent them from being parsed into different tokens.
# Note that these are present in the vocabulary.
# Note also that `model.config.pad_token_id` is 0 which corresponds to `<unk>` token.
print('Adding special tokens.')
tokenizer.add_special_tokens({
"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
# "unk_token": tokenizer.convert_ids_to_tokens(
# model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id
# ),
})
if not args.full_finetune:
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=args.gradient_checkpointing)
if not args.full_finetune:
if checkpoint_dir is not None:
print("Loading adapters from checkpoint.")
model = PeftModel.from_pretrained(model, join(checkpoint_dir, 'adapter_model'), is_trainable=True)
else:
print(f'adding LoRA modules...')
modules = find_all_linear_names(args, model)
config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=modules,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
use_moe_lora=args.use_moe_lora,
num_experts=args.moe_num_expert,
top_k=args.moe_topk,
width_choice=args.width_choice if args.shrinkable_width else None,
)
model = get_peft_model(model, config)
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
return model, tokenizer
def print_trainable_parameters(args, model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
if args.bits == 4: trainable_params /= 2
print(
f"trainable params: {trainable_params} || "
f"all params: {all_param} || "
f"trainable: {100 * trainable_params / all_param}"
)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings_data = model.get_input_embeddings().weight.data
output_embeddings_data = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
output_embeddings_data[-num_new_tokens:] = output_embeddings_avg
@dataclass
class DataCollatorForCausalLM(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
train_on_source: bool
predict_with_generate: bool
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# Extract elements
sources = [f"{self.tokenizer.bos_token}{example['input']}" for example in instances]
targets = [f"{example['output']}{self.tokenizer.eos_token}" for example in instances]
# Tokenize
tokenized_sources_with_prompt = self.tokenizer(
sources,
max_length=self.source_max_len,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = self.tokenizer(
targets,
max_length=self.target_max_len,
truncation=True,
add_special_tokens=False,
)
# Build the input and labels for causal LM
input_ids = []
labels = []
source_ids = []
for tokenized_source, tokenized_target in zip(
tokenized_sources_with_prompt['input_ids'],
tokenized_targets['input_ids']
):
if not self.predict_with_generate:
input_ids.append(torch.tensor(tokenized_source + tokenized_target))
if not self.train_on_source: ## by default: do not train on source
labels.append(
torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target))
)
else:
labels.append(torch.tensor(copy.deepcopy(tokenized_source + tokenized_target)))
else:
input_ids.append(torch.tensor(tokenized_source))
source_ids.append(torch.tensor(tokenized_source))
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) if not self.predict_with_generate else None
source_ids = pad_sequence(source_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
# source_labels = pad_sequence(source_labels, batch_first=True, padding_value=IGNORE_INDEX)
data_dict = {
'input_ids': input_ids,
'source_ids': source_ids,
# 'source_labels': source_labels,
'attention_mask':input_ids.ne(self.tokenizer.pad_token_id),
}
if labels is not None:
data_dict['labels'] = labels
return data_dict
def extract_unnatural_instructions_data(examples, extract_reformulations=False):
out = {
'input': [],
'output': [],
}
for example_instances in examples['instances']:
for instance in example_instances:
out['input'].append(instance['instruction_with_input'])
out['output'].append(instance['output'])
if extract_reformulations:
for example_reformulations in examples['reformulations']:
if example_reformulations is not None:
for instance in example_reformulations:
out['input'].append(instance['instruction_with_input'])
out['output'].append(instance['output'])
return out
ALPACA_PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response: "
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response: "
),
}
def extract_alpaca_dataset(example):
if example.get("input", "") != "":
prompt_format = ALPACA_PROMPT_DICT["prompt_input"]
else:
prompt_format = ALPACA_PROMPT_DICT["prompt_no_input"]
return {'input': prompt_format.format(**example)}
def local_dataset(dataset_name):
if dataset_name.endswith('.json') or dataset_name.endswith('.jsonl'):
full_dataset = Dataset.from_json(path_or_paths=dataset_name)
elif dataset_name.endswith('.csv'):
full_dataset = Dataset.from_pandas(pd.read_csv(dataset_name))
elif dataset_name.endswith('.tsv'):
full_dataset = Dataset.from_pandas(pd.read_csv(dataset_name, delimiter='\t'))
else:
raise ValueError(f"Unsupported dataset format: {dataset_name}")
split_dataset = full_dataset.train_test_split(test_size=0.1)
return split_dataset
def make_data_module(tokenizer: transformers.PreTrainedTokenizer, args) -> Dict:
"""
Make dataset and collator for supervised fine-tuning.
Datasets are expected to have the following columns: { `input`, `output` }
Available datasets to be selected with `dataset` argument:
- alpaca, 52002 examples
- alpaca cleaned, 51942 examples
- chip2 (OIG), 210289 examples
- self-instruct, 82612 examples
- hh-rlhf (Anthropic), 160800 examples
- longform, 23.7k examples
- oasst1 (OpenAssistant) primary message tree only, 9,846 examples
Coming soon:
- unnatural instructions core, 66010 examples
- unnatural instructions full, 240670 examples
- alpaca-gpt4, 52002 examples
- unnatural-instructions-gpt4, 9000 examples
- supernatural-instructions, 69624 examples (same as paper with 100 ex/task more can be used)
- flan (FLAN v2), up to 20M examples available
- vicuna
"""
def load_data(dataset_name):
if dataset_name == 'alpaca':
return load_dataset("tatsu-lab/alpaca")
if dataset_name == 'alpaca-gpt4':
return load_dataset("vicgalle/alpaca-gpt4")
if dataset_name == 'c4':
return load_dataset("c4", 'en')
if dataset_name == 'redpajama':
return load_dataset("togethercomputer/RedPajama-Data-1T-Sample")
elif dataset_name == 'alpaca-clean':
return load_dataset("yahma/alpaca-cleaned")
elif dataset_name == 'chip2':
return load_dataset("laion/OIG", data_files='unified_chip2.jsonl')
elif dataset_name == 'self-instruct':
return load_dataset("yizhongw/self_instruct", name='self_instruct')
elif dataset_name == 'hh-rlhf':
return load_dataset("Anthropic/hh-rlhf")
elif dataset_name == 'longform':
return load_dataset("akoksal/LongForm")
elif dataset_name == 'oasst1':
return load_dataset("timdettmers/openassistant-guanaco")
elif dataset_name == 'vicuna':
raise NotImplementedError("Vicuna data was not released.")
else:
if os.path.exists(dataset_name):
try:
args.dataset_format = args.dataset_format if args.dataset_format else "input-output"
full_dataset = local_dataset(dataset_name)
return full_dataset
except:
raise ValueError(f"Error loading dataset from {dataset_name}")
else:
raise NotImplementedError(f"Dataset {dataset_name} not implemented yet.")
def format_dataset(dataset, dataset_format):
if (
dataset_format == 'alpaca' or dataset_format == 'alpaca-clean' or dataset_format == 'alpaca-gpt4' or
(dataset_format is None and args.dataset in ['alpaca', 'alpaca-clean', 'alpaca-gpt4'])
):
dataset = dataset.map(extract_alpaca_dataset, remove_columns=['instruction'])
elif dataset_format == 'c4' or (dataset_format is None and args.dataset == 'c4'):
dataset = dataset.map(lambda x: {
'input': '',
'output': x['text'],
})
elif dataset_format == 'redpajama' or (dataset_format is None and args.dataset == 'redpajama'):
dataset = dataset.map(lambda x: {
'input': '',
'output': x['text'],
})
elif dataset_format == 'chip2' or (dataset_format is None and args.dataset == 'chip2'):
dataset = dataset.map(lambda x: {
'input': x['text'].split('\n<bot>: ')[0].replace('<human>: ', ''),
'output': x['text'].split('\n<bot>: ')[1],
})
elif dataset_format == 'self-instruct' or (dataset_format is None and args.dataset == 'self-instruct'):
for old, new in [["prompt", "input"], ["completion", "output"]]:
dataset = dataset.rename_column(old, new)
elif dataset_format == 'hh-rlhf' or (dataset_format is None and args.dataset == 'hh-rlhf'):
dataset = dataset.map(lambda x: {
'input': '',
'output': x['chosen']
})
elif dataset_format == 'oasst1' or (dataset_format is None and args.dataset == 'oasst1'):
dataset = dataset.map(lambda x: {
'input': '',
'output': x['text'],
})
elif args.dataset in ['cls_combo', 'mc_combo']:
dataset = dataset.map(lambda x: {
'input': x['text'],
'output': x['label'].strip(),
})
dataset = DatasetDict({"train": dataset})
elif dataset_format == 'input-output':
# leave as is
pass
# Remove unused columns.
dataset = dataset.remove_columns(
[col for col in dataset.column_names['train'] if col not in ['input', 'output']]
)
return dataset
# Load dataset.
dataset = load_data(args.dataset)
dataset = format_dataset(dataset, args.dataset_format)
# for i in range(3):
# print('Input:')
# print(dataset['train'][i]['input'])
# print('Output:')
# print(dataset['train'][i]['output'])
# input()
# Split train/eval, reduce size
if args.do_eval or args.do_predict:
if 'eval' in dataset:
eval_dataset = dataset['eval']
else:
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
dataset = dataset["train"].train_test_split(
test_size=args.eval_dataset_size, shuffle=True, seed=42
)
eval_dataset = dataset['test']
if args.max_eval_samples is not None and len(eval_dataset) > args.max_eval_samples:
eval_dataset = eval_dataset.select(range(args.max_eval_samples))
if args.group_by_length:
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
if args.do_train:
train_dataset = dataset['train']
if args.max_train_samples is not None and len(train_dataset) > args.max_train_samples:
train_dataset = train_dataset.select(range(args.max_train_samples))
if args.group_by_length:
train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
data_collator = DataCollatorForCausalLM(
tokenizer=tokenizer,
source_max_len=args.source_max_len,
target_max_len=args.target_max_len,
train_on_source=args.train_on_source,
predict_with_generate=args.predict_with_generate,
)
return dict(
train_dataset=train_dataset if args.do_train else None,
eval_dataset=eval_dataset if args.do_eval else None,
predict_dataset=eval_dataset if args.do_predict else None,
data_collator=data_collator
)
def get_last_checkpoint(checkpoint_dir):
if isdir(checkpoint_dir):
is_completed = exists(join(checkpoint_dir, 'completed'))
# if is_completed: return None, True # already finished
max_step = 0
for filename in os.listdir(checkpoint_dir):
if isdir(join(checkpoint_dir, filename)) and filename.startswith('checkpoint'):
max_step = max(max_step, int(filename.replace('checkpoint-', '')))
if max_step == 0: return None, is_completed # training started, but no checkpoint
checkpoint_dir = join(checkpoint_dir, f'checkpoint-{max_step}')
print(f"Found a previous checkpoint at: {checkpoint_dir}")
return checkpoint_dir, is_completed # checkpoint found!
return None, False # first training
def train():
hfparser = transformers.HfArgumentParser((
ModelArguments, DataArguments, TrainingArguments, GenerationArguments
))
model_args, data_args, training_args, generation_args, extra_args = \
hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
training_args.generation_config = transformers.GenerationConfig(**vars(generation_args))
args = argparse.Namespace(
**vars(model_args), **vars(data_args), **vars(training_args)
)
print(args)
checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir)
if completed_training:
print('Detected that training was already completed!')
model, tokenizer = get_accelerate_model(args, checkpoint_dir)
model.config.use_cache = False
print('loaded model')
set_seed(args.seed)
if args.width_calib:
from width_shrink.prune import prune_wanda, prune_flap
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.prune_width_method == 'wanda':
mask = prune_wanda(args, model, tokenizer)
np.save(f'{args.output_dir}/width_mask.npy', mask)
elif args.prune_width_method == 'flap':
mask, bias = prune_flap(args, model, tokenizer)
np.save(f'{args.output_dir}/width_mask.npy', mask)
np.save(f'{args.output_dir}/width_bias.npy', bias)
else:
print('Wrong pruning method:', args.prune_width_method)
sys.exit()
print('Finished width calibration.')
return
if args.shrinkable_width:
print('Setting width mask and bias...')
shrink_file = np.load(args.shrinking_file, allow_pickle=True).item()
assert 'width_mask' in shrink_file
width_mask = shrink_file['width_mask']
if args.prune_width_method == 'flap':
bias = shrink_file['bias']
if args.first_width:
for key, mask_dict in width_mask.items():
for ratio, mask in mask_dict.items():
width_mask[key][ratio] = np.sort(mask)[::-1]
for name, module in model.named_modules():
if name in width_mask:
mask_dtype = (torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
if args.prune_width_method == 'flap':
if 'mlp.down_proj' in name or 'self_attn.o_proj' in name:
assert width_mask[name] is None
for key in bias[name].keys():
# assert key in eval(args.width_choice)
bias[name][key] = torch.from_numpy(bias[name][key]).to(mask_dtype)
module.set_width_mask(width_mask=None, output_bias=bias[name])
else:
assert bias[name] is None
for key in width_mask[name].keys():
# assert key in eval(args.width_choice)
width_mask[name][key] = torch.from_numpy(width_mask[name][key]).to(mask_dtype)
module.set_width_mask(width_mask=width_mask[name], output_bias=None)
elif args.prune_width_method == 'wanda':
for key in width_mask[name].keys():
# assert key in eval(args.width_choice)
width_mask[name][key] = torch.from_numpy(width_mask[name][key]).to(mask_dtype)
module.set_width_mask(width_mask=width_mask[name])
else:
print('No such pruning method:', args.prune_width_method)
sys.exit()
data_module = make_data_module(tokenizer=tokenizer, args=args)
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
**{k:v for k,v in data_module.items() if k != 'predict_dataset'},
)
# Callbacks
if not args.full_finetune:
trainer.add_callback(SavePeftModelCallback)
if args.do_mmlu_eval or args.calib_dataset == 'mmlu':
if args.mmlu_dataset == 'mmlu-zs':
mmlu_dataset = load_dataset("json", data_files={
'eval': 'data/mmlu/zero_shot_mmlu_val.json',
'test': 'data/mmlu/zero_shot_mmlu_test.json',
})
mmlu_dataset = mmlu_dataset.remove_columns('subject')
# MMLU Five-shot (Eval/Test only)
elif args.mmlu_dataset == 'mmlu' or args.mmlu_dataset == 'mmlu-fs':
mmlu_dataset = load_dataset("json", data_files={
'eval': 'data/mmlu/five_shot_mmlu_val.json',
'test': 'data/mmlu/five_shot_mmlu_test.json',
})
# mmlu_dataset = mmlu_dataset.remove_columns('subject')
mmlu_dataset = mmlu_dataset[args.mmlu_split]
if args.max_mmlu_samples is not None:
mmlu_dataset = mmlu_dataset.select(range(args.max_mmlu_samples))
abcd_idx = [
tokenizer("A", add_special_tokens=False).input_ids[0],
tokenizer("B", add_special_tokens=False).input_ids[0],
tokenizer("C", add_special_tokens=False).input_ids[0],
tokenizer("D", add_special_tokens=False).input_ids[0],
]
accuracy = evaluate.load("accuracy")
if args.do_train:
class MMLUEvalCallback(transformers.TrainerCallback):
def on_evaluate(self, args, state, control, model, **kwargs):
source_max_len = trainer.data_collator.source_max_len
trainer.data_collator.source_max_len = args.mmlu_source_max_len
if args.enable_shrinking:
active_layers_attn_list = active_layers_mlp_list = trainer.sandwich_sampling(model.config.num_hidden_layers, args.min_num_layer, 0)
if args.full_finetune:
model.set_active_layers(active_layers_attn_list[0], active_layers_mlp_list[0])
else: