-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_factory.py
336 lines (278 loc) · 10.3 KB
/
model_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
"""
from abc import ABC, abstractmethod
from enum import Enum
from src.models.dl.inception_resnet_v2 import (
InceptionResNetV2Caltech101,
InceptionResNetV2Cifar10,
InceptionResNetV2Food101,
InceptionResNetV2Model,
InceptionResNetV2StanfordDogs,
)
from src.models.dl.inception_v3 import (
InceptionV3Caltech101,
InceptionV3Cifar10,
InceptionV3Food101,
InceptionV3Model,
InceptionV3StanfordDogs,
)
from src.models.dl.mobilenet_v2 import MobileNetV2ChessLive, MobileNetV2Model
from src.models.dl.model import BaseModel
from src.models.dl.nasnet_mobile import NASNetMobileChessLive, NASNetMobileModel
from src.models.dl.resnet_50 import ResNet50ChessLive, ResNet50Model
from src.models.dl.vgg16 import VGG16ChessLive, VGG16Model
from src.models.dl.xception import XceptionChessLive, XceptionModel
class Architectures(Enum):
mobilenet_v2 = "mobilenet_v2"
nasnet_mobile = "nasnet_mobile"
xception = "xception"
resnet50 = "resnet50"
vgg16 = "vgg16"
inception_v3 = "inception_v3"
inception_resnet_v2 = "inception_resnet_v2"
@staticmethod
def to_list():
return [arch.value for arch in Architectures]
class AbstractModelFactory(ABC):
"""
Abstract model factory.
"""
@abstractmethod
def get_model(self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int) -> "BaseModel":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name : str
The name of the dataset.
input_shape : tuple of int
The input size of the images.
batch_size : int
The batch size to use for training.
Returns
-------
model : BaseModel
The model for the given dataset.
"""
raise NotImplementedError
class InceptionV3Factory(AbstractModelFactory):
"""
InceptionV3 model factory.
"""
def get_model(self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int) -> "InceptionV3Model":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name : str
The name of the dataset.
input_shape : tuple
The input shape of the images.
batch_size : int
The batch size to use for training.
Returns
-------
model : InceptionV3Model
The model for the given dataset.
"""
if dataset_name == "caltech101":
return self._get_caltech101_model(input_shape, batch_size)
elif dataset_name == "stanford_dogs":
return self._get_stanford_dogs_model(input_shape, batch_size)
elif dataset_name == "cifar10":
return self._get_cifar10_model(input_shape, batch_size)
elif dataset_name == "food101":
return self._get_food101_model(input_shape, batch_size)
else:
raise ValueError(f"Dataset {dataset_name} not supported")
@staticmethod
def _get_caltech101_model(input_shape, batch_size):
return InceptionV3Caltech101(input_shape=input_shape, batch_size=batch_size)
@staticmethod
def _get_stanford_dogs_model(input_shape, batch_size):
return InceptionV3StanfordDogs(input_shape=input_shape, batch_size=batch_size)
@staticmethod
def _get_cifar10_model(input_shape, batch_size):
return InceptionV3Cifar10(input_shape=input_shape, batch_size=batch_size)
@staticmethod
def _get_food101_model(input_shape, batch_size):
return InceptionV3Food101(input_shape=input_shape, batch_size=batch_size)
class InceptionResNetV2Factory(AbstractModelFactory):
"""
InceptionResNetV2 model factory.
"""
def get_model(
self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int
) -> "InceptionResNetV2Model":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name: str
The name of the dataset.
input_shape: tuple
The input shape of the images.
batch_size: int
The batch size to use for training.
Returns
-------
model: InceptionResNetV2Model
The model for the given dataset.
"""
if dataset_name == "caltech101":
return self._get_caltech101_model(input_shape, batch_size)
elif dataset_name == "stanford_dogs":
return self._get_stanford_dogs_model(input_shape, batch_size)
elif dataset_name == "cifar10":
return self._get_cifar10_model(input_shape, batch_size)
elif dataset_name == "food101":
return self._get_food101_model(input_shape, batch_size)
else:
raise ValueError(f"Dataset {dataset_name} not supported")
@staticmethod
def _get_caltech101_model(input_shape, batch_size):
return InceptionResNetV2Caltech101(input_shape=input_shape, batch_size=batch_size)
@staticmethod
def _get_stanford_dogs_model(input_shape, batch_size):
return InceptionResNetV2StanfordDogs(input_shape=input_shape, batch_size=batch_size)
@staticmethod
def _get_cifar10_model(input_shape, batch_size):
return InceptionResNetV2Cifar10(input_shape=input_shape, batch_size=batch_size)
@staticmethod
def _get_food101_model(input_shape: tuple, batch_size: int):
return InceptionResNetV2Food101(input_shape=input_shape, batch_size=batch_size)
class VGG16Factory(AbstractModelFactory):
"""
VGG16 model factory.
"""
def get_model(self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int) -> "VGG16Model":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name: str
The name of the dataset.
input_shape: tuple of int or None
The input shape of the images.
batch_size: int or None
The batch size to use for training.
Returns
-------
model: VGG16Model
The model for the given dataset.
"""
if dataset_name == "chesslive":
return self._get_chesslive_model(input_shape, batch_size)
else:
raise ValueError(f"Dataset {dataset_name} not supported")
@staticmethod
def _get_chesslive_model(input_shape, batch_size):
return VGG16ChessLive(input_shape=input_shape, batch_size=batch_size)
class XceptionFactory(AbstractModelFactory):
"""
Xception model factory.
"""
def get_model(self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int) -> "XceptionModel":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name: str
The name of the dataset.
input_shape: tuple of int or None
The input shape of the images.
batch_size: int or None
The batch size to use for training.
Returns
-------
model: XceptionModel
The model for the given dataset.
"""
if dataset_name == "chesslive":
return self._get_chesslive_model(input_shape, batch_size)
else:
raise ValueError(f"Dataset {dataset_name} not supported")
@staticmethod
def _get_chesslive_model(input_shape, batch_size):
return XceptionChessLive(input_shape=input_shape, batch_size=batch_size)
class ResNet50Factory(AbstractModelFactory):
"""
ResNet50 model factory.
"""
def get_model(self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int) -> "ResNet50Model":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name: str
The name of the dataset.
input_shape: tuple of int or None
The input shape of the images.
batch_size: int or None
The batch size to use for training.
Returns
-------
model: ResNet50Model
The model for the given dataset.
"""
if dataset_name == "chesslive":
return self._get_chesslive_model(input_shape, batch_size)
else:
raise ValueError(f"Dataset {dataset_name} not supported")
@staticmethod
def _get_chesslive_model(input_shape, batch_size):
return ResNet50ChessLive(input_shape=input_shape, batch_size=batch_size)
class MobileNetV2Factory(AbstractModelFactory):
"""
MobileNetV2 model factory.
"""
def get_model(self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int) -> "MobileNetV2Model":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name: str
The name of the dataset.
input_shape: tuple of int or None
The input shape of the images.
batch_size: int or None
The batch size to use for training.
Returns
-------
model: ResNet50Model
The model for the given dataset.
"""
if dataset_name == "chesslive":
return self._get_chesslive_model(input_shape, batch_size)
else:
raise ValueError(f"Dataset {dataset_name} not supported")
@staticmethod
def _get_chesslive_model(input_shape, batch_size):
return MobileNetV2ChessLive(input_shape=input_shape, batch_size=batch_size)
class NASNetMobileFactory(AbstractModelFactory):
"""
NASNet Mobile model factory.
"""
def get_model(self, dataset_name: str, input_shape: tuple[int, int, int], batch_size: int) -> "NASNetMobileModel":
"""
Returns the model for the given dataset.
Parameters
----------
dataset_name: str
The name of the dataset.
input_shape: tuple of int or None
The input shape of the images.
batch_size: int or None
The batch size to use for training.
Returns
-------
model: ResNet50Model
The model for the given dataset.
"""
if dataset_name == "chesslive":
return self._get_chesslive_model(input_shape, batch_size)
else:
raise ValueError(f"Dataset {dataset_name} not supported")
@staticmethod
def _get_chesslive_model(input_shape, batch_size):
return NASNetMobileChessLive(input_shape=input_shape, batch_size=batch_size)