-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathmad.py
118 lines (100 loc) · 4.12 KB
/
mad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# --------------------------------------------------------------------------------
# Helper function for MAD Visualization.
#
# Implemented by Jinpeng Shi (https://github.com/jinpeng-s)
# --------------------------------------------------------------------------------
import importlib
import logging
import os.path
import pickle
from os import path as osp
import torch.utils.data
from basicsr.data import build_dataset
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
from basicsr.models import build_model
from basicsr.utils import get_env_info
from basicsr.utils import get_root_logger
from basicsr.utils import get_time_str
from basicsr.utils.options import dict2str
import archs # noqa
import data # noqa
import models # noqa
from utils import make_exp_dirs
from utils import parse_options
def build_dataloader(dataset, dataset_opt):
"""Build dataloader.
Args:
dataset (torch.utils.data.Dataset): Dataset.
dataset_opt (dict): Dataset options.
"""
dataloader_args = dict(
dataset=dataset,
batch_size=1,
shuffle=False,
num_workers=1,
sampler=None,
drop_last=True,
worker_init_fn=None,
pin_memory=False,
persistent_workers=False
)
prefetch_mode = dataset_opt.get('prefetch_mode')
if prefetch_mode == 'cpu': # CPUPrefetcher
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
logger = get_root_logger()
logger.info(
f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}')
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
else:
# prefetch_mode=None: Normal dataloader
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
return torch.utils.data.DataLoader(**dataloader_args)
def mad_pipeline(root_path):
# parse options, set distributed setting, set random seed
opt, _ = parse_options(root_path, is_train=False)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# mkdir and initialize loggers
make_exp_dirs(opt)
log_file = osp.join(opt['path']['log'],
f"mad_{opt['name']}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr',
log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
# create mad dataset and dataloader
mad_loaders = []
for _, dataset_opt in sorted(opt['mad_datasets'].items()):
dataset_opt['phase'] = 'val'
dataset_opt['bit'] = opt['bit']
dataset_opt['scale'] = opt['scale']
mad_set = build_dataset(dataset_opt)
mad_loader = build_dataloader(mad_set, dataset_opt)
logger.info(
f"Number of mad images in {dataset_opt['name']}: {len(mad_set)}")
mad_loaders.append(mad_loader)
# create model
model = build_model(opt)
# import hook layer
module = importlib.import_module('archs.utils')
hook_layer_type = getattr(module, opt['hook_layer_type'])
for mad_loader in mad_loaders:
mad_set_name = mad_loader.dataset.opt['name']
logger.info(f'Mading {mad_set_name}...')
mad_outputs = model.nondist_mad(mad_loader, hook_layer_type)
pkl_path = os.path.join(opt['path']['results_root'],
f"{opt['name']}_{mad_set_name}_mad.pkl")
with open(pkl_path, 'wb') as f:
# shape: num_images num_layers num_groups num_heads num_patches num_pixels num_pixels
# num_images: Number of images used
# num_layers: Number of layers hooked
# num_groups: Number of SA groups
# num_heads: Number of SA heads
# num_patches: Number of patches in an image. Suppose the image size is (H, W) and
# the patch size is (a, b), then num_patches = HW/ab
# num_pixels: Number of pixels in a patch
pickle.dump(mad_outputs, f)
logger.info(f'End of mading.')
if __name__ == '__main__':
root_path = osp.abspath(osp.join(__file__, osp.pardir))
mad_pipeline(root_path)