-
Notifications
You must be signed in to change notification settings - Fork 12
/
SingleImageSFT.sh
53 lines (46 loc) · 1.53 KB
/
SingleImageSFT.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/bin/bash
export NCCL_ALGO=Tree
export WANDB_API_KEY=""
# pip install -U transformers accelerate
# pip install --upgrade Pillow
# pip install git+https://github.com/Dao-AILab/causal-conv1d
experiment_name=SingleImageSFT
log_folder="./logs/${experiment_name}"
mkdir -p $log_folder
log_name=$(date +"%m-%d_%H-%M").log
deepspeed --hostfile hostfile \
llava/train/train_mem.py \
--deepspeed ./scripts/zero3.json \
--model_name_or_path ./models/Jambav0.1-SFT \
--version jamba \
--data_path ./data/SingleImageVQA40960_144.json \
--vision_tower ./models/clip_vit_large_patch14_336 \
--pretrain_mm_mlp_adapter ./ckpts/Align/mm_projector.bin \
--mm_projector_type mlp2x_gelu \
--resamplePooling 2d \
--group_by_modality_length True \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--bf16 True \
--output_dir ./ckpts/${experiment_name} \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 400 \
--save_total_limit 1 \
--learning_rate 1e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 40960 \
--gradient_checkpointing True \
--dataloader_num_workers 8 \
--lazy_preprocess True \
--report_to wandb > ${log_folder}/${log_name} 2>&1 &