diff --git a/docs/readthedocs/source/doc/Chronos/Howto/how_to_tune_forecaster_model.ipynb b/docs/readthedocs/source/doc/Chronos/Howto/how_to_tune_forecaster_model.ipynb new file mode 100644 index 00000000000..fec73a52732 --- /dev/null +++ b/docs/readthedocs/source/doc/Chronos/Howto/how_to_tune_forecaster_model.ipynb @@ -0,0 +1,300 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/docs/readthedocs/source/doc/Chronos/Howto/how_to_tune_forecaster_model.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tune forecaster on single node\n", + "\n", + "\n", + "## Introduction\n", + "\n", + "In this guidance, we demonstrate **how to tune forecaster on single node**. In tuning process, forecaster will find the best hyperparameter combination among user-defined search space, which is a common process if users pursue a forecaster with higher accuracy.\n", + "\n", + "Chronos support forecasting model's hyperparameter tuning in 2 sepaerated APIs (i.e. `Forecaster.tune` and `AutoTSEstimator`) for users with different demands:\n", + "\n", + "| |`Forecaster.tune`|`AutoTSEstimator`|\n", + "|-------------------|:---------------:|:---------------:|\n", + "|Single Node |✓ |✓ |\n", + "|Cluster |X |✓ |\n", + "|Performance-awared Tuning|✓ |X |\n", + "|Feature Selection |X |✓ |\n", + "|Customized Model |X |✓ |\n", + "\n", + "`Forecaster.tune` provides easier and more stright-forward API for users who are familiar with Chronos forecasters, it is recommened to try this method first.\n", + "\n", + "We will take `AutoformerForecaster` and nyc_taxi dataset as an example in this guide." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "Before we begin, we need to install chronos if it isn’t already available, we choose to use pytorch as deep learning backend." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install --pre --upgrade bigdl-chronos[pytorch,automl]\n", + "!pip uninstall -y torchtext # uninstall torchtext to avoid version conflict\n", + "exit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data preparation\n", + "\n", + "First, we load the nyc taxi dataset.\n", + "\n", + "Currently, tune func only support **Numpy Ndarray input**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from bigdl.chronos.data.repo_dataset import get_public_dataset\n", + "\n", + "def get_tsdata():\n", + " name = 'nyc_taxi'\n", + " tsdata_train, tsdata_valid, _ = get_public_dataset(name)\n", + " stand_scaler = StandardScaler()\n", + " for tsdata in [tsdata_train, tsdata_valid]:\n", + " tsdata.impute(mode=\"linear\")\\\n", + " .scale(stand_scaler, fit=(tsdata is tsdata_train))\n", + " return tsdata_train, tsdata_valid\n", + "\n", + "tsdata_train, tsdata_valid = get_tsdata()\n", + "\n", + "input_feature_num = 1\n", + "output_feature_num = 1\n", + "lookback = 20\n", + "horizon = 1\n", + "label_len = 10\n", + "\n", + "train_data = tsdata_train.roll(lookback=lookback, horizon=horizon, label_len=label_len, time_enc=True).to_numpy()\n", + "val_data = tsdata_valid.roll(lookback=lookback, horizon=horizon, label_len=label_len,time_enc=True).to_numpy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "train_data and val_data is compose of (x, y, x_enc, y_enc) as we set `time_enc=True` which is only necessary for Autoformer." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tuning\n", + "\n", + "The first step of tuning a forecaster is to define forecaster with space parameters.\n", + "\n", + "There are several common space choices:\n", + "\n", + "`space.Categorical` : search space for hyperparameters which are categorical, e.g. a = space.Categorical('a', 'b', 'c', 'd')\n", + "\n", + "`space.Real` : search space for numeric hyperparameter that takes continuous values, e.g. learning_rate = space.Real(0.01, 0.1, log=True)\n", + "\n", + "`space.Int` : search space for numeric hyperparameter that takes integer values, e.g. range = space.Int(0, 100)\n", + "\n", + "How to change these hyperparameters might be tricky and highly based on experience, but lr, d_model, d_ff and layers or similar parameters usually has a great impact on performance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import bigdl.nano.automl.hpo.space as space\n", + "from bigdl.chronos.forecaster.autoformer_forecaster import AutoformerForecaster\n", + "\n", + "autoformer = AutoformerForecaster(input_feature_num=input_feature_num,\n", + " output_feature_num=output_feature_num,\n", + " past_seq_len=lookback,\n", + " future_seq_len=horizon,\n", + " label_len=label_len,\n", + " seed=1024,\n", + " freq='t',\n", + " loss=\"mse\",\n", + " metrics=['mae', 'mse', 'mape'],\n", + " lr = space.Real(0.0001, 0.1, log=True),\n", + " d_model=space.Categorical(32, 64, 128, 256),\n", + " d_ff=space.Categorical(32, 64, 128, 256),\n", + " e_layers=space.Categorical(1,2),\n", + " n_head=space.Categorical(1,8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then just call `tune` on the training data and validation data!\n", + "\n", + "In addition to data, there are three parameters which **need** to be specified : n_trials, target_metric and direction(or directions for multi-objective HPO).\n", + "\n", + "`n_trials`: number of trials to run. The more trials, the longer the running time, the better results.\n", + "\n", + "`target_metric`: the target metric to optimize, a string or an instance of torchmetrics.metric.Metric, default to 'mse'. If you want to try a multi-objective HPO, you need to pass in a list, for example ['mse', 'latency'] in which latency is a built-in metric for performance.\n", + "\n", + "`direction`: in which direction to optimize the target metric, \"maximize\" or \"minimize\", default to \"minimize\". If you want to try a multi-objective HPO, you need to set direction=None, and specify directions which is a list containing direction for each metric, for example ['minimize', 'minimize'].\n", + "\n", + "there are other two parameters which you **may** change their default values : epochs and batch_size." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoformer.tune(train_data, validation_data=val_data,\n", + " n_trials=10, target_metric='mse', direction=\"minimize\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, you can see the whole trial history by calling `search_summary()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoformer.search_summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After `tune`, the model parameters of autoformer is **initialized** according to the best trial parameters. You need to fit the model again." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoformer.fit(train_data, epochs=4, batch_size=32)\n", + "# evaluate on val set\n", + "evaluate = autoformer.evaluate(val_data)\n", + "print(evaluate)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Save and load(Optional)\n", + "\n", + "After tuning and fitting, you can save your model by calling `save` with a filename." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoformer.save(checkpoint_file=\"best.ckpt\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Then, when you need to load the model weights, just call `load()` with corresponding filename." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "autoformer.load(checkpoint_file=\"best.ckpt\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or if there is a new session, just define a new forecaster with **six necessary parameters: input_feature_num, output_feature_num, past_seq_len, future_seq_len, label_len, and freq**, then `load` with corresponding filename." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "new_autoformer = AutoformerForecaster(input_feature_num=input_feature_num,\n", + " output_feature_num=output_feature_num,\n", + " past_seq_len=lookback,\n", + " future_seq_len=horizon,\n", + " label_len=label_len,\n", + " freq='s')\n", + "new_autoformer.load(checkpoint_file=\"best.ckpt\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "vscode": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/readthedocs/source/doc/Chronos/Howto/index.rst b/docs/readthedocs/source/doc/Chronos/Howto/index.rst index 0163c7c5046..2a1d5c16ded 100644 --- a/docs/readthedocs/source/doc/Chronos/Howto/index.rst +++ b/docs/readthedocs/source/doc/Chronos/Howto/index.rst @@ -4,13 +4,19 @@ How-to guides are bite-sized, executable examples where users could check when m Forecasting ------------------------- -* `Train forcaster on single node `__ +* `Train forecaster on single node `__ In this guidance, **we demonstrate how to train forecasters on one node**. In the training process, forecaster will learn the pattern (like the period, scale...) in history data. Although Chronos supports training on a cluster, it's highly recommeneded to try one node first before allocating a cluster to make life easier. +* `Tune forecaster on single node `__ + + In this guidance, we demonstrate **how to tune forecaster on single node**. In tuning process, forecaster will find the best hyperparameter combination among user-defined search space, which is a common process if users pursue a forecaster with higher accuracy. + .. toctree:: :maxdepth: 1 :hidden: how_to_train_forecaster_on_one_node + + how_to_tune_forecaster_model diff --git a/python/chronos/src/bigdl/chronos/forecaster/base_forecaster.py b/python/chronos/src/bigdl/chronos/forecaster/base_forecaster.py index ff78071bbf9..7ac87ecfbe3 100644 --- a/python/chronos/src/bigdl/chronos/forecaster/base_forecaster.py +++ b/python/chronos/src/bigdl/chronos/forecaster/base_forecaster.py @@ -209,7 +209,7 @@ def tune(self, def search_summary(self): # add tuning check invalidOperationError(self.use_hpo, "No search summary when HPO is disabled.") - return self.trainer.search_summary() + return self.tune_trainer.search_summary() def fit(self, data, validation_data=None, epochs=1, batch_size=32, validation_mode='output', earlystop_patience=1, use_trial_id=None):