From 8826093b39cead4a91747dbc8e036b1fb2157d4a Mon Sep 17 00:00:00 2001 From: Wang Jian <61138589+hzjane@users.noreply.github.com> Date: Tue, 13 Sep 2022 17:53:19 +0800 Subject: [PATCH] [DLlib] GBT CriteoClickLogsDataset example (#5723) * init gbt class * remove something unimportant * add readme * change xgb to gbt * use overwrite to save * add text to fix message=Header does not match expected text line=1 --- .../dllib/example/nnframes/gbt/README.md | 45 +++++ ...iningExampleOnCriteoClickLogsDataset.scala | 177 ++++++++++++++++++ 2 files changed, 222 insertions(+) create mode 100644 scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/README.md create mode 100644 scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/gbtClassifierTrainingExampleOnCriteoClickLogsDataset.scala diff --git a/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/README.md b/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/README.md new file mode 100644 index 00000000000..97f0a2e2b4d --- /dev/null +++ b/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/README.md @@ -0,0 +1,45 @@ +# Prepare + +## Environment +- Spark 2.4 or Spark 3.1 +- BigDL 2.0 + +## Data Prepare + +### BigDL nightly build + +You can download [here](https://bigdl.readthedocs.io/en/latest/doc/release.html). +For spark 2.4 you need `bigdl-dllib-spark_2.4.6-0.14.0-build_time-jar-with-dependencies.jar` or `bigdl-dllib-spark_3.1.2-0.14.0-build_time-jar-with-dependencies.jar` for spark 3.1 . + +# GBT On Criteo-click-logs-dataset +## Download data +You can download the criteo-1tb-click-logs-dataset from [here](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/). Then unzip the files you downloaded and Split 1g data to a folder. + +## Train +``` +spark-submit \ + --master local[4] \ + --conf spark.task.cpus=4 \ + --class com.intel.analytics.bigdl.dllib.example.nnframes.gbt.gbtClassifierTrainingExampleOnCriteoClickLogsDataset \ + --num-executors 2 \ + --executor-cores 4 \ + --executor-memory 4G \ + --driver-memory 10G \ + /path/to/bigdl-dllib-spark_3.1.2-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ + -i /path/to/preprocessed-data/saved -s /path/to/model/saved -I max_Iter -d max_depth +``` + +parameters: +- input_path: String. Path to criteo-click-logs-dataset. +- modelsave_path: String. Path to model to be saved. +- max_iter: Int. Training max iter. +- max_depth: Int. Tree max depth. + +The tree of folder `/path/to/model/saved` is: +``` +/path/to/model/saved +├── data +└── metadata + ├── part-00000 + └── _SUCCESS +``` diff --git a/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/gbtClassifierTrainingExampleOnCriteoClickLogsDataset.scala b/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/gbtClassifierTrainingExampleOnCriteoClickLogsDataset.scala new file mode 100644 index 00000000000..227bcfdae24 --- /dev/null +++ b/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/gbtClassifierTrainingExampleOnCriteoClickLogsDataset.scala @@ -0,0 +1,177 @@ +/* + * Copyright 2016 The BigDL Authors. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package com.intel.analytics.bigdl.dllib.example.nnframes.gbt + +import com.intel.analytics.bigdl.dllib.NNContext +import org.apache.spark.ml.classification.GBTClassifier +import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler} +import org.apache.spark.sql.types.{LongType, StructField, StructType} +import org.apache.spark.sql.{Row, SQLContext} +import org.slf4j.{Logger, LoggerFactory} +import scopt.OptionParser + + +class Task extends Serializable { + + val default_missing_value = "-999" + + def rowToLibsvm(row: Row): String = { + 0 until row.length flatMap { + case 0 => Some(row(0).toString) + case i if row(i) == null => Some(default_missing_value) + case i => Some((if (i < 14) row(i) + else java.lang.Long.parseLong(row(i).toString, 16)).toString) + } mkString " " + } +} + +case class Params( + trainingDataPath: String = "/host/data", + modelSavePath: String = "/host/data/model", + maxIter: Int = 100, + maxDepth: Int = 2 + ) + +object gbtClassifierTrainingExampleOnCriteoClickLogsDataset { + + val feature_nums = 39 + + def main(args: Array[String]): Unit = { + + val log: Logger = LoggerFactory.getLogger(this.getClass) + + + // parse params and set value + + val params = parser.parse(args, new Params).get + val trainingDataPath = params.trainingDataPath // path to data + val modelSavePath = params.modelSavePath // save model to this path + val maxIter = params.maxIter // train max Iter + val maxDepth = params.maxDepth // tree max depth + + val sc = NNContext.initNNContext() + val spark = SQLContext.getOrCreate(sc) + + val task = new Task() + + val tStart = System.nanoTime() + // read csv files to dataframe + var df = spark.read.option("header", "false"). + option("inferSchema", "true").option("delimiter", "\t").csv(trainingDataPath) + + val tBeforePreprocess = System.nanoTime() + var elapsed = (tBeforePreprocess - tStart) / 1000000000.0f // second + log.info("--reading data time is " + elapsed + " s") + // preprocess data + val processedRdd = df.rdd.map(task.rowToLibsvm) + + // declare schema + var structFieldArray = new Array[StructField](feature_nums + 1) + for (i <- 0 to feature_nums) { + structFieldArray(i) = StructField("_c" + i.toString, LongType, true) + } + var schema = new StructType(structFieldArray) + + // convert RDD to RDD[Row] + val rowRDD = processedRdd.map(_.split(" ")).map(row => Row.fromSeq( + for { + i <- 0 to feature_nums + } yield { + row(i).toLong + } + )) + // RDD[Row] to Dataframe + df = spark.createDataFrame(rowRDD, schema) + + + val stringIndexer = new StringIndexer() + .setInputCol("_c0") + .setOutputCol("classIndex") + .fit(df) + val labelTransformed = stringIndexer.transform(df).drop("_c0") + + var inputCols = new Array[String](feature_nums) + for (i <- 0 to feature_nums - 1) { + inputCols(i) = "_c" + (i + 1).toString + } + + val vectorAssembler = new VectorAssembler(). + setInputCols(inputCols). + setOutputCol("features") + + val gbtInput = vectorAssembler.transform(labelTransformed).select("features", "classIndex") + // randomly split dataset to (train, eval1, eval2, test) in proportion 6:2:1:1 + val Array(train, eval1, eval2, test) = gbtInput.randomSplit(Array(0.6, 0.2, 0.1, 0.1)) + + train.cache().count() + eval1.cache().count() + eval2.cache().count() + + val tBeforeTraining = System.nanoTime() + elapsed = (tBeforeTraining - tBeforePreprocess) / 1000000000.0f // second + log.info("--preprocess time is " + elapsed + " s") + // use scala tracker + // val gbtParam = Map("tracker_conf" -> TrackerConf(0L, "scala"), + // "eval_sets" -> Map("eval1" -> eval1, "eval2" -> eval2) + // ) + + // Train a GBT model. + val gbtClassifier = new GBTClassifier() + gbtClassifier.setFeaturesCol("features") + gbtClassifier.setLabelCol("classIndex") + gbtClassifier.setMaxDepth(maxDepth) + gbtClassifier.setMaxIter(maxIter) + gbtClassifier.setFeatureSubsetStrategy("auto") + + // Train model. This also runs the indexer. + val gbtClassificationModel = gbtClassifier.fit(train) + val tAfterTraining = System.nanoTime() + elapsed = (tAfterTraining - tBeforeTraining) / 1000000000.0f // second + log.info("--training time is " + elapsed + " s") + + gbtClassificationModel.write.overwrite().save(modelSavePath) + + val tAfterSave = System.nanoTime() + elapsed = (tAfterSave - tAfterTraining) / 1000000000.0f // second + log.info("--model save time is " + elapsed + " s") + elapsed = (tAfterSave - tStart) / 1000000000.0f // second + log.info("--end-to-end time is " + elapsed + " s") + sc.stop() + } + + val parser: OptionParser[Params] = new OptionParser[Params]("input gbt config") { + opt[String]('i', "trainingDataPath") + .text("trainingData Path") + .action((v, p) => p.copy(trainingDataPath = v)) + .required() + + opt[String]('s', "modelSavePath") + .text("savePath of model") + .action((v, p) => p.copy(modelSavePath = v)) + .required() + + opt[Int]('I', "maxIter") + .text("maxIter") + .action((v, p) => p.copy(maxIter = v)) + + opt[Int]('d', "maxDepth") + .text("maxDepth") + .action((v, p) => p.copy(maxDepth = v)) + + } +} +