-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfeature_extraction.py
154 lines (129 loc) · 6.9 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
This file incorporates work covered by the following copyright and permission notice:
Copyright (c) 2018 Ignacio Rocco
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Source: https://github.com/ignacio-rocco/weakalign/blob/master/model/cnn_geometric_model.py
"""
import torch
import torch.nn as nn
from torchvision import models
def featureL2Norm(feature):
epsilon = 1e-6
norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) +
epsilon, 0.5).unsqueeze(1).expand_as(feature)
return torch.div(feature, norm)
class FeatureExtraction(torch.nn.Module):
def __init__(self, train_fe=False, feature_extraction_cnn='vgg19', normalization=True, last_layer='', use_cuda=True):
super(FeatureExtraction, self).__init__()
self.normalization = normalization
# multiple extracting layers
last_layer = last_layer.split(',')
if feature_extraction_cnn == 'vgg16':
self.model = models.vgg16(pretrained=True)
# keep feature extraction network up to indicated layer
vgg_feature_layers = ['conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1',
'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1',
'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1',
'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'pool5']
start_index = 0
self.model_list = []
for l in last_layer:
if l == '':
l = 'pool4'
layer_idx = vgg_feature_layers.index(l)
assert layer_idx >= start_index, 'layer order wrong!'
model = nn.Sequential(
*list(self.model.features.children())[start_index:layer_idx + 1])
self.model_list.append(model)
start_index = layer_idx + 1
if feature_extraction_cnn == 'vgg19':
self.model = models.vgg19(pretrained=True)
# keep feature extraction network up to indicated layer
vgg_feature_layers = ['conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5']
# vgg_output_dim = [64, 64, 64, 64, 64,
# 128, 128, 128, 128, 128,
# 256, 256, 256, 256, 256, 256, 256, 256, 256,
# 512, 512, 512, 512, 512, 512, 512, 512, 512,
# 512, 512, 512, 512, 512, 512, 512, 512, 512]
start_index = 0
self.model_list = []
# self.out_dim = 0
for l in last_layer:
if l == '':
l = 'relu5_4'
layer_idx = vgg_feature_layers.index(l)
assert layer_idx >= start_index, 'layer order wrong!'
# self.out_dim += vgg_output_dim[layer_idx]
model = nn.Sequential(
*list(self.model.features.children())[start_index:layer_idx + 1])
self.model_list.append(model)
start_index = layer_idx + 1
if feature_extraction_cnn in ['resnet18', 'resnet101']:
if feature_extraction_cnn == 'resnet18':
self.model = models.resnet18(pretrained=True)
else:
self.model = models.resnet101(pretrained=True)
resnet_feature_layers = ['conv1',
'bn1',
'relu',
'maxpool',
'layer1',
'layer2',
'layer3',
'layer4']
resnet_module_list = [self.model.conv1,
self.model.bn1,
self.model.relu,
self.model.maxpool,
self.model.layer1,
self.model.layer2,
self.model.layer3,
self.model.layer4]
start_index = 0
self.model_list = []
for l in last_layer:
if l == '':
l = 'layer3'
layer_idx = resnet_feature_layers.index(l)
assert layer_idx >= start_index, 'layer order wrong!'
model = nn.Sequential(
*resnet_module_list[start_index:layer_idx + 1])
self.model_list.append(model)
start_index = layer_idx + 1
if not train_fe:
# freeze parameters
for param in self.model.parameters():
param.requires_grad = False
# move to GPU
if use_cuda:
self.model_list = [model.cuda() for model in self.model_list]
def forward(self, image_batch):
features_list = []
features = image_batch
for model in self.model_list:
features = model(features)
if self.normalization:
features = featureL2Norm(features)
features_list.append(features)
return features_list