-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
p256_asm.go
744 lines (635 loc) · 21.4 KB
/
p256_asm.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the Go wrapper for the constant-time, 64-bit assembly
// implementation of P256. The optimizations performed here are described in
// detail in:
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
// 256-bit primes"
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
// https://eprint.iacr.org/2013/816.pdf
//go:build !purego && (amd64 || arm64 || (ppc64le && go1.19) || s390x)
package nistec
import (
_ "embed"
"encoding/binary"
"errors"
"math/bits"
"runtime"
"unsafe"
)
// p256Element is a P-256 base field element in [0, P-1] in the Montgomery
// domain (with R 2²⁵⁶) as four limbs in little-endian order value.
type p256Element [4]uint64
// p256One is one in the Montgomery domain.
var p256One = p256Element{0x0000000000000001, 0xffffffff00000000,
0xffffffffffffffff, 0x00000000fffffffe}
var p256Zero = p256Element{}
// p256P is 2²⁵⁶ - 2²²⁴ + 2¹⁹² + 2⁹⁶ - 1 in the Montgomery domain.
var p256P = p256Element{0xffffffffffffffff, 0x00000000ffffffff,
0x0000000000000000, 0xffffffff00000001}
// P256Point is a P-256 point. The zero value should not be assumed to be valid
// (although it is in this implementation).
type P256Point struct {
// (X:Y:Z) are Jacobian coordinates where x = X/Z² and y = Y/Z³. The point
// at infinity can be represented by any set of coordinates with Z = 0.
x, y, z p256Element
}
// NewP256Point returns a new P256Point representing the point at infinity.
func NewP256Point() *P256Point {
return &P256Point{
x: p256One, y: p256One, z: p256Zero,
}
}
// SetGenerator sets p to the canonical generator and returns p.
func (p *P256Point) SetGenerator() *P256Point {
p.x = p256Element{0x79e730d418a9143c, 0x75ba95fc5fedb601,
0x79fb732b77622510, 0x18905f76a53755c6}
p.y = p256Element{0xddf25357ce95560a, 0x8b4ab8e4ba19e45c,
0xd2e88688dd21f325, 0x8571ff1825885d85}
p.z = p256One
return p
}
// Set sets p = q and returns p.
func (p *P256Point) Set(q *P256Point) *P256Point {
p.x, p.y, p.z = q.x, q.y, q.z
return p
}
const p256ElementLength = 32
const p256UncompressedLength = 1 + 2*p256ElementLength
const p256CompressedLength = 1 + p256ElementLength
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
// the curve, it returns nil and an error, and the receiver is unchanged.
// Otherwise, it returns p.
func (p *P256Point) SetBytes(b []byte) (*P256Point, error) {
// p256Mul operates in the Montgomery domain with R = 2²⁵⁶ mod p. Thus rr
// here is R in the Montgomery domain, or R×R mod p. See comment in
// P256OrdInverse about how this is used.
rr := p256Element{0x0000000000000003, 0xfffffffbffffffff,
0xfffffffffffffffe, 0x00000004fffffffd}
switch {
// Point at infinity.
case len(b) == 1 && b[0] == 0:
return p.Set(NewP256Point()), nil
// Uncompressed form.
case len(b) == p256UncompressedLength && b[0] == 4:
var r P256Point
p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
p256BigToLittle(&r.y, (*[32]byte)(b[33:65]))
if p256LessThanP(&r.x) == 0 || p256LessThanP(&r.y) == 0 {
return nil, errors.New("invalid P256 element encoding")
}
p256Mul(&r.x, &r.x, &rr)
p256Mul(&r.y, &r.y, &rr)
if err := p256CheckOnCurve(&r.x, &r.y); err != nil {
return nil, err
}
r.z = p256One
return p.Set(&r), nil
// Compressed form.
case len(b) == p256CompressedLength && (b[0] == 2 || b[0] == 3):
var r P256Point
p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
if p256LessThanP(&r.x) == 0 {
return nil, errors.New("invalid P256 element encoding")
}
p256Mul(&r.x, &r.x, &rr)
// y² = x³ - 3x + b
p256Polynomial(&r.y, &r.x)
if !p256Sqrt(&r.y, &r.y) {
return nil, errors.New("invalid P256 compressed point encoding")
}
// Select the positive or negative root, as indicated by the least
// significant bit, based on the encoding type byte.
yy := new(p256Element)
p256FromMont(yy, &r.y)
cond := int(yy[0]&1) ^ int(b[0]&1)
p256NegCond(&r.y, cond)
r.z = p256One
return p.Set(&r), nil
default:
return nil, errors.New("invalid P256 point encoding")
}
}
// p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
func p256Polynomial(y2, x *p256Element) *p256Element {
x3 := new(p256Element)
p256Sqr(x3, x, 1)
p256Mul(x3, x3, x)
threeX := new(p256Element)
p256Add(threeX, x, x)
p256Add(threeX, threeX, x)
p256NegCond(threeX, 1)
p256B := &p256Element{0xd89cdf6229c4bddf, 0xacf005cd78843090,
0xe5a220abf7212ed6, 0xdc30061d04874834}
p256Add(x3, x3, threeX)
p256Add(x3, x3, p256B)
*y2 = *x3
return y2
}
func p256CheckOnCurve(x, y *p256Element) error {
// y² = x³ - 3x + b
rhs := p256Polynomial(new(p256Element), x)
lhs := new(p256Element)
p256Sqr(lhs, y, 1)
if p256Equal(lhs, rhs) != 1 {
return errors.New("P256 point not on curve")
}
return nil
}
// p256LessThanP returns 1 if x < p, and 0 otherwise. Note that a p256Element is
// not allowed to be equal to or greater than p, so if this function returns 0
// then x is invalid.
func p256LessThanP(x *p256Element) int {
var b uint64
_, b = bits.Sub64(x[0], p256P[0], b)
_, b = bits.Sub64(x[1], p256P[1], b)
_, b = bits.Sub64(x[2], p256P[2], b)
_, b = bits.Sub64(x[3], p256P[3], b)
return int(b)
}
// p256Add sets res = x + y.
func p256Add(res, x, y *p256Element) {
var c, b uint64
t1 := make([]uint64, 4)
t1[0], c = bits.Add64(x[0], y[0], 0)
t1[1], c = bits.Add64(x[1], y[1], c)
t1[2], c = bits.Add64(x[2], y[2], c)
t1[3], c = bits.Add64(x[3], y[3], c)
t2 := make([]uint64, 4)
t2[0], b = bits.Sub64(t1[0], p256P[0], 0)
t2[1], b = bits.Sub64(t1[1], p256P[1], b)
t2[2], b = bits.Sub64(t1[2], p256P[2], b)
t2[3], b = bits.Sub64(t1[3], p256P[3], b)
// Three options:
// - a+b < p
// then c is 0, b is 1, and t1 is correct
// - p <= a+b < 2^256
// then c is 0, b is 0, and t2 is correct
// - 2^256 <= a+b
// then c is 1, b is 1, and t2 is correct
t2Mask := (c ^ b) - 1
res[0] = (t1[0] & ^t2Mask) | (t2[0] & t2Mask)
res[1] = (t1[1] & ^t2Mask) | (t2[1] & t2Mask)
res[2] = (t1[2] & ^t2Mask) | (t2[2] & t2Mask)
res[3] = (t1[3] & ^t2Mask) | (t2[3] & t2Mask)
}
// p256Sqrt sets e to a square root of x. If x is not a square, p256Sqrt returns
// false and e is unchanged. e and x can overlap.
func p256Sqrt(e, x *p256Element) (isSquare bool) {
t0, t1 := new(p256Element), new(p256Element)
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
//
// The sequence of 7 multiplications and 253 squarings is derived from the
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
//
// _10 = 2*1
// _11 = 1 + _10
// _1100 = _11 << 2
// _1111 = _11 + _1100
// _11110000 = _1111 << 4
// _11111111 = _1111 + _11110000
// x16 = _11111111 << 8 + _11111111
// x32 = x16 << 16 + x16
// return ((x32 << 32 + 1) << 96 + 1) << 94
//
p256Sqr(t0, x, 1)
p256Mul(t0, x, t0)
p256Sqr(t1, t0, 2)
p256Mul(t0, t0, t1)
p256Sqr(t1, t0, 4)
p256Mul(t0, t0, t1)
p256Sqr(t1, t0, 8)
p256Mul(t0, t0, t1)
p256Sqr(t1, t0, 16)
p256Mul(t0, t0, t1)
p256Sqr(t0, t0, 32)
p256Mul(t0, x, t0)
p256Sqr(t0, t0, 96)
p256Mul(t0, x, t0)
p256Sqr(t0, t0, 94)
p256Sqr(t1, t0, 1)
if p256Equal(t1, x) != 1 {
return false
}
*e = *t0
return true
}
// The following assembly functions are implemented in p256_asm_*.s
// Montgomery multiplication. Sets res = in1 * in2 * R⁻¹ mod p.
//
//go:noescape
func p256Mul(res, in1, in2 *p256Element)
// Montgomery square, repeated n times (n >= 1).
//
//go:noescape
func p256Sqr(res, in *p256Element, n int)
// Montgomery multiplication by R⁻¹, or 1 outside the domain.
// Sets res = in * R⁻¹, bringing res out of the Montgomery domain.
//
//go:noescape
func p256FromMont(res, in *p256Element)
// If cond is not 0, sets val = -val mod p.
//
//go:noescape
func p256NegCond(val *p256Element, cond int)
// If cond is 0, sets res = b, otherwise sets res = a.
//
//go:noescape
func p256MovCond(res, a, b *P256Point, cond int)
//go:noescape
func p256BigToLittle(res *p256Element, in *[32]byte)
//go:noescape
func p256LittleToBig(res *[32]byte, in *p256Element)
//go:noescape
func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
//go:noescape
func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
// p256Table is a table of the first 16 multiples of a point. Points are stored
// at an index offset of -1 so [8]P is at index 7, P is at 0, and [16]P is at 15.
// [0]P is the point at infinity and it's not stored.
type p256Table [16]P256Point
// p256Select sets res to the point at index idx in the table.
// idx must be in [0, 15]. It executes in constant time.
//
//go:noescape
func p256Select(res *P256Point, table *p256Table, idx int)
// p256AffinePoint is a point in affine coordinates (x, y). x and y are still
// Montgomery domain elements. The point can't be the point at infinity.
type p256AffinePoint struct {
x, y p256Element
}
// p256AffineTable is a table of the first 32 multiples of a point. Points are
// stored at an index offset of -1 like in p256Table, and [0]P is not stored.
type p256AffineTable [32]p256AffinePoint
// p256Precomputed is a series of precomputed multiples of G, the canonical
// generator. The first p256AffineTable contains multiples of G. The second one
// multiples of [2⁶]G, the third one of [2¹²]G, and so on, where each successive
// table is the previous table doubled six times. Six is the width of the
// sliding window used in p256ScalarMult, and having each table already
// pre-doubled lets us avoid the doublings between windows entirely. This table
// MUST NOT be modified, as it aliases into p256PrecomputedEmbed below.
var p256Precomputed *[43]p256AffineTable
//go:embed p256_asm_table.bin
var p256PrecomputedEmbed string
func init() {
p256PrecomputedPtr := (*unsafe.Pointer)(unsafe.Pointer(&p256PrecomputedEmbed))
if runtime.GOARCH == "s390x" {
var newTable [43 * 32 * 2 * 4]uint64
for i, x := range (*[43 * 32 * 2 * 4][8]byte)(*p256PrecomputedPtr) {
newTable[i] = binary.LittleEndian.Uint64(x[:])
}
newTablePtr := unsafe.Pointer(&newTable)
p256PrecomputedPtr = &newTablePtr
}
p256Precomputed = (*[43]p256AffineTable)(*p256PrecomputedPtr)
}
// p256SelectAffine sets res to the point at index idx in the table.
// idx must be in [0, 31]. It executes in constant time.
//
//go:noescape
func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
// Point addition with an affine point and constant time conditions.
// If zero is 0, sets res = in2. If sel is 0, sets res = in1.
// If sign is not 0, sets res = in1 + -in2. Otherwise, sets res = in1 + in2
//
//go:noescape
func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int)
// Point addition. Sets res = in1 + in2. Returns one if the two input points
// were equal and zero otherwise. If in1 or in2 are the point at infinity, res
// and the return value are undefined.
//
//go:noescape
func p256PointAddAsm(res, in1, in2 *P256Point) int
// Point doubling. Sets res = in + in. in can be the point at infinity.
//
//go:noescape
func p256PointDoubleAsm(res, in *P256Point)
// p256OrdElement is a P-256 scalar field element in [0, ord(G)-1] in the
// Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order.
type p256OrdElement [4]uint64
// p256OrdReduce ensures s is in the range [0, ord(G)-1].
func p256OrdReduce(s *p256OrdElement) {
// Since 2 * ord(G) > 2²⁵⁶, we can just conditionally subtract ord(G),
// keeping the result if it doesn't underflow.
t0, b := bits.Sub64(s[0], 0xf3b9cac2fc632551, 0)
t1, b := bits.Sub64(s[1], 0xbce6faada7179e84, b)
t2, b := bits.Sub64(s[2], 0xffffffffffffffff, b)
t3, b := bits.Sub64(s[3], 0xffffffff00000000, b)
tMask := b - 1 // zero if subtraction underflowed
s[0] ^= (t0 ^ s[0]) & tMask
s[1] ^= (t1 ^ s[1]) & tMask
s[2] ^= (t2 ^ s[2]) & tMask
s[3] ^= (t3 ^ s[3]) & tMask
}
// Add sets q = p1 + p2, and returns q. The points may overlap.
func (q *P256Point) Add(r1, r2 *P256Point) *P256Point {
var sum, double P256Point
r1IsInfinity := r1.isInfinity()
r2IsInfinity := r2.isInfinity()
pointsEqual := p256PointAddAsm(&sum, r1, r2)
p256PointDoubleAsm(&double, r1)
p256MovCond(&sum, &double, &sum, pointsEqual)
p256MovCond(&sum, r1, &sum, r2IsInfinity)
p256MovCond(&sum, r2, &sum, r1IsInfinity)
return q.Set(&sum)
}
// Double sets q = p + p, and returns q. The points may overlap.
func (q *P256Point) Double(p *P256Point) *P256Point {
var double P256Point
p256PointDoubleAsm(&double, p)
return q.Set(&double)
}
// ScalarBaseMult sets r = scalar * generator, where scalar is a 32-byte big
// endian value, and returns r. If scalar is not 32 bytes long, ScalarBaseMult
// returns an error and the receiver is unchanged.
func (r *P256Point) ScalarBaseMult(scalar []byte) (*P256Point, error) {
if len(scalar) != 32 {
return nil, errors.New("invalid scalar length")
}
scalarReversed := new(p256OrdElement)
p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
p256OrdReduce(scalarReversed)
r.p256BaseMult(scalarReversed)
return r, nil
}
// ScalarMult sets r = scalar * q, where scalar is a 32-byte big endian value,
// and returns r. If scalar is not 32 bytes long, ScalarBaseMult returns an
// error and the receiver is unchanged.
func (r *P256Point) ScalarMult(q *P256Point, scalar []byte) (*P256Point, error) {
if len(scalar) != 32 {
return nil, errors.New("invalid scalar length")
}
scalarReversed := new(p256OrdElement)
p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
p256OrdReduce(scalarReversed)
r.Set(q).p256ScalarMult(scalarReversed)
return r, nil
}
// uint64IsZero returns 1 if x is zero and zero otherwise.
func uint64IsZero(x uint64) int {
x = ^x
x &= x >> 32
x &= x >> 16
x &= x >> 8
x &= x >> 4
x &= x >> 2
x &= x >> 1
return int(x & 1)
}
// p256Equal returns 1 if a and b are equal and 0 otherwise.
func p256Equal(a, b *p256Element) int {
var acc uint64
for i := range a {
acc |= a[i] ^ b[i]
}
return uint64IsZero(acc)
}
// isInfinity returns 1 if p is the point at infinity and 0 otherwise.
func (p *P256Point) isInfinity() int {
return p256Equal(&p.z, &p256Zero)
}
// Bytes returns the uncompressed or infinity encoding of p, as specified in
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
// infinity is shorter than all other encodings.
func (p *P256Point) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [p256UncompressedLength]byte
return p.bytes(&out)
}
func (p *P256Point) bytes(out *[p256UncompressedLength]byte) []byte {
// The proper representation of the point at infinity is a single zero byte.
if p.isInfinity() == 1 {
return append(out[:0], 0)
}
x, y := new(p256Element), new(p256Element)
p.affineFromMont(x, y)
out[0] = 4 // Uncompressed form.
p256LittleToBig((*[32]byte)(out[1:33]), x)
p256LittleToBig((*[32]byte)(out[33:65]), y)
return out[:]
}
// affineFromMont sets (x, y) to the affine coordinates of p, converted out of the
// Montgomery domain.
func (p *P256Point) affineFromMont(x, y *p256Element) {
p256Inverse(y, &p.z)
p256Sqr(x, y, 1)
p256Mul(y, y, x)
p256Mul(x, &p.x, x)
p256Mul(y, &p.y, y)
p256FromMont(x, x)
p256FromMont(y, y)
}
// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
func (p *P256Point) BytesX() ([]byte, error) {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [p256ElementLength]byte
return p.bytesX(&out)
}
func (p *P256Point) bytesX(out *[p256ElementLength]byte) ([]byte, error) {
if p.isInfinity() == 1 {
return nil, errors.New("P256 point is the point at infinity")
}
x := new(p256Element)
p256Inverse(x, &p.z)
p256Sqr(x, x, 1)
p256Mul(x, &p.x, x)
p256FromMont(x, x)
p256LittleToBig((*[32]byte)(out[:]), x)
return out[:], nil
}
// BytesCompressed returns the compressed or infinity encoding of p, as
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
// point at infinity is shorter than all other encodings.
func (p *P256Point) BytesCompressed() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [p256CompressedLength]byte
return p.bytesCompressed(&out)
}
func (p *P256Point) bytesCompressed(out *[p256CompressedLength]byte) []byte {
if p.isInfinity() == 1 {
return append(out[:0], 0)
}
x, y := new(p256Element), new(p256Element)
p.affineFromMont(x, y)
out[0] = 2 | byte(y[0]&1)
p256LittleToBig((*[32]byte)(out[1:33]), x)
return out[:]
}
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
func (q *P256Point) Select(p1, p2 *P256Point, cond int) *P256Point {
p256MovCond(q, p1, p2, cond)
return q
}
// p256Inverse sets out to in⁻¹ mod p. If in is zero, out will be zero.
func p256Inverse(out, in *p256Element) {
// Inversion is calculated through exponentiation by p - 2, per Fermat's
// little theorem.
//
// The sequence of 12 multiplications and 255 squarings is derived from the
// following addition chain generated with github.com/mmcloughlin/addchain
// v0.4.0.
//
// _10 = 2*1
// _11 = 1 + _10
// _110 = 2*_11
// _111 = 1 + _110
// _111000 = _111 << 3
// _111111 = _111 + _111000
// x12 = _111111 << 6 + _111111
// x15 = x12 << 3 + _111
// x16 = 2*x15 + 1
// x32 = x16 << 16 + x16
// i53 = x32 << 15
// x47 = x15 + i53
// i263 = ((i53 << 17 + 1) << 143 + x47) << 47
// return (x47 + i263) << 2 + 1
//
var z = new(p256Element)
var t0 = new(p256Element)
var t1 = new(p256Element)
p256Sqr(z, in, 1)
p256Mul(z, in, z)
p256Sqr(z, z, 1)
p256Mul(z, in, z)
p256Sqr(t0, z, 3)
p256Mul(t0, z, t0)
p256Sqr(t1, t0, 6)
p256Mul(t0, t0, t1)
p256Sqr(t0, t0, 3)
p256Mul(z, z, t0)
p256Sqr(t0, z, 1)
p256Mul(t0, in, t0)
p256Sqr(t1, t0, 16)
p256Mul(t0, t0, t1)
p256Sqr(t0, t0, 15)
p256Mul(z, z, t0)
p256Sqr(t0, t0, 17)
p256Mul(t0, in, t0)
p256Sqr(t0, t0, 143)
p256Mul(t0, z, t0)
p256Sqr(t0, t0, 47)
p256Mul(z, z, t0)
p256Sqr(z, z, 2)
p256Mul(out, in, z)
}
func boothW5(in uint) (int, int) {
var s uint = ^((in >> 5) - 1)
var d uint = (1 << 6) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func boothW6(in uint) (int, int) {
var s uint = ^((in >> 6) - 1)
var d uint = (1 << 7) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func (p *P256Point) p256BaseMult(scalar *p256OrdElement) {
var t0 p256AffinePoint
wvalue := (scalar[0] << 1) & 0x7f
sel, sign := boothW6(uint(wvalue))
p256SelectAffine(&t0, &p256Precomputed[0], sel)
p.x, p.y, p.z = t0.x, t0.y, p256One
p256NegCond(&p.y, sign)
index := uint(5)
zero := sel
for i := 1; i < 43; i++ {
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
} else {
wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
}
index += 6
sel, sign = boothW6(uint(wvalue))
p256SelectAffine(&t0, &p256Precomputed[i], sel)
p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
zero |= sel
}
// If the whole scalar was zero, set to the point at infinity.
p256MovCond(p, p, NewP256Point(), zero)
}
func (p *P256Point) p256ScalarMult(scalar *p256OrdElement) {
// precomp is a table of precomputed points that stores powers of p
// from p^1 to p^16.
var precomp p256Table
var t0, t1, t2, t3 P256Point
// Prepare the table
precomp[0] = *p // 1
p256PointDoubleAsm(&t0, p)
p256PointDoubleAsm(&t1, &t0)
p256PointDoubleAsm(&t2, &t1)
p256PointDoubleAsm(&t3, &t2)
precomp[1] = t0 // 2
precomp[3] = t1 // 4
precomp[7] = t2 // 8
precomp[15] = t3 // 16
p256PointAddAsm(&t0, &t0, p)
p256PointAddAsm(&t1, &t1, p)
p256PointAddAsm(&t2, &t2, p)
precomp[2] = t0 // 3
precomp[4] = t1 // 5
precomp[8] = t2 // 9
p256PointDoubleAsm(&t0, &t0)
p256PointDoubleAsm(&t1, &t1)
precomp[5] = t0 // 6
precomp[9] = t1 // 10
p256PointAddAsm(&t2, &t0, p)
p256PointAddAsm(&t1, &t1, p)
precomp[6] = t2 // 7
precomp[10] = t1 // 11
p256PointDoubleAsm(&t0, &t0)
p256PointDoubleAsm(&t2, &t2)
precomp[11] = t0 // 12
precomp[13] = t2 // 14
p256PointAddAsm(&t0, &t0, p)
p256PointAddAsm(&t2, &t2, p)
precomp[12] = t0 // 13
precomp[14] = t2 // 15
// Start scanning the window from top bit
index := uint(254)
var sel, sign int
wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
sel, _ = boothW5(uint(wvalue))
p256Select(p, &precomp, sel)
zero := sel
for index > 4 {
index -= 5
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
} else {
wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
}
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, &precomp, sel)
p256NegCond(&t0.y, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
zero |= sel
}
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
wvalue = (scalar[0] << 1) & 0x3f
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, &precomp, sel)
p256NegCond(&t0.y, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
}